WO2014183292A1 - 上行功率控制方法及基站 - Google Patents

上行功率控制方法及基站 Download PDF

Info

Publication number
WO2014183292A1
WO2014183292A1 PCT/CN2013/075718 CN2013075718W WO2014183292A1 WO 2014183292 A1 WO2014183292 A1 WO 2014183292A1 CN 2013075718 W CN2013075718 W CN 2013075718W WO 2014183292 A1 WO2014183292 A1 WO 2014183292A1
Authority
WO
WIPO (PCT)
Prior art keywords
user equipment
path loss
base station
interference
signal
Prior art date
Application number
PCT/CN2013/075718
Other languages
English (en)
French (fr)
Inventor
董伟
周伟
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2013/075718 priority Critical patent/WO2014183292A1/zh
Priority to CN201380000727.3A priority patent/CN103535086B/zh
Publication of WO2014183292A1 publication Critical patent/WO2014183292A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/243TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account interferences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/242TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account path loss

Definitions

  • the present invention relates to communication technologies, and in particular, to an uplink power control method and a base station. Background technique
  • LPNs low power nodes
  • Heterogeneous a heterogeneous network within the deployment scope of a macro base station (for example, a Macro eNB).
  • HetNet HetNet
  • the uplink and downlink between the macro base station and the micro base station may interfere with each other.
  • Long Term Evolution (LTE) R10 has introduced an enhanced Inter-Cell Interference Coordination (elCIC) technology.
  • elCIC enhanced Inter-Cell Interference Coordination
  • the existing uplink power control method is generally used to reduce the uplink interference between the macro and micro. Since the existing uplink power control methods are all directed to a homogeneous network composed of base stations of the same level of transmission power and coverage, it is not possible to solve the uplink interference between macro and micro. Summary of the invention
  • the embodiment of the invention provides an uplink power control method and a base station, which are used to solve the uplink interference problem between macro and micro in the existing heterogeneous network.
  • a first aspect of the present invention provides an uplink power control method, including:
  • the first path loss and the second path loss are determined, and determining, by the user equipment, interference generated by the neighboring cell, includes: determining, according to the first path loss, a signal;
  • the signal to interference and noise ratio is determined.
  • the signal is And noise setting weights, including:
  • the serving cell of the user equipment is a macro cell under the coverage of the macro base station, set the signal weight to be greater than the noise weight to improve the uplink transmit power of the user equipment;
  • the serving cell of the user equipment is a micro cell under the coverage of the micro base station, set the signal weight to be smaller than the noise weight to reduce the uplink transmit power of the user equipment.
  • the neighboring area is multiple;
  • Determining the interference generated by the user equipment on the neighboring area according to the first path loss and the second path loss including:
  • the fourth possibility in the first aspect The determining, according to the interference, determining a desired transmit power of the user equipment, including:
  • a second aspect of the present invention provides a base station, including:
  • An acquiring module configured to acquire a first path loss of the user equipment to the serving cell and a second path loss of the user equipment to the neighboring cell;
  • a first determining module configured to determine, according to the first path loss and the second path loss, interference generated by the user equipment to a neighboring area
  • a second determining module configured to determine, according to the interference, a desired transmit power of the user equipment.
  • the first determining module is specifically configured to determine a signal according to the first path loss, and determine a noise according to the second path loss, Based on the signal and noise, the signal to interference and noise ratio is determined.
  • the base station further includes:
  • a setting module configured to set a weight for the signal and noise in the process of determining, by the first determining module, the signal and the noise; wherein, if the serving cell of the user equipment is a macro under the coverage of the macro base station The cell, the set signal weight is greater than the noise weight, to improve the uplink transmit power of the user equipment;
  • the serving cell of the user equipment is a micro cell under the coverage of the micro base station, set the signal weight to be smaller than the noise weight to reduce the uplink transmit power of the user equipment.
  • the neighboring area is multiple;
  • the first determining module is specifically configured according to a formula Determining the interference generated by the user equipment in the neighboring cell; where ⁇ represents the interference generated by the user equipment to the neighboring cell; represents the first path loss; P represents the second of the user equipment to the i-th neighboring cell Path loss, i takes the value of 1...N, N is the number of the neighboring cells; w d represents the signal weight; represents the noise weight corresponding to the 1 ⁇ .
  • the second determining module is specifically configured to set, according to the interference, the user Determining a downlink path loss and a pre-configured initial power spectral density, determining a target power spectral density of the user equipment, according to the target power spectral density, the number of scheduling resources allocated by the user equipment, and the serving cell
  • the maximum transmit power determines the desired transmit power of the user equipment.
  • a third aspect provides a base station, including:
  • a processor configured to: execute: the first path loss of the user equipment to the serving cell and the second path loss of the user equipment to the neighboring cell, according to the first path loss and the second path And determining, by the user equipment, interference generated by the user equipment, and determining, according to the interference, a desired transmit power of the user equipment.
  • the uplink power control method and the base station provided by the embodiment of the present invention consider the path loss of the user equipment to the serving cell and the neighboring cell, and determine the user equipment to be adjacent to each other in the uplink transmission process based on the path loss of the user equipment to the serving cell and the neighboring cell.
  • the interference generated by the area is determined according to the interference
  • the expected transmit power of the UE is determined according to the interference. Since the acquisition of the expected transmit power considers the interference of the UE to the neighboring area, it is beneficial to alleviate the uplink interference between the adjacent areas, and solves the existing differences.
  • the problem of uplink interference between macro and micro in the network is mapped to the network.
  • FIG. 1 is a schematic diagram of a scenario of a heterogeneous network according to an embodiment of the present disclosure
  • FIG. 2 is a schematic diagram of a scenario of another heterogeneous network according to an embodiment of the present invention.
  • FIG. 3 is a flowchart of an uplink power control method according to an embodiment of the present invention.
  • FIG. 4 is a flowchart of another uplink power control method according to an embodiment of the present invention
  • FIG. 5 is a flowchart of still another uplink power control method according to an embodiment of the present invention
  • FIG. 7 is a schematic structural diagram of another base station according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of still another base station according to an embodiment of the present disclosure
  • FIG. 9 is a schematic structural diagram of still another base station according to an embodiment of the present disclosure
  • FIG. 10 is a schematic structural diagram of still another base station according to an embodiment of the present invention.
  • the technical solutions in the embodiments of the present invention are clearly and completely described in the following with reference to the accompanying drawings in the embodiments of the present invention.
  • the embodiments are a part of the embodiments of the invention, and not all of the embodiments. All other embodiments obtained by those skilled in the art based on the embodiments of the present invention without creative efforts are within the scope of the present invention.
  • the deployment of a micro base station can be divided into two cases, one is to improve coverage performance, and the other is to improve network capacity.
  • the micro base station for improving coverage performance is generally deployed in a weak coverage area of the macro base station, such as the micro base station 110 shown in FIG. 1 and the micro base station 210 shown in FIG.
  • the micro base station for increasing the network capacity is generally deployed in the traffic hotspot area for absorbing traffic and improving the overall capacity of the network, such as the micro base station 220 shown in FIG. Whether in the heterogeneous network scenario shown in Figure 1 or in the heterogeneous network scenario shown in Figure 2, there is interference between the macro base station user and the micro base station user.
  • the traffic hotspot area may have a relatively good near or midpoint position of the macro base station signal
  • the micro base station when the micro base station is deployed at the near or midpoint of the macro base station, the macro base station
  • the reference signal received power (RSRP) is large, and the micro base station needs to absorb the UE to the UE, so that the RSRP of the micro base station itself is larger than that of the macro base station, and the micro base station is compared with the macro base station.
  • the transmission power is generally low. Therefore, to meet the higher RSRP, the path loss of the UE from the micro base station is small, that is, the coverage of the micro base station is significantly reduced.
  • the LTE R10 protocol introduces a cell range expansion (CRE) function.
  • the principle of the CRE function is: instead of changing the transmit power of the micro base station, by configuring the handover parameters, an offset is added to the corresponding threshold, which makes it easier for the UE to switch to the micro base station and more difficult to cut out the micro base station.
  • the coverage of the micro base station can be made larger, but the edge users of the micro base station will be closer to the macro base station, and the uplink and downlink interference between the macro base station and the micro base station is increased.
  • the embodiment of the present invention provides an uplink power control method for solving the problem between macro and micro in a heterogeneous network. Uplink interference problem.
  • FIG. 3 is a flowchart of an uplink power control method according to an embodiment of the present invention. As shown in FIG. 3, the method includes:
  • the method includes: if the serving cell of the UE is a macro cell covered by the macro base station And setting the signal weight to be greater than the noise weight to improve the uplink transmit power of the UE; if the serving cell of the UE is a micro cell under the coverage of the micro base station, setting the signal weight to be smaller than the noise weight to reduce the uplink of the UE Transmit power.
  • the foregoing signal may be determined by a path loss of the UE to a serving cell, where the noise may be determined by a path loss of the UE to a neighboring cell.
  • the base station in the serving cell of the UE (the base station may be a macro base station or a micro base station), in determining the signal to interference and noise ratio of the UE to the neighboring area, according to whether the serving cell of the UE is a macro cell or
  • the micro cell sets the signal weight and the noise weight, improves the uplink or the uplink transmit power of the UE, and helps reduce the uplink interference between the macro and micro in the heterogeneous network.
  • FIG. 4 is a flowchart of another uplink power control method according to an embodiment of the present invention. As shown in FIG. 4, the method includes:
  • an implementation manner of step 402 includes: determining a signal according to the first path loss; determining noise according to the second path loss; and determining a signal to interference and noise ratio according to the signal and the noise. That is, the signal may be determined by a path loss of the UE to a serving cell, and the noise may be determined by a path loss of the UE to a neighboring cell.
  • setting a weight for the signal and the noise includes: if the UE is served The cell is a macro cell covered by the macro base station, and the set signal weight is greater than the noise weight, to And increasing the uplink transmit power of the UE; if the serving cell of the UE is a micro cell under the coverage of the micro base station, setting the signal weight to be smaller than the noise weight to reduce the uplink transmit power of the UE.
  • the UE has multiple neighboring cells. Based on this, an implementation of step 402 causes interference of the UE to the neighboring cell.
  • represents the interference generated by the UE to the neighboring cell ; ⁇ represents the first path loss; 1 ⁇ represents the second path loss of the UE to the i-th neighbor, and the value of i 1...N, N is the number of the neighboring cells; w d represents the signal weight; and represents the noise weight corresponding to the 1 ⁇ .
  • an implementation manner of step 403 includes: determining, according to the interference, a downlink path loss of the UE, and a pre-configured initial power spectral density, a target power spectral density of the UE; The target power spectral density, the number of scheduling resources allocated by the UE, and the maximum transmit power allowed by the serving cell, determine a desired transmit power of the UE.
  • the base station in the serving cell of the UE acquires a path loss of the UE to the serving cell and a path loss of the UE to the neighboring cell, and is determined based on the acquired path loss.
  • the interference generated by the UE to the neighboring cell is determined according to the interference, and the expected transmit power of the UE is determined according to the interference. Since the acquisition of the expected transmit power takes into account the total interference of the UE to the neighboring cell, it is beneficial to alleviate the uplink interference between the neighboring cells.
  • the base station in the serving cell of the UE considers the impact of the macro base station and the unbalance, so that the uplink throughput of the heterogeneous network can be effectively improved.
  • FIG. 5 is a flowchart of still another uplink power control method according to an embodiment of the present invention. As shown in FIG. 5, the method includes:
  • the path loss of the UE to the serving cell of the UE the path loss of the UE to the neighboring cell, the signal weight used to identify the received power of the UE to the serving cell, and the identifier used to identify the UE to The noise weight of the received power of the neighboring area is obtained, and the interference generated by the UE to the neighboring area is obtained.
  • the interference is referred to as interference leakage, and the interference leakage is used to identify the total interference generated by the UE in the uplink in the uplink transmission.
  • the present embodiment fully considers the difference between the transmit power of the macro base station and the micro base station in the heterogeneous network, and the base station in the serving cell of the UE specifically passes the path loss of the UE to the serving cell. And the path loss of the UE to the neighboring area, to reflect the difference in transmission power between the macro base station and the micro base station.
  • the path loss of the UE to the macro cell may be obtained by subtracting the RSRP of the macro cell reported by the UE from the transmit power of the Common Reference Signal (CRS) of the macro cell base station, and the path loss of the UE to the neighboring cell may be adjacent.
  • CRS Common Reference Signal
  • the transmit power of the CRS of the regional base station is subtracted from the RSRP of the neighboring cell reported by the UE. It is noted that, according to different serving cells of the UE, the base station in the serving cell where the UE is located may be a macro base station or a micro base station.
  • the transmit power of the UE is mainly limited by two factors: 1) the maximum transmit power that the UE radio frequency circuit can support; 2) the neighboring zone can withstand the maximum interference of the UE.
  • This embodiment considers the second constraint factor to solve the uplink interference problem between macro cells.
  • the interference leakage is used to define the maximum interference that the neighboring zone can bear, that is, the total interference of the UE to the neighboring cell in the uplink transmission, but is not limited thereto.
  • the interference generated by the UE is actually a received power for the neighboring cell, so the noise weight can be used to indicate the UE's interference contribution to the neighboring cell.
  • the signal weight is used to indicate the received power of the UE to the serving cell. For the serving cell, it is desirable that the receiving power of the UE to the serving cell is as large as possible, and for the neighboring cell, it is desirable that the receiving power of the UE to the neighboring cell is as small as possible.
  • the serving cell of the UE may be a macro cell under the coverage of the macro base station, and the neighboring cell of the UE mainly refers to a micro cell that is deployed under the coverage of the micro base station around the macro base station, and may also include other macro cells.
  • the UE under the macro base station may cause uplink interference to the micro base station, and may set a signal weight that reflects the received power of the UE to the macro cell, and is greater than or equal to a noise weight that reflects the received power of the UE to the micro cell. Increase the power boost of the UE and expect to increase the edge throughput of the entire network.
  • the serving cell of the UE may be a micro cell under the coverage of the micro base station, and the neighboring cell of the UE mainly refers to a macro cell covered by the macro base station, and may also include other micro cells.
  • the setting may be reflected by
  • the signal weight of the received power of the UE to the serving cell is less than or equal to the reflected UE
  • the noise weight of the received power to the neighboring cell reduces the power boost of the UE, reduces the interference to the macro base station user, and expects to improve the edge throughput of the entire network.
  • step 501 there may be multiple neighboring cells of the UE.
  • An optional implementation manner of the step 501 may be: the base station in the serving cell where the UE is located determines the interference generated by the UE to the neighboring cell according to the foregoing formula (1).
  • the interference generated by the UE to the neighboring cell is taken as a factor to determine the expected transmit power of the UE.
  • the expected transmit power of the UE is related to the interference generated by the UE to the neighboring cell, and the number of scheduling resources allocated by the UE and the maximum transmit power allowed by the serving cell of the UE.
  • an optional implementation of step 502 includes:
  • the target power spectral density of the UE may be determined according to formula (2).
  • represents the interference generated by the UE to the neighboring cell
  • PSD represents the target power spectral density of the UE
  • is a preset constant for example, may be a number between 0 and 1.
  • the expected transmit power of the UE may be determined according to formula (3).
  • P cx min ⁇ P hidden JOloglO (Num) + PSD ⁇ ( 3 ) Equation (3) indicates that the smaller one of the two is selected as the expected transmission power of the UE.
  • denotes the expected transmit power of the UE ;
  • Num denotes the number of scheduling resources allocated by the UE ;
  • PSD denotes the target power spectral density of the UE;
  • P is the maximum allowed transmission determined by the UE level power.
  • the scheduling resource allocated by the UE may be a resource block (abbreviated as RB), but is not limited thereto. 503.
  • RB resource block
  • the base station in the serving cell may send the power control indication to the UE, so that the UE uses the expected transmit power for uplink transmission, thereby reducing uplink interference to the neighboring cell.
  • the manner in which the power control indication is sent to the UE to enable the UE to use the expected transmit power for uplink transmission is not limited.
  • the desired transmit power may be compared with the transmit power currently used by the UE by using a power control indication. The difference is sent to the UE; for example, the expected transmit power may be directly sent to the UE by using a power control indication; for example, the transmit power level information corresponding to the expected transmit power may be sent to the UE by using a power control indication; and many more.
  • the method provided in this embodiment takes the path loss of the UE to the serving cell and the neighboring cell, and uses the signal weight and the noise weight respectively representing the received power of the UE to the serving cell and the neighboring cell to obtain the uplink transmission process of the UE.
  • the total interference generated by the neighboring area that is, the interference leakage, wherein the path loss reflects the difference in transmission power between the macro base station and the micro base station, and then according to the interference generated by the UE to the neighboring area, the number of scheduling resources allocated by the UE, and Obtaining the maximum transmit power allowed by the serving cell, acquiring the expected transmit power of the UE, and then performing uplink power control on the UE based on the expected transmit power, so that the UE uses the expected transmit power for uplink transmission, and the UE is considered for the acquisition of the expected transmit power.
  • the total interference to the neighboring cells is therefore beneficial to alleviate the uplink interference between the neighboring cells.
  • the method provided in this embodiment considers the uplink power throughput of the heterogeneous network by considering the transmit power of the macro base station and the micro base station. the amount.
  • FIG. 6 is a schematic structural diagram of a base station according to an embodiment of the present invention. As shown in FIG. 6, the base station includes: a calculation module 61, a determination module 62, and a setting module 63.
  • the calculating module 61 is configured to calculate a signal to interference and noise ratio of the UE to the neighboring cell.
  • the determining module 62 is connected to the calculating module 61, and is configured to determine an uplink transmit power of the UE according to the signal to interference and noise ratio of the UE to the neighboring area calculated by the calculating module 61.
  • the setting module 63 is connected to the calculation module 61, and is configured to set a weight for the signal and the noise when the calculation module 61 calculates the signal to interference and noise ratio; wherein, if the serving cell of the UE is a macro cell covered by the macro base station Setting the signal weight to be greater than the noise weight to improve the uplink transmit power of the UE; if the serving cell of the UE is a micro cell under the coverage of the micro base station, The signal weight is set to be smaller than the noise weight to reduce the uplink transmit power of the UE.
  • the foregoing signal may be determined by a path loss of the UE to a serving cell, where the noise is determined by a path loss of the UE to a neighboring cell.
  • the base station provided in this embodiment may be a base station in a serving cell of the UE, and may be a macro base station or a micro base station.
  • the function modules of the base station provided in this embodiment can be used to perform the process of the uplink power control method shown in FIG. 3, and the specific working principle is not described herein.
  • the base station In the process of determining the signal to interference and noise ratio of the UE to the neighboring cell, the base station according to the embodiment sets the signal weight and the noise weight according to whether the serving cell of the UE is a macro cell or a micro cell, and improves the uplink transmit power of the UE. It is beneficial to reduce the uplink interference between macro and micro in heterogeneous networks.
  • FIG. 7 is a schematic structural diagram of another base station according to an embodiment of the present invention. As shown in FIG. 7, the base station includes: a memory 71 and a processor 72.
  • the memory 71 is used to store a program.
  • the program can include program code, the program code including computer operating instructions.
  • the memory 71 may include a high speed RAM memory, and may also include a nonvolatile memory.
  • non-volatile memory such as at least one disk storage.
  • the processor 72 is configured to execute the program, to:
  • the signal weight is set to be greater than the noise weight to improve the uplink transmit power of the UE; if the serving cell of the UE is a micro-base station And setting a signal weight to be smaller than a noise weight to reduce an uplink transmit power of the UE.
  • the foregoing signal may be determined by a path loss of the UE to a serving cell, where the noise is determined by a path loss of the UE to a neighboring cell.
  • the processor 72 of this embodiment may be a central processing unit (CPU), or an application specific integrated circuit (ASIC), or configured to implement the embodiments of the present invention.
  • CPU central processing unit
  • ASIC application specific integrated circuit
  • the base station may further include: a receiver 73 and a transmitter 74.
  • the receiver 73 and the transmitter 74 cooperate to realize communication between the base station and other devices.
  • the receiver 73 and the transmitter 74 may be various communication modules on the base station, for example, may be a radio frequency (RF) module, but are not limited thereto.
  • RF radio frequency
  • the memory 71, the processor 72, the receiver 73, and the transmitter 74 may be connected to each other through a bus and complete each other. Communication between.
  • the bus may be an Industry Standard Architecture (ISA) bus, a Peripheral Component (PCI) bus, or an Extended Industry Standard Architecture (EISA). Bus, etc.
  • ISA Industry Standard Architecture
  • PCI Peripheral Component
  • EISA Extended Industry Standard Architecture
  • the bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in Figure 7, but it does not mean that there is only one bus or one type of bus.
  • the memory 71, the processor 72, the receiver 73, and the transmitter 74 may pass through an internal interface. Complete the same communication.
  • the base station provided in this embodiment may be a base station in a serving cell of the UE, and may be a macro base station or a micro base station.
  • the base station provided in this embodiment can be used to perform the process of the method embodiment shown in FIG. 3.
  • the specific working principle is not described here. For details, refer to the description of the method embodiment.
  • the base station In the process of determining the signal to interference and noise ratio of the UE to the neighboring cell, the base station according to the embodiment sets the signal weight and the noise weight according to whether the serving cell of the UE is a macro cell or a micro cell, and improves the uplink transmit power of the UE. It is beneficial to reduce the uplink interference between macro and micro in heterogeneous networks.
  • FIG. 8 is a schematic structural diagram of still another base station according to an embodiment of the present invention. As shown in FIG. 8, the base station includes: an obtaining module 81, a first determining module 82, and a second determining module 83.
  • the obtaining module 81 is configured to acquire a first path loss of the UE to the serving cell and a second path loss of the UE to the neighboring cell.
  • the first determining module 82 is connected to the obtaining module 81, and configured to determine, according to the first path loss and the second path loss acquired by the obtaining module 81, the interference generated by the UE to the neighboring cell.
  • the second determining module 83 is connected to the first determining module 82, and is configured to determine, according to the interference determined by the first determining module 82, the expected transmit power of the UE.
  • the first determining module 82 is specifically configured to determine a signal according to the first path loss, determine noise according to the second path loss, and determine a signal to interference and noise ratio according to the signal and the noise.
  • the base station further includes: a setting module 84.
  • the setting module 84 is connected to the first determining module 82, and configured to set a weight for the signal and noise in the process of determining the signal to interference and noise ratio by the first determining module 82; wherein, if the serving cell of the UE Is a macro cell covered by the macro base station, and the signal weight is greater than the noise weight to increase the uplink transmit power of the UE; if the serving cell of the UE is a micro cell under the coverage of the micro base station, setting the signal weight to be smaller than the noise Weights to reduce the uplink transmit power of the UE.
  • the neighboring area of the UE may be one or more. If the number of the neighboring cells of the UE is multiple, the first determining module 82 is specifically configured to determine, according to the formula (1), the interference generated by the UE to the neighboring cell. For a detailed description of the formula (1), reference can be made to the foregoing embodiment.
  • the second determining module 83 is specifically configured to determine a target power spectral density of the UE according to the interference, a downlink path loss of the UE, and a pre-configured initial power spectral density, according to the target power spectral density. And determining, by the number of scheduling resources allocated by the UE, and a maximum transmit power allowed by the serving cell, determining a desired transmit power of the UE.
  • the base station provided in this embodiment may be a base station in a serving cell of the UE, and may be a macro base station or a micro base station.
  • the function modules of the base station provided in this embodiment can be used to perform the process of the uplink power control method shown in FIG. 4, and the specific working principle is not described herein.
  • the base station provided in this embodiment obtains the path loss of the UE to the serving cell and the path loss of the UE to the neighboring cell, determines the interference generated by the UE to the neighboring cell based on the acquired path loss, and then determines the expected transmit power of the UE according to the interference, because The acquisition of the expected transmit power takes into account the total interference of the UE to the neighboring cell. Therefore, it is beneficial to alleviate the uplink interference between the adjacent cells, and solves the problem of uplink interference between the macro and micro in the existing heterogeneous network. Further, the base station provided in this embodiment can effectively improve the heterogeneity by considering the macro-uplink imbalance and the interference imbalance between the macro-micro users due to the difference in transmit power between the macro base station and the micro base station. The upstream throughput of the network.
  • FIG. 10 is a schematic structural diagram of still another base station according to an embodiment of the present invention. As shown in FIG. 10, the base station includes: a memory 1001 and a processor 1002.
  • the memory 1001 is used to store a program.
  • the program can include program code, the program code including computer operating instructions.
  • the memory 1001 may include a high speed RAM memory, and may also include a non-volatile memory such as at least one disk memory.
  • the processor 1002 is configured to execute the program, configured to: acquire a first path loss of the UE to the serving cell, and a second path loss of the UE to the neighboring cell, according to the first path loss and the second path loss. And determining, by the UE, interference generated by the neighboring cell, and determining, according to the interference, a desired transmit power of the UE.
  • the processor 1002 of the present embodiment may be a CPU, or a specific ASIC, or one or more integrated circuits configured to implement embodiments of the present invention.
  • the base station further includes: a receiver 1003 and a transmitter 1004.
  • Receiver 1003 cooperates with transmitter 1004 to perform communications between the base station and other devices.
  • the receiver 1003 and the transmitter 1004 may be various communication modules on the base station, and may be, for example, a radio frequency (Radio Frequency) module, but are not limited thereto.
  • the memory 1001, the processor 1002, the receiver 1003, and the transmitter 1004 may be connected to each other through a bus and complete each other. Communication between.
  • the bus can be an ISA bus, a PCI bus or an EISA bus.
  • the bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in Figure 10, but it does not mean that there is only one bus or one type of bus.
  • the memory 1001, the processor 1002, the receiver 1003, and the transmitter 1004 are implemented on one chip, the memory 1001, the processor 1002, the receiver 1003, and the transmitter 1004 may pass through an internal interface. Complete the same communication.
  • the base station provided in this embodiment may be a base station in a serving cell of the UE, and may be a macro base station or a micro base station.
  • the base station provided in this embodiment can be used to perform the process of the method embodiment shown in FIG. 4, and the specific working principle is not described here. For details, refer to the description of the method embodiment.
  • the base station provided in this embodiment obtains the path loss of the UE to the serving cell and the path loss of the UE to the neighboring cell, determines the interference generated by the UE to the neighboring cell based on the acquired path loss, and then determines the expected transmit power of the UE according to the interference, because The acquisition of the expected transmit power takes into account the total interference of the UE to the neighboring cell. Therefore, it is beneficial to alleviate the uplink interference between the adjacent cells, and solves the problem of uplink interference between the macro and micro in the existing heterogeneous network. Further, the base station provided in this embodiment can effectively improve the heterogeneity by considering the macro-uplink imbalance and the interference imbalance between the macro-micro users due to the difference in transmit power between the macro base station and the micro base station.
  • the upstream throughput of the network A person skilled in the art can understand that all or part of the steps of implementing the above method embodiments may be completed by using hardware related to program instructions, and the foregoing program may be stored in a computer readable storage medium, and the program is executed when executed.
  • the method includes the steps of the foregoing method embodiments; and the foregoing storage medium includes: a medium that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供一种上行功率控制方法及基站。方法包括:获取UE到服务小区的第一路径损耗以及所述UE到邻区的第二路径损耗;根据所述第一路径损耗和第二路径损耗,确定所述UE对邻区产生的干扰;根据所述干扰,确定所述UE的期望发射功率。本发明技术方案解决了现有异构网络中宏微之间的上行干扰问题。

Description

上行功率控制方法及基站 技术领域 本发明实施例涉及通信技术, 尤其涉及一种上行功率控制方法及基站。 背景技术
传统无线蜂窝网络是由相同等级发射功率和覆盖范围的基站组成, 即通 常所说的同构网络( Homogeneous Network )。为了进一步提高容量及覆盖性, 现有技术提出在宏基站(例如, Macro eNB )的部署范围内增加一些小功率站 点 ( Low Power Node , 简称为 LPN ) , 例如 基站, 形成了异构网络 ( Heterogeneous Network, 简称为 HetNet ) 。
在异构网络中, 宏基站与微基站彼此之间的上下行会产生相互干扰。 针 对宏基站对啟基站的下行干扰,长期演进( Long Term Evolution,简称为 LTE ) R10 十办议引入了增强的小区间干 4尤十办调 ( Enhanced Inter-Cell Interference Coordination, 简称为 elCIC )技术, 而针对宏基站和 基站用户之间的上行 干扰, 一般是釆用现有的上行功率控制方法来减少宏微之间的上行干扰。 由 于现有上行功率控制方法都是针对由相同等级发射功率和覆盖范围的基站组 成的同构网络的, 因此, 并不能 ^艮好的解决宏微之间的上行干扰。 发明内容
本发明实施例提供一种上行功率控制方法及基站, 用以解决现有异构网 络中宏微之间的上行干扰问题。
本发明第一方面提供一种上行功率控制方法, 包括:
获取用户设备到服务小区的第一路径损耗以及所述用户设备到邻区的第 二路径损耗;
根据所述第一路径损耗和第二路径损耗, 确定所述用户设备对邻区产生 的干扰;
根据所述干扰, 确定所述用户设备的期望发射功率。
结合第一方面, 在第一方面的第一种可能的实现方式中, 所述根据所述 第一路径损耗和第二路径损耗, 确定所述用户设备对邻区产生的干扰, 包括: 根据所述第一路径损耗, 确定信号;
根据所述第二路径损耗, 确定噪声;
根据所述信号和噪声, 确定信干噪比。
结合第一方面的第一种可能的实现方式, 在第一方面的第二种可能的实 现方式中, 在根据所述信号和噪声, 确定所述信干噪比的过程中, 为所述信 号和噪声设置权值, 包括:
如果所述用户设备的服务小区是宏基站覆盖下的宏小区, 设置信号权值 大于噪声权值, 以提升所述用户设备的上行发射功率;
如果所述用户设备的服务小区是微基站覆盖下的微小区, 设置信号权值 小于噪声权值, 以降低所述用户设备的上行发射功率。
结合第一方面的第二种可能的实现方式, 在第一方面的第三种可能的实 现方式中, 所述邻区为多个;
所述根据所述第一路径损耗和第二路径损耗, 确定所述用户设备对邻区 产生的干扰, 包括:
W
PL,
Δ = 10 log 10
W,
根据公式 i=l 1 PL:
确定所述用户设备对邻区产生的干扰; 其中, Δ表示所述用户设备对邻区产生的干扰; 表示所述第一路径损 耗; 1 ^表示所述用户设备到第 i个邻区的第二路径损耗, i的取值为 1...N, N 为所述邻区的个数; wd表示所述信号权重; 表示与所述1 ^对应的噪声 权重。
结合第一方面或第一方面的第一种可能的实现方式或第一方面的第二种 可能的实现方式或第一方面的第三种可能的实现方式, 在第一方面的第四种 可能的实现方式中, 所述根据所述干扰, 确定所述用户设备的期望发射功率, 包括:
根据所述干扰、 所述用户设备的下行路径损耗和预先配置的初始功率谱 密度, 确定所述用户设备的目标功率谱密度;
根据所述目标功率谱密度、 所述用户设备分配到的调度资源的数量和所 述服务小区允许的最大发射功率, 确定所述用户设备的期望发射功率。 本发明第二方面提供一种基站, 包括:
获取模块, 用于获取用户设备到服务小区的第一路径损耗以及所述用户 设备到邻区的第二路径损耗;
第一确定模块, 用于根据所述第一路径损耗和第二路径损耗, 确定所述 用户设备对邻区产生的干扰;
第二确定模块, 用于根据所述干扰, 确定所述用户设备的期望发射功率。 结合第二方面, 在第二方面的第一种可能的实现方式中, 所述第一确定 模块具体用于根据所述第一路径损耗, 确定信号, 根据所述第二路径损耗, 确定噪声, 根据所述信号和噪声, 确定信干噪比。
结合第二方面的第一种可能的实现方式, 在第二方面的第二种可能的实 现方式中, 所述基站还包括:
设置模块, 用于在所述第一确定模块确定所述信干噪比的过程中, 为所 述信号和噪声设置权值; 其中, 如果所述用户设备的服务小区是宏基站覆盖 下的宏小区, 设置信号权值大于噪声权值, 以提升所述用户设备的上行发射 功率;
如果所述用户设备的服务小区是微基站覆盖下的微小区, 设置信号权值 小于噪声权值, 以降低所述用户设备的上行发射功率。
结合第二方面的第二种可能的实现方式, 在第二方面的第三种可能的实 现方式中, 所述邻区为多个;
所述第一确定模块具体用于根据公式
Figure imgf000004_0001
确定所述用 户设备对邻区产生的干扰; 其中, Δ表示所述用户设备对邻区产生的干扰; 表示所述第一路径损 耗; P 表示所述用户设备到第 i个邻区的第二路径损耗, i的取值为 1...N, N 为所述邻区的个数; wd表示所述信号权重; 表示与所述1 ^对应的噪声 权重。
结合第二方面或第二方面的第一种可能的实现方式或第二方面的第二种 可能的实现方式或第二方面的第三种可能的实现方式, 在第二方面的第四种 可能的实现方式中, 所述第二确定模块具体用于根据所述干扰、 所述用户设 备的下行路径损耗和预先配置的初始功率谱密度, 确定所述用户设备的目标 功率谱密度, 根据所述目标功率谱密度、 所述用户设备分配到的调度资源的 数量和所述服务小区允许的最大发射功率, 确定所述用户设备的期望发射功 率。
第三方面提供一种基站, 包括:
存储器, 用于存储程序;
处理器, 用于执行所述程序, 以用于: 获取用户设备到服务小区的第一 路径损耗以及所述用户设备到邻区的第二路径损耗, 根据所述第一路径损耗 和第二路径损耗, 确定所述用户设备对邻区产生的干扰, 根据所述干扰, 确 定所述用户设备的期望发射功率。
本发明实施例提供的上行功率控制方法及基站, 考虑用户设备到服务小 区和邻区的路径损耗、 并基于用户设备到服务小区和邻区的路径损耗, 确定 用户设备在上行传输过程中对邻区产生的干扰, 然后根据该干扰确定 UE 的 期望发射功率, 由于该期望发射功率的获取考虑了 UE对邻区的干扰, 因此, 有利于减轻邻区之间的上行干扰, 解决了现有异构网络中宏微之间的上行干 扰问题。 附图说明 为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实 施例或现有技术描述中所需要使用的附图作一简单地介绍, 显而易见地, 下 面描述中的附图是本发明的一些实施例, 对于本领域普通技术人员来讲, 在 不付出创造性劳动性的前提下, 还可以根据这些附图获得其他的附图。
图 1为本发明实施例提供的一种异构网络的场景示意图;
图 2为本发明实施例提供的另一种异构网络的场景示意图;
图 3为本发明实施例提供的一种上行功率控制方法的流程图;
图 4为本发明实施例提供的另一种上行功率控制方法的流程图; 图 5为本发明实施例提供的又一种上行功率控制方法的流程图; 图 6为本发明实施例提供的一种基站的结构示意图;
图 7为本发明实施例提供的另一种基站的结构示意图;
图 8为本发明实施例提供的又一种基站的结构示意图; 图 9为本发明实施例提供的又一种基站的结构示意图;
图 10为本发明实施例提供的又一种基站的结构示意图。 具体实施方式 为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本发 明实施例中的附图, 对本发明实施例中的技术方案进行清楚、 完整地描述, 显然, 所描述的实施例是本发明一部分实施例, 而不是全部的实施例。 基于 本发明中的实施例, 本领域普通技术人员在没有作出创造性劳动前提下所获 得的所有其他实施例, 都属于本发明保护的范围。
在异构网络中, 微基站的部署可以分为两种情况, 一种是为了提升覆盖 性能, 一种是为了提高网络容量。 用于提升覆盖性能的微基站一般会被部署 在宏基站的弱覆盖区, 如图 1所示的微基站 110和图 2所示的微基站 210。 用于提高网络容量的微基站一般会被部署在话务热点区域,用于吸收话务量, 提高网络整体的容量, 如图 2所示的微基站 220。 无论是在图 1所示异构网 络场景中还是在图 2所示异构网络场景中, 宏基站用户与微基站用户彼此之 间都会存在干扰。
例如, 以图 2所示场景为例, 由于话务热点区域有可能在宏基站信号比 较好的近点或中点位置, 当微基站部署在宏基站的近点或中点时, 宏基站的 参考信号接收功率(Reference signal received power, 简称为 RSRP )较大, 微基站要吸收到 UE, 就要使微基站本身的 RSRP比宏基站还要大才行, 而微 基站与宏基站相比, 其发射功率一般比较低, 因此, 要满足较高的 RSRP, UE距离微基站的路径损耗就要很小, 也就是说微基站的覆盖范围要明显收 缩。 而为了尽量利用部署微基站之后带来的频率复用增益, 提高整网的性能, 特别是当微基站部署在宏基站的近点或中点时, 希望微基站尽可能吸收比较 多的 UE, 增加微基站的覆盖范围, 因此 LTE R10协议引入了小区范围扩展 ( Cell range expansion, 简称为 CRE ) 功能。 CRE功能的原理是: 不改变微 基站的发射功率, 而是通过配置切换参数, 在相应的门限上再加入一个偏置, 切换时使 UE更容易切换到微基站以及更难切出微基站。 通过这种操作, 可 以使微基站的覆盖范围变大, 但微基站的边缘用户将更靠近宏基站, 增大了 宏基站和微基站之间的上下行干扰。 针对现有技术中没有合适的方案用于解决异构网络中宏微之间的上行干 扰问题, 本发明实施例提供了一种上行功率控制方法, 用以解决异构网络中 宏微之间的上行干扰问题。
图 3为本发明实施例提供的一种上行功率控制方法的流程图。 如图 3所 示, 所述方法包括:
300、 计算 UE到邻区的信干噪比, 其中, 在计算所述信干噪比时, 为信 号和噪声设置权值, 包括: 如果所述 UE的服务小区是宏基站覆盖下的宏小 区, 设置信号权重大于噪声权重, 以提升所述 UE的上行发射功率; 如果所 述 UE的服务小区是微基站覆盖下的微小区, 设置信号权值小于噪声权值, 以降低所述 UE的上行发射功率。
301、 根据 UE对邻区的信干噪比确定所述 UE的上行发射功率。
其中, 上述信号可以通过所述 UE到服务小区的路径损耗确定, 上述噪 声可以通过所述 UE到邻区的路径损耗确定。
在本实施例中, UE的服务小区中的基站(该基站可以是宏基站也可以是 微基站), 在确定 UE到邻区的信干噪比过程中, 根据 UE的服务小区是宏小 区还是微小区, 设置信号权重和噪声权重, 适应性提升或降低 UE的上行发 射功率, 有利于降低异构网络中宏微之间的上行干扰。
图 4为本发明实施例提供的另一种上行功率控制方法的流程图。 如图 4 所示, 所述方法包括:
401、 获取 UE到服务小区的第一路径损耗以及所述 UE到邻区的第二路 径损耗。
402、 根据所述第一路径损耗和第二路径损耗, 确定所述 UE对邻区产生 的干扰。
可选的, 步骤 402的一种实施方式包括: 根据所述第一路径损耗, 确定 信号; 根据所述第二路径损耗, 确定噪声; 根据所述信号和噪声, 确定信干 噪比。 也就是说, 所述信号可以通过所述 UE到服务小区的路径损耗确定, 所述噪声可以通过所述 UE到邻区的路径损耗确定。
进一步, 在步骤 402的可选实施方式中, 在根据所述信号和噪声, 确定 所述信干噪比的过程中, 为所述信号和噪声设置权值, 具体包括: 如果所述 UE的服务小区是宏基站覆盖下的宏小区,设置信号权值大于噪声权值, 以提 升所述 UE的上行发射功率;如果所述 UE的服务小区是微基站覆盖下的微小 区, 设置信号权值小于噪声权值, 以降低所述 UE的上行发射功率。
在一可选实施方式中, UE的邻区为多个。 基于此, 步骤 402的一种实施 方式 UE对邻区产生的干扰。
Figure imgf000008_0001
在公式(1 )中, △表示所述 UE对邻区产生的干扰; Ρ 表示所述第一路 径损耗; 1 ^表示所述 UE到第 i个邻区的第二路径损耗, i的取值为 1...N, N 为所述邻区的个数; wd表示所述信号权重; 表示与所述1 ^对应的噪声 权重。
403、 根据所述干扰, 确定所述 UE的期望发射功率。
在一可选实施方式中, 步骤 403的一种实施方式包括: 根据所述干扰、 所述 UE的下行路径损耗和预先配置的初始功率谱密度,确定所述 UE的目标 功率谱密度; 根据所述目标功率谱密度、 所述 UE分配到的调度资源的数量 和所述服务小区允许的最大发射功率, 确定所述 UE的期望发射功率。
在本实施例中, UE的服务小区中的基站(该基站可以是宏基站也可以是 微基站), 获取 UE到服务小区的路径损耗以及 UE到邻区的路径损耗,基于 获取的路径损耗确定 UE对邻区产生的干扰,然后根据该干扰确定 UE的期望 发射功率, 由于该期望发射功率的获取考虑了 UE对邻区的总干扰, 因此, 有利于减轻邻区之间的上行干扰, 解决了现有异构网络中宏微之间的上行干 扰问题。
进一步, 在本实施例中, UE的服务小区中的基站考虑到了由于宏基站和 不平衡的影响, 因此还可以有效提升异构网络的上行吞吐量。
图 5为本发明实施例提供的又一种上行功率控制方法的流程图。 如图 5 所示, 所述方法包括:
501、 根据 UE到所述 UE的服务小区的路径损耗、 所述 UE到邻区的路 径损耗、 用于标识所述 UE到所述服务小区的接收功率的信号权重以及用于 标识所述 UE到邻区的接收功率的噪声权重,获取所述 UE对邻区产生的干扰, 在此, 称该干扰为干扰泄露, 所述干扰泄露用于标识所述 UE在上行传输中 对所述邻区产生的总干扰。
由于宏基站和微基站的发射功率并不相同, 本实施例充分考虑异构网络 中宏基站和微基站在发射功率上的区别 , UE所在服务小区中的基站具体通过 UE到服务小区的路径损耗和 UE到邻区的路径损耗, 来体现宏基站和微基站 在发射功率上的差别。 其中, UE到宏小区的路径损耗可由宏小区基站的公共 参考信号 (Common Reference Signal, 简称为 CRS ) 的发射功率减去 UE上 报的宏小区的 RSRP得出, UE到邻区的路径损耗可由邻区基站的 CRS的发 射功率减去 UE上报的邻区的 RSRP得出。在此说明,根据 UE的服务小区的 不同, UE所在服务小区中的基站可能是宏基站, 也可能是微基站。
UE的发射功率主要受两个因素的限制: 1 ) UE射频电路所能支持的最大 发射功率; 2 )邻区所能承受该 UE的最大干扰。 本实施例考虑了第二点制约 因素, 用以解决宏微小区之间的上行干扰问题。 在本实施例中, 用干扰泄露 定义邻区所能承受该 UE的最大干扰, 即 UE在上行传输中对邻区的总干扰, 但不限于此。 关于干扰泄露还可以有其他多种定义方式。 其中, 具有低干扰 泄露的 UE可以增大发射功率等级。
考虑到 UE会对邻区产生干扰, 对邻区来说, UE产生的干扰实际上是一 种接收功率, 故可以用噪声权重来表示 UE对邻区的干扰贡献。 相应的, 用 信号权重来表示 UE到服务小区的接收功率。 其中, 对服务小区来说, 希望 UE到服务小区的接收功率越大越好, 而对于邻区来说, 希望 UE到邻区的接 收功率越小越好。
在本实施例中, UE 的服务小区可以是宏基站覆盖下的宏小区, 则所述 UE的邻区主要是指部署在宏基站周围的微基站覆盖下的微小区,也可能包括 其他宏小区, 在该情况下, 宏基站下的 UE会对微基站造成上行干扰, 可以 通过设置反映 UE到宏小区的接收功率的信号权重,大于或等于反映 UE到微 小区的接收功率的噪声权重, 来提升 UE的功率提升量并期望提升整个网络 的边缘吞吐量。
或者, UE的服务小区可以是微基站覆盖下的微小区, 则所述 UE的邻区 主要是指宏基站覆盖下的宏小区, 也可能包括其他微小区, 在该情况下, 可 以通过设置反映 UE到服务小区的接收功率的信号权重, 小于或等于反映 UE 到邻区的接收功率的噪声权重, 来降低 UE的功率提升量、 减少对宏基站用 户的干扰并期望提升整个网络的边缘吞吐量。
在一可选实施方式中, UE的邻区可以有多个。一种步骤 501的可选实施 方式可以为: UE所在服务小区中的基站根据上述公式( 1 ) , 确定 UE对邻 区产生的干扰。
502、 根据所述 UE对邻区产生的干扰、 所述 UE分配到的调度资源的数 量和所述服务小区允许的最大发射功率, 确定所述 UE的期望发射功率。
在本实施例中,在获取到 UE对邻区产生的干扰后,为了降低 UE对邻区 的干扰, 于是将 UE对邻区产生的干扰作为一个因素,来确定 UE的期望发射 功率。 其中, UE的期望发射功率除了与 UE对邻区产生的干扰有关之外, 还 与 UE分配到的调度资源的数量以及 UE的服务小区所允许的最大发射功率等 因素有关。
在一可选实施方式中, 步骤 502的一种可选实施方式包括:
首先,根据所述 UE对邻区产生的干扰、所述 UE的下行路径损耗和预先 配置的初始功率谱密度, 确定所述 UE的目标功率谱密度; 然后, 根据所述 目标功率谱密度、 所述 UE分配到的调度资源的数量和所述服务小区允许的 最大发射功率, 确定所述 UE的期望发射功率。
可选的, 可以根据公式(2 ) , 确定所述 UE的目标功率谱密度。
Figure imgf000010_0001
公式( 2 ) 中, Δ表示所述 UE对邻区产生的干扰; PSD表示所述 UE的 目标功率谱密度; Ρ。表示预先配置的初始功率谱密度; 表示所述 UE的下 行路径损耗; 、 是预设的常数, 例如可以是 0到 1之间的数。
可选的, 可以根据公式(3 ) , 确定所述 UE的期望发射功率。
Pcx = min{P隱 JOloglO (Num)+PSD} ( 3 ) 公式(3 )表示选择两者中较小的一个作为 UE的期望发射功率。公式(3 ) 中, ^表示所述 UE的期望发射功率; Num表示所述 UE分配到的调度资源 的数量; PSD表示所述 UE的目标功率谱密度; P 是由 UE等级决定的最大 允许发射功率。
在此说明, 所述 UE分配到的调度资源可以是资源块( Resource Block, 简称为 RB ) , 但不限于此。 503、 根据所述期望发射功率, 向所述 UE发送功率控制指示以使所述 UE釆用所述期望发射功率进行上行传输。
在获取到 UE的期望发射功率后,服务小区中的基站可以通过向 UE发送 功率控制指示, 以使 UE釆用所述期望发射功率进行上行传输, 从而减轻对 邻区的上行干扰。
在此说明,向 UE发送功率控制指示以使 UE使用所述期望发射功率进行 上行传输的方式不做限定, 例如, 可以通过功率控制指示, 将所述期望发射 功率与 UE当前使用的发射功率的差值发送给 UE; 又例如, 可以通过功率控 制指示, 直接将所述期望发射功率发送给 UE; 又例如, 可以通过功率控制指 示, 向 UE发送所述期望发射功率对应的发射功率等级信息; 等等。
由上述可见, 本实施例提供的方法考虑到 UE到服务小区和邻区的路径 损耗、 并使用分别代表 UE到服务小区和邻区的接收功率的信号权重和噪声 权重, 获取 UE在上行传输过程中对邻区产生的总干扰, 即干扰泄露, 其中, 路径损耗体现了宏基站与微基站在发射功率上的差异, 之后根据 UE对邻区 产生的干扰、 UE 分配到的调度资源的数量以及服务小区允许的最大发射功 率,获取 UE的期望发射功率, 然后基于该期望发射功率对 UE进行上行功率 控制, 使得 UE釆用该期望发射功率进行上行传输, 由于该期望发射功率的 获取考虑了 UE对邻区的总干扰, 因此, 有利于减轻邻区之间的上行干扰, 进一步, 本实施例提供的方法考虑到了由于宏基站和微基站的发射功率 此还可以有效提升异构网络的上行吞吐量。
图 6为本发明实施例提供的一种基站的结构示意图。 如图 6所示, 所述 基站包括: 计算模块 61、 确定模块 62和设置模块 63。
计算模块 61 , 用于计算 UE对邻区的信干噪比。 确定模块 62, 与计算模 块 61连接, 用于根据计算模块 61计算出的所述 UE对邻区的信干噪比确定 所述 UE的上行发射功率。 设置模块 63 , 与计算模块 61连接, 用于在计算模 块 61计算所述信干噪比时, 为信号和噪声设置权值; 其中, 如果所述 UE的 服务小区是宏基站覆盖下的宏小区, 设置信号权重大于噪声权重, 以提升所 述 UE的上行发射功率; 如果所述 UE的服务小区是微基站覆盖下的微小区, 设置信号权值小于噪声权值, 以降低所述 UE的上行发射功率。
可选的, 上述信号可以通过所述 UE到服务小区的路径损耗确定, 上述 噪声通过所述 UE到邻区的路径损耗确定。
本实施例提供的基站可以是 UE的服务小区中的基站, 可以是宏基站, 也可以是微基站。
本实施例提供的基站的各功能模块可用于执行图 3所示上行功率控制方 法的流程, 其具体工作原理不再赘述。
本实施例提供的基站, 在确定 UE到邻区的信干噪比过程中, 根据 UE 的服务小区是宏小区还是微小区, 设置信号权重和噪声权重, 适应性提升或 降低 UE的上行发射功率, 有利于降低异构网络中宏微之间的上行干扰。
图 7为本发明实施例提供的另一种基站的结构示意图。 如图 7所示, 所 述基站包括: 存储器 71和处理器 72。
存储器 71 , 用于存储程序。 具体地, 程序可以包括程序代码, 所述程序 代码包括计算机操作指令。
存储器 71 可以包含高速 RAM存储器, 也可以包括非易失性存储器
( non-volatile memory ) , 例如至少一个磁盘存储器。
处理器 72, 用于执行所述程序, 以用于:
计算 UE对邻区的信干噪比, 根据所述 UE对邻区的信干噪比确定所述 UE的上行发射功率, 并在计算所述信干噪比时, 为信号和噪声设置权值; 其 中, 如果所述 UE的服务小区是宏基站覆盖下的宏小区, 设置信号权重大于 噪声权重, 以提升所述 UE的上行发射功率;如果所述 UE的服务小区是微基 站覆盖下的微小区, 设置信号权值小于噪声权值, 以降低所述 UE的上行发 射功率。
可选的, 上述信号可以通过所述 UE到服务小区的路径损耗确定, 上述 噪声通过所述 UE到邻区的路径损耗确定。
本实施例的处理器 72可以是一个中央处理器( Central Processing Unit, 简称为 CPU ) , 或者是特定集成电路(Application Specific Integrated Circuit, 简称为 ASIC ) , 或者是被配置成实施本发明实施例的一个或多个集成电路。
进一步, 如图 7所示, 所述基站还可以包括: 接收器 73和发射器 74。 接收器 73和发射器 74相互配合, 实现所述基站与其他设备之间的通信。 接收器 73与发射器 74可以是所述基站上的各种通信模块, 例如可以是射频 ( Radio Frequency, 简称为 RF )模块, 但不限于此。
可选的, 在具体实现上, 如果存储器 71、 处理器 72、 接收器 73和发射 器 74独立实现, 则存储器 71、 处理器 72、 接收器 73和发射器 74可以通过 总线相互连接并完成相互间的通信。 所述总线可以是工业标准体系结构 ( Industry Standard Architecture,简称为 ISA )总线、夕卜部设备互连 ( Peripheral Component, 简称为 PCI ) 总线或扩展工业标准体系结构 (Extended Industry Standard Architecture, 简称为 EISA ) 总线等。 所述总线可以分为地址总线、 数据总线、 控制总线等。 为便于表示, 图 7中仅用一条粗线表示, 但并不表 示仅有一根总线或一种类型的总线。
可选的, 在具体实现上, 如果存储器 71、 处理器 72、 接收器 73和发射 器 74集成在一块芯片上实现, 则存储器 71、 处理器 72、 接收器 73和发射器 74可以通过内部接口完成相同间的通信。
本实施例提供的基站可以是 UE的服务小区中的基站, 可以是宏基站, 也可以是微基站。
本实施例提供的基站可用于执行图 3所示方法实施例的流程, 其具体工 作原理不再赘述, 详见方法实施例的描述。
本实施例提供的基站, 在确定 UE到邻区的信干噪比过程中, 根据 UE 的服务小区是宏小区还是微小区, 设置信号权重和噪声权重, 适应性提升或 降低 UE的上行发射功率, 有利于降低异构网络中宏微之间的上行干扰。
图 8为本发明实施例提供的又一种基站的结构示意图。 如图 8所示, 所 述基站包括: 获取模块 81、 第一确定模块 82和第二确定模块 83。
获取模块 81 , 用于获取 UE到服务小区的第一路径损耗以及所述 UE到 邻区的第二路径损耗。 第一确定模块 82, 与获取模块 81 连接, 用于根据获 取模块 81获取的所述第一路径损耗和第二路径损耗, 确定所述 UE对邻区产 生的干扰。 第二确定模块 83 , 与第一确定模块 82连接, 用于根据第一确定 模块 82确定的所述干扰, 确定所述 UE的期望发射功率。
在一可选实施方式中,第一确定模块 82具体可用于根据所述第一路径损 耗, 确定信号, 根据所述第二路径损耗, 确定噪声, 根据所述信号和噪声, 确定信干噪比。 进一步, 如图 9所示, 所述基站还包括: 设置模块 84。
设置模块 84, 与第一确定模块 82连接, 用于在第一确定模块 82确定所 述信干噪比的过程中, 为所述信号和噪声设置权值; 其中, 如果所述 UE 的 服务小区是宏基站覆盖下的宏小区, 设置信号权值大于噪声权值, 以提升所 述 UE的上行发射功率; 如果所述 UE的服务小区是微基站覆盖下的微小区, 设置信号权值小于噪声权值, 以降低所述 UE的上行发射功率。
可选的, UE的邻区可以为一个或多个。 如果 UE的邻区为多个, 则第一 确定模块 82具体可用于根据公式( 1 ) , 确定所述 UE对邻区产生的干扰。 关于公式(1 ) 的详细描述, 可参见前述实施例。
可选的, 第二确定模块 83具体可用于根据所述干扰、 所述 UE的下行路 径损耗和预先配置的初始功率谱密度, 确定所述 UE的目标功率谱密度, 根 据所述目标功率谱密度、 所述 UE分配到的调度资源的数量和所述服务小区 允许的最大发射功率, 确定所述 UE的期望发射功率。
本实施例提供的基站可以是 UE的服务小区中的基站, 可以是宏基站, 也可以是微基站。
本实施例提供的基站的各功能模块可用于执行图 4所示上行功率控制方 法的流程, 其具体工作原理不再赘述。
本实施例提供的基站,获取 UE到服务小区的路径损耗以及 UE到邻区的 路径损耗, 基于获取的路径损耗确定 UE对邻区产生的干扰, 然后根据该干 扰确定 UE的期望发射功率,由于该期望发射功率的获取考虑了 UE对邻区的 总干扰, 因此, 有利于减轻邻区之间的上行干扰, 解决了现有异构网络中宏 微之间的上行干扰问题。 进一步, 本实施例提供的基站, 考虑到了由于宏基 站和微基站的发射功率的差异导致的宏微上下行不平衡以及宏微用户之间的 干扰不平衡的影响, 因此还可以有效提升异构网络的上行吞吐量。
图 10为本发明实施例提供的又一种基站的结构示意图。 如图 10所示, 所述基站包括: 存储器 1001和处理器 1002。
存储器 1001 , 用于存储程序。 具体地, 程序可以包括程序代码, 所述程 序代码包括计算机操作指令。
存储器 1001 可以包含高速 RAM存储器, 也可以包括非易失性存储器 ( non-volatile memory ) , 例如至少一个磁盘存 4诸器。 处理器 1002, 用于执行所述程序, 以用于: 获取 UE到服务小区的第一 路径损耗以及所述 UE到邻区的第二路径损耗, 根据所述第一路径损耗和第 二路径损耗, 确定所述 UE对邻区产生的干扰, 根据所述干扰, 确定所述 UE 的期望发射功率。
本实施例的处理器 1002可以是一个 CPU, 或者是特定 ASIC, 或者是被 配置成实施本发明实施例的一个或多个集成电路。
进一步, 如图 10所示, 所述基站还包括: 接收器 1003和发射器 1004。 接收器 1003和发射器 1004相配合, 负责完成所述基站与其他设备之间的通 信。 接收器 1003和发射器 1004可以是所述基站上的各种通信模块, 例如可 以是射频( Radio Frequency )模块, 但不限于此。
可选的, 在具体实现上, 如果存储器 1001、 处理器 1002、 接收器 1003 和发射器 1004独立实现, 则存储器 1001、 处理器 1002、 接收器 1003和发射 器 1004可以通过总线相互连接并完成相互间的通信。所述总线可以是 ISA总 线、 PCI总线或 EISA总线等。 所述总线可以分为地址总线、 数据总线、 控制 总线等。 为便于表示, 图 10中仅用一条粗线表示, 但并不表示仅有一根总线 或一种类型的总线。
可选的, 在具体实现上, 如果存储器 1001、 处理器 1002、 接收器 1003 和发射器 1004集成在一块芯片上实现, 则存储器 1001、 处理器 1002、 接收 器 1003和发射器 1004可以通过内部接口完成相同间的通信。
本实施例提供的基站可以是 UE的服务小区中的基站, 可以是宏基站, 也可以是微基站。
本实施例提供的基站可用于执行图 4所示方法实施例的流程, 其具体工 作原理不再赘述, 详见方法实施例的描述。
本实施例提供的基站,获取 UE到服务小区的路径损耗以及 UE到邻区的 路径损耗, 基于获取的路径损耗确定 UE对邻区产生的干扰, 然后根据该干 扰确定 UE的期望发射功率,由于该期望发射功率的获取考虑了 UE对邻区的 总干扰, 因此, 有利于减轻邻区之间的上行干扰, 解决了现有异构网络中宏 微之间的上行干扰问题。 进一步, 本实施例提供的基站, 考虑到了由于宏基 站和微基站的发射功率的差异导致的宏微上下行不平衡以及宏微用户之间的 干扰不平衡的影响, 因此还可以有效提升异构网络的上行吞吐量。 本领域普通技术人员可以理解: 实现上述方法实施例的全部或部分步骤 可以通过程序指令相关的硬件来完成, 前述的程序可以存储于一计算机可读 取存储介质中, 该程序在执行时, 执行包括上述方法实施例的步骤; 而前述 的存储介质包括: ROM, RAM, 磁碟或者光盘等各种可以存储程序代码的介 质。
最后应说明的是: 以上各实施例仅用以说明本发明的技术方案, 而非对 其限制; 尽管参照前述各实施例对本发明进行了详细的说明, 本领域的普通 技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改, 或者对其中部分或者全部技术特征进行等同替换; 而这些修改或者替换, 并 不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims

权 利 要求 书
1、 一种上行功率控制方法, 其特征在于, 包括:
获取用户设备到服务小区的第一路径损耗以及所述用户设备到邻区的第 二路径损耗;
根据所述第一路径损耗和第二路径损耗, 确定所述用户设备对邻区产生 的干扰;
根据所述干扰, 确定所述用户设备的期望发射功率。
2、 根据权利要求 1所述的方法, 其特征在于, 所述根据所述第一路径损 耗和第二路径损耗, 确定所述用户设备对邻区产生的干扰, 包括:
根据所述第一路径损耗, 确定信号;
根据所述第二路径损耗, 确定噪声;
根据所述信号和噪声, 确定信干噪比。
3、 根据权利要求 2所述的方法, 其特征在于, 在根据所述信号和噪声, 确定所述信干噪比的过程中, 为所述信号和噪声设置权值, 包括:
如果所述用户设备的服务小区是宏基站覆盖下的宏小区, 设置信号权值 大于噪声权值, 以提升所述用户设备的上行发射功率;
如果所述用户设备的服务小区是微基站覆盖下的微小区, 设置信号权值 小于噪声权值, 以降低所述用户设备的上行发射功率。
4、 根据权利要求 3所述的方法, 其特征在于, 所述邻区为多个; 所述根据所述第一路径损耗和第二路径损耗, 确定所述用户设备对邻区 产生的干扰,
根据公式
Figure imgf000017_0001
, 确定所述用户设备对邻区产生的干扰; 其中, Δ表示所述用户设备对邻区产生的干扰;
PLd表示所述第一路径损耗;
1 ^表示所述用户设备到第 i个邻区的第二路径损耗, i的取值为 1 ...N, N为所述邻区的个数;
w d表示所述信号权重; W>表示与所述 P 对应的噪声权重。
5、 根据权利要求 1-4任一项所述的方法, 其特征在于, 所述根据所述干 扰, 确定所述用户设备的期望发射功率, 包括:
根据所述干扰、 所述用户设备的下行路径损耗和预先配置的初始功率谱 密度, 确定所述用户设备的目标功率谱密度;
根据所述目标功率谱密度、 所述用户设备分配到的调度资源的数量和所 述服务小区允许的最大发射功率, 确定所述用户设备的期望发射功率。
6、 一种基站, 其特征在于, 包括:
获取模块, 用于获取用户设备到服务小区的第一路径损耗以及所述用户 设备到邻区的第二路径损耗;
第一确定模块, 用于根据所述第一路径损耗和第二路径损耗, 确定所述 用户设备对邻区产生的干扰;
第二确定模块, 用于根据所述干扰, 确定所述用户设备的期望发射功率。
7、 根据权利要求 6所述的基站, 其特征在于, 所述第一确定模块具体用 于根据所述第一路径损耗, 确定信号, 根据所述第二路径损耗, 确定噪声, 根据所述信号和噪声, 确定信干噪比。
8、 根据权利要求 7所述的基站, 其特征在于, 还包括:
设置模块, 用于在所述第一确定模块确定所述信干噪比的过程中, 为所 述信号和噪声设置权值; 其中, 如果所述用户设备的服务小区是宏基站覆盖 下的宏小区, 设置信号权值大于噪声权值, 以提升所述用户设备的上行发射 功率;
如果所述用户设备的服务小区是微基站覆盖下的微小区, 设置信号权值 小于噪声权值, 以降低所述用户设备的上行发射功率。
9、 根据权利要求 8所述的基站, 其 多个;
所述第一确定模块具体用于根据公式
Figure imgf000018_0001
确定所述用 户设备对邻区产生的干扰; 其中, Δ表示所述用户设备对邻区产生的干扰;
PLd表示所述第一路径损耗; 表示所述用户设备到第 i个邻区的第二路径损耗, i的取值为 1...N, N为所述邻区的个数;
Wd表示所述信号权重;
w>表示与所述 对应的噪声权重。
10、 根据权利要求 6-9任一项所述的基站, 其特征在于, 所述第二确定 模块具体用于根据所述干扰、 所述用户设备的下行路径损耗和预先配置的初 始功率谱密度, 确定所述用户设备的目标功率谱密度, 根据所述目标功率谱 密度、 所述用户设备分配到的调度资源的数量和所述服务小区允许的最大发 射功率, 确定所述用户设备的期望发射功率。
11、 一种基站, 其特征在于, 包括:
存储器, 用于存储程序;
处理器, 用于执行所述程序, 以用于: 获取用户设备到服务小区的第一 路径损耗以及所述用户设备到邻区的第二路径损耗, 根据所述第一路径损耗 和第二路径损耗, 确定所述用户设备对邻区产生的干扰, 根据所述干扰, 确 定所述用户设备的期望发射功率。
PCT/CN2013/075718 2013-05-16 2013-05-16 上行功率控制方法及基站 WO2014183292A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2013/075718 WO2014183292A1 (zh) 2013-05-16 2013-05-16 上行功率控制方法及基站
CN201380000727.3A CN103535086B (zh) 2013-05-16 2013-05-16 上行功率控制方法及基站

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/075718 WO2014183292A1 (zh) 2013-05-16 2013-05-16 上行功率控制方法及基站

Publications (1)

Publication Number Publication Date
WO2014183292A1 true WO2014183292A1 (zh) 2014-11-20

Family

ID=49935426

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/075718 WO2014183292A1 (zh) 2013-05-16 2013-05-16 上行功率控制方法及基站

Country Status (2)

Country Link
CN (1) CN103535086B (zh)
WO (1) WO2014183292A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106255192A (zh) * 2016-08-31 2016-12-21 内蒙古大学 一种无线网络上行链路功率控制方法及装置
US11963106B2 (en) 2018-08-09 2024-04-16 Huawei Technologies Co., Ltd. Uplink transmit power determining method, network device, and storage medium

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105430732A (zh) * 2015-11-03 2016-03-23 广东欧珀移动通信有限公司 一种wifi发射功率调节方法、终端以及系统
CN106686713B (zh) * 2015-11-10 2021-06-25 中兴通讯股份有限公司 一种上行干扰控制方法及装置
CN106851830B (zh) * 2015-12-07 2020-11-06 大唐移动通信设备有限公司 一种用于lte-a异构网络的资源分配方法和装置
CN106879058B (zh) * 2015-12-11 2020-08-04 诸暨市元畅信息技术咨询服务部 发射功率控制方法、基站以及用户设备ue
CN106793047B (zh) * 2017-02-22 2020-01-14 京信通信系统(中国)有限公司 一种上行功率控制方法及基站
WO2019019186A1 (zh) * 2017-07-28 2019-01-31 华为技术有限公司 上行功率控制方法及装置
CN109788538B (zh) * 2017-11-14 2021-06-22 华为技术有限公司 通信方法和装置
MX2020010434A (es) 2018-04-04 2020-10-28 Guangdong Oppo Mobile Telecommunications Corp Ltd Metodo y dispositivo para enviar canal de enlace ascendente y metodo y dispositivo para recibir canal de enlace ascendente.
CN111163488A (zh) * 2018-11-07 2020-05-15 中国移动通信集团四川有限公司 小区干扰源的定位方法、装置、设备及计算机存储介质
CN113632547B (zh) * 2019-04-02 2023-03-10 华为技术有限公司 用于多ap协调中上行功率控制的系统和方法
CN112235857B (zh) * 2020-10-16 2023-02-24 中国联合网络通信集团有限公司 一种功率控制方法及装置
WO2023001217A1 (zh) * 2021-07-22 2023-01-26 上海推络通信科技合伙企业(有限合伙) 一种用于无线通信的节点中的方法和装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101505529A (zh) * 2009-03-03 2009-08-12 华为技术有限公司 控制用户设备的方法、装置和系统
US20110159911A1 (en) * 2009-12-28 2011-06-30 Motorola, Inc. Uplink power alignment estimation in a communication system
CN103037488A (zh) * 2012-12-07 2013-04-10 北京北方烽火科技有限公司 一种lte上行功率控制方法和相关设备

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101635946B (zh) * 2001-05-14 2011-05-25 美商内数位科技公司 用户设备
US9031599B2 (en) * 2009-12-08 2015-05-12 Futurewei Technologies, Inc. System and method for power control

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101505529A (zh) * 2009-03-03 2009-08-12 华为技术有限公司 控制用户设备的方法、装置和系统
US20110159911A1 (en) * 2009-12-28 2011-06-30 Motorola, Inc. Uplink power alignment estimation in a communication system
CN103037488A (zh) * 2012-12-07 2013-04-10 北京北方烽火科技有限公司 一种lte上行功率控制方法和相关设备

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106255192A (zh) * 2016-08-31 2016-12-21 内蒙古大学 一种无线网络上行链路功率控制方法及装置
CN106255192B (zh) * 2016-08-31 2019-11-05 内蒙古大学 一种无线网络上行链路功率控制方法及装置
US11963106B2 (en) 2018-08-09 2024-04-16 Huawei Technologies Co., Ltd. Uplink transmit power determining method, network device, and storage medium

Also Published As

Publication number Publication date
CN103535086B (zh) 2017-05-31
CN103535086A (zh) 2014-01-22

Similar Documents

Publication Publication Date Title
WO2014183292A1 (zh) 上行功率控制方法及基站
JP5663661B2 (ja) 異種ネットワークにおけるアイドルモードハイブリッド移動手順
Ishii et al. A novel architecture for LTE-B: C-plane/U-plane split and phantom cell concept
WO2020259241A1 (zh) 一种ntn中小区选择的方法及装置
JP6092239B2 (ja) フレキシブル帯域幅小型セル
CN111406421A (zh) 切换执行中的多波束随机接入过程
JP2012504365A (ja) 多地点協調送受信(CoMP)セルにおけるサブセル探索のレートを動的に調節する方法および装置
CN105453638A (zh) 针对包括自主封闭订户组csg小区搜索和重选的小区重选过程的对测量时间的要求的配置
JP2020503819A (ja) 信号測定方法、ネットワーク側装置およびユーザー装置
JP6807401B2 (ja) フィードバックシグナリングの管理
KR20210002691A (ko) 전력 결정 방법 및 디바이스
CN106465220A (zh) 用于特定于ue的分流的系统和方法
RU2724131C1 (ru) Способ обмена информацией о формировании луча и сетевое устройство
EP3195678A1 (en) Scheduling method and system for fourth generation radio mobile networks
WO2013053244A1 (zh) 小区重选的方法、设备及系统
US9100959B2 (en) Carrier selection
US9681392B2 (en) Method, device, and system for configuring cell range expansion bias
EP2692081B1 (en) Selection of a secondary component carrier based on interference information
CN106550401B (zh) 一种小区偏置和abs比例的联合配置方法及装置
WO2015066929A1 (zh) 选择无线接入网络的方法和装置
CN104471989A (zh) 小区发现方法及装置
JP5951849B1 (ja) 基地局、通信システム及び干渉制御方法
Umair et al. Identification of interferers in Het-Net in LTE-A systems based on FeICIC with cell range expansion
Ning et al. Dynamic cell range expansion-based interference coordination scheme in next generation wireless networks
Kao et al. Adaptive measurement for energy efficient mobility management in ultra-dense small cell networks

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13884474

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13884474

Country of ref document: EP

Kind code of ref document: A1