WO2014184868A1 - 電子機器および生体信号測定方法 - Google Patents
電子機器および生体信号測定方法 Download PDFInfo
- Publication number
- WO2014184868A1 WO2014184868A1 PCT/JP2013/063421 JP2013063421W WO2014184868A1 WO 2014184868 A1 WO2014184868 A1 WO 2014184868A1 JP 2013063421 W JP2013063421 W JP 2013063421W WO 2014184868 A1 WO2014184868 A1 WO 2014184868A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- series signal
- time
- human body
- biosensor
- period
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/68—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
- A61B5/6801—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
- A61B5/6843—Monitoring or controlling sensor contact pressure
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0002—Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
- A61B5/0004—Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network characterised by the type of physiological signal transmitted
- A61B5/0006—ECG or EEG signals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
- A61B5/024—Detecting, measuring or recording pulse rate or heart rate
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
- A61B5/024—Detecting, measuring or recording pulse rate or heart rate
- A61B5/02438—Detecting, measuring or recording pulse rate or heart rate with portable devices, e.g. worn by the patient
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
- A61B5/024—Detecting, measuring or recording pulse rate or heart rate
- A61B5/0245—Detecting, measuring or recording pulse rate or heart rate by using sensing means generating electric signals, i.e. ECG signals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/68—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
- A61B5/6887—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient mounted on external non-worn devices, e.g. non-medical devices
- A61B5/6897—Computer input devices, e.g. mice or keyboards
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/74—Details of notification to user or communication with user or patient ; user input means
- A61B5/7475—User input or interface means, e.g. keyboard, pointing device, joystick
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B2560/00—Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
- A61B2560/04—Constructional details of apparatus
- A61B2560/0462—Apparatus with built-in sensors
- A61B2560/0468—Built-in electrodes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
- A61B5/25—Bioelectric electrodes therefor
- A61B5/279—Bioelectric electrodes therefor specially adapted for particular uses
- A61B5/28—Bioelectric electrodes therefor specially adapted for particular uses for electrocardiography [ECG]
- A61B5/282—Holders for multiple electrodes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
- A61B5/316—Modalities, i.e. specific diagnostic methods
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
- A61B5/316—Modalities, i.e. specific diagnostic methods
- A61B5/318—Heart-related electrical modalities, e.g. electrocardiography [ECG]
- A61B5/339—Displays specially adapted therefor
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/48—Other medical applications
- A61B5/4884—Other medical applications inducing physiological or psychological stress, e.g. applications for stress testing
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
Definitions
- Embodiments of the present invention relate to a technique for handling biological signals.
- JP 2008-204383 A JP 2005-95307 A JP 2013-39160 A
- An object of the present invention is to provide an electronic apparatus and a biological signal measuring method that can easily measure a value related to a biological signal.
- the electronic device includes a determination unit and a measurement unit.
- the determination means determines whether or not a human body is in contact with the biosensor and whether or not the contact state between the biosensor and the human body is stable.
- the measurement means includes a first time-series signal portion corresponding to a non-contact state period in which the human body is not in contact with the biosensor, and a contact state between the biosensor and the human body, based on an output time-series signal of the biosensor.
- the time-series signal obtained by removing the second time-series signal portion corresponding to the unstable period of time is analyzed, and a value related to the biological signal of the human body is measured.
- FIG. 1 is an exemplary perspective view showing an appearance of an electronic apparatus according to an embodiment having a palm rest region in which two electrocardiogram electrodes and a pulse wave sensor are arranged.
- FIG. 2 is an external view of an electronic apparatus according to the embodiment having a palm rest region in which two electrocardiogram electrode plates and a pulse wave sensor arranged in an opening in one of the two electrocardiogram electrode plates are arranged.
- FIG. 3 is an exemplary perspective view showing an appearance of a mouse that can communicate with the electronic apparatus according to the embodiment.
- FIG. 4 is an exemplary perspective view showing an external appearance of a remote control unit capable of communicating with the electronic apparatus according to the embodiment.
- FIG. 5 is an exemplary block diagram showing a system configuration of the electronic apparatus according to the embodiment.
- FIG. 6 is an exemplary block diagram illustrating a relationship between a measurement engine provided in the electronic apparatus according to the embodiment and components around the measurement engine.
- FIG. 7 is an exemplary diagram for explaining an operation performed by the electronic apparatus according to the embodiment to remove a signal portion in a period other than the stable state from the detection signal of the biological sensor.
- FIG. 8 is an exemplary diagram for explaining a frequency characteristic of an electrocardiogram signal portion corresponding to a non-contact state period detected by the electronic apparatus according to the embodiment.
- FIG. 9 is an exemplary diagram for explaining frequency characteristics of an electrocardiogram signal portion corresponding to a period in which the hand detected by the electronic apparatus according to the embodiment is moved.
- FIG. 7 is an exemplary diagram for explaining an operation performed by the electronic apparatus according to the embodiment to remove a signal portion in a period other than the stable state from the detection signal of the biological sensor.
- FIG. 8 is an exemplary diagram for explaining a frequency characteristic of an electrocardiogram signal portion corresponding to a non-contact state period detected by the electronic apparatus according
- FIG. 10 is an exemplary diagram for explaining the frequency characteristics of the electrocardiogram signal portion corresponding to a period in which the contact state detected by the electronic apparatus according to the embodiment is unstable.
- FIG. 11 is an exemplary diagram for explaining frequency characteristics of an electrocardiogram signal portion corresponding to a period in which a contact state detected by the electronic apparatus according to the embodiment is stable.
- FIG. 12 is an exemplary block diagram for explaining processing of a pulse wave signal executed by the electronic apparatus according to the embodiment.
- FIG. 13 is an exemplary diagram for explaining a frequency characteristic of a pulse wave signal portion corresponding to a non-contact state period detected by the electronic apparatus according to the embodiment.
- FIG. 14 is an exemplary diagram for explaining a frequency characteristic of a pulse wave signal portion corresponding to a period in which the hand detected by the electronic apparatus according to the embodiment moves.
- FIG. 15 is an exemplary diagram for explaining the frequency characteristics of the pulse wave signal portion corresponding to a period in which the contact state detected by the electronic apparatus according to the embodiment is unstable.
- FIG. 16 is an exemplary diagram for explaining a stress degree (stress index) calculation operation executed by the electronic apparatus according to the embodiment.
- FIG. 17 is an exemplary diagram for explaining measurement results regarding pulse, blood pressure, and stress presented to the user by the electronic apparatus according to the embodiment.
- FIG. 18 is an exemplary diagram for explaining a measurement result related to stress presented to the user by the electronic apparatus according to the embodiment.
- FIG. 19 is an exemplary block diagram for explaining a cooperative operation between the electronic device and the mouse according to the embodiment.
- FIG. 20 is an exemplary flowchart for explaining a procedure of measurement processing executed by the electronic apparatus according to the embodiment.
- This electronic apparatus is configured to execute processing according to an operation of an input device (for example, a keyboard, a mouse, a remote control unit, etc.) performed by a user.
- This electronic device is a general home electronic device such as a personal computer or a TV. In the following, it is assumed that the electronic device is realized as a notebook portable personal computer 10.
- FIG. 1 is a perspective view of the computer 10 viewed from the front side with the display unit opened.
- the computer 10 is configured to receive power from the battery 20.
- the computer 10 includes a computer main body 11 and a display (display unit) 12 attached to the computer main body 11.
- a display device such as a liquid crystal display device (LCD) 31 is incorporated in the display unit 12.
- a camera (Web camera) 32 is disposed at the upper end of the display unit 12.
- the display unit 12 is attached to the computer main body 11 so as to be rotatable between an open position where the upper surface of the computer main body 11 is exposed and a closed position where the upper surface of the computer main body 11 is covered with the display unit 12.
- the computer main body 11 has a thin box-shaped casing. On the top surface thereof, there are a keyboard 13, a touch pad 14, a fingerprint sensor 15, a power switch 16 for powering on / off the computer 10, and several functions.
- a button 17 and speakers 18A and 18B are arranged.
- the computer main body 11 is provided with a power connector 21.
- the power connector 21 is provided on the side surface, for example, the left side surface of the computer main body 11.
- An external power supply device is detachably connected to the power connector 21.
- An AC adapter can be used as the external power supply device.
- the AC adapter is a power supply device that converts commercial power (AC power) into DC power.
- the battery 20 is detachably attached to the rear end portion of the computer main body 11, for example.
- the battery 20 may be a battery built in the computer 10.
- the computer 10 is driven by power from an external power supply device or power from the battery 20. If an external power supply device is connected to the power connector 21 of the computer 10, the computer 10 is driven by power from the external power supply device. The power from the external power supply device is also used to charge the battery 20. During a period when the external power supply device is not connected to the power connector 21 of the computer 10, the computer 10 is driven by the power from the battery 20.
- the computer main body 11 is provided with several USB ports 22, HDMI (High-Definition Multimedia Interface) output terminals 23, and RGB ports 24.
- USB ports 22 HDMI (High-Definition Multimedia Interface) output terminals 23, and RGB ports 24.
- an infrared light receiving unit 33 for communicating with an external remote control unit is disposed on the front surface of the computer main body 11.
- the external remote control unit is used to remotely control the television (TV) function of the computer 10.
- the TV function of the computer 10 includes a function of displaying a frame group corresponding to video data included in predetermined program data broadcast by a TV broadcast signal on the LCD 31, a function of recording predetermined program data on a storage medium, It has a function of reproducing program data.
- the computer 10 includes a biological sensor for detecting a biological signal such as an electrocardiogram (ECG) and a pulse wave.
- a biological sensor for detecting a biological signal such as an electrocardiogram (ECG) and a pulse wave.
- the biometric sensor is disposed on the input device or is manually operated when operating the input device so that the biometric signal can be automatically measured while the user operates the computer 10. It arrange
- the biosensor is disposed in the palm rest area 40 on the upper surface of the computer main body 11.
- the position on the palm rest area 40 where the biometric sensor is arranged is a position where the palms of the user come into contact when the user places fingers of both hands at the pom position of the keyboard 13.
- the computer 10 includes first and second electrocardiogram (ECG) electrodes 41 and 42 and a pulse wave sensor 43 as the above-described biological sensors.
- ECG electrocardiogram
- PG plethysmogram
- the first and second electrocardiogram electrodes 41 and 42 and the pulse wave sensor 43 are arranged on the palm rest region 40 so that they are exposed.
- the first and second electrocardiogram electrodes 41 and 42 function as an electrocardiogram sensor for obtaining a user's electrocardiogram.
- the first and second electrocardiogram electrodes 41 and 42 are arranged so as to be in contact with two skins sandwiching the user's heart, that is, the left palm and the right palm, respectively.
- the left palm naturally contacts the first electrocardiogram electrode 41 and the right palm naturally contacts the second electrocardiogram electrode 42 when the user places the fingers of both hands at the pom position of the keyboard 13.
- the first and second ECG electrodes 41 and 42 are disposed on both sides of the touch pad 14.
- the first electrocardiogram electrode 41 is arranged at a position on the palm rest area 40 located on the left side of the touch pad 14, and the second electrocardiogram electrode 42 is arranged at a position on the palm rest area 40 located on the right side of the touch pad 14. Is done.
- the pulse wave sensor 43 is a sensor for detecting a pulse wave (here, a volume pulse wave).
- the pulse wave sensor 43 can be realized by a photoelectric pulse wave sensor (PPG sensor).
- the pulse wave sensor 43 includes a light emitting element (for example, a blue LED) as a light source and a photodiode (PD) as a light receiving unit.
- the pulse wave sensor 43 irradiates the skin surface with light through a window portion disposed on the palm rest region 40, and captures fluctuations in reflected light that change due to blood flow changes in the capillaries by a photodiode (PD) through the window portion. .
- the pulse wave sensor 43 (photoelectric pulse wave sensor) is one of the first electrocardiogram electrode 41 or the second electrocardiogram electrode 42 so that the measurement of the electrocardiogram and the measurement of the pulse wave can be performed simultaneously.
- the pulse wave sensor 43 is disposed on the palm rest region 40 in the vicinity of the second electrocardiogram electrode 42.
- the computer 10 analyzes at least one of the output time series signal of the electrocardiogram sensor (electrocardiogram electrodes 41 and 42) and the output time series signal of the pulse wave sensor 43, and measures a value related to the biological signal of the user (human body).
- the output time series signal of the electrocardiogram sensor is a time series signal obtained by sampling the potential difference between the electrocardiogram electrodes 41 and 42.
- the output time series signal of the pulse wave sensor 43 is a time series signal obtained by sampling the output signal of the pulse wave sensor 43.
- the above-mentioned values related to biological signals are values obtained by quantifying biological phenomena.
- the LCD 31 can display a value related to a biological signal obtained by measurement.
- the values related to the biological signal displayed on the LCD 31 are, for example, pulse, blood pressure, stress level, and the like.
- the computer 10 can measure an electrocardiogram, heart rate / pulse rate, RR interval, stress level, blood pressure, and the like.
- the electrocardiogram can be obtained by analyzing the output time series signals of the first and second electrocardiogram electrodes 41 and 42.
- the heart rate can be obtained from the electrocardiogram, and the pulse rate can be calculated by analyzing the output time series signal of the pulse wave sensor 43.
- pulse interval data indicating fluctuations in the pulse interval is obtained based on the output time series signal of the pulse wave sensor 43.
- the pulse interval data is time series data including a plurality of sample values each indicating a pulse interval. Then, by converting the pulse interval data for a predetermined period into a frequency spectrum distribution, a power spectrum in a low frequency region and a power spectrum in a high frequency region are obtained. The degree of stress can be measured based on the power spectrum in the low frequency region and the power spectrum in the high frequency region.
- a pulse wave transit time is obtained based on the peak of the electrocardiogram waveform (R wave peak) and the peak of the pulse wave.
- the pulse wave propagation time indicates a time interval from the appearance of the R wave of the electrocardiogram until the disappearance of the pulse wave.
- the pulse wave propagation time has an inversely proportional relationship with the blood pressure value. Therefore, blood pressure fluctuation can be obtained from the pulse wave propagation time (PWTT).
- an initial value may be input to the computer 10 in advance.
- the blood pressure value of the user measured with a normal blood pressure measuring device and the pulse wave propagation time at this time may be input to the computer 10 as initial values in advance.
- the blood pressure fluctuation obtained from the current pulse wave propagation time (PWTT) and this initial value can be used to obtain the user's current blood pressure value.
- standard data indicating the relationship between the blood pressure value and the pulse wave propagation time is obtained.
- the user's current blood pressure value may be obtained using this standard data and the blood pressure fluctuation obtained from the current pulse wave propagation time (PWTT).
- the computer main body 11 includes an indicator 44.
- the indicator 44 can function as a status display unit for presenting to the user that the biological signal is being measured.
- the indicator 44 may be one or more LEDs.
- the indicator 44 presents to the user a state indicating whether or not the user (human body) is in stable contact with the biosensor (electrocardiogram electrodes 41 and 42, pulse wave sensor 43). Also good.
- the first and second ECG electrodes 41 and 42 may be first and second ECG electrode plates arranged on both sides of the touch pad 14 on the palm rest area 40. .
- a thin plate-like metal plate can be used as the electrocardiogram electrode plate.
- the electrocardiogram electrode plate functioning as the second electrocardiogram electrode 42 has a hollow opening 42A.
- the pulse wave sensor (photoelectric pulse wave sensor (PPG sensor)) 43 is disposed in the opening 42A so as to be exposed through the opening 42A provided in the electrocardiogram electrode plate 42. This configuration makes it easy for the palm to contact the electrocardiogram electrode plate 42 and the pulse wave sensor (photoelectric pulse wave sensor (PPG sensor)) 43 simultaneously.
- FIG. 1 the example in which the biosensor is arranged in the palm rest area on the upper surface of the computer main body 11 has been described.
- a mouse 50 that can communicate with the computer 10. You may arrange
- FIG. 3 illustrates a mouse 50 for right effect.
- the pulse wave sensor 52 is exposed and positioned near the center of the left side surface of the mouse main body 51 so that the pulse wave sensor 52 contacts the right thumb when the user operates the mouse 50.
- the pulse wave sensor 52 may be the photoelectric pulse wave sensor (PPG sensor) described above.
- the right-hand electrocardiogram electrode 53 is exposed and disposed on a part of the upper surface of the mouse main body 51 so that the palm of the right hand contacts the electrocardiogram electrode 53 for the right hand.
- the output time series signal of the pulse wave sensor 52 and the output time series signal of the right-hand electrocardiogram electrode 53 are transmitted to the computer 10 via a cable such as a USB cable or wirelessly transmitted to the computer 10. .
- the computer 10 can acquire the output time series signal of the pulse wave sensor 52 from the mouse 50.
- the palm of the user's left hand is the first electrocardiogram electrode on the palm rest area 40.
- the palm of the right hand contacts the electrocardiogram electrode 53 of the mouse 50. Therefore, the electrocardiogram can be measured by analyzing the output time series signal obtained by sampling the potential difference between the electrocardiogram electrodes 51 and 53.
- the pulse wave sensor 52 is exposed so that the pulse wave sensor 52 is in contact with the thumb of the left hand when the user operates the mouse body. What is necessary is just to arrange
- the biosensor is arranged in the remote control unit 60 that can communicate with the computer 10 as shown in FIG. May be.
- the remote control unit 60 is used to remotely control the TV functions (TV function on / off, channel switching, etc.) of the computer 10.
- buttons for remotely controlling the computer 10 are arranged on the upper surface of the remote control unit main body 61. .
- the pulse wave sensor (photoelectric pulse wave sensor (PPG sensor)) 62 is arranged on the left side surface of the remote control unit main body 61 in an exposed state, for example, in the vicinity of the central portion of the left side surface. Further, the first and second electrocardiogram electrodes 63 and 64 are arranged at the upper end and the lower end on the upper surface of the remote control unit main body 61, respectively.
- the pulse wave sensor 62 may be disposed on one of the upper end portion or the lower end portion on the upper surface of the remote control unit main body 61 so as to be close to one of the first electrocardiogram electrode 63 or the second electrocardiogram electrode 64.
- one of the first electrocardiogram electrode 63 and the second electrocardiogram electrode 64 is realized by a metal plate having an opening as described in FIG. 2, and this opening is so formed that the pulse wave sensor 62 is exposed through the opening.
- a pulse wave sensor 63 may be arranged in the unit.
- the electrocardiogram measurement and the pulse wave measurement can be performed simultaneously.
- the output time series signal of the pulse wave sensor 62 and the output time series signal corresponding to the potential difference between the two electrocardiogram electrodes 63 and 64 are different from the infrared communication method, for example, wireless LAN, BT (Bluetooth (registered trademark)). It may be transmitted from the remote control unit 60 to the computer 10 by a simple wireless communication method.
- the infrared communication method for example, wireless LAN, BT (Bluetooth (registered trademark)
- FIG. 5 shows the system configuration of the computer 10.
- the computer 10 includes a CPU 111, a system controller 112, a main memory 113, a graphics processing unit (GPU) 114, a sound codec 115, a BIOS-ROM 116, a hard disk drive (HDD) 117, an optical disk drive (ODD) 118, and BT (Bluetooth).
- CPU central processing unit
- main memory main memory
- GPU graphics processing unit
- BIOS-ROM BIOS-ROM
- HDD hard disk drive
- ODD optical disk drive
- BT Bluetooth
- module 120 wireless LAN module 121, SD card controller 122, PCI EXPRESS card controller 123, TV tuner 124, measurement engine 125, embedded controller / keyboard controller IC (EC / KBC) 130, keyboard backlight 13A, panel open / close Provided with switch 131, acceleration sensor 132, power supply controller (PSC) 141, power supply circuit 142, etc.
- a solid state drive (SSD) may be provided in place of the HDD 117 in order to prevent the biosensor from being affected by electromagnetic or vibration generated from the HDD 117.
- the CPU 111 is a processor that controls the operation of each component of the computer 10.
- the CPU 111 executes various software loaded from the HDD 117 (or SSD) to the main memory 113.
- This software includes an operating system (OS) 201 and various application programs.
- the application program includes a measurement program 202.
- the measurement program 202 can execute processing for measuring a user's biological signal in cooperation with the measurement engine 125.
- the measurement engine 125 is configured to analyze the output time series signal of the biological sensor and measure a value related to the biological signal.
- the measurement engine 125 may include one or more processors and a memory that stores a program executed by the one or more processors. Alternatively, the measurement engine 125 may be realized by dedicated hardware.
- the CPU 111 also executes a basic input / output system (BIOS) stored in the BIOS-ROM 116 which is a nonvolatile memory.
- BIOS is a system program for hardware control.
- the GPU 114 is a display controller that controls the LCD 31 used as a display monitor of the computer 10.
- the GPU 114 generates a display signal (LVDS signal) to be supplied to the LCD 31 from display data stored in the video memory (VRAM) 114A. Further, the GPU 114 can generate an analog RGB signal and an HDMI video signal from the display data. The analog RGB signal is supplied to the external display via the RGB port 24.
- the HDMI output terminal 23 can send an HDMI video signal (uncompressed digital video signal) and a digital audio signal to an external display using a single cable.
- the HDMI control circuit 119 is an interface for sending an HDMI video signal and a digital audio signal to an external display via the HDMI output terminal 23.
- the system controller 112 is a bridge device that connects the CPU 111 and each component.
- the system controller 112 includes a serial ATA controller for controlling a hard disk drive (HDD) 117 and an optical disk drive (ODD) 118. Further, the system controller 112 executes communication with each device on an LPC (Low PIN PIN Count) bus.
- LPC Low PIN PIN Count
- the TV tuner 124 is configured to receive and select a TV broadcast signal.
- the EC / KBC 130 is connected to the LPC bus.
- the EC / KBC 130, the power supply controller (PSC) 141, and the battery 20 are interconnected via a serial bus such as an I 2 C bus.
- the EC / KBC 130 is a power management controller for executing power management of the computer 10, and is realized, for example, as a one-chip microcomputer incorporating a keyboard controller for controlling the keyboard (KB) 13 and the touch pad 14. Yes.
- the EC / KBC 130 has a function of powering on and off the computer 10 in accordance with the operation of the power switch 16 by the user.
- the power-on and power-off control of the computer 10 is executed by the cooperative operation of the EC / KBC 130 and the power supply controller (PSC) 141.
- the power supply controller (PSC) 141 controls the power supply circuit 142 to power on the computer 10.
- the power supply controller (PSC) 141 When receiving the OFF signal transmitted from the EC / KBC 130, the power supply controller (PSC) 141 controls the power supply circuit 142 to power off the computer 10.
- the EC / KBC 130, the power supply controller (PSC) 141, and the power supply circuit 142 operate with the power from the battery 20 or the AC adapter 150 even while the computer 10 is powered off.
- the EC / KBC 130 can turn on / off the keyboard backlight 13A disposed on the back surface of the keyboard 13. Further, the EC / KBC 130 is connected to a panel opening / closing switch 131 configured to detect opening / closing of the display unit 12. Even when the panel opening / closing switch 131 detects that the display unit 12 is open, the EC / KBC 130 can power on the computer 10.
- the power supply circuit 142 generates power (operating power supply) to be supplied to each component using power from the battery 20 or power from the AC adapter 150 connected to the computer main body 11 as an external power supply.
- FIG. 6 shows a relationship between the measurement engine 125 provided in the computer 10 and components around the measurement engine 125.
- the measurement engine 125 includes an analog front end (AFE) 301, a feature amount extraction unit 302, a control unit 303, and an analysis unit 304.
- the analog front end 301 generates an output time series signal corresponding to the detection signal of the electrocardiogram sensor by sampling the potential difference of the electrocardiogram sensor (electrocardiogram electrodes 41 and 42).
- the analog front end 301 generates an output time series signal corresponding to the detection signal of the photoelectric pulse wave sensor 43 by sampling the output signal of the photoelectric pulse wave sensor 43.
- the analog front end 301 includes an analog / digital converter (ADC) 311, an amplifier (AMP) 312, an auto gain controller (AGC) 313, and the like.
- ADC analog / digital converter
- AMP amplifier
- AGC auto gain controller
- the feature quantity extraction unit 302 is at least one of an output time series signal of an electrocardiogram sensor (electrocardiogram electrodes 41 and 42) obtained by the analog front end 301 or an output time series signal of the photoelectric pulse wave sensor 43 obtained by the analog front end 301. And functions as a measurement unit configured to measure a value related to a biological signal of the human body.
- the feature quantity extraction unit 302 includes an electrocardiogram measurement unit 321, a heart rate / pulse rate measurement unit 322, an RR interval measurement unit 323, a stress level determination unit 324, and a blood pressure measurement unit 325.
- the electrocardiogram measurement unit 321 measures the electrocardiogram by analyzing the output time series signal of the electrocardiogram sensor.
- the heart rate / pulse rate measurement unit 322 performs a process of measuring a heart rate based on an electrocardiogram obtained by the electrocardiogram measurement unit 321 or a process of measuring a pulse rate by analyzing an output time series signal of the photoelectric pulse wave sensor 43.
- the RR interval measurement unit 323 measures an RR interval (RRI), which is an interval between two R waves corresponding to two consecutive heartbeats, based on the electrocardiogram obtained by the electrocardiogram measurement unit 321.
- RRI RR interval
- the stress level measurement unit 324 analyzes the output time series signal of the photoelectric pulse wave sensor 43 and generates the above-described pulse interval data indicating the fluctuation of the pulse interval. Then, the stress level measuring unit 324 is based on the power spectrum (LF) in the low frequency region and the power spectrum (HF) in the high frequency region obtained by converting the pulse interval data for a predetermined period into the frequency spectrum distribution, respectively. , Measure the degree of stress. In this case, LF / HF represents the degree of stress.
- the blood pressure measurement unit 325 measures the pulse wave propagation time (PWTT) based on the electrocardiogram and the pulse wave, and based on the PWTT and the initial value, or based on the upper PWTT and the standard data described above. And measure blood pressure.
- PWTT pulse wave propagation time
- the control unit 303 controls the operation of the measurement engine 125.
- the control unit 303 includes a determination unit 331 so that the biological signal can be automatically measured while the user operates the keyboard 13 or the like of the computer 10.
- the determination unit 331 determines whether or not a user (human body) is in contact with the biosensor during detection of a biosignal by the biosensor (electrocardiogram electrodes 41 and 42, the photoelectric pulse wave sensor 43), and the biosensor and the user (human body). ) To determine whether the contact state is stable.
- Each measurement unit in the feature amount extraction unit 302 includes a time-series signal portion corresponding to a non-contact state period in which the user (human body) is not in contact with the biosensor from an output time-series signal obtained using the biosensor. Analyzing the time-series signal obtained by removing the time-series signal portion corresponding to the period of the unstable state where the contact state between the biological sensor and the user (human body) is not stable, and measuring the value related to the biological signal .
- the time series signal portion corresponding to the non-contact state period in which the user's hand is not in contact with the biosensor and the time series signal portion corresponding to the non-stable state period in which the contact state is not stable are measured. Can be automatically excluded from Therefore, even if the user's hand is not stationary, the user's biological signal can be automatically measured while the user operates the keyboard 13 or the like of the computer 10.
- each measurement unit analyzes a time-series signal for a specific period obtained by connecting time-series signal portions corresponding to respective periods in a stable state, and measures a biological signal. Can do.
- pulse wave data output time series signal related to pulse wave
- the stress level measurement unit 324 obtains approximately 20 seconds obtained by connecting time series signal portions corresponding to periods of a stable state in which the contact state between the photoelectric pulse wave sensor 43 and the user is stable.
- the stress level is measured by analyzing the time-series signals for the period. Therefore, even if the user is in contact with the photoelectric pulse wave sensor 43 and is not stationary for 20 seconds continuously, the stress level is measured if the total time of the stable period reaches about 20 seconds. Can do.
- the measurement by each measurement unit in the feature amount extraction unit 302 may be repeatedly executed periodically.
- a large number of measurement results obtained by repeating the measurement periodically are accumulated in the local database 402 in the computer 10 by the analysis unit 304.
- the analysis unit 304 may calculate, for example, a weekly / monthly average value, a weekly / monthly moving average value, or the like by statistically processing a large number of measurement values accumulated in the local database 402. .
- the analysis unit 304 may calculate a change (annual change) in an average value in units of years.
- the presentation unit 401 presents a value related to a biological signal obtained by measurement, for example, a pulse, a blood pressure, a stress level, and the like to the user.
- a value related to a biological signal obtained by measurement for example, a pulse, a blood pressure, a stress level, and the like.
- a week / month average value, a weekly / monthly moving average value of the pulse, blood pressure, and stress level may be presented to the user.
- a guidance for notifying the user to sense a biological signal is displayed and measurement of the biological signal is started. May be.
- a screen for prompting the user to place both hands on the palm rest area 40 may be displayed, a screen prompting the user to hold the mouse 50 may be displayed, or remote control may be displayed.
- a screen for guiding the user how to hold the unit 60 may be displayed.
- the measurement values stored in the local database 402 may be transmitted to the server 500 by the communication unit 403.
- the measurement engine 125 can receive a time-series signal from the biological sensor of the mouse 50 or the biological sensor of the remote control unit 60.
- FIG. 7 is a diagram for explaining an operation of removing a time-series signal portion in a period other than the stable state from the detection signal (output time-series signal) of the biological sensor.
- the stable state is a state in which the biosensor and the human body are in stable contact.
- the periods T5, T6, T10, and T11 are determined to be in a non-contact state or an unstable state.
- the time series signal portion corresponding to the periods T5 and T6 and the time series signal portion corresponding to the periods T10 and T11 are removed from the signals (output time series signals) in the periods T1 to T12.
- the time series signal part of the periods T1 to T4 the time series signal part of the periods T7 to T9, and the time series signal part of the periods T11 and T12 are analyzed for the measurement of the biological signal.
- the above-described determination unit 331 performs contact determination and stability determination for each of the output time series signal of the electrocardiogram sensor and the output time series signal of the photoelectric pulse wave sensor 43.
- the contact determination is an operation for determining whether or not a user (human body) is in contact with the biosensor.
- the stability determination is an operation for determining whether or not the contact state between the biological sensor and the user (human body) is stable. In the stability determination, the state in which the human body is moving on the biosensor is determined to be an unstable state in which the contact state between the biosensor and the user (human body) is not stable. Thereby, the time series signal of the period corresponding to the state where the user's hand etc. are moving on the sensor can be excluded from the analysis target.
- the determination unit 331 analyzes the frequency characteristics of the time series signal of the electrocardiogram sensor, determines whether or not a human body (skin) is in contact with the electrocardiogram sensor (electrocardiogram electrodes 41 and 42), and the electrocardiogram sensor. It is possible to determine (stability determination) whether or not the contact state between the electrocardiogram electrodes 41 and 42 and the human body (skin) is stable.
- the determination unit 331 can perform contact determination and stability determination regarding the electrocardiogram sensor as follows.
- the sampling frequency of the output time series signal of the electrocardiogram sensor is 1000 Hz.
- the determination unit 331 uses a time-series signal portion of the electrocardiogram sensor that does not include the frequency component of the first frequency band (frequency component of 3 to 45 Hz) as a non-contact with the electrocardiogram sensor (electrocardiogram electrodes 41 and 42). It is determined that the time-series signal portion corresponds to the contact state period.
- the determination of whether or not they are in contact can also be made by measuring the impedance of the electrocardiogram electrodes 41 and 42 using hardware. It is also possible to determine whether or not a contact is made using a proximity sensor.
- the determination unit 331 includes at least a time-series signal portion having a whitened spectrum distribution as a signal portion corresponding to a period of an unstable state in which the contact state between the electrocardiogram sensor (electrocardiogram electrodes 41 and 42) and the user is not stable. It is determined that A time-series signal portion having a whitened spectral distribution (power spreads over the entire frequency) is frequently observed when the hands on the electrocardiogram electrodes 41 and 42 are moved. Therefore, it is preferable to exclude the time-series signal portion having a whitened spectral distribution from the measurement target. Whether or not the spectrum distribution is whitened can be determined based on the spectrum shape.
- the determination unit 331 uses not only a time series signal portion having a whitened spectrum distribution but also a time series signal portion in which power in a predetermined frequency band (3 to 12 Hz) is lower than a predetermined value as an electrocardiogram sensor (electrocardiogram electrode). 41, 42) can be determined to be a signal portion corresponding to a period of an unstable state where the contact state between the user and the user is not stable.
- both the contact determination and the stability determination are performed, thereby the time-series signal portion having the frequency feature corresponding to the non-contact state and the time-series signal having the frequency feature corresponding to the non-stable state.
- the part is identified.
- each of the identified time series signal portions is excluded from the measurement (analysis) object. Therefore, both the signal portion corresponding to the period of the non-contact state and the signal portion corresponding to the period of the non-stable state where the contact state is not stable (the hand moves on the electrocardiogram electrodes 41, 42 or the contact is unstable). Can be efficiently removed.
- the determination part 331 can perform the contact determination and stability determination regarding the pulse wave sensor 43 as follows.
- the sampling frequency of the output time series signal of the pulse wave sensor 43 is 125 Hz.
- the determination unit 331 uses a time-series signal portion of the pulse wave sensor 43 that does not include the frequency component of the first frequency band (frequency component of 5 to 50 Hz) in a non-contact state where the user does not contact the pulse wave sensor 43. It is determined that the time-series signal portion corresponds to the period. In addition, it can also be determined whether it is contacting using a proximity sensor.
- the determination unit 331 contacts the pulse wave sensor 43 and the user with a time-series signal portion having a whitened spectrum distribution and a time-series signal portion having a power of a predetermined frequency band (2 to 8 Hz) lower than a predetermined value. It can be determined that the signal portion corresponds to a non-stable state period in which the state is not stable.
- a time-series signal portion having a whitened spectral distribution (power spreads over the entire frequency) is frequently observed when the hand on the pulse wave sensor 43 moves. Therefore, it is preferable to exclude the time-series signal portion having a whitened spectral distribution from the measurement target. Whether or not the spectrum distribution is whitened can be determined based on the spectrum shape.
- both the contact determination and the stability determination are performed also on the pulse wave sensor 43, thereby corresponding to the time-series signal portion having the frequency characteristic corresponding to the non-contact state and the non-stable state. And a time-series signal portion having a frequency characteristic to be identified. Then, each of the identified time series signal portions is excluded from the measurement (analysis) object. Therefore, both the signal part corresponding to the period of the non-contact state and the signal part corresponding to the period of the non-stable state (the hand moves on the pulse wave sensor 43 or the contact is unstable) where the contact state is not stable. It can be removed efficiently.
- a graph 101 depicts an output time series signal (electrocardiogram signal) of the electrocardiogram sensor for about 60 seconds.
- the horizontal axis of the graph 101 represents time (hms: hour / min / sec), and the vertical axis of the graph 101 represents amplitude (smpl: sample).
- a graph 102 depicts the frequency characteristics of the output time series signal of the electrocardiogram sensor for 60 seconds.
- the horizontal axis of the graph 102 represents time (hms: hour / min / sec), and the vertical axis of the graph 102 represents frequency.
- FIG. 8 is a diagram for explaining the frequency characteristics of the electrocardiogram signal portion corresponding to the non-contact state period.
- the determination unit 331 has a time-series signal portion having no frequency component of 3 to 45 Hz (that is, in FIG. 8, a time-series signal portion corresponding to the period T1, a time-series signal portion corresponding to the period T2, and a period T3 Is determined to be an electrocardiogram signal portion corresponding to a non-contact state period.
- the time-series signal portions of the periods T1, T2, and T3 can be excluded from the electrocardiogram signal to be measured.
- FIG. 9 is a diagram for explaining the frequency characteristics of the electrocardiogram signal portion corresponding to the period in which the hand moves on the electrocardiogram sensor (electrocardiogram electrodes 41 and 42).
- the determination unit 331 has a time-series signal portion having a whitened spectrum distribution (that is, in FIG. 9, the time-series signal portion corresponding to the period T4, the time-series signal portion corresponding to the period T5, and the period T5
- the corresponding time-series signal portion and the time-series signal portion corresponding to the period T7 are electrocardiogram signal portions corresponding to the period of the unstable state. Thereby, the time-series signal portions of the periods T4, T5, T6, and T7 can be excluded from the electrocardiogram signal to be measured.
- FIG. 10 is a diagram for explaining frequency characteristics of an electrocardiogram signal portion corresponding to a period in which contact is not good (unstable).
- the determination unit 331 sets the time-series signal portion whose power in the frequency band of 3 to 12 Hz is lower than a predetermined value (that is, the time-series signal portion corresponding to the period T8 in FIG. 10) to the period of the unstable state. It is determined that the corresponding ECG signal portion. Thereby, the time-series signal portion of the period T8 can be excluded from the electrocardiogram signal to be measured.
- FIG. 11 is a diagram for explaining the frequency characteristics of the electrocardiogram signal portion corresponding to the period during which the contact state is stable. In the period in which the contact state is stable, a strong harmonic structure is observed in the range of 1 to 30 Hz.
- the time-series signal portion corresponding to the period T9 and the time-series signal portion corresponding to the period T10 are electrocardiogram signal portions corresponding to the period in which the contact state is stable.
- a graph 100 in FIG. 11 shows a frequency distribution of an electrocardiogram signal portion corresponding to a period in which the contact state is stable. It can be understood from this graph 100 that the electrocardiogram signal portion during the period when the contact state is stable has a strong harmonic structure in the range of 1 to 30 Hz.
- the determination unit 331 does not specify the electrocardiogram signal part corresponding to the non-stable state period in order to exclude the electrocardiogram signal part corresponding to the non-stable state period from the measurement target, and thus strong harmonics in the range of 1 to 30 Hz.
- a time-series signal portion having a structure can be specified as a time-series signal portion to be measured.
- FIG. 12 is a diagram for explaining processing of an output time-series signal (pulse wave signal) of the pulse wave sensor 43.
- the measurement engine 125 removes a direct current component (noise) from the pulse wave signal using a high-pass filter or the like (step S11).
- the measurement engine 125 determines whether or not a human body is in contact with the pulse wave sensor 43 (step S12).
- the measurement engine 125 may determine that the time-series signal portion that does not include the frequency component of 5 to 50 Hz is the time-series signal portion corresponding to the non-contact state period.
- the measurement engine 125 determines whether the human body is in stable contact with the pulse wave sensor 43, that is, whether the contact state between the pulse wave sensor 43 and the human body is stable (step S13).
- step S13 the measurement engine 125 determines that the time series signal portion having a whitened spectral distribution and the time series signal portion whose power at 2 to 8 Hz is lower than a predetermined value are in an unstable state where the contact state is not stable. It can be determined that this is the time-series signal portion of the period.
- the measurement engine 125 calculates a pulse wave interval (step S14).
- step S14 the measurement engine 125 discards the time series signal portion corresponding to the non-contact state period and the time series signal portion corresponding to the non-stable state period, and the time series signal corresponding to the non-contact state period.
- the time-series signal part corresponding to the period of the part and the unstable contact state is not used for calculating the pulse wave interval.
- the measurement engine 125 calculates the pulse wave interval by analyzing only the time-series signal portion corresponding to each of the stable state periods in which the contact state is stable in real time. Thereby, a plurality of pulse wave interval data each indicating a pulse wave interval is sequentially generated.
- the measurement engine 125 calculates a pulse based on the generated pulse wave interval data (step S15). Furthermore, the measurement engine 125 stores the generated pulse wave interval data in a buffer (step S16). The measurement engine 125 performs frequency analysis of a plurality of pulse wave interval data corresponding to a period of about 20 seconds using fast Fourier transform (FFT) or discrete Fourier transform (DFT) (step S17). In step S17, every time one new pulse wave interval data is acquired, the oldest one pulse wave interval data is discarded. As a result, the frequency analysis is executed in units of pulse wave interval data corresponding to a period of about 20 seconds. The above LF and HF are calculated by frequency analysis. The measurement engine 125 calculates LF / HF as the stress level (stress index) of the user (step S18).
- FFT fast Fourier transform
- DFT discrete Fourier transform
- a graph 103 depicts an output time series signal (pulse wave signal) of the pulse wave sensor 43 for about 60 seconds.
- the horizontal axis of the graph 103 represents time (hms: hour / min / sec), and the vertical axis of the graph 103 represents amplitude (smpl: sample).
- a graph 104 depicts the frequency characteristics of the output time series signal (pulse wave signal) of the pulse wave sensor 43 for 60 seconds.
- the horizontal axis of the graph 104 represents time (hms: hour / min / sec), and the vertical axis of the graph 104 represents frequency.
- FIG. 13 is a diagram for explaining the frequency characteristics of the pulse wave signal portion corresponding to the non-contact state period.
- the determination unit 331 determines that the time-series signal part having no frequency component of 5 to 50 Hz (that is, the time-series signal part corresponding to the period T12 and the time-series signal part corresponding to the period T13 in FIG. 13) It is determined that the pulse wave signal portion corresponds to the period of the contact state. Thereby, the time-series signal part of the periods T12 and T13 can be excluded from the pulse wave signal to be measured.
- FIG. 14 is a diagram for explaining the frequency characteristics of the pulse wave signal portion corresponding to the period during which the hand on the pulse wave sensor 43 moves.
- the determination unit 331 has a time-series signal portion having a whitened spectrum distribution (that is, in FIG. 14, the time-series signal portion corresponding to the period T14, the time-series signal portion corresponding to the period T15, and the period T16 The corresponding time-series signal part) is determined to be the pulse wave signal part corresponding to the period of the unstable state.
- the time-series signal part of the periods T14, T15, and T16 can be excluded from the pulse wave signal to be measured.
- FIG. 15 is a diagram for explaining the frequency characteristics of the pulse wave signal portion corresponding to a period when contact is not good (unstable).
- the determination unit 331 has a time series signal portion whose power in the frequency band of 2 to 8 Hz is lower than a predetermined value (that is, a time series signal portion corresponding to the period T17 and a time series corresponding to the period T18 in FIG. 15).
- Signal portion is determined to be a pulse wave signal portion corresponding to a period of an unstable state. Thereby, the time-series signal part of the periods T17 and T18 can be excluded from the pulse wave signal to be measured.
- FIG. 16 is a diagram for explaining an operation for calculating a stress level (stress index).
- the feature amount extraction unit 302 corresponds to the time series signal portion corresponding to the non-contact state period and the time period corresponding to the non-stable state from the output time series signal of the pulse wave sensor 43. A series signal portion is removed to obtain a time series signal (pulse wave signal) to be used for analyzing the pulse interval.
- the feature quantity extraction unit 302 has a time-series signal portion (that is, a time-series signal portion in the output time-series signal excluding a time-series signal portion corresponding to the non-contact state period and a time-series signal portion corresponding to the non-stable state period (that is, The time series signal portions corresponding to the periods of the stable state are connected to obtain a time series signal (pulse wave signal) to be used for the analysis of the pulse interval.
- a time-series signal portion that is, a time-series signal portion in the output time-series signal excluding a time-series signal portion corresponding to the non-contact state period and a time-series signal portion corresponding to the non-stable state period (that is, The time series signal portions corresponding to the periods of the stable state are connected to obtain a time series signal (pulse wave signal) to be used for the analysis of the pulse interval.
- the feature amount extraction unit 302 detects the peak position of each pulsation from the obtained pulse wave signal, and for each detected peak position, the time distance (pulse pulse) between the immediately preceding peak position and the detected peak position.
- the pulse interval indicating (interval) is calculated.
- time-series pulse interval data indicating fluctuations in the pulse interval is obtained.
- the feature amount extraction unit 302 interpolates time series pulse interval data to convert time series pulse interval data into equal time interval data (resampling).
- the “ ⁇ ” mark in the upper right graph in FIG. 16 indicates the original pulse interval data, and the “circle” mark in the upper right graph in FIG. 16 indicates the pulse interval data obtained by interpolation.
- the feature amount extraction unit 302 performs frequency analysis on the equal time interval data, and calculates a power spectrum (LF) in a low frequency region and a power spectrum (HF) in a high frequency region.
- the power spectrum (LF) in the low frequency region is a value reflecting sympathetic nerve activity
- the power spectrum (HF) in the high frequency region is a value reflecting parasympathetic nerve activity.
- the feature amount extraction unit 302 calculates the sympathetic nerve activity level (LF / HF).
- FIG. 17 shows an example of measurement results presented to the user by the presentation unit 401.
- the presentation unit 401 can display the pulse, blood pressure, stress level, and the like obtained by measurement on the screen of the LCD 31.
- FIG. 18 shows another example of the measurement result presented to the user by the presentation unit 401.
- the analysis unit 304 uses the statistical information (a plurality of stress level measurement results) stored in the local database 402 to calculate a moving average of the user's stress level.
- the presentation unit 401 displays on the screen of the LCD 31 a graph that represents the fluctuation of the user's stress level in units of days or weeks.
- the graph shown in the upper part of FIG. 18 is a line graph representing the fluctuation of the stress level in units of days.
- a message such as “It seems that stress is higher than usual” may be displayed at a position on the line graph corresponding to a day with a high degree of stress.
- the graph shown in the lower part of FIG. 18 is a line graph representing the fluctuation of the stress level in units of weeks.
- FIG. 19 shows a cooperative operation between the computer 10 and the mouse 50.
- the mouse 50 includes an analog front end 501, a feature amount extraction unit 502, a control unit 503, a memory 504, a transmission unit 505, and the like in addition to the photoelectric pulse wave sensor 52 and the electrocardiogram electrode 53 described above.
- the analog front end 501 generates an output time series signal corresponding to the detection signal of the photoelectric pulse wave sensor 52 by sampling the output signal of the photoelectric pulse wave sensor 52.
- the analog front end 501 also generates an output time series signal corresponding to the electrocardiogram electrode 53 by sampling the potential of the electrocardiogram electrode 53.
- the analog front end 301 includes an analog / digital converter (ADC) 511, an amplifier (AMP) 512, an auto gain controller (AGC) 513, and the like.
- the feature amount extraction unit 502 functions as a measurement unit configured to analyze a time series signal output from the photoelectric pulse wave sensor 52 obtained by the analog front end 501 and measure a value related to a biological signal of a human body.
- the feature quantity extraction unit 502 includes a pulse rate measurement unit 521, an RR interval measurement unit 522, and a stress level determination unit 523.
- the pulse rate measuring unit 521 analyzes the output time series signal of the photoelectric pulse wave sensor 52 and measures the pulse rate.
- the RR interval measurement unit 522 analyzes the output time series signal of the photoelectric pulse wave sensor 52 and measures the RR interval (or pulse wave interval). Similar to the above-described stress level measurement unit 324 in the computer 10, the stress level measurement unit 523 analyzes the output time series signal of the photoelectric pulse wave sensor 52 and measures the stress level.
- the determination unit 503 in the control unit 503 performs contact determination and stability determination on the output time series signal of the photoelectric pulse wave sensor 52 in the same procedure as the above-described determination unit 331 in the computer 10.
- Each of the pulse rate measuring unit 521, the RR interval measuring unit 522, and the stress level determining unit 523 is a time series corresponding to each period of a stable state in which the contact state between the photoelectric pulse wave sensor 52 and the human body is stable. Analyze a time-series signal obtained by connecting signal parts.
- the mouse 50 may be provided with an indicator such as an LED.
- the control unit 503 can notify the user that the biological signal is being measured by blinking an indicator or the like.
- the measurement result obtained by the feature quantity extraction unit 502 and the output time series signal corresponding to the electrocardiogram electrode 53 are stored in the memory 504.
- the transmission unit 505 extracts these measurement results and the output time series signal of the electrocardiogram electrode 53 from the memory 504, and transmits the measurement results and the output time series signal to the computer 10 via the PS / S, USB, BT module, or the like. .
- These measurement results and the output time series signal of the electrocardiogram electrode 53 may be stored in the above-mentioned local database 402 in the computer 10.
- the computer 10 measures the electrocardiogram using the output time series signal obtained by sampling the potential of the electrocardiogram electrode 41 and the output time series signal of the electrocardiogram electrode 53 received from the mouse 50 by the receiving unit 404. I can do it.
- the receiving unit 404 can also receive a pulse wave output time-series signal from the mouse 50.
- the computer 10 can also measure the blood pressure using the electrocardiogram and the output time series signal of the pulse wave received from the mouse 50.
- FIG. 19 illustrates a case where the analysis unit 304 in the computer 10 includes a blood pressure measurement unit 325 configured to measure blood pressure.
- the flowchart of FIG. 20 shows the procedure of the biological signal measurement process executed by the measurement engine 125.
- the measurement engine 125 measures (senses) a biological signal using a biological sensor (the photoelectric pulse wave sensor 43 and the electrocardiogram electrodes 41 and 42) (step S21). During this sensing, the measurement engine 125 performs the above contact determination, and determines whether or not the human body (skin) is in contact with the biosensor (step S22). During sensing, the measurement engine 125 further performs the above-described stability determination, and determines whether the contact state between the biological sensor and the human body (skin) is stable (step S23).
- the measurement engine 125 deletes the time-series signal portion corresponding to the non-contact state period and the time-series signal portion corresponding to the non-stable state period from the biosensor output time-series signal.
- a time-series signal to be analyzed which is obtained by connecting the time-series signal parts corresponding to the periods of the stable state, is generated.
- the measurement engine 125 analyzes the time-series signal to be analyzed, measures a value related to the biological signal (step S24), and presents the measurement result to the user (step S25).
- the contact determination and the stability determination are performed, and the first time-series signal portion of the period corresponding to the non-contact state from the output time-series signal of the biosensor and the unstable state are determined.
- the time series signal obtained by removing the second time series signal portion corresponding to the period is analyzed. Therefore, the biosignal can be measured without making the user aware of the measurement or forcing a specific posture.
- the time series signal to be analyzed is obtained by connecting the time series signal parts in the output time series signal excluding the first time series signal part and the second time series signal part. Therefore, even if the user has not been stationary for a long time, if the total time during which the user is stationary (corresponding to the contact stable state) reaches a predetermined time, a time-series signal for a predetermined time required for measurement is obtained. I can do it. Therefore, the biosignal can be measured while the user is working using the computer 10.
- the remote control unit 60 in FIG. 4 may be a remote control unit for remotely controlling the TV.
- the TV may have the function of the measurement engine 125.
- the TV can measure a value related to the user's biological signal while the user is viewing and operating the TV.
- the computer 10 or the TV instead of performing the process for measuring the value related to the user's biological signal in the computer 10 or the TV, a configuration in which the process for measuring the value related to the user's biological signal is executed by an external server may be adopted.
- the computer 10 or the TV for example, from the biosensor output time series signal, the first time series signal portion corresponding to the non-contact state and the second time series signal portion corresponding to the non-stable state period. A time series signal obtained by removing and may be transmitted to the server.
- the processing procedure of the present embodiment can be executed by a computer program
- the computer program can be installed and executed on a computer through a computer-readable storage medium storing the computer program. Similar effects can be easily realized.
- the present invention is not limited to the above-described embodiments as they are, and can be embodied by modifying the constituent elements without departing from the scope in the implementation stage.
- various inventions can be formed by appropriately combining a plurality of components disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment.
- constituent elements over different embodiments may be appropriately combined.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Veterinary Medicine (AREA)
- Pathology (AREA)
- Biophysics (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Physics & Mathematics (AREA)
- Cardiology (AREA)
- Physiology (AREA)
- Computer Networks & Wireless Communication (AREA)
- General Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
- Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
- Developmental Disabilities (AREA)
- Psychology (AREA)
- Social Psychology (AREA)
- Psychiatry (AREA)
- Hospice & Palliative Care (AREA)
- Child & Adolescent Psychology (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
- User Interface Of Digital Computer (AREA)
Abstract
実施形態によれば、電子機器は、判定手段と、測定手段とを備える。前記判定手段は、生体センサに人体が接触されているか否か、および前記生体センサと人体との接触状態が安定しているか否かを判定する。前記測定手段は、前記生体センサの出力時系列信号から、前記生体センサに人体が接触していない非接触状態の期間に対応する第1の時系列信号部分および前記生体センサと人体との接触状態が安定してない非安定状態の期間に対応する第2の時系列信号部分を除去することによって得られる時系列信号を解析して、前記人体の生体信号に関する値を測定する。
Description
本発明の実施形態は、生体信号を扱うための技術に関する。
近年、一般家庭での予防医療およびヘルスケアに注目されている。また、医療機器の小型化も進められている。
しかし、一般には、脈波、心電図といった生体信号を測定するためには専用の機器が必要とされる。
また最近では、光学式マウスのような一般家庭用の電子機器を使用して脈波を測定する技術も開発され始めている。
しかし、一般に、生体信号の測定中においては、ユーザは機器のセンサ部分を身体に接触させた状態で長い間身動きせずに静止している事が必要とされる。よって、パーソナルコンピュータのような一般家庭用の電子機器をユーザが操作している間にユーザの生体信号に関する値を容易に測定することができる新たな技術の実現が要求される。
本発明の目的は、生体信号に関する値を容易に測定することができる電子機器および生体信号測定方法を提供することである。
実施形態によれば、実施形態によれば、電子機器は、判定手段と、測定手段とを備える。前記判定手段は、生体センサに人体が接触されているか否か、および前記生体センサと人体との接触状態が安定しているか否かを判定する。前記測定手段は、前記生体センサの出力時系列信号から、前記生体センサに人体が接触していない非接触状態の期間に対応する第1の時系列信号部分および前記生体センサと人体との接触状態が安定してない非安定状態の期間に対応する第2の時系列信号部分を除去することによって得られる時系列信号を解析して、前記人体の生体信号に関する値を測定する。
以下、図面を参照して、実施形態を説明する。
まず、図1を参照して、一実施形態に係る電子機器の構成について説明する。この電子機器は、ユーザによって行われる入力デバイス(例えば、キーボード、マウス、リモートコントロールユニット等)の操作に応じた処理を実行するように構成されている。この電子機器は、パーソナルコンピュータ、TVといった一般家庭用の電子機器である。以下では、この電子機器が、ノートブック型の携帯型パーソナルコンピュータ10として実現されている場合を想定する。
まず、図1を参照して、一実施形態に係る電子機器の構成について説明する。この電子機器は、ユーザによって行われる入力デバイス(例えば、キーボード、マウス、リモートコントロールユニット等)の操作に応じた処理を実行するように構成されている。この電子機器は、パーソナルコンピュータ、TVといった一般家庭用の電子機器である。以下では、この電子機器が、ノートブック型の携帯型パーソナルコンピュータ10として実現されている場合を想定する。
図1は、ディスプレイユニットを開いた状態におけるコンピュータ10を正面側から見た斜視図である。本コンピュータ10は、バッテリ20から電力を受けるように構成されている。本コンピュータ10は、コンピュータ本体11と、コンピュータ本体11に取り付けられたディスプレイ(ディスプレイユニット)12とを備える。ディスプレイユニット12には、液晶表示装置(LCD)31のような表示装置が組み込まれている。さらに、ディスプレイユニット12の上端部には、カメラ(Webカメラ)32が配置されている。
ディスプレイユニット12は、コンピュータ本体11の上面が露出される開放位置とコンピュータ本体11の上面がディスプレイユニット12で覆われる閉塞位置との間を回動自在にコンピュータ本体11に取り付けられている。コンピュータ本体11は薄い箱形の筐体を有しており、その上面にはキーボード13、タッチパッド14、指紋センサ15、本コンピュータ10をパワーオン/オフするための電源スイッチ16、幾つかの機能ボタン17、およびスピーカ18A、18Bが配置されている。
また、コンピュータ本体11には、電源コネクタ21が設けられている。電源コネクタ21はコンピュータ本体11の側面、例えば左側面に設けられている。この電源コネクタ21には、外部電源装置が取り外し自在に接続される。外部電源装置としては、ACアダプタを用いることが出来る。ACアダプタは商用電源(AC電力)をDC電力に変換する電源装置である。
バッテリ20は、例えば、コンピュータ本体11の後端部に取り外し自在に装着される。バッテリ20は本コンピュータ10に内蔵されるバッテリであってもよい。
本コンピュータ10は、外部電源装置からの電力またはバッテリ20からの電力によって駆動される。本コンピュータ10の電源コネクタ21に外部電源装置が接続されているならば、本コンピュータ10は外部電源装置からの電力によって駆動される。また、外部電源装置からの電力は、バッテリ20を充電するためにも用いられる。本コンピュータ10の電源コネクタ21に外部電源装置が接続されていない期間中は、本コンピュータ10はバッテリ20からの電力によって駆動される。
さらに、コンピュータ本体11には、幾つかのUSBポート22、HDMI(High-Definition Multimedia Interface)出力端子23、およびRGBポート24が設けられている。
さらに、コンピュータ本体11の前面には、外部のリモートコントロールユニットと通信するための赤外線受光部33が配置されている。外部のリモートコントロールユニットは、コンピュータ10のテレビジョン(TV)機能を遠隔制御するために用いられる。コンピュータ10のTV機能は、TV放送信号によって放送される所定の番組データに含まれるビデオデータに対応するフレーム群をLCD31に表示する機能、所定の番組データを記憶媒体に記録する機能、記録された番組データを再生する機能、等を有している。
さらに、コンピュータ10は、心電図(electrocardiogram:ECG)、脈波(pulse wave)といった生体信号(biomedical signal)を検知するための生体センサを備えている。
本実施形態では、ユーザがコンピュータ10を操作している間に生体信号が自動的に測定できるようにするために、生体センサは、入力デバイスに配置されるか、または入力デバイスの操作時に手が接触するコンピュータ10の筐体上の特定の部分に配置されている。
図1においては、生体センサは、コンピュータ本体11の上面上のパームレスト領域40に配置されている。生体センサが配置されるパームレスト領域40上の位置は、ユーザがキーボード13のポームポジションに両手の指を置いたときにユーザの手のひらが接触する位置である。
本実施形態では、本コンピュータ10は、第1および第2の心電図(ECG)電極41,42と、脈波センサ43とを上述の生体センサとして備える。脈波センサ43としては、容積脈波(plethysmogram:PG)を使用しえる。第1および第2の心電図電極41,42と、脈波センサ43は、それらが露出されるようにパームレスト領域40上に配置される。
第1および第2の心電図電極41,42は、ユーザの心電図を得るための心電図センサとして機能する。第1および第2の心電図電極41,42は、ユーザの心臓を挟む2点の皮膚、つまり左手のひらおよび右手のひらにそれぞれ接触されるように配置されている。本実施形態では、ユーザがキーボード13のポームポジションに両手の指を置いたときに左手のひらが第1の心電図電極41に自然に接触し且つ右手のひらが第2の心電図電極42に自然に接触するように、第1および第2の心電図電極41,42はタッチパッド14の両側に配置されている。すなわち、第1の心電図電極41はタッチパッド14の左側に位置するパームレスト領域40上の位置に配置され、第2の心電図電極42はタッチパッド14の右側に位置するパームレスト領域40上の位置に配置される。
脈波センサ43は脈波(ここでは容積脈波)を検知するためのセンサである。脈波センサ43は、光電脈波センサ(photoplethysmogrampセンサ:PPGセンサ)によって実現し得る。この場合、脈波センサ43は、光源である発光素子(例えば青色LED)と受光部であるフォトダイオード(PD)とを備える。脈波センサ43は、パームレスト領域40上に配置された窓部を通して皮膚表面に光を照射し、窓部を通してフォトダイオード(PD)によって毛細血管内の血流変化により変化する反射光の変動を捉える。
本実施形態では、心電図の測定と脈波の測定とが同時に実行可能となるように、脈波センサ43(光電脈波センサ)は、第1の心電図電極41または第2の心電図電極42の一方に近接してパームレスト領域40上に配置される。図1の例では、脈波センサ43は第2の心電図電極42に近接してパームレスト領域40上に配置される。
本コンピュータ10は、心電図センサ(心電図電極41,42)の出力時系列信号と、脈波センサ43の出力時系列信号の少なくとも一方を解析して、ユーザ(人体)の生体信号に関する値を測定する。心電図センサ(心電図電極41,42)の出力時系列信号は心電図電極41,42間の電位差をサンプリングすることによって得られる時系列信号である。脈波センサ43の出力時系列信号は、脈波センサ43の出力信号をサンプリングすることによって得られる時系列信号である。
上述の生体信号に関する値は、生体現象を数値化した値等である。LCD31は測定によって得られる生体信号に関する値を表示することができる。LCD31に表示される生体信号に関する値は、例えば、脈拍、血圧、ストレス度などである。
より詳しくは、本コンピュータ10は、心電図、心拍数/脈拍数、R-R間隔、ストレス度、血圧等を測定することができる。心電図は、第1および第2の心電図電極41,42の出力時系列信号を解析することによって得ることができる。心拍数は心電図から求めることが出来、また脈拍数は脈波センサ43の出力時系列信号を解析することによって算出することができる。
ストレス度の計測においては、脈波センサ43の出力時系列信号に基づいて脈拍間隔の変動を示す脈拍間隔データが求められる。脈拍間隔データは、各々が脈拍間隔を示す複数のサンプル値を含む時系列データである。そして、所定期間分の脈拍間隔データを周波数スペクトル分布に変換することよって低周波領域のパワースペクトルおよび高周波数領域のパワースペクトルが求められる。そして、低周波領域のパワースペクトルおよび高周波数領域のパワースペクトルに基づいて、ストレス度を測定することができる。
血圧の測定においては、心電図波形のピーク(R波のピーク)と脈波のピークとに基づいて脈波伝搬時間(Pulse Wave Transit Time:PWTT)が求められる。脈波伝搬時間は、心電図のR波の出現から抹消の脈波が出現するまでの時間間隔を示す。脈波伝搬時間は、血圧値と反比例の関係を有する。したがって、脈波伝搬時間(PWTT)から血圧の変動を求めることができる。
血圧の測定においては、初期値を予めコンピュータ10に入力しておいてもよい。例えば、通常の血圧測定器で測定されるユーザの血圧値とこの時の脈波伝搬時間とを初期値として予めコンピュータ10に入力しておいてもよい。現在の脈波伝搬時間(PWTT)から求められる血圧の変動と、この初期値(血圧値と脈波伝搬時間との関係)とを使用して、ユーザの現在の血圧値を求めることができる。
あるいは、通常の血圧測定器で測定されるユーザの血圧値とこの時の脈波伝搬時間とを初期値として入力する代わりに、血圧値と脈波伝搬時間との関係を示す標準的なデータを用意しておき、この標準的なデータと、現在の脈波伝搬時間(PWTT)から求められる血圧の変動とを使用して、ユーザの現在の血圧値を求めるようにしてもよい。
さらに、コンピュータ本体11はインジケータ44を備えている。インジケータ44は、ユーザに生体信号の測定中であることを提示するための状態表示部として機能し得る。インジケータ44は1以上のLEDであってもよい。また、インジケータ44は、生体センサ(心電図電極41,42、脈波センサ43)にユーザ(人体)が安定的に接触している安定状態であるか否か等を示す状態をユーザに提示してもよい。
上述した心電図電極41,42と脈波センサ43の配置は、図1に示した例に限定されない。例えば、図2に示すように、第1および第2の心電図電極41,42は、パームレスト領域40上のタッチパッド14の両側に配置された第1および第2の心電図電極板であってもよい。心電図電極板としては、薄い板状の金属板を使用し得る。第2の心電図電極42として機能する心電図電極板は、中空の開口部42Aを有している。脈波センサ(光電脈波センサ(PPGセンサ))43は、心電図電極板42に設けられた開口部42Aを通して露出されるように開口部42A内に配置される。この構成は、手のひらが心電図電極板42と脈波センサ(光電脈波センサ(PPGセンサ))43に同時に接触しやすくする。
図1では、生体センサをコンピュータ本体11の上面上のパームレスト領域に配置する例を説明したが、これに加えて、あるいはこの代わりに、図3に示すように、コンピュータ10と通信可能なマウス50に生体センサを配置してもよい。
図3は、右効き用のマウス50を例示している。このマウス50においては、ユーザがマウス50を操作するときに右手親指に脈波センサ52が接触するように、脈波センサ52は露出された状態でマウス本体51の左側面の中央部近傍の位置に配置されている。脈波センサ52は上述した光電脈波センサ(PPGセンサ)であり得る。さらに、右手の手のひらが右手用の心電図電極53に接触するように、右手用の心電図電極53は露出された状態でマウス本体51の上面の一部に配置されている。
脈波センサ52の出力時系列信号と右手用の心電図電極53の出力時系列信号は、USBケーブルのようなケーブルを介して本コンピュータ10に送信されるか、または本コンピュータ10に無線送信される。
ユーザがキーボード13を操作せずに右手でマウス50のみを操作している場合でも、コンピュータ10は、脈波センサ52の出力時系列信号をマウス50から取得することができる。また、ユーザの左手がパームレスト領域40上のホームポジションに置かれた状態でユーザが右手でマウス50を操作している場合には、ユーザの左手の手のひらがパームレスト領域40上の第1の心電図電極51に接触し、右手の手のひらがマウス50の心電図電極53に接触する。したがって、心電図電極51、53間の電位差をサンプリングすることによって得られる出力時系列信号を解析することによって心電図を測定することができる。
なお、左効き用のマウスにおいては、ユーザがこのマウス本体を操作するときに左手の親指に脈波センサ52が接触するように、脈波センサ52は露出された状態でマウス本体51の右側面の中央部近傍の位置に配置すればよい。
また、生体センサをコンピュータ本体11の上面上のパームレスト領域40に配置することに加えて、あるいはこの代わりに、図4に示すように、コンピュータ10と通信可能なリモートコントロールユニット60に生体センサを配置してもよい。リモートコントロールユニット60はコンピュータ10のTV機能(TV機能のオン/オフ、チャンネル切り替え、等)を遠隔制御するために用いられる。
図4に示されているように、リモートコントロールユニット本体61の上面には本コンピュータ10を遠隔制御するための複数のボタン(電源ボタン、チャンネル切り替えボタン群、十字キー、等)が配置されている。
脈波センサ(光電脈波センサ(PPGセンサ))62は、露出された状態でリモートコントロールユニット本体61の左側面に、例えば左側面の中央部近傍に配置されている。また、第1および第2の心電図電極63,64がリモートコントロールユニット本体61の上面上の上端部及び下端部にそれぞれ配置されている。
また、第1の心電図電極63または第2の心電図電極64の一方に近接するように、脈波センサ62をリモートコントロールユニット本体61の上面上の上端部または下端部の一方に配置してもよい。この場合、第1の心電図電極63または第2の心電図電極64の一方を図2で説明したように開口部を有する金属板によって実現し、開口部を通して脈波センサ62が露出するようにこの開口部内に脈波センサ63を配置してもよい。
ユーザが左手でリモートコントロールユニット本体61の上端部を握り、右手でリモートコントロールユニット本体61の下端部を握ることにより、心電図の測定と脈波の測定を同時に行うことができる。
脈波センサ62の出力時系列信号および2つの心電図電極63,64の電位差に対応する出力時系列信号は、赤外線とは異なる無線通信方式、例えば無線LAN、BT(Bluetooth(登録商標))のような無線通信方式で、リモートコントロールユニット60から本コンピュータ10に送信されてもよい。
図5は、本コンピュータ10のシステム構成を示している。本コンピュータ10は、CPU111、システムコントローラ112、主メモリ113、グラフィクスプロセッシングユニット(GPU)114、サウンドコーデック115、BIOS-ROM116、ハードディスクドライブ(HDD)117、光ディスクドライブ(ODD)118、BT(Bluetooth(登録商標))モジュール120、無線LANモジュール121、SDカードコントローラ122、PCI EXPRESSカードコントローラ123、TVチューナ124、測定エンジン125、エンベデッドコントローラ/キーボードコントローラIC(EC/KBC)130、キーボードバックライト13A、パネル開閉スイッチ131、加速度センサ132、電源コントローラ(PSC)141、電源回路142等を備えている。HDD117から発生される電磁気や振動による生体センサへの影響を防ぐために、HDD117に代えて、ソリッドステートドライブ(SSD)を設けても良い。
CPU111は、本コンピュータ10の各コンポーネントの動作を制御するプロセッサである。このCPU111は、HDD117(またはSSD)から主メモリ113にロードされる各種ソフトウェアを実行する。このソフトウェアは、オペレーティングシステム(OS)201および各種アプリケーションプログラムを含む。アプリケーションプログラムは、測定プログラム202を含む。この測定プログラム202は、測定エンジン125と共同して、ユーザの生体信号を測定する処理を実行することができる。
測定エンジン125は、生体センサの出力時系列信号を解析して生体信号に関する値を測定するように構成されている。測定エンジン125は1以上のプロセッサとこの1以上のプロセッサによって実行されるプログラムを格納したメモリとを備えていてもよい。あるいは、測定エンジン125は専用ハードウェアによって実現されていても良い。
また、CPU111は、不揮発性メモリであるBIOS-ROM116に格納された基本入出力システム(BIOS)も実行する。BIOSはハードウェア制御のためのシステムプログラムである。
GPU114は、本コンピュータ10のディスプレイモニタとして使用されるLCD31を制御する表示コントローラである。GPU114は、ビデオメモリ(VRAM)114Aに格納された表示データからLCD31に供給すべき表示信号(LVDS信号)を生成する。さらに、GPU114は、表示データからアナログRGB信号およびHDMIビデオ信号を生成することもできる。アナログRGB信号はRGBポート24を介して外部ディスプレイに供給される。HDMI出力端子23は、HDMIビデオ信号(非圧縮のデジタル映像信号)と、デジタルオーディオ信号とを一本のケーブルで外部ディスプレイに送出することができる。HDMI制御回路119は、HDMIビデオ信号およびデジタルオーディオ信号をHDMI出力端子23を介して外部ディスプレイに送出するためのインタフェースである。
システムコントローラ112は、CPU111と各コンポーネントとの間を接続するブリッジデバイスである。システムコントローラ112は、ハードディスクドライブ(HDD)117および光ディスクドライブ(ODD)118を制御するためのシリアルATAコントローラを内蔵している。さらに、システムコントローラ112は、LPC(Low PIN Count)バス上の各デバイスとの通信を実行する。
TVチューナ124は、TV放送信号の受信及び選局を行うように構成されている。EC/KBC130は、LPCバスに接続されている。EC/KBC130、電源コントローラ(PSC)141、およびバッテリ20は、I2Cバスのようなシリアルバスを介して相互接続されている。
EC/KBC130は、本コンピュータ10の電力管理を実行するための電力管理コントローラであり、例えば、キーボード(KB)13およびタッチパッド14などを制御するキーボードコントローラを内蔵したワンチップマイクロコンピュータとして実現されている。EC/KBC130は、ユーザによる電源スイッチ16の操作に応じて本コンピュータ10をパワーオンおよびパワーオフする機能を有している。本コンピュータ10のパワーオンおよびパワーオフの制御は、EC/KBC130と電源コントローラ(PSC)141との協働動作によって実行される。EC/KBC130から送信されるON信号を受けると、電源コントローラ(PSC)141は電源回路142を制御して本コンピュータ10をパワーオンする。また、EC/KBC130から送信されるOFF信号を受けると、電源コントローラ(PSC)141は電源回路142を制御して本コンピュータ10をパワーオフする。EC/KBC130、電源コントローラ(PSC)141、および電源回路142は、本コンピュータ10がパワーオフされている期間中も、バッテリ20またはACアダプタ150からの電力によって動作する。
さらに、EC/KBC130は、キーボード13の背面に配置されたキーボードバックライト13Aをオン/オフすることができる。さらに、EC/KBC130は、ディスプレイユニット12の開閉を検出するように構成されたパネル開閉スイッチ131に接続されている。パネル開閉スイッチ131によってディスプレイユニット12のオープンが検出された場合にも、EC/KBC130は、本コンピュータ10をパワーオンすることができる。
電源回路142は、バッテリ20からの電力、またはコンピュータ本体11に外部電源として接続されるACアダプタ150からの電力を用いて、各コンポーネントへ供給すべき電力(動作電源)を生成する。
図6は、コンピュータ10に設けられる測定エンジン125とこの測定エンジン125の周辺のコンポーネントとの関係を示す。
測定エンジン125は、アナログフロントエンド(AFE)301、特徴量抽出部302、制御部303、および解析部304を備える。アナログフロントエンド301は、心電図センサ(心電図電極41,42)の電位差をサンプリングすることによって、心電図センサの検知信号に対応する出力時系列信号を生成する。また、アナログフロントエンド301は、光電脈波センサ43の出力信号をサンプリングすることによって、光電脈波センサ43の検知信号に対応する出力時系列信号を生成する。このアナログフロントエンド301は、アナログ/デジタルコンバータ(ADC)311、アンプ(AMP)312、オートゲインコントローラ(AGC)313等から構成される。
測定エンジン125は、アナログフロントエンド(AFE)301、特徴量抽出部302、制御部303、および解析部304を備える。アナログフロントエンド301は、心電図センサ(心電図電極41,42)の電位差をサンプリングすることによって、心電図センサの検知信号に対応する出力時系列信号を生成する。また、アナログフロントエンド301は、光電脈波センサ43の出力信号をサンプリングすることによって、光電脈波センサ43の検知信号に対応する出力時系列信号を生成する。このアナログフロントエンド301は、アナログ/デジタルコンバータ(ADC)311、アンプ(AMP)312、オートゲインコントローラ(AGC)313等から構成される。
特徴量抽出部302は、アナログフロントエンド301によって得られる心電図センサ(心電図電極41,42)の出力時系列信号、またはアナログフロントエンド301によって得られる光電脈波センサ43の出力時系列信号の少なくとも一方を解析して、人体の生体信号に関する値を測定するように構成された測定部として機能する。特徴量抽出部302は、心電図測定部321、心拍数/脈拍数測定部322、R-R間隔測定部323、ストレス度判定部324、血圧測定部325を備える。
心電図測定部321は、心電図センサの出力時系列信号を解析して心電図を測定する。心拍数/脈拍数測定部322は、心電図測定部321によって得られる心電図に基づいて心拍数を測定する処理、または光電脈波センサ43の出力時系列信号を解析して脈拍数を測定する処理を実行する。R-R間隔測定部323は、心電図測定部321によって得られる心電図に基づいて、連続する2つの心拍それぞれに対応する2つのR波間の間隔であるR-R間隔(RRI)を測定する。
ストレス度測定部324は、光電脈波センサ43の出力時系列信号を解析して、脈拍間隔の変動を示す上述の脈拍間隔データを生成する。そして、ストレス度測定部324は、所定期間分の脈拍間隔データを周波数スペクトル分布に変換することよってそれぞれ得られる低周波領域のパワースペクトル(LF)および高周波数領域のパワースペクトル(HF)に基づいて、ストレス度を測定する。この場合、LF/HFが、ストレス度を表す。
血圧測定部325は、心電図と脈波とに基づいて上述の脈波伝搬時間(PWTT)を測定し、このPWTTと上述の初期値とに基づいて、または上PWTTと上述の標準データとに基づいて、血圧を測定する。
制御部303は、測定エンジン125の動作を制御する。本実施形態では、ユーザがコンピュータ10のキーボード13などを操作している間に自動的に生体信号を測定できるようにするために、制御部303は、判定部331を備えている。判定部331は、生体センサ(心電図電極41,42、光電脈波センサ43)による生体信号の検知中に、生体センサにユーザ(人体)が接触されているか否か、および生体センサとユーザ(人体)との接触状態が安定しているか否かを判定する。
特徴量抽出部302内の各測定部は、生体センサを用いて得られる出力時系列信号から、生体センサにユーザ(人体)が接触していない非接触状態の期間に対応する時系列信号部分および生体センサとユーザ(人体)との接触状態が安定してない非安定状態の期間に対応する時系列信号部分を除去することによって得られる時系列信号を解析して、生体信号に関する値を測定する。
これにより、ユーザの手が生体センサに接触していない非接触状態の期間に対応する時系列信号部分と接触状態が安定してない非安定状態の期間に対応する時系列信号部分とを測定対象から自動的に除外することができる。したがって、たとえユーザの手が静止していなくても、ユーザがコンピュータ10のキーボード13などを操作している間に自動的にユーザの生体信号を測定することができる。
また、一般に、生体信号の測定においては、少なくともある特定の期間分の検知信号(出力時系列信号)が必要とされる。本実施形態では、各測定部は、安定状態の期間それぞれに対応する時系列信号部分を繋ぎ合わせることによって得られる、ある特定の期間分の時系列信号を解析して、生体信号を測定することができる。
例えば、ストレス度の測定においては、20秒程度の期間分の脈波データ(脈波に関する出力時系列信号)が必要となる。本実施形態では、ストレス度測定部324は、光電脈波センサ43とユーザとの接触状態が安定している安定状態の期間それぞれに対応する時系列信号部分を繋ぎ合わせることによって得られる約20秒の期間分の時系列信号を解析して、ストレス度を測定する。したがって、たとえユーザが光電脈波センサ43に接触している状態で20秒間連続して静止していなくとも、安定状態である期間のトータル時間が約20秒に達すれば、ストレス度を測定することができる。
よって、ユーザに測定を意識させたり、特定の姿勢を強いたりすることなく、生体信号の測定を行うことが出来る。
特徴量抽出部302内の各測定部による測定は定期的に繰り返し実行されてもよい。定期的な測定の繰り返しによって得られる多数の測定結果は、解析部304によってコンピュータ10内のローカルデータベース402に蓄積される。解析部304は、ローカルデータベース402に蓄積された多数の測定値を統計処理することによって、例えば、週単位/月単位の平均値、週単位/月単位の移動平均値などを算出してもよい。また、解析部304は、年単位の平均値の変化(経年変化)を算出してもよい。
提示部401は、測定によって得られる生体信号に関する値、例えば、脈拍、血圧、ストレス度などをユーザに提示する。脈拍、血圧、ストレス度についての週/月の平均値、週単位/月単位の移動平均値などをユーザに提示してもよい。
なお、コンピュータ10がパワーオンされログイン画面が表示されるときに、あるいはコンピュータ10がパワーオンされた直後に、生体信号をセンシングすることをユーザに通知するガイダンスを表示し、生体信号の測定を開始してもよい。ガイダンスの表示においては、パームレスト領域40上に両手を置くことをユーザに促すための画面を表示しても良いし、マウス50を掴むことをユーザに促す画面を表示しても良いし、リモートコントロールユニット60の握り方などをユーザに案内するための画面を表示しても良い。
また、ローカルデータベース402に蓄積された測定値を通信部403によってサーバ500に送信してもよい。
さらに、測定エンジン125は、マウス50の生体センサまたはリモートコントロールユニット60の生体センサから時系列信号を受信することもできる。
図7は、生体センサの検知信号(出力時系列信号)から安定状態以外の期間の時系列信号部分を取り除く動作を説明するための図である。安定状態とは、生体センサと人体とが安定的に接触されている状態である。
ここでは、期間T5、T6、T10,T11が非接触状態または非安定状態であると判定された場合を想定する。この場合、期間T1~T12の信号(出力時系列信号)から、期間T5およびT6に対応する時系列信号部分と期間T10およびT11に対応する時系列信号部分とが除去される。そして、期間T1~T4の時系列信号部分と、期間T7~T9の時系列信号部分と、期間T11およびT12の時系列信号部分とが、生体信号の測定のために解析される。期間T1~T4の時系列信号部分と、期間T7~T9の時系列信号部分と、期間T11およびT12の時系列信号部分とをつなぎ合わせることにより、9期間分の時系列信号が得られる。
上述の判定部331は、心電図センサの出力時系列信号および光電脈波センサ43の出力時系列信号の各々について接触判定および安定判定を行う。接触判定は生体センサにユーザ(人体)が接触されているか否かを判定する動作である。安定判定は、生体センサとユーザ(人体)との接触状態が安定しているか否かを判定する動作である。安定判定では、生体センサ上で人体が動いている状態は、生体センサとユーザ(人体)との接触状態が安定していない非安定状態である判定される。これにより、センサ上でユーザの手などが動いている状態に対応する期間の時系列信号を解析対象から除外することが出来る。
判定部331は、心電図センサの時系列信号の周波数特性を解析して、心電図センサ(心電図電極41、42)に人体(皮膚)が接触されているか否かの判定(接触判定)と、心電図センサ(心電図電極41、42)と人体(皮膚)との接触状態が安定しているか否かの判定(安定判定)とを行うことができる。
より詳しくは、判定部331は、心電図センサに関する接触判定および安定判定を以下のように行うことが出来る。
ここでは、心電図センサの出力時系列信号のサンプリング周波数が1000Hzである場合を想定する。
<心電図センサに対する接触判定>
判定部331は、第1の周波数帯域の周波数成分(3~45Hzの周波数成分)を含まない心電図センサの時系列信号部分を、心電図センサ(心電図電極41、42)にユーザが接触していない非接触状態の期間に対応する時系列信号部分であると判定する。なお、接触しているか否かの判定は、ハードウェアを使用して心電図電極41、42のインピーダンスを測定することによって行うこともできる。また、近接センサを使用して接触しているか否かの判定することもできる。
ここでは、心電図センサの出力時系列信号のサンプリング周波数が1000Hzである場合を想定する。
<心電図センサに対する接触判定>
判定部331は、第1の周波数帯域の周波数成分(3~45Hzの周波数成分)を含まない心電図センサの時系列信号部分を、心電図センサ(心電図電極41、42)にユーザが接触していない非接触状態の期間に対応する時系列信号部分であると判定する。なお、接触しているか否かの判定は、ハードウェアを使用して心電図電極41、42のインピーダンスを測定することによって行うこともできる。また、近接センサを使用して接触しているか否かの判定することもできる。
<心電図センサに対する安定判定>
判定部331は、少なくとも、白色化したスペクトル分布を有する時系列信号部分を、心電図センサ(心電図電極41、42)とユーザとの接触状態が安定してない非安定状態の期間に対応する信号部分であると判定する。白色化したスペクトル分布(周波数全体にパワーが広がる)を有する時系列信号部分は、心電図電極41、42上の手が動いた時に頻繁に観察される。したがって、白色化したスペクトル分布を有する時系列信号部分は測定対象から除外することが好ましい。白色化したスペクトル分布であるか否かは、スペクトル形状に基づいて判定することができる。
判定部331は、少なくとも、白色化したスペクトル分布を有する時系列信号部分を、心電図センサ(心電図電極41、42)とユーザとの接触状態が安定してない非安定状態の期間に対応する信号部分であると判定する。白色化したスペクトル分布(周波数全体にパワーが広がる)を有する時系列信号部分は、心電図電極41、42上の手が動いた時に頻繁に観察される。したがって、白色化したスペクトル分布を有する時系列信号部分は測定対象から除外することが好ましい。白色化したスペクトル分布であるか否かは、スペクトル形状に基づいて判定することができる。
さらに、判定部331は、白色化したスペクトル分布を有する時系列信号部分のみならず、所定の周波数帯域(3~12Hz)のパワーが所定値よりも低い時系列信号部分を、心電図センサ(心電図電極41、42)とユーザとの接触状態が安定してない非安定状態の期間に対応する信号部分であると判定することもできる。
また、心電図電極41、42と手との接触がうまくいっていない不安定時は所定の周波数帯域(3~12Hz)のパワーが小さくなることが観察され、一方、心電図電極41、42と手との接触が安定している時は、1~30Hzまで調波構造が観察される。したがって、所定の周波数帯域(3~12Hz)のパワーが所定値よりも低い信号部分は測定対象から除外することが好ましい。
このように、本実施形態では、接触判定と安定判定の双方が行われ、これによって非接触状態に対応する周波数特徴を有する時系列信号部分と非安定状態に対応する周波数特徴を有する時系列信号部分とが特定される。そして、これら特定された時系列信号部分それぞれが測定(解析)対象から除外される。よって、非接触状態の期間に対応する信号部分と接触状態が安定してない非安定状態(心電図電極41、42上で手が動く、または接触が不安定)の期間に対応する信号部分の双方を効率よく除去することが出来る。
さらに、判定部331は、脈波センサ43に関する接触判定および安定判定を以下のように行うことが出来る。
ここでは、脈波センサ43の出力時系列信号のサンプリング周波数が125Hzである場合を想定する。
<脈波センサに対する接触判定>
判定部331は、第1の周波数帯域の周波数成分(5~50Hzの周波数成分)を含まない脈波センサ43の時系列信号部分を、脈波センサ43にユーザが接触していない非接触状態の期間に対応する時系列信号部分であると判定する。なお、近接センサを使用して接触しているか否かの判定することもできる。
ここでは、脈波センサ43の出力時系列信号のサンプリング周波数が125Hzである場合を想定する。
<脈波センサに対する接触判定>
判定部331は、第1の周波数帯域の周波数成分(5~50Hzの周波数成分)を含まない脈波センサ43の時系列信号部分を、脈波センサ43にユーザが接触していない非接触状態の期間に対応する時系列信号部分であると判定する。なお、近接センサを使用して接触しているか否かの判定することもできる。
<脈波センサに対する安定判定>
判定部331は、白色化したスペクトル分布を有する時系列信号部分、および所定の周波数帯域(2~8Hz)のパワーが所定値よりも低い時系列信号部分を、脈波センサ43とユーザとの接触状態が安定してない非安定状態の期間に対応する信号部分であると判定することができる。
判定部331は、白色化したスペクトル分布を有する時系列信号部分、および所定の周波数帯域(2~8Hz)のパワーが所定値よりも低い時系列信号部分を、脈波センサ43とユーザとの接触状態が安定してない非安定状態の期間に対応する信号部分であると判定することができる。
白色化したスペクトル分布(周波数全体にパワーが広がる)を有する時系列信号部分は、脈波センサ43上の手が動いた時に頻繁に観察される。したがって、白色化したスペクトル分布を有する時系列信号部分は測定対象から除外することが好ましい。白色化したスペクトル分布であるか否かは、スペクトル形状に基づいて判定することができる。
また、脈波センサ43と手との接触がうまくいっていない不安定時は所定の周波数帯域(2~8Hz)のパワーが小さくなることが観察される。したがって、所定の周波数帯域(2~8Hz)のパワーが所定値よりも低い信号部分も、測定対象から除外することが好ましい。
このように、本実施形態では、脈波センサ43に対しても接触判定と安定判定の双方が行われ、これによって非接触状態に対応する周波数特徴を有する時系列信号部分と非安定状態に対応する周波数特徴を有する時系列信号部分とが特定される。そして、これら特定された時系列信号部分それぞれが測定(解析)対象から除外される。よって、非接触状態の期間に対応する信号部分と接触状態が安定してない非安定状態(脈波センサ43上で手が動く、または接触が不安定)の期間に対応する信号部分の双方を効率よく除去することが出来る。
次に、図8~図11を参照して、心電図センサの出力時系列信号に対する接触および安定判定動作を説明する。
図8~図11において、グラフ101は約60秒分の心電図センサの出力時系列信号(心電図信号)を描いている。グラフ101の横軸は時間(hms:hour/min/sec)を表し、グラフ101の縦軸は振幅(smpl:sample)を表す。グラフ102は60秒分の心電図センサの出力時系列信号の周波数特性を描いている。グラフ102の横軸は時間(hms:hour/min/sec)を表し、グラフ102の縦軸は周波数を表す。
図8は、非接触状態の期間に対応する心電図信号部分の周波数特性を説明するための図である。非接触状態においては、3~45Hzの周波数成分が観測されない。したがって、判定部331は、3~45Hzの周波数成分がない時系列信号部分(つまり、図8において、期間T1に対応する時系列信号部分と、期間T2に対応する時系列信号部分と、期間T3に対応する時系列信号部分)を、非接触状態の期間に対応する心電図信号部分であると判定する。これにより、期間T1、T2、T3の時系列信号部分を測定対象の心電図信号から除外することが出来る。
図9は、心電図センサ(心電図電極41、42)上で手が動いた期間に対応する心電図信号部分の周波数特性を説明するための図である。手が動いた期間では、周波数成分の白色化(周波数領域全体にスペクトルが広がる)の傾向が観察される。したがって、判定部331は、白色化したスペクトル分布を有する時系列信号部分(つまり、図9において、期間T4に対応する時系列信号部分と、期間T5に対応する時系列信号部分と、期間T5に対応する時系列信号部分と、期間T7に対応する時系列信号部分)を、非安定状態の期間に対応する心電図信号部分であると判定する。これにより、期間T4、T5、T6、T7の時系列信号部分を測定対象の心電図信号から除外することが出来る。
図10は、接触がうまくいっていない(不安定)期間に対応する心電図信号部分の周波数特性を説明するための図である。接触がうまくいっていない(不安定)期間においては、3~12Hzの周波数成分のパワーが低くなる傾向が観察され、かつ調波構造(harmonic structure)も弱いことが観察される。したがって、判定部331は、3~12Hzの周波数帯域のパワーが所定値よりも低い時系列信号部分(つまり、図10において、期間T8に対応する時系列信号部分)を、非安定状態の期間に対応する心電図信号部分であると判定する。これにより、期間T8の時系列信号部分を測定対象の心電図信号から除外することが出来る。
図11は、接触状態が安定している期間に対応する心電図信号部分の周波数特性を説明するための図である。接触状態が安定している期間では、1~30Hzの範囲において強い調波構造が観測される。図11においては、期間T9に対応する時系列信号部分、および期間T10に対応する時系列信号部分は、接触状態が安定している期間に対応する心電図信号部分である。図11におけるグラフ100は、接触状態が安定している期間に対応する心電図信号部分の周波数分布を示す。このグラフ100からも、接触状態が安定している期間の心電図信号部分は1~30Hzの範囲において強い調波構造を有することが理解されるであろう。
判定部331は、非安定状態の期間に対応する心電図信号部分を測定対象から除外するために非安定状態の期間に対応する心電図信号部分を特定する代わりに、1~30Hzの範囲において強い調波構造を有する時系列信号部分を、測定対象にすべき時系列信号部分として特定することもできる。
図12は、脈波センサ43の出力時系列信号(脈波信号)の処理を説明するための図である。
測定エンジン125は、ハイパスフィルタ等を使用して脈波信号から直流成分(ノイズ)除去する(ステップS11)。測定エンジン125は、脈波センサ43に人体が接触しているか否かを判定する(ステップS12)。ステップS12では、測定エンジン125は、5~50Hzの周波数成分を含まない時系列信号部分を、非接触状態の期間に対応する時系列信号部分であると判定し得る。測定エンジン125は、脈波センサ43に人体が安定的に接触しているか否か、つまり脈波センサ43と人体との接触状態が安定しているか否かを判定する(ステップS13)。ステップS13では、測定エンジン125は、白色化したスペクトル分布を有する時系列信号部分と、2~8Hzにおけるパワーが所定値よりも低い時系列信号部分とを、接触状態が安定していない非安定状態の期間の時系列信号部分であると判定し得る。次いで、測定エンジン125は、脈波間隔を算出する(ステップS14)。
ステップS14では、測定エンジン125は、非接触状態の期間に対応する時系列信号部分と、非安定状態の期間に対応する時系列信号部分とを捨て、非接触状態の期間に対応する時系列信号部分と非安定接触状態の期間に対応する時系列信号部分を脈波間隔の算出に使用しない。換言すれば、測定エンジン125は、接触状態が安定している安定状態の期間それぞれに対応する時系列信号部分のみをリアルタイムに解析して、脈波間隔を算出する。これにより、各々が脈波間隔を示す複数の脈波間隔データが順次生成される。
測定エンジン125は、生成された脈波間隔データに基づいて脈拍を算出する(ステップS15)。さらに、測定エンジン125は、生成された脈波間隔データをバッファに格納する(ステップS16)。測定エンジン125は、20秒程度の期間に相当する複数の脈波間隔データの周波数解析を、高速フーリエ変換(FFT)または離散フーリエ変換(DFT)を用いて実行する(ステップS17)。ステップS17では、新たに一つの脈波間隔データが取得される度に、最も古い一つの脈波間隔データが捨てられる。これにより、周波数解析は、20秒程度の期間に相当する脈波間隔データ群単位で実行される。周波数解析によって上述のLFおよびHFが算出される。測定エンジン125は、LF/HFをユーザのストレス度(ストレス指標)として算出する(ステップS18)。
次に、図13~図15を参照して、脈波センサ43の出力時系列信号に対する接触および安定判定動作を説明する。
図13~図15において、グラフ103は約60秒分の脈波センサ43の出力時系列信号(脈波信号)を描いている。グラフ103の横軸は時間(hms:hour/min/sec)を表し、グラフ103の縦軸は振幅(smpl:sample)を表す。グラフ104は60秒分の脈波センサ43の出力時系列信号(脈波信号)の周波数特性を描いている。グラフ104の横軸は時間(hms:hour/min/sec)を表し、グラフ104の縦軸は周波数を表す。
図13は、非接触状態の期間に対応する脈波信号部分の周波数特性を説明するための図である。非接触状態においては、5~50Hzの周波数成分が観測されない。したがって、判定部331は、5~50Hzの周波数成分がない時系列信号部分(つまり、図13において、期間T12に対応する時系列信号部分と、期間T13に対応する時系列信号部分)を、非接触状態の期間に対応する脈波信号部分であると判定する。これにより、期間T12、T13の時系列信号部分を測定対象の脈波信号から除外することが出来る。
図14は、脈波センサ43上の手が動いた期間に対応する脈波信号部分の周波数特性を説明するための図である。手が動いた期間では、周波数成分の白色化(周波数領域全体にスペクトルが広がる)の傾向が観察される。したがって、判定部331は、白色化したスペクトル分布を有する時系列信号部分(つまり、図14において、期間T14に対応する時系列信号部分と、期間T15に対応する時系列信号部分と、期間T16に対応する時系列信号部分)を、非安定状態の期間に対応する脈波信号部分であると判定する。これにより、期間T14、T15、T16の時系列信号部分を測定対象の脈波信号から除外することが出来る。
図15は、接触がうまくいっていない(不安定)期間に対応する脈波信号部分の周波数特性を説明するための図である。接触がうまくいっていない(不安定)期間においては、2~8Hzの周波数成分のパワーが低くなる傾向が観察される。したがって、判定部331は、2~8Hzの周波数帯域のパワーが所定値よりも低い時系列信号部分(つまり、図15において、期間T17に対応する時系列信号部分と、期間T18に対応する時系列信号部分)を、非安定状態の期間に対応する脈波信号部分であると判定する。これにより、期間T17、T18の時系列信号部分を測定対象の脈波信号から除外することが出来る。
図16はストレス度(ストレス指標)を算出する動作を説明するための図である。
(1)脈波から脈拍間隔を算出
特徴量抽出部302は、脈波センサ43の出力時系列信号から、非接触状態の期間に対応する時系列信号部分と非安定状態の期間に対応する時系列信号部分とを除去して、脈拍間隔の解析に使用すべき時系列信号(脈波信号)を得る。換言すれば、特徴量抽出部302は、非接触状態の期間に対応する時系列信号部分と非安定状態の期間に対応する時系列信号部分を除く出力時系列信号内の時系列信号部分(つまり、安定状態の期間それぞれに対応する時系列信号部分)をつなぎ合わせて、脈拍間隔の解析に使用すべき時系列信号(脈波信号)を得る。
(1)脈波から脈拍間隔を算出
特徴量抽出部302は、脈波センサ43の出力時系列信号から、非接触状態の期間に対応する時系列信号部分と非安定状態の期間に対応する時系列信号部分とを除去して、脈拍間隔の解析に使用すべき時系列信号(脈波信号)を得る。換言すれば、特徴量抽出部302は、非接触状態の期間に対応する時系列信号部分と非安定状態の期間に対応する時系列信号部分を除く出力時系列信号内の時系列信号部分(つまり、安定状態の期間それぞれに対応する時系列信号部分)をつなぎ合わせて、脈拍間隔の解析に使用すべき時系列信号(脈波信号)を得る。
特徴量抽出部302は、得られた脈波信号から拍動それぞれのピーク位置を検出し、検出されたピーク位置毎に、直前のピーク位置と検出されたピーク位置との間の時間距離(脈拍間隔)を示す脈拍間隔を算出する。これにより、脈拍間隔の変動を示す時系列の脈拍間隔データが得られる。
(2)脈拍間隔を等時間間隔データに補間
特徴量抽出部302は、時系列脈拍間隔データを補間して時系列の脈拍間隔データを等時間間隔データに変換する(再サンプリング)。図16の右上のグラフにおける“□”マークはオリジナルの脈拍間隔データを示し、図16の右上のグラフにおける“丸”マークは補間によって得られた脈拍間隔データを示す。
特徴量抽出部302は、時系列脈拍間隔データを補間して時系列の脈拍間隔データを等時間間隔データに変換する(再サンプリング)。図16の右上のグラフにおける“□”マークはオリジナルの脈拍間隔データを示し、図16の右上のグラフにおける“丸”マークは補間によって得られた脈拍間隔データを示す。
(3)脈拍間隔ゆらぎの周波数解析
特徴量抽出部302は、等時間間隔データを周波数解析して、低周波領域のパワースペクトル(LF)および高周波数領域のパワースペクトル(HF)を算出する。低周波領域のパワースペクトル(LF)は交感神経活動を反映した値であり、また高周波数領域のパワースペクトル(HF)は副交感神経活動を反映した値である。
特徴量抽出部302は、等時間間隔データを周波数解析して、低周波領域のパワースペクトル(LF)および高周波数領域のパワースペクトル(HF)を算出する。低周波領域のパワースペクトル(LF)は交感神経活動を反映した値であり、また高周波数領域のパワースペクトル(HF)は副交感神経活動を反映した値である。
(4)ストレス度
特徴量抽出部302は、交感神経の活動度(LF/HF)を算出する。
特徴量抽出部302は、交感神経の活動度(LF/HF)を算出する。
図17は、提示部401によってユーザに提示される測定結果の例を示す。
提示部401は、LCD31の画面上に測定によって得られた脈拍、血圧、ストレス度等を表示することができる。
提示部401は、LCD31の画面上に測定によって得られた脈拍、血圧、ストレス度等を表示することができる。
図18は、提示部401によってユーザに提示される測定結果の別の例を示す。
解析部304は、ローカルデータベース402に格納された統計情報(複数のストレス度測定結果)を用いて、ユーザのストレス度の移動平均等を算出する。そして、提示部401は、ユーザのストレス度の変動を日単位または週単位で表すグラフをLCD31の画面上に表示する。図18の上部に示されるグラフは、ストレス度の変動を日単位で表す折れ線グラフである。ストレス度が高い日に対応する折れ線グラフ上の位置に「いつもよりストレスが高いようです」のようなメッセージが表示されても良い。図18の下部に示されるグラフは、ストレス度の変動を週単位で表す折れ線グラフである。
解析部304は、ローカルデータベース402に格納された統計情報(複数のストレス度測定結果)を用いて、ユーザのストレス度の移動平均等を算出する。そして、提示部401は、ユーザのストレス度の変動を日単位または週単位で表すグラフをLCD31の画面上に表示する。図18の上部に示されるグラフは、ストレス度の変動を日単位で表す折れ線グラフである。ストレス度が高い日に対応する折れ線グラフ上の位置に「いつもよりストレスが高いようです」のようなメッセージが表示されても良い。図18の下部に示されるグラフは、ストレス度の変動を週単位で表す折れ線グラフである。
図19は本コンピュータ10とマウス50との連携動作を示す。
マウス50は、上述の光電脈波センサ52および心電図電極53に加え、アナログフロントエンド501、特徴量抽出部502、制御部503、メモリ504、および送信部505等を備える。
マウス50は、上述の光電脈波センサ52および心電図電極53に加え、アナログフロントエンド501、特徴量抽出部502、制御部503、メモリ504、および送信部505等を備える。
アナログフロントエンド501は、光電脈波センサ52の出力信号をサンプリングすることによって、光電脈波センサ52の検知信号に対応する出力時系列信号を生成する。また、アナログフロントエンド501は、心電図電極53の電位をサンプリングすることによって心電図電極53に対応する出力時系列信号も生成する。このアナログフロントエンド301は、アナログ/デジタルコンバータ(ADC)511、アンプ(AMP)512、オートゲインコントローラ(AGC)513等から構成される。
特徴量抽出部502は、アナログフロントエンド501によって得られる光電脈波センサ52の出力時系列信号を解析して、人体の生体信号に関する値を測定するように構成された測定部として機能する。特徴量抽出部502は、脈拍数測定部521、R-R間隔測定部522、ストレス度判定部523を備える。脈拍数測定部521は、光電脈波センサ52の出力時系列信号を解析して脈拍数を測定する。R-R間隔測定部522は、光電脈波センサ52の出力時系列信号を解析してR-R間隔(または脈波間隔)を測定する。ストレス度測定部523は、コンピュータ10内の上述のストレス度測定部324と同様に、光電脈波センサ52の出力時系列信号を解析してストレス度を測定する。
制御部503内の判定部503は、コンピュータ10内の上述の判定部331と同様の手順で、光電脈波センサ52の出力時系列信号に対する接触判定及び安定判定を行う。脈拍数測定部521、R-R間隔測定部522、およびストレス度判定部523の各々は、光電脈波センサ52と人体との接触状態が安定している安定状態の期間それぞれに対応する時系列信号部分をつなぎ合わせることによって得られる時系列信号を解析する。
マウス50はLEDのようなインジケータを備えていても良い。この場合、制御部503は、ユーザに生体信号の測定中であることなどをインジケータの点滅等によって通知することができる。
特徴量抽出部502によって得られた測定結果および心電図電極53に対応する出力時系列信号はメモリ504に格納される。送信部505は、メモリ504からこれら測定結果および心電図電極53の出力時系列信号を取り出し、この測定結果および出力時系列信号をPS/S、USB、またはBTモジュール等を介してコンピュータ10に送信する。これら測定結果および心電図電極53の出力時系列信号はコンピュータ10内の上述のローカルデータベース402に格納されても良い。
コンピュータ10は、心電図電極41の電位をサンプリングすることによって得られる出力時系列信号と、受信部404によってマウス50から受信される心電図電極53の出力時系列信号とを用いて、心電図の測定を行うことが出来る。
さらに、受信部404は、マウス50から脈波の出力時系列信号を受信することも出来る。この場合、コンピュータ10は、心電図と、マウス50から受信される脈波の出力時系列信号とを用いて、血圧を測定することもできる。図19においては、コンピュータ10内の解析部304が、血圧を測定するように構成された血圧測定部325を備えている場合が例示されている。
図20のフローチャートは、測定エンジン125によって実行される生体信号測定処理の手順を示す。
測定エンジン125は、生体センサ(光電脈波センサ43、心電図電極41、42)を用いて生体信号を測定(センシング)する(ステップS21)。このセンシング中に、測定エンジン125は、上述の接触判定を行い、生体センサに人体(皮膚)が接触しているか否かを判定する(ステップS22)。センシング中においては、測定エンジン125は、さらに、上述の安定判定を行い、生体センサと人体(皮膚)との接触状態が安定しているか否かを判定する(ステップS23)。
測定エンジン125は、生体センサ(光電脈波センサ43、心電図電極41、42)を用いて生体信号を測定(センシング)する(ステップS21)。このセンシング中に、測定エンジン125は、上述の接触判定を行い、生体センサに人体(皮膚)が接触しているか否かを判定する(ステップS22)。センシング中においては、測定エンジン125は、さらに、上述の安定判定を行い、生体センサと人体(皮膚)との接触状態が安定しているか否かを判定する(ステップS23)。
そして、測定エンジン125は、生体センサの出力時系列信号から非接触状態の期間に対応する時系列信号部分と非安定状態の期間に対応する時系列信号部分とを削除する。これにより、安定状態の期間それぞれに対応する時系列信号部分をつなぎ合わせることによって得られる解析対象の時系列信号が生成される。測定エンジン125は、解析対象の時系列信号を解析して、生体信号に関する値を測定し(ステップS24)、この測定結果をユーザに提示する(ステップS25)。
以上説明したように、本実施形態によれば、接触判定と安定判定が行われ、生体センサの出力時系列信号から非接触状態に対応する期間の第1の時系列信号部分と非安定状態の期間に対応する第2の時系列信号部分とを除去することによって得られる時系列信号が解析される。したがって、ユーザに測定を意識させたり、特定の姿勢を強いたりすることなく、生体信号の測定を行うことが出来る。
また、解析対象の時系列信号は、第1の時系列信号部分および前記第2の時系列信号部分を除く、出力時系列信号内の時系列信号部分それぞれを繋ぎ合わせることによって得られる。したがって、ユーザが長い間静止していなくても、ユーザが静止状態(接触安定状態に対応)である時間の合計が所定の時間に達すれば、測定に必要な所定時間分の時系列信号を得ることが出来る。よって、ユーザがコンピュータ10を使用して作業を行っている間に生体信号の測定を行うことが出来る。
なお、図4のリモートコントロールユニット60はTVを遠隔制御するためのリモートコントロールユニットであってもよい。この場合、TVが測定エンジン125の機能を備えていてもよい。TVは、ユーザがTVを視聴・操作している間に、ユーザの生体信号に関する値を測定することができる。
また、ユーザの生体信号に関する値を測定する処理をコンピュータ10内やTV内で行う代わりに、ユーザの生体信号に関する値を測定する処理を外部のサーバによって実行する構成を採用しても良い。この場合、コンピュータ10やTVは、例えば、生体センサの出力時系列信号から非接触状態に対応する期間の第1の時系列信号部分と非安定状態の期間に対応する第2の時系列信号部分とを除去することによって得られる時系列信号をサーバに送信しても良い。
また、本実施形態の処理手順はコンピュータプログラムによって実行することができるので、このコンピュータプログラムを格納したコンピュータ読み取り可能な記憶媒体を通じてこのコンピュータプログラムをコンピュータにインストールして実行するだけで、本実施形態と同様の効果を容易に実現することができる。
また本発明は上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素からいくつかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。
Claims (18)
- 生体センサに人体が接触されているか否か、および前記生体センサと人体との接触状態が安定しているか否かを判定する判定手段と、
前記生体センサの出力時系列信号から、前記生体センサに人体が接触していない非接触状態の期間に対応する第1の時系列信号部分および前記生体センサと人体との接触状態が安定してない非安定状態の期間に対応する第2の時系列信号部分を除去することによって得られる時系列信号を解析して、前記人体の生体信号に関する値を測定する測定手段とを具備する電子機器。 - 前記時系列信号は、前記第1の時系列信号部分および前記第2の時系列信号部分を除く、前記出力時系列信号内の時系列信号部分それぞれを繋ぎ合わせることによって得られる請求項1記載の電子機器。
- 前記非安定状態は、前記生体センサ上で人体が動く状態を含む請求項1記載の電子機器。
- 前記判定手段は、少なくとも、前記出力時系列信号内の白色化したスペクトル分布を有する時系列信号部分を、前記生体センサと人体との接触状態が安定してない非安定状態の期間に対応する前記第2の時系列信号部分であると判定する請求項1記載の電子機器。
- 前記判定手段は、前記出力時系列信号内の白色化したスペクトル分布を有する時系列信号部分と、所定の周波数帯域のパワーが所定値よりも低い前記出力時系列信号内の時系列信号部分とを、前記生体センサと人体との接触状態が安定してない非安定状態の期間に対応する前記第2の時系列信号部分であると判定する請求項1記載の電子機器。
- 前記判定手段は、
第1の周波数帯域の周波数成分を含まない前記出力時系列信号内の時系列信号部分を、前記生体センサに人体が接触していない非接触状態の期間に対応する前記第1の時系列信号部分であると判定し、
前記出力時系列信号内の白色化したスペクトル分布を有する時系列信号部分と、所定の周波数帯域のパワーが所定値よりも低い前記出力時系列信号内の時系列信号部分とを、前記生体センサと人体との接触状態が安定してない非安定状態の期間に対応する前記第2の時系列信号部分であると判定する請求項1記載の電子機器。 - 前記センサは脈波センサを含み、
前記測定手段は、
前記脈波センサの出力時系列信号から前記第1の時系列信号部分および前記第2の時系列信号部分を除去することによって得られる時系列信号を使用して、脈拍間隔の変動を示す脈拍間隔データを生成し、
所定期間分の脈拍間隔データを周波数スペクトル分布に変換することよってそれぞれ得られる低周波領域のパワースペクトルおよび高周波数領域のパワースペクトルに基づいて、ストレス度を測定する請求項1記載の電子機器。 - 前記電子機器は入力デバイスから受信される情報を処理するように構成され、
前記生体センサは、前記入力デバイスの操作時に手が接触する、前記電子機器の筐体の一部分に、または前記デバイスに配置されている請求項1記載の電子機器。 - キーボードが配置された上面を有する本体と、
前記本体に取り付けられ、前記測定によって得られる前記生体信号の値を表示可能なディスプレイとをさらに具備し、
前記生体センサは前記上面上のパームレスト領域に配置されている請求項1記載の電子機器。 - 前記生体センサは前記電子機器と通信可能なマウスに設けられている請求項1記載の電子機器。
- 前記生体センサは前記電子機器と通信可能なリモートコントロールユニットに設けられている請求項1記載の電子機器。
- 前記生体センサは前記パームレスト領域上のタッチパッドの両側に配置された第1および第2の心電図電極を備える請求項9記載の電子機器。
- 前記生体センサは前記パームレスト領域上に配置された脈波センサを備える請求項9記載の電子機器。
- 前記生体センサは、前記パームレスト領域上のタッチパッドの両側に配置された第1および第2の心電図電極と、前記第1の心電図電極または前記第2の心電図電極の一方に近接して配置された脈波センサとを備える請求項9記載の電子機器。
- 前記生体センサは、前記パームレスト領域上のタッチパッドの両側に配置された第1および第2の心電図電極板と、前記第1の心電図電極板または前記第2の心電図電極板の一方の心電図電極板に設けられた開口部を通して露出されるように配置された脈波センサとを備える請求項9記載の電子機器。
- キーボードが配置された上面を有する本体と、
前記本体に取り付けられ、前記測定によって得られる前記生体信号の値を表示可能なディスプレイとをさらに具備し、
前記生体センサは、前記上面上のパームレスト領域に配置された第1の心電図電極と、前記電子機器と通信可能なマウスに設けられた第2の心電図電極とを備える請求項1記載の電子機器。 - 生体センサに人体が接触されているか否かを判定する処理と前記生体センサと人体との接触状態が安定しているか否かを判定する処理とを含む判定処理を実行し、
前記生体センサの出力時系列信号から、前記生体センサに人体が接触していない非接触状態の期間に対応する第1の時系列信号部分および前記生体センサと人体との接触状態が安定してない非安定状態の期間に対応する第2の時系列信号部分を除去することによって得られる時系列信号を解析して、前記人体の生体信号に関する値を測定する生体信号測定方法。 - コンピュータによって実行されるプログラムであって、
生体センサに人体が接触されているか否かを判定する処理と前記生体センサと人体との接触状態が安定しているか否かを判定する処理とを含む判定処理を実行し、
前記生体センサの出力時系列信号から、前記生体センサに人体が接触していない非接触状態の期間に対応する第1の時系列信号部分および前記生体センサと人体との接触状態が安定してない非安定状態の期間に対応する第2の時系列信号部分を除去することによって得られる時系列信号を解析して、前記人体の生体信号に関する値を測定することを前記コンピュータに実行させるためのプログラム。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2013/063421 WO2014184868A1 (ja) | 2013-05-14 | 2013-05-14 | 電子機器および生体信号測定方法 |
JP2015516791A JPWO2014184868A1 (ja) | 2013-05-14 | 2013-05-14 | 電子機器および生体信号測定方法 |
US14/823,778 US20150342528A1 (en) | 2013-05-14 | 2015-08-11 | Electronic apparatus and vital sign signal measuring method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2013/063421 WO2014184868A1 (ja) | 2013-05-14 | 2013-05-14 | 電子機器および生体信号測定方法 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/823,778 Continuation US20150342528A1 (en) | 2013-05-14 | 2015-08-11 | Electronic apparatus and vital sign signal measuring method |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014184868A1 true WO2014184868A1 (ja) | 2014-11-20 |
Family
ID=51897889
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/063421 WO2014184868A1 (ja) | 2013-05-14 | 2013-05-14 | 電子機器および生体信号測定方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20150342528A1 (ja) |
JP (1) | JPWO2014184868A1 (ja) |
WO (1) | WO2014184868A1 (ja) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017006183A (ja) * | 2015-06-17 | 2017-01-12 | パナソニックIpマネジメント株式会社 | 生体情報計測センサおよび生体情報計測用便座 |
WO2017163285A1 (ja) * | 2016-03-25 | 2017-09-28 | パナソニックIpマネジメント株式会社 | 生体情報計測装置 |
JPWO2016189711A1 (ja) * | 2015-05-27 | 2018-04-26 | 斎藤 糧三 | 携帯端末用ストレス評価プログラム及び該プログラムを備えた携帯端末 |
EP3229667A4 (en) * | 2014-12-08 | 2018-05-02 | Intel Corporation | Sensing of a user's physiological context using a computing device |
KR20190009942A (ko) * | 2017-07-20 | 2019-01-30 | 박철민 | 노트북 터치패드의 입력 오류 방지 장치 |
JP2019042047A (ja) * | 2017-08-31 | 2019-03-22 | フクダ電子株式会社 | 生体情報表示装置 |
JP2019195427A (ja) * | 2018-05-09 | 2019-11-14 | 富士ゼロックス株式会社 | ストレス状態評価装置、ストレス状態評価システム及びプログラム |
JP2020072901A (ja) * | 2019-10-30 | 2020-05-14 | 糧三 齋藤 | 携帯端末用ストレス評価プログラム及び該プログラムを備えた携帯端末 |
JP2021049367A (ja) * | 2019-10-30 | 2021-04-01 | 糧三 齋藤 | 携帯端末用ストレス評価プログラム及び該プログラムを備えた携帯端末 |
JP2021083917A (ja) * | 2019-11-29 | 2021-06-03 | 株式会社ミラクルプランニング | 健康情報検出方法及び装置 |
WO2024034072A1 (ja) * | 2022-08-10 | 2024-02-15 | 三菱電機株式会社 | 脳活動推定装置、脳活動推定装置を備えた機器および空調装置 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015071897A1 (en) * | 2013-11-14 | 2015-05-21 | Hera Med Ltd. | A movable medical device configured to operate only within a specific range of acceleration |
CN103929697B (zh) * | 2014-04-02 | 2018-11-23 | 北京智谷睿拓技术服务有限公司 | 声道配置方法、装置及耳机设备 |
CN109419499B (zh) * | 2017-09-05 | 2022-07-29 | 苹果公司 | 具有集成生物传感器的便携式电子设备 |
WO2024014864A1 (ko) * | 2022-07-14 | 2024-01-18 | 주식회사 메디컬에이아이 | 심전도 측정 기능을 제공하는 키보드, 이를 포함하는 시스템 및 그 방법 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007105131A (ja) * | 2005-10-12 | 2007-04-26 | Nippon Telegr & Teleph Corp <Ntt> | 脈波診断装置及び脈波診断装置制御方法 |
JP2009219554A (ja) * | 2008-03-13 | 2009-10-01 | Denso Corp | 心電波形計測装置 |
JP2012050711A (ja) * | 2010-09-01 | 2012-03-15 | Tokyo Metropolitan Univ | ストレス評価装置及びストレス評価方法 |
-
2013
- 2013-05-14 WO PCT/JP2013/063421 patent/WO2014184868A1/ja active Application Filing
- 2013-05-14 JP JP2015516791A patent/JPWO2014184868A1/ja active Pending
-
2015
- 2015-08-11 US US14/823,778 patent/US20150342528A1/en not_active Abandoned
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007105131A (ja) * | 2005-10-12 | 2007-04-26 | Nippon Telegr & Teleph Corp <Ntt> | 脈波診断装置及び脈波診断装置制御方法 |
JP2009219554A (ja) * | 2008-03-13 | 2009-10-01 | Denso Corp | 心電波形計測装置 |
JP2012050711A (ja) * | 2010-09-01 | 2012-03-15 | Tokyo Metropolitan Univ | ストレス評価装置及びストレス評価方法 |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3229667A4 (en) * | 2014-12-08 | 2018-05-02 | Intel Corporation | Sensing of a user's physiological context using a computing device |
US10741286B2 (en) | 2015-05-27 | 2020-08-11 | Ryozo Saito | Stress evaluation program for mobile terminal and mobile terminal provided with program |
JPWO2016189711A1 (ja) * | 2015-05-27 | 2018-04-26 | 斎藤 糧三 | 携帯端末用ストレス評価プログラム及び該プログラムを備えた携帯端末 |
JP2017006183A (ja) * | 2015-06-17 | 2017-01-12 | パナソニックIpマネジメント株式会社 | 生体情報計測センサおよび生体情報計測用便座 |
WO2017163285A1 (ja) * | 2016-03-25 | 2017-09-28 | パナソニックIpマネジメント株式会社 | 生体情報計測装置 |
KR20190009942A (ko) * | 2017-07-20 | 2019-01-30 | 박철민 | 노트북 터치패드의 입력 오류 방지 장치 |
KR101968081B1 (ko) * | 2017-07-20 | 2019-04-11 | 박철민 | 노트북 터치패드의 입력 오류 방지 장치 |
JP7009120B2 (ja) | 2017-08-31 | 2022-01-25 | フクダ電子株式会社 | 生体情報表示装置 |
JP2019042047A (ja) * | 2017-08-31 | 2019-03-22 | フクダ電子株式会社 | 生体情報表示装置 |
JP2019195427A (ja) * | 2018-05-09 | 2019-11-14 | 富士ゼロックス株式会社 | ストレス状態評価装置、ストレス状態評価システム及びプログラム |
JP2020072901A (ja) * | 2019-10-30 | 2020-05-14 | 糧三 齋藤 | 携帯端末用ストレス評価プログラム及び該プログラムを備えた携帯端末 |
JP2021049367A (ja) * | 2019-10-30 | 2021-04-01 | 糧三 齋藤 | 携帯端末用ストレス評価プログラム及び該プログラムを備えた携帯端末 |
JP2021083917A (ja) * | 2019-11-29 | 2021-06-03 | 株式会社ミラクルプランニング | 健康情報検出方法及び装置 |
JP7402495B2 (ja) | 2019-11-29 | 2023-12-21 | 株式会社人間と科学の研究所 | 健康情報検出装置の作動方法及び健康情報検出装置 |
WO2024034072A1 (ja) * | 2022-08-10 | 2024-02-15 | 三菱電機株式会社 | 脳活動推定装置、脳活動推定装置を備えた機器および空調装置 |
Also Published As
Publication number | Publication date |
---|---|
US20150342528A1 (en) | 2015-12-03 |
JPWO2014184868A1 (ja) | 2017-02-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2014184868A1 (ja) | 電子機器および生体信号測定方法 | |
US11931132B2 (en) | System and method for obtaining bodily function measurements using a mobile device | |
US11980480B2 (en) | Contact detection for physiological sensor | |
US9504400B2 (en) | Atrial fibrillation analyzer, atrial fibrillation analysis system, atrial fibrillation analysis method, and program | |
US9504401B2 (en) | Atrial fibrillation analyzer and program | |
US20160128586A1 (en) | System, method, and article for heart rate variability monitoring | |
CN103519794A (zh) | 测量装置、测量方法、程序、存储介质和测量系统 | |
US20160287095A1 (en) | Biological information processing apparatus, biological information processing system, biological information processing method and biological information processing program | |
WO2020038453A1 (zh) | 用于脉搏检测的可穿戴设备以及脉搏检测方法 | |
CN104000580A (zh) | 一种测试人体健康信息的方法及鼠标装置 | |
CN109833037B (zh) | 一种监测血压状态的设备和计算机可读存储介质 | |
CN108348157B (zh) | 利用多用途电容式触摸传感器的心率检测 | |
CN110446460A (zh) | 信息处理装置和信息处理程序 | |
CN108837271B (zh) | 电子装置、提示信息的输出方法及相关产品 | |
Kwon et al. | Unobtrusive monitoring of ECG-derived features during daily smartphone use | |
KR20190095820A (ko) | 복수의 필터를 이용하여 외부 객체와 관련된 심박변이도 정보를 생성하기 위한 방법 및 이를 위한 장치 | |
US20240350088A1 (en) | Contact detection for physiological sensor | |
CN108742581B (zh) | 心跳检测方法、装置、存储介质及终端 | |
JP6155374B1 (ja) | 血液情報表示装置 | |
US20200077963A1 (en) | Scaling physiological signals | |
CN118490186A (zh) | 健康监测设备、方法及存储介质 | |
KR20200103350A (ko) | 생체 정보를 측정하는 전자 장치와 이의 동작 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13884530 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015516791 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13884530 Country of ref document: EP Kind code of ref document: A1 |