WO2014183426A1 - 一种版图结构、暗像素结构及其形成方法 - Google Patents

一种版图结构、暗像素结构及其形成方法 Download PDF

Info

Publication number
WO2014183426A1
WO2014183426A1 PCT/CN2013/088926 CN2013088926W WO2014183426A1 WO 2014183426 A1 WO2014183426 A1 WO 2014183426A1 CN 2013088926 W CN2013088926 W CN 2013088926W WO 2014183426 A1 WO2014183426 A1 WO 2014183426A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal layer
pattern
hole
groove
dark pixel
Prior art date
Application number
PCT/CN2013/088926
Other languages
English (en)
French (fr)
Inventor
顾学强
周伟
张向莉
Original Assignee
上海集成电路研发中心有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海集成电路研发中心有限公司 filed Critical 上海集成电路研发中心有限公司
Publication of WO2014183426A1 publication Critical patent/WO2014183426A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1462Coatings
    • H01L27/14623Optical shielding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14636Interconnect structures

Definitions

  • the present invention relates to the field of semiconductor manufacturing technology, and in particular, to a layout structure, a dark pixel structure, and a method of forming the same.
  • An image sensor is a device that converts an optical signal into an electrical signal.
  • Image sensors include charge coupled devices (CCD) and complementary metal oxide semiconductor (CMOS) image sensor chips
  • CMOS image sensors are more widely used because of their low power consumption, low cost, and compatibility with CMOS processes.
  • CMOS image sensors are now used not only in consumer electronics such as compact digital cameras (DSCs), cell phones, camcorders and digital SLRs, but also in automotive electronics, surveillance, biotechnology and medicine. .
  • the pixel unit of the CMOS image sensor is the core device for the image sensor to achieve light sensitivity.
  • the most commonly used pixel unit is an active pixel structure comprising a photodiode and four transistors.
  • the photodiode is a photosensitive unit for light collection and photoelectric conversion.
  • Other MOS transistors are control units, mainly for photodiodes. Control of selection, reset, signal amplification and readout. 1 and FIG. 2, FIG. 1 is a schematic cross-sectional view of a top metal of a photosensitive pixel unit, and FIG. 2 is a cross-sectional view of a pixel array taken along the AB direction of FIG. 1, as shown in FIG.
  • the structure includes a contact hole 2' located above the photosensitive device ⁇ , a first metal layer 3' located above the contact hole 2', a through hole 4 above the first metal layer 3', and a second metal layer 5' above the via 4', located above the second metal layer 5' and not with the second gold
  • the top layer metal layer 6' in contact with the layer, the photosensitive window 7' is in communication with the photosensitive device through the top metal layer 6', the second metal layer 5' and the first metal layer 3', and a layer is provided on the top metal layer 6' Protect the dielectric layer 8, .
  • the function of the dark pixel unit is to obtain the output signal of the pixel unit when there is no illumination, that is, the noise floor of the pixel unit, and the true output signal of the photosensitive pixel unit can be obtained by subtracting the noise floor from the output signal of the photosensitive pixel unit.
  • the output signal of the pixel array is corrected to improve the image quality of the image sensor chip.
  • it is necessary to shield incident light Since the metal layer used in the back-channel interconnection of the CMOS process is opaque, shielding of incident light can be achieved by large-area coverage of the metal interconnection layer.
  • FIG. 3 is a schematic diagram of a layout structure of a top metal layer forming a dark pixel structure in an aluminum interconnection process
  • FIG. 4 is a schematic diagram of a dark pixel structure obtained by making a cross section along the CD direction in FIG. As shown in FIG.
  • the dark pixel structure in the aluminum interconnection process includes: a contact hole 2" located above the photosensitive device 1", a first metal layer 3" located above the contact hole 2", in the a through hole 4" above the first metal layer 3", and a second metal layer 5" above the through hole 4", a top layer located above the second metal layer 5" and not in contact with the second metal layer 5"
  • the metal layer 6" is provided with a protective dielectric layer 7" above the top metal layer 6"
  • the photosensitive window is covered by the top metal layer 6" and no incident light enters on the photosensitive device 1", so that the photosensitive device 1" can be photoelectrically Conversion, the dark pixel structure in the aluminum interconnect process is realized.
  • FIG. 5 is a schematic diagram of a top metal layer structure formed in a conventional copper interconnection process
  • FIG. 5 is a cross-sectional view of a pixel structure obtained by making a cross section in the EF direction.
  • the pixel structure formed in the conventional copper interconnection process includes a contact hole 602 located above the photosensitive device 601, and a first metal above the contact hole 602. a layer 603, a via 604 over the first metal layer 603, and a second metal layer 605 over the via 604, a top layer over the second metal layer 605 and not in contact with the second metal layer 605
  • the metal layer 606, the protective dielectric layer 608 on the top metal layer 606, has a slot 607 in the top metal layer 606. Due to the presence of the slot 607, the incident light can enter through the slot 607. Sensing device 601, so that light leakage can not be achieved without the dark pixels can not be formed for correcting the noise floor of the dark pixel.
  • the present invention is directed to a structure for forming a dark pixel which does not leak light, and a layout structure for forming the dark pixel structure which does not leak light, and a method of forming a dark pixel which does not leak light.
  • the present invention provides a layout structure for forming a dark pixel structure, comprising: a first layout of a top metal layer pattern with a grooved pattern, a second layout with a via pattern, and a second metal layer pattern
  • the first, second and third layouts cooperate with each other in order from top to bottom to form a dark a layout structure of the pixel structure; wherein, the groove pattern of the first layout is located above a pattern surrounded by an inner edge of the through hole pattern of the second layout, and the second metal layer pattern of the third layout is located at Below the through hole pattern of the second layout.
  • the middle of the grooved pattern is vertically aligned with the center position of the pattern enclosed by the inner edge of the through-hole pattern.
  • the through hole groove pattern is a shape of a back or a ring.
  • the second metal layer pattern comprises a liner layer pattern
  • the liner layer pattern is located below the pattern surrounded by the outer edge of the through hole groove pattern and encloses the outer edge of the through hole groove pattern The graphic is obscured.
  • the cross-sectional area of the liner layer pattern is greater than or equal to the cross-sectional area of the pattern surrounded by the outer edge of the through-hole pattern.
  • the cross-sectional area of the pattern enclosed by the inner edge of the through-hole pattern is greater than or equal to the cross-sectional area of the groove pattern.
  • the present invention also provides a dark pixel structure formed by using any of the above-described layout structures, comprising a contact hole located above the photosensitive device, a first metal layer above the contact hole, and a pass above the first metal layer a hole, and a second metal layer above the through hole, wherein: a metal-filled through-hole groove is disposed above the second metal layer, and a slot is provided above the through-hole groove a top metal layer, wherein the groove is located above a region enclosed by an inner edge of the through hole.
  • the through hole slot is an inverted groove or an annular groove.
  • the center position of the pattern of the grooved cross section is vertically aligned with the middle of the pattern of the cross section of the area surrounded by the inner edge of the through hole groove.
  • the second metal layer comprises a liner layer, and the liner layer is located outside the through hole slot The bottom of the area enclosed by the edge and the bottom of the area enclosed by the outer edge of the through-hole is blocked.
  • the cross-sectional area of the backing layer of the second metal layer is greater than or equal to the cross-sectional area of the area enclosed by the outer edge of the through-hole.
  • the area enclosed by the inner edge of the through-hole groove has a cross-sectional area greater than or equal to the cross-sectional area of the groove.
  • the dark pixel structure is used in a copper interconnection process, and the material of the top metal layer and the material filled in the via hole are copper.
  • the material of the second metal layer is copper.
  • the present invention also provides a method of forming a dark pixel structure, comprising:
  • Step S01 forming a contact hole above the photosensitive device, forming a first metal layer above the contact hole, and forming a through hole above the first metal layer;
  • Step S02 forming a second metal layer above the through hole
  • Step S03 depositing a dielectric layer over the second metal layer, and performing photolithography and etching to form a via hole groove and a grooved top metal layer structure in the dielectric layer;
  • Step S04 filling the via hole and the top metal layer structure with metal to form a top metal layer.
  • the step S02 includes forming a liner layer in the second metal layer, forming the through-hole groove above the liner layer, the liner layer being located at an outer edge of the through-hole groove The bottom of the region is formed and the bottom of the region enclosed by the outer edge of the through-hole is blocked.
  • the filling metal in the top metal layer structure is planarized to form a top metal layer, and then a layer is deposited on the top metal layer.
  • a layer is deposited on the top metal layer.
  • the center position of the pattern of the grooved cross section is vertically aligned with the middle of the cross-sectional pattern of the area enclosed by the inner edge of the through-hole groove.
  • the cross-sectional area of the backing layer of the second metal layer is greater than or equal to the cross-sectional area of the area enclosed by the outer edge of the through-hole.
  • the area enclosed by the inner edge of the through-hole groove has a cross-sectional area greater than or equal to the cross-sectional area of the groove.
  • the method of forming a dark pixel structure is used in a copper interconnection process, wherein the top metal layer structure and the metal filled in the via hole are copper.
  • the dark pixel-forming layout structure of the present invention the dark pixel structure formed by the layout structure and the forming method, the through-hole groove is provided under the metal layer with the grooved top layer, and the underside of the groove is surrounded by the through-hole groove Then, a second metal layer with a liner layer is disposed under the via hole, and the bottom of the through hole groove is blocked by the liner layer.
  • the through hole is filled with a metal such as copper, and passes through the groove to enter the through hole.
  • the light of the groove is blocked by the through-hole groove and the liner layer of the second metal layer, and the incident light cannot enter the photosensitive device, thereby forming a dark pixel that does not leak light, thereby realizing the conversion of the photoelectric device.
  • FIG. 1 is a schematic cross-sectional view of a top metal of a photosensitive pixel unit
  • FIG. 2 is a schematic cross-sectional view of a pixel array taken along the AB direction of FIG. 1;
  • FIG. 3 is a schematic view of a layout structure of a top metal layer forming a dark pixel structure in an aluminum interconnection process;
  • FIG. 4 is a schematic view showing a dark pixel structure taken along the CD direction in FIG. 3;
  • FIG. 5 is a schematic view showing a top metal layer structure formed in a conventional copper interconnection process;
  • Figure 6 is a cross-sectional view showing a pixel structure taken along the EF direction of Figure 5;
  • FIG. 7 is a schematic view showing a layout structure of a dark pixel structure according to a preferred embodiment of the present invention.
  • FIG. 8 is a schematic view showing a dark pixel structure formed by the above preferred embodiment of the present invention;
  • FIG. 9 is a preferred embodiment of the present invention.
  • FIG. 10-13 is a schematic view showing a structure formed by each preparation step of the method for forming a dark pixel structure of the above-described preferred embodiment of the present invention.
  • the scope of application of the present invention is in a metal interconnect process in which the top metal needs to be grooved, such as a copper interconnect process.
  • FIGS. 7-13 The layout structure, dark pixel structure and formation method of the dark pixel structure of the present invention will be further described in detail below with reference to FIGS. 7-13. It should be noted that the drawings are in a very simplified form, using a non-precise ratio, and are merely for convenience and clarity to achieve the purpose of the embodiments of the present invention.
  • a layout structure for forming a dark pixel structure is a schematic view showing the layout of a dark pixel structure in accordance with a preferred embodiment of the present invention.
  • the layout structure includes: a first layout of a top metal layer pattern 701 having a grooved pattern 702, a second layout with a via pattern 703, a third layout with a second metal layer pattern, first, The second and third layouts cooperate with each other in order from top to bottom to form a layout structure of the dark pixel structure; wherein, the through-hole pattern 703 of the second layout is located around the lower portion of the slot pattern 702 of the first layout, the third layout The second metal layer pattern is located below the via pattern 703 of the second layout.
  • the pattern of the through-hole pattern 703 may be a shape of a back or a ring.
  • the pattern of the through-hole pattern 703 is a shape of a back; in this embodiment, the pattern of the second metal layer includes a pattern of the layer layer 704.
  • the liner layer pattern 704 has a cross-sectional area greater than or equal to the cross-sectional area of the pattern surrounded by the outer edge of the through-hole pattern 703, and the outer edge of the through-hole pattern 703 is enclosed.
  • the cross-sectional area of the pattern is greater than or equal to the cross-sectional area of the groove pattern 702.
  • the cross-sectional area of the liner layer pattern 704 is larger than the cross-sectional area of the pattern surrounded by the outer edge of the through-hole pattern 703.
  • the cross-sectional area of the graphic enclosed by the outer edge of the graphic 703 is greater than the cross-sectional area of the grooved graphic 702.
  • FIG. 8 is a schematic diagram of a dark pixel structure formed by the above preferred embodiment of the present invention.
  • the structure of the dark pixel includes: a contact hole 2 is disposed on the upper side, a first metal layer 3 is disposed above the contact hole 2, a through hole 4 is disposed above the first metal layer 3, and a second metal layer 5 is disposed above the through hole 4.
  • a through hole groove 6 is disposed above the second metal layer 5, and a top metal layer 7 having a groove 8 is disposed above the through hole groove 6, and a protective dielectric layer 9 is disposed on the top metal layer 7, wherein the groove is formed 8 is located above the area enclosed by the inner edge of the through hole groove 6.
  • the second metal layer 5 includes a backing layer 51 which is located below the area enclosed by the through-holes 6 and blocks the bottom of the area surrounded by the through-holes 6.
  • the through-hole groove 6 is an annular groove or an inverted groove.
  • the through-hole groove 6 is an inverted groove; in this embodiment, the cross-sectional area of the liner layer 51 of the second metal layer 5
  • the cross-sectional area of the region surrounded by the outer edge of the through-hole groove 6 is greater than or equal to the cross-sectional area of the groove 8; preferably, the second metal layer 5
  • the cross-sectional area of the liner layer 51 is larger than the cross-sectional area of the region surrounded by the outer edge of the through-hole groove 6, and the cross-sectional area of the pattern surrounded by the inner edge of the through-hole groove 6 is larger than the cross-sectional area of the groove 8.
  • the dark pixel structure of the present invention can be used in a copper interconnection process, and the material of the top metal layer 7 in this embodiment is copper.
  • FIG. 9 is a schematic diagram of a method for forming a dark pixel structure according to a preferred embodiment of the present invention.
  • BRIEF DESCRIPTION OF THE DRAWINGS Figure 10-13 is a schematic illustration of the structure formed by the various fabrication steps of the method of forming a dark pixel structure of the preferred embodiment.
  • a method for forming a dark pixel structure includes: Step S01: Referring to FIG. 10, a contact hole 2 is formed on both sides above the photoreceptor 1, and a first is formed above the contact hole 2. a metal layer 3, a via hole 4 is formed over the first metal layer 3; here, the photoreceptor 1, the contact hole 2, the first metal layer 3, and the via hole 4 are formed by a conventional process such as plasma dry etching The invention is formed by photolithography and etching, and the present invention is not limited thereto.
  • Step S02 Referring to FIG. 11, a second metal layer 5 is formed over the via hole 4; the second metal layer 5 may be formed by photolithography and etching, and the second metal layer 5 may include a liner layer 51.
  • the liner layer 51 blocks the bottom of the region surrounded by the outer edge of the through-hole groove 6 above, and the cross-sectional area of the liner layer 51 is larger than the cross-sectional area of the region surrounded by the outer edge of the through-hole groove 6. So The backing layer 51 can block the outer edge of the through hole groove 6 from the bottom of the area to prevent incident light from entering the light sensing device downward.
  • Step S03 Referring to FIG. 12, a dielectric layer is deposited over the second metal layer 5, and a via hole groove 6 and a top metal layer structure 70 having the groove 8 are formed in the dielectric layer by photolithography and etching;
  • the photolithography and etching methods may be, but are not limited to, plasma dry etching, and the via holes 6 are formed on the liner layer 51 and connected to the liner layer 51.
  • the material of the second metal layer 5 may be But not limited to copper.
  • Step S04 Referring to FIG. 13, the via hole 6 and the top metal layer structure 70 are filled with metal to form the top metal layer 7 with the trenches 8.
  • the method for forming the dark pixel structure of the present invention can be used.
  • the metal filled in this embodiment may be copper, and the metal copper may be filled in the via hole 6 and the top metal layer structure 70 by a method of copper plating; in this embodiment, After filling the metal, the filler metal in the top metal layer structure 70 may be planarized by chemical mechanical polishing to form the top metal layer 7, and then a protective dielectric layer 9 is deposited on the top metal layer 7.
  • the protective dielectric layer 9 serves to prevent contamination of the top metal layer, such as oxidation.
  • the dark pixel-forming layout structure of the present invention the dark pixel structure formed by the layout structure and the forming method, the through-hole groove is provided under the metal layer with the grooved top layer, and the underside of the groove is surrounded by the through-hole groove Then, a second metal layer with a liner layer is disposed under the via hole, and the bottom of the through hole groove is blocked by the liner layer.
  • the through hole is filled with a metal such as copper, and passes through the groove to enter the through hole.
  • the light of the groove is blocked by the through-hole groove and the liner layer of the second metal layer, and the incident light cannot enter the photosensitive device, thereby forming a dark pixel that does not leak light, thereby realizing the conversion of the photoelectric device.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

一种版图结构、暗像素结构及其形成方法,该暗像素结构包括位于感光器件(1)的上方两侧的接触孔(2),位于接触孔(2)上方的第一金属层(3),位于第一金属层(3)上方的通孔(4),以及通孔(4)上方的第二金属层(5),第二金属层(5)含有衬垫层(51),在第二金属层(5)的衬垫层(51)上方设有填充有金属的通孔槽(6),在通孔槽(6)的上方设有带有开槽(8)的顶层金属层(7),通孔槽(6)位于开槽(8)的下方的四周。通过衬垫层(51)将通孔槽(6)的底部挡住,由于通孔槽(6)内填充有金属以及衬垫层(51)材料为金属,穿过开槽(8)进入通孔槽(6)的光线被通孔槽(6)和第二金属层(5)的衬垫层(51)挡住,入射光不能进入感光器件(1),从而形成不漏光的暗像素。

Description

一种版图结构、 暗像素结构及其形成^
技术领域
本发明涉及半导体制造技术领域, 具体涉及一种版图结构、 暗像素结构 及其形成方法。 技术背景
图像传感器是指将光信号转换为电信号的装置。 图像传感器包括电荷耦 合器件 (CCD) 和互补金属氧化物半导体 (CMOS) 图像传感器芯片
和传统的 CCD传感器相比, CMOS图像传感器具有低功耗,低成本和与 CMOS工艺兼容等特点, 因此得到越来越广泛的应用。 现在 CMOS 图像传 感器不仅用于消费电子领域, 例如微型数码相机 (DSC) , 手机摄像头, 摄 像机和数码单反 (DSLR) 中, 而且在汽车电子, 监控, 生物技术和医学等 领域也得到了广泛的应用。
CMOS图像传感器的像素单元是图像传感器实现感光的核心器件。最常 用像素单元为包含一个光电二极管和四个晶体管的有源像素结构, 这些器件 中光电二极管是感光单元, 实现对光线的收集和光电转换, 其它的 MOS晶 体管是控制单元, 主要实现对光电二极管的选中, 复位, 信号放大和读出的 控制。 请参阅图 1和图 2, 图 1为感光像素单元的顶层金属截面示意图, 图 2为沿着图 1中的 AB方向做断面得到的像素阵列的截面示意图, 如图 2所 示, 像素阵列的结构包括位于感光器件 Γ的上方四周的接触孔 2',位于所述 接触孔 2'上方的第一金属层 3', 位于所述第一金属层 3'上方的通孔 4, 以及 位于所述通孔 4'上方的第二金属层 5',位于第二金属层 5'上方且不与第二金 属层接触的顶层金属层 6', 感光窗口 7'通过顶层金属层 6'、 第二金属层 5' 和第一金属层 3'与感光器件 Γ连通,在顶层金属层 6'上设有一层保护介质层 8,。
在图像传感器芯片的像素阵列中, 除了需要用于感光的像素单元以外, 还需要使用对光不产生响应的暗像素单元。暗像素单元的作用是得到像素单 元在没有光照时的输出信号, 也就是像素单元的本底噪声, 在感光的像素单 元输出信号中减掉本底噪声就可以得到感光像素单元的真实输出信号,对像 素阵列的输出信号进行校正, 以提高图像传感器芯片的成像质量。 为了实现 暗像素, 需要对入射光进行屏蔽, 由于 CMOS 工艺的后道互连中使用的金 属层是不透光的, 因此可以通过金属互连层的大面积覆盖来实现对入射光的 屏蔽。 在 CMOS 图像传感器阵列中通常需要使用多行或多列的暗像素, 因 此金属屏蔽层的面积就会变得很大, 例如一个 5um 的暗像素单元, 如果放 20列, 金属层的宽带就是 lOOum, 在使用铝互连工艺的时候, 由于金属层是 通过刻蚀形成的, 因此宽金属形成没有问题。 请参阅图 3和图 4, 图 3是铝 互连工艺中形成暗像素结构的顶层金属层的版图结构的示意图, 图 4是沿着 图 3中 CD方向做断面得到的暗像素结构的示意图。 如图 4所示, 铝互连工 艺中的暗像素结构包括: 位于感光器件 1"的上方四周的接触孔 2", 位于所 述接触孔 2"上方的第一金属层 3", 位于所述第一金属层 3"上方的通孔 4", 以及位于所述通孔 4"上方的第二金属层 5",位于第二金属层 5"上方且不与 第二金属层 5"接触的顶层金属层 6",在顶层金属层 6"上方设有保护介质层 7", 感光窗口被顶层金属层 6"覆盖, 且在感光器件 1"上无入射光进入, 从 而感光器件 1"能够进行光电转换, 实现了铝互连工艺中的暗像素结构。 但随着 CMOS 图像传感器工艺的发展, 后道工艺开始采用铜互连, 由 于铜互连是通过化学机械抛光工艺形成的, 因此当金属太宽时, 金属层容易 产生凹陷, 在铜互连的设计规则中规定在宽金属上必须开槽, 以防止金属层 凹陷, 请参阅图 5和图 6, 图 5是常规的铜互连工艺中形成的顶层金属层结 构的示意图, 图 6是沿着图 5中 EF方向做断面得到的像素结构的截面图, 常规铜互连工艺中形成的像素结构包括:位于感光器件 601的上方四周的接 触孔 602, 位于所述接触孔 602上方的第一金属层 603, 位于所述第一金属 层 603上方的通孔 604, 以及位于所述通孔 604上方的第二金属层 605, 位 于第二金属层 605上方且不与第二金属层 605接触的顶层金属层 606, 位于 顶层金属层 606上的保护介质层 608, 在顶层金属层 606中带有开槽 607, 由于开槽 607的存在, 入射光线可以通过开槽 607进入感光器件 601, 这样 就无法实现不漏光的暗像素, 不能形成用于校正本底噪声暗像素。
因此在使用比如铜互连工艺制造 CMOS 图像传感器时, 在带有开槽的 顶层金属层的像素结构中, 需要一种形成不漏光的暗像素的结构及其方法。 发明概要
为了克服上述问题, 本发明旨在形成不漏光的暗像素的结构, 以及提出 形成该不漏光的暗像素结构所使用的版图结构, 以及形成不漏光的暗像素的 方法。
本发明提供一种形成暗像素结构的版图结构, 包括: 带有开槽图形的顶 层金属层图案的第一版图, 带有通孔槽图形的第二版图, 带有第二金属层图 形的第三版图, 所述第一、 第二和第三版图依次从上到下相互配合以形成暗 像素结构的版图结构; 其中, 所述第一版图的开槽图形位于所述第二版图的 通孔槽图形内边缘围成的图形的上方,所述第三版图的第二金属层图形位于 所述第二版图的通孔槽图形的下方。
优选地,所述开槽图形的中 ^ ι 立置与所述通孔槽图形内边缘围成的图形 的中心位置上下对齐。
优选地, 所述的通孔槽图形为回形或环形。
优选地, 所述第二金属层图形包括衬垫层图形, 所述衬垫层图形位于所 述通孔槽图形外边缘围成的图形的下方且将所述通孔槽图形外边缘围成的 图形遮挡住。
优选地,所述衬垫层图形的横截面面积大于等于所述通孔槽图形外边缘 围成的图形的横截面面积。
优选地,所述通孔槽图形内边缘围成的图形的横截面面积大于等于所述 开槽图形的横截面面积。本发明还提供一种利用上述任一版图结构形成的暗 像素结构, 包括位于感光器件的上方的接触孔, 位于所述接触孔上方的第一 金属层, 位于所述第一金属层上方的通孔, 以及位于所述通孔上方的第二金 属层, 其中: 在所述第二金属层的上方设有填充有金属的通孔槽, 在所述通 孔槽的上方设有带有开槽的顶层金属层, 其中, 所述开槽位于所述通孔槽的 内边缘围成的区域的上方。
优选地, 所述的通孔槽为回形槽或环形槽。
优选地,所述开槽的横截面的图形的中心位置与所述通孔槽的内边缘围 成的区域的横截面的图形的中 ^ ι 立置上下对齐。
优选地, 所述的第二金属层包括衬垫层, 所述衬垫层位于所述通孔槽外 边缘围成的区域的下方且将所述通孔槽外边缘围成的区域的底部挡住。 优选地,所述第二金属层的衬垫层的横截面面积大于等于所述通孔槽外 边缘围成的区域的横截面面积。
优选地,所述通孔槽内边缘围成的区域的横截面面积大于等于所述开槽 的横截面面积。
优选地, 所述暗像素结构用于铜互连工艺中, 所述顶层金属层的材料和 所述通孔槽中填充的材料为铜。
优选地, 第二金属层的材料为铜。
本发明还提供一种形成暗像素结构的方法, 包括:
步骤 S01 : 在感光器件上方的形成接触孔, 在所述接触孔的上方形成第 一金属层, 在所述第一金属层的上方形成通孔;
步骤 S02: 在所述通孔的上方形成第二金属层;
步骤 S03 : 在所述第二金属层的上方沉积介质层, 经光刻和刻蚀, 在所 述介质层中形成通孔槽和带有开槽的顶层金属层结构;
步骤 S04: 在所述通孔槽和所述顶层金属层结构中填充金属, 从而形成 顶层金属层。
优选地, 所述步骤 S02中, 包括在第二金属层中形成衬垫层, 在所述衬 垫层的上方形成所述通孔槽,所述衬垫层位于所述通孔槽外边缘围成的区域 的下方且将所述通孔槽外边缘围成的区域的底部挡住。
优选地, 所述步骤 S04中, 所述的填充金属之后, 对所述的顶层金属层 结构中的填充金属进行平坦化处理, 形成顶层金属层, 然后在所述的顶层金 属层上沉积一层保护介质层。 优选地,所述开槽的横截面的图形的中心位置与所述通孔槽的内边缘围 成的区域的横截面图形的中 ^ ι 立置上下对齐。
优选地,所述第二金属层的衬垫层的横截面面积大于等于所述通孔槽外 边缘围成的区域的横截面面积。
优选地,所述通孔槽内边缘围成的区域的横截面面积大于等于所述开槽 的横截面面积。
优选地, 所述形成暗像素结构的方法用于铜互连工艺中, 所述顶层金属 层结构和所述通孔槽中填充的金属为铜。
本发明的形成暗像素的版图结构, 利用该版图结构形成的暗像素结构以 及形成方法, 通过在带有开槽的顶层金属层的下方设置通孔槽, 利用通孔槽 将开槽的下方包围, 然后再通孔槽的下方设置带有衬垫层的第二金属层, 通 过衬垫层将通孔槽的底部挡住, 由于通孔槽内填充有金属比如铜, 穿过开槽 进入通孔槽的光线被通孔槽和第二金属层的衬垫层挡住, 入射光不能进入感 光器件, 从而形成不漏光的暗像素, 实现光电器件的转换。 隨侧
图 1为感光像素单元的顶层金属截面示意图;
图 2为沿着图 1中的 AB方向做断面得到的像素阵列的截面示意图; 图 3 是铝互连工艺中形成暗像素结构的顶层金属层的版图结构的示意 图;
图 4是沿着图 3中 CD方向做断面得到的暗像素结构的示意图; 图 5是常规的铜互连工艺中形成的顶层金属层结构的示意图; 图 6是沿着图 5中 EF方向做断面得到的像素结构的截面图;
图 7是本发明的一个较佳实施例的形成暗像素结构的版图结构示意图 图 8是本发明的利用上述较佳实施例的形成的暗像素结构的示意图; 图 9 是本发明的一个较佳实施例的形成暗像素结构的方法的流程 '王 J 图 10-13是本发明的上述较佳实施例的形成暗像素结构的方法的各制备 骤所形成的结构的示意图
体现本发明特征与优点的实施例将在后段的说明中详细叙述。应理解的 是本发明能够在不同的示例上具有各种的变化, 其皆不脱离本发明的范围, 且其中的说明及图示在本质上当做说明之用, 而非用以限制本发明。
由于金属互连工艺中, 由于顶层金属层的形成工艺的影响, 如前所述, 比如在铜互连工艺中, 由于铜互连工艺采用化学机械抛光, 会造成顶部铜金 属层的凹陷, 需要对顶部铜金属层开槽, 然而对顶层金属层开槽, 会导致入 射光通过开槽进入光感器件, 造成暗像素的漏光。 因此, 本发明所应用的范 围是在顶层金属需要开槽的金属互连工艺中, 例如铜互连工艺等。
以下结合附图 7-13,通过具体实施例对本发明的形成暗像素结构的版图 结构、 暗像素结构及形成方法作进一步详细说明。 需说明的是, 附图均采用 非常简化的形式、 使用非精准的比例, 且仅用以方便、 明晰地达到辅助说明 本发明实施例的目的。
本发明的一个较佳实施例的形成暗像素结构的版图结构, 请参阅图 7, 图 7是本发明的一个较佳实施例的形成暗像素结构的版图结构示意图。该版 图结构包括: 带有开槽图形 702的顶层金属层图案 701的第一版图, 带有通 孔槽图形 703的第二版图, 带有第二金属层图形的第三版图, 第一、 第二和 第三版图依次从上到下相互配合以形成暗像素结构的版图结构; 其中, 第二 版图的通孔槽图形 703位于第一版图的开槽图形 702的下方的四周, 第三版 图的第二金属层图形位于第二版图的通孔槽图形 703的下方。 本发明中, 通 孔槽图形 703的图形可以为回形或环形, 在本实施例中, 通孔槽图形 703为 回形; 本实施例中, 第二金属层图形包括衬垫层图形 704, 如图 7中虚线所 示为衬垫层图形 704,衬垫层图形 704的横截面面积大于等于通孔槽图形 703 外边缘围成的图形的横截面面积,通孔槽图形 703外边缘围成的图形的横截 面面积大于等于开槽图形 702的横截面面积; 较佳的, 衬垫层图形 704的横 截面面积大于通孔槽图形 703外边缘围成的图形的横截面面积,通孔槽图形 703外边缘围成的图形的横截面面积大于开槽图形 702的横截面面积。
本发明的利用上述版图结构形成的暗像素结构请参阅图 8, 图 8是本发 明的利用上述较佳实施例的形成的暗像素结构的示意图, 该暗像素的结构包 括: 在感光器件 1的上方两侧设有接触孔 2, 在接触孔 2上方设有第一金属 层 3, 在第一金属层 3上方设有通孔 4, 在通孔 4上方设有第二金属层 5, 在 第二金属层 5的上方设有通孔槽 6, 在通孔槽 6的上方设有带有开槽 8的顶 层金属层 7, 在顶层金属层 7上设有保护介质层 9, 其中, 开槽 8位于通孔 槽 6内边缘围成的区域的上方。 本发明的本实施例中, 第二金属层 5包括衬 垫层 51, 衬垫层 51位于通孔槽 6围成的区域的下方且将通孔槽 6围成的区 域的底部挡住。 这样, 即使入射光从开槽 8穿入通孔槽 6, 由于通孔槽 6围 成的区域的底部被衬垫层 51遮挡住, 入射光不能够进入感光器件 1中, 从 而实现不漏光的暗像素。 本发明中, 通孔槽 6为环形槽或回形槽, 在本实施 例中, 通孔槽 6为回形槽; 本实施例中, 第二金属层 5的衬垫层 51的横截 面面积大于等于通孔槽 6外边缘围成的区域的横截面面积,通孔槽 6内边缘 围成的区域的横截面面积大于等于开槽 8的横截面面积; 较佳的, 第二金属 层 5的衬垫层 51的横截面面积大于通孔槽 6外边缘围成的区域的横截面面 积, 通孔槽 6内边缘围成的图形的横截面面积大于开槽 8的横截面面积。 本 发明的暗像素结构可以用于铜互连工艺中,本实施例中顶层金属层 7的材料 为铜。
以下结合附图 9-13,对本发明的一个较佳实施例的形成暗像素结构的方 法做进一步详细的描述, 其中, 图 9为本发明的一个较佳实施例的形成暗像 素结构的方法的流程示意图, 图 10-13是该较佳实施例的形成暗像素结构的 方法的各制备步骤所形成的结构的示意图。
请参阅图 9, 本发明的本实施例的形成暗像素结构的方法包括: 步骤 S01 : 请参阅图 10, 在感光器 1上方的两侧形成接触孔 2, 在接触 孔 2的上方形成第一金属层 3, 在第一金属层 3的上方形成通孔 4; 这里, 形成感光器 1、 接触孔 2、 第一金属层 3和通孔 4均采用常规工艺, 比如采 用等离子体干法刻蚀经光刻和刻蚀形成, 本发明对此不作限制。
步骤 S02: 请参阅图 11, 在通孔 4的上方形成第二金属层 5 ; 第二金属 层 5的形成可以采用光刻和刻蚀的方法, 第二金属层 5可以包括衬垫层 51, 本实施例中,衬垫层 51将其上方的通孔槽 6外边缘围成的区域的底部挡住, 衬垫层 51的横截面面积大于通孔槽 6外边缘围成的区域的横截面积, 这样 衬垫层 51才能够将通孔槽 6外边缘围成区域的底部挡住, 避免入射光线向 下进入光感器件。
步骤 S03 : 请参阅图 12, 在第二金属层 5的上方沉积介质层, 经光刻和 刻蚀,在介质层中形成通孔槽 6和带有开槽 8的顶层金属层结构 70; 本实施 例中, 光刻和刻蚀方法可以但不限于采用等离子体干法刻蚀, 形成的通孔 槽 6位于衬垫层 51上面, 与衬垫层 51相连, 第二金属层 5的材料可以但不 限于是铜。
步骤 S04: 请参阅图 13, 在通孔槽 6和顶层金属层结构 70中填充金属, 从而形成带有开槽 8的顶层金属层 7; 具体的, 本发明的形成暗像素结构的 方法可以用于铜互连工艺中, 本实施例中所填充的金属可以是铜, 可以但不 限于采用铜电镀的方法在通孔槽 6和顶层金属层结构 70中填充金属铜; 本 实施例中, 在填充金属之后, 还可以但不限于采用化学机械抛光法对顶层金 属层结构 70中的填充金属进行平坦化处理,从而形成顶层金属层 7,然后在 顶层金属层 7上沉积一层保护介质层 9, 保护介质层 9的作用是防止顶层金 属层受到污染, 比如发生氧化等。
本发明的形成暗像素的版图结构, 利用该版图结构形成的暗像素结构以 及形成方法, 通过在带有开槽的顶层金属层的下方设置通孔槽, 利用通孔槽 将开槽的下方包围, 然后再通孔槽的下方设置带有衬垫层的第二金属层, 通 过衬垫层将通孔槽的底部挡住, 由于通孔槽内填充有金属比如铜, 穿过开槽 进入通孔槽的光线被通孔槽和第二金属层的衬垫层挡住, 入射光不能进入感 光器件, 从而形成不漏光的暗像素, 实现光电器件的转换。
以上所述的仅为本发明的实施例,所述实施例并非用以限制本发明的专 利保护范围, 因此凡是运用本发明的说明书及附图内容所作的等同结构 化, 同理均应包含在本发明的保护范围内。

Claims

权利要求
1、 一种形成暗像素结构的版图结构, 其特征在于, 包括: 带有开槽图 形的顶层金属层图案的第一版图, 带有通孔槽图形的第二版图, 带有第二金 属层图形的第三版图, 所述第一、 第二和第三版图依次从上到下相互配合以 形成暗像素结构的版图结构; 其中, 所述第一版图的开槽图形位于所述第二 版图的通孔槽图形内边缘围成的图形的上方,所述第三版图的第二金属层图 形位于所述第二版图的通孔槽图形的下方。
2、 根据权利要求 1所述的一种形成暗像素结构的版图结构, 其特征在 于,所述开槽图形的中心位置与所述通孔槽图形内边缘围成的图形的中心位 置上下对齐。
3、 根据权利要求 1所述的一种形成暗像素结构的版图结构, 其特征在 于, 所述的通孔槽图形为回形或环形。
4、 根据权利要求 1所述的一种形成暗像素结构的版图结构, 其特征在 于, 所述第二金属层图形包括衬垫层图形, 所述衬垫层图形位于所述通孔槽 图形外边缘围成的图形的下方且将所述通孔槽图形外边缘围成的图形遮挡 住。
5、 根据权利要求 1所述的一种形成暗像素结构的版图结构, 其特征在 于,所述衬垫层图形的横截面面积大于等于所述通孔槽图形外边缘围成的图 形的横截面面积。
6、 根据权利要求 1所述的一种形成暗像素结构的版图结构, 其特征在 于,所述通孔槽图形内边缘围成的图形的横截面面积大于等于所述开槽图形 的横截面面积。
7、 一种利用上述权利要求 1-6任一版图结构形成的暗像素结构, 包括 位于感光器件的上方的接触孔, 位于所述接触孔上方的第一金属层, 位于所 述第一金属层上方的通孔, 以及位于所述通孔上方的第二金属层, 其特征在 于: 在所述第二金属层的上方设有填充有金属的通孔槽, 在所述通孔槽的上 方设有带有开槽的顶层金属层, 其中, 所述开槽位于所述通孔槽的内边缘围 成的区域的上方。
8、 根据权利要求 7所述的暗像素结构, 其特征在于, 所述的通孔槽为 回形槽或环形槽。
9、 根据权利要求 7所述的暗像素结构, 其特征在于, 所述开槽的横截 面的图形的中心位置与所述通孔槽的内边缘围成的区域的横截面的图形的 中心位置上下对齐。
10、 根据权利要求 7所述的暗像素结构, 其特征在于, 所述的第二金属 层包括衬垫层,所述衬垫层位于所述通孔槽外边缘围成的区域的下方且将所 述通孔槽外边缘围成的区域的底部挡住。
11、 根据权利要求 7所述的暗像素结构, 其特征在于, 所述第二金属层 的衬垫层的横截面面积大于等于所述通孔槽外边缘围成的区域的横截面面 积。
12、 根据权利要求 7所述的暗像素结构, 其特征在于, 所述通孔槽内边 缘围成的区域的横截面面积大于等于所述开槽的横截面面积。
13、 根据权利要求 7所述的暗像素结构, 其特征在于, 所述暗像素结构 用于铜互连工艺中, 所述顶层金属层的材料和所述通孔槽中填充的材料为 铜。
14、 根据权利要求 7所述的暗像素结构, 其特征在于, 第二金属层的材 料为铜。
15、 一种形成暗像素结构的方法, 其特征在于, 包括:
步骤 S01 : 在感光器件上方的形成接触孔, 在所述接触孔的上方形成第 一金属层, 在所述第一金属层的上方形成通孔;
步骤 S02: 在所述通孔的上方形成第二金属层;
步骤 S03 : 在所述第二金属层的上方沉积介质层, 经光刻和刻蚀, 在所 述介质层中形成通孔槽和带有开槽的顶层金属层结构;
步骤 S04:在所述通孔槽和所述顶层金属层结构中填充金属,从而形成顶 层金属层。
16、 根据权利要求 15所述的方法, 其特征在于, 所述步骤 S02中, 包 括在第二金属层中形成衬垫层, 在所述衬垫层的上方形成所述通孔槽, 所述 衬垫层位于所述通孔槽外边缘围成的区域的下方且将所述通孔槽外边缘围 成的区域的底部挡住。
17、 根据权利要求 15所述的方法, 其特征在于, 所述步骤 S04中, 所 述的填充金属之后, 对所述的顶层金属层结构中的填充金属进行平坦化处 理, 形成顶层金属层, 然后在所述的顶层金属层上沉积一层保护介质层。
18、 根据权利要求 15所述的方法, 其特征在于, 所述开槽的横截面的 图形的中心位置与所述通孔槽的内边缘围成的区域的横截面图形的中心位 置上下对齐。
19、 根据权利要求 15所述的方法, 其特征在于, 所述第二金属层的衬 垫层的横截面面积大于等于所述通孔槽外边缘围成的区域的横截面面积。
20、 根据权利要求 15所述的方法, 其特征在于, 所述通孔槽内边缘围 成的区域的横截面面积大于等于所述开槽的横截面面积。
21、 根据权利要求 15所述的方法, 其特征在于, 所述形成暗像素结构 的方法用于铜互连工艺中,所述顶层金属层结构和所述通孔槽中填充的金属 为铜。
PCT/CN2013/088926 2013-05-14 2013-12-10 一种版图结构、暗像素结构及其形成方法 WO2014183426A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2013101775807A CN103337502A (zh) 2013-05-14 2013-05-14 一种版图结构、暗像素结构及其形成方法
CN201310177580.7 2013-05-14

Publications (1)

Publication Number Publication Date
WO2014183426A1 true WO2014183426A1 (zh) 2014-11-20

Family

ID=49245637

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/088926 WO2014183426A1 (zh) 2013-05-14 2013-12-10 一种版图结构、暗像素结构及其形成方法

Country Status (2)

Country Link
CN (1) CN103337502A (zh)
WO (1) WO2014183426A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103337502A (zh) * 2013-05-14 2013-10-02 上海集成电路研发中心有限公司 一种版图结构、暗像素结构及其形成方法
CN108831897B (zh) * 2018-05-04 2021-04-13 上海华力集成电路制造有限公司 暗像素结构
CN112784523A (zh) * 2020-12-31 2021-05-11 上海集成电路装备材料产业创新中心有限公司 提取cis像元阵列电路寄生电阻电容的方法和系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010267748A (ja) * 2009-05-13 2010-11-25 Canon Inc 撮像装置、撮像システム、及び撮像装置の製造方法
CN102157529A (zh) * 2010-02-12 2011-08-17 联咏科技股份有限公司 影像传感器
CN102194844A (zh) * 2010-03-17 2011-09-21 佳能株式会社 固态图像传感器
CN103337502A (zh) * 2013-05-14 2013-10-02 上海集成电路研发中心有限公司 一种版图结构、暗像素结构及其形成方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010267748A (ja) * 2009-05-13 2010-11-25 Canon Inc 撮像装置、撮像システム、及び撮像装置の製造方法
CN102157529A (zh) * 2010-02-12 2011-08-17 联咏科技股份有限公司 影像传感器
CN102194844A (zh) * 2010-03-17 2011-09-21 佳能株式会社 固态图像传感器
CN103337502A (zh) * 2013-05-14 2013-10-02 上海集成电路研发中心有限公司 一种版图结构、暗像素结构及其形成方法

Also Published As

Publication number Publication date
CN103337502A (zh) 2013-10-02

Similar Documents

Publication Publication Date Title
US9640578B2 (en) Solid-state imaging device and camera module
JP4826111B2 (ja) 固体撮像素子および固体撮像素子の製造方法および画像撮影装置
JP5489705B2 (ja) 固体撮像装置および撮像システム
JP5553693B2 (ja) 固体撮像装置及び撮像システム
JP6141024B2 (ja) 撮像装置および撮像システム
US20160126267A1 (en) Imaging systems with backside isolation trenches
JP2010258157A (ja) 固体撮像装置およびその製造方法
JP2012169530A (ja) 固体撮像装置、および、その製造方法、電子機器
JP2007013061A (ja) 固体撮像装置及びその製造方法
JP2008311413A (ja) 裏面照射型撮像素子及びその製造方法
KR20120135627A (ko) 이미지 센서 및 그 제조 방법
JP2009021415A (ja) 固体撮像装置およびその製造方法
JP2009252949A (ja) 固体撮像装置及びその製造方法
TWI389330B (zh) 背側照明成像器以及製造其之方法
TWI390669B (zh) 成像器之像素及其他整合電路中形成導電互連之方法
JP5287923B2 (ja) 固体撮像素子および固体撮像素子の製造方法及び画像撮影装置
JP2005347707A (ja) 固体撮像素子及びその製造方法
JP2010062417A (ja) 固体撮像装置およびその製造方法
JP2009267062A (ja) 固体撮像装置とその製造方法、及び電子機器
WO2014183426A1 (zh) 一种版图结构、暗像素结构及其形成方法
CN105762160B (zh) 背照式全局像素单元结构及其制备方法
US10672811B2 (en) Image sensing device
US7785916B2 (en) Image sensor and method for manufacturing the same
JP5282797B2 (ja) 固体撮像素子および固体撮像素子の製造方法及び画像撮影装置
CN107507842B (zh) 优化cmos图像传感器晶体管结构的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13884943

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13884943

Country of ref document: EP

Kind code of ref document: A1