WO2014185055A1 - Non-aqueous solvent for electricity storage device, electrolyte for electricity storage device, and electricity storage device - Google Patents

Non-aqueous solvent for electricity storage device, electrolyte for electricity storage device, and electricity storage device Download PDF

Info

Publication number
WO2014185055A1
WO2014185055A1 PCT/JP2014/002518 JP2014002518W WO2014185055A1 WO 2014185055 A1 WO2014185055 A1 WO 2014185055A1 JP 2014002518 W JP2014002518 W JP 2014002518W WO 2014185055 A1 WO2014185055 A1 WO 2014185055A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluorine
storage device
electricity storage
aqueous solvent
containing cyclic
Prior art date
Application number
PCT/JP2014/002518
Other languages
French (fr)
Japanese (ja)
Inventor
佑介 杉山
合田 信弘
村瀬 正和
Original Assignee
株式会社豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田自動織機 filed Critical 株式会社豊田自動織機
Publication of WO2014185055A1 publication Critical patent/WO2014185055A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/60Liquid electrolytes characterised by the solvent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a non-aqueous solvent for an electricity storage device, an electrolyte for an electricity storage device, and an electricity storage device.
  • Non-aqueous storage devices such as lithium ion secondary batteries are small and have high energy density, and are widely used as power sources for portable electronic devices. It is also considered to use a non-aqueous electricity storage device as a vehicle drive source.
  • the non-aqueous electricity storage device has a positive electrode, a negative electrode, and a non-aqueous electrolyte.
  • the nonaqueous electrolytic solution is obtained by dissolving an electrolyte in an organic solvent.
  • the nonaqueous electrolytic solution is required to be stable in order to use the nonaqueous electricity storage device for a long period of time. Therefore, improvement of non-aqueous electrolyte has been conventionally performed.
  • Patent Document 1 it has been proposed to use a fluorine-based ether as a solvent to improve the life of the electrolyte and improve acid resistance.
  • Patent Documents 2 to 8 propose to improve the stability of the electrolytic solution and the cycle characteristics of the battery by using a solvent having a fluorine-based cyclic ether.
  • Patent Document 9 proposes that a fluorine-containing cyclic saturated hydrocarbon be used as a solvent to exhibit high charge / discharge characteristics even when charged at a high voltage.
  • Patent Documents 10 and 11 propose to increase the electrochemical stability of the electrolytic solution by lowering the HOMO (maximum occupied orbital) energy of the electrolyte.
  • HOMO maximum occupied orbital
  • JP 2012-216539 A Japanese Patent Laid-Open No. 08-037044 JP-A-10-189008 Japanese Patent Laid-Open No. 2006-21002 JP 2010-073349 A JP 2011-258548 A JP 2004-165131 A JP 2012-190771 A JP 2010-108940 A JP-A-6-333576 JP 2009-283634 A
  • the non-aqueous solvent for an electricity storage device of the present invention includes a cyclic saturated hydrocarbon having an ether bond, and a fluorine group bonded to each of the ⁇ -positions on both sides of the oxygen group in the ether bond in the cyclic saturated hydrocarbon. It contains the fluorine-containing cyclic ether compound which has these.
  • the electrolytic solution for an electricity storage device of the present invention is characterized by having the nonaqueous solvent for an electricity storage device described above and an electrolyte.
  • the electricity storage device of the present invention has the above-described electrolyte for electricity storage device, a positive electrode, and a negative electrode.
  • the non-aqueous solvent for an electricity storage device of the present invention contains a fluorine-containing cyclic ether compound, and fluorine is bonded to each of the ⁇ positions on both sides of the oxygen group constituting the ether bond of the fluorine-containing cyclic ether compound. For this reason, the oxidation resistance of electrolyte solution can be raised effectively and the stable electrical storage device can be provided.
  • a nonaqueous solvent for an electricity storage device, an electrolyte for an electricity storage device, and an electricity storage device according to an embodiment of the present invention will be described in detail.
  • the non-aqueous solvent for an electricity storage device contains a fluorine-containing cyclic ether compound.
  • the fluorine-containing cyclic ether compound has a cyclic saturated hydrocarbon having an ether bond and fluorine groups bonded to the ⁇ -positions on both sides of the oxygen group in the ether bond in the cyclic saturated hydrocarbon. Fluorine is bonded to each ⁇ position on both sides of the oxygen group constituting the ether bond in the cyclic saturated hydrocarbon.
  • the “ ⁇ -position on both sides of the oxygen group” refers to carbon located next to both sides of the oxygen group constituting the ether bond in the cyclic saturated hydrocarbon. Fluorine is bonded to one adjacent carbon on both sides of the oxygen group.
  • the oxygen group in the ether bond is composed of an oxygen atom and is partially negatively charged due to localization of electrons. Fluorine bonded to the ⁇ -positions on both sides of the oxygen group in the cyclic saturated hydrocarbon has a high electronegativity, and therefore attracts a negative charge localized in oxygen, thereby reducing the negative charge of oxygen.
  • fluorine is bonded to the ⁇ -positions on both sides of the oxygen group constituting the ether bond.
  • This structure is excellent in resistance to reduction because it is difficult to generate a decomposition type carbanion generated by hydrogen elimination at the ⁇ -position.
  • the negative charge existing in the oxygen group constituting the ether bond spreads in a balanced manner to the annular portions on both sides of the oxygen atom.
  • the reactivity of the fluorine-containing cyclic ether compound becomes low, and it becomes a very stable state.
  • a fluorine-containing cyclic ether compound in which fluorine is bonded to the ⁇ -position of the oxygen group has a lower HOMO energy than the case of bonding to other sites (for example, ⁇ -position) even if the number of fluorine atoms is the same. Higher oxidation resistance. Electrons are not localized in the ether bond, and the ether bond is not easily decomposed. Therefore, decomposition of the fluorine-containing cyclic ether compound existing in the vicinity of the positive electrode during charging is suppressed, and the chemical stability of the electrolytic solution is improved.
  • the ring structure of the fluorine-containing cyclic ether compound includes four-membered rings, five-membered rings, six-membered rings, and seven-membered rings.
  • a 5-membered ring or a 6-membered ring is preferable because it is stable.
  • a five-membered ring is desirable. This is because the five-membered ring is stable because it has a larger HOMO-LUMO energy gap than the six-membered ring.
  • the cyclic part of the fluorine-containing cyclic ether compound may be composed of, for example, a cyclic saturated hydrocarbon having one ether bond and a cyclic saturated hydrocarbon having two or more ether bonds.
  • the cyclic portion is preferably composed of a cyclic saturated hydrocarbon having one ether bond.
  • the HOMO-LUMO energy gap is increased and the compound becomes more stable.
  • the cyclic part of the fluorine-containing cyclic ether compound is composed of a cyclic saturated hydrocarbon having two or more ether bonds
  • the fluorine group is bonded to the ⁇ -position on both sides of the oxygen group in at least one ether bond. It only has to be.
  • a fluorine group is bonded to the ⁇ positions on both sides of the oxygen group in all ether bonds in the cyclic saturated hydrocarbon.
  • examples of the cyclic saturated hydrocarbon having one ether bond include tetrahydrofuran represented by the chemical formula (1) and tetrahydropyran represented by the chemical formula (2).
  • examples of the cyclic saturated hydrocarbon having two ether bonds include 1,3-dioxolane represented by chemical formula (3) and 1,4-dioxane represented by chemical formula (4).
  • the fluorine-containing cyclic ether compound may have, for example, fluorine bonded to the ⁇ -positions on both sides of the oxygen group constituting the ether bond.
  • the fluorine-containing cyclic ether compound having tetrahydrofuran in the cyclic part include compounds represented by the following chemical formulas (1-1) to (1-9).
  • the names of these compounds are (1-1) 2,5-trans-tetrafluorotetrahydrofuran, (1-2) 2,5-cis-tetrafluorotetrahydrofuran, (1-3) 2, 4, 5-tetrafluorotetrahydrofuran, (1-4) 2,2,5,5-tetrafluorotetrahydrofuran, (1-5) 2,3,4,5-tetrafluorotetrahydrofuran, (1-6) 2, 5-difluoro-2-fluoromethyltetrahydrofuran, (1-7) 2,5,5-trifluoro-2-fluoromethyltetrahydrofuran, (1-8) 2,3,4,5-tetrafluoro 2-methyl fluoride tetrahydrofuran, (1-9) 2,5-difluoride-2,5-dimethyltetrahydrofuran.
  • Examples of the fluorine-containing cyclic ether compound having tetrahydropyran in the cyclic portion include compounds represented by the following chemical formulas (2-1) to (2-3). The names of these compounds are (2-1) 2,6-difluorotetrahydropyran, (2-2) 2,2,6,6-tetrafluoropyran, (2-3) 2, 3,4,5,6-pentafluoro-2-fluoromethyltetrahydropyran.
  • fluorine is bonded to the ⁇ -positions on both sides of each oxygen group constituting at least one ether bond. Further, fluorine may be bonded to the ⁇ -positions on both sides of each of two oxygen groups constituting two ether bonds.
  • Examples of the fluorine-containing cyclic ether compound having 1,3-dioxolane in the cyclic portion include compounds represented by the following chemical formula (3-1). The name of this compound is 2,4-difluoride-1,3-dioxolane.
  • Examples of the fluorine-containing cyclic ether compound having 1,4-dioxane in the cyclic part include compounds represented by the following chemical formulas (4-1) to (4-3).
  • the names of these compounds are (4-1) 2,6-difluorinated-1,4-dioxane, (4-2) 2,3,5,6-tetrafluoro-1,4-dioxane in this order. (4-3) 2,2,3,3,5,5,6,6-octafluoro-1,4-dioxane.
  • One or more fluorine atoms may be bonded to the ⁇ -positions on both sides of the oxygen group constituting the ether bond of the cyclic portion of the cyclic saturated hydrocarbon.
  • one fluorine and a hydrogen group or a hydrocarbon group other than fluorine may be bonded to the ⁇ positions on both sides of the oxygen group constituting the ether bond of the cyclic portion of the cyclic saturated hydrocarbon.
  • the hydrocarbon group other than fluorine for example, a linear saturated hydrocarbon group or a linear saturated hydrocarbon group bonded with fluorine is preferable.
  • the straight hydrocarbon group preferably has 1 to 3 carbon atoms. When the carbon number of the linear hydrocarbon group exceeds 4, the ionic conduction of the Li electrolytic salt may be reduced.
  • HOMO is called the lowest occupied orbital and shows the orbit with the highest energy among the molecular orbitals having electrons.
  • the oxidation reaction is a phenomenon in which electrons are lost from molecules. When an electron is lost, it is lost from the high energy HOMO, the most unstable occupied orbital electron. That is, it is considered that as the energy level is lower, electrons are less likely to escape and oxidative decomposition is less likely to occur. Therefore, as viewed relatively, the lower the HOMO, the stronger the oxidation resistance.
  • the LUMO is called the lowest unoccupied orbit and shows the orbit with the lowest energy among molecular orbitals without electrons.
  • the reduction reaction is a phenomenon in which molecules receive electrons. When receiving the electrons, the electrons are stored in the empty orbit, so the electrons enter the LUMO having the lowest energy. That is, the higher the LUMO energy level, the more difficult it is for electrons to enter. That is, reductive decomposition is less likely to occur and the reduction resistance is enhanced.
  • the HOMO-LUMO energy gap of the fluorine-containing cyclic ether compound is preferably 13.5 or more in molecular orbital calculation using PM3 as a Hamiltonian for solving the Schrodinger equation. In this case, the fluorine-containing cyclic ether compound becomes difficult to decompose over a wide voltage range.
  • the HOMO-LUMO energy gap of the fluorine-containing cyclic ether compound is less than 13.5, the stable voltage range is narrowed, and the fluorine-containing cyclic ether compound may be decomposed during charge / discharge.
  • the HOMO energy of the fluorine-containing cyclic ether compound is preferably ⁇ 11.8 or less in molecular orbital calculation using PM3 as a Hamiltonian for solving the Schrodinger equation. Since HOMO indicates the likelihood of an oxidation reaction, it indicates the ease of reaction of the fluorine-containing cyclic ether compound in the vicinity of the positive electrode during charging. The lower the HOMO, the less the oxidation reaction near the positive electrode during charging. When the HOMO energy of the fluorine-containing cyclic ether compound is ⁇ 11.8 or less, electrons are less likely to be lost from the fluorine-containing cyclic ether compound in the vicinity of the positive electrode during charging, and decomposition is difficult. This increases the electrochemical stability of the solvent.
  • the fluorine-containing cyclic ether compound When the HOMO energy of the fluorine-containing cyclic ether compound is larger than ⁇ 11.8, the fluorine-containing cyclic ether compound may be easily decomposed in the vicinity of the positive electrode.
  • the LUMO energy of the fluorine-containing cyclic ether compound is preferably 1.2 or more in molecular orbital calculation using PM3 as a Hamiltonian for solving the Schrodinger equation.
  • LUMO indicates the ease of the reduction reaction. The larger the LUMO, the more difficult it is for the fluorine-containing cyclic ether compound to receive electrons in the vicinity of the negative electrode during charging, and it becomes difficult to decompose. For this reason, the electrochemical stability of the solvent is increased.
  • the fluorine-containing cyclic ether compound When the LUMO energy of the fluorine-containing cyclic ether compound is less than 1.2, the fluorine-containing cyclic ether compound may be easily decomposed near the negative electrode.
  • the non-aqueous solvent may be composed of the above-mentioned fluorine-containing cyclic ether compound alone or may contain other components.
  • Components other than the fluorine-containing cyclic ether compound contained in the non-aqueous solvent are preferably aprotic organic solvents, and for example, cyclic carbonates, chain carbonates, ethers, and the like may be used.
  • the cyclic carbonate is, for example, one selected from the group consisting of propylene carbonate (PC), ethylene carbonate (EC), butylene carbonate, gamma butyrolactone, vinylene carbonate, 2-methyl-gamma butyrolactone, acetyl-gamma butyrolactone, and gamma valerolactone.
  • PC propylene carbonate
  • EC ethylene carbonate
  • butylene carbonate gamma butyrolactone
  • vinylene carbonate 2-methyl-gamma butyrolactone
  • 2-methyl-gamma butyrolactone acetyl-gamma butyrolactone
  • gamma valerolactone gamma valerolactone
  • the chain carbonate is selected from, for example, dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), dibutyl carbonate, dipropyl carbonate, propionic acid alkyl ester, malonic acid dialkyl ester, and acetic acid alkyl ester.
  • DMC dimethyl carbonate
  • DEC diethyl carbonate
  • EMC ethyl methyl carbonate
  • dibutyl carbonate dipropyl carbonate
  • propionic acid alkyl ester propionic acid dialkyl ester
  • acetic acid alkyl ester acetic acid alkyl ester
  • ethers examples include tetrahydrofuran, 2-methyltetrahydrofuran, 1,4-dioxane, 1,2-dimethoxyethane, 1,2-diethoxyethane, 1,2-dibutoxyethane, and the like.
  • the non-aqueous solvent preferably contains both a fluorine-containing cyclic ether compound and EC.
  • the content of the fluorine-containing cyclic ether compound is preferably 10% by volume to 90% by volume, and more preferably 30% by volume to 70% by volume. It is preferable that When the fluorine-containing cyclic ether compound is excessive, the Li ion conductivity may be lowered and the output may be lowered.
  • Said non-aqueous solvent is used for the electrolyte solution of an electrical storage device.
  • the electrolytic solution has the above non-aqueous solvent and an electrolyte.
  • the electrolyte is preferably a fluoride salt, and is preferably an alkali metal fluoride salt that is soluble in an organic solvent.
  • the alkali metal fluoride salt e.g., LiPF 6, LiBF 4, LiAsF 6, NaPF 6, NaBF 4, and may be used at least one selected from the group of NaAsF 6.
  • the electricity storage device includes the above-described electrolytic solution, a positive electrode, and a negative electrode.
  • Examples of the electricity storage device include a non-aqueous secondary battery and an electric double layer capacitor.
  • Examples of the non-aqueous secondary battery include a lithium ion secondary battery, a sodium ion secondary battery, a calcium ion secondary battery, and a magnesium ion secondary battery.
  • the lithium ion secondary battery includes the above-described electrolytic solution, a positive electrode having a positive electrode active material capable of occluding and releasing lithium ions, and a negative electrode having a negative electrode active material capable of occluding and releasing lithium ions.
  • the positive electrode may be composed of a current collector and a positive electrode active material layer that has a positive electrode active material and covers the surface of the current collector.
  • the positive electrode active material for example, a metal composite oxide of lithium and a transition metal such as a lithium / manganese composite oxide, a lithium / cobalt composite oxide, or a lithium / nickel composite oxide is used.
  • a metal composite oxide of lithium and a transition metal such as a lithium / manganese composite oxide, a lithium / cobalt composite oxide, or a lithium / nickel composite oxide.
  • the positive electrode active material LiCoO 2 , LiNi 1/3 Co 1/3 Mn 1/3 O 2 , LiNi 0.5 Co 0.2 Mn 0.3 O 2 , Li 2 MnO 3 , S Etc.
  • an active material that does not contain lithium for example, sulfur alone or a sulfur-modified compound can be used. When both the positive electrode and the negative electrode do not contain lithium, it is necessary to pre-dope lithium.
  • the positive electrode active material may constitute a positive electrode material together with a binder and / or a conductive aid.
  • the conductive auxiliary agent and the binder are not particularly limited as long as they can be used in the lithium ion secondary battery.
  • the current collector for the positive electrode is not particularly limited as long as it is generally used for the positive electrode of a lithium ion secondary battery, such as aluminum, nickel, and stainless steel, and may have various shapes such as a mesh or a metal foil.
  • the negative electrode is preferably composed of a current collector and a negative electrode active material layer having a negative electrode active material and covering the surface of the current collector.
  • the negative electrode active material is composed of metallic lithium, an elemental material composed of an element capable of alloying with lithium, and / or an elemental compound having an element capable of alloying with lithium. Note that the negative electrode active material may contain a carbon material in addition to the element material or the element compound.
  • Elemental materials composed of elements capable of alloying with lithium are Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Ba, Ra, Ti, Ag, Zn, Cd, Al, Ga, In , Si, Ge, Sn, Pb, Sb, and Bi may be used.
  • the element material made of an element capable of alloying with lithium is preferably made of silicon (Si) or tin (Sn).
  • Elemental compounds having elements capable of alloying with lithium are Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Ba, Ra, Ti, Ag, Zn, Cd, Al, Ga, In , Si, Ge, Sn, Pb, Sb, and Bi may be a compound having at least one selected from the group.
  • the elemental compound having an element capable of alloying with lithium is preferably a silicon compound or a tin compound.
  • the silicon compound is preferably SiOx (0.5 ⁇ x ⁇ 1.5).
  • the tin compound include tin alloys (Cu—Sn alloy, Co—Sn alloy, etc.).
  • the negative electrode active material may include a Si-based material having Si (silicon).
  • the Si-based material can store and release lithium ions and is preferably made of silicon or / and a silicon compound.
  • the Si-based material is preferably made of SiOx (0.5 ⁇ x ⁇ 1.5). Silicon has a large theoretical discharge capacity.
  • SiOx 0.5 ⁇ x ⁇ 1.5
  • the above-described negative electrode active material constitutes a negative electrode active material layer covering at least the surface of the current collector.
  • a negative electrode is formed by covering a current collector with a negative electrode active material layer.
  • a metal mesh or metal foil such as copper or copper alloy may be used.
  • the negative electrode active material layer may contain a binder, a conductive aid and the like in addition to the negative electrode active material.
  • the separator separates the positive electrode and the negative electrode and holds the non-aqueous electrolyte, and a thin microporous film such as polyethylene or polypropylene can be used.
  • a separator is sandwiched between the positive electrode and the negative electrode as necessary to form an electrode body.
  • Lithium ion secondary battery in which a non-aqueous electrolyte is impregnated in the electrode body after connecting between the positive electrode current collector and the negative electrode current collector to the positive electrode terminal and the negative electrode terminal leading to the outside using a current collecting lead or the like It is good to do.
  • the shape of the lithium ion secondary battery is not particularly limited, and various shapes such as a cylindrical shape, a laminated shape, a coin shape, and a laminated shape can be adopted.
  • the electricity storage device may be mounted on a vehicle.
  • the power storage device can also be used for various home appliances, office equipment, and industrial equipment driven by batteries, such as personal computers and portable communication devices.
  • the HOMO energy, LUMO energy, and HOMO-LUMO energy gap of various ethers used for the non-aqueous solvent were examined.
  • the molecular orbitals of compounds in which fluorine was substituted for various ethers were calculated, and the energy levels of HOMO and LUMO were derived.
  • the calculation program used was SCIGRESS (Saigres, manufactured by Fujitsu), and PM3 was used as a Hamiltonian. As the convergence condition, the least square method was used, and the numerical difference was set to 0.01% or less.
  • Tables 1 to 6 below show the HOMO energy, LUMO energy, and HOMO-LUMO energy gap of samples 1 to 16 and C1 to C36 of various ethers.
  • Samples 1 to 3, 5 to 7, 9, and 10 have (1) HOMO energy of ⁇ 11.8 or less, and (2) LUMO energy of 1.2 or more. (3) The HOMO-LUMO energy gap was 13.5 or more. On the other hand, Samples 4, 8, 11 to 16, and C1 to C36 did not satisfy all the conditions (1) to (3).
  • Samples 1 and 2 and C1 to C4 are all compounds in which two fluorine atoms are bonded to tetrahydrofuran. Samples 1 and 2 had a larger HOMO-LUMO energy gap and a lower HOMO energy than samples C1 to C4. The reason is considered as follows. Fluorine bonded to the ⁇ -positions on both sides of the oxygen group in the ether bond in tetrahydrofuran has a high electronegativity. Fluorine attracts a negative charge that localizes to oxygen, reduces the negative charge of oxygen, delocalizes the negative charge, and stabilizes the compound.
  • Samples C1 to C3 have fluorine bonded to the ⁇ -position on one side of the oxygen group in tetrahydrofuran.
  • the HOMO energy of Samples C1 to C3 is higher than ⁇ 11.8, and the HOMO-LUMO energy gaps of Samples C1 to C3 are also Samples 1, 2 in which fluorine is bonded to ⁇ -positions on both sides of the oxygen group in tetrahydrofuran It was small compared to.
  • Samples 3 to 5 have fluorine at the ⁇ -position on both sides of the oxygen group of tetrahydrofuran, and fluorine is bonded to other sites. Samples 3 to 5 have a larger number of fluorine than sample 1, but HOMO energy, LUMO energy, and HOMO-LUMO energy gap were not significantly different from sample 1.
  • Samples C5 to C7 are compounds in which fluorine is bonded to the ⁇ -position on one side of the oxygen group of tetrahydrofuran and a methyl group or a methyl fluoride group is bonded to the same ⁇ -position or the other ⁇ -position. These compounds had a HOMO energy higher than -13.5.
  • Samples 6 to 10 are tetrahydrofurans having a fluorine group at the ⁇ -position on both sides of the oxygen group, and further a compound having a methyl group or a methyl fluoride group bonded to the ⁇ -position.
  • the number of fluorine in Samples 6 to 10 was the same as or greater than that in Sample 1, but the HOMO energy, LUMO energy, and HOMO-LUMO energy gap were not significantly different.
  • Samples C8 to C11 and 10 are compounds having 1,3-dioxolane as a cyclic part, and there are two ether bonds in the cyclic part.
  • Samples C8 to C11 are fluorine-bonded at one ⁇ -position of two oxygen groups. In the sample 10, fluorine is bonded to the ⁇ positions on both sides of one oxygen group.
  • Sample 10 satisfied all of the above (1) to (3), but none of Samples C8 to C11 satisfied the above (1) and (3).
  • Samples 11 to 13, C12, and C13 are compounds having tetrahydropyran as a cyclic portion.
  • Samples 11 to 13 are compounds in which fluorine is bonded to the ⁇ -positions on both sides of the oxygen group of tetrahydropyran, and all satisfy the above (1) to (3).
  • fluorine is bonded to the ⁇ positions on both sides of the oxygen group, but fluorine is not bonded to the ⁇ positions on both sides of the oxygen group.
  • Sample 11 had a HOMO-LUMO energy gap of 13.5 or more.
  • Samples 12, 13, C12, and C13 had a HOMO-LUMO energy gap smaller than that of sample 11.
  • Samples 14 to 16 and C14 to C16 were compounds having 1,4-dioxane as a cyclic part. In all of Samples 14 to 16 and C14 to C16, the HOMO-LUMO energy gap was less than 13.5.
  • Samples C17 to C22 were fluorine-containing linear ether, and the HOMO-LUMO energy gap was small.
  • the cyclic part of Samples C23 to C25 was tetrahydrofuran, which satisfied the conditions (2) and (3) above, but did not satisfy (1).
  • Samples C26 and C29 are linear ethers, sample C27 is tetrahydropyran, and sample C28 is 1,4-dioxane. Samples C26 to C29 had a high LUMO energy of 1.2 or more, but the HOMO energy was higher than -11.8.
  • Samples C30 to C35 are cyclic or linear carbonates.
  • Sample C30 is ethylene carbonate
  • sample C31 is propylene carbonate
  • sample C32 is ⁇ -butyrolactin
  • sample C33 is dimethyl carbonate
  • sample C34 is diethyl carbonate
  • sample C35 is monofluoroethylene carbonate.
  • Samples C30 to C35 had a HOMO energy higher than -11.8 and a HOMO-LUMO energy gap smaller than 13.5.
  • Sample C36 is a fluorine-substituted linear ether. Sample C36 had a HOMO energy lower than -11.8, but a LUMO energy lower than 1.2 and a HOMO-LUMO energy gap smaller than 13.5.
  • the fluorine-containing cyclic ether compound has a cyclic saturated hydrocarbon having an ether bond and a fluorine group bonded to each of the ⁇ -positions on both sides of the oxygen group in the ether bond in the cyclic saturated hydrocarbon, It was found that the cyclic ether compound has a low HOMO energy, a high LUMO energy, and a HOMO-LUMO energy gap.
  • Example 1 A lithium ion secondary battery using the fluorine-containing cyclic ether of Sample 1 was produced.
  • SiO powder was put in a ball mill and milled at 450 rpm for 20 hours in an Ar atmosphere, and then heat-treated at 900 ° C. for 2 hours in an inert gas atmosphere. Thereby, SiO powder was disproportionated and the particulate Si-type material was obtained.
  • XRD X-ray diffraction
  • the disproportionated Si-based material, graphite powder, conductive additive and binder were mixed, and a solvent was added to obtain a slurry mixture.
  • Acetylene black (AB) was used as the conductive assistant.
  • Polyamideimide (PAI) was used as the binder.
  • NMP N-methyl-2-pyrrolidone
  • the slurry-like mixture was formed into a film on one side of a copper foil as a current collector using a doctor blade, pressed at a predetermined pressure, heated at 200 ° C. for 2 hours, and allowed to cool.
  • the negative electrode formed by fixing the negative electrode material (negative electrode active material layer) on the surface of the current collector was formed.
  • a lithium / nickel composite oxide LiNi 1/3 Co 1/3 Mn 1/3 O 2 as a positive electrode active material, acetylene black, and polyvinylidene fluoride (PVDF) as a binder are mixed to form a slurry.
  • This slurry was applied to one side of an aluminum foil as a current collector, pressed and fired.
  • a polypropylene porous membrane as a separator was sandwiched between the positive electrode and the negative electrode.
  • a plurality of electrode bodies composed of the positive electrode, the separator, and the negative electrode were stacked.
  • the periphery of the two aluminum films was sealed by heat-welding except for a part to make a bag shape.
  • the laminated electrode body was put in a bag-like aluminum film, and an electrolytic solution was further put.
  • the electrolytic solution is obtained by dissolving LiPF 6 as an electrolyte in an organic solvent.
  • THF-2,5-F2 2,5-difluorotetrahydrofuran
  • EC ethylene carbonate
  • the opening portion of the aluminum film was completely hermetically sealed while evacuating.
  • the tips of the positive electrode side and negative electrode side current collectors were projected from the edge portions of the film to be connectable to external terminals to obtain a lithium ion secondary battery.
  • the obtained lithium ion secondary battery could be charged and discharged.
  • the electrolyte was stable.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

The present invention addresses the problem of providing a chemically stable non-aqueous solvent for an electricity storage device, an electrolyte for an electricity storage device, and an electricity storage device using said solvent and electrolyte. This non-aqueous solvent for an electricity storage device contains a fluorine-containing cyclic ether compound having a cyclic saturated hydrocarbon having an ether bond, and fluorine groups bonded to the α-positions on both sides of the oxygen group in the ether bond in the cyclic saturated hydrocarbon.

Description

蓄電デバイス用非水系溶媒、蓄電デバイス用電解液、及び蓄電デバイスNon-aqueous solvent for electricity storage device, electrolyte for electricity storage device, and electricity storage device
 本発明は、蓄電デバイス用非水系溶媒、蓄電デバイス用電解液、及び蓄電デバイスに関する。 The present invention relates to a non-aqueous solvent for an electricity storage device, an electrolyte for an electricity storage device, and an electricity storage device.
 リチウムイオン二次電池などの非水蓄電デバイスは、小型でエネルギー密度が高く、ポータブル電子機器の電源として広く用いられている。また、非水蓄電デバイスを車両の駆動源として用いることが考えられている。 Non-aqueous storage devices such as lithium ion secondary batteries are small and have high energy density, and are widely used as power sources for portable electronic devices. It is also considered to use a non-aqueous electricity storage device as a vehicle drive source.
 非水蓄電デバイスは、正極と、負極と、非水電解液とを有する。非水電解液は、有機溶媒に電解質を溶解させてなる。非水電解液は、非水蓄電デバイスを長期間使用するために、安定であることが必要とされる。そこで、非水電解液の改良が、従来から行われている。 The non-aqueous electricity storage device has a positive electrode, a negative electrode, and a non-aqueous electrolyte. The nonaqueous electrolytic solution is obtained by dissolving an electrolyte in an organic solvent. The nonaqueous electrolytic solution is required to be stable in order to use the nonaqueous electricity storage device for a long period of time. Therefore, improvement of non-aqueous electrolyte has been conventionally performed.
 例えば、特許文献1に開示されているように、フッ素系エーテルを溶媒として用いることで、電解液の寿命の改善及び耐酸性の向上を図ることが提案されている。特許文献2~8には、フッ素系環状エーテルを有する溶媒を用いることで、電解液の安定性および電池のサイクル特性の向上を図ることが提案されている。特許文献9には、フッ素含有環状飽和炭化水素を溶媒に用いることで、高電圧で充電しても高い充放電特性を発揮させることが提案されている。また、特許文献10,11は、電解質のHOMO(最高被占軌道)エネルギーを低くすることで、電解液の電気化学的安定性を高めることが提案されている。 For example, as disclosed in Patent Document 1, it has been proposed to use a fluorine-based ether as a solvent to improve the life of the electrolyte and improve acid resistance. Patent Documents 2 to 8 propose to improve the stability of the electrolytic solution and the cycle characteristics of the battery by using a solvent having a fluorine-based cyclic ether. Patent Document 9 proposes that a fluorine-containing cyclic saturated hydrocarbon be used as a solvent to exhibit high charge / discharge characteristics even when charged at a high voltage. Patent Documents 10 and 11 propose to increase the electrochemical stability of the electrolytic solution by lowering the HOMO (maximum occupied orbital) energy of the electrolyte.
特開2012-216539号公報JP 2012-216539 A 特開平08-037024号公報Japanese Patent Laid-Open No. 08-037044 特開平10-189008号公報JP-A-10-189008 特開2006-210022号公報Japanese Patent Laid-Open No. 2006-21002 特開2010-073349号公報JP 2010-073349 A 特開2011-258548号公報JP 2011-258548 A 特開2004-165131号公報JP 2004-165131 A 特開2012-190771号公報JP 2012-190771 A 特開2010-108940号公報JP 2010-108940 A 特開平6-333576号公報JP-A-6-333576 特開2009-283643号公報JP 2009-283634 A
 近年、高電圧下でも蓄電デバイスを使用することが望まれている。このため、上記特許文献に開示されたフッ素系エーテルよりも、さらに高い化学的安定性が必要とされている。特にHOMOエネルギーを低くする事で、負極での分解を促進させる背反を改善する必要がある。 In recent years, it has been desired to use power storage devices even under high voltage. For this reason, higher chemical stability is required than the fluorine-type ether disclosed by the said patent document. In particular, it is necessary to improve the contradiction that promotes decomposition at the negative electrode by lowering the HOMO energy.
 本発明はかかる事情に鑑みてなされたものであり、安定な蓄電デバイス用非水系溶媒、蓄電デバイス用電解液、及び、これを用いた蓄電デバイスを提供することを課題とする。 The present invention has been made in view of such circumstances, and an object thereof is to provide a stable non-aqueous solvent for an electricity storage device, an electrolyte for an electricity storage device, and an electricity storage device using the same.
 (1)本発明の蓄電デバイス用非水系溶媒は、エーテル結合をもつ環状飽和炭化水素と、前記環状飽和炭化水素における前記エーテル結合の中の酸素基の両側のα位にそれぞれ結合したフッ素基とを有するフッ素含有環状エーテル化合物を含むことを特徴とする。 (1) The non-aqueous solvent for an electricity storage device of the present invention includes a cyclic saturated hydrocarbon having an ether bond, and a fluorine group bonded to each of the α-positions on both sides of the oxygen group in the ether bond in the cyclic saturated hydrocarbon. It contains the fluorine-containing cyclic ether compound which has these.
 (2)本発明の蓄電デバイス用電解液は、上記記載の蓄電デバイス用非水系溶媒と、電解質とを有することを特徴とする。 (2) The electrolytic solution for an electricity storage device of the present invention is characterized by having the nonaqueous solvent for an electricity storage device described above and an electrolyte.
 (3)本発明の蓄電デバイスは、上記記載の蓄電デバイス用電解液と、正極と、負極とを有する。 (3) The electricity storage device of the present invention has the above-described electrolyte for electricity storage device, a positive electrode, and a negative electrode.
 本発明の蓄電デバイス用非水系溶媒は、フッ素含有環状エーテル化合物を含み、フッ素含有環状エーテル化合物のエーテル結合を構成する酸素基の両側のα位にそれぞれフッ素が結合している。このため、電解液の耐酸化性を効果的に高める事ができ、安定性した蓄電デバイスを提供できる。 The non-aqueous solvent for an electricity storage device of the present invention contains a fluorine-containing cyclic ether compound, and fluorine is bonded to each of the α positions on both sides of the oxygen group constituting the ether bond of the fluorine-containing cyclic ether compound. For this reason, the oxidation resistance of electrolyte solution can be raised effectively and the stable electrical storage device can be provided.
 本発明の実施形態に係る蓄電デバイス用非水系溶媒、蓄電デバイス用電解液、及び蓄電デバイスについて詳細に説明する。 A nonaqueous solvent for an electricity storage device, an electrolyte for an electricity storage device, and an electricity storage device according to an embodiment of the present invention will be described in detail.
 蓄電デバイス用非水系溶媒は、フッ素含有環状エーテル化合物を含む。フッ素含有環状エーテル化合物は、エーテル結合をもつ環状飽和炭化水素と、前記環状飽和炭化水素における前記エーテル結合の中の酸素基の両側のα位にそれぞれ結合したフッ素基とを有する。環状飽和炭化水素におけるエーテル結合を構成する酸素基の両側のα位には、それぞれフッ素が結合している。「酸素基の両側のα位」とは、環状飽和炭化水素において、エーテル結合を構成している酸素基の両側の1つ隣に位置する炭素をいう。酸素基の両側の1つ隣の炭素には、フッ素が結合している。エーテル結合中の酸素基は、酸素原子からなり、電子が局在化して部分的に負電荷を帯びている。環状飽和炭化水素における酸素基の両側のα位に結合するフッ素は、電気陰性度が大きいため、酸素に局在化する負電荷を引き寄せ、酸素の負電荷を小さくする。 The non-aqueous solvent for an electricity storage device contains a fluorine-containing cyclic ether compound. The fluorine-containing cyclic ether compound has a cyclic saturated hydrocarbon having an ether bond and fluorine groups bonded to the α-positions on both sides of the oxygen group in the ether bond in the cyclic saturated hydrocarbon. Fluorine is bonded to each α position on both sides of the oxygen group constituting the ether bond in the cyclic saturated hydrocarbon. The “α-position on both sides of the oxygen group” refers to carbon located next to both sides of the oxygen group constituting the ether bond in the cyclic saturated hydrocarbon. Fluorine is bonded to one adjacent carbon on both sides of the oxygen group. The oxygen group in the ether bond is composed of an oxygen atom and is partially negatively charged due to localization of electrons. Fluorine bonded to the α-positions on both sides of the oxygen group in the cyclic saturated hydrocarbon has a high electronegativity, and therefore attracts a negative charge localized in oxygen, thereby reducing the negative charge of oxygen.
 環状飽和炭化水素における、エーテル結合を構成する酸素基の両側のα位には、フッ素が結合している。この構造は、α位にある水素脱離に伴って発生する分解種のカルバニオンが発生しにくいという理由により、耐還元性に優れている。 In cyclic saturated hydrocarbons, fluorine is bonded to the α-positions on both sides of the oxygen group constituting the ether bond. This structure is excellent in resistance to reduction because it is difficult to generate a decomposition type carbanion generated by hydrogen elimination at the α-position.
 また、エーテル結合を構成する酸素基に存在する負電荷は、酸素原子の両側の環状部にバランスよく広がる。フッ素含有環状エーテル化合物の反応性が低くなり、非常に安定な状態となる。酸素基のα位にフッ素が結合しているフッ素含有環状エーテル化合物は、フッ素原子の数が同じでも、ほかの部位(例えばβ位)に結合している場合に比べて、HOMOエネルギーが低くなり、耐酸化性が高くなる。エーテル結合に電子が局在化せず、エーテル結合が分解されにくい。ゆえに、充電時に正極近傍に存在するフッ素含有環状エーテル化合物の分解が抑制され、電解液の化学的安定性が向上する。 In addition, the negative charge existing in the oxygen group constituting the ether bond spreads in a balanced manner to the annular portions on both sides of the oxygen atom. The reactivity of the fluorine-containing cyclic ether compound becomes low, and it becomes a very stable state. A fluorine-containing cyclic ether compound in which fluorine is bonded to the α-position of the oxygen group has a lower HOMO energy than the case of bonding to other sites (for example, β-position) even if the number of fluorine atoms is the same. Higher oxidation resistance. Electrons are not localized in the ether bond, and the ether bond is not easily decomposed. Therefore, decomposition of the fluorine-containing cyclic ether compound existing in the vicinity of the positive electrode during charging is suppressed, and the chemical stability of the electrolytic solution is improved.
 一方、エーテル結合を構成する酸素基の片側のみのα位にフッ素が結合している場合には、酸素の両側のα位にそれぞれフッ素が結合している場合に比べて、負電荷の広がりのバランスが悪く、不安定である。 On the other hand, when fluorine is bonded to the α-position on only one side of the oxygen group constituting the ether bond, the negative charge spreads more than when fluorine is bonded to the α-position on both sides of oxygen. The balance is poor and unstable.
 エーテル結合を構成する酸素基のβ位にフッ素が結合している場合には、酸素の負電荷を非局在化しにくい。このため、酸素のα位にフッ素が結合していても、β位にはフッ素が結合していないことが好ましい。 When the fluorine is bonded to the β position of the oxygen group constituting the ether bond, it is difficult to delocalize the negative charge of oxygen. For this reason, even if fluorine is bonded to the α-position of oxygen, it is preferable that fluorine is not bonded to the β-position.
 フッ素含有環状エーテル化合物がもつ環構造は、四員環、五員環、六員環、七員環などがある。この中、五員環、または六員環が安定で好ましい。特に、五員環が望ましい。五員環は、六員環よりもHOMO-LUMOエネルギーギャップが大きいため、安定であるからである。 The ring structure of the fluorine-containing cyclic ether compound includes four-membered rings, five-membered rings, six-membered rings, and seven-membered rings. Among these, a 5-membered ring or a 6-membered ring is preferable because it is stable. In particular, a five-membered ring is desirable. This is because the five-membered ring is stable because it has a larger HOMO-LUMO energy gap than the six-membered ring.
 例えば、フッ素含有環状エーテル化合物の環状部は、例えば、1つのエーテル結合を有する環状飽和炭化水素、2つ以上のエーテル結合を有する環状飽和炭化水素からなる場合がある。このうち、環状部は、1つのエーテル結合を有する環状飽和炭化水素からなるとよい。この場合、HOMO-LUMOエネルギーギャップが大きくなり、より安定な化合物となる。フッ素含有環状エーテル化合物の環状部が、2つ以上のエーテル結合を有する環状飽和炭化水素からなる場合には、少なくとも1つのエーテル結合の中の酸素基の両側のα位に、フッ素基が結合していればよい。好ましくは、環状飽和炭化水素の中のすべてのエーテル結合の中の酸素基の両側のα位に、フッ素基が結合しているとよい。 For example, the cyclic part of the fluorine-containing cyclic ether compound may be composed of, for example, a cyclic saturated hydrocarbon having one ether bond and a cyclic saturated hydrocarbon having two or more ether bonds. Among these, the cyclic portion is preferably composed of a cyclic saturated hydrocarbon having one ether bond. In this case, the HOMO-LUMO energy gap is increased and the compound becomes more stable. When the cyclic part of the fluorine-containing cyclic ether compound is composed of a cyclic saturated hydrocarbon having two or more ether bonds, the fluorine group is bonded to the α-position on both sides of the oxygen group in at least one ether bond. It only has to be. Preferably, a fluorine group is bonded to the α positions on both sides of the oxygen group in all ether bonds in the cyclic saturated hydrocarbon.
 例えば、1つのエーテル結合を有する環状飽和炭化水素は、化学式(1)に示すテトラヒドロフラン、化学式(2)に示すテトラヒドロピランがあげられる。2つのエーテル結合を有する環状飽和炭化水素は、化学式(3)に示す1,3-ジオキソラン、化学式(4)に示す1,4-ジオキサンなどがあげられる。 For example, examples of the cyclic saturated hydrocarbon having one ether bond include tetrahydrofuran represented by the chemical formula (1) and tetrahydropyran represented by the chemical formula (2). Examples of the cyclic saturated hydrocarbon having two ether bonds include 1,3-dioxolane represented by chemical formula (3) and 1,4-dioxane represented by chemical formula (4).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 環状飽和炭化水素が1つのエーテル結合を有する場合には、フッ素含有環状エーテル化合物は、例えば、エーテル結合を構成する酸素基の両側のα位にフッ素が結合していればよい。テトラヒドロフランを環状部にもつフッ素含有環状エーテル化合物は、例えば、下記の化学式(1-1)~(1-9)に示す化合物があげられる。これらの化合物の名称は、順に、(1-1)2,5-trans-二フッ化テトラヒドロフラン、(1-2)2,5-cis-二フッ化テトラヒドロフラン、(1-3)2,4,5-三フッ化テトラヒドロフラン、(1-4)2,2,5,5-四フッ化テトラヒドロフラン、(1-5)2,3,4,5-四フッ化テトラヒドロフラン、(1-6)2,5-二フッ化-2-フッ化メチルテトラヒドロフラン、(1-7)2,5,5-三フッ化-2-フッ化メチルテトラヒドロフラン、(1-8)2,3,4,5-四フッ化-2-フッ化メチルテトラヒドロフラン、(1-9)2,5-二フッ化-2、5-ジメチルテトラヒドロフランである。 When the cyclic saturated hydrocarbon has one ether bond, the fluorine-containing cyclic ether compound may have, for example, fluorine bonded to the α-positions on both sides of the oxygen group constituting the ether bond. Examples of the fluorine-containing cyclic ether compound having tetrahydrofuran in the cyclic part include compounds represented by the following chemical formulas (1-1) to (1-9). The names of these compounds are (1-1) 2,5-trans-tetrafluorotetrahydrofuran, (1-2) 2,5-cis-tetrafluorotetrahydrofuran, (1-3) 2, 4, 5-tetrafluorotetrahydrofuran, (1-4) 2,2,5,5-tetrafluorotetrahydrofuran, (1-5) 2,3,4,5-tetrafluorotetrahydrofuran, (1-6) 2, 5-difluoro-2-fluoromethyltetrahydrofuran, (1-7) 2,5,5-trifluoro-2-fluoromethyltetrahydrofuran, (1-8) 2,3,4,5-tetrafluoro 2-methyl fluoride tetrahydrofuran, (1-9) 2,5-difluoride-2,5-dimethyltetrahydrofuran.
 テトラヒドロピランを環状部にもつフッ素含有環状エーテル化合物は、例えば、下記の化学式(2-1)~(2―3)に示す化合物があげられる。これらの化合物の名称は、順に、(2-1)2,6-二フッ化テトラヒドロピラン、(2-2)2,2,6,6-四フッ化テトラヒドロピラン、(2-3)2,3,4,5,6-五フッ化-2-フッ化メチルテトラヒドロピランである。 Examples of the fluorine-containing cyclic ether compound having tetrahydropyran in the cyclic portion include compounds represented by the following chemical formulas (2-1) to (2-3). The names of these compounds are (2-1) 2,6-difluorotetrahydropyran, (2-2) 2,2,6,6-tetrafluoropyran, (2-3) 2, 3,4,5,6-pentafluoro-2-fluoromethyltetrahydropyran.
 環状飽和炭化水素が2つのエーテル結合を有する場合には、少なくとも1つのエーテル結合を構成するそれぞれの酸素基の両側のα位にフッ素が結合していればよい。また、2つのエーテル結合を構成する2つの酸素基のそれぞれの両側のα位にフッ素が結合していてもよい。 When the cyclic saturated hydrocarbon has two ether bonds, it is sufficient that fluorine is bonded to the α-positions on both sides of each oxygen group constituting at least one ether bond. Further, fluorine may be bonded to the α-positions on both sides of each of two oxygen groups constituting two ether bonds.
 1,3-ジオキソランを環状部にもつフッ素含有環状エーテル化合物は、例えば、下記の化学式(3-1)に示す化合物があげられる。この化合物の名称は、2,4-二フッ化-1,3-ジオキソランである。 Examples of the fluorine-containing cyclic ether compound having 1,3-dioxolane in the cyclic portion include compounds represented by the following chemical formula (3-1). The name of this compound is 2,4-difluoride-1,3-dioxolane.
 1,4-ジオキサンを環状部にもつフッ素含有環状エーテル化合物は、例えば、下記の化学式(4-1)~(4―3)に示す化合物があげられる。これらの化合物の名称は、順に、(4-1)2,6-二フッ化-1,4-ジオキサン、(4-2)2,3,5,6-四フッ化-1,4-ジオキサン、(4-3)2,2,3,3,5,5,6,6-八フッ化-1,4-ジオキサンである。 Examples of the fluorine-containing cyclic ether compound having 1,4-dioxane in the cyclic part include compounds represented by the following chemical formulas (4-1) to (4-3). The names of these compounds are (4-1) 2,6-difluorinated-1,4-dioxane, (4-2) 2,3,5,6-tetrafluoro-1,4-dioxane in this order. (4-3) 2,2,3,3,5,5,6,6-octafluoro-1,4-dioxane.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 環状飽和炭化水素の環状部のエーテル結合を構成している酸素基の両側のα位には、フッ素が1つ以上結合していてもよい。たとえば、環状飽和炭化水素の環状部のエーテル結合を構成している酸素基の両側のα位には、1つのフッ素と、水素基又はフッ素以外の炭化水素基とが結合していてもよい。フッ素以外の炭化水素基としては、例えば、直鎖状飽和炭化水素基、またはフッ素が結合した直鎖状飽和炭化水素基がよい。直鎖状炭化水素基の炭素数は、1以上3以下がよい。直鎖状炭化水素基の炭素数が4を超える場合には、Li電解塩のイオン伝導が低下するおそれがある。 One or more fluorine atoms may be bonded to the α-positions on both sides of the oxygen group constituting the ether bond of the cyclic portion of the cyclic saturated hydrocarbon. For example, one fluorine and a hydrogen group or a hydrocarbon group other than fluorine may be bonded to the α positions on both sides of the oxygen group constituting the ether bond of the cyclic portion of the cyclic saturated hydrocarbon. As the hydrocarbon group other than fluorine, for example, a linear saturated hydrocarbon group or a linear saturated hydrocarbon group bonded with fluorine is preferable. The straight hydrocarbon group preferably has 1 to 3 carbon atoms. When the carbon number of the linear hydrocarbon group exceeds 4, the ionic conduction of the Li electrolytic salt may be reduced.
 HOMOは最低被占軌道と呼ばれ、電子を有する分子軌道の中でエネルギーが最も大きい軌道を示す。一方で、酸化反応は、分子から電子が失われる現象である。電子が失われるとき、エネルギーが高いHOMO、即ち最も不安定な被占軌道の電子から失われる。つまり、エネルギー準位が低いほど、電子が抜けにくくなり、酸化分解が起こりにくくなると考えられる。従って、相対的に見て、HOMOが低いものほど、耐酸化性が強くなる。 HOMO is called the lowest occupied orbital and shows the orbit with the highest energy among the molecular orbitals having electrons. On the other hand, the oxidation reaction is a phenomenon in which electrons are lost from molecules. When an electron is lost, it is lost from the high energy HOMO, the most unstable occupied orbital electron. That is, it is considered that as the energy level is lower, electrons are less likely to escape and oxidative decomposition is less likely to occur. Therefore, as viewed relatively, the lower the HOMO, the stronger the oxidation resistance.
 LUMOは最低空軌道と呼ばれ、電子がない分子軌道の中でエネルギーが最も低い軌道を示す。一方で、還元反応は分子が電子を受け取る現象である。電子を受け取る際には、空の軌道に電子が収納されるので、最もエネルギーが低いLUMOに電子が入る。つまり、LUMOのエネルギー準位が高いほど、電子は入りにくくなる。即ち、還元分解が起こりにくくなり、耐還元性が強くなる。 LUMO is called the lowest unoccupied orbit and shows the orbit with the lowest energy among molecular orbitals without electrons. On the other hand, the reduction reaction is a phenomenon in which molecules receive electrons. When receiving the electrons, the electrons are stored in the empty orbit, so the electrons enter the LUMO having the lowest energy. That is, the higher the LUMO energy level, the more difficult it is for electrons to enter. That is, reductive decomposition is less likely to occur and the reduction resistance is enhanced.
 以上の観点から、HOMO-LUMOエネルギーギャップが大きいほど、幅広い電圧範囲で分解しにくくなる。充放電での電位変化に耐え、電解液を安定に維持することができる。 From the above viewpoint, the larger the HOMO-LUMO energy gap, the more difficult it is to decompose in a wide voltage range. Withstands potential changes during charging and discharging, the electrolyte can be maintained stably.
 フッ素含有環状エーテル化合物のHOMO-LUMOエネルギーギャップは、シュレディンガー方程式を解くためのハミルトニアンとしてPM3を使用した分子軌道計算において13.5以上であることが好ましい。この場合には、広い電圧範囲でフッ素含有環状エーテル化合物が分解しにくくなる。フッ素含有環状エーテル化合物のHOMO-LUMOエネルギーギャップが13.5未満である場合には、安定な電圧範囲が狭くなり、充放電時にフッ素含有環状エーテル化合物が分解するおそれがある。 The HOMO-LUMO energy gap of the fluorine-containing cyclic ether compound is preferably 13.5 or more in molecular orbital calculation using PM3 as a Hamiltonian for solving the Schrodinger equation. In this case, the fluorine-containing cyclic ether compound becomes difficult to decompose over a wide voltage range. When the HOMO-LUMO energy gap of the fluorine-containing cyclic ether compound is less than 13.5, the stable voltage range is narrowed, and the fluorine-containing cyclic ether compound may be decomposed during charge / discharge.
 前記フッ素含有環状エーテル化合物のHOMOエネルギーは、シュレディンガー方程式を解くためのハミルトニアンとしてPM3を使用した分子軌道計算において-11.8以下であることが好ましい。HOMOは、酸化反応の起こりやすさを示すことから、充電時の正極近傍でのフッ素含有環状エーテル化合物の反応のしやすさを示す。HOMOが低いほど、充電時の正極近傍での酸化反応が起こりにくくなる。フッ素含有環状エーテル化合物のHOMOエネルギーが-11.8以下であることにより、充電時に正極近傍でのフッ素含有環状エーテル化合物から電子が失われにくくなり、分解しにくくなる。このため、溶媒の電気化学的安定性が高まる。 The HOMO energy of the fluorine-containing cyclic ether compound is preferably −11.8 or less in molecular orbital calculation using PM3 as a Hamiltonian for solving the Schrodinger equation. Since HOMO indicates the likelihood of an oxidation reaction, it indicates the ease of reaction of the fluorine-containing cyclic ether compound in the vicinity of the positive electrode during charging. The lower the HOMO, the less the oxidation reaction near the positive electrode during charging. When the HOMO energy of the fluorine-containing cyclic ether compound is −11.8 or less, electrons are less likely to be lost from the fluorine-containing cyclic ether compound in the vicinity of the positive electrode during charging, and decomposition is difficult. This increases the electrochemical stability of the solvent.
 フッ素含有環状エーテル化合物のHOMOエネルギーが-11.8を超えて大きい場合には、フッ素含有環状エーテル化合物が正極近傍で分解しやすくなる場合がある。 When the HOMO energy of the fluorine-containing cyclic ether compound is larger than −11.8, the fluorine-containing cyclic ether compound may be easily decomposed in the vicinity of the positive electrode.
 前記フッ素含有環状エーテル化合物のLUMOエネルギーは、シュレディンガー方程式を解くためのハミルトニアンとしてPM3を使用した分子軌道計算において1.2以上であることが好ましい。LUMOは、還元反応の起こりやすさを示す。LUMOが大きいほど、充電時に負極近傍でフッ素含有環状エーテル化合物が電子を受け取りにくくなり、分解しにくくなる。このため、溶媒の電気化学的安定性が高くなる。 The LUMO energy of the fluorine-containing cyclic ether compound is preferably 1.2 or more in molecular orbital calculation using PM3 as a Hamiltonian for solving the Schrodinger equation. LUMO indicates the ease of the reduction reaction. The larger the LUMO, the more difficult it is for the fluorine-containing cyclic ether compound to receive electrons in the vicinity of the negative electrode during charging, and it becomes difficult to decompose. For this reason, the electrochemical stability of the solvent is increased.
 フッ素含有環状エーテル化合物のLUMOエネルギーが1.2未満である場合には、フッ素含有環状エーテル化合物が負極近傍で分解しやすくなる場合がある。 When the LUMO energy of the fluorine-containing cyclic ether compound is less than 1.2, the fluorine-containing cyclic ether compound may be easily decomposed near the negative electrode.
 非水系溶媒は、上記フッ素含有環状エーテル化合物単独で構成されていてもよいし、ほかの成分が含まれていてもよい。非水系溶媒に含まれる、フッ素含有環状エーテル化合物以外の成分は、非プロトン性有機溶媒であることがよく、たとえば、環状カーボネート、鎖状カーボネート、エーテル類などを用いるとよい。 The non-aqueous solvent may be composed of the above-mentioned fluorine-containing cyclic ether compound alone or may contain other components. Components other than the fluorine-containing cyclic ether compound contained in the non-aqueous solvent are preferably aprotic organic solvents, and for example, cyclic carbonates, chain carbonates, ethers, and the like may be used.
 環状カーボネートは、例えば、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ブチレンカーボネート、ガンマブチロラクトン、ビニレンカーボネート、2-メチル-ガンマブチロラクトン、アセチル-ガンマブチロラクトン、及びガンマバレロラクトンの群から選ばれる1種以上を含んでいても良い。 The cyclic carbonate is, for example, one selected from the group consisting of propylene carbonate (PC), ethylene carbonate (EC), butylene carbonate, gamma butyrolactone, vinylene carbonate, 2-methyl-gamma butyrolactone, acetyl-gamma butyrolactone, and gamma valerolactone. The above may be included.
 鎖状カーボネートは、例えば、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ジブチルカーボネート、ジプロピルカーボネート、プロピオン酸アルキルエステル、マロン酸ジアルキルエステル、及び酢酸アルキルエステルから選ばれる一種以上を用いることができる。 The chain carbonate is selected from, for example, dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), dibutyl carbonate, dipropyl carbonate, propionic acid alkyl ester, malonic acid dialkyl ester, and acetic acid alkyl ester. One or more types can be used.
 エーテル類として、例えば、テトラヒドロフラン、2-メチルテトラヒドロフラン、1,4-ジオキサン、1,2-ジメトキシエタン、1,2-ジエトキシエタン、1,2-ジブトキシエタン等を用いることができる。 Examples of ethers that can be used include tetrahydrofuran, 2-methyltetrahydrofuran, 1,4-dioxane, 1,2-dimethoxyethane, 1,2-diethoxyethane, 1,2-dibutoxyethane, and the like.
 この中、非水系溶媒は、フッ素含有環状エーテル化合物とECとを併有することが好ましい。 Of these, the non-aqueous solvent preferably contains both a fluorine-containing cyclic ether compound and EC.
 前記蓄電デバイス用非水系溶媒を100体積%としたときに、前記フッ素含有環状エーテル化合物の含有量は10体積%以上90体積%以下であることが好ましく、さらには30体積%以上70体積%以下であることが好ましい。フッ素含有環状エーテル化合物が過剰である場合には、Liイオン伝導度が低下され出力が低下する場合がある。 When the nonaqueous solvent for an electricity storage device is 100% by volume, the content of the fluorine-containing cyclic ether compound is preferably 10% by volume to 90% by volume, and more preferably 30% by volume to 70% by volume. It is preferable that When the fluorine-containing cyclic ether compound is excessive, the Li ion conductivity may be lowered and the output may be lowered.
 上記の非水系溶媒は、蓄電デバイスの電解液に用いられる。電解液は、上記の非水系溶媒と、電解質とを有する。電解質は、フッ化塩であることがよく、有機溶媒に可溶なアルカリ金属フッ化塩であることが好ましい。アルカリ金属フッ化塩としては、例えば、LiPF、LiBF、LiAsF、NaPF、NaBF、及びNaAsFの群から選ばれる少なくとも1種を用いるとよい。 Said non-aqueous solvent is used for the electrolyte solution of an electrical storage device. The electrolytic solution has the above non-aqueous solvent and an electrolyte. The electrolyte is preferably a fluoride salt, and is preferably an alkali metal fluoride salt that is soluble in an organic solvent. The alkali metal fluoride salt, e.g., LiPF 6, LiBF 4, LiAsF 6, NaPF 6, NaBF 4, and may be used at least one selected from the group of NaAsF 6.
 蓄電デバイスは、上記の電解液と、正極と、負極とを備えている。蓄電デバイスは、例えば、非水系二次電池、電気二重層キャパシタなどがあげられる。非水系二次電池は、リチウムイオン二次電池、ナトリウムイオン二次電池、カルシウムイオン二次電池、マグネシウムイオン二次電池などがあげられる。 The electricity storage device includes the above-described electrolytic solution, a positive electrode, and a negative electrode. Examples of the electricity storage device include a non-aqueous secondary battery and an electric double layer capacitor. Examples of the non-aqueous secondary battery include a lithium ion secondary battery, a sodium ion secondary battery, a calcium ion secondary battery, and a magnesium ion secondary battery.
 リチウムイオン二次電池は、上記の電解液と、リチウムイオンを吸蔵・放出し得る正極活物質を有する正極と、リチウムイオンを吸蔵・放出し得る負極活物質を有する負極とを備えている。 The lithium ion secondary battery includes the above-described electrolytic solution, a positive electrode having a positive electrode active material capable of occluding and releasing lithium ions, and a negative electrode having a negative electrode active material capable of occluding and releasing lithium ions.
 正極は、集電体と、正極活物質を有し集電体の表面を被覆する正極活物質層とからなるとよい。 The positive electrode may be composed of a current collector and a positive electrode active material layer that has a positive electrode active material and covers the surface of the current collector.
 正極活物質としては、例えば、リチウム・マンガン複合酸化物、リチウム・コバルト複合酸化物、リチウム・ニッケル複合酸化物などのリチウムと遷移金属との金属複合酸化物を用いる。具体的には、正極活物質としては、LiCoO、LiNi1/3Co1/3Mn1/3、LiNi0.5Co0.2Mn0.3、LiMnO、Sなどが挙げられる。正極活物質は、また、リチウムを含まない活物質、例えば硫黄単体、硫黄変性化合物などを用いることもできる。正極、負極共にリチウムを含まない場合はリチウムをプレドープする必要がある。 As the positive electrode active material, for example, a metal composite oxide of lithium and a transition metal such as a lithium / manganese composite oxide, a lithium / cobalt composite oxide, or a lithium / nickel composite oxide is used. Specifically, as the positive electrode active material, LiCoO 2 , LiNi 1/3 Co 1/3 Mn 1/3 O 2 , LiNi 0.5 Co 0.2 Mn 0.3 O 2 , Li 2 MnO 3 , S Etc. As the positive electrode active material, an active material that does not contain lithium, for example, sulfur alone or a sulfur-modified compound can be used. When both the positive electrode and the negative electrode do not contain lithium, it is necessary to pre-dope lithium.
 正極活物質は、結着剤及び/又は導電助剤とともに正極材を構成するとよい。導電助剤および結着剤は、特に限定はなく、リチウムイオン二次電池で使用可能なものであればよい。 The positive electrode active material may constitute a positive electrode material together with a binder and / or a conductive aid. The conductive auxiliary agent and the binder are not particularly limited as long as they can be used in the lithium ion secondary battery.
 正極用の集電体は、アルミニウム、ニッケル、ステンレス鋼など、リチウムイオン二次電池の正極に一般的に使用されるものであればよく、メッシュや金属箔などの種々の形状でよい。 The current collector for the positive electrode is not particularly limited as long as it is generally used for the positive electrode of a lithium ion secondary battery, such as aluminum, nickel, and stainless steel, and may have various shapes such as a mesh or a metal foil.
 負極は、集電体と、負極活物質を有し集電体の表面を被覆する負極活物質層とからなるとよい。負極活物質は、リチウムイオンを吸蔵・放出可能であって金属リチウム、リチウムと合金化反応可能な元素からなる元素材料又は/及びリチウムと合金化反応可能な元素を有する元素化合物からなる。なお、負極活物質には、前記元素材料又は前記元素化合物を含むほか、炭素材料を含んでいても良い。 The negative electrode is preferably composed of a current collector and a negative electrode active material layer having a negative electrode active material and covering the surface of the current collector. The negative electrode active material is composed of metallic lithium, an elemental material composed of an element capable of alloying with lithium, and / or an elemental compound having an element capable of alloying with lithium. Note that the negative electrode active material may contain a carbon material in addition to the element material or the element compound.
 前記リチウムと合金化反応可能な元素からなる元素材料は、Na、K、Rb、Cs、Fr、Be、Mg、Ca、Sr、Ba、Ra、Ti、Ag、Zn、Cd、Al、Ga、In、Si、Ge、Sn、Pb、Sb、及びBiの群から選ばれる少なくとも1種からなる材料であるとよい。中でも、前記リチウムと合金化反応可能な元素からなる元素材料は、珪素(Si)または錫(Sn)からなるとよい。 Elemental materials composed of elements capable of alloying with lithium are Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Ba, Ra, Ti, Ag, Zn, Cd, Al, Ga, In , Si, Ge, Sn, Pb, Sb, and Bi may be used. Among them, the element material made of an element capable of alloying with lithium is preferably made of silicon (Si) or tin (Sn).
 前記リチウムと合金化反応可能な元素を有する元素化合物は、Na、K、Rb、Cs、Fr、Be、Mg、Ca、Sr、Ba、Ra、Ti、Ag、Zn、Cd、Al、Ga、In、Si、Ge、Sn、Pb、Sb、及びBiの群から選ばれる少なくとも1種を有する化合物であるとよい。中でも、前記リチウムと合金化反応可能な元素を有する元素化合物は、珪素化合物または錫化合物であることがよい。珪素化合物は、SiOx(0.5≦x≦1.5)であることがよい。錫化合物は、例えば、スズ合金(Cu-Sn合金、Co-Sn合金等)などが挙げられる。 Elemental compounds having elements capable of alloying with lithium are Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Ba, Ra, Ti, Ag, Zn, Cd, Al, Ga, In , Si, Ge, Sn, Pb, Sb, and Bi may be a compound having at least one selected from the group. Among these, the elemental compound having an element capable of alloying with lithium is preferably a silicon compound or a tin compound. The silicon compound is preferably SiOx (0.5 ≦ x ≦ 1.5). Examples of the tin compound include tin alloys (Cu—Sn alloy, Co—Sn alloy, etc.).
 中でも、負極活物質は、Si(珪素)を有するSi系材料を含んでいてもよい。Si系材料は、リチウムイオンを吸蔵・放出可能であって珪素又は/及び珪素化合物からなるとよく、例えば、SiOx(0.5≦x≦1.5)からなるとよい。珪素は、理論放電容量が大きい。一方で、珪素は充放電時の体積変化が大きいため、SiOxとすることで体積変化を少なくすることができる。 Among these, the negative electrode active material may include a Si-based material having Si (silicon). The Si-based material can store and release lithium ions and is preferably made of silicon or / and a silicon compound. For example, the Si-based material is preferably made of SiOx (0.5 ≦ x ≦ 1.5). Silicon has a large theoretical discharge capacity. On the other hand, since the volume change of silicon at the time of charging / discharging is large, the volume change can be reduced by using SiOx.
 上記の負極活物質は、集電体の少なくとも表面を被覆する負極活物質層を構成する。一般的に、負極は、負極活物質層で集電体を被覆することで形成される。集電体は、例えば、銅や銅合金などの金属製のメッシュや金属箔を用いるとよい。 The above-described negative electrode active material constitutes a negative electrode active material layer covering at least the surface of the current collector. Generally, a negative electrode is formed by covering a current collector with a negative electrode active material layer. As the current collector, for example, a metal mesh or metal foil such as copper or copper alloy may be used.
 負極活物質層には、前記負極活物質の他に、結着剤、導電助剤等を含んでいても良い。 The negative electrode active material layer may contain a binder, a conductive aid and the like in addition to the negative electrode active material.
 セパレータは、必要に応じて用いられる。セパレータは、正極と負極とを分離し非水電解液を保持するものであり、ポリエチレン、ポリプロピレン等の薄い微多孔膜を用いることができる。 Separator is used as necessary. The separator separates the positive electrode and the negative electrode and holds the non-aqueous electrolyte, and a thin microporous film such as polyethylene or polypropylene can be used.
 正極および負極に必要に応じてセパレータを挟装させ電極体とする。正極集電体および負極集電体から外部に通ずる正極端子および負極端子までの間を、集電用リード等を用いて接続した後に電極体に非水電解液を含浸させてリチウムイオン二次電池とするとよい。 A separator is sandwiched between the positive electrode and the negative electrode as necessary to form an electrode body. Lithium ion secondary battery in which a non-aqueous electrolyte is impregnated in the electrode body after connecting between the positive electrode current collector and the negative electrode current collector to the positive electrode terminal and the negative electrode terminal leading to the outside using a current collecting lead or the like It is good to do.
 リチウムイオン二次電池の形状は、特に限定なく、円筒型、積層型、コイン型、ラミネート型等、種々の形状を採用することができる。 The shape of the lithium ion secondary battery is not particularly limited, and various shapes such as a cylindrical shape, a laminated shape, a coin shape, and a laminated shape can be adopted.
 蓄電デバイスは、車両に搭載してもよい。蓄電デバイスは、車両以外にも、パーソナルコンピュータ,携帯通信機器など,電池で駆動される各種の家電製品,オフィス機器,産業機器に用いることもできる。 The electricity storage device may be mounted on a vehicle. In addition to the vehicle, the power storage device can also be used for various home appliances, office equipment, and industrial equipment driven by batteries, such as personal computers and portable communication devices.
 非水系溶媒に用いる各種エーテル類のHOMOエネルギー、LUMOエネルギー、及びHOMO-LUMOエネルギーギャップを調べた。各種エーテル類にフッ素を置換させた化合物の分子軌道を計算し、HOMO及びLUMOのエネルギー準位を導き出した。用いた計算プログラムは、SCIGRESS(サイグレス、富士通製)であり、ハミルトニアンとしてPM3を用いた。収束条件は、最小二乗法を用いて、数値の差異を0.01%以下とした。 The HOMO energy, LUMO energy, and HOMO-LUMO energy gap of various ethers used for the non-aqueous solvent were examined. The molecular orbitals of compounds in which fluorine was substituted for various ethers were calculated, and the energy levels of HOMO and LUMO were derived. The calculation program used was SCIGRESS (Saigres, manufactured by Fujitsu), and PM3 was used as a Hamiltonian. As the convergence condition, the least square method was used, and the numerical difference was set to 0.01% or less.
 各種エーテル類の試料1~16、C1~C36のHOMOエネルギー、LUMOエネルギー、及びHOMO-LUMOエネルギーギャップについて、以下の表1~表6に示した。 Tables 1 to 6 below show the HOMO energy, LUMO energy, and HOMO-LUMO energy gap of samples 1 to 16 and C1 to C36 of various ethers.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表1~表6に示すように、試料1~3,5~7,9、10は、(1)HOMOエネルギーが-11.8以下であり、(2)LUMOエネルギーは1.2以上であって、且つ(3)HOMO-LUMOエネルギーギャップは13.5以上であった。一方、試料4、8、11~16、C1~C36は、上記の(1)~(3)のすべての条件を満たすものではなかった。 As shown in Tables 1 to 6, Samples 1 to 3, 5 to 7, 9, and 10 have (1) HOMO energy of −11.8 or less, and (2) LUMO energy of 1.2 or more. (3) The HOMO-LUMO energy gap was 13.5 or more. On the other hand, Samples 4, 8, 11 to 16, and C1 to C36 did not satisfy all the conditions (1) to (3).
 試料1,2、C1~C4は、いずれも、テトラヒドロフランに2つのフッ素が結合した化合物である。試料1,2は、試料C1~C4に比べて、HOMO-LUMOエネルギーギャップが大きく、HOMOエネルギーが低かった。その理由は以下のように考えられる。テトラヒドロフランにおけるエーテル結合の中の酸素基の両側のα位に結合するフッ素は、電気陰性度が大きい。フッ素は、酸素に局在化する負電荷を引き寄せ、酸素の負電荷を小さくし、負電荷を非局在化させて、化合物を安定化させる。 Samples 1 and 2 and C1 to C4 are all compounds in which two fluorine atoms are bonded to tetrahydrofuran. Samples 1 and 2 had a larger HOMO-LUMO energy gap and a lower HOMO energy than samples C1 to C4. The reason is considered as follows. Fluorine bonded to the α-positions on both sides of the oxygen group in the ether bond in tetrahydrofuran has a high electronegativity. Fluorine attracts a negative charge that localizes to oxygen, reduces the negative charge of oxygen, delocalizes the negative charge, and stabilizes the compound.
 試料C1~C3は、テトラヒドロフランにおいて酸素基の片側のα位にフッ素を結合している。しかし、試料C1~C3のHOMOエネルギーが-11.8よりも高く、試料C1~C3のHOMO-LUMOエネルギーギャップも、テトラヒドロフランにおける酸素基の両側のα位にフッ素が結合している試料1,2に比べて小さかった。 Samples C1 to C3 have fluorine bonded to the α-position on one side of the oxygen group in tetrahydrofuran. However, the HOMO energy of Samples C1 to C3 is higher than −11.8, and the HOMO-LUMO energy gaps of Samples C1 to C3 are also Samples 1, 2 in which fluorine is bonded to α-positions on both sides of the oxygen group in tetrahydrofuran It was small compared to.
 試料3~5は、テトラヒドロフランの酸素基の両側のα位にフッ素があり、さらに、ほかの部位にもフッ素が結合している。試料3~5は、フッ素の数が試料1よりも多いが、HOMOエネルギー、LUMOエネルギー、HOMO―LUMOエネルギーギャップは、試料1と大差はなかった。 Samples 3 to 5 have fluorine at the α-position on both sides of the oxygen group of tetrahydrofuran, and fluorine is bonded to other sites. Samples 3 to 5 have a larger number of fluorine than sample 1, but HOMO energy, LUMO energy, and HOMO-LUMO energy gap were not significantly different from sample 1.
 試料C5~C7は、テトラヒドロフランの酸素基の片側のα位にフッ素が結合し、同じα位、またはもう一方もα位に、メチル基またはフッ化メチル基が結合した化合物である。これらの化合物は、HOMOエネルギーがー13.5よりも高かった。 Samples C5 to C7 are compounds in which fluorine is bonded to the α-position on one side of the oxygen group of tetrahydrofuran and a methyl group or a methyl fluoride group is bonded to the same α-position or the other α-position. These compounds had a HOMO energy higher than -13.5.
 試料6~10は、酸素基の両側のα位にフッ素基をもつテトラヒドロフランであって、さらに、α位にメチル基またはフッ化メチル基が結合した化合物である。試料6~10のフッ素の数は、試料1と同じか又はそれよりも多いが、HOMOエネルギー、LUMOエネルギー、HOMO-LUMOエネルギーギャップは大差がなかった。 Samples 6 to 10 are tetrahydrofurans having a fluorine group at the α-position on both sides of the oxygen group, and further a compound having a methyl group or a methyl fluoride group bonded to the α-position. The number of fluorine in Samples 6 to 10 was the same as or greater than that in Sample 1, but the HOMO energy, LUMO energy, and HOMO-LUMO energy gap were not significantly different.
 試料C8~C11、10は、1,3-ジオキソランを環状部とする化合物であり、環状部の中に2つのエーテル結合がある。試料C8~C11は、2つの酸素基の一方のα位にフッ素結合している。試料10は、一方の酸素基の両側のα位にフッ素が結合している。試料10は、上記(1)~(3)のすべてを満たしたが、試料C8~C11は、いずれも上記(1)、(3)を満たさなかった。 Samples C8 to C11 and 10 are compounds having 1,3-dioxolane as a cyclic part, and there are two ether bonds in the cyclic part. Samples C8 to C11 are fluorine-bonded at one α-position of two oxygen groups. In the sample 10, fluorine is bonded to the α positions on both sides of one oxygen group. Sample 10 satisfied all of the above (1) to (3), but none of Samples C8 to C11 satisfied the above (1) and (3).
 試料11~13、C12,C13は,テトラヒドロピランを環状部とする化合物である。試料11~13は、テトラヒドロピランの酸素基の両側のα位にフッ素が結合している化合物であり、いずれも上記(1)~(3)を満たした。一方、試料C12、C13は、酸素基の両側のβ位にフッ素が結合しているが、酸素基の両側のα位にフッ素が結合しているものではない。試料11のHOMO-LUMOエネルギーギャップは13.5以上であった。試料12,13、C12,C13のHOMO-LUMOエネルギーギャップは、試料11よりも小さかった。 Samples 11 to 13, C12, and C13 are compounds having tetrahydropyran as a cyclic portion. Samples 11 to 13 are compounds in which fluorine is bonded to the α-positions on both sides of the oxygen group of tetrahydropyran, and all satisfy the above (1) to (3). On the other hand, in Samples C12 and C13, fluorine is bonded to the β positions on both sides of the oxygen group, but fluorine is not bonded to the α positions on both sides of the oxygen group. Sample 11 had a HOMO-LUMO energy gap of 13.5 or more. Samples 12, 13, C12, and C13 had a HOMO-LUMO energy gap smaller than that of sample 11.
 試料14~16、C14~C16は、1,4-ジオキサンを環状部とする化合物であった。試料14~16、C14~C16のいずれも、HOMO-LUMOエネルギーギャップは13.5未満であった。 Samples 14 to 16 and C14 to C16 were compounds having 1,4-dioxane as a cyclic part. In all of Samples 14 to 16 and C14 to C16, the HOMO-LUMO energy gap was less than 13.5.
 試料C17~C22は、フッ素含有直鎖状エーテルであり、HOMO-LUMOエネルギーギャップは小さかった。試料C23~C25の環状部は、テトラヒドロフランであり、上記(2)、(3)の条件を満たしたが、(1)は満たさなかった。試料C26、C29は直鎖状エーテルであり、試料C27はテトラヒドロピランであり、試料C28は1,4-ジオキサンである。試料C26~C29のLUMOエネルギーは1.2以上であり高かったが、HOMOエネルギーは-11.8よりも高かった。 Samples C17 to C22 were fluorine-containing linear ether, and the HOMO-LUMO energy gap was small. The cyclic part of Samples C23 to C25 was tetrahydrofuran, which satisfied the conditions (2) and (3) above, but did not satisfy (1). Samples C26 and C29 are linear ethers, sample C27 is tetrahydropyran, and sample C28 is 1,4-dioxane. Samples C26 to C29 had a high LUMO energy of 1.2 or more, but the HOMO energy was higher than -11.8.
 試料C30~C35は、環状または直鎖状のカーボネート類である。試料C30はエチレンカーボネート、試料C31はプロピレンカーボネート、試料C32はγ-ブチロラクチン、試料C33はジメチルカーボネート、試料C34はジエチルカーボネート、試料C35は一フッ化エチレンカーボネートである。試料C30~C35のHOMOエネルギーは-11.8よりも高く、HOMO―LUMOエネルギーギャップは13.5よりも小さかった。 Samples C30 to C35 are cyclic or linear carbonates. Sample C30 is ethylene carbonate, sample C31 is propylene carbonate, sample C32 is γ-butyrolactin, sample C33 is dimethyl carbonate, sample C34 is diethyl carbonate, and sample C35 is monofluoroethylene carbonate. Samples C30 to C35 had a HOMO energy higher than -11.8 and a HOMO-LUMO energy gap smaller than 13.5.
 試料C36は、フッ素置換直鎖状エーテルである。試料C36のHOMOエネルギーは-11.8よりも低かったが、LUMOエネルギーは1.2よりも低く、HOMO-LUMOエネルギーギャップは13.5よりも小さかった。 Sample C36 is a fluorine-substituted linear ether. Sample C36 had a HOMO energy lower than -11.8, but a LUMO energy lower than 1.2 and a HOMO-LUMO energy gap smaller than 13.5.
 以上より、フッ素含有環状エーテル化合物が、エーテル結合をもつ環状飽和炭化水素と、環状飽和炭化水素におけるエーテル結合の中の酸素基の両側のα位にそれぞれ結合したフッ素基とを有するときには、フッ素含有環状エーテル化合物のHOMOエネルギーが低く、LUMOエネルギーが高く、且つHOMO-LUMOエネルギーギャップが広くなる傾向にあることがわかった。 From the above, when the fluorine-containing cyclic ether compound has a cyclic saturated hydrocarbon having an ether bond and a fluorine group bonded to each of the α-positions on both sides of the oxygen group in the ether bond in the cyclic saturated hydrocarbon, It was found that the cyclic ether compound has a low HOMO energy, a high LUMO energy, and a HOMO-LUMO energy gap.
 (実施例1)
 試料1のフッ素含有環状エーテルを用いたリチウムイオン二次電池を作製した。
(Example 1)
A lithium ion secondary battery using the fluorine-containing cyclic ether of Sample 1 was produced.
 まず、市販のSiO粉末をボールミルに入れて、Ar雰囲気下で、回転数450rpmで20時間ミリングし、その後、不活性ガス雰囲気中で、900℃の温度下で、2時間加熱処理を行った。これにより、SiO粉末が不均化されて、粒子状のSi系材料が得られた。このSi系材料について、CuKαを使用したX線回折(XRD)測定を行ったところ、単体珪素と二酸化珪素とに由来する特有のピークが確認された。このことから、Si系材料には、単体珪素と二酸化珪素が生成していることがわかった。 First, commercially available SiO powder was put in a ball mill and milled at 450 rpm for 20 hours in an Ar atmosphere, and then heat-treated at 900 ° C. for 2 hours in an inert gas atmosphere. Thereby, SiO powder was disproportionated and the particulate Si-type material was obtained. When X-ray diffraction (XRD) measurement using CuKα was performed on this Si-based material, a specific peak derived from simple silicon and silicon dioxide was confirmed. From this, it was found that simple silicon and silicon dioxide were generated in the Si-based material.
 不均化されたSi系材料と、黒鉛粉末と導電助剤と結着剤とを混合し、溶媒を加えてスラリー状の混合物を得た。導電助剤としてはアセチレンブラック(AB)を用いた。結着剤としては、ポリアミドイミド(PAI)を用いた。溶媒としては、N‐メチル‐2‐ピロリドン(NMP)を用いた。Si系材料と、黒鉛粉末と、導電助剤と、結着剤との質量比は、百分率で、Si系材料/黒鉛粉末/導電助剤/結着剤=32/50/8/10であった。 The disproportionated Si-based material, graphite powder, conductive additive and binder were mixed, and a solvent was added to obtain a slurry mixture. Acetylene black (AB) was used as the conductive assistant. Polyamideimide (PAI) was used as the binder. As a solvent, N-methyl-2-pyrrolidone (NMP) was used. The mass ratio of the Si-based material, the graphite powder, the conductive additive, and the binder was, as a percentage, Si-based material / graphite powder / conductive aid / binder = 32/50/8/10. It was.
 次に、スラリー状の混合物を、ドクターブレードを用いて集電体である銅箔の片面に成膜し、所定の圧力でプレスし、200℃、2時間加熱し、放冷した。これにより、集電体表面に負極材(負極活物質層)が固定されてなる負極が形成された。 Next, the slurry-like mixture was formed into a film on one side of a copper foil as a current collector using a doctor blade, pressed at a predetermined pressure, heated at 200 ° C. for 2 hours, and allowed to cool. Thereby, the negative electrode formed by fixing the negative electrode material (negative electrode active material layer) on the surface of the current collector was formed.
 次に、正極活物質としてのリチウム・ニッケル系複合酸化物LiNi1/3Co1/3Mn1/3と、アセチレンブラックと、バインダーとしてのポリフッ化ビニリデン(PVDF)とを混合してスラリーとなし、このスラリーを集電体としてのアルミニウム箔の片面に塗布し、プレスし、焼成した。リチウム・ニッケル系複合酸化物とアセチレンブラックとポリフッ化ビニリデンとの質量比は、リチウム・ニッケル系複合酸化物/アセチレンブラック/ポリフッ化ビニリデン=88/6/6とした。これにより、正極集電体の表面に正極材(正極活物質層)を固定してなる正極を得た。 Next, a lithium / nickel composite oxide LiNi 1/3 Co 1/3 Mn 1/3 O 2 as a positive electrode active material, acetylene black, and polyvinylidene fluoride (PVDF) as a binder are mixed to form a slurry. This slurry was applied to one side of an aluminum foil as a current collector, pressed and fired. The mass ratio of the lithium / nickel composite oxide, acetylene black and polyvinylidene fluoride was lithium / nickel composite oxide / acetylene black / polyvinylidene fluoride = 88/6/6. Thereby, the positive electrode formed by fixing the positive electrode material (positive electrode active material layer) on the surface of the positive electrode current collector was obtained.
 正極と負極との間に、セパレータとしてのポリプロピレン多孔質膜を挟み込んだ。この正極、セパレータ及び負極からなる電極体を複数積層した。2枚のアルミニウムフィルムの周囲を、一部を除いて熱溶着をすることにより封止して、袋状とした。袋状のアルミニウムフィルムの中に、積層された電極体を入れ、更に、電解液を入れた。 A polypropylene porous membrane as a separator was sandwiched between the positive electrode and the negative electrode. A plurality of electrode bodies composed of the positive electrode, the separator, and the negative electrode were stacked. The periphery of the two aluminum films was sealed by heat-welding except for a part to make a bag shape. The laminated electrode body was put in a bag-like aluminum film, and an electrolytic solution was further put.
 電解液は、電解質としてのLiPFが、有機溶媒に溶解してなる。有機溶媒は、2,5-ジフルオロテトラヒドロフラン(THF-2,5-F2、試料1)とエチレンカーボネート(EC)を、体積%でTHF-2,5-F2/EC=30/70の配合比で混合して調製した。電解液中のLiPFの濃度は、1モル/L(M)とした。 The electrolytic solution is obtained by dissolving LiPF 6 as an electrolyte in an organic solvent. The organic solvent is 2,5-difluorotetrahydrofuran (THF-2,5-F2, sample 1) and ethylene carbonate (EC) in a volume ratio of THF-2,5-F2 / EC = 30/70. Prepared by mixing. The concentration of LiPF 6 in the electrolytic solution was 1 mol / L (M).
 その後、真空引きしながら、アルミニウムフィルムの開口部分を完全に気密に封止した。このとき、正極側及び負極側の集電体の先端を、フィルムの端縁部から突出させ、外部端子に接続可能とし、リチウムイオン二次電池を得た。得られたリチウムイオン二次電池は、充電・放電させることができた。電解液は安定であった。 After that, the opening portion of the aluminum film was completely hermetically sealed while evacuating. At this time, the tips of the positive electrode side and negative electrode side current collectors were projected from the edge portions of the film to be connectable to external terminals to obtain a lithium ion secondary battery. The obtained lithium ion secondary battery could be charged and discharged. The electrolyte was stable.

Claims (10)

  1.  エーテル結合をもつ環状飽和炭化水素と、前記環状飽和炭化水素における前記エーテル結合の中の酸素基の両側のα位にそれぞれ結合したフッ素基とを有するフッ素含有環状エーテル化合物を含むことを特徴とする蓄電デバイス用非水系溶媒。 A fluorine-containing cyclic ether compound having a cyclic saturated hydrocarbon having an ether bond and a fluorine group bonded to each of α-positions on both sides of an oxygen group in the ether bond in the cyclic saturated hydrocarbon, Non-aqueous solvent for electricity storage devices.
  2.  前記環状飽和炭化水素は、五員環を有する請求項1記載の蓄電デバイス用非水系溶媒。 The non-aqueous solvent for an electricity storage device according to claim 1, wherein the cyclic saturated hydrocarbon has a five-membered ring.
  3.  前記フッ素含有環状エーテル化合物のエーテル結合を構成する酸素基の両側のβ位には、フッ素が結合していない請求項1又は2に記載の蓄電デバイス用非水系溶媒。 The non-aqueous solvent for an electricity storage device according to claim 1 or 2, wherein fluorine is not bonded to β positions on both sides of an oxygen group constituting an ether bond of the fluorine-containing cyclic ether compound.
  4.  前記フッ素含有環状エーテル化合物のHOMO-LUMOエネルギーギャップは、シュレディンガー方程式を解くためのハミルトニアンとしてPM3を使用した分子軌道計算において13.5以上である請求項1~3のいずれか1項に記載の蓄電デバイス用非水系溶媒。 The electricity storage according to any one of claims 1 to 3, wherein a HOMO-LUMO energy gap of the fluorine-containing cyclic ether compound is 13.5 or more in molecular orbital calculation using PM3 as a Hamiltonian for solving the Schrödinger equation. Non-aqueous solvent for devices.
  5.  前記フッ素含有環状エーテル化合物のHOMOエネルギーは、シュレディンガー方程式を解くためのハミルトニアンとしてPM3を使用した分子軌道計算において-11.8以下である請求項1~4のいずれか1項に記載の蓄電デバイス用非水系溶媒。 5. The electricity storage device according to claim 1, wherein the fluorine-containing cyclic ether compound has a HOMO energy of −11.8 or less in molecular orbital calculation using PM3 as a Hamiltonian for solving the Schrodinger equation. Non-aqueous solvent.
  6.  前記フッ素含有環状エーテル化合物のLUMOエネルギーは、シュレディンガー方程式を解くためのハミルトニアンとしてPM3を使用した分子軌道計算において1.2以上である請求項1~5のいずれか1項に記載の蓄電デバイス用非水系溶媒。 6. The non-electric storage device according to claim 1, wherein the LUMO energy of the fluorine-containing cyclic ether compound is 1.2 or more in molecular orbital calculation using PM3 as a Hamiltonian for solving the Schrodinger equation. Aqueous solvent.
  7.  更に、エチレンカーボネートを有する請求項1~6のいずれか1項に記載の蓄電デバイス用非水系溶媒。 The nonaqueous solvent for an electricity storage device according to any one of claims 1 to 6, further comprising ethylene carbonate.
  8.  前記蓄電デバイス用非水系溶媒を100体積%としたときに、前記フッ素含有環状エーテル化合物の含有量は30体積%以上70体積%以下である請求項1~7のいずれか1項に記載の蓄電デバイス用非水系溶媒。 The electricity storage device according to any one of claims 1 to 7, wherein the content of the fluorine-containing cyclic ether compound is 30% by volume or more and 70% by volume or less when the non-aqueous solvent for the electricity storage device is 100% by volume. Non-aqueous solvent for devices.
  9.  請求項1~8のいずれか1項に記載の蓄電デバイス用非水系溶媒と、電解質とを有する蓄電デバイス用電解液。 An electrolytic solution for an electricity storage device, comprising the nonaqueous solvent for an electricity storage device according to any one of claims 1 to 8 and an electrolyte.
  10.  請求項9に記載の蓄電デバイス用電解液と、正極と、負極とを有する蓄電デバイス。 An electricity storage device comprising the electrolytic solution for an electricity storage device according to claim 9, a positive electrode, and a negative electrode.
PCT/JP2014/002518 2013-05-16 2014-05-13 Non-aqueous solvent for electricity storage device, electrolyte for electricity storage device, and electricity storage device WO2014185055A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-103802 2013-05-16
JP2013103802A JP5742876B2 (en) 2013-05-16 2013-05-16 Non-aqueous solvent for electricity storage device, electrolyte for electricity storage device, and electricity storage device

Publications (1)

Publication Number Publication Date
WO2014185055A1 true WO2014185055A1 (en) 2014-11-20

Family

ID=51898045

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/002518 WO2014185055A1 (en) 2013-05-16 2014-05-13 Non-aqueous solvent for electricity storage device, electrolyte for electricity storage device, and electricity storage device

Country Status (2)

Country Link
JP (1) JP5742876B2 (en)
WO (1) WO2014185055A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6295975B2 (en) * 2014-03-18 2018-03-20 株式会社豊田中央研究所 Lithium ion secondary battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL87481B1 (en) * 1974-09-30 1976-06-30
FR2441276A1 (en) * 1978-11-01 1980-06-06 Villamos Ipari Kutato Intezet Fuel cell or metal air cell electrode - immersed in electrolyte having oxygen dissolution capacity
WO2012029625A1 (en) * 2010-09-02 2012-03-08 日本電気株式会社 Secondary battery
US20140057182A1 (en) * 2010-11-05 2014-02-27 Polyplus Battery Company Oxygen-carrying compounds in li/air batteries

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL87481B1 (en) * 1974-09-30 1976-06-30
FR2441276A1 (en) * 1978-11-01 1980-06-06 Villamos Ipari Kutato Intezet Fuel cell or metal air cell electrode - immersed in electrolyte having oxygen dissolution capacity
WO2012029625A1 (en) * 2010-09-02 2012-03-08 日本電気株式会社 Secondary battery
US20140057182A1 (en) * 2010-11-05 2014-02-27 Polyplus Battery Company Oxygen-carrying compounds in li/air batteries

Also Published As

Publication number Publication date
JP2014225369A (en) 2014-12-04
JP5742876B2 (en) 2015-07-01

Similar Documents

Publication Publication Date Title
WO2017047019A1 (en) Battery
JP5263416B1 (en) Secondary battery and vehicle equipped with the same
JP5846040B2 (en) Electrolytic solution and lithium ion secondary battery including the same
JP6540512B2 (en) Electrolyte solution for secondary battery and secondary battery using the same
JP2013137873A (en) Lithium ion secondary battery
JP2008243810A (en) Nonaqueous electrolyte secondary battery
JP6011607B2 (en) Non-aqueous electrolyte secondary battery
JP6135219B2 (en) Electrolytic solution and lithium ion secondary battery provided with the same
JP2010118179A (en) Lithium-ion secondary battery
JP2014022334A (en) Electrolyte for nonaqueous electricity storage device
JP2014216299A (en) Sodium ion secondary battery
JP2013191390A (en) Lithium ion secondary battery
JPH08287950A (en) Nonaqueous electrolyte and lithium secondary battery using this
JPWO2019235469A1 (en) Reduced graphene material
WO2013132824A1 (en) Lithium-ion secondary battery
JP2014220115A (en) Sodium secondary battery
JP5962467B2 (en) Lithium ion secondary battery
CN111052486B (en) Nonaqueous electrolyte secondary battery
JP4855331B2 (en) Lithium ion secondary battery
WO2015011884A1 (en) Positive electrode for non-aqueous secondary battery, and non-aqueous secondary battery
WO2013128805A1 (en) Lithium ion secondary battery
JP5742876B2 (en) Non-aqueous solvent for electricity storage device, electrolyte for electricity storage device, and electricity storage device
JP7117539B2 (en) Negative electrode active material and battery
JPH08293324A (en) Nonaqueous electrolyte and lithium secondary battery using it
JPWO2020090922A1 (en) Non-aqueous electrolyte secondary battery and non-aqueous electrolyte

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14798647

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14798647

Country of ref document: EP

Kind code of ref document: A1