WO2014184824A1 - Plasma treatment device and sealing method therefor - Google Patents

Plasma treatment device and sealing method therefor Download PDF

Info

Publication number
WO2014184824A1
WO2014184824A1 PCT/JP2013/003107 JP2013003107W WO2014184824A1 WO 2014184824 A1 WO2014184824 A1 WO 2014184824A1 JP 2013003107 W JP2013003107 W JP 2013003107W WO 2014184824 A1 WO2014184824 A1 WO 2014184824A1
Authority
WO
WIPO (PCT)
Prior art keywords
space
conductor
plasma
inner conductor
processing chamber
Prior art date
Application number
PCT/JP2013/003107
Other languages
French (fr)
Japanese (ja)
Inventor
平山 昌樹
Original Assignee
国立大学法人東北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東北大学 filed Critical 国立大学法人東北大学
Priority to PCT/JP2013/003107 priority Critical patent/WO2014184824A1/en
Priority to JP2013544605A priority patent/JP5441083B1/en
Priority to TW103117005A priority patent/TW201506985A/en
Publication of WO2014184824A1 publication Critical patent/WO2014184824A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/511Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using microwave discharges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • H01J37/32211Means for coupling power to the plasma
    • H01J37/3222Antennas

Definitions

  • the present invention relates to a plasma processing apparatus for performing plasma processing on a substrate and a sealing method thereof.
  • plasma processing apparatuses are used for thin film formation and etching.
  • the present inventors have proposed one disclosed in Patent Document 1 and the like.
  • FIG. 7 is a cross-sectional view schematically showing a plasma processing apparatus of the same type as that of Patent Document 1.
  • This apparatus is connected to a metal processing chamber 10 that defines a sealed space 11, a susceptor 14 installed in the processing chamber 10 for placing a substrate 16, and a lid 13 that forms the upper part of the processing chamber 10.
  • the inner conductor 21 of the coaxial tube 20 extends to the upper surface of the dielectric plate 34 through the opening 13 h of the lid 13, and the flange at the lower end of the cylindrical outer conductor 22 is connected to the periphery of the opening 13 h of the lid 13. Yes.
  • the electrode 36 is provided so as to cover most of the lower surface of the dielectric plate 34 so that only the outer peripheral edge 34p of the dielectric plate 34 is exposed to the sealed space 11.
  • an O-ring 40 having heat resistance is installed between the lower surface of the lid 13 and the dielectric plate 34.
  • a synthetic rubber excellent in heat resistance and plasma resistance, for example, perfluoroelastomer is used.
  • a microwave introduced from an unillustrated microwave supply source to the inner conductor 21 propagates through the coaxial waveguide 20, passes through the dielectric plate 34, and conducts a conductor surface wave from the outer peripheral edge 34 p of the dielectric plate 34. It propagates along the surface 36f of the electrode 36 as TM.
  • the plasma is excited by the microwave as the conductor surface wave TM propagating on the surface 36f of the electrode 36.
  • an O-ring 40 made of heat-resistant elastomer is used to seal the closed space 11.
  • the O-ring 40 is disposed in the microwave path as described above, it is heated to about 200 ° C. during the plasma processing.
  • the O-ring 40 is exposed to oxygen radicals or hydrogen radicals formed by excited plasma under a heated state to cause a chemical reaction, and the gasification substance leaks into the sealed space 11. It was.
  • the gasified substance leaking into the sealed space 11 of the processing chamber 10 is taken into the film on the substrate 16 formed by plasma processing in the processing chamber 10, and there is a problem that the characteristics of the film are affected. .
  • the present invention provides a plasma processing apparatus capable of improving the characteristics of a film formed by plasma processing, and a sealing method applied to the plasma processing apparatus.
  • the plasma processing apparatus includes a processing chamber that defines a sealed space, a plasma forming electrode provided in the sealed space, and an opening formed in the processing chamber from the outside of the processing chamber.
  • An inner conductor extending toward the forming electrode, surrounding the inner conductor, defining an air gap between the inner conductor and the outer conductor defining the opening; and the inner conductor and the outer conductor
  • a seal member formed of an insulator for connecting the gap to an atmosphere-side space and a space communicating with the sealed space; and, of the gap, the sealed space side with respect to the seal member
  • a discharge preventing member made of an insulating material that fills the space formed in the substrate.
  • the plasma formation is performed through a processing chamber defining a sealed space, a plasma forming electrode provided in the sealed space, and an opening formed in the processing chamber from the outside of the processing chamber.
  • a plasma processing apparatus sealing method comprising: an inner conductor extending toward an electrode; and an outer conductor that surrounds the inner conductor, defines an air gap between the inner conductor, and defines the opening
  • a seal member formed of an insulator is connected to the inner conductor and the outer conductor, the gap is separated into a space on the atmosphere side and a space communicating with the sealed space, and the seal among the gaps A space formed on the sealed space side with respect to the member is filled with an insulator.
  • the discharge prevention member fills the space formed on the sealed space side with respect to the sealing member, so that when the space is decompressed, the discharge is generated between the inner conductor and the outer conductor. As a result, it is possible to stably excite high-density plasma.
  • FIG. 1 is a cross-sectional view schematically showing a plasma processing apparatus according to an embodiment of the present invention.
  • the top view seen from the lower surface side of the electrode of FIG. 1 is a cross-sectional view schematically showing a plasma processing apparatus according to an embodiment of the present invention.
  • the expanded sectional view of the principal part of FIG. The perspective view of a conductive elastic member. Sectional drawing of the VI-VI line direction of FIG. Sectional drawing which shows the outline of the plasma processing apparatus which used the elastomer O-ring around the formation area of plasma.
  • a plasma processing apparatus 1 (hereinafter referred to as an apparatus 1) shown in FIGS. 1 and 2 is used for various plasma processes such as plasma CVD (Chemical Vapor Deposition).
  • This apparatus 1 has the same basic structure as the plasma processing apparatus described in FIG. That is, the apparatus 1 includes the processing chamber 10, the susceptor 14, the coaxial tube 20, the dielectric plate 34, and the electrode 36 as described in FIG.
  • the seal member 60, the seal metals 70 and 71, and the discharge prevention member 100 are included. not exist.
  • the processing chamber 10 is formed of a conductive material such as aluminum alloy or stainless steel, and is connected to a reference potential.
  • An exhaust port 20 for exhausting the atmosphere in the processing chamber 10 is provided at the bottom of the processing chamber 10, and an exhaust device such as a vacuum pump (not shown) installed outside the processing chamber 10 is connected to the exhaust port 20. Is done. With this exhaust device, the sealed space 11 is decompressed.
  • An elastomer O-ring 50 is provided between the outer peripheral edge of the lower surface of the upper lid 13 and the upper end portion of the processing chamber 10 to seal between the upper lid 13 and the processing chamber 10. Since this O-ring 50 is sufficiently separated from the plasma formation region, it does not cause a chemical reaction with oxygen radicals or hydrogen radicals formed by the plasma.
  • the dielectric plate 34 is formed of a material such as aluminum oxide and is installed on the lower surface of the upper lid 13.
  • the plasma forming electrode 36 is formed of a material such as an aluminum alloy, and is disposed on the lower surface of the dielectric plate 34.
  • the plasma forming electrode 36 is fixed to the upper lid 13 together with the dielectric plate 34 by a fastening member such as a bolt.
  • the dielectric plate 34 and the plasma forming electrode 36 have a square outer shape, and are formed so that the dielectric plate 34 is slightly larger than the plasma forming electrode 36. Of 34, only the outer peripheral edge 34 p is exposed to the sealed space 11.
  • the processing chamber 10 including the upper lid 13 is formed of a conductive material such as an aluminum alloy and is grounded.
  • the processing chamber 10 defines a sealed space 11 that can be decompressed.
  • the susceptor 14 is made of, for example, aluminum nitride, and electrostatically attracts the substrate 16 to be placed and supplies a power supply unit (not shown) for applying a predetermined bias voltage, and heats the substrate 16 to a predetermined temperature (not shown). Built-in heater.
  • the coaxial tube 20 includes a round bar-shaped inner conductor 21 extending toward the electrode 36 and a cylindrical outer conductor 22 surrounding the inner conductor 21, and a microwave (not shown) provided outside the processing chamber 10. Connected to a supply source and receives microwave power.
  • the inner conductor 21 and the outer conductor 22 are made of a low resistance material such as oxygen-free copper.
  • the inner conductor 21 extends to the upper surface of the dielectric plate 34 through the opening 13 h of the lid 13, and the lower end surface of the inner conductor 21 is adjacent to the upper surface of the dielectric plate 34. It is desirable to provide a narrow gap of about 0.2 to 0.4 mm at room temperature between the inner conductor 21 and the dielectric plate 34.
  • the flange at the lower end of the outer conductor 22 is connected to the periphery of the opening 13 h of the lid 13.
  • the flange at the lower end of the external conductor 22 is fixed to the lid 13 and both are electrically connected.
  • the opening 13h formed in the lid 13 has an inner diameter that is approximately the same as the inner diameter of the outer conductor 22, and a gap 23 is formed between the inner conductor 21, the outer conductor 22, and the opening 13h. . That is, the opening 13h of the lid 13 defines a part of the gap 23 and constitutes a part of the outer conductor of the present invention.
  • the gap 23 communicates with the atmosphere.
  • the seal member 60 is formed in an annular shape and is disposed in the gap 23 between the inner conductor 21 and the outer conductor 22, and separates the gap 23 into a space on the atmosphere side and a space communicating with the sealed space 11.
  • the seal member 60 is formed of an insulator such as aluminum oxide.
  • the space between the inner peripheral portion at the upper end of the seal member 60 and the outer surface of the inner conductor 21 is sealed with a seal metal 70, and the space between the outer peripheral portion at the lower end of the seal member 60 and the inner wall surface of the opening 13f is sealed metal. 71 is sealed.
  • a metal having a relatively low coefficient of thermal expansion is used for the seal metals 70 and 71.
  • the seal metal 70 is brazed to the inner conductor 70 and the seal member 60, and the seal metal 71 is brazed to the seal member 60 and welded to the inner wall surface of the opening 13f.
  • the seal metals 70 and 71 are formed in a cylindrical shape in order to secure a certain dimension of the inner conductor 21 in the central axis direction. This is because the members connected to the seal metals 70 and 71 are deformed due to thermal expansion, so that stress repeatedly acts on the seal metals 70 and 71. However, by securing a certain dimension in the central axis direction, This is to prevent the seal metals 70 and 71 from being broken.
  • the discharge preventing member 100 is formed in a ring shape, and the diameter of the through hole 100a formed in the center is formed so that the inner conductor 70 is fitted, and the outer peripheral surface 100b on the upper end side is an annular sealing metal 70.
  • the outer peripheral surface 100c on the lower end side is formed so as to fit on the inner wall surface of the opening 13h of the upper lid 13.
  • the height of the discharge preventing member 100 (the dimension of the inner conductor 70 in the central axis direction) is substantially the same as the distance between the lower surface of the seal member 60 and the upper surface of the dielectric plate 34.
  • the discharge preventing member 100 is formed to have a size that fills the space SP, which is a part of the gap 23, defined by the sealing member 60, the sealing metal 71, the inner wall surface of the opening 13h, and the upper surface of the dielectric plate 34.
  • the discharge prevention member 100 is formed of an insulator, and it is preferable to use a material having low microwave absorption.
  • quartz, aluminum oxide, fluorocarbon resin (trade name: Teflon (registered trademark)) or the like can be used as a material for forming the discharge preventing member 100.
  • the above-described space SP is sealed with respect to the air gap 23 by the seal member 60 and the seal metals 70 and 71 and communicates with the sealed space 11 of the processing chamber 10.
  • the sealed space 11 is depressurized and the space SP is also depressurized.
  • the microwave is It propagates through the coaxial tube 20, passes through the dielectric plate 34, and propagates from the outer peripheral edge 34p of the dielectric plate 34 along the surface 36f of the electrode 36 as a conductor surface wave TM.
  • the plasma is excited by the microwave as the conductor surface wave TM propagating on the surface 36f of the electrode 36.
  • FIGS. 3 to 6 the same reference numerals are used for the same components as those in the first embodiment.
  • the present embodiment other aspects of the discharge preventing member and other aspects of the coaxial tube will be described.
  • the abnormal discharge can be prevented by filling the space SP formed above the plasma forming electrode 36 in the sealed gap 23 with the discharge preventing member.
  • the plasma processing apparatus 1A (hereinafter referred to as apparatus 1A) according to the present embodiment is the first discharge preventing member 100A formed as the discharge preventing member so as to match the shape of the space where the abnormal discharge occurs.
  • the 2nd discharge prevention member 100B formed so that it may have fluidity.
  • the seal member 60A is connected to the inner conductor 21A by a sealing metal 70A, and is connected to the outer peripheral edge of the opening 13h of the upper lid 13 by a sealing metal 71A.
  • the space 23 is separated from the atmosphere side and the electrode 36 side by the seal member 60A and the sealing metals 70A and 71A, and a space communicating with the sealed space 11 is formed on the electrode 36 side.
  • the space SP3 formed between the lower end surface of the seal member 60A and the upper surface of the dielectric plate 34 is formed by the first discharge preventing member 100A made of a dielectric formed in a ring shape so as to match the space SP3. Buried.
  • the second discharge member 100B includes a space SP1 formed between the inner conductor 21A and the inner peripheral surface of the seal member 60A, the seal member 60A, the seal metal 71A, the upper lid 13, and the first discharge prevention member 100A. Is housed in a space SP2 surrounded by
  • the second discharge member 100B is a large number of small particles (for example, a spherical shape having a diameter of about 1 mm) formed of aluminum oxide, fluorocarbon resin (trade name: Teflon (registered trademark)), quartz, or the like. Has fluidity. For this reason, it is possible to fill the space according to the shape of the space to be accommodated, and it is not necessary to process the insulator so as to match the shape of the space to be accommodated.
  • the second discharge member 100B is not limited to a granular body, and may be a powder or a liquid. In the case of a liquid, the space may be filled with an insulating liquid having a small dielectric loss in the microwave band, for example, a fluorine-based liquid (trade name: Fluorinert, Galden, etc.).
  • a slight gap is formed between the lower end surface of the inner conductor 21 and the upper surface of the dielectric plate 34.
  • the load impedance from the coaxial tube 20 side to the electrode 36 changes greatly, and it becomes difficult to control the power supplied to the plasma.
  • a gap is formed between the inner conductor and the dielectric plate, abnormal discharge may occur.
  • the apparatus 1A is provided with a movable conductor plate 21B between the lower end surface of the inner conductor 21A constituting the coaxial tube 20A and the upper surface of the dielectric plate 34.
  • a conductive elastic member 150 is provided between the plate 21B and the lower end surface of the internal conductor 21A.
  • a sirocco fan 200 for air-cooling the inner conductor 21A is attached to the outer peripheral surface of the cylindrical outer conductor 22 constituting the coaxial pipe 20A.
  • the movable conductor plate 21B is formed in a disk shape having substantially the same diameter as the inner conductor 21A, and a ring-shaped groove 21Bt for receiving the conductive elastic member 150 is formed on the upper surface.
  • the movable conductor plate 21B is formed of a low-resistance material such as copper, like the internal conductor 21A. As shown in FIG. 4, a gap Gp is formed between the lower end surface of the inner conductor 21 ⁇ / b> A and the upper surface of the movable conductor plate 21 ⁇ / b> B by inserting the conductive elastic member 150.
  • the conductive elastic member 150 is a spring in which a spirally wound wire is formed in a ring shape.
  • the conductive elastic member 150 is made of a metal such as stainless steel or phosphor bronze and has conductivity. Due to the presence of the conductive elastic member 150, the inner conductor 21A and the movable conductor plate 21B are always electrically connected.
  • a belt-shaped spring material is spirally wound to form a ring shape, a flat spring material is processed into a leaf spring, nickel, Those plated with gold, silver or the like can be used. Also, a resin O-ring with metal plating can be used.
  • the conductive elastic member 150 pushes down the movable conductor plate 21B with an appropriate elastic force, and brings the movable conductor plate 21B into close contact with the dielectric plate 34. Even if the lower surface of the inner conductor 21A is moved downward due to the thermal expansion of the inner conductor 21A, and even if the processing dimensions vary, the movable conductor plate 21B and the dielectric plate 21B It is possible to prevent a gap from being generated.
  • an inlet 22h1 for taking in cooling air supplied from the sirocco fan 200 into the outer conductor 22A is provided on the wall surface of the outer conductor 22A to which the exhaust port 201 of the sirocco fan 200 is connected.
  • a plurality of outlets 22h2 for discharging the air from the outer conductor 22A to the outside are formed on the opposite side of the inner conductor 21A on the wall surface of the outer conductor 22A from the inlet 22h1.
  • the temperature of the inner conductor 21A can be made substantially constant. If the temperature rise or temperature change of the inner conductor 21A can be suppressed, deformation of the inner conductor 21A due to heat can be suppressed, and the size of the gap Gp between the lower end surface of the inner conductor 21A and the upper surface of the movable conductor plate 21B can be made constant. Can be maintained, and fluctuations in load impedance can be suppressed.
  • the seal member is connected by using the seal metal. Is possible.
  • the sealing member and the discharge preventing member are formed of different materials, but may be formed of the same material. Moreover, although the sealing member and the discharge preventing member are separate members, the sealing member and the discharging preventing member may be integrated to have both a sealing function and a function of filling the space SP.
  • the whole discharge preventing member may be made of a fluid insulator.
  • the air cooling mechanism using the sirocco fan is applied to the apparatus of the second embodiment, but this air cooling mechanism can also be applied to the apparatus according to the first embodiment.
  • microwaves are used as electromagnetic waves.
  • present invention is not limited to this, and may be electromagnetic waves in other frequency bands.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Plasma Technology (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

 Provided is a plasma treatment device in which the properties of a film formed by plasma treatment can be improved. This invention has: a treatment chamber (10) for defining a sealed space (11); a plasma-forming electrode (36) provided in the sealed space; an interior conductor (21) extending from the exterior of the treatment chamber (10) toward the plasma-forming electrode (36) through an opening (13h) formed in the treatment chamber (10); exterior conductors (22, 13) surrounding the periphery of the interior conductor (21), and defining the opening (13h) and a void (23) bounded on one side by the interior conductor (21); a sealing member (60) for dividing the void (23) into an atmosphere-side space and a space communicating with the sealed space (11), the sealing member (60) being formed from an insulator and being connected to the interior conductor (21) and the exterior conductors (22, 13); and an anti-discharge insulator (100) for filling a portion of the void (23) corresponding to the space formed on the sealed-space (11) side relative to the sealing member (60).

Description

プラズマ処理装置およびそのシール方法Plasma processing apparatus and sealing method thereof
 本発明は、基板にプラズマ処理を施すプラズマ処理装置およびそのシール方法に関する。 The present invention relates to a plasma processing apparatus for performing plasma processing on a substrate and a sealing method thereof.
 平板ディスプレイ、太陽電池、半導体装置等の製造工程では、薄膜の形成やエッチング等にプラズマ処理装置が用いられている。プラズマ処理装置として、本発明者らは、特許文献1等に開示されたものを提案している。 In the manufacturing process of flat panel displays, solar cells, semiconductor devices, etc., plasma processing apparatuses are used for thin film formation and etching. As the plasma processing apparatus, the present inventors have proposed one disclosed in Patent Document 1 and the like.
 ここで、図7は、特許文献1と同様のタイプのプラズマ処理装置の概略を示す断面図である。この装置は、密閉空間11を画定する金属製の処理チャンバ10、基板16を載置するための処理チャンバ10内に設置されたサセプタ14、処理チャンバ10の上部を形成する蓋体13に接続された同軸管20、サセプタ14の上方であって蓋体13の下面に設けられた誘電体板34、誘電体板34の表面に設置された電極36を有する。同軸管20の内部導体21は蓋体13の開口13hを通じて誘電体板34の上面まで延びており、筒状の外部導体22の下端部のフランジは蓋体13の開口13hの周囲に接続されている。電極36は、誘電体板34の外周縁部34pのみが密閉空間11に対して露出するように、誘電体板34の下面の大部分を覆うように設けられている。同軸管20の内部導体21と外部導体22との間の空隙23は大気に連通している。このため、密閉空間11を密封するために、蓋体13の下面と誘電体板34との間には耐熱性を有するOリング40が設置されている。Oリング40には、耐熱性、耐プラズマ性に優れた合成ゴム、例えば、パーフロロエラストマーが使用される。この装置では、内部導体21に図示しないマイクロ波供給源から導入されたマイクロ波は、同軸管20を伝搬し、誘電体板34を透過し、誘電体板34の外周縁部34pから導体表面波TMとして電極36の表面36fに沿って伝搬する。この電極36の表面36fを伝搬する導体表面波TMとしてのマイクロ波によりプラズマが励起される。 Here, FIG. 7 is a cross-sectional view schematically showing a plasma processing apparatus of the same type as that of Patent Document 1. This apparatus is connected to a metal processing chamber 10 that defines a sealed space 11, a susceptor 14 installed in the processing chamber 10 for placing a substrate 16, and a lid 13 that forms the upper part of the processing chamber 10. The coaxial tube 20, the dielectric plate 34 provided on the lower surface of the lid 13 above the susceptor 14, and an electrode 36 installed on the surface of the dielectric plate 34. The inner conductor 21 of the coaxial tube 20 extends to the upper surface of the dielectric plate 34 through the opening 13 h of the lid 13, and the flange at the lower end of the cylindrical outer conductor 22 is connected to the periphery of the opening 13 h of the lid 13. Yes. The electrode 36 is provided so as to cover most of the lower surface of the dielectric plate 34 so that only the outer peripheral edge 34p of the dielectric plate 34 is exposed to the sealed space 11. A gap 23 between the inner conductor 21 and the outer conductor 22 of the coaxial tube 20 communicates with the atmosphere. For this reason, in order to seal the sealed space 11, an O-ring 40 having heat resistance is installed between the lower surface of the lid 13 and the dielectric plate 34. For the O-ring 40, a synthetic rubber excellent in heat resistance and plasma resistance, for example, perfluoroelastomer is used. In this apparatus, a microwave introduced from an unillustrated microwave supply source to the inner conductor 21 propagates through the coaxial waveguide 20, passes through the dielectric plate 34, and conducts a conductor surface wave from the outer peripheral edge 34 p of the dielectric plate 34. It propagates along the surface 36f of the electrode 36 as TM. The plasma is excited by the microwave as the conductor surface wave TM propagating on the surface 36f of the electrode 36.
特許第4944198号Patent No. 4944198
 上記したプラズマ処理装置では、耐熱性を有するエラストマーで形成されたOリング40を、閉空間11を密封するために使用している。しかしながら、Oリング40は、上記したように、マイクロ波の通り道に配置されているため、プラズマ処理中には、200℃程度に加熱される。そして、Oリング40は加熱された状態の下で、励起されたプラズマで形成される酸素ラジカルや水素ラジカルに晒されて化学反応を起こし、ガス化物質が密閉空間11内に漏出することが分かった。処理チャンバ10の密閉空間11内に漏出したガス化物質は、当該処理チャンバ10内でプラズマ処理により形成される基板16上の膜に取り込まれ、この膜の特性に影響を及ぼすという問題が存在した。 In the plasma processing apparatus described above, an O-ring 40 made of heat-resistant elastomer is used to seal the closed space 11. However, since the O-ring 40 is disposed in the microwave path as described above, it is heated to about 200 ° C. during the plasma processing. The O-ring 40 is exposed to oxygen radicals or hydrogen radicals formed by excited plasma under a heated state to cause a chemical reaction, and the gasification substance leaks into the sealed space 11. It was. The gasified substance leaking into the sealed space 11 of the processing chamber 10 is taken into the film on the substrate 16 formed by plasma processing in the processing chamber 10, and there is a problem that the characteristics of the film are affected. .
 本発明は、プラズマ処理により形成される膜の特性を改善できるプラズマ処理装置およびこのプラズマ処理装置に適用されるシール方法を提供する。 The present invention provides a plasma processing apparatus capable of improving the characteristics of a film formed by plasma processing, and a sealing method applied to the plasma processing apparatus.
 本発明のプラズマ処理装置は、密閉空間を画定する処理チャンバと、前記密閉空間内に設けられたプラズマ形成用電極と、前記処理チャンバの外部から、当該処理チャンバに形成された開口を通じて、前記プラズマ形成用電極に向かって延在する内部導体と、前記内部導体の周囲を囲み、前記内部導体との間に空隙を画定するとともに、前記開口を画定する外部導体と、前記内部導体および外部導体に接続されて、前記空隙を大気側の空間と前記密閉空間に連通する空間とに隔てるための、絶縁体で形成されたシール部材と、前記空隙のうち、前記シール部材に対して前記密閉空間側に形成される空間を埋める、絶縁体で形成された放電防止部材と、を有することを特徴とする。 The plasma processing apparatus according to the present invention includes a processing chamber that defines a sealed space, a plasma forming electrode provided in the sealed space, and an opening formed in the processing chamber from the outside of the processing chamber. An inner conductor extending toward the forming electrode, surrounding the inner conductor, defining an air gap between the inner conductor and the outer conductor defining the opening; and the inner conductor and the outer conductor A seal member formed of an insulator for connecting the gap to an atmosphere-side space and a space communicating with the sealed space; and, of the gap, the sealed space side with respect to the seal member And a discharge preventing member made of an insulating material that fills the space formed in the substrate.
 本発明のシール方法は、密閉空間を画定する処理チャンバと、前記密閉空間内に設けられたプラズマ形成用電極と、前記処理チャンバの外部から、当該処理チャンバに形成された開口を通じて、前記プラズマ形成用電極に向かって延在する内部導体と、前記内部導体の周囲を囲み、前記内部導体との間に空隙を画定するとともに、前記開口を画定する外部導体と、を有するプラズマ処理装置のシール方法であって、絶縁体で形成されたシール部材を前記内部導体および外部導体に接続して、前記空隙を大気側の空間と前記密閉空間に連通する空間とに隔て、前記空隙のうち、前記シール部材に対して前記密閉空間側に形成される空間を絶縁体で埋める、ことを特徴とする。 According to the sealing method of the present invention, the plasma formation is performed through a processing chamber defining a sealed space, a plasma forming electrode provided in the sealed space, and an opening formed in the processing chamber from the outside of the processing chamber. A plasma processing apparatus sealing method comprising: an inner conductor extending toward an electrode; and an outer conductor that surrounds the inner conductor, defines an air gap between the inner conductor, and defines the opening A seal member formed of an insulator is connected to the inner conductor and the outer conductor, the gap is separated into a space on the atmosphere side and a space communicating with the sealed space, and the seal among the gaps A space formed on the sealed space side with respect to the member is filled with an insulator.
 本発明によれば、処理チャンバのプラズマ形成領域の近傍のシーリングに、エラストマー製のOリングを使用しないので、ガス化物質が発生せず、プラズマ処理により基板上に形成される膜の特性を改善できる。また、本発明によれば、放電防止部材によって、シール部材に対して密閉空間側に形成される空間を埋めることで、当該空間が減圧された際に内部導体と外部導体との間で放電が発生するのを防止でき、その結果、高密度のプラズマを安定的に励起することが可能となる。 According to the present invention, since an elastomeric O-ring is not used for sealing in the vicinity of the plasma forming region of the processing chamber, no gasified substance is generated, and the characteristics of the film formed on the substrate by plasma processing are improved. it can. Further, according to the present invention, the discharge prevention member fills the space formed on the sealed space side with respect to the sealing member, so that when the space is decompressed, the discharge is generated between the inner conductor and the outer conductor. As a result, it is possible to stably excite high-density plasma.
本発明の一実施形態に係るプラズマ処理装置の概略を示す断面図。1 is a cross-sectional view schematically showing a plasma processing apparatus according to an embodiment of the present invention. 図1の電極の下面側から見た平面図。The top view seen from the lower surface side of the electrode of FIG. 本発明の一実施形態に係るプラズマ処理装置の概略を示す断面図。1 is a cross-sectional view schematically showing a plasma processing apparatus according to an embodiment of the present invention. 図3の要部の拡大断面図。The expanded sectional view of the principal part of FIG. 導電性弾性部材の斜視図。The perspective view of a conductive elastic member. 図3のVI―VI線方向の断面図。Sectional drawing of the VI-VI line direction of FIG. プラズマの形成領域周辺にエラストマー製Oリングを用いたプラズマ処理装置の概略を示す断面図。Sectional drawing which shows the outline of the plasma processing apparatus which used the elastomer O-ring around the formation area of plasma.
 以下に添付図面を参照しながら、本発明の実施形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. In addition, in this specification and drawing, about the component which has the substantially same function structure, duplication description is abbreviate | omitted by attaching | subjecting the same code | symbol.
第1実施形態
 図1及び図2に示したプラズマ処理装置1(以下、装置1という。)は、例えば、プラズマCVD(Chemical Vapor Deposition)等の各種プラズマ処理に用いられる。この装置1は、図7において説明したプラズマ処理装置と基本構造は同様である。すなわち、装置1は、図7において説明したと同様に、処理チャンバ10、サセプタ14、同軸管20、誘電体板34および電極36を有する。本実施形態は、これらの構成に加えて、シール部材60、シール用金属70,71、および、放電防止部材100を有するが、誘電体板34と上蓋13との間をシールするOリング40は存在しない。
First Embodiment A plasma processing apparatus 1 (hereinafter referred to as an apparatus 1) shown in FIGS. 1 and 2 is used for various plasma processes such as plasma CVD (Chemical Vapor Deposition). This apparatus 1 has the same basic structure as the plasma processing apparatus described in FIG. That is, the apparatus 1 includes the processing chamber 10, the susceptor 14, the coaxial tube 20, the dielectric plate 34, and the electrode 36 as described in FIG. In this embodiment, in addition to these configurations, the seal member 60, the seal metals 70 and 71, and the discharge prevention member 100 are included. not exist.
 処理チャンバ10は、アルミニウム合金、ステンレス等の導電性材料で形成され、基準電位に接続されている。処理チャンバ10の底部には、処理チャンバ10内の雰囲気を排気するための排気口20が設けられ、この排気口20に処理チャンバ10の外部に設置された図示しない真空ポンプなどの排気装置が接続される。この排気装置により、密閉空間11は減圧される。上蓋13の下面の外周縁部と処理チャンバ10の上端部との間には、エラストマー製のOリング50が設けられ、上蓋13と処理チャンバ10との間を密封している。このOリング50は、プラズマ形成領域から十分に離れているため、プラズマで形成される酸素ラジカルや水素ラジカルと化学反応を起こすことはない。 The processing chamber 10 is formed of a conductive material such as aluminum alloy or stainless steel, and is connected to a reference potential. An exhaust port 20 for exhausting the atmosphere in the processing chamber 10 is provided at the bottom of the processing chamber 10, and an exhaust device such as a vacuum pump (not shown) installed outside the processing chamber 10 is connected to the exhaust port 20. Is done. With this exhaust device, the sealed space 11 is decompressed. An elastomer O-ring 50 is provided between the outer peripheral edge of the lower surface of the upper lid 13 and the upper end portion of the processing chamber 10 to seal between the upper lid 13 and the processing chamber 10. Since this O-ring 50 is sufficiently separated from the plasma formation region, it does not cause a chemical reaction with oxygen radicals or hydrogen radicals formed by the plasma.
 誘電体板34は、酸化アルミニウム等の材料で形成され、上蓋13の下面に設置されている。プラズマ形成用電極36は、アルミニウム合金等の材料で形成され、誘電体板34の下面に設置されている。なお、プラズマ形成用電極36は、図示しないが、ボルト等の締結部材により、誘電体板34とともに、上蓋13に固定さている。誘電体板34およびプラズマ形成用電極36は、図2に示すように、正方形状の外形を有し、誘電体板34がプラズマ形成用電極36よりも若干大きくなるように形成され、誘電体板34のうち、外周縁部34pのみが密閉空間11に対して露出するようになっている。 The dielectric plate 34 is formed of a material such as aluminum oxide and is installed on the lower surface of the upper lid 13. The plasma forming electrode 36 is formed of a material such as an aluminum alloy, and is disposed on the lower surface of the dielectric plate 34. Although not shown, the plasma forming electrode 36 is fixed to the upper lid 13 together with the dielectric plate 34 by a fastening member such as a bolt. As shown in FIG. 2, the dielectric plate 34 and the plasma forming electrode 36 have a square outer shape, and are formed so that the dielectric plate 34 is slightly larger than the plasma forming electrode 36. Of 34, only the outer peripheral edge 34 p is exposed to the sealed space 11.
 処理チャンバ10は、上蓋13も含めて、アルミニウム合金等の導電性材料で形成され、接地されている。処理チャンバ10は、減圧可能な密閉空間11を画定している。サセプタ14は、例えば、窒化アルミニウムで形成され、載置される基板16を静電吸着するとともに所定のバイアス電圧を印加するための図示しない給電部と、基板16を所定の温度に加熱する図示しないヒータを内蔵している。 The processing chamber 10 including the upper lid 13 is formed of a conductive material such as an aluminum alloy and is grounded. The processing chamber 10 defines a sealed space 11 that can be decompressed. The susceptor 14 is made of, for example, aluminum nitride, and electrostatically attracts the substrate 16 to be placed and supplies a power supply unit (not shown) for applying a predetermined bias voltage, and heats the substrate 16 to a predetermined temperature (not shown). Built-in heater.
 同軸管20は、電極36に向かって延在する丸棒状の内部導体21と、内部導体21の周囲を囲む円筒状の外部導体22を含み、処理チャンバ10の外部に設けられた図示しないマイクロ波供給源と接続され、マイクロ波電力の供給を受ける。内部導体21および外部導体22は、無酸素銅等の低抵抗材料で形成されている。内部導体21は蓋体13の開口13hを通じて誘電体板34の上面まで延びており、内部導体21の下端面が誘電体板34の上面に隣接している。内部導体21と誘電体板34との間に、常温で0.2~0.4mm程度の狭い隙間を設けることが望ましい。これは、内部導体21の熱膨張により内部導体21の下端面が下方に移動したとても、また、内部導体21の加工寸法がばらついたとしても、内部導体21が誘電体板34を押し下げて誘電体板34を破損することがないようにするためである。外部導体22の下端部のフランジは蓋体13の開口13hの周囲に接続されている。外部導体22の下端部のフランジは、蓋体13に固定され、両者は電気的に接続されている。蓋体13に形成された開口13hは、その内径が外部導体22の内径とほぼ同じ寸法に形成され、内部導体21と外部導体22および開口13hとの間には、空隙23が形成されている。すなわち、蓋体13の開口13hは、空隙23の一部を画定しており、本発明の外部導体の一部を構成している。空隙23は、大気に通じている。 The coaxial tube 20 includes a round bar-shaped inner conductor 21 extending toward the electrode 36 and a cylindrical outer conductor 22 surrounding the inner conductor 21, and a microwave (not shown) provided outside the processing chamber 10. Connected to a supply source and receives microwave power. The inner conductor 21 and the outer conductor 22 are made of a low resistance material such as oxygen-free copper. The inner conductor 21 extends to the upper surface of the dielectric plate 34 through the opening 13 h of the lid 13, and the lower end surface of the inner conductor 21 is adjacent to the upper surface of the dielectric plate 34. It is desirable to provide a narrow gap of about 0.2 to 0.4 mm at room temperature between the inner conductor 21 and the dielectric plate 34. This is because the lower end surface of the inner conductor 21 has moved downward due to the thermal expansion of the inner conductor 21, and even if the processing dimensions of the inner conductor 21 vary, the inner conductor 21 pushes down the dielectric plate 34 and the dielectric This is to prevent the plate 34 from being damaged. The flange at the lower end of the outer conductor 22 is connected to the periphery of the opening 13 h of the lid 13. The flange at the lower end of the external conductor 22 is fixed to the lid 13 and both are electrically connected. The opening 13h formed in the lid 13 has an inner diameter that is approximately the same as the inner diameter of the outer conductor 22, and a gap 23 is formed between the inner conductor 21, the outer conductor 22, and the opening 13h. . That is, the opening 13h of the lid 13 defines a part of the gap 23 and constitutes a part of the outer conductor of the present invention. The gap 23 communicates with the atmosphere.
 シール部材60は、環状に形成され、内部導体21と外部導体22の間の空隙23に配置され、空隙23を大気側の空間と密閉空間11に連通する空間とに隔てている。シール部材60は、酸化アルミニウム等の絶縁体で形成されている。シール部材60の上端の内周部と内部導体21の外表面との間は、シール金属70でシールされ、シール部材60の下端の外周部と開口13fの内壁面との間は、シール用金属71でシールされている。シール金属70、71には、熱膨張率が比較的低い金属が用いられる。例えば、鉄にニッケルおよびコバルトを配合したコバールや、ニッケルをベースとして鉄、クロム、ニオブ、モリブデンなどを含むニッケル系合金(商品名:インコネル)などである。シール金属70は、内部導体70およびシール部材60にそれぞれロウ付けされ、シール金属71は、シール部材60にロウ付けされるとともに開口13fの内壁面に溶接されている。シール金属70、71は、内部導体21の中心軸線方向の寸法をある程度確保するために、円筒状に形成されている。これは、シール金属70、71に接続された部材が熱膨張により変形するため、シール金属70、71に応力が繰り返し作用するが、中心軸線方向の寸法をある程度確保することで、その弾性により応力を受容し、シール金属70、71が破壊するのを防ぐためである。 The seal member 60 is formed in an annular shape and is disposed in the gap 23 between the inner conductor 21 and the outer conductor 22, and separates the gap 23 into a space on the atmosphere side and a space communicating with the sealed space 11. The seal member 60 is formed of an insulator such as aluminum oxide. The space between the inner peripheral portion at the upper end of the seal member 60 and the outer surface of the inner conductor 21 is sealed with a seal metal 70, and the space between the outer peripheral portion at the lower end of the seal member 60 and the inner wall surface of the opening 13f is sealed metal. 71 is sealed. For the seal metals 70 and 71, a metal having a relatively low coefficient of thermal expansion is used. For example, Kovar in which nickel and cobalt are blended with iron, or a nickel-based alloy (trade name: Inconel) containing nickel, iron, chromium, niobium, molybdenum and the like. The seal metal 70 is brazed to the inner conductor 70 and the seal member 60, and the seal metal 71 is brazed to the seal member 60 and welded to the inner wall surface of the opening 13f. The seal metals 70 and 71 are formed in a cylindrical shape in order to secure a certain dimension of the inner conductor 21 in the central axis direction. This is because the members connected to the seal metals 70 and 71 are deformed due to thermal expansion, so that stress repeatedly acts on the seal metals 70 and 71. However, by securing a certain dimension in the central axis direction, This is to prevent the seal metals 70 and 71 from being broken.
 放電防止部材100は、リング状に形成され、中心部に形成された貫通孔100aの直径は、内部導体70が嵌合するように形成され、上端側の外周面100bは環状のシール用金属70の内周に嵌るように形成され、下端側の外周面100cは上蓋13の開口13hの内壁面に嵌るように形成されている。また、放電防止部材100の高さ(内部導体70の中心軸線方向の寸法)は、シール部材60の下面と誘電体板34の上面との距離とほぼ同じ寸法である。このように、放電防止部材100は、シール部材60とシール用金属71、開口13hの内壁面および誘電体板34の上面により画定される、空隙23の一部である空間SPを埋める寸法に形成されている。放電防止部材100は、絶縁体で形成され、好適には、マイクロ波の吸収性が低い材料を用いることが好ましい。例えば、石英、酸化アルミニウム、フッ化炭素樹脂(商品名:テフロン(登録商標))等を放電防止部材100の形成材料に用いることができる。 The discharge preventing member 100 is formed in a ring shape, and the diameter of the through hole 100a formed in the center is formed so that the inner conductor 70 is fitted, and the outer peripheral surface 100b on the upper end side is an annular sealing metal 70. The outer peripheral surface 100c on the lower end side is formed so as to fit on the inner wall surface of the opening 13h of the upper lid 13. The height of the discharge preventing member 100 (the dimension of the inner conductor 70 in the central axis direction) is substantially the same as the distance between the lower surface of the seal member 60 and the upper surface of the dielectric plate 34. As described above, the discharge preventing member 100 is formed to have a size that fills the space SP, which is a part of the gap 23, defined by the sealing member 60, the sealing metal 71, the inner wall surface of the opening 13h, and the upper surface of the dielectric plate 34. Has been. The discharge prevention member 100 is formed of an insulator, and it is preferable to use a material having low microwave absorption. For example, quartz, aluminum oxide, fluorocarbon resin (trade name: Teflon (registered trademark)) or the like can be used as a material for forming the discharge preventing member 100.
 ここで、放電防止部材100の作用について説明する。上記した空間SPは、大気側の空隙23に対して、シール部材60およびシール金属70、71によりシールされているとともに、処理チャンバ10の密閉空間11と連通している。処理チャンバ10において、プラズマ処理が実行されると、密閉空間11は減圧されて空間SPも減圧された状態となり、この状態で、同軸管20に強いマイクロ波が供給されると、マイクロ波は、同軸管20を伝搬し、誘電体板34を透過し、誘電体板34の外周縁部34pから導体表面波TMとして電極36の表面36fに沿って伝搬する。この電極36の表面36fを伝搬する導体表面波TMとしてのマイクロ波によりプラズマが励起される。このとき、空間SPは、マイクロ波の通り道にあるため、空間SPにおいて異常放電が容易に発生してしまう。異常放電が発生すると、マイクロ波電力が消費されるため、プラズマ形成用電極36の表面上に正常にプラズマを励起することができなくなる。また、異常放電が発生する領域の周辺に存在する部材が加熱されて破損してしまうことがある。このため、本実施形態では、放電防止部材100を空間SPに設置して空間SPを埋めることで、異常放電の発生を確実に防ぐ。すなわち、処理チャンバ10の開口13hをシーリングするために、従来のOリング40に代えて、シール部材60およびシール金属70、71を用いると、ある程度の大きさを有する空間SPがマイクロ波の通路に不可避的に形成されるが、この空間SPを放電防止部材100で埋めることにより、プラズマを安定的に励起でき、また、異常放電による装置の破損も防止できる。さらに、エラストマー製のOリング40を使用しないので、プラズマ処理により形成する膜の特性も改善できる。 Here, the operation of the discharge preventing member 100 will be described. The above-described space SP is sealed with respect to the air gap 23 by the seal member 60 and the seal metals 70 and 71 and communicates with the sealed space 11 of the processing chamber 10. When the plasma processing is performed in the processing chamber 10, the sealed space 11 is depressurized and the space SP is also depressurized. In this state, when a strong microwave is supplied to the coaxial tube 20, the microwave is It propagates through the coaxial tube 20, passes through the dielectric plate 34, and propagates from the outer peripheral edge 34p of the dielectric plate 34 along the surface 36f of the electrode 36 as a conductor surface wave TM. The plasma is excited by the microwave as the conductor surface wave TM propagating on the surface 36f of the electrode 36. At this time, since the space SP is in the path of the microwave, abnormal discharge easily occurs in the space SP. When abnormal discharge occurs, microwave power is consumed, so that plasma cannot be normally excited on the surface of the plasma forming electrode 36. In addition, a member existing around a region where abnormal discharge occurs may be heated and damaged. For this reason, in this embodiment, generation | occurrence | production of abnormal discharge is prevented reliably by installing the discharge prevention member 100 in the space SP and filling the space SP. That is, when the seal member 60 and the seal metals 70 and 71 are used in place of the conventional O-ring 40 to seal the opening 13h of the processing chamber 10, the space SP having a certain size becomes a microwave path. Although inevitably formed, by filling this space SP with the discharge preventing member 100, plasma can be excited stably, and damage to the apparatus due to abnormal discharge can be prevented. Furthermore, since the elastomer O-ring 40 is not used, the characteristics of the film formed by the plasma treatment can be improved.
第2実施形態
 次に、図3~図6を参照して、本発明の他の実施形態に係るプラズマ処理装置について説明する。なお、図3~図6において、第1実施形態と同様の構成部分については同様の符号を使用している。本実施形態では、放電防止部材の他の態様および同軸管の他の態様について説明する。
Second Embodiment Next, a plasma processing apparatus according to another embodiment of the present invention will be described with reference to FIGS. 3 to 6, the same reference numerals are used for the same components as those in the first embodiment. In the present embodiment, other aspects of the discharge preventing member and other aspects of the coaxial tube will be described.
 上記したように、シールされた空隙23のうちプラズマ形成用電極36の上方に形成される空間SPを、放電防止部材で埋めることにより異常放電を防止できる。しかしながら、空間SPが複雑な形状であったり、歪んでいたりすると、一体的に形成された絶縁体で空間SPを埋めることが困難な場合がある。このため、本実施形態に係るプラズマ処理装置1A(以下、装置1A)は、放電防止部材として、上記した異常放電が発生する空間の形状に合致するように形成された第1の放電防止部材100Aに加えて、流動性を有するように形成された第2の放電防止部材100Bを有する。図3および図4においてシール部材60Aは、シール用金属70Aにより内部導体21Aに接続されるとともに、シール用金属71Aにより、上蓋13の開口13hの外周縁部に接続されている。空隙23は、シール部材60Aおよびシール用金属70A,71Aにより大気側と電極36側とに隔てられ、電極36側には、密閉空間11に連通する空間が形成される。シール部材60Aの下端面と誘電体板34の上面との間に形成される空間SP3は、当該空間SP3に合致するようにリング形状に形成された誘電体からなる第1の放電防止部材100Aによって埋められている。第2の放電部材100Bは、内部導体21Aとシール部材60Aの内周面との間に形成される空間SP1と、シール部材60Aとシール用金属71Aと上蓋13と第1の放電防止部材100Aとで囲まれた空間SP2とに収容されている。 As described above, the abnormal discharge can be prevented by filling the space SP formed above the plasma forming electrode 36 in the sealed gap 23 with the discharge preventing member. However, if the space SP has a complicated shape or is distorted, it may be difficult to fill the space SP with an integrally formed insulator. For this reason, the plasma processing apparatus 1A (hereinafter referred to as apparatus 1A) according to the present embodiment is the first discharge preventing member 100A formed as the discharge preventing member so as to match the shape of the space where the abnormal discharge occurs. In addition, it has the 2nd discharge prevention member 100B formed so that it may have fluidity. 3 and 4, the seal member 60A is connected to the inner conductor 21A by a sealing metal 70A, and is connected to the outer peripheral edge of the opening 13h of the upper lid 13 by a sealing metal 71A. The space 23 is separated from the atmosphere side and the electrode 36 side by the seal member 60A and the sealing metals 70A and 71A, and a space communicating with the sealed space 11 is formed on the electrode 36 side. The space SP3 formed between the lower end surface of the seal member 60A and the upper surface of the dielectric plate 34 is formed by the first discharge preventing member 100A made of a dielectric formed in a ring shape so as to match the space SP3. Buried. The second discharge member 100B includes a space SP1 formed between the inner conductor 21A and the inner peripheral surface of the seal member 60A, the seal member 60A, the seal metal 71A, the upper lid 13, and the first discharge prevention member 100A. Is housed in a space SP2 surrounded by
 第2の放電部材100Bは、酸化アルミニウム、フッ化炭素樹脂(商品名:テフロン(登録商標))、石英等で形成された、多数の小粒状体(例えば、直径1mm程度の球状)であり、流動性をもつ。このため、収容される空間の形状に応じて当該空間を埋めることが可能であり、絶縁体を収容される空間の形状に合致するように加工する必要がない。第2の放電部材100Bは、粒状体に限らず、粉体や液体であってもよい。液体の場合には、マイクロ波帯における誘電損失が小さな絶縁性液体、例えば、フッ素系液体(商品名:フロリナート、ガルデン等)で空間を埋めてもよい。 The second discharge member 100B is a large number of small particles (for example, a spherical shape having a diameter of about 1 mm) formed of aluminum oxide, fluorocarbon resin (trade name: Teflon (registered trademark)), quartz, or the like. Has fluidity. For this reason, it is possible to fill the space according to the shape of the space to be accommodated, and it is not necessary to process the insulator so as to match the shape of the space to be accommodated. The second discharge member 100B is not limited to a granular body, and may be a powder or a liquid. In the case of a liquid, the space may be filled with an insulating liquid having a small dielectric loss in the microwave band, for example, a fluorine-based liquid (trade name: Fluorinert, Galden, etc.).
 次に、同軸管の構成について説明する。第1の実施形態においては、内部導体21の下端面と誘電体板34の上面との間に、僅かな隙間を形成した。この隙間の大きさが、内部導体21の温度変化により変化すると、同軸管20側から電極36までの負荷インピーダンスが大きく変化してしまい、プラズマに供給する電力の制御が困難となる。また、内部導体と誘電体板との間に隙間を形成すると、異常放電が発生する可能性がある。 Next, the configuration of the coaxial tube will be described. In the first embodiment, a slight gap is formed between the lower end surface of the inner conductor 21 and the upper surface of the dielectric plate 34. When the size of the gap changes due to the temperature change of the inner conductor 21, the load impedance from the coaxial tube 20 side to the electrode 36 changes greatly, and it becomes difficult to control the power supplied to the plasma. In addition, if a gap is formed between the inner conductor and the dielectric plate, abnormal discharge may occur.
 上記問題を解決するために、本実施形態に係る装置1Aは、同軸管20Aを構成する内部導体21Aの下端面と誘電体板34の上面との間に、可動導体板21Bを設け、可動導体板21Bと内部導体21Aの下端面との間に導電性弾性部材150を設けている。また、同軸管20Aを構成する円筒状の外部導体22の外周面に、内部導体21Aを空冷するためのシロッコファン200を取り付けている。 In order to solve the above problem, the apparatus 1A according to the present embodiment is provided with a movable conductor plate 21B between the lower end surface of the inner conductor 21A constituting the coaxial tube 20A and the upper surface of the dielectric plate 34. A conductive elastic member 150 is provided between the plate 21B and the lower end surface of the internal conductor 21A. A sirocco fan 200 for air-cooling the inner conductor 21A is attached to the outer peripheral surface of the cylindrical outer conductor 22 constituting the coaxial pipe 20A.
 可動導体板21Bは、内部導体21Aとほぼ同じ直径を有する円盤状に形成され、上面に導電性弾性部材150を受け入れるリング状の溝21Btが形成されている。可動導体板21Bは、内部導体21Aと同様に、銅等の低抵抗材料で形成されている。図4に示すように、内部導体21Aの下端面と可動導体板21Bの上面との間には、導電性弾性部材150が挿入されていることにより、隙間Gpが形成される。 The movable conductor plate 21B is formed in a disk shape having substantially the same diameter as the inner conductor 21A, and a ring-shaped groove 21Bt for receiving the conductive elastic member 150 is formed on the upper surface. The movable conductor plate 21B is formed of a low-resistance material such as copper, like the internal conductor 21A. As shown in FIG. 4, a gap Gp is formed between the lower end surface of the inner conductor 21 </ b> A and the upper surface of the movable conductor plate 21 </ b> B by inserting the conductive elastic member 150.
 導電性弾性部材150は、図5に示すように、らせん状に巻いた線材をリング状に形成したばねである。この導電性弾性部材150は、ステンレス、リン青銅等の金属で形成されており、導電性を有する。導電性弾性部材150の存在により、内部導体21Aと可動導体板21Bとは常時電気的に接続されている。導電性弾性部材150としては、線材の他、帯状のばね材を螺旋状に巻いてリング状に形成したもの、平板状のばね材を加工して板バネにしたもの、これらのばねにニッケル、金、銀等のメッキを施したもの等を採用可能である。また、樹脂製のOリングに金属メッキを施したものも採用可能である。 As shown in FIG. 5, the conductive elastic member 150 is a spring in which a spirally wound wire is formed in a ring shape. The conductive elastic member 150 is made of a metal such as stainless steel or phosphor bronze and has conductivity. Due to the presence of the conductive elastic member 150, the inner conductor 21A and the movable conductor plate 21B are always electrically connected. As the conductive elastic member 150, in addition to the wire material, a belt-shaped spring material is spirally wound to form a ring shape, a flat spring material is processed into a leaf spring, nickel, Those plated with gold, silver or the like can be used. Also, a resin O-ring with metal plating can be used.
 導電性弾性部材150は、可動導体板21Bを適度な弾性力で押し下げるとともに、可動導体板21Bを誘電体板34に密着させる。内部導体21Aの熱膨張により内部導体21Aの下面が下方に移動したとしても、また、加工寸法がばらついていても、変形やばらつきを弾性変形により受け入れつつ、可動導体板21Bと誘電体板21Bとの間に隙間が発生するのを防止できる。 The conductive elastic member 150 pushes down the movable conductor plate 21B with an appropriate elastic force, and brings the movable conductor plate 21B into close contact with the dielectric plate 34. Even if the lower surface of the inner conductor 21A is moved downward due to the thermal expansion of the inner conductor 21A, and even if the processing dimensions vary, the movable conductor plate 21B and the dielectric plate 21B It is possible to prevent a gap from being generated.
 図5に示すように、外部導体22Aのシロッコファン200の排気口201が接続された壁面には、シロッコファン200から供給される冷却用の空気を外部導体22A内に取り入れるための流入口22h1が複数形成され、また、外部導体22Aの壁面の内部導体21Aに関して流入口22h1とは反対側に、外部導体22Aの空気を外部に排出する流出口22h2が複数形成されている。プラズマ処理中に温度上昇する内部導体21Aへ流入口22h1を通じて冷却空気を導入することで、内部導体21Aの温度上昇を抑制できる。また、シロッコファン200の風量をコントロールすることにより、内部導体21Aの温度を略一定にすることも可能である。内部導体21Aの温度上昇または温度変化を抑制できると、内部導体21Aの熱による変形を抑制でき、内部導体21Aの下端面と可動導体板21Bの上面との間の隙間Gpの大きさを一定に保つことができ、負荷インピーダンスの変動を抑制できる。 As shown in FIG. 5, an inlet 22h1 for taking in cooling air supplied from the sirocco fan 200 into the outer conductor 22A is provided on the wall surface of the outer conductor 22A to which the exhaust port 201 of the sirocco fan 200 is connected. A plurality of outlets 22h2 for discharging the air from the outer conductor 22A to the outside are formed on the opposite side of the inner conductor 21A on the wall surface of the outer conductor 22A from the inlet 22h1. By introducing the cooling air through the inlet 22h1 into the inner conductor 21A that rises in temperature during the plasma processing, the temperature rise of the inner conductor 21A can be suppressed. Further, by controlling the air volume of the sirocco fan 200, the temperature of the inner conductor 21A can be made substantially constant. If the temperature rise or temperature change of the inner conductor 21A can be suppressed, deformation of the inner conductor 21A due to heat can be suppressed, and the size of the gap Gp between the lower end surface of the inner conductor 21A and the upper surface of the movable conductor plate 21B can be made constant. Can be maintained, and fluctuations in load impedance can be suppressed.
 変形例
 上記実施形態では、シール金属を用いて、シール部材を接続したが、これに限定されるわけではなく、シール部材をロウ付け、溶接等により、内部導体および外部導体に直接接続することも可能である。
In the above embodiment, the seal member is connected by using the seal metal. Is possible.
 上記実施形態では、シール部材と放電防止部材とを別材料で形成したが、同じ材料で形成してもよい。また、シール部材と放電防止部材とを別部材としたが、シール部材と放電防止部材とを一体化して、シール機能と空間SPを埋める機能の両方を持たせてもよい。 In the above embodiment, the sealing member and the discharge preventing member are formed of different materials, but may be formed of the same material. Moreover, although the sealing member and the discharge preventing member are separate members, the sealing member and the discharging preventing member may be integrated to have both a sealing function and a function of filling the space SP.
 上記実施形態では、放電防止部材の一部を、流動性を有する絶縁体で構成した場合について説明したが、放電防止部材の全部を、流動性を有する絶縁体で構成することも可能である。 In the above embodiment, the case where a part of the discharge preventing member is made of a fluid insulator has been described, but the whole discharge preventing member may be made of a fluid insulator.
 上記実施形態では、シロッコファンを用いた空冷機構を第2の実施形態の装置に適用したが、この空冷機構は第1の実施形態に係る装置にも適用可能である。 In the above embodiment, the air cooling mechanism using the sirocco fan is applied to the apparatus of the second embodiment, but this air cooling mechanism can also be applied to the apparatus according to the first embodiment.
 上記実施形態では、電磁波としてマイクロ波を用いた場合について説明したが、本発明はこれに限定されるわけではなく、他の周波数帯の電磁波であってもよい。 In the above embodiment, the case where microwaves are used as electromagnetic waves has been described. However, the present invention is not limited to this, and may be electromagnetic waves in other frequency bands.
 以上、添付図面を参照しながら本発明の実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。 As mentioned above, although embodiment of this invention was described in detail, referring an accompanying drawing, this invention is not limited to this example. It is obvious that a person having ordinary knowledge in the technical field to which the present invention pertains can come up with various changes or modifications within the scope of the technical idea described in the claims. Of course, it is understood that these also belong to the technical scope of the present invention.
1,1A プラズマ処理装置
10 処理チャンバ
13 蓋体(外部導体)
13h 開口
14 サセプタ
20,20A 同軸管
21 内部導体
22 外部導体
34 誘電体板
36 電極
60 シール部材
70,71 シール用金属
100 放電防止部材
150 導電性弾性部材
200 シロッコファン
1, 1A Plasma processing apparatus 10 Processing chamber 13 Lid (external conductor)
13h Opening 14 Susceptor 20, 20A Coaxial tube 21 Inner conductor 22 Outer conductor 34 Dielectric plate 36 Electrode 60 Seal member 70, 71 Metal 100 for seal Discharge prevention member 150 Conductive elastic member 200 Sirocco fan

Claims (4)

  1.  密閉空間を画定する処理チャンバと、
     前記密閉空間内に設けられたプラズマ形成用の電極と、
     前記処理チャンバの外部から、当該処理チャンバに形成された開口を通じて、前記プラズマ形成用の電極に向かって延在する内部導体と、
     前記内部導体の周囲を囲み、前記内部導体との間に空隙を画定するとともに、前記開口を画定する外部導体と、
     前記内部導体および外部導体に接続されて、前記空隙を大気側の空間と前記密閉空間に連通する空間とに隔てるための、絶縁体で形成されたシール部材と、
     前記空隙のうち、前記シール部材に対して前記密閉空間側に形成される空間を埋める、絶縁体で形成された放電防止部材と、を有することを特徴とするプラズマ処理装置。
    A processing chamber defining an enclosed space;
    An electrode for plasma formation provided in the sealed space;
    An internal conductor extending from the outside of the processing chamber through an opening formed in the processing chamber toward the electrode for plasma formation;
    An outer conductor surrounding the inner conductor, defining an air gap with the inner conductor, and defining the opening;
    A seal member formed of an insulator, connected to the inner conductor and the outer conductor, for separating the gap into a space on the atmosphere side and a space communicating with the sealed space;
    A plasma processing apparatus, comprising: a discharge preventing member formed of an insulator that fills a space formed on the sealed space side of the seal member in the gap.
  2.  前記シール部材は、シール用金属を介して、前記内部導体および外部導体にそれぞれ接続されている、ことを特徴とする請求項1に記載のプラズマ処理装置。 The plasma processing apparatus according to claim 1, wherein the sealing member is connected to the inner conductor and the outer conductor via a sealing metal.
  3.  前記放電防止部材の少なくとも一部が、流動性を有するように形成されている、ことを特徴とする請求項1又は2に記載のプラズマ処理装置。 3. The plasma processing apparatus according to claim 1, wherein at least a part of the discharge preventing member is formed to have fluidity.
  4.  密閉空間を画定する処理チャンバと、
     前記密閉空間内に設けられたプラズマ形成用の電極と、
     前記処理チャンバの外部から、当該処理チャンバに形成された開口を通じて、前記プラズマ形成用の電極に向かって延在する内部導体と、
     前記内部導体の周囲を囲み、前記内部導体との間に空隙を画定するとともに、前記開口を画定する外部導体と、を有するプラズマ処理装置のシール方法であって、
     絶縁体で形成されたシール部材を前記内部導体および外部導体に接続して、前記空隙を大気側の空間と前記密閉空間に連通する空間とに隔て、
     前記空隙のうち、前記シール部材に対して前記密閉空間側に形成される空間を絶縁体で埋める、ことを特徴とするプラズマ処理装置のシール方法。
     
    A processing chamber defining an enclosed space;
    An electrode for plasma formation provided in the sealed space;
    An internal conductor extending from the outside of the processing chamber through an opening formed in the processing chamber toward the electrode for plasma formation;
    A plasma processing apparatus sealing method comprising: an outer conductor that surrounds the inner conductor and defines an air gap between the inner conductor and the outer conductor;
    A sealing member formed of an insulator is connected to the inner conductor and the outer conductor, and the gap is separated into a space on the atmosphere side and a space communicating with the sealed space,
    A sealing method for a plasma processing apparatus, characterized in that, of the gap, a space formed on the sealed space side with respect to the sealing member is filled with an insulator.
PCT/JP2013/003107 2013-05-15 2013-05-15 Plasma treatment device and sealing method therefor WO2014184824A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2013/003107 WO2014184824A1 (en) 2013-05-15 2013-05-15 Plasma treatment device and sealing method therefor
JP2013544605A JP5441083B1 (en) 2013-05-15 2013-05-15 Plasma processing apparatus and sealing method thereof
TW103117005A TW201506985A (en) 2013-05-15 2014-05-14 Plasma treatment device and sealing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/003107 WO2014184824A1 (en) 2013-05-15 2013-05-15 Plasma treatment device and sealing method therefor

Publications (1)

Publication Number Publication Date
WO2014184824A1 true WO2014184824A1 (en) 2014-11-20

Family

ID=50396756

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/003107 WO2014184824A1 (en) 2013-05-15 2013-05-15 Plasma treatment device and sealing method therefor

Country Status (3)

Country Link
JP (1) JP5441083B1 (en)
TW (1) TW201506985A (en)
WO (1) WO2014184824A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020189545A1 (en) * 2019-03-15 2020-09-24 株式会社ノア リーディング Plasma processing device, plasma processing method, and conductive member

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07263183A (en) * 1994-03-22 1995-10-13 Nissin Electric Co Ltd Plasma source
JP2001284238A (en) * 2000-03-31 2001-10-12 Tadahiro Omi Electromagnetic wave transmission device, electromagnetic wave resonance device, plasma processing device, exposure system, and device manufacturing method
JP2004319871A (en) * 2003-04-18 2004-11-11 Advanced Lcd Technologies Development Center Co Ltd Processor, processing method and plasma processor
JP2007208084A (en) * 2006-02-03 2007-08-16 Hitachi High-Technologies Corp Plasma processor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07263183A (en) * 1994-03-22 1995-10-13 Nissin Electric Co Ltd Plasma source
JP2001284238A (en) * 2000-03-31 2001-10-12 Tadahiro Omi Electromagnetic wave transmission device, electromagnetic wave resonance device, plasma processing device, exposure system, and device manufacturing method
JP2004319871A (en) * 2003-04-18 2004-11-11 Advanced Lcd Technologies Development Center Co Ltd Processor, processing method and plasma processor
JP2007208084A (en) * 2006-02-03 2007-08-16 Hitachi High-Technologies Corp Plasma processor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020189545A1 (en) * 2019-03-15 2020-09-24 株式会社ノア リーディング Plasma processing device, plasma processing method, and conductive member
JP7496961B2 (en) 2019-03-15 2024-06-10 株式会社ノアリーディング Plasma processing apparatus, plasma processing method, and conductive member

Also Published As

Publication number Publication date
JPWO2014184824A1 (en) 2017-02-23
JP5441083B1 (en) 2014-03-12
TW201506985A (en) 2015-02-16

Similar Documents

Publication Publication Date Title
JP7149068B2 (en) Plasma processing apparatus and plasma processing method
KR102266368B1 (en) Plasma processing apparatus
JP5357486B2 (en) Plasma processing equipment
US9984911B2 (en) Electrostatic chuck design for high temperature RF applications
JP5475261B2 (en) Plasma processing equipment
JP6442463B2 (en) Annular baffle
WO2020117371A1 (en) Ground electrode formed in an electrostatic chuck for a plasma processing chamber
US10741368B2 (en) Plasma processing apparatus
KR102487342B1 (en) Electrostatic chuck and a plasma apparatus for processing substrates having the same
KR20170031144A (en) Plasma processing apparatus
US20170025255A1 (en) Plasma processing apparatus
JP2011091361A (en) Electrostatic chuck
US20220037127A1 (en) Plasma processing apparatus and plasma processing method
TW201705278A (en) Plasma processing apparatus
JP2019046787A (en) Plasma probe apparatus and plasma processing apparatus
WO2020116246A1 (en) Shower plate, plasma processing apparatus and plasma processing method
JP5441083B1 (en) Plasma processing apparatus and sealing method thereof
US7302910B2 (en) Plasma apparatus and production method thereof
WO2020116255A1 (en) Plasma processing apparatus and plasma processing method
JP6408270B2 (en) Plasma processing equipment
KR102616555B1 (en) Plasma processing apparatus
US20210005477A1 (en) Substrate processing apparatus
US20210391147A1 (en) Radio frequency ground system and method
WO2020116257A1 (en) Plasma processing device and plasma processing method
JP7500397B2 (en) Plasma processing apparatus, its manufacturing method, and plasma processing method

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013544605

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13884569

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13884569

Country of ref document: EP

Kind code of ref document: A1