JP2004186536A - Semiconductor device and method for manufacturing the same - Google Patents

Semiconductor device and method for manufacturing the same Download PDF

Info

Publication number
JP2004186536A
JP2004186536A JP2002353441A JP2002353441A JP2004186536A JP 2004186536 A JP2004186536 A JP 2004186536A JP 2002353441 A JP2002353441 A JP 2002353441A JP 2002353441 A JP2002353441 A JP 2002353441A JP 2004186536 A JP2004186536 A JP 2004186536A
Authority
JP
Japan
Prior art keywords
chip
region
substrate
conductive path
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002353441A
Other languages
Japanese (ja)
Other versions
JP3995582B2 (en
Inventor
Akihiko Funakoshi
明彦 船越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2002353441A priority Critical patent/JP3995582B2/en
Publication of JP2004186536A publication Critical patent/JP2004186536A/en
Application granted granted Critical
Publication of JP3995582B2 publication Critical patent/JP3995582B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/03Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04042Bonding areas specifically adapted for wire connectors, e.g. wirebond pads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05552Shape in top view
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/0601Structure
    • H01L2224/0603Bonding areas having different sizes, e.g. different heights or widths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49171Fan-out arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/78Apparatus for connecting with wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/78Apparatus for connecting with wire connectors
    • H01L2224/7825Means for applying energy, e.g. heating means
    • H01L2224/783Means for applying energy, e.g. heating means by means of pressure
    • H01L2224/78301Capillary
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01014Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01015Phosphorus [P]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor device, and especially realize the miniaturization of the device, and further provide a method for manufacturing the same. <P>SOLUTION: A conducting channel is provided in a chip side face, and is connected to the source electrode on the chip surface. The chip is bonded immovable to a header by using a conductive adhesive agent, and the conductive adhesive agent rising from the chip side and the conducting channel in the chip side face are connected to each other. Now that connection is established between the source electrode and the header, the source electrode is grounded when the header is made into a GND terminal. External miniaturization is thereby achieved because the design dispenses with a wire bonding area. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、半導体装置およびその製造方法にかかり、特に、装置の小型化を実現する半導体装置及びその製造方法に関する。
【0002】
【従来の技術】
電界効果トランジスタ(MOSFET)は、電流が垂直方向に流れるか、素子表面方向に流れるかにより大別でき、前者を縦型素子、後者を横型素子と呼ぶ。縦型素子は、主電極の一方が半導体素子の裏面にあり、単位面積当たりの通電能力に優れているため、特に高電力を扱う個別素子として用いられることが多い。これに対し横型素子はすべての電極が一表面に配列できるため集積化に適しており、集積回路の構成素子として用いられることが多い。
【0003】
図6に、従来技術による横型MOSFETの断面図を示す。MOSFET115は、その表面にn型ソース領域103およびn型ドレイン領域102を自己整合(セルフアラインメント)技術により拡散し、ゲート電極107の直下のp型基板101の表面にチャネル領域を形成したものである。
【0004】
ソース領域103とドレイン領域102はいずれも、基板101表面にイオン注入したのち熱拡散することにより形成され、それぞれソース電極111とドレイン電極110とに接続されている(例えば特許文献1参照。)。
【0005】
次に、図7を用いてこのMOSFETの動作原理を説明する。前述のソース電極およびドレイン電極からはそれぞれソース端子S、ドレイン端子Dが引き出され、ゲート電極はシリコン酸化膜等でp基板と絶縁されている。この状態でドレイン−ソース間に電圧を印加しても2つのn領域がp領域によって隔てられているため電流は流れない。
【0006】
ゲート電極に正の電圧を印加すると、p基板に少ないとは言え含まれる負の電荷である電子が絶縁膜を介してゲートに引寄せられ、絶縁膜との境界の半導体の極性が反転しチャネル領域が形成される。これによりドレイン領域−基板−ソース領域がn型半導体で連続し、ドレイン−ソース間に印加した電圧の極性に従い電流が流れる。
【0007】
この際、ゲートのグランド電位とソースのグランド電位の間に電位差を持つと、
チップ内のセルが不均一な動作をし、リーク電流増加、破壊耐量の低下等を招く。
【0008】
【特許文献1】
特開平11−284187号公報 (第2頁、第2図)
【0009】
【発明が解決しようとする課題】
図8(A)に、ソース電極111を基板101と短絡させた半導体装置の一例を示す。図6の如く、ウェハ上に素子拡散領域および各領域に接続する電極を形成後、スクライブライン108を切削し、個々のMOSFETのチップ115に分割する。
【0010】
個々のチップ115はその裏面がリードのヘッダー116aに固着され、ソース電極111に接続するソースパッド電極111Pをヘッダー116aにワイヤボンドする。ゲート電極107と接続するゲートパッド電極107Pは、ゲート端子となるリード116bに、ドレイン電極と接続するドレインパッド電極110Pはドレイン端子となるリード116cにそれぞれワイヤボンドする。
【0011】
このヘッダーにGND電位となるソース電極を接続することで、ゲートのグランド電位とソースのグランド電位との電位差がなくなり、MOSFETのセルが均一に動作するようになる。
【0012】
ワイヤボンディングは、キャピラリー150によりボンディングワイヤ118をチップ115上に運んでボンディングを行う。図8(B)の如く、キャピラリー150の先端部分はその直径φが例えば200μm程度であり、例えばソースワイヤボンドの場合は、ボンディングワイヤ118をチップ115に固着後ヘッダー116aに移動してワイヤを固着する。このときキャピラリー150がチップ115に接触するとチップ115を破壊してしまうため、この接触を避けなければならない。このため、ヘッダー116aにはワイヤボンドエリア130として400μm角程度のスペースが必要となる。
【0013】
しかし、現在ではチップの小型化が進み、小さいものではそのチップサイズは0.3mm角までシュリンクしている。このようなチップにおいてヘッダ上に400μm角程度ものワイヤボンドエリア130を確保するのは、外形の小型化が進まない大きな要因となっている。
【0014】
【課題を解決するための手段】
本発明はかかる課題に鑑みてなされ、第1に、半導体基板表面に設けられた素子領域と、前記素子領域と接続する複数の電極と、前記基板側壁に設けられ前記電極の少なくとも1つと接続する導電路とからなる半導体チップと、前記チップを固着するリードとを有し、前記チップを固着する導電性接着剤を前記チップの端から露出させ前記導電路とを接続することにより解決するものである。
【0015】
第2に、一導電型基板表面に設けられた逆導電型のソース領域及びドレイン領域と、前記ソース領域およびドレイン領域にコンタクトするソース電極およびドレイン電極と、前記ソース領域およびドレイン領域間の基板表面に絶縁膜を介して設けられたゲート電極と、前記基板側面に設けられ前記ソース電極と接続する導電路とからなる半導体チップと、前記チップを固着するリードとを有し、前記チップを固着する導電性接着剤を前記基板の端から露出させ前記導電路とを接続することにより解決するものである。
【0016】
また、前記リードはGND電位が印加されることを特徴とするものである。
【0017】
また、前記導電路は、前記チップ側面に導電材料を付着してなることを特徴とするものである。
【0018】
また、前記導電路は、前記チップ側面に設けた不純物拡散領域であることを特徴とするものである。
【0019】
第3に、基板上に素子拡散領域を形成する工程と、前記基板のスクライブライン上に溝を形成する工程と、前記溝内壁を覆い前記素子拡散領域の一部に接続する導電路を形成する工程と、前記スクライブラインを切削し個々の半導体チップを導電性接着剤によりリードに固着し前記チップ端から露出する前記導電性接着剤と前記導電路とを接続する工程とを具備することにより解決するものである。
【0020】
また、前記溝は異方性エッチングにより基板裏面に達しない程度の深さに形成されることを特徴とするものである。
【0021】
【発明の実施の形態】
本発明の実施の形態を図1から図5を参照し、nチャネル型MOSFETのチップを例に詳細に説明する。
【0022】
本発明の半導体装置は、図1(A)の如く側壁に導電路12を有するMOSFETのチップ15と、リード16と、導電性接着剤17とから構成される。
【0023】
図1(B)の如くMOSFETのチップ15は、一導電型基板1と、ソース領域3及びドレイン領域2と、ソース電極11およびドレイン電極10と、ゲート電極7と、導電路12を有する。
【0024】
基板1はp型半導体基板であり、その表面に既知の方法によりn型不純物を拡散してソース領域3及びドレイン領域2を設ける。ソース領域3およびドレイン領域2には、ソース電極11およびドレイン電極10がコンタクトする。
【0025】
ゲート電極7は、ソース領域3およびドレイン領域2間の基板1表面にゲート絶縁膜6を介して設けらる。ゲート電極7に電圧を印加することにより、ゲート電極7直下のソース領域3およびドレイン領域2間の基板表面にチャネル領域が形成される。
【0026】
ソース電極11およびドレイン電極は10は櫛歯をかみ合わせた形状に配置され、それぞれの櫛歯の間にゲート電極7が配置される。ゲート電極7を構成する半導体材料(例えばポリシリコン)は素子拡散領域20の外側に延在されてゲートパッド電極7Pに接続し、ドレイン電極10も素子領域20外のドレインパッド電極10Pに延在され、接続される。ソース電極11は素子拡散領域から延在し、素子拡散領域20の外周をほぼ囲むようにパターニングされる。
【0027】
導電路12は、上記の構成要素を有するMOSFETのチップ15側面にそれぞれ設ける。ウェハの状態で素子拡散領域20を形成後、ダイシングにより個々のチップ15に分割する際にスクライブラインを利用して設けられる。導電路12は、金属あるいは不純物をドープしたポリシリコン等の導電性材料をチップ15側面に付着したもの、または高濃度の不純物をチップ15側面に拡散した領域である。この導電路12は、ソース電極11をGND電位にするワイヤボンドの代用となる領域であるので、チップ15外周に延在されるソース電極11と接続し、チップ15側面に沿って少なくとも1本、好適には複数本配置する。チップ15全体のGND電位が均一になるためには周辺全体から満遍なく設けることが望ましい。
【0028】
また、この導電路12は、後に説明するが半導体装置の製造プロセス上、チップ15裏面には達しない。すなわちチップ15表面から延在しチップ裏面から20μm〜50μm上方のチップ15側面に設けられる。
【0029】
更に、上記のMOSFETのチップ15は、図1(A)の如くリード16のヘッダー16aに搭載され、チップ15裏面は、半田、エポキシ樹脂等の導電性接着剤17によりヘッダー16aと固着する。
【0030】
このとき、導電性接着剤17はチップ15の固着領域をはみ出してチップ端に20μm〜50μm程度盛り上がって固着する。これにより、チップ15側面に設けられた導電路12と接触し、チップ15表面のソース電極11とヘッダー16aとが接続する。すなわち、ワイヤボンドを利用せず、ソース電極11とヘッダー16aとを接続することができる。
【0031】
図2には、チップ15を実装した平面図を示す。
【0032】
チップは前述の如くヘッダー16aに固着され、ソース電極11とヘッダ16aが導電路12より接続する。また、ゲートパッド電極7Pはゲート端子Gとなるリード16bとボンディングワイヤにより接続し、ドレインパッド電極10Pはドレイン端子Dとなるリード16cとボンディングワイヤにより接続する。ヘッダー16aはソース端子Sであり、従来通りGND電位が印加され、ソース電極11にGDN電位が印加される。更に樹脂層19などによりモールドされ、完成品となる。
【0033】
従来は、図8(A)の如くソース電極11とヘッダー16aをボンディングワイヤ118により接続しており、キャピラリー150を使用するため、ヘッダ上にワイヤボンド領域として400μm角程度スペースを確保する必要があり、外形の小型化を阻んでいた。しかし、本実施形態によれば、最低限チップの固着に必要な領域を確保すればよく、外形も大幅にシュリンクでき、小型外形への搭載が可能となる利点を有する。
【0034】
更には、ソース電極11のボンディングワイヤが不用となりコストを削減することもできる。
【0035】
次に図3から図5を用いて、本発明の半導体装置の製造方法をnチャネル型MOSFETのチップを例に説明する。
【0036】
本発明の半導体装置の製造方法は、基板上に素子拡散領域20を形成する工程と、基板のスクライブライン8上に溝9を形成する工程と、溝9内壁を覆い素子拡散領域20の一部に接続する導電路12を形成する工程と、スクライブライン8を切削し個々の半導体チップ15に分離する工程と、半導体チップ15を導電性接着剤17によりリード16に固着し導電路12と導電性接着剤17を接続する工程とから構成される。
【0037】
第1工程(図3(A)):既知の方法により、基板1上に素子拡散領域20を形成する工程。
【0038】
まず、p型シリコン半導体基板1を800℃程度で酸化し、駆動電圧により数百Å程度のゲート酸化膜6を形成する。次に、ゲート酸化膜6上に、不純物を導入して低抵抗化を図ったポリシリコンを堆積し、予定のソース領域3および予定のドレイン領域2の間のゲート酸化膜6上に残るようにパターニングしてゲート電極7を形成する。更に、全面を熱酸化してゲート電極7をゲート酸化膜6により被覆する。
【0039】
その後、ゲート電極7の両端の酸化膜を除去して半導体基板1を露出し、n型不純物をイオン注入したのち熱拡散してソース領域3およびドレイン領域2を形成する。また、好適にはゲート電極7直下に形成されるチャネル領域をソース電極11と同電位に接地するために、ソース領域3周辺にはp+型領域4を設け、更にチップ15の周辺部にはコンタクト抵抗を低減するためのアニュラー5を形成すして、MOSFETの素子拡散領域20を形成する。
【0040】
第2工程(図3(B)):基板1のスクライブライン8上に溝9を形成する工程。
【0041】
導電路12を形成するために、スクライブライン8上に溝9を形成する。溝9形成以外の領域をマスキングし、プラズマによる異方性エッチングにより、基板1表面に対してほぼ垂直に溝9を形成する。溝9は、基板1裏面に達するとチップが個々に分離され後の工程が煩雑になるため、基板1裏面に達しないよう、裏面から20μmから50μm上方までの深さに形成する。この溝9は、後の工程において導電路12となるものである。裏面から20μmから50μm上方とは、導電性接着剤がチップ15端からチップ15側面に盛り上がり、導電路12と接続するために必要な距離であり、50μm以上上方に(浅く)なると、導電性接着剤との接触が不良となる恐れがあり、また20μmより下方に(深く)溝を形成すると、その後の製造工程において、ウェハの強度が保てなくなるためである。
【0042】
また、フッ酸と硝酸の混合液による等方性エッチングでもよいが、等方性エッチングの場合には深さ方向と同様の長さで横方向にもエッチングが進むため、100μmの溝を形成する場合には200μmのスクライブラインが必要となる。スクライブラインは一般的には100μmから150μm程度であるので、ウェハの厚み(通常100μmから400μm程度)にもよるが、深い溝を形成するのであれば異方性エッチングが好ましい。
【0043】
第3工程(図3(C)):溝9内壁を覆い素子拡散領域20の一部に接続する導電路12を形成する工程。
【0044】
全面に金属をスパッタするなどして、ソース領域3、ドレイン領域2にコンタクトするソース電極11およびドレイン電極10を形成し、同時に、溝9内壁に導電路12を形成する。素子拡散領域20からその外周を囲うように延在したソース電極11と溝9内壁の導電路12とがコンタクトするように所望の形状のパターニングしたマスクを用いて形成する。またドレインパッド電極10Pも同時にパターニングされる。
【0045】
ここで、図4(A)(B)の如く、導電路12は金属に限らず不純物をドープしたポリシリコン12aでもよい。ポリシリコン12aを溝9内壁を覆うように堆積し、ドレイン電極10およびソース電極11を形成してソース電極11と導電路12とを接続する。
【0046】
更には、図4(C)(D)の如く、導電路12は、溝内壁に高濃度の不純物を注入・拡散し導電性を有する領域としてもよい。この場合は、溝9を形成後、斜めイオン注入などにより、溝9の少なくとも側壁に不純物拡散領域12bを形成する。その後、ドレイン電極10およびソース電極11を形成し、ソース電極11と導電路12とを接続する。
【0047】
第4工程(図5):スクライブライン8を切削し個々の半導体チップ15に分離し、半導体チップ15を導電性接着剤17によりリード16aに固着し導電路12と導電性接着剤17を接続する工程。
【0048】
残りのスクライブライン8を切削し、個々の半導体チップ15に分離する(図5(A))。この状態では図1または図5(B)の如く、チップ表面のソース電極11と接続する導電路12が、チップ側面に複数本延在されている。次に個々の半導体チップ15を組立工程においてリードのヘッダー16aに固着する。固着には半田やエポキシ樹脂などの導電性接着剤17を用い、30μm程度の厚みとなる量を供給して固着する。これにより、チップ15端から導電性接着剤17がチップ15側面に盛り上がって固着され、導電路12と接触する。上述の如く、チップ裏面から20μmから50μm上方までの深さに導電路12が設けられているので、導電性接着剤17と接触するには十分な高さである。これにより、ソース電極11とヘッダーとをボンディングワイヤを用いずに接続することができ、ワイヤボンド領域の確保が必要なくなる。
【0049】
更に、ゲート端子Gとなるリード16bとゲートパッド電極7Pを、ドレイン端子Dとなるリード16cとドレインパッド電極10Pとを、夫々ボンディングワイヤ18により接続し、樹脂モールド19されて図2に示す最終構造を得る。
【0050】
【発明の効果】
本発明によれば、ソース電極とヘッダーとのワイヤボンドに必要であった400μm角程度のスペースを省くことができる。チップの小型化が進んでも、このワイヤボンド領域を確保する従来構造では外形の小型化が進まなかったが、本発明によればチップの固着領域だけでよく、大幅に外形を小型化できる。
【0051】
更に、ソース電極のボンディングワイヤも不要となるので、コスト削減に寄与できる利点を有する。
【図面の簡単な説明】
【図1】本発明の半導体装置を説明する(A)斜視図、(B)断面図である。
【図2】本発明の半導体装置を説明する平面図である。
【図3】本発明に依る半導体装置の製造方法を説明する断面図である。
【図4】本発明に依る半導体装置の製造方法を説明する断面図である。
【図5】本発明に依る半導体装置の製造方法を説明する断面図である。
【図6】従来の半導体装置を説明する断面図である。
【図7】従来および本発明の半導体装置を説明する概念図である。
【図8】従来の半導体装置を説明する(A)平面図、(B)側面図である。
【符号の説明】
1 半導体基板
2 ドレイン領域
3 ソース領域
4 P+型領域
5 アニュラー
6 ゲート絶縁膜
7 ゲート電極
7P ゲートパッド電極
8 スクライブライン
9 溝
10 ドレイン電極
10P ドレインパッド電極
11 ソース電極
12 導電路
12a ポリシリコン
12b 不純物拡散領域
15 半導体チップ
16 リード
16a ヘッダー
16b リード
16c リード
18 ボンディングワイヤ
19 樹脂層
20 素子拡散領域
101 半導体基板
102 ドレイン領域
103 ソース領域
104 P+型領域
105 アニュラー
106 ゲート絶縁膜
107 ゲート電極
107P ゲートパッド電極
108 スクライブライン
110 ドレイン電極
110P ドレインパッド電極
111 ソース電極
111P ソースパッド電極
115 半導体チップ
116 リード
116a ヘッダー
116b リード
116c リード
118 ボンディングワイヤ
119 樹脂層
120 素子拡散領域
130 ワイヤボンド領域
120 キャピラリー
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a semiconductor device and a method of manufacturing the same, and more particularly, to a semiconductor device and a method of manufacturing the same that realize miniaturization of the device.
[0002]
[Prior art]
Field-effect transistors (MOSFETs) can be broadly classified according to whether a current flows in the vertical direction or in the element surface direction. The former is called a vertical element, and the latter is called a horizontal element. The vertical element is often used as an individual element handling particularly high power, because one of the main electrodes is on the back surface of the semiconductor element and has excellent current-carrying capacity per unit area. On the other hand, a horizontal element is suitable for integration because all the electrodes can be arranged on one surface, and is often used as a constituent element of an integrated circuit.
[0003]
FIG. 6 shows a cross-sectional view of a conventional lateral MOSFET. The MOSFET 115 has an n-type source region 103 and an n-type drain region 102 diffused on its surface by a self-alignment (self-alignment) technique to form a channel region on the surface of the p-type substrate 101 immediately below the gate electrode 107. .
[0004]
Both the source region 103 and the drain region 102 are formed by implanting ions into the surface of the substrate 101 and then thermally diffusing them, and are connected to the source electrode 111 and the drain electrode 110, respectively (for example, see Patent Document 1).
[0005]
Next, the operation principle of this MOSFET will be described with reference to FIG. A source terminal S and a drain terminal D are led out from the source electrode and the drain electrode, respectively, and the gate electrode is insulated from the p substrate by a silicon oxide film or the like. Even if a voltage is applied between the drain and the source in this state, no current flows because the two n regions are separated by the p region.
[0006]
When a positive voltage is applied to the gate electrode, electrons, which are negative charges contained in the p-substrate, although small, are attracted to the gate via the insulating film, and the polarity of the semiconductor at the boundary with the insulating film is inverted, so that the channel is An area is formed. As a result, the drain region-substrate-source region is continuous with the n-type semiconductor, and a current flows according to the polarity of the voltage applied between the drain and the source.
[0007]
At this time, if there is a potential difference between the ground potential of the gate and the ground potential of the source,
The cells in the chip operate unevenly, causing an increase in leak current, a decrease in breakdown strength, and the like.
[0008]
[Patent Document 1]
JP-A-11-284187 (Page 2, FIG. 2)
[0009]
[Problems to be solved by the invention]
FIG. 8A illustrates an example of a semiconductor device in which the source electrode 111 and the substrate 101 are short-circuited. As shown in FIG. 6, after forming an element diffusion region and an electrode connected to each region on the wafer, the scribe line 108 is cut and divided into individual MOSFET chips 115.
[0010]
The back surface of each chip 115 is fixed to the header 116a of the lead, and the source pad electrode 111P connected to the source electrode 111 is wire-bonded to the header 116a. The gate pad electrode 107P connected to the gate electrode 107 is wire-bonded to the lead 116b serving as a gate terminal, and the drain pad electrode 110P connected to the drain electrode is wire-bonded to the lead 116c serving as a drain terminal.
[0011]
By connecting the source electrode having the GND potential to this header, the potential difference between the ground potential of the gate and the ground potential of the source is eliminated, and the MOSFET cell operates uniformly.
[0012]
In the wire bonding, bonding is performed by carrying the bonding wire 118 onto the chip 115 by the capillary 150. As shown in FIG. 8B, the tip of the capillary 150 has a diameter φ of, for example, about 200 μm. For example, in the case of source wire bonding, the bonding wire 118 is fixed to the chip 115 and then moved to the header 116 a to fix the wire. I do. At this time, if the capillary 150 comes into contact with the chip 115, the chip 115 is destroyed, and this contact must be avoided. Therefore, a space of about 400 μm square is required as the wire bond area 130 in the header 116a.
[0013]
However, at present, the miniaturization of the chip is progressing, and the chip size of the small one is shrinking to 0.3 mm square. Securing the wire bond area 130 of about 400 μm square on the header in such a chip is a major factor in preventing the miniaturization of the external shape from proceeding.
[0014]
[Means for Solving the Problems]
The present invention has been made in view of the above problem, and firstly, an element region provided on a surface of a semiconductor substrate, a plurality of electrodes connected to the element region, and connected to at least one of the electrodes provided on a side wall of the substrate. The problem is solved by having a semiconductor chip including a conductive path and a lead for fixing the chip, exposing a conductive adhesive for fixing the chip from an end of the chip and connecting the conductive path. is there.
[0015]
Second, a source region and a drain region of the opposite conductivity type provided on the surface of the one conductivity type substrate, a source electrode and a drain electrode contacting the source region and the drain region, and a substrate surface between the source region and the drain region A semiconductor chip including a gate electrode provided through an insulating film, a conductive path provided on a side surface of the substrate and connected to the source electrode, and a lead for fixing the chip, and fixing the chip. This problem is solved by exposing a conductive adhesive from an end of the substrate and connecting the conductive path to the conductive path.
[0016]
Further, the lead is applied with a GND potential.
[0017]
The conductive path is formed by attaching a conductive material to the side surface of the chip.
[0018]
Further, the conductive path is an impurity diffusion region provided on a side surface of the chip.
[0019]
Third, a step of forming an element diffusion region on the substrate, a step of forming a groove on a scribe line of the substrate, and forming a conductive path covering the inner wall of the groove and connecting to a part of the element diffusion region And a step of cutting the scribe line, fixing individual semiconductor chips to leads with a conductive adhesive, and connecting the conductive adhesive exposed from the chip end to the conductive path. Is what you do.
[0020]
The groove is formed by anisotropic etching to a depth that does not reach the back surface of the substrate.
[0021]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of the present invention will be described in detail with reference to FIGS. 1 to 5, taking an n-channel MOSFET chip as an example.
[0022]
The semiconductor device of the present invention includes a MOSFET chip 15 having a conductive path 12 on a side wall, a lead 16 and a conductive adhesive 17 as shown in FIG.
[0023]
As shown in FIG. 1B, the MOSFET chip 15 has a substrate 1 of one conductivity type, a source region 3 and a drain region 2, a source electrode 11 and a drain electrode 10, a gate electrode 7, and a conductive path 12.
[0024]
The substrate 1 is a p-type semiconductor substrate, on which a source region 3 and a drain region 2 are provided by diffusing an n-type impurity by a known method. Source electrode 11 and drain electrode 10 are in contact with source region 3 and drain region 2.
[0025]
The gate electrode 7 is provided on the surface of the substrate 1 between the source region 3 and the drain region 2 via the gate insulating film 6. By applying a voltage to the gate electrode 7, a channel region is formed on the substrate surface between the source region 3 and the drain region 2 immediately below the gate electrode 7.
[0026]
The source electrode 11 and the drain electrode 10 are arranged in a shape in which the comb teeth are engaged, and the gate electrode 7 is arranged between the respective comb teeth. The semiconductor material (for example, polysilicon) forming the gate electrode 7 extends outside the element diffusion region 20 and connects to the gate pad electrode 7P, and the drain electrode 10 also extends to the drain pad electrode 10P outside the element region 20. Connected. The source electrode 11 extends from the element diffusion region and is patterned so as to substantially surround the outer periphery of the element diffusion region 20.
[0027]
The conductive path 12 is provided on each side surface of the MOSFET chip 15 having the above-described components. After forming the element diffusion region 20 in the state of a wafer, it is provided using a scribe line when dividing into individual chips 15 by dicing. The conductive path 12 is a region in which a conductive material such as a metal or polysilicon doped with impurities is adhered to the side surface of the chip 15 or a region where a high concentration impurity is diffused to the side surface of the chip 15. Since the conductive path 12 is a substitute for a wire bond for setting the source electrode 11 to the GND potential, the conductive path 12 is connected to the source electrode 11 extending around the outer periphery of the chip 15, and at least one line is provided along the side surface of the chip 15. Preferably, a plurality is arranged. In order for the GND potential of the entire chip 15 to be uniform, it is desirable to provide the GND potential evenly from the entire periphery.
[0028]
The conductive path 12 does not reach the back surface of the chip 15 due to the manufacturing process of the semiconductor device, which will be described later. That is, it is provided on the side surface of the chip 15 extending from the front surface of the chip 15 and 20 μm to 50 μm above the back surface of the chip.
[0029]
Further, the MOSFET chip 15 is mounted on the header 16a of the lead 16 as shown in FIG. 1A, and the back surface of the chip 15 is fixed to the header 16a by a conductive adhesive 17 such as solder or epoxy resin.
[0030]
At this time, the conductive adhesive 17 protrudes from the fixing region of the chip 15 and rises to the chip end by about 20 μm to 50 μm to be fixed. As a result, the conductive path 12 provided on the side surface of the chip 15 comes into contact, and the source electrode 11 on the surface of the chip 15 is connected to the header 16a. That is, the source electrode 11 and the header 16a can be connected without using a wire bond.
[0031]
FIG. 2 shows a plan view in which the chip 15 is mounted.
[0032]
The chip is fixed to the header 16a as described above, and the source electrode 11 and the header 16a are connected through the conductive path 12. The gate pad electrode 7P is connected to the lead 16b serving as the gate terminal G by a bonding wire, and the drain pad electrode 10P is connected to the lead 16c serving as the drain terminal D by a bonding wire. The header 16 a is a source terminal S, to which a GND potential is applied as before, and a GDN potential is applied to the source electrode 11. Further, it is molded with the resin layer 19 and the like to obtain a finished product.
[0033]
Conventionally, as shown in FIG. 8A, the source electrode 11 and the header 16a are connected by the bonding wire 118 and the capillary 150 is used. Therefore, it is necessary to secure a space of about 400 μm square as a wire bond region on the header. , Which hindered the miniaturization of the external shape. However, according to the present embodiment, it is only necessary to secure a minimum area necessary for fixing the chip, the outer shape can be largely shrunk, and there is an advantage that it can be mounted on a small outer shape.
[0034]
Further, the bonding wire of the source electrode 11 is not required, and the cost can be reduced.
[0035]
Next, a method for manufacturing a semiconductor device according to the present invention will be described with reference to FIGS. 3 to 5, taking an n-channel MOSFET chip as an example.
[0036]
The method of manufacturing a semiconductor device according to the present invention includes a step of forming an element diffusion region 20 on a substrate, a step of forming a groove 9 on a scribe line 8 of the substrate, and a part of the element diffusion region 20 covering an inner wall of the groove 9. Forming a conductive path 12 connected to the semiconductor chip, cutting the scribe line 8 to separate the semiconductor chip 15 into individual semiconductor chips 15, and fixing the semiconductor chip 15 to a lead 16 with a conductive adhesive 17 to form a conductive path 12 and a conductive path. Connecting the adhesive 17.
[0037]
First step (FIG. 3A): a step of forming the element diffusion region 20 on the substrate 1 by a known method.
[0038]
First, the p-type silicon semiconductor substrate 1 is oxidized at about 800 ° C., and a gate oxide film 6 having a thickness of about several hundred degrees is formed by a driving voltage. Next, polysilicon is deposited on the gate oxide film 6 to reduce the resistance by introducing impurities, and is left on the gate oxide film 6 between the planned source region 3 and the planned drain region 2. The gate electrode 7 is formed by patterning. Further, the entire surface is thermally oxidized to cover the gate electrode 7 with the gate oxide film 6.
[0039]
After that, the oxide film on both ends of the gate electrode 7 is removed to expose the semiconductor substrate 1, and an n-type impurity is ion-implanted and then thermally diffused to form the source region 3 and the drain region 2. Preferably, a p + -type region 4 is provided around the source region 3 so that a channel region formed immediately below the gate electrode 7 is grounded at the same potential as the source electrode 11. An annular element 5 for reducing the resistance is formed, and an element diffusion region 20 of the MOSFET is formed.
[0040]
Second step (FIG. 3B): a step of forming a groove 9 on the scribe line 8 of the substrate 1.
[0041]
A groove 9 is formed on the scribe line 8 to form the conductive path 12. A region other than the groove 9 is masked, and the groove 9 is formed substantially perpendicular to the surface of the substrate 1 by anisotropic etching using plasma. The groove 9 is formed at a depth of 20 μm to 50 μm above the rear surface so as not to reach the rear surface of the substrate 1 because chips are individually separated when reaching the rear surface of the substrate 1 and the subsequent steps become complicated. The groove 9 becomes a conductive path 12 in a later step. 20 μm to 50 μm above the back surface is the distance required for the conductive adhesive to swell from the end of the chip 15 to the side surface of the chip 15 and connect to the conductive path 12. This is because the contact with the agent may be poor, and if a groove is formed below (deeply) below 20 μm, the strength of the wafer cannot be maintained in the subsequent manufacturing process.
[0042]
Further, isotropic etching using a mixed solution of hydrofluoric acid and nitric acid may be used. However, in the case of isotropic etching, etching proceeds in the horizontal direction at the same length as the depth direction, so that a groove of 100 μm is formed. In that case, a scribe line of 200 μm is required. Since the scribe line is generally about 100 μm to 150 μm, it depends on the thickness of the wafer (usually about 100 μm to 400 μm), but if a deep groove is to be formed, anisotropic etching is preferable.
[0043]
Third step (FIG. 3C): a step of forming a conductive path 12 that covers the inner wall of the groove 9 and is connected to a part of the element diffusion region 20.
[0044]
A source electrode 11 and a drain electrode 10 that are in contact with the source region 3 and the drain region 2 are formed by, for example, sputtering metal on the entire surface. At the same time, a conductive path 12 is formed on the inner wall of the groove 9. The source electrode 11 extending from the element diffusion region 20 so as to surround the outer periphery thereof and the conductive path 12 on the inner wall of the trench 9 are formed using a patterned mask having a desired shape. The drain pad electrode 10P is also patterned at the same time.
[0045]
Here, as shown in FIGS. 4A and 4B, the conductive path 12 is not limited to metal but may be polysilicon 12a doped with impurities. Polysilicon 12a is deposited so as to cover the inner wall of groove 9, drain electrode 10 and source electrode 11 are formed, and source electrode 11 and conductive path 12 are connected.
[0046]
Further, as shown in FIGS. 4C and 4D, the conductive path 12 may be a region having high conductivity by injecting and diffusing a high concentration impurity into the inner wall of the groove. In this case, after forming the groove 9, the impurity diffusion region 12b is formed on at least the side wall of the groove 9 by oblique ion implantation or the like. Thereafter, a drain electrode 10 and a source electrode 11 are formed, and the source electrode 11 and the conductive path 12 are connected.
[0047]
Fourth step (FIG. 5): scribe line 8 is cut and separated into individual semiconductor chips 15, semiconductor chip 15 is fixed to leads 16a by conductive adhesive 17, and conductive paths 12 and conductive adhesive 17 are connected. Process.
[0048]
The remaining scribe lines 8 are cut and separated into individual semiconductor chips 15 (FIG. 5A). In this state, as shown in FIG. 1 or FIG. 5B, a plurality of conductive paths 12 connected to the source electrode 11 on the chip surface extend on the chip side surface. Next, the individual semiconductor chips 15 are fixed to the lead headers 16a in the assembling process. For fixing, a conductive adhesive 17 such as solder or epoxy resin is used, and an amount of about 30 μm in thickness is supplied and fixed. As a result, the conductive adhesive 17 bulges from the end of the chip 15 to the side surface of the chip 15 and is fixed, and comes into contact with the conductive path 12. As described above, since the conductive path 12 is provided at a depth of 20 μm to 50 μm above the chip back surface, the height is sufficient to make contact with the conductive adhesive 17. Accordingly, the source electrode 11 and the header can be connected without using a bonding wire, and it is not necessary to secure a wire bond area.
[0049]
Further, the lead 16b serving as the gate terminal G and the gate pad electrode 7P are connected to the lead 16c serving as the drain terminal D and the drain pad electrode 10P by bonding wires 18, respectively. Get.
[0050]
【The invention's effect】
According to the present invention, a space of about 400 μm square required for wire bonding between a source electrode and a header can be omitted. Although the conventional structure for securing the wire bond area has not been able to reduce the outer shape even if the chip has been miniaturized, according to the present invention, only the chip fixing region is sufficient, and the outer shape can be significantly reduced.
[0051]
Further, since a bonding wire for the source electrode is not required, there is an advantage that the cost can be reduced.
[Brief description of the drawings]
FIGS. 1A and 1B are a perspective view and a cross-sectional view illustrating a semiconductor device of the present invention.
FIG. 2 is a plan view illustrating a semiconductor device of the present invention.
FIG. 3 is a sectional view illustrating a method for manufacturing a semiconductor device according to the present invention.
FIG. 4 is a cross-sectional view illustrating a method for manufacturing a semiconductor device according to the present invention.
FIG. 5 is a sectional view illustrating a method for manufacturing a semiconductor device according to the present invention.
FIG. 6 is a cross-sectional view illustrating a conventional semiconductor device.
FIG. 7 is a conceptual diagram illustrating a semiconductor device of the related art and the present invention.
8A and 8B are a plan view and a side view illustrating a conventional semiconductor device.
[Explanation of symbols]
Reference Signs List 1 semiconductor substrate 2 drain region 3 source region 4 P + type region 5 annular 6 gate insulating film 7 gate electrode 7P gate pad electrode 8 scribe line 9 groove 10 drain electrode 10P drain pad electrode 11 source electrode 12 conductive path 12a polysilicon 12b impurity diffusion Region 15 Semiconductor chip 16 Lead 16a Header 16b Lead 16c Lead 18 Bonding wire 19 Resin layer 20 Element diffusion region 101 Semiconductor substrate 102 Drain region 103 Source region 104 P + type region 105 Annular 106 Gate insulating film 107 Gate electrode 107P Gate pad electrode 108 Scribe Line 110 Drain electrode 110P Drain pad electrode 111 Source electrode 111P Source pad electrode 115 Semiconductor chip 116 Lead 116a Header 11 6b Lead 116c Lead 118 Bonding wire 119 Resin layer 120 Element diffusion region 130 Wire bond region 120 Capillary

Claims (7)

半導体基板表面に設けられた素子領域と、
前記素子領域と接続する複数の電極と、
前記基板側壁に設けられ前記電極の少なくとも1つと接続する導電路とからなる半導体チップと、
前記チップを固着するリードとを有し、
前記チップを固着する導電性接着剤を前記チップの端から露出させ前記導電路とを接続することを特徴とする半導体装置。
An element region provided on the surface of the semiconductor substrate;
A plurality of electrodes connected to the element region,
A semiconductor chip comprising a conductive path provided on the substrate side wall and connected to at least one of the electrodes;
A lead for fixing the chip,
A semiconductor device, wherein a conductive adhesive for fixing the chip is exposed from an end of the chip and connected to the conductive path.
一導電型基板表面に設けられた逆導電型のソース領域及びドレイン領域と、
前記ソース領域およびドレイン領域にコンタクトするソース電極およびドレイン電極と、
前記ソース領域およびドレイン領域間の基板表面に絶縁膜を介して設けられたゲート電極と、
前記基板側面に設けられ前記ソース電極と接続する導電路とからなる半導体チップと、
前記チップを固着するリードとを有し、
前記チップを固着する導電性接着剤を前記基板の端から露出させ前記導電路とを接続することを特徴とする半導体装置。
A source region and a drain region of the opposite conductivity type provided on the surface of the one conductivity type substrate,
A source electrode and a drain electrode that are in contact with the source region and the drain region,
A gate electrode provided on a substrate surface between the source region and the drain region via an insulating film;
A semiconductor chip comprising a conductive path provided on a side surface of the substrate and connected to the source electrode;
A lead for fixing the chip,
A semiconductor device, wherein a conductive adhesive for fixing the chip is exposed from an end of the substrate and connected to the conductive path.
前記リードはGND電位が印加されることを特徴とする請求項1または請求項2に記載の半導体装置。The semiconductor device according to claim 1, wherein a GND potential is applied to the lead. 前記導電路は、前記チップ側面に導電材料を付着してなることを特徴とする請求項1または請求項2に記載の半導体装置。3. The semiconductor device according to claim 1, wherein the conductive path is formed by attaching a conductive material to a side surface of the chip. 前記導電路は、前記チップ側面に設けた不純物拡散領域であることを特徴とする請求項1または請求項2に記載の半導体装置。The semiconductor device according to claim 1, wherein the conductive path is an impurity diffusion region provided on a side surface of the chip. 基板上に素子拡散領域を形成する工程と、
前記基板のスクライブライン上に溝を形成する工程と、
前記溝内壁を覆い前記素子拡散領域の一部に接続する導電路を形成する工程と、
前記スクライブラインを切削し個々の半導体チップを導電性接着剤によりリードに固着し前記チップ端から露出する前記導電性接着剤と前記導電路とを接続する工程とを具備することを特徴とする半導体装置の製造方法。
Forming an element diffusion region on the substrate;
Forming a groove on a scribe line of the substrate;
Forming a conductive path covering the groove inner wall and connecting to a part of the element diffusion region;
A step of cutting the scribe line, fixing individual semiconductor chips to leads with a conductive adhesive, and connecting the conductive adhesive exposed from an end of the chip to the conductive path. Device manufacturing method.
前記溝は異方性エッチングにより基板裏面に達しない程度の深さに形成されることを特徴とする請求項6に記載の半導体装置の製造方法。7. The method according to claim 6, wherein the groove is formed by anisotropic etching to a depth that does not reach the back surface of the substrate.
JP2002353441A 2002-12-05 2002-12-05 Semiconductor device and manufacturing method thereof Expired - Fee Related JP3995582B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002353441A JP3995582B2 (en) 2002-12-05 2002-12-05 Semiconductor device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002353441A JP3995582B2 (en) 2002-12-05 2002-12-05 Semiconductor device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2004186536A true JP2004186536A (en) 2004-07-02
JP3995582B2 JP3995582B2 (en) 2007-10-24

Family

ID=32754729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002353441A Expired - Fee Related JP3995582B2 (en) 2002-12-05 2002-12-05 Semiconductor device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3995582B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008047733A (en) * 2006-08-17 2008-02-28 Sony Corp Semiconductor device and manufacturing method of the semiconductor device
JP2009212458A (en) * 2008-03-06 2009-09-17 Sumitomo Electric Ind Ltd Semiconductor device, electronic apparatus and method of manufacturing the same
US20100270958A1 (en) * 2009-04-24 2010-10-28 Denso Corporation Electric power conversion apparatus for vehicle
WO2014185192A1 (en) * 2013-05-16 2014-11-20 住友電気工業株式会社 Method for manufacturing silicon carbide semiconductor device and semiconductor module, silicon carbide semiconductor device, and semiconductor module

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008047733A (en) * 2006-08-17 2008-02-28 Sony Corp Semiconductor device and manufacturing method of the semiconductor device
JP2009212458A (en) * 2008-03-06 2009-09-17 Sumitomo Electric Ind Ltd Semiconductor device, electronic apparatus and method of manufacturing the same
US20100270958A1 (en) * 2009-04-24 2010-10-28 Denso Corporation Electric power conversion apparatus for vehicle
JP2010254128A (en) * 2009-04-24 2010-11-11 Denso Corp On-vehicle power converter
US8742708B2 (en) 2009-04-24 2014-06-03 Denso Corporation Electric power conversion apparatus for vehicle
WO2014185192A1 (en) * 2013-05-16 2014-11-20 住友電気工業株式会社 Method for manufacturing silicon carbide semiconductor device and semiconductor module, silicon carbide semiconductor device, and semiconductor module

Also Published As

Publication number Publication date
JP3995582B2 (en) 2007-10-24

Similar Documents

Publication Publication Date Title
JP3111947B2 (en) Semiconductor device and manufacturing method thereof
US7498636B2 (en) Semiconductor device and method of manufacturing the same
US6858896B2 (en) Insulated gate type semiconductor device and method for fabricating the same
US20070034943A1 (en) Insulated gate semiconductor device and manufacturing method thereof
JP2006278646A (en) Method of manufacturing semiconductor device
JP2000196075A (en) Semiconductor device and its manufacture
US8436419B2 (en) Semiconductor device with high-breakdown-voltage transistor
US8710568B2 (en) Semiconductor device having a plurality of elements on one semiconductor substrate and method of manufacturing the same
JPH11354631A (en) Semiconductor device
US6307224B1 (en) Double diffused mosfet
US7071537B2 (en) Power device having electrodes on a top surface thereof
JP4837939B2 (en) Semiconductor device and manufacturing method of semiconductor device
JP3432708B2 (en) Semiconductor devices and semiconductor modules
US20050082608A1 (en) Semiconductor device and method for fabricating the same
JP3995582B2 (en) Semiconductor device and manufacturing method thereof
JP2001345376A (en) Semiconductor device
JPH06177242A (en) Semiconductor integrated circuit device
US6358782B1 (en) Method of fabricating a semiconductor device having a silicon-on-insulator substrate and an independent metal electrode connected to the support substrate
US8329548B2 (en) Field transistors for electrostatic discharge protection and methods for fabricating the same
JP2748938B2 (en) Semiconductor integrated circuit device
JPH0315825B2 (en)
JP2000196102A (en) Semiconductor device and its production method
US6709969B1 (en) Method for fabricating a gas insulated gate field effect transistor
JPH09306920A (en) Semiconductor integrated circuit device and its manufacture
KR100268866B1 (en) Semiconductor device and method for fabricating the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051117

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20051226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070626

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070731

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 3995582

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110810

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110810

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120810

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130810

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees