WO2014185150A1 - Air conditioning device for vehicle, control method for air conditioning device for vehicle, and program - Google Patents

Air conditioning device for vehicle, control method for air conditioning device for vehicle, and program Download PDF

Info

Publication number
WO2014185150A1
WO2014185150A1 PCT/JP2014/057999 JP2014057999W WO2014185150A1 WO 2014185150 A1 WO2014185150 A1 WO 2014185150A1 JP 2014057999 W JP2014057999 W JP 2014057999W WO 2014185150 A1 WO2014185150 A1 WO 2014185150A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
vehicle
air conditioner
output
drive motor
Prior art date
Application number
PCT/JP2014/057999
Other languages
French (fr)
Japanese (ja)
Inventor
誠吾 渡辺
Original Assignee
カルソニックカンセイ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2013104275A external-priority patent/JP2014223866A/en
Priority claimed from JP2013104279A external-priority patent/JP2014225981A/en
Application filed by カルソニックカンセイ株式会社 filed Critical カルソニックカンセイ株式会社
Publication of WO2014185150A1 publication Critical patent/WO2014185150A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/02Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant
    • B60H1/14Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant otherwise than from cooling liquid of the plant, e.g. heat from the grease oil, the brakes, the transmission unit
    • B60H1/143Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant otherwise than from cooling liquid of the plant, e.g. heat from the grease oil, the brakes, the transmission unit the heat being derived from cooling an electric component, e.g. electric motors, electric circuits, fuel cells or batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H1/00899Controlling the flow of liquid in a heat pump system
    • B60H1/00914Controlling the flow of liquid in a heat pump system where the flow direction of the refrigerant does not change and there is a bypass of the condenser
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H2001/00949Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices comprising additional heating/cooling sources, e.g. second evaporator

Definitions

  • the present invention relates to a vehicle air conditioner, a control method for a vehicle air conditioner, and a program.
  • JP2003-34130A discloses an indoor heat exchanger that warms indoor air.
  • the damper provided between the heat exchanger for heat dissipation and the outdoor heat exchanger is opened, and the air that has passed through the heat exchanger for heat dissipation is taken into the outdoor heat exchanger to recover waste heat.
  • it is used for heating the passenger compartment through a refrigeration cycle.
  • the present invention has been made in view of such problems.
  • a vehicle air conditioner is a vehicle air conditioner that can use the heat of a battery during heating operation, and includes a compressor that compresses a first refrigerant, and a first refrigerant that is compressed by the compressor.
  • a refrigeration cycle having a condenser that condenses the first refrigerant, a first evaporator that evaporates the first refrigerant condensed by the condenser, an expansion valve that depressurizes the first refrigerant flowing into the first evaporator, and a second refrigerant
  • a battery temperature control cycle that circulates, cools the battery with the second refrigerant, evaporates the first refrigerant with the first evaporator using the heat of the battery, and a third refrigerant that exchanges heat with the first refrigerant with the condenser
  • the air conditioning cycle having a heater core that warms the air during the heating operation, a cooling unit that cools the third refrigerant with the outside air, and a shutter unit that can block
  • the control method of the vehicle air conditioner which concerns on another aspect of this invention is a control method of the vehicle air conditioner which can utilize the heat of a battery at the time of heating operation, Comprising: A vehicle air conditioner compresses a 1st refrigerant
  • a refrigeration cycle having an expansion valve, a battery temperature control cycle in which the second refrigerant circulates, the battery is cooled by the second refrigerant, and the first refrigerant is evaporated by the first evaporator using the heat of the battery, and a condenser
  • An air conditioning cycle having a heater core that warms the air during heating operation by a third refrigerant that has exchanged heat with the first refrigerant in the heating operation, a cooling unit that cools the third refrigerant by outside air, and outside air to the cooling unit during heating operation.
  • the shutter part is closed during the heating operation, so that it is possible to suppress the heat radiated until the battery heat is used for the air conditioning in the vehicle.
  • FIG. 1 is a system configuration diagram of an air conditioner for an electric vehicle according to the first embodiment.
  • FIG. 2 is a flowchart illustrating the air conditioning control according to the first embodiment.
  • FIG. 3 is a system configuration diagram of an air conditioner for an electric vehicle according to the second embodiment.
  • FIG. 4 is a flowchart illustrating air conditioning control according to the second embodiment.
  • FIG. 5 is a map showing a torque curve diagram of the motor.
  • FIG. 6 is a flowchart illustrating air conditioning control according to the third embodiment.
  • FIG. 1 is a system configuration diagram of an air conditioner 1 for an electric vehicle.
  • the air conditioner 1 includes a refrigeration cycle 2 in which refrigerant circulates, a low water temperature cycle 3 in which first cooling water circulates, a high water temperature cycle 4 in which second cooling water circulates, a radiator shutter 6, and a controller 5. Is done.
  • the first cooling water and the second cooling water are composed of, for example, an antifreeze liquid.
  • the refrigeration cycle 2 includes a compressor 10, a condenser 11, an evaporator 12, a refrigerant-water heat exchanger 13, a second electromagnetic valve 14, a second expansion valve 15, a first electromagnetic valve 16, and a first expansion. And a valve 17.
  • the compressor 10 pressurizes the refrigerant into a high-temperature and high-pressure gas.
  • the compressor 10 is driven by power supplied from a battery 20 described later.
  • the condenser 11 exchanges heat between the refrigerant pressurized by the compressor 10 and the second cooling water circulating in the high water temperature cycle 4 to cool the refrigerant and heat the second cooling water. Thereby, the refrigerant is liquefied.
  • the evaporator 12 evaporates the refrigerant cooled by the condenser 11. When the refrigerant evaporates, the air outside the evaporator 12 is cooled. The refrigerant turned into gas by the evaporator 12 is pressurized again by the compressor 10. The air cooled by the evaporator 12 is used for in-vehicle air conditioning during cooling (dehumidification).
  • the second expansion valve 15 is a temperature-type expansion valve that depressurizes the refrigerant, has a temperature-sensitive cylinder portion (not shown) on the outlet side of the evaporator 12, and superheat (refrigerant superheat degree) on the outlet side of the evaporator 12. The opening is adjusted according to the angle, and the refrigerant is injected into the evaporator 12 according to the opening.
  • the second expansion valve 15 may be configured by an electromagnetic control valve or a capillary tube.
  • the second solenoid valve 14 opens and closes based on a signal from the controller 5.
  • the refrigerant-water heat exchanger 13 evaporates the refrigerant cooled by the condenser 11 by the heat of the first cooling water.
  • the first cooling water flows through the refrigerant-water heat exchanger 13, and the first cooling water is cooled when the refrigerant evaporates.
  • the refrigerant turned into gas by the refrigerant-water heat exchanger 13 is pressurized again by the compressor 10.
  • the first expansion valve 17 is a temperature-type expansion valve that depressurizes the refrigerant.
  • the first expansion valve 17 includes a temperature-sensitive cylinder portion (not shown) on the outlet side of the refrigerant-water heat exchanger 13. The opening degree is adjusted according to the superheat on the outlet side, and the refrigerant is injected into the refrigerant-water heat exchanger 13 according to the opening degree.
  • the first solenoid valve 16 opens and closes based on a signal from the controller 5.
  • the first electromagnetic valve 16, the first expansion valve 17, and the refrigerant-water heat exchanger 13 are arranged in parallel to the second electromagnetic valve 14, the second expansion valve 15, and the evaporator 12.
  • the low water temperature cycle 3 includes a battery 20, a refrigerant-water heat exchanger 13, and a first water pump 21. Although the illustration of the low water temperature cycle 3 in the present embodiment is omitted in particular, the low water temperature cycle 3 is disposed at a position where the traveling wind does not directly hit when the radiator shutter 6 is opened. For this reason, even when the radiator shutter 6 is open, heat radiation can be relatively suppressed. In addition, you may suppress the thermal radiation in the low water temperature cycle 3 etc. at the time of driving
  • the first water pump 21 circulates the first cooling water in the order of the battery 20 and the refrigerant-water heat exchanger 13.
  • the discharge amount of the first water pump 21 is determined based on a signal from the controller 5.
  • the first water pump 21 may be capable of switching the flow rate by a plurality of stages, and the flow rate of the first cooling water may be increased as the number of stages is increased.
  • the battery 20 is a secondary battery that supplies electric power to the motor 38 of the electric vehicle, and generates heat when charging and discharging.
  • the battery 20 is cooled by the first cooling water circulated by the first water pump 21.
  • the first cooling water whose temperature is increased by cooling the battery 20 flows through the refrigerant-water heat exchanger 13 and is absorbed by the refrigerant-water heat exchanger 13 when the refrigerant evaporates, and the temperature decreases. .
  • the high water temperature cycle 4 includes a first cycle 7, a second cycle 8, a connection passage 32, and a three-way valve 30.
  • the first cycle 7 and the second cycle 8 are connected by the connection passage 32, and the first cycle 7 and the second cycle 8 are communicated or blocked by switching the three-way valve 30.
  • the first cycle 7 includes a capacitor 11, a main heater 33, a heater core 34, a second water pump 35, and a first flow path 36.
  • the first flow path 36 is formed so that the second cooling water flows in the order of the second water pump 35, the condenser 11, the main heater 33, and the heater core 34.
  • the main heater 33 generates heat by the electric power supplied from the battery 20 and warms the second cooling water.
  • the heater core 34 exchanges heat with the refrigerant by the condenser 11, and then exchanges heat between the second cooling water heated by the main heater 33 and having a high temperature and the air around the heater core 34. Warm up.
  • the air heated by the heater core 34 is used for in-vehicle air conditioning during heating operation.
  • the air mix door 42 prevents the air from hitting the heater core 34 and prevents the air from being warmed.
  • a bypass passage may be provided so as to bypass the heater core 34.
  • the second water pump 35 is driven by electric power supplied from the battery 20.
  • the second water pump 35 circulates the second cooling water in the order of the condenser 11, the main heater 33, and the heater core 34 when the first cycle 7 and the second cycle 8 are blocked by the three-way valve 30.
  • the second water pump 35 causes the second cooling water to flow into the radiator 37 and cools the second cooling water.
  • the second cycle 8 includes a radiator 37, a motor 38, an inverter 39, a third water pump 40, and a second flow path 41.
  • the second flow path 41 is formed so that the second cooling water flows in the order of the third water pump 40, the inverter 39, the motor 38, and the radiator 37.
  • the radiator 37 exchanges heat between the air flowing outside and the second cooling water to cool the second cooling water.
  • the inverter 39 mutually converts DC power and AC power, and controls power supplied from the battery 20 to the motor 38 or power supplied from the motor 38 to the battery 20.
  • the inverter 39 is cooled by the second cooling water.
  • the motor 38 is a three-phase AC motor, and functions as an electric motor by the electric power supplied from the battery 20, and functions as a generator when the vehicle is decelerated.
  • the motor 38 is cooled by the second cooling water.
  • the third water pump 40 is driven by electric power supplied from the battery 20.
  • the third water pump 40 circulates the second cooling water in the order of the inverter 39, the motor 38, and the radiator 37.
  • the radiator shutter 6 is provided in front of the radiator 37. When the radiator shutter 6 is opened, the traveling wind is introduced toward the radiator 37, and when the radiator shutter 6 is closed, the traveling wind is blocked.
  • the radiator shutter 6 opens and closes based on a signal from the controller 5.
  • the controller 5 includes a main storage device such as a CPU and a RAM, and a computer-readable storage medium storing a program. Each function of the controller 5 is exhibited by the CPU reading and executing the program stored in the storage medium.
  • the computer-readable storage medium is a magnetic disk, a magneto-optical disk, a CD-ROM, a DVD-ROM, a semiconductor memory, or the like.
  • the controller 5 opens and closes the radiator shutter 6 based on a signal from the temperature sensor 50 for detecting the outside air temperature, a signal from the water temperature sensor 51 for detecting the temperature of the second cooling water flowing into the radiator 37, and the like. .
  • the controller 5 opens and closes the second electromagnetic valve 14 and the like based on a signal from an A / C switch (not shown). Furthermore, the controller 5 performs various controls such as switching the flow path in the three-way valve 30 based on signals from other sensors.
  • the air conditioner 1 uses the heat generated in the battery 20 to warm the second cooling water, and heats the air with the heater core 34 using the warmed second cooling water, or the main heater 33 only.
  • air conditioning is performed in a heater heating mode in which the second cooling water is heated and the air is heated in the heater core 34 by the heated second cooling water.
  • the waste heat recovery mode includes the case where the second cooling water is warmed by the heat generated by the battery 20 and the main heater 33.
  • heating of the second cooling water by the main heater 33 is suppressed, so that power consumption by the main heater 33 can be suppressed. Therefore, it is desirable to lengthen the heating operation time in the waste heat recovery mode.
  • the path (pipe) from the battery 20 to the heater core 34 is long, if the radiator shutter 6 is open when performing in-vehicle air conditioning in the waste heat recovery mode, heat loss due to traveling wind increases.
  • step S100 the controller 5 compares the outside air temperature with the target blowing temperature.
  • the outside air temperature is detected based on a signal from the temperature sensor 50.
  • the process proceeds to step S102 when the target blowing temperature is equal to or higher than the outside air temperature, and proceeds to step S101 when the target blowing temperature is lower than the outside air temperature.
  • step S101 the controller 5 opens the radiator shutter 6.
  • step S102 the controller 5 determines whether or not the radiator shutter 6 is closed. The process proceeds to step S103 when the radiator shutter 6 is closed, and proceeds to step S105 when the radiator shutter 6 is open.
  • step S103 the controller 5 compares the temperature of the second cooling water with the first predetermined temperature.
  • the temperature of the second cooling water is detected based on a signal from a water temperature sensor 51 provided in the second flow path 41 immediately upstream of the radiator 37.
  • the first predetermined temperature is a preset temperature, and is a temperature at which it can be determined that the temperature of the second cooling water is high and the radiator 37 needs to cool the second cooling water.
  • the process proceeds to step S104 when the temperature of the second cooling water is equal to or higher than the first predetermined temperature, and proceeds to step S108 when the temperature of the second cooling water is lower than the first predetermined temperature.
  • step S104 the controller 5 opens the radiator shutter 6.
  • step S105 the controller 5 compares the temperature of the second cooling water with a second predetermined temperature (first threshold temperature).
  • the second predetermined temperature is a preset temperature, which is lower than the first predetermined temperature and is a temperature at which it can be determined that the temperature of the second cooling water is sufficiently low.
  • the process proceeds to step S106 when the temperature of the second cooling water is equal to or lower than the second predetermined temperature, and proceeds to step S107 when the temperature of the second cooling water is higher than the second predetermined temperature.
  • step S106 the controller 5 closes the radiator shutter 6.
  • step S107 the controller 5 determines whether or not the defroster mode (DEF mode). The process proceeds to step S108 if the mode is DEF mode, and proceeds to step S110 if the mode is not DEF mode.
  • DEF mode the defroster mode
  • step S108 the controller 5 determines whether or not the second electromagnetic valve 14 is open.
  • the controller 5 is (1) the A / C switch is OFF, (2) normal heating operation (heating without dehumidification in DEF mode), (3) heating operation in DEF mode. However, if any one of the conditions is satisfied, the air in front of the evaporator 12 is at a temperature at which it is difficult for the air to be dehumidified (the temperature at which the air is difficult to condense, for example, a temperature of 1 ° C. or less). Then, the second electromagnetic valve 14 is closed.
  • the heating operation in the DEF mode is performed, and the air before the evaporator 12 is higher than the dehumidifying temperature (for example, 1 ° C.), (2) The cooling operation is performed, etc.
  • the controller 5 opens the second electromagnetic valve 14. These conditions can be set as appropriate.
  • step S112 when the second electromagnetic valve 14 is open, and proceeds to step S109 when the second electromagnetic valve 14 is closed.
  • the temperature of the air before the evaporator 12 is the room temperature when air conditioning is performed only by the inside air circulation, and is the outside air temperature when air conditioning is performed only by introducing the outside air.
  • the calculation may be performed from the outside air temperature and the room temperature based on the ratio of outside air introduction (or inside air circulation).
  • a temperature sensor may be provided upstream of the wind flow of the evaporator 12.
  • step S109 the controller 5 determines whether or not the first electromagnetic valve 16 is open.
  • the process proceeds to step S111 when the first electromagnetic valve 16 is open, and proceeds to step S110 when the first electromagnetic valve 16 is closed.
  • the first electromagnetic valve 16 is closed, the battery 20 is not cooled, and the heat generated in the battery 20 is stored in the low water temperature cycle 3.
  • the controller 5 opens the first electromagnetic valve 16 when the temperature of the battery 20 becomes higher than the temperature at which the battery 20 needs to be cooled, and the first electromagnetic valve when the temperature becomes lower than the temperature at which the battery 20 needs to be cooled. 16 is closed.
  • step S110 the controller 5 stops the compressor 10.
  • step S100 when it is determined that the heating operation is performed in step S100, and the radiator shutter 6 is determined to be opened by the determination in step S102 or the like, and the process proceeds to step S110, the compressor 10 is turned on. It stops and does not perform in-vehicle air conditioning in the waste heat recovery mode, and stores heat generated in the battery 20 in the low water temperature cycle 3.
  • the vehicle interior air conditioning in the waste heat recovery mode can be performed for a long time with the stored heat, and the heating of the second cooling water by the main heater 33 can be suppressed.
  • the power consumption of the battery 20 can be suppressed.
  • the compressor 10 is stopped, the vehicle interior air conditioning is performed in the heater heating mode, and the second cooling water is heated by the main heater 33.
  • the main heater 33 is disposed in the vicinity of the heater core 34, and the waste heat recovery mode. The heat loss due to running wind is smaller than that.
  • step S111 the controller 5 controls the rotation speed of the compressor 10 so that the temperature of the refrigerant on the outlet side of the refrigerant-water heat exchanger 13 becomes a preset third predetermined temperature.
  • step S112 the controller 5 compares the outside air temperature with the target blowing temperature. The process proceeds to step S113 when the target blowing temperature is equal to or higher than the outside air temperature, and proceeds to step S115 when the target blowing temperature is lower than the outside air temperature.
  • step S113 the controller 5 determines whether or not the radiator shutter 6 is closed. The process proceeds to step S115 when the radiator shutter 6 is closed, and proceeds to step S114 when the radiator shutter 6 is open.
  • step S114 the controller 5 closes the first electromagnetic valve 16.
  • step S114 When the process proceeds to step S114 through the determination of step S107, step S108, step S112, and step S113, the dehumidifying and heating operation is performed with the radiator shutter 6 open. Therefore, the controller 5 stores the heat generated in the battery 20 in the low water temperature cycle 3 without closing the first electromagnetic valve 16 and executing the waste heat recovery mode. In this case, the dehumidifying and heating operation is performed by dehumidification by the evaporator 12 and heating by the main heater 33.
  • step S105 When the temperature of the second cooling water falls below the second predetermined temperature and the process proceeds in the order of step S105, step S106, step S108, step S112 to step S114, during the dehumidifying heating operation, It becomes possible to utilize the heat of the battery 20 stored in the low water temperature cycle 3. Thereby, the power of the battery 20 consumed by the main heater 33 can be reduced.
  • the first electromagnetic valve 16 is opened to recover the waste heat. Car air conditioning in mode. As described above, in the dehumidifying and heating operation of the present embodiment, the heat generated in the battery 20 is effectively used by determining whether or not the first electromagnetic valve 16 is closed according to the open / close state of the radiator shutter 6. be able to.
  • step S115 the controller 5 controls the rotational speed of the compressor 10 so that the temperature of the air immediately after the evaporator 12 becomes a preset fourth predetermined temperature.
  • the compressor 10 When opening the radiator shutter 6 during heating operation, the compressor 10 is stopped and the waste heat recovery mode is not executed. Thereby, it can suppress that the refrigerant
  • the air can be warmed by the heater core 34 by heating the second cooling water by the main heater 33.
  • the main heater 33 is provided between the condenser 11 and the heater core 34, and the amount of heat released from the main heater 33 to the heater core 34 can be suppressed even when traveling wind is introduced.
  • the time during which the heating operation can be performed by the waste heat recovery mode becomes longer, and the power from the main heater 33 during the heating operation is increased. Consumption can be suppressed and power consumption of the battery 20 can be suppressed.
  • the first electromagnetic valve 16 When the radiator shutter 6 is open during the dehumidifying heating operation, the first electromagnetic valve 16 is closed to suppress the heat generated in the battery 20 from being radiated through the piping of the refrigeration cycle 2 or the like. Thereby, the heat of the battery 20 can be stored during the low water temperature cycle 3.
  • the radiator shutter 6 When the radiator shutter 6 is closed and the first electromagnetic valve 16 is opened, the heat stored during the low water temperature cycle 3 is effectively utilized as described above by the waste heat recovery mode. Since it can utilize, the power consumption by the main heater 33 at the time of heating operation can be suppressed, and the power consumption of the battery 20 can be suppressed.
  • FIG. 3 is a system configuration diagram of the air conditioner 1 of the second embodiment.
  • the controller 5 of the air conditioner 1 restricts the output of the motor 38 based on a signal from the eco mode switch 52, a signal from the accelerator pedal opening sensor 53, or the like, or releases the restriction.
  • the radiator shutter 6 is opened and the second cooling water is cooled by the radiator 37 to cool the cooling water.
  • the motor 38 and the inverter 39 must be cooled by the second cooling water.
  • the air conditioning control described below is executed in order to suppress the opening of the radiator shutter 6 during the heating operation and lengthen the heating operation in the waste heat recovery mode.
  • step S200 the controller 5 compares the outside air temperature with the target blowing temperature. The process proceeds to step S202 when the target blowing temperature is equal to or higher than the outside air temperature, and proceeds to step S201 when the target blowing temperature is lower than the outside air temperature.
  • step S201 the controller 5 opens the radiator shutter 6.
  • step S202 the controller 5 determines whether or not the eco mode switch 52 is ON.
  • the controller 5 switches the driving mode of the motor 38 to the eco mode, Proceed to step S203.
  • the eco mode switch 52 is turned off by the driver, the controller 5 does not switch the drive mode of the motor 38 to the eco mode even in the heating operation, and the process proceeds to step S205.
  • step S203 the controller 5 determines whether or not the current output of the motor 38 is smaller than the eco mode upper limit output when the eco mode is executed. Specifically, the controller 5 determines whether or not the current output of the motor 38 is smaller than the eco mode upper limit output based on the map shown in FIG. In FIG. 5, the eco mode upper limit output of the eco mode is indicated by a solid line, and the upper limit output in other modes, for example, heating operation not performing the eco mode, cooling operation, and operation not using heating / cooling is indicated by a broken line.
  • the eco mode upper limit output is set such that the maximum rotational speed and the maximum torque are smaller than the upper limit outputs of the other modes.
  • the eco-mode upper limit output includes the output required when traveling on the 1/3 slope shown by point A in FIG.
  • step S204 the controller 5 executes the eco mode and limits the output of the motor 38 so as not to exceed the eco mode upper limit output. If the output of the motor 38 that is not subjected to output restriction is equal to or higher than the eco mode upper limit output, if the output of the motor 38 is restricted to be smaller than the eco mode upper limit output, the vehicle may be decelerated rapidly. Therefore, in this embodiment, even when the eco mode switch 52 is turned ON by the driver and the eco mode is selected, the eco mode is not executed until the output of the motor 38 becomes smaller than the eco mode upper limit output. Instead, the eco mode is executed after the output of the motor 38 becomes smaller than the eco mode upper limit output.
  • step S205 the controller 5 determines whether or not the accelerator pedal is OFF based on a signal from the accelerator pedal opening sensor 53. The process proceeds to step S206 when the accelerator pedal is OFF, and proceeds to step S207 when the accelerator pedal is not OFF.
  • step S206 if the eco mode has been executed, the controller 5 ends the eco mode and cancels the output limit of the motor 38.
  • the eco mode is not terminated until the accelerator pedal is turned off.
  • the output of the motor 38 when the eco mode switch 52 is turned off is limited by the eco mode, specifically, the output of the motor 38 that is outside the shaded area in FIG. If the execution is restricted within the shaded area of FIG. 5 and the eco mode is canceled, the output of the motor 38 becomes an output outside the shaded area of FIG. 5 and the vehicle accelerates rapidly. There is a fear.
  • the eco-mode switch 52 is turned off by the driver, the eco-mode is not terminated until the accelerator pedal is turned off, and the eco-mode is terminated after the accelerator pedal is turned off. Then, the output limitation of the motor 38 is released.
  • Steps S207 to S220 are the same control as Steps S102 to S115 of the first embodiment, description thereof is omitted here.
  • the eco mode upper limit output of the motor 38 in the eco mode that is executed when the eco mode switch 52 is turned on during the heating operation is made smaller than the upper limit output of the other modes, the amount of heat generated in the motor 38 and the inverter 39 is suppressed, and the motor 38 In addition, the temperature rise of the inverter 39 and the second cooling water in the second cycle 8 is suppressed. Thereby, it is possible to suppress the opening of the radiator shutter 6, to suppress the cooling of the compressor 10 and the pipe through which the refrigerant flows, and to increase the in-vehicle air conditioning time in the waste heat recovery mode. Can be suppressed.
  • the maximum rotation speed of the motor 38 is set to be smaller than the maximum rotation speed in other modes so that 100 km / h travel is possible when traveling on a flat road. Thereby, while suppressing the temperature rise of the 2nd cooling water of the 2nd cycle 8, fixed driving performance can be exhibited. Note that the present invention is not limited to the above conditions as long as it can exhibit a certain running performance.
  • the maximum torque of the motor 38 is made smaller than the maximum torque in the other modes so that the motor 1 can travel on the 1/3 gradient. Thereby, while suppressing the temperature rise of the 2nd cooling water of the 2nd cycle 8, fixed driving performance can be exhibited. Note that the present invention is not limited to the above conditions as long as it can exhibit a certain running performance.
  • An eco-mode switch 52 is provided so that the driver can switch the eco-mode switch 52. Regardless of the driver's operation, when the eco mode is executed or terminated, the vehicle is suddenly decelerated or accelerated, which may cause the driver to feel uncomfortable. In the present embodiment, it is possible to suppress giving such a sense of incongruity to the driver.
  • the eco-mode switch 52 is turned on by the driver, the eco-mode is executed after the output of the motor 38 that is not performing the output limitation becomes smaller than the eco-mode upper limit output in the eco-mode. Thereby, sudden deceleration of the vehicle can be suppressed.
  • This embodiment is different in air conditioning control from the second embodiment, and the air conditioning control in this embodiment will be described with reference to the flowchart of FIG.
  • steps S300 to S302 are the same control as steps S200 to S202 of the third embodiment, description thereof is omitted here.
  • step S303 the controller 5 compares the temperature of the second cooling water with a fifth predetermined temperature (second threshold temperature).
  • the water temperature of the second cooling water is detected based on a signal from the water temperature sensor 51.
  • the fifth predetermined temperature is a preset temperature, and is a temperature that is lower than the second predetermined temperature.
  • the second cooling water can be determined not to be higher than the first predetermined temperature without executing the eco mode.
  • the process proceeds to step S304 when the water temperature of the second cooling water is equal to or higher than the fifth predetermined temperature, and proceeds to step S306 when the water temperature of the second cooling water is lower than the fifth predetermined temperature.
  • control after step S304 is the same as the control after step S203 of the second embodiment, a description thereof is omitted here.
  • the eco mode is not executed. Thereby, it can drive
  • the eco mode is not started until the current output of the motor 38 becomes smaller than the eco mode upper limit output.
  • the present invention is not limited to this.
  • the eco mode may be started simultaneously with the eco mode switch 52 being turned on.
  • the output of the motor 38 may be gradually reduced so as to be smaller than the eco mode upper limit output.
  • the eco mode is not terminated until the accelerator pedal is turned off.
  • the present invention is not limited to this.
  • the eco mode switch 52 when the eco mode switch 52 is turned OFF and the output of the motor 38 is smaller than the eco mode upper limit output when the limit of the output of the motor 38 is released, specifically, the output When the output of the motor 38 after the restriction is released is within the shaded area in FIG. 5, the eco mode may be terminated simultaneously with the eco mode switch 52 being turned off. Further, the eco mode may be terminated simultaneously with the eco mode switch 52 being turned off. Further, the output of the motor 38 may be controlled so that the output of the motor 38 gradually increases. Thereby, when the eco mode switch 52 is turned OFF, the vehicle can be accelerated quickly.
  • eco mode upper limit output may be further reduced as shown by the one-dot chain line in FIG.
  • the dashed-dotted line in FIG. 5 is an output that enables traveling in the JC08 mode, for example.
  • the driver may select a plurality of eco modes.

Abstract

An air conditioning device for a vehicle is configured so that, during heating operation, the air conditioning device conditions air within the vehicle interior using heat generated by a battery. The air conditioning device is provided with: a refrigeration cycle through which a refrigerant circulates and which has a compressor, a condenser, a first evaporator, and an expansion valve; a battery temperature adjustment cycle through which first cooling water circulates and which evaporates the refrigerant using the heat of the battery by means of the first evaporator; an air conditioning cycle which has a heater core for warming air using a third refrigerant having exchanged heat with the refrigerant and which also has a cooling section for cooling the third refrigerant; and a shutter which is capable of blocking the introduction of outside air into the cooling section.

Description

車両用空調装置、車両用空調装置の制御方法、及びプログラムVEHICLE AIR CONDITIONER, CONTROL METHOD FOR VEHICLE AIR CONDITIONER, AND PROGRAM
 本発明は車両用空調装置、車両用空調装置の制御方法、及びプログラムに関するものである。 The present invention relates to a vehicle air conditioner, a control method for a vehicle air conditioner, and a program.
 従来、自動車内の発熱機器の廃熱が集められる放熱用熱交換器を設け、暖房運転時には放熱用熱交換器で温められた空気を用いて室外熱交換器で冷媒を温め、この冷媒を用いて室内熱交換器で室内空気を温めるものがJP2003-34130Aに開示されている。 Conventionally, a heat-dissipating heat exchanger that collects waste heat from heat-generating equipment in automobiles has been provided. During heating operation, air heated by the heat-dissipating heat exchanger is used to warm the refrigerant in the outdoor heat exchanger, and this refrigerant is used. JP2003-34130A discloses an indoor heat exchanger that warms indoor air.
 上記技術では、暖房運転時に、放熱用熱交換器と室外熱交換器との間に設けたダンパを開いて、放熱用熱交換器を通過した空気を室外熱交換器に取り入れて廃熱を回収し、冷凍サイクルを介して車室内の暖房に利用している。 In the above technology, during heating operation, the damper provided between the heat exchanger for heat dissipation and the outdoor heat exchanger is opened, and the air that has passed through the heat exchanger for heat dissipation is taken into the outdoor heat exchanger to recover waste heat. However, it is used for heating the passenger compartment through a refrigeration cycle.
 しかし、上記技術では、暖房運転時にダンパが開くと、取り込む風によって、冷凍サイクルにおける冷媒配管や電動圧縮機からの放熱量が大きくなるため、せっかく回収した廃熱を有効に利用できない恐れがある。 However, in the above technique, when the damper is opened during heating operation, the amount of heat released from the refrigerant piping and the electric compressor in the refrigeration cycle increases due to the wind that is taken in, so that there is a possibility that the recovered waste heat cannot be used effectively.
 本発明はこのような問題点に鑑みてなされたものである。 The present invention has been made in view of such problems.
 本発明のある態様に係る車両用空調装置は、バッテリの熱を暖房運転時に利用可能な車両用空調装置であって、第1冷媒を圧縮する圧縮機と、圧縮機によって圧縮された第1冷媒を凝縮する凝縮器と、凝縮器によって凝縮した第1冷媒を蒸発させる第1蒸発器と、第1蒸発器に流入する第1冷媒を減圧する膨張弁とを有する冷凍サイクルと、第2冷媒が循環し、第2冷媒によってバッテリを冷却し、バッテリの熱を用いて第1蒸発器で第1冷媒を蒸発させるバッテリ温調サイクルと、凝縮器によって第1冷媒と熱交換を行った第3冷媒によって、暖房運転時に空気を温めるヒーターコアと、第3冷媒を外気によって冷却する冷却部とを有する空調サイクルと、暖房運転時に冷却部への外気の導入を遮断可能なシャッタ部とを備える。 A vehicle air conditioner according to an aspect of the present invention is a vehicle air conditioner that can use the heat of a battery during heating operation, and includes a compressor that compresses a first refrigerant, and a first refrigerant that is compressed by the compressor. A refrigeration cycle having a condenser that condenses the first refrigerant, a first evaporator that evaporates the first refrigerant condensed by the condenser, an expansion valve that depressurizes the first refrigerant flowing into the first evaporator, and a second refrigerant A battery temperature control cycle that circulates, cools the battery with the second refrigerant, evaporates the first refrigerant with the first evaporator using the heat of the battery, and a third refrigerant that exchanges heat with the first refrigerant with the condenser The air conditioning cycle having a heater core that warms the air during the heating operation, a cooling unit that cools the third refrigerant with the outside air, and a shutter unit that can block the introduction of the outside air to the cooling unit during the heating operation.
 本発明の別の態様に係る車両用空調装置の制御方法は、バッテリの熱を暖房運転時に利用可能な車両用空調装置の制御方法であって、車両用空調装置は、第1冷媒を圧縮する圧縮機と、圧縮機によって圧縮された第1冷媒を凝縮する凝縮器と、凝縮器によって凝縮した第1冷媒を蒸発させる第1蒸発器と、第1蒸発器に流入する第1冷媒を減圧する膨張弁とを有する冷凍サイクルと、第2冷媒が循環し、第2冷媒によってバッテリを冷却し、バッテリの熱を用いて第1蒸発器で第1冷媒を蒸発させるバッテリ温調サイクルと、凝縮器によって第1冷媒と熱交換を行った第3冷媒によって、暖房運転時に空気を温めるヒーターコアと、第3冷媒を外気によって冷却する冷却部とを有する空調サイクルと、暖房運転時に冷却部への外気の導入を遮断可能なシャッタ部を備え、暖房運転時に冷却部へ外気を導入する場合には、圧縮機を停止する。 The control method of the vehicle air conditioner which concerns on another aspect of this invention is a control method of the vehicle air conditioner which can utilize the heat of a battery at the time of heating operation, Comprising: A vehicle air conditioner compresses a 1st refrigerant | coolant. The compressor, the condenser that condenses the first refrigerant compressed by the compressor, the first evaporator that evaporates the first refrigerant condensed by the condenser, and the first refrigerant that flows into the first evaporator is decompressed. A refrigeration cycle having an expansion valve, a battery temperature control cycle in which the second refrigerant circulates, the battery is cooled by the second refrigerant, and the first refrigerant is evaporated by the first evaporator using the heat of the battery, and a condenser An air conditioning cycle having a heater core that warms the air during heating operation by a third refrigerant that has exchanged heat with the first refrigerant in the heating operation, a cooling unit that cools the third refrigerant by outside air, and outside air to the cooling unit during heating operation The introduction of With the cross-sectional capable shutter unit, in case of introducing the outside air to the cooling unit during the heating operation stops compressor.
 これら態様によると、暖房運転時にシャッタ部が閉じることで、バッテリの熱が車内空調に利用されるまでの間に放熱されるのを抑制できる。 According to these aspects, the shutter part is closed during the heating operation, so that it is possible to suppress the heat radiated until the battery heat is used for the air conditioning in the vehicle.
図1は第1実施形態の電動車両の空調装置のシステム構成図である。FIG. 1 is a system configuration diagram of an air conditioner for an electric vehicle according to the first embodiment. 図2は第1実施形態の空調制御を説明するフローチャートである。FIG. 2 is a flowchart illustrating the air conditioning control according to the first embodiment. 図3は第2実施形態の電動車両の空調装置のシステム構成図である。FIG. 3 is a system configuration diagram of an air conditioner for an electric vehicle according to the second embodiment. 図4は第2実施形態の空調制御を説明するフローチャートである。FIG. 4 is a flowchart illustrating air conditioning control according to the second embodiment. 図5はモータのトルク曲線図を示すマップである。FIG. 5 is a map showing a torque curve diagram of the motor. 図6は第3実施形態の空調制御を説明するフローチャートである。FIG. 6 is a flowchart illustrating air conditioning control according to the third embodiment.
 以下において、本発明の実施形態における空調装置1について図を参照しながら説明する。図1は電動車両の空調装置1のシステム構成図である。 Hereinafter, the air conditioner 1 according to the embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a system configuration diagram of an air conditioner 1 for an electric vehicle.
 空調装置1は、冷媒が循環する冷凍サイクル2と、第1冷却水が循環する低水温サイクル3と、第2冷却水が循環する高水温サイクル4と、ラジエータシャッタ6と、コントローラ5とから構成される。第1冷却水及び第2冷却水は、例えば不凍液で構成される。 The air conditioner 1 includes a refrigeration cycle 2 in which refrigerant circulates, a low water temperature cycle 3 in which first cooling water circulates, a high water temperature cycle 4 in which second cooling water circulates, a radiator shutter 6, and a controller 5. Is done. The first cooling water and the second cooling water are composed of, for example, an antifreeze liquid.
 冷凍サイクル2は、コンプレッサ10と、コンデンサ11と、エバポレータ12と、冷媒-水熱交換器13と、第2電磁弁14と、第2膨張弁15と、第1電磁弁16と、第1膨張弁17とから構成される。 The refrigeration cycle 2 includes a compressor 10, a condenser 11, an evaporator 12, a refrigerant-water heat exchanger 13, a second electromagnetic valve 14, a second expansion valve 15, a first electromagnetic valve 16, and a first expansion. And a valve 17.
 コンプレッサ10は、冷媒を加圧し、高温、高圧の気体にする。コンプレッサ10は、後述するバッテリ20から電力が供給されて駆動する。 The compressor 10 pressurizes the refrigerant into a high-temperature and high-pressure gas. The compressor 10 is driven by power supplied from a battery 20 described later.
 コンデンサ11は、コンプレッサ10によって加圧された冷媒と高水温サイクル4を循環する第2冷却水との間で熱交換を行い、冷媒を冷却し、第2冷却水を加熱する。これにより、冷媒は液化する。 The condenser 11 exchanges heat between the refrigerant pressurized by the compressor 10 and the second cooling water circulating in the high water temperature cycle 4 to cool the refrigerant and heat the second cooling water. Thereby, the refrigerant is liquefied.
 エバポレータ12は、コンデンサ11によって冷却された冷媒を蒸発させる。冷媒が蒸発する時にエバポレータ12の外部の空気が冷却される。エバポレータ12によって気体となった冷媒はコンプレッサ10によって再び加圧される。エバポレータ12によって冷却された空気は、冷房(除湿)時の車内空調に使用される。 The evaporator 12 evaporates the refrigerant cooled by the condenser 11. When the refrigerant evaporates, the air outside the evaporator 12 is cooled. The refrigerant turned into gas by the evaporator 12 is pressurized again by the compressor 10. The air cooled by the evaporator 12 is used for in-vehicle air conditioning during cooling (dehumidification).
 第2膨張弁15は、冷媒を減圧する温度式膨張弁であり、エバポレータ12の出口側に感温筒部(図示せず)を有し、エバポレータ12の出口側のスーパーヒート(冷媒過熱度)に応じて開度が調整され、開度に応じて冷媒をエバポレータ12内に噴射する。なお、第2膨張弁15を、電磁制御弁やキャピラリーチューブで構成してもよい。 The second expansion valve 15 is a temperature-type expansion valve that depressurizes the refrigerant, has a temperature-sensitive cylinder portion (not shown) on the outlet side of the evaporator 12, and superheat (refrigerant superheat degree) on the outlet side of the evaporator 12. The opening is adjusted according to the angle, and the refrigerant is injected into the evaporator 12 according to the opening. Note that the second expansion valve 15 may be configured by an electromagnetic control valve or a capillary tube.
 第2電磁弁14は、コントローラ5からの信号に基づいて開閉する。 The second solenoid valve 14 opens and closes based on a signal from the controller 5.
 冷媒-水熱交換器13は、コンデンサ11によって冷却された冷媒を第1冷却水の熱によって蒸発させる。冷媒-水熱交換器13内を第1冷却水が流れており、冷媒が蒸発する時に第1冷却水が冷却される。冷媒-水熱交換器13によって気体となった冷媒はコンプレッサ10によって再び加圧される。 The refrigerant-water heat exchanger 13 evaporates the refrigerant cooled by the condenser 11 by the heat of the first cooling water. The first cooling water flows through the refrigerant-water heat exchanger 13, and the first cooling water is cooled when the refrigerant evaporates. The refrigerant turned into gas by the refrigerant-water heat exchanger 13 is pressurized again by the compressor 10.
 第1膨張弁17は、冷媒を減圧する温度式膨張弁であり、冷媒-水熱交換器13の出口側に感温筒部(図示せず)を有し、冷媒-水熱交換器13の出口側のスーパーヒートに応じて開度が調整され、開度に応じて冷媒を冷媒-水熱交換器13内に噴射する。なお、第1膨張弁17を、電磁制御弁やキャピラリーチューブで構成してもよい。 The first expansion valve 17 is a temperature-type expansion valve that depressurizes the refrigerant. The first expansion valve 17 includes a temperature-sensitive cylinder portion (not shown) on the outlet side of the refrigerant-water heat exchanger 13. The opening degree is adjusted according to the superheat on the outlet side, and the refrigerant is injected into the refrigerant-water heat exchanger 13 according to the opening degree. In addition, you may comprise the 1st expansion valve 17 with an electromagnetic control valve or a capillary tube.
 第1電磁弁16は、コントローラ5からの信号に基づいて開閉する。 The first solenoid valve 16 opens and closes based on a signal from the controller 5.
 第1電磁弁16、第1膨張弁17及び冷媒-水熱交換器13は、第2電磁弁14、第2膨張弁15及びエバポレータ12に対して並列に配置されている。 The first electromagnetic valve 16, the first expansion valve 17, and the refrigerant-water heat exchanger 13 are arranged in parallel to the second electromagnetic valve 14, the second expansion valve 15, and the evaporator 12.
 低水温サイクル3は、バッテリ20と、冷媒-水熱交換器13と、第1ウォーターポンプ21とから構成される。本実施形態における低水温サイクル3は、特に図示を省略するが、ラジエータシャッタ6が開いたときの走行風が直接当たらない位置に配置されている。このため、ラジエータシャッタ6が開いた状態でも、比較的放熱を抑制することができる。なお、バッテリ20、低水温サイクル3の配管などを断熱材で覆うことで、走行風を導入した場合の低水温サイクル3などにおける放熱を抑制してもよい。 The low water temperature cycle 3 includes a battery 20, a refrigerant-water heat exchanger 13, and a first water pump 21. Although the illustration of the low water temperature cycle 3 in the present embodiment is omitted in particular, the low water temperature cycle 3 is disposed at a position where the traveling wind does not directly hit when the radiator shutter 6 is opened. For this reason, even when the radiator shutter 6 is open, heat radiation can be relatively suppressed. In addition, you may suppress the thermal radiation in the low water temperature cycle 3 etc. at the time of driving | running | working wind by covering the battery 20, the piping of the low water temperature cycle 3, etc. with a heat insulating material.
 第1ウォーターポンプ21は、第1冷却水をバッテリ20、冷媒-水熱交換器13の順に循環させる。第1ウォーターポンプ21は、コントローラ5からの信号に基づいて吐出量が決定される。なお、第1ウォーターポンプ21を、複数段による流量切り替え可能とし、段数が大きくなるほど第1冷却水の流量が多くなるようにしてもよい。 The first water pump 21 circulates the first cooling water in the order of the battery 20 and the refrigerant-water heat exchanger 13. The discharge amount of the first water pump 21 is determined based on a signal from the controller 5. The first water pump 21 may be capable of switching the flow rate by a plurality of stages, and the flow rate of the first cooling water may be increased as the number of stages is increased.
 バッテリ20は、電動車両のモータ38などに電力を供給する二次電池であり、充放電する際に熱が発生する。バッテリ20は、第1ウォーターポンプ21によって循環する第1冷却水によって冷却される。 The battery 20 is a secondary battery that supplies electric power to the motor 38 of the electric vehicle, and generates heat when charging and discharging. The battery 20 is cooled by the first cooling water circulated by the first water pump 21.
 バッテリ20を冷却して温度が高くなった第1冷却水は、冷媒-水熱交換器13内を流れて、冷媒-水熱交換器13によって冷媒が蒸発する際に吸熱され、温度が低くなる。 The first cooling water whose temperature is increased by cooling the battery 20 flows through the refrigerant-water heat exchanger 13 and is absorbed by the refrigerant-water heat exchanger 13 when the refrigerant evaporates, and the temperature decreases. .
 高水温サイクル4は、第1サイクル7と、第2サイクル8と、接続通路32と、三方弁30とによって構成される。第1サイクル7と第2サイクル8とは、接続通路32によって接続されており、三方弁30を切り替えることで、第1サイクル7と第2サイクル8とは、連通し、または遮断される。 The high water temperature cycle 4 includes a first cycle 7, a second cycle 8, a connection passage 32, and a three-way valve 30. The first cycle 7 and the second cycle 8 are connected by the connection passage 32, and the first cycle 7 and the second cycle 8 are communicated or blocked by switching the three-way valve 30.
 第1サイクル7は、コンデンサ11と、メインヒーター33と、ヒーターコア34と、第2ウォーターポンプ35と、第1流路36とから構成される。 The first cycle 7 includes a capacitor 11, a main heater 33, a heater core 34, a second water pump 35, and a first flow path 36.
 第1流路36は、第2冷却水が第2ウォーターポンプ35、コンデンサ11、メインヒーター33、ヒーターコア34の順に流れるように形成されている。 The first flow path 36 is formed so that the second cooling water flows in the order of the second water pump 35, the condenser 11, the main heater 33, and the heater core 34.
 メインヒーター33は、バッテリ20から供給される電力によって発熱し、第2冷却水を温める。 The main heater 33 generates heat by the electric power supplied from the battery 20 and warms the second cooling water.
 ヒーターコア34は、コンデンサ11によって冷媒と熱交換を行い、その後、メインヒーター33により加熱されて温度が高くなった第2冷却水とヒーターコア34周囲の空気との間で熱交換を行い、空気を温める。ヒーターコア34によって温められた空気は、暖房運転時の車内空調に使用される。暖房がOFFとなっている場合には、エアミックスドア42によってヒーターコア34に空気が当たることを防ぎ、空気が温められることを防止する。なお、ヒーターコア34をバイパスするようにバイパス通路を設けてもよい。 The heater core 34 exchanges heat with the refrigerant by the condenser 11, and then exchanges heat between the second cooling water heated by the main heater 33 and having a high temperature and the air around the heater core 34. Warm up. The air heated by the heater core 34 is used for in-vehicle air conditioning during heating operation. When heating is OFF, the air mix door 42 prevents the air from hitting the heater core 34 and prevents the air from being warmed. A bypass passage may be provided so as to bypass the heater core 34.
 第2ウォーターポンプ35は、バッテリ20から供給される電力によって駆動する。第2ウォーターポンプ35は、三方弁30によって第1サイクル7と第2サイクル8とが遮断されている場合には、第2冷却水を、コンデンサ11、メインヒーター33、ヒーターコア34の順に循環させる。また、第2ウォーターポンプ35は、三方弁30によって第1サイクル7と第2サイクル8とが連通した場合には、第2冷却水をラジエータ37に流入させて、第2冷却水を冷却する。 The second water pump 35 is driven by electric power supplied from the battery 20. The second water pump 35 circulates the second cooling water in the order of the condenser 11, the main heater 33, and the heater core 34 when the first cycle 7 and the second cycle 8 are blocked by the three-way valve 30. . In addition, when the first cycle 7 and the second cycle 8 are communicated by the three-way valve 30, the second water pump 35 causes the second cooling water to flow into the radiator 37 and cools the second cooling water.
 第2サイクル8は、ラジエータ37と、モータ38と、インバータ39と、第3ウォーターポンプ40と、第2流路41とから構成される。 The second cycle 8 includes a radiator 37, a motor 38, an inverter 39, a third water pump 40, and a second flow path 41.
 第2流路41は、第2冷却水が第3ウォーターポンプ40、インバータ39、モータ38、ラジエータ37の順に流れるように形成されている。 The second flow path 41 is formed so that the second cooling water flows in the order of the third water pump 40, the inverter 39, the motor 38, and the radiator 37.
 ラジエータ37は、外部を流れる空気と第2冷却水との間で熱交換を行い、第2冷却水を冷却する。 The radiator 37 exchanges heat between the air flowing outside and the second cooling water to cool the second cooling water.
 インバータ39は、直流電力と交流電力とを相互に変換し、バッテリ20からモータ38に供給される電力、またはモータ38からバッテリ20に供給される電力を制御する。インバータ39は、第2冷却水によって冷却される。 The inverter 39 mutually converts DC power and AC power, and controls power supplied from the battery 20 to the motor 38 or power supplied from the motor 38 to the battery 20. The inverter 39 is cooled by the second cooling water.
 モータ38は、三相交流モータであり、バッテリ20から供給される電力によって電動機として機能し、車両の減速時などには発電機として機能する。モータ38は、第2冷却水によって冷却される。 The motor 38 is a three-phase AC motor, and functions as an electric motor by the electric power supplied from the battery 20, and functions as a generator when the vehicle is decelerated. The motor 38 is cooled by the second cooling water.
 第3ウォーターポンプ40は、バッテリ20から供給される電力によって駆動する。第3ウォーターポンプ40は、第2冷却水を、インバータ39、モータ38、ラジエータ37の順に循環させる。 The third water pump 40 is driven by electric power supplied from the battery 20. The third water pump 40 circulates the second cooling water in the order of the inverter 39, the motor 38, and the radiator 37.
 ラジエータシャッタ6は、ラジエータ37の前方に設けられる。ラジエータシャッタ6が開くと走行風がラジエータ37に向けて導入され、閉じると走行風が遮断される。ラジエータシャッタ6は、コントローラ5からの信号に基づいて開閉する。 The radiator shutter 6 is provided in front of the radiator 37. When the radiator shutter 6 is opened, the traveling wind is introduced toward the radiator 37, and when the radiator shutter 6 is closed, the traveling wind is blocked. The radiator shutter 6 opens and closes based on a signal from the controller 5.
 コントローラ5は、CPU、RAM等の主記憶装置、プログラムが記憶されたコンピュータ読み取り可能な記憶媒体から構成されている。そして、CPUが記憶媒体に記憶されたプログラムを読み込んで実行することで、コントローラ5の各機能が発揮される。コンピュータ読取り可能な記憶媒体とは、磁気ディスク、光磁気ディスク、CD-ROM、DVD-ROM、半導体メモリ等をいう。 The controller 5 includes a main storage device such as a CPU and a RAM, and a computer-readable storage medium storing a program. Each function of the controller 5 is exhibited by the CPU reading and executing the program stored in the storage medium. The computer-readable storage medium is a magnetic disk, a magneto-optical disk, a CD-ROM, a DVD-ROM, a semiconductor memory, or the like.
 コントローラ5は、外気温を検出するための温度センサ50からの信号、ラジエータ37に流入する第2冷却水の温度を検出するための水温センサ51からの信号などに基づいてラジエータシャッタ6を開閉する。また、コントローラ5は、A/Cスイッチ(図示せず)からの信号などに基づいて第2電磁弁14などを開閉する。さらにコントローラ5は、他のセンサからの信号などに基づいて、三方弁30における流路の切替など様々制御を行っている。 The controller 5 opens and closes the radiator shutter 6 based on a signal from the temperature sensor 50 for detecting the outside air temperature, a signal from the water temperature sensor 51 for detecting the temperature of the second cooling water flowing into the radiator 37, and the like. . The controller 5 opens and closes the second electromagnetic valve 14 and the like based on a signal from an A / C switch (not shown). Furthermore, the controller 5 performs various controls such as switching the flow path in the three-way valve 30 based on signals from other sensors.
 空調装置1は、暖房運転時には、バッテリ20で発生した熱を用いて第2冷却水を温め、温められた第2冷却水によってヒーターコア34で空気を温める廃熱回収モード、またはメインヒーター33のみで第2冷却水を温め、温められた第2冷却水によってヒーターコア34で空気を温めるヒーター暖房モードによって車内空調を行っている。なお、廃熱回収モードには、バッテリ20で発生した熱、及びメインヒーター33によって第2冷却水を温める場合が含まれる。廃熱回収モードを実行するとメインヒーター33による第2冷却水の加熱が抑制されるので、メインヒーター33による電力消費を抑制することができる。そのため、廃熱回収モードによる暖房運転時間を長くすることが望ましい。しかし、バッテリ20からヒーターコア34までの経路(管路)は長いので、廃熱回収モードで車内空調を行う場合に、ラジエータシャッタ6が開いていると、走行風による熱損失が大きくなる。 During the heating operation, the air conditioner 1 uses the heat generated in the battery 20 to warm the second cooling water, and heats the air with the heater core 34 using the warmed second cooling water, or the main heater 33 only. In the vehicle, air conditioning is performed in a heater heating mode in which the second cooling water is heated and the air is heated in the heater core 34 by the heated second cooling water. The waste heat recovery mode includes the case where the second cooling water is warmed by the heat generated by the battery 20 and the main heater 33. When the waste heat recovery mode is executed, heating of the second cooling water by the main heater 33 is suppressed, so that power consumption by the main heater 33 can be suppressed. Therefore, it is desirable to lengthen the heating operation time in the waste heat recovery mode. However, since the path (pipe) from the battery 20 to the heater core 34 is long, if the radiator shutter 6 is open when performing in-vehicle air conditioning in the waste heat recovery mode, heat loss due to traveling wind increases.
 そこで、本実施形態では、図2のフローチャートに示す空調制御を実行する。 Therefore, in this embodiment, the air conditioning control shown in the flowchart of FIG. 2 is executed.
 ステップS100では、コントローラ5は、外気温と目標吹き出し温度とを比較する。外気温は温度センサ50からの信号に基づいて検出される。処理は、目標吹き出し温度が外気温以上である場合にはステップS102に進み、目標吹き出し温度が外気温よりも低い場合にはステップS101に進む。 In step S100, the controller 5 compares the outside air temperature with the target blowing temperature. The outside air temperature is detected based on a signal from the temperature sensor 50. The process proceeds to step S102 when the target blowing temperature is equal to or higher than the outside air temperature, and proceeds to step S101 when the target blowing temperature is lower than the outside air temperature.
 ステップS101では、コントローラ5は、ラジエータシャッタ6を開く。 In step S101, the controller 5 opens the radiator shutter 6.
 ステップS102では、コントローラ5は、ラジエータシャッタ6が閉じているかどうか判定する。処理はラジエータシャッタ6が閉じている場合にはステップS103に進み、ラジエータシャッタ6が開いている場合にはステップS105に進む。 In step S102, the controller 5 determines whether or not the radiator shutter 6 is closed. The process proceeds to step S103 when the radiator shutter 6 is closed, and proceeds to step S105 when the radiator shutter 6 is open.
 ステップS103では、コントローラ5は、第2冷却水の温度と第1所定温度とを比較する。第2冷却水の温度は、ラジエータ37の直上流の第2流路41に設けられた水温センサ51からの信号に基づいて検出される。第1所定温度は予め設定された温度であり、第2冷却水の温度が高くなり、ラジエータ37によって第2冷却水を冷却する必要があると判定可能な温度である。処理は、第2冷却水の温度が第1所定温度以上の場合にはステップS104に進み、第2冷却水の温度が第1所定温度よりも低い場合にはステップS108に進む。 In step S103, the controller 5 compares the temperature of the second cooling water with the first predetermined temperature. The temperature of the second cooling water is detected based on a signal from a water temperature sensor 51 provided in the second flow path 41 immediately upstream of the radiator 37. The first predetermined temperature is a preset temperature, and is a temperature at which it can be determined that the temperature of the second cooling water is high and the radiator 37 needs to cool the second cooling water. The process proceeds to step S104 when the temperature of the second cooling water is equal to or higher than the first predetermined temperature, and proceeds to step S108 when the temperature of the second cooling water is lower than the first predetermined temperature.
 ステップS104では、コントローラ5は、ラジエータシャッタ6を開く。 In step S104, the controller 5 opens the radiator shutter 6.
 ステップS105では、コントローラ5は、第2冷却水の温度と第2所定温度(第1閾温度)とを比較する。第2所定温度は、予め設定された温度であり、第1所定温度よりも低く、第2冷却水の温度が十分に低くなっていると判定可能な温度である。処理は、第2冷却水の温度が第2所定温度以下の場合にはステップS106に進み、第2冷却水の温度が第2所定温度よりも高い場合にはステップS107に進む。 In step S105, the controller 5 compares the temperature of the second cooling water with a second predetermined temperature (first threshold temperature). The second predetermined temperature is a preset temperature, which is lower than the first predetermined temperature and is a temperature at which it can be determined that the temperature of the second cooling water is sufficiently low. The process proceeds to step S106 when the temperature of the second cooling water is equal to or lower than the second predetermined temperature, and proceeds to step S107 when the temperature of the second cooling water is higher than the second predetermined temperature.
 ステップS106では、コントローラ5は、ラジエータシャッタ6を閉じる。 In step S106, the controller 5 closes the radiator shutter 6.
 ステップS107では、コントローラ5は、デフロスターモード(DEFモード)であるかどうか判定する。処理は、DEFモードである場合にはステップS108に進み、DEFモードではない場合にはステップS110に進む。 In step S107, the controller 5 determines whether or not the defroster mode (DEF mode). The process proceeds to step S108 if the mode is DEF mode, and proceeds to step S110 if the mode is not DEF mode.
 ステップS108では、コントローラ5は、第2電磁弁14が開いているかどうか判定する。なお、コントローラ5は、(1)A/CスイッチがOFFとなっている、(2)通常の暖房運転(DEFモードによる除湿を行わない暖房)をしている、(3)DEFモードによる暖房運転の指令があるものの、エバポレータ12前の空気が除湿され難い温度(空気が結露し難い温度であり、例えば1℃以下の温度である)となっている、など条件のいずれか一つを満たすと、第2電磁弁14を閉じる。一方、(1)DEFモードの暖房運転をしており、かつ、除湿可能な温度(例えば1℃)よりも、エバポレータ12前の空気が高くなっている、(2)冷房運転をしているなどの条件のいずれか一つを満たすと、コントローラ5は、第2電磁弁14を開く。これらの条件は適宜設定できる。 In step S108, the controller 5 determines whether or not the second electromagnetic valve 14 is open. The controller 5 is (1) the A / C switch is OFF, (2) normal heating operation (heating without dehumidification in DEF mode), (3) heating operation in DEF mode. However, if any one of the conditions is satisfied, the air in front of the evaporator 12 is at a temperature at which it is difficult for the air to be dehumidified (the temperature at which the air is difficult to condense, for example, a temperature of 1 ° C. or less). Then, the second electromagnetic valve 14 is closed. On the other hand, (1) The heating operation in the DEF mode is performed, and the air before the evaporator 12 is higher than the dehumidifying temperature (for example, 1 ° C.), (2) The cooling operation is performed, etc. When any one of the conditions is satisfied, the controller 5 opens the second electromagnetic valve 14. These conditions can be set as appropriate.
 ここで、第2電磁弁14が閉じている場合には、エバポレータ12によって空気の冷却、または除湿が行われない。処理は、第2電磁弁14が開いている場合にはステップS112に進み、第2電磁弁14が閉じている場合にはステップS109に進む。 Here, when the second electromagnetic valve 14 is closed, the evaporator 12 does not cool or dehumidify the air. The process proceeds to step S112 when the second electromagnetic valve 14 is open, and proceeds to step S109 when the second electromagnetic valve 14 is closed.
 なお、エバポレータ12前の空気の温度とは、内気循環のみによる空調が行われている場合は、室内温度であり、外気導入のみによる空調が行われている場合には、外気温度であり、内気循環及び外気導入の両方を行っている場合には、外気導入(或いは内気循環)の比率に基づいて、外気温度及び室内温度から算出してもよい。あるいは、エバポレータ12の風流れ上流に、温度センサを設けてもよい。 Note that the temperature of the air before the evaporator 12 is the room temperature when air conditioning is performed only by the inside air circulation, and is the outside air temperature when air conditioning is performed only by introducing the outside air. When both circulation and outside air introduction are performed, the calculation may be performed from the outside air temperature and the room temperature based on the ratio of outside air introduction (or inside air circulation). Alternatively, a temperature sensor may be provided upstream of the wind flow of the evaporator 12.
 ステップS109では、コントローラ5は、第1電磁弁16が開いているかどうか判定する。処理は、第1電磁弁16が開いている場合にはステップS111に進み、第1電磁弁16が閉じている場合にはステップS110に進む。ここで、第1電磁弁16が閉じている場合には、バッテリ20は冷却されず、バッテリ20で発生した熱は、低水温サイクル3内に蓄熱される。なお、コントローラ5は、バッテリ20の温度が、バッテリ20を冷却する必要がある温度よりも高くなると第1電磁弁16を開き、バッテリ20を冷却する必要がある温度よりも低くなると第1電磁弁16を閉じる。 In step S109, the controller 5 determines whether or not the first electromagnetic valve 16 is open. The process proceeds to step S111 when the first electromagnetic valve 16 is open, and proceeds to step S110 when the first electromagnetic valve 16 is closed. Here, when the first electromagnetic valve 16 is closed, the battery 20 is not cooled, and the heat generated in the battery 20 is stored in the low water temperature cycle 3. The controller 5 opens the first electromagnetic valve 16 when the temperature of the battery 20 becomes higher than the temperature at which the battery 20 needs to be cooled, and the first electromagnetic valve when the temperature becomes lower than the temperature at which the battery 20 needs to be cooled. 16 is closed.
 ステップS110では、コントローラ5は、コンプレッサ10を停止する。 In step S110, the controller 5 stops the compressor 10.
 ラジエータシャッタ6が開いている状態で、廃熱回収モードによって車内空調を行うと、バッテリ20からヒーターコア34に伝達するまでの間に走行風によって熱が奪われ、熱損失が大きくなる。本実施形態では、ステップS100によって暖房運転であると判定され、さらにステップS102などの判定によってラジエータシャッタ6が開いていると判定された後に、処理がステップS110に進んだ場合には、コンプレッサ10を停止し、廃熱回収モードによる車内空調を行わず、バッテリ20で発生した熱を低水温サイクル3内に蓄熱する。これにより、この後に廃熱回収モードを実行する場合に、蓄熱した熱によって廃熱回収モードによる車内空調を長時間行うことができ、メインヒーター33による第2冷却水の加熱を抑制することができ、バッテリ20の消費電力を抑制することができる。なお、コンプレッサ10が停止すると、ヒーター暖房モードにより車内空調を行い、メインヒーター33によって第2冷却水が加熱されるが、メインヒーター33はヒーターコア34の近傍に配置されており、廃熱回収モードよりも走行風による熱損失は小さい。 If the vehicle interior air conditioning is performed in the waste heat recovery mode with the radiator shutter 6 open, heat is taken away by the traveling wind before the battery 20 transmits to the heater core 34, and the heat loss increases. In the present embodiment, when it is determined that the heating operation is performed in step S100, and the radiator shutter 6 is determined to be opened by the determination in step S102 or the like, and the process proceeds to step S110, the compressor 10 is turned on. It stops and does not perform in-vehicle air conditioning in the waste heat recovery mode, and stores heat generated in the battery 20 in the low water temperature cycle 3. Thus, when the waste heat recovery mode is subsequently executed, the vehicle interior air conditioning in the waste heat recovery mode can be performed for a long time with the stored heat, and the heating of the second cooling water by the main heater 33 can be suppressed. The power consumption of the battery 20 can be suppressed. When the compressor 10 is stopped, the vehicle interior air conditioning is performed in the heater heating mode, and the second cooling water is heated by the main heater 33. However, the main heater 33 is disposed in the vicinity of the heater core 34, and the waste heat recovery mode. The heat loss due to running wind is smaller than that.
 ステップS111では、コントローラ5は、冷媒-水熱交換器13の出口側の冷媒の温度が、予め設定された第3所定温度となるようにコンプレッサ10の回転速度を制御する。 In step S111, the controller 5 controls the rotation speed of the compressor 10 so that the temperature of the refrigerant on the outlet side of the refrigerant-water heat exchanger 13 becomes a preset third predetermined temperature.
 ステップS112では、コントローラ5は、外気温と目標吹き出し温度とを比較する。処理は、目標吹き出し温度が外気温以上である場合にはステップS113に進み、目標吹き出し温度が外気温よりも低い場合にはステップS115に進む。 In step S112, the controller 5 compares the outside air temperature with the target blowing temperature. The process proceeds to step S113 when the target blowing temperature is equal to or higher than the outside air temperature, and proceeds to step S115 when the target blowing temperature is lower than the outside air temperature.
 ステップS113では、コントローラ5は、ラジエータシャッタ6が閉じているかどうか判定する。処理は、ラジエータシャッタ6が閉じている場合にはステップS115に進み、ラジエータシャッタ6が開いている場合にはステップS114に進む。 In step S113, the controller 5 determines whether or not the radiator shutter 6 is closed. The process proceeds to step S115 when the radiator shutter 6 is closed, and proceeds to step S114 when the radiator shutter 6 is open.
 ステップS114では、コントローラ5は、第1電磁弁16を閉じる。 In step S114, the controller 5 closes the first electromagnetic valve 16.
 ステップS107、ステップS108、ステップS112、ステップS113の判定を経て処理がステップS114に進んだ場合には、ラジエータシャッタ6が開いた状態で除湿暖房運転をしている。そこで、コントローラ5は、第1電磁弁16を閉じ、廃熱回収モードを実行せずに、バッテリ20で発生する熱を低水温サイクル3内に蓄熱する。なお、この場合では、エバポレータ12による除湿と、メインヒーター33による暖房で除湿暖房運転を行う。 When the process proceeds to step S114 through the determination of step S107, step S108, step S112, and step S113, the dehumidifying and heating operation is performed with the radiator shutter 6 open. Therefore, the controller 5 stores the heat generated in the battery 20 in the low water temperature cycle 3 without closing the first electromagnetic valve 16 and executing the waste heat recovery mode. In this case, the dehumidifying and heating operation is performed by dehumidification by the evaporator 12 and heating by the main heater 33.
 そして、第2冷却水の温度が第2所定温度よりも下がって、ステップS105、ステップS106、ステップS108、ステップS112~ステップS114の順で処理が進んだ場合には、除湿暖房運転の際に、低水温サイクル3内に蓄熱したバッテリ20の熱を利用することが可能となる。これにより、メインヒーター33によって消費されるバッテリ20の電力を少なくすることができる。 When the temperature of the second cooling water falls below the second predetermined temperature and the process proceeds in the order of step S105, step S106, step S108, step S112 to step S114, during the dehumidifying heating operation, It becomes possible to utilize the heat of the battery 20 stored in the low water temperature cycle 3. Thereby, the power of the battery 20 consumed by the main heater 33 can be reduced.
 一方、当初から第2冷却水の温度が第2所定温度よりも低い場合には、ラジエータシャッタ6が閉じた状態で除湿暖房運転を行っているので、第1電磁弁16を開き、廃熱回収モードで車内空調を行う。このように、本実施形態の除湿暖房運転では、ラジエータシャッタ6の開閉の状態に応じて、第1電磁弁16を閉じるか否か判断することで、バッテリ20で発生する熱を有効に利用することができる。 On the other hand, when the temperature of the second cooling water is lower than the second predetermined temperature from the beginning, since the dehumidifying and heating operation is performed with the radiator shutter 6 closed, the first electromagnetic valve 16 is opened to recover the waste heat. Car air conditioning in mode. As described above, in the dehumidifying and heating operation of the present embodiment, the heat generated in the battery 20 is effectively used by determining whether or not the first electromagnetic valve 16 is closed according to the open / close state of the radiator shutter 6. be able to.
 ステップS115では、コントローラ5は、エバポレータ12直後の空気の温度が、予め設定された第4所定温度となるようにコンプレッサ10の回転速度を制御する。 In step S115, the controller 5 controls the rotational speed of the compressor 10 so that the temperature of the air immediately after the evaporator 12 becomes a preset fourth predetermined temperature.
 本発明の第1実施形態の効果について説明する。 The effect of the first embodiment of the present invention will be described.
 暖房運転時にラジエータシャッタ6を閉じることで、バッテリ20、またはバッテリ20からヒーターコア34に至るまでの配管など(特に、冷凍サイクル2の配管やコンプレッサ10)からの放熱を抑制できる。これにより、廃熱回収モードによる車内空調時間を長くすることができ、バッテリ20で発生する熱を暖房運転時に有効に利用することができる。 By closing the radiator shutter 6 during the heating operation, heat radiation from the battery 20 or piping from the battery 20 to the heater core 34 (particularly, piping of the refrigeration cycle 2 or the compressor 10) can be suppressed. Thereby, the in-vehicle air conditioning time in the waste heat recovery mode can be extended, and the heat generated by the battery 20 can be used effectively during the heating operation.
 暖房運転時にラジエータシャッタ6を開く場合には、コンプレッサ10を停止し、廃熱回収モードを実行しない。これにより、バッテリ20、またはバッテリ20からヒーターコア34に至るまでの配管を流れる冷媒などが走行風によって冷却されることを抑制することができる。また、その間、バッテリ20で発生した熱を低水温サイクル3内に蓄熱することができ、その後、ラジエータシャッタ6が閉じた場合には、廃熱回収モードによる車内空調を長時間行うことができる。 When opening the radiator shutter 6 during heating operation, the compressor 10 is stopped and the waste heat recovery mode is not executed. Thereby, it can suppress that the refrigerant | coolant etc. which flow through the piping from the battery 20 or the battery 20 to the heater core 34 are cooled by driving | running | working wind. Further, during this time, the heat generated in the battery 20 can be stored in the low water temperature cycle 3, and thereafter, when the radiator shutter 6 is closed, the vehicle interior air conditioning in the waste heat recovery mode can be performed for a long time.
 暖房運転時にラジエータシャッタ6が開いている間は、メインヒーター33によって第2冷却水を加熱することで、ヒーターコア34によって空気を温めることができる。メインヒーター33はコンデンサ11とヒーターコア34との間に設けられており、走行風が導入された場合でもメインヒーター33からヒーターコア34までの間の放熱量を抑制することができる。 While the radiator shutter 6 is open during the heating operation, the air can be warmed by the heater core 34 by heating the second cooling water by the main heater 33. The main heater 33 is provided between the condenser 11 and the heater core 34, and the amount of heat released from the main heater 33 to the heater core 34 can be suppressed even when traveling wind is introduced.
 このように、第1実施形態では、暖房運転時にバッテリ20で発生した熱の放熱を抑制することで、廃熱回収モードによって暖房運転可能な時間が長くなり、暖房運転時のメインヒーター33による電力消費を抑制し、バッテリ20の消費電力を抑制することができる。 As described above, in the first embodiment, by suppressing the release of the heat generated in the battery 20 during the heating operation, the time during which the heating operation can be performed by the waste heat recovery mode becomes longer, and the power from the main heater 33 during the heating operation is increased. Consumption can be suppressed and power consumption of the battery 20 can be suppressed.
 除湿暖房運転時にラジエータシャッタ6が開いている場合には、第1電磁弁16を閉じることで、バッテリ20で発生した熱が冷凍サイクル2の配管等を介して放熱されるのを抑制する。これにより、低水温サイクル3中にバッテリ20の熱を蓄熱することができる。そして、ラジエータシャッタ6が閉じて、第1電磁弁16を開いた状態で除湿暖房運転又は暖房運転するときには、廃熱回収モードによって、低水温サイクル3中に蓄熱した熱を上記のように有効に利用することができるので、暖房運転時のメインヒーター33による電力消費を抑制し、バッテリ20の消費電力を抑制することができる。 When the radiator shutter 6 is open during the dehumidifying heating operation, the first electromagnetic valve 16 is closed to suppress the heat generated in the battery 20 from being radiated through the piping of the refrigeration cycle 2 or the like. Thereby, the heat of the battery 20 can be stored during the low water temperature cycle 3. When the radiator shutter 6 is closed and the first electromagnetic valve 16 is opened, the heat stored during the low water temperature cycle 3 is effectively utilized as described above by the waste heat recovery mode. Since it can utilize, the power consumption by the main heater 33 at the time of heating operation can be suppressed, and the power consumption of the battery 20 can be suppressed.
 次に本発明の第2実施形態について説明する。 Next, a second embodiment of the present invention will be described.
 図3は、第2実施形態の空調装置1のシステム構成図である。空調装置1のコントローラ5は、エコモードスイッチ52からの信号、アクセルペダル開度センサ53からの信号などに基づいてモータ38の出力を制限し、または制限を解除する。 FIG. 3 is a system configuration diagram of the air conditioner 1 of the second embodiment. The controller 5 of the air conditioner 1 restricts the output of the motor 38 based on a signal from the eco mode switch 52, a signal from the accelerator pedal opening sensor 53, or the like, or releases the restriction.
 モータ38やインバータ39の温度が高くなり、第2サイクル8を循環する第2冷却水の温度が高くなった場合には、ラジエータシャッタ6を開いてラジエータ37によって第2冷却水を冷却し、冷却された第2冷却水によってモータ38やインバータ39を冷却しなければならない。ラジエータシャッタ6が開いた状態で、廃熱回収モードにより車内空調を行うと、走行風による熱損失が大きくなる。 When the temperature of the motor 38 or the inverter 39 becomes high and the temperature of the second cooling water circulating in the second cycle 8 becomes high, the radiator shutter 6 is opened and the second cooling water is cooled by the radiator 37 to cool the cooling water. The motor 38 and the inverter 39 must be cooled by the second cooling water. When vehicle interior air conditioning is performed in the waste heat recovery mode with the radiator shutter 6 open, heat loss due to traveling wind increases.
 そこで、本実施形態では、暖房運転時にラジエータシャッタ6が開くことを抑制し、廃熱回収モードによる暖房運転を長くするために以下に示す空調制御を実行する。 Therefore, in the present embodiment, the air conditioning control described below is executed in order to suppress the opening of the radiator shutter 6 during the heating operation and lengthen the heating operation in the waste heat recovery mode.
 第2実施形態における空調制御について図4のフローチャートを用いて説明する。 The air conditioning control in the second embodiment will be described with reference to the flowchart of FIG.
 ステップS200では、コントローラ5は、外気温と目標吹き出し温度とを比較する。処理は、目標吹き出し温度が外気温以上である場合にはステップS202に進み、目標吹き出し温度が外気温よりも低い場合にはステップS201に進む。 In step S200, the controller 5 compares the outside air temperature with the target blowing temperature. The process proceeds to step S202 when the target blowing temperature is equal to or higher than the outside air temperature, and proceeds to step S201 when the target blowing temperature is lower than the outside air temperature.
 ステップS201では、コントローラ5は、ラジエータシャッタ6を開く。 In step S201, the controller 5 opens the radiator shutter 6.
 ステップS202では、コントローラ5は、エコモードスイッチ52がONとなっているかどうか判定する。外気温が目標吹き出し温度よりも高く暖房運転であり、かつ運転者によってエコモードスイッチ52がONにされている場合には、コントローラ5は、モータ38の駆動モードをエコモードに切り替え、処理は、ステップS203に進む。一方、運転者によってエコモードスイッチ52がOFFにされている場合には、コントローラ5は、暖房運転であっても、モータ38の駆動モードをエコモードに切り替えず、処理は、ステップS205に進む。 In step S202, the controller 5 determines whether or not the eco mode switch 52 is ON. When the outside air temperature is higher than the target blowing temperature and the heating operation is performed, and the eco mode switch 52 is turned on by the driver, the controller 5 switches the driving mode of the motor 38 to the eco mode, Proceed to step S203. On the other hand, when the eco mode switch 52 is turned off by the driver, the controller 5 does not switch the drive mode of the motor 38 to the eco mode even in the heating operation, and the process proceeds to step S205.
 ステップS203では、コントローラ5は、現在のモータ38の出力が、エコモードを実行する場合のエコモード上限出力よりも小さいかどうか判定する。具体的には、コントローラ5は、図5に示すマップに基づいて、現在のモータ38の出力がエコモード上限出力よりも小さいかどうか判定する。図5においては、エコモードのエコモード上限出力を実線で示し、その他のモード、例えば、エコモードを実行しない暖房運転、冷房運転、暖房・冷房を使用しない運転時の上限出力を破線で示す。エコモード上限出力は、その他のモードの上限出力に対して最大回転速度、及び最大トルクが小さくなるように設定されている。また、エコモード上限出力は、図5のA点で示す1/3勾配を走行する場合に必要な出力を含み、図5のB点に示す平坦路を100km/hで走行する場合に必要な出力を含むように設定されている。処理は、現在のモータ38の出力がエコモード上限出力よりも小さい場合、具体的には、現在のモータ38の出力が図5の斜線の領域内である場合にはステップS204に進み、現在のモータ38の出力がエコモード上限出力以上である場合、具体的には現在のモータ38の出力が図5の斜線の領域外である場合にはステップS207に進む。 In step S203, the controller 5 determines whether or not the current output of the motor 38 is smaller than the eco mode upper limit output when the eco mode is executed. Specifically, the controller 5 determines whether or not the current output of the motor 38 is smaller than the eco mode upper limit output based on the map shown in FIG. In FIG. 5, the eco mode upper limit output of the eco mode is indicated by a solid line, and the upper limit output in other modes, for example, heating operation not performing the eco mode, cooling operation, and operation not using heating / cooling is indicated by a broken line. The eco mode upper limit output is set such that the maximum rotational speed and the maximum torque are smaller than the upper limit outputs of the other modes. The eco-mode upper limit output includes the output required when traveling on the 1/3 slope shown by point A in FIG. 5 and is required when traveling on the flat road shown by point B in FIG. 5 at 100 km / h. It is set to include output. If the current output of the motor 38 is smaller than the eco mode upper limit output, specifically, if the current output of the motor 38 is within the shaded area in FIG. If the output of the motor 38 is greater than or equal to the eco mode upper limit output, specifically, if the current output of the motor 38 is outside the shaded area in FIG.
 ステップS204では、コントローラ5は、エコモードを実行し、エコモード上限出力を超えないようにモータ38の出力を制限する。出力制限を行っていないモータ38の出力がエコモード上限出力以上である場合に、モータ38の出力をエコモード上限出力よりも小さくなるように制限すると、車両が急減速するおそれがある。そのため、本実施形態では、運転者によってエコモードスイッチ52がONとなり、エコモードが選択された場合であっても、モータ38の出力がエコモード上限出力よりも小さくなるまではエコモードを実行せずに、モータ38の出力がエコモード上限出力よりも小さくなった後に、エコモードを実行する。 In step S204, the controller 5 executes the eco mode and limits the output of the motor 38 so as not to exceed the eco mode upper limit output. If the output of the motor 38 that is not subjected to output restriction is equal to or higher than the eco mode upper limit output, if the output of the motor 38 is restricted to be smaller than the eco mode upper limit output, the vehicle may be decelerated rapidly. Therefore, in this embodiment, even when the eco mode switch 52 is turned ON by the driver and the eco mode is selected, the eco mode is not executed until the output of the motor 38 becomes smaller than the eco mode upper limit output. Instead, the eco mode is executed after the output of the motor 38 becomes smaller than the eco mode upper limit output.
 ステップS205では、コントローラ5は、アクセルペダル開度センサ53からの信号に基づいてアクセルペダルがOFFであるかどうか判定する。処理は、アクセルペダルがOFFである場合にはステップS206に進み、アクセルペダルがOFFではない場合にはステップS207に進む。 In step S205, the controller 5 determines whether or not the accelerator pedal is OFF based on a signal from the accelerator pedal opening sensor 53. The process proceeds to step S206 when the accelerator pedal is OFF, and proceeds to step S207 when the accelerator pedal is not OFF.
 ステップS206では、コントローラ5は、エコモードが実行されていた場合には、エコモードを終了し、モータ38の出力制限を解除する。本実施形態では、エコモードスイッチ52が運転者によってOFFにされた場合であっても、アクセルペダルがOFFとされるまでは、エコモードを終了しない。エコモードスイッチ52がOFFとされた時のモータ38の出力が、エコモードによって制限されている場合、具体的には、図5の斜線の領域外であったモータ38の出力が、エコモードが実行されることによって図5の斜線の領域内に制限されている場合には、エコモードが解除されると、モータ38の出力が図5の斜線の領域外の出力となり、車両が急加速するおそれがある。そのため、本実施形態では、運転者によってエコモードスイッチ52がOFFにされた場合でも、アクセルペダルがOFFとなるまではエコモードを終了せず、アクセルペダルがOFFとなった後にエコモードを終了し、モータ38の出力制限を解除する。 In step S206, if the eco mode has been executed, the controller 5 ends the eco mode and cancels the output limit of the motor 38. In the present embodiment, even when the eco mode switch 52 is turned off by the driver, the eco mode is not terminated until the accelerator pedal is turned off. When the output of the motor 38 when the eco mode switch 52 is turned off is limited by the eco mode, specifically, the output of the motor 38 that is outside the shaded area in FIG. If the execution is restricted within the shaded area of FIG. 5 and the eco mode is canceled, the output of the motor 38 becomes an output outside the shaded area of FIG. 5 and the vehicle accelerates rapidly. There is a fear. Therefore, in this embodiment, even when the eco-mode switch 52 is turned off by the driver, the eco-mode is not terminated until the accelerator pedal is turned off, and the eco-mode is terminated after the accelerator pedal is turned off. Then, the output limitation of the motor 38 is released.
 ステップS207~ステップS220は第1実施形態のステップS102からステップS115と同じ制御なので、ここでの説明は省略する。 Since Steps S207 to S220 are the same control as Steps S102 to S115 of the first embodiment, description thereof is omitted here.
 本発明の第2実施形態の効果について説明する。 The effect of the second embodiment of the present invention will be described.
 暖房運転時にエコモードスイッチ52がONとなり実行されるエコモードにおけるモータ38のエコモード上限出力を、他のモードの上限出力よりも小さくし、モータ38やインバータ39における発熱量を抑制し、モータ38、インバータ39、及び第2サイクル8の第2冷却水の温度上昇を抑制する。これにより、ラジエータシャッタ6が開くことを抑制し、コンプレッサ10や冷媒が流れる配管などが冷却されることを抑制し、廃熱回収モードによる車内空調時間を長くすることができ、バッテリ20の消費電力を抑制することができる。 The eco mode upper limit output of the motor 38 in the eco mode that is executed when the eco mode switch 52 is turned on during the heating operation is made smaller than the upper limit output of the other modes, the amount of heat generated in the motor 38 and the inverter 39 is suppressed, and the motor 38 In addition, the temperature rise of the inverter 39 and the second cooling water in the second cycle 8 is suppressed. Thereby, it is possible to suppress the opening of the radiator shutter 6, to suppress the cooling of the compressor 10 and the pipe through which the refrigerant flows, and to increase the in-vehicle air conditioning time in the waste heat recovery mode. Can be suppressed.
 エコモードでは、モータ38の最大回転速度を、平坦路走行時に100km/hの走行が可能となるように、他のモード時における最大回転速度よりも小さくする。これにより、第2サイクル8の第2冷却水の温度上昇を抑制すると共に、一定の走行性能を発揮することができる。なお、一定の走行性能を発揮できればよく、上記条件に限定されるものではない。 In the eco mode, the maximum rotation speed of the motor 38 is set to be smaller than the maximum rotation speed in other modes so that 100 km / h travel is possible when traveling on a flat road. Thereby, while suppressing the temperature rise of the 2nd cooling water of the 2nd cycle 8, fixed driving performance can be exhibited. Note that the present invention is not limited to the above conditions as long as it can exhibit a certain running performance.
 エコモードでは、モータ38の最大トルクを、1/3勾配を走行可能となるように、他のモード時における最大トルクよりも小さくする。これにより、第2サイクル8の第2冷却水の温度上昇を抑制すると共に、一定の走行性能を発揮することができる。なお、一定の走行性能を発揮できればよく、上記条件に限定されるものではない。 In the eco mode, the maximum torque of the motor 38 is made smaller than the maximum torque in the other modes so that the motor 1 can travel on the 1/3 gradient. Thereby, while suppressing the temperature rise of the 2nd cooling water of the 2nd cycle 8, fixed driving performance can be exhibited. Note that the present invention is not limited to the above conditions as long as it can exhibit a certain running performance.
 エコモードスイッチ52を設け、運転者によってエコモードスイッチ52を切替可能とする。運転者の操作によらず、エコモードを実行し、または終了すると車両が急減速、または急加速し、運転者に違和感を与えるおそれがある。本実施形態では、このような違和感を運転者に与えることを抑制することができる。 An eco-mode switch 52 is provided so that the driver can switch the eco-mode switch 52. Regardless of the driver's operation, when the eco mode is executed or terminated, the vehicle is suddenly decelerated or accelerated, which may cause the driver to feel uncomfortable. In the present embodiment, it is possible to suppress giving such a sense of incongruity to the driver.
 運転者によってエコモードスイッチ52がONにされた場合でも、出力制限を行っていないモータ38の出力が、エコモードにおけるエコモード上限出力よりも小さくなった後に、エコモードを実行する。これにより、車両の急減速を抑制することができる。 Even when the eco-mode switch 52 is turned on by the driver, the eco-mode is executed after the output of the motor 38 that is not performing the output limitation becomes smaller than the eco-mode upper limit output in the eco-mode. Thereby, sudden deceleration of the vehicle can be suppressed.
 次に本発明の第3実施形態について説明する。 Next, a third embodiment of the present invention will be described.
 本実施形態は、第2実施形態と比較して空調制御が異なっており、本実施形態における空調制御について図6のフローチャートを用いて説明する。 This embodiment is different in air conditioning control from the second embodiment, and the air conditioning control in this embodiment will be described with reference to the flowchart of FIG.
 ステップS300~ステップS302は第3実施形態のステップS200~ステップS202と同じ制御なので、ここでの説明は省略する。 Since steps S300 to S302 are the same control as steps S200 to S202 of the third embodiment, description thereof is omitted here.
 ステップS303では、コントローラ5は、第2冷却水の温度と第5所定温度(第2閾温度)とを比較する。第2冷却水の水温は水温センサ51からの信号に基づいて検出される。第5所定温度は予め設定された温度であり、第2所定温度よりも低く、例えばエコモードを実行しなくても第2冷却水が第1所定温度よりも高くならないと判定できる温度である。処理は、第2冷却水の水温が第5所定温度以上の場合にはステップS304に進み、第2冷却水の水温が第5所定温度よりも低い場合にはステップS306に進む。 In step S303, the controller 5 compares the temperature of the second cooling water with a fifth predetermined temperature (second threshold temperature). The water temperature of the second cooling water is detected based on a signal from the water temperature sensor 51. The fifth predetermined temperature is a preset temperature, and is a temperature that is lower than the second predetermined temperature. For example, the second cooling water can be determined not to be higher than the first predetermined temperature without executing the eco mode. The process proceeds to step S304 when the water temperature of the second cooling water is equal to or higher than the fifth predetermined temperature, and proceeds to step S306 when the water temperature of the second cooling water is lower than the fifth predetermined temperature.
 ステップS304以降の制御は、第2実施形態のステップS203以降の制御と同じなので、ここでの説明は省略する。 Since the control after step S304 is the same as the control after step S203 of the second embodiment, a description thereof is omitted here.
 本発明の第3実施形態の効果について説明する。 The effect of the third embodiment of the present invention will be described.
 ラジエータ37直前の第2冷却水の温度が第5所定温度よりも低く、ラジエータシャッタ6が開かないような場合には、エコモードを実行しない。これにより、第2冷却水の温度が高くなるまでは、走行性能を低下させずに走行することができる。 When the temperature of the second cooling water immediately before the radiator 37 is lower than the fifth predetermined temperature and the radiator shutter 6 does not open, the eco mode is not executed. Thereby, it can drive | work, without reducing driving performance until the temperature of 2nd cooling water becomes high.
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。 The embodiment of the present invention has been described above. However, the above embodiment only shows a part of application examples of the present invention, and the technical scope of the present invention is limited to the specific configuration of the above embodiment. Absent.
 第2実施形態、及び第3実施形態では、運転者によってエコモードがONにされた場合でも現在のモータ38の出力がエコモード上限出力よりも小さくなるまでは、エコモードを開始していない。しかし、これに限られることはなく、例えばエコモードスイッチ52がONにされると同時にエコモードを開始してもよい。また、モータ38の出力を徐々に小さくしてエコモード上限出力よりも小さくなるように制限してもよい。これにより、モータ38などの発熱量をさらに抑制し、廃熱回収モードによる車内空調時間を長くし、バッテリ20の消費電力を抑制することができる。 In the second embodiment and the third embodiment, even when the eco mode is turned on by the driver, the eco mode is not started until the current output of the motor 38 becomes smaller than the eco mode upper limit output. However, the present invention is not limited to this. For example, the eco mode may be started simultaneously with the eco mode switch 52 being turned on. Alternatively, the output of the motor 38 may be gradually reduced so as to be smaller than the eco mode upper limit output. Thereby, the amount of heat generated by the motor 38 and the like can be further suppressed, the in-vehicle air conditioning time in the waste heat recovery mode can be extended, and the power consumption of the battery 20 can be suppressed.
 第2実施形態、及び第3実施形態では、運転者によってエコモードがOFFにされた場合でもアクセルペダルがOFFとなるまでは、エコモードを終了していない。しかし、これに限られることはなく、例えばエコモードスイッチ52がOFFとなり、モータ38の出力の制限を解除した場合のモータ38の出力がエコモード上限出力よりも小さい場合、具体的には、出力制限解除後のモータ38の出力が図5の斜線領域内である場合には、エコモードスイッチ52がOFFとなると同時にエコモードを終了してもよい。また、エコモードスイッチ52がOFFとなると同時にエコモードを終了してもよい。さらに、徐々にモータ38の出力が大きくなるようにモータ38の出力を制御してもよい。これにより、エコモードスイッチ52がOFFにされた場合に、車両を素早く加速させることができる。 In the second embodiment and the third embodiment, even when the eco mode is turned off by the driver, the eco mode is not terminated until the accelerator pedal is turned off. However, the present invention is not limited to this. For example, when the eco mode switch 52 is turned OFF and the output of the motor 38 is smaller than the eco mode upper limit output when the limit of the output of the motor 38 is released, specifically, the output When the output of the motor 38 after the restriction is released is within the shaded area in FIG. 5, the eco mode may be terminated simultaneously with the eco mode switch 52 being turned off. Further, the eco mode may be terminated simultaneously with the eco mode switch 52 being turned off. Further, the output of the motor 38 may be controlled so that the output of the motor 38 gradually increases. Thereby, when the eco mode switch 52 is turned OFF, the vehicle can be accelerated quickly.
 また、エコモード上限出力を図5の一点鎖線で示すようにさらに小さくしてもよい。図5の一点鎖線は、例えば、JC08モードにおける走行を可能とする出力である。また、複数のエコモードを運転者が選択できるようにしてもよい。 Further, the eco mode upper limit output may be further reduced as shown by the one-dot chain line in FIG. The dashed-dotted line in FIG. 5 is an output that enables traveling in the JC08 mode, for example. In addition, the driver may select a plurality of eco modes.
 本願は2013年5月16日に日本国特許庁に出願された特願2013-104275、及び2013年5月16日に日本国特許庁に出願された特願2013-104279に基づく優先権を主張し、この出願の全ての内容は参照により本明細書に組み込まれる。 This application claims priority based on Japanese Patent Application No. 2013-104275 filed with the Japan Patent Office on May 16, 2013 and Japanese Patent Application No. 2013-104279 filed with the Japan Patent Office on May 16, 2013. The entire contents of this application are hereby incorporated by reference.

Claims (19)

  1.  バッテリの熱を暖房運転時に利用可能な車両用空調装置であって、
     第1冷媒を圧縮する圧縮機と、前記圧縮機によって圧縮された前記第1冷媒を凝縮する凝縮器と、前記凝縮器によって凝縮した前記第1冷媒を蒸発させる第1蒸発器と、前記第1蒸発器に流入する前記第1冷媒を減圧する膨張弁とを有する冷凍サイクルと、
     第2冷媒が循環し、前記第2冷媒によって前記バッテリを冷却し、前記バッテリの熱を用いて前記第1蒸発器で前記第1冷媒を蒸発させるバッテリ温調サイクルと、
     前記凝縮器によって前記第1冷媒と熱交換を行った第3冷媒によって、前記暖房運転時に空気を温めるヒーターコアと、前記第3冷媒を外気によって冷却する冷却部とを有する空調サイクルと、
     前記暖房運転時に前記冷却部への前記外気の導入を遮断可能なシャッタ部とを備える車両用空調装置。
    A vehicle air conditioner that can use the heat of the battery during heating operation,
    A compressor that compresses the first refrigerant; a condenser that condenses the first refrigerant compressed by the compressor; a first evaporator that evaporates the first refrigerant condensed by the condenser; and the first A refrigeration cycle having an expansion valve for depressurizing the first refrigerant flowing into the evaporator;
    A battery temperature control cycle in which a second refrigerant circulates, cools the battery with the second refrigerant, and evaporates the first refrigerant with the first evaporator using heat of the battery;
    An air conditioning cycle having a heater core that warms air during the heating operation by a third refrigerant that has exchanged heat with the first refrigerant by the condenser; and a cooling unit that cools the third refrigerant by outside air;
    A vehicle air conditioner comprising: a shutter unit capable of blocking introduction of the outside air to the cooling unit during the heating operation.
  2.  請求項1に記載の車両用空調装置であって、
     前記暖房運転時に前記冷却部へ前記外気を導入する場合に、前記圧縮機を停止する車両用空調装置。
    The vehicle air conditioner according to claim 1,
    A vehicle air conditioner that stops the compressor when the outside air is introduced into the cooling unit during the heating operation.
  3.  請求項2に記載の車両用空調装置であって、
     前記冷却部に流入する前記第3冷媒の温度を検出する温度検出手段を備え、
     前記暖房運転時に前記冷却部へ前記外気を導入し、前記圧縮機を停止した後、前記第3冷媒の温度が第1閾温度未満となった場合には、前記冷却部への前記外気の導入を遮断し、前記圧縮機を稼働する車両用空調装置。
    The vehicle air conditioner according to claim 2,
    Temperature detecting means for detecting the temperature of the third refrigerant flowing into the cooling section;
    After the outside air is introduced into the cooling unit during the heating operation and the compressor is stopped, the outside air is introduced into the cooling unit when the temperature of the third refrigerant becomes lower than the first threshold temperature. A vehicle air conditioner that shuts off the air and operates the compressor.
  4.  請求項2または3に記載の車両用空調装置であって、
     前記空調サイクルは、前記第3冷媒を加熱するヒーターを有し、
     前記暖房運転時に前記冷却部へ前記外気を導入し、かつ前記圧縮機が停止している場合には、前記ヒーターによって前記第3冷媒を加熱する車両用空調装置。
    The vehicle air conditioner according to claim 2 or 3,
    The air conditioning cycle has a heater for heating the third refrigerant,
    A vehicle air conditioner that heats the third refrigerant by the heater when the outside air is introduced into the cooling unit during the heating operation and the compressor is stopped.
  5.  請求項4に記載の車両用空調装置であって、
     前記ヒーターは、前記凝縮器と前記ヒーターコアとの間の流路上に配置される車両用空調装置。
    The vehicle air conditioner according to claim 4,
    The heater is a vehicle air conditioner disposed on a flow path between the condenser and the heater core.
  6.  請求項4または5に記載の車両用空調装置であって、
     前記冷凍サイクルは、
     前記第1蒸発器と並列に配置され、冷房、または除湿運転時に空気を冷却、または除湿する第2蒸発器と、
     前記第1蒸発器への前記第1冷媒の流入を遮断可能なバルブとを有し、
     除湿暖房時には、前記バルブによって前記第1蒸発器への前記第1冷媒の流入を遮断した状態で前記圧縮機を稼働し、かつ前記ヒーターによって前記第3冷媒を加熱する車両用空調装置。
    The vehicle air conditioner according to claim 4 or 5,
    The refrigeration cycle is
    A second evaporator that is arranged in parallel with the first evaporator and cools or dehumidifies air during cooling or dehumidifying operation;
    A valve capable of blocking the flow of the first refrigerant into the first evaporator,
    A vehicle air conditioner that operates the compressor in a state where the flow of the first refrigerant to the first evaporator is blocked by the valve and heats the third refrigerant by the heater during dehumidifying heating.
  7.  請求項1から6のいずれか一つに記載の車両用空調装置であって、
     前記バッテリ温調サイクルの配管、前記バッテリの少なくとも一方は、断熱部材で覆われている車両用空調装置。
    The vehicle air conditioner according to any one of claims 1 to 6,
    A vehicle air conditioner in which at least one of the battery temperature control pipe and the battery is covered with a heat insulating member.
  8.  バッテリの熱を暖房運転時に利用可能な車両用空調装置の制御方法であって、
     前記車両用空調装置は、
     第1冷媒を圧縮する圧縮機と、前記圧縮機によって圧縮された前記第1冷媒を凝縮する凝縮器と、前記凝縮器によって凝縮した前記第1冷媒を蒸発させる第1蒸発器と、前記第1蒸発器に流入する前記第1冷媒を減圧する膨張弁とを有する冷凍サイクルと、
     第2冷媒が循環し、前記第2冷媒によって前記バッテリを冷却し、前記バッテリの熱を用いて前記第1蒸発器で前記第1冷媒を蒸発させるバッテリ温調サイクルと、
     前記凝縮器によって前記第1冷媒と熱交換を行った第3冷媒によって、前記暖房運転時に空気を温めるヒーターコアと、前記第3冷媒を外気によって冷却する冷却部とを有する空調サイクルと、
     前記暖房運転時に前記冷却部への前記外気の導入を遮断可能なシャッタ部とを備え、
     前記暖房運転時に前記冷却部へ前記外気を導入する場合には、前記圧縮機を停止する車両用空調装置の制御方法。
    A control method for a vehicle air conditioner that can use the heat of a battery during heating operation,
    The vehicle air conditioner is
    A compressor that compresses the first refrigerant; a condenser that condenses the first refrigerant compressed by the compressor; a first evaporator that evaporates the first refrigerant condensed by the condenser; and the first A refrigeration cycle having an expansion valve for depressurizing the first refrigerant flowing into the evaporator;
    A battery temperature control cycle in which a second refrigerant circulates, cools the battery with the second refrigerant, and evaporates the first refrigerant with the first evaporator using heat of the battery;
    An air conditioning cycle having a heater core that warms air during the heating operation by a third refrigerant that has exchanged heat with the first refrigerant by the condenser; and a cooling unit that cools the third refrigerant by outside air;
    A shutter part capable of blocking the introduction of the outside air to the cooling part during the heating operation,
    A control method for a vehicle air conditioner that stops the compressor when the outside air is introduced into the cooling unit during the heating operation.
  9.  請求項1に記載の車両用空調装置であって、
     前記第3冷媒が循環し、発生した熱が前記冷却部によって放熱される車両駆動モータの駆動モードを、前記暖房運転時に前記車両駆動モータの出力が制限される出力制限モードに切り替える切替手段と、
     前記出力制限モードおける前記車両駆動モータの最大出力を、前記出力制限モードとは異なる他のモードにおける前記車両駆動モータの最大出力よりも小さくする出力制限手段とを備える車両用空調装置。
    The vehicle air conditioner according to claim 1,
    Switching means for switching the drive mode of the vehicle drive motor in which the third refrigerant circulates and the generated heat is dissipated by the cooling unit to an output restriction mode in which the output of the vehicle drive motor is limited during the heating operation;
    An air conditioner for a vehicle, comprising: an output restriction unit configured to make a maximum output of the vehicle drive motor in the output restriction mode smaller than a maximum output of the vehicle drive motor in another mode different from the output restriction mode.
  10.  請求項9に記載の車両用空調装置であって、
     前記出力制限手段は、前記出力制限モードおける前記車両駆動モータの最大回転速度を、前記他のモードにおける最大回転速度よりも小さくする車両用空調装置。
    The vehicle air conditioner according to claim 9,
    The said output restriction means is a vehicle air conditioner which makes the maximum rotational speed of the said vehicle drive motor in the said output restriction mode smaller than the maximum rotational speed in said other mode.
  11.  請求項10に記載の車両用空調装置であって、
     前記出力制限モードおける前記車両駆動モータの最大回転速度は、平坦路走行時に約100km/hの走行が可能な回転速度である車両用空調装置。
    The vehicle air conditioner according to claim 10,
    The vehicle air conditioner, wherein the maximum rotational speed of the vehicle drive motor in the output restriction mode is a rotational speed capable of traveling about 100 km / h when traveling on a flat road.
  12.  請求項9から11のいずれか一つに記載の車両の制御装置であって、
     前記出力制限手段は、前記出力制限モードおける前記車両駆動モータの最大トルクを、前記他のモードにおける最大トルクよりも小さくする車両用空調装置。
    The vehicle control device according to any one of claims 9 to 11,
    The vehicle air conditioner for reducing the maximum torque of the vehicle drive motor in the output restriction mode smaller than the maximum torque in the other modes.
  13.  請求項12に記載の車両用空調装置であって、
     前記出力制限モードおける前記車両駆動モータの最大トルクは、約1/3勾配を走行が可能なトルクである車両用空調装置。
    The vehicle air conditioner according to claim 12,
    A vehicle air conditioner in which the maximum torque of the vehicle drive motor in the output restriction mode is a torque capable of traveling on approximately 1/3 gradient.
  14.  請求項9から13のいずれか一つに記載の車両用空調装置であって、
     前記切替手段は、運転者の操作に基づいて前記駆動モードを前記出力制限モードに切り替える車両用空調装置。
    The vehicle air conditioner according to any one of claims 9 to 13,
    The switching means is a vehicle air conditioner that switches the drive mode to the output restriction mode based on a driver's operation.
  15.  請求項14に記載の車両用空調装置であって、
     前記出力制限手段は、前記車両駆動モータの最大出力を制限する場合に、出力制限前の前記車両駆動モータの出力が前記出力制限手段によって制限される最大出力よりも小さくなった後に、前記出力制限モードおける前記車両駆動モータの最大出力を、他のモードにおける前記車両駆動モータの最大出力よりも小さくする車両用空調装置。
    The vehicle air conditioner according to claim 14,
    In the case where the maximum output of the vehicle drive motor is limited, the output limiting unit is configured to limit the output after the output of the vehicle drive motor before the output limitation is smaller than the maximum output limited by the output limiting unit. A vehicle air conditioner that makes the maximum output of the vehicle drive motor in a mode smaller than the maximum output of the vehicle drive motor in another mode.
  16.  請求項9から15のいずれか一つに記載の車両用空調装置であって、
     前記出力制限手段は、前記冷却部を流れる前記第3冷媒の温度が第2閾温度以上である場合に、前記出力制限モードおける前記車両駆動モータの最大出力を、前記他のモードにおける前記車両駆動モータの最大出力よりも小さくする車両用空調装置。
    The vehicle air conditioner according to any one of claims 9 to 15,
    The output restricting means outputs the maximum output of the vehicle drive motor in the output restricting mode in the other mode when the temperature of the third refrigerant flowing through the cooling unit is equal to or higher than a second threshold temperature. A vehicle air conditioner that makes it smaller than the maximum output of the motor.
  17.  請求項9から16のいずれか一つに記載の車両用空調装置であって、
     前記車両駆動モータは、回転速度とトルクとの関係を示すトルク曲線図に基づいて出力が制限され、
     前記出力制限手段は、前記出力制限モードおける前記車両駆動モータのトルク曲線図の最大出力を、前記他のモードにおけるトルク曲線図の最大出力よりも小さくする車両用空調装置。
    The vehicle air conditioner according to any one of claims 9 to 16,
    The vehicle drive motor is limited in output based on a torque curve diagram showing the relationship between rotational speed and torque,
    The vehicle air conditioner, wherein the output restriction means makes the maximum output of the torque curve diagram of the vehicle drive motor in the output restriction mode smaller than the maximum output of the torque curve diagram in the other mode.
  18.  請求項8に記載の車両用空調装置の制御方法であって、
     前記第3冷媒が循環し、発生した熱が前記冷却部によって放熱される車両駆動モータの駆動モードを、前記暖房運転時に前記車両駆動モータの出力が制限される出力制限モードに切り替える切替工程と、
     前記出力制限モードおける前記車両駆動モータの最大出力を、前記出力制限モードとは異なる他のモードにおける前記車両駆動モータの最大出力よりも小さくする出力制限工程とを含む車両用空調装置の制御方法。
    It is a control method of the air-conditioner for vehicles according to claim 8,
    A switching step of switching the drive mode of the vehicle drive motor in which the third refrigerant circulates and the generated heat is dissipated by the cooling unit to an output restriction mode in which the output of the vehicle drive motor is limited during the heating operation;
    A control method for a vehicle air conditioner, comprising: an output restriction step of making a maximum output of the vehicle drive motor in the output restriction mode smaller than a maximum output of the vehicle drive motor in another mode different from the output restriction mode.
  19.  第1冷媒を圧縮する圧縮機と、前記圧縮機によって圧縮された前記第1冷媒を凝縮する凝縮器と、前記凝縮器によって凝縮した前記第1冷媒を蒸発させる蒸発器と、前記蒸発器に流入する前記第1冷媒を減圧する膨張弁とを有する冷凍サイクルと、
     第2冷媒を循環させる冷媒ポンプと、前記第2冷媒によって冷却されるバッテリとを有し、前記バッテリの熱を用いて前記蒸発器で前記第1冷媒を蒸発させるバッテリ温調サイクルと、
     前記凝縮器によって前記第1冷媒と熱交換を行った第3冷媒によって、暖房運転時に空気を温めるヒーターコアと、前記第3冷媒を外気によって冷却する冷却部とを有する空調サイクルと、
     前記冷却部への外気の導入を遮断可能なシャッタ部とを備え、前記バッテリの熱を前記暖房運転時に利用可能な車両をコンピュータで制御するためのプログラムであって、
     前記コンピュータに、
     前記第3冷媒が循環し、発生した熱が前記冷却部によって放熱される車両駆動モータの駆動モードを、前記暖房運転時に前記車両駆動モータの出力を制限する出力制限モードに切り替える切替手順と、
     前記出力制限モードおける前記車両駆動モータの最大出力を、前記出力制限モードとは異なる他のモードにおける前記車両駆動モータの最大出力よりも小さくする出力制限手順とを実行させるプログラム。
    A compressor for compressing the first refrigerant; a condenser for condensing the first refrigerant compressed by the compressor; an evaporator for evaporating the first refrigerant condensed by the condenser; and an inlet to the evaporator A refrigeration cycle having an expansion valve for depressurizing the first refrigerant
    A battery temperature control cycle having a refrigerant pump for circulating the second refrigerant and a battery cooled by the second refrigerant, and evaporating the first refrigerant by the evaporator using heat of the battery;
    An air conditioning cycle having a heater core that warms air during heating operation by a third refrigerant that exchanges heat with the first refrigerant by the condenser; and a cooling unit that cools the third refrigerant by outside air;
    A shutter unit capable of blocking introduction of outside air to the cooling unit, and a program for controlling a vehicle that can use heat of the battery during the heating operation by a computer,
    In the computer,
    A switching procedure for switching the drive mode of the vehicle drive motor in which the third refrigerant circulates and the generated heat is dissipated by the cooling unit to an output restriction mode that limits the output of the vehicle drive motor during the heating operation;
    A program for executing an output restriction procedure for making the maximum output of the vehicle drive motor in the output restriction mode smaller than the maximum output of the vehicle drive motor in another mode different from the output restriction mode.
PCT/JP2014/057999 2013-05-16 2014-03-24 Air conditioning device for vehicle, control method for air conditioning device for vehicle, and program WO2014185150A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013104275A JP2014223866A (en) 2013-05-16 2013-05-16 Vehicle air conditioner and vehicle air conditioner control method
JP2013104279A JP2014225981A (en) 2013-05-16 2013-05-16 Vehicle controller, heat management system, program, and vehicle control method
JP2013-104279 2013-05-16
JP2013-104275 2013-05-16

Publications (1)

Publication Number Publication Date
WO2014185150A1 true WO2014185150A1 (en) 2014-11-20

Family

ID=51898135

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/057999 WO2014185150A1 (en) 2013-05-16 2014-03-24 Air conditioning device for vehicle, control method for air conditioning device for vehicle, and program

Country Status (1)

Country Link
WO (1) WO2014185150A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019230118A1 (en) * 2018-05-28 2019-12-05 サンデン・オートモーティブクライメイトシステム株式会社 Vehicle air-conditioning apparatus
CN114401853A (en) * 2019-09-18 2022-04-26 三电高新技术株式会社 Air conditioner for vehicle

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05147426A (en) * 1991-11-27 1993-06-15 Honda Motor Co Ltd Air conditioning system for vehicle equipped with forced ventilation function
JP2000233633A (en) * 1998-12-15 2000-08-29 Denso Corp Air conditioner for vehicle
JP2006321389A (en) * 2005-05-19 2006-11-30 Denso Corp Waste heat using device for vehicle
JP2010012923A (en) * 2008-07-03 2010-01-21 Sanden Corp Heating device for vehicle
JP2011178321A (en) * 2010-03-02 2011-09-15 Toyota Industries Corp Air-conditioning system for vehicle
JP2013043497A (en) * 2011-08-23 2013-03-04 Ngk Spark Plug Co Ltd Air conditioning system for electric vehicle, and heating device for air condition system of electric vehicle

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05147426A (en) * 1991-11-27 1993-06-15 Honda Motor Co Ltd Air conditioning system for vehicle equipped with forced ventilation function
JP2000233633A (en) * 1998-12-15 2000-08-29 Denso Corp Air conditioner for vehicle
JP2006321389A (en) * 2005-05-19 2006-11-30 Denso Corp Waste heat using device for vehicle
JP2010012923A (en) * 2008-07-03 2010-01-21 Sanden Corp Heating device for vehicle
JP2011178321A (en) * 2010-03-02 2011-09-15 Toyota Industries Corp Air-conditioning system for vehicle
JP2013043497A (en) * 2011-08-23 2013-03-04 Ngk Spark Plug Co Ltd Air conditioning system for electric vehicle, and heating device for air condition system of electric vehicle

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019230118A1 (en) * 2018-05-28 2019-12-05 サンデン・オートモーティブクライメイトシステム株式会社 Vehicle air-conditioning apparatus
US11518216B2 (en) 2018-05-28 2022-12-06 Sanden Automotive Climate Systems Corporation Vehicle air conditioning apparatus
CN114401853A (en) * 2019-09-18 2022-04-26 三电高新技术株式会社 Air conditioner for vehicle
CN114401853B (en) * 2019-09-18 2024-04-09 三电高新技术株式会社 Air conditioner for vehicle

Similar Documents

Publication Publication Date Title
JP6997558B2 (en) Vehicle air conditioner
JP6257940B2 (en) Heat pump type vehicle air conditioning system and defrosting method thereof
JP6125325B2 (en) Air conditioner for vehicles
JP5860360B2 (en) Thermal management system for electric vehicles
JP6192435B2 (en) Air conditioner for vehicles
JP6065637B2 (en) Cooling system
WO2020066719A1 (en) Vehicle air conditioner
JP2013129353A (en) Air conditioning apparatus for vehicle
JP2010064651A (en) Temperature conditioning control device of motor driving system for vehicle
US20180297445A1 (en) Vehicle heat management device
JP7164994B2 (en) Vehicle air conditioner
JP6108067B2 (en) Air conditioner for vehicles
JP2013060066A (en) Automobile temperature regulation system
WO2013047488A1 (en) Vehicle temperature regulation system
WO2021177057A1 (en) Vehicle air conditioner
JP6881383B2 (en) Battery cooling device
JP2014223867A (en) Vehicle air conditioner and vehicle air conditioner control method
CN112424006A (en) Air conditioner for vehicle
WO2018221137A1 (en) Vehicular air conditioning device
JP7280770B2 (en) Vehicle air conditioner
JP2014225981A (en) Vehicle controller, heat management system, program, and vehicle control method
WO2021220661A1 (en) Vehicle air conditioning device
JP2014223866A (en) Vehicle air conditioner and vehicle air conditioner control method
JP2014108644A (en) Vehicle air conditioner
WO2014185150A1 (en) Air conditioning device for vehicle, control method for air conditioning device for vehicle, and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14797632

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14797632

Country of ref document: EP

Kind code of ref document: A1