WO2014181647A1 - Autonomous moving body movement control device, autonomous moving body, and autonomous moving body control method - Google Patents

Autonomous moving body movement control device, autonomous moving body, and autonomous moving body control method Download PDF

Info

Publication number
WO2014181647A1
WO2014181647A1 PCT/JP2014/060716 JP2014060716W WO2014181647A1 WO 2014181647 A1 WO2014181647 A1 WO 2014181647A1 JP 2014060716 W JP2014060716 W JP 2014060716W WO 2014181647 A1 WO2014181647 A1 WO 2014181647A1
Authority
WO
WIPO (PCT)
Prior art keywords
mobile body
autonomous mobile
travel
unit
obstacle
Prior art date
Application number
PCT/JP2014/060716
Other languages
French (fr)
Japanese (ja)
Inventor
英生 下本
Original Assignee
村田機械株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 村田機械株式会社 filed Critical 村田機械株式会社
Publication of WO2014181647A1 publication Critical patent/WO2014181647A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0221Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory involving a learning process
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0238Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using obstacle or wall sensors

Definitions

  • the present invention relates to an autonomous mobile body that autonomously travels while detecting an obstacle with a sensor, a movement control device for the autonomous mobile body, and a control method for the autonomous mobile body.
  • an autonomous mobile body that autonomously travels while detecting an obstacle by a sensor.
  • an autonomous moving body is not approximated by a circular model, and the posture angle of the autonomous moving body is changed using an anisotropic model having an anisotropy having a major axis and a minor axis.
  • An autonomous mobile body that avoids obstacles by parallel translation is disclosed.
  • the autonomous mobile body of patent document 1 avoids an obstacle using the potential regarding the translation of an autonomous mobile body, and the potential regarding rotation.
  • the potential method used to avoid an obstacle in Patent Document 1 generates an attractive potential for a destination and a repulsive potential for an obstacle to be avoided, and is controlled by a gradient of a force field obtained by superimposing these potentials. It is a method of generating a quantity.
  • An object of the present invention is to control an autonomous mobile body so as to travel faithfully on a travel route (planned travel route) taught by a user without performing useless obstacle avoidance behavior.
  • a movement control device for an autonomous mobile body includes a movement unit and a detection unit that detects an obstacle, and the movement control of the autonomous mobile body moves so as to reproduce a pre-created scheduled travel route.
  • the movement control device for an autonomous mobile body includes a calculation unit, a determination unit, and a movement control unit.
  • the calculation unit includes an autonomous mobile object having a predetermined shape including a current position of the autonomous mobile body, travel route information representing a travel path to a future position that is a position traveled a predetermined distance from the current position, and an autonomous mobile object Based on the body region, an expected traveling locus from the current position to the future position is calculated.
  • the determination unit determines whether or not the obstacle detected by the detection unit and the predicted traveling locus interfere with each other.
  • a movement control part produces the movement command which controls a movement part so that the prediction driving
  • the calculation unit creates an expected traveling locus based on the traveling route information and the autonomous mobile body region.
  • the determination unit determines whether or not the obstacle detected by the detection unit of the autonomous mobile body and the predicted traveling locus interfere with each other. Then, if the movement control unit determines that the obstacle and the predicted traveling locus do not interfere with each other in the determining unit, the movement control unit creates a movement command for controlling the moving unit of the autonomous mobile body so as to reproduce the predicted traveling locus. .
  • the determination as to whether or not the autonomous mobile body and the obstacle collide is based on the determination as to whether or not the predicted traveling locus and the obstacle interfere with each other. Thereby, it can be judged with higher accuracy whether an autonomous moving body takes avoidance action against an obstacle. As a result, the autonomous mobile body can travel more faithfully on the planned travel route taught by the user without performing useless avoidance action on the obstacle.
  • the shape of the autonomous mobile body region in the plane of movement of the autonomous mobile body may have anisotropy.
  • the travel route information may include position information on the travel route of the autonomous mobile body and posture information of the autonomous mobile body on the travel route.
  • the calculating part can create a more accurate predicted traveling locus in consideration of the shape and posture of the autonomous mobile body.
  • the determination unit can more reliably determine whether the obstacle and the autonomous mobile body interfere with each other.
  • the shape of the autonomous moving body area on the moving plane may be an ellipse.
  • the determination unit can determine whether the obstacle and the autonomous mobile body interfere with each other with fewer operations.
  • the travel route information may further include time information on the travel route of the autonomous mobile body.
  • the movement control part can create a movement command by a simpler calculation.
  • the travel route information can be expressed as discrete information (array), the structure of the travel route information can be simplified.
  • the calculation unit may include a base point generation unit, a rotating autonomous mobile region generation unit, and an expected travel locus generation unit.
  • the base point generation unit generates a plurality of base points on the travel route as position information of the travel route information.
  • the rotation autonomous mobile body region generation unit generates the rotation autonomous mobile body region by rotating the autonomous mobile body region around the normal axis of the movement plane based on the posture information of the travel route information.
  • the predicted travel locus generation unit generates the predicted travel locus by arranging the rotation autonomous mobile body region generated by the rotation autonomous mobile body region generation unit on each of the base points generated by the base point generation unit. . Thereby, the calculating part can create an expected traveling locus by a simpler calculation.
  • the planned travel route may be composed of a plurality of travel target points.
  • the base point generation unit may include a target point extraction unit, a target point selection unit, a calculation unit, and a base point arrangement unit.
  • the target point extraction unit is closest to the current position among the travel target points that are located outside the first circle having a predetermined first radius centered on the current position from the current position, And the front travel target point which is a travel target point to the 1st travel target point which exists ahead in the advancing direction rather than the present position is extracted.
  • the target point selection unit extracts the second travel target point that is the shortest distance from the current position among the forward travel target points existing outside the second circle having the predetermined second radius centered on the current position. To do.
  • the calculation unit calculates a virtual travel target point that is an intersection of a line connecting the current position and the second travel target point and the circumference of the second circle.
  • the base point arrangement unit sets the current position, the virtual travel target point, the second travel target point, and the forward travel target points between the second travel target point and the first travel target point in order from the current position.
  • Base points are arranged at predetermined intervals on the travel route formed by tying. Thereby, even if the autonomous mobile body is at a position slightly deviated from the planned travel route, the autonomous mobile body can travel on the planned travel route faithfully by correcting this positional shift.
  • the movement control unit may stop the autonomous moving body if the determination unit determines that the obstacle and the predicted traveling locus interfere with each other if the interference position is close to the current position. Further, the moving unit may be controlled so as to decelerate the autonomous mobile body if it is at a distance far from the current position. Thereby, the autonomous mobile body can drive
  • the movement control unit may control the moving unit so as to stop the autonomous moving body when the determination unit determines that the obstacle and the predicted traveling locus interfere with each other. Thereby, the autonomous mobile body does not collide with the obstacle.
  • An autonomous moving body includes a moving unit, a detecting unit, and the above movement control device.
  • the determination as to whether or not the autonomous mobile body and the obstacle collide is based on the determination as to whether or not the predicted traveling locus and the obstacle interfere with each other. Thereby, it can be judged with higher accuracy whether an autonomous moving body takes avoidance action against an obstacle. As a result, the autonomous mobile body can travel more faithfully on the planned travel route without performing useless avoidance action on the obstacle.
  • An autonomous mobile body control method includes a mobile unit and a detection unit that detects an obstacle, and controls an autonomous mobile body that moves so as to reproduce a planned travel route that has been created in advance. Is the method.
  • the autonomous mobile control method includes the following steps. ⁇ Current position of the autonomous mobile body, travel route information representing a travel route to a future position that is a position traveled a predetermined distance from the current position, and an autonomous mobile body region having a predetermined shape including the autonomous mobile body Based on the above, a step of calculating an expected travel locus from the current position to the future position. A step of determining whether or not the obstacle detected by the detection unit interferes with the expected traveling locus. A step of controlling the moving unit so as to reproduce the calculated predicted traveling locus when it is determined that the obstacle and the predicted traveling locus do not interfere with each other.
  • the determination as to whether or not the autonomous mobile body and the obstacle collide is based on the determination as to whether or not the predicted travel locus and the obstacle interfere with each other. Thereby, it can be judged with higher accuracy whether an autonomous moving body takes avoidance action against an obstacle. As a result, the autonomous mobile body can travel faithfully on the planned travel route without performing useless avoidance action on the obstacle.
  • Diagram showing the configuration of an autonomous mobile body Diagram showing the configuration of the operation unit The figure which shows the whole structure of a movement control apparatus Diagram showing the configuration of the travel control unit Diagram showing an elliptical autonomous mobile region Diagram showing rotating autonomous moving body area Diagram showing the configuration of the calculation unit.
  • Flow chart showing autonomous running operation of autonomous mobile body Flow chart showing a method for generating an expected travel locus
  • trajectory The figure which shows typically the production
  • Diagram showing the expected travel path
  • base point generation method The figure which shows the positional relationship of the present position of the center V of the autonomous mobile body area
  • Diagram showing travel route generation Diagram showing the arrangement of base points on the travel route Flow chart illustrating a method for determining interference between an obstacle and an expected travel path Diagram showing six obstacles on moving coordinates Shows the placement of the movement coordinate of the autonomous moving body region and six obstacles in the base point B 6
  • region and an obstruction in a 2nd movement coordinate The figure which shows arrangement
  • the flowchart which shows the base point production
  • FIG. 1 is a diagram illustrating a configuration of an autonomous mobile body.
  • the autonomous mobile body 100 according to the present embodiment is a mobile body that can travel autonomously while reproducing a route (scheduled travel route) taught by a user.
  • the autonomous mobile body 100 includes a moving unit 1, a movement control device 2, a detection unit 3, and an operation unit 5.
  • the moving unit 1 moves the autonomous mobile body 100.
  • the detection unit 3 is connected to the movement control device 2. Then, the detection unit 3 detects an obstacle S (described later) and outputs position information of the obstacle S to the movement control device 2.
  • the operation unit 5 is fixed to the main body 7 of the autonomous mobile body 100 via an attachment member 9.
  • the operation unit 5 is connected to the movement control device 2 so that signals can be transmitted and received.
  • the operation unit 5 is operated by the user when the user teaches the planned traveling route to the autonomous mobile body 100 (teaching mode). Thereby, when the traveling mode of the autonomous mobile body 100 is the teaching mode, the autonomous mobile body 100 is controlled based on the operation of the operation unit 5 by the user.
  • the operation unit 5 performs various settings of the autonomous mobile body 100. It is assumed that the front side of the autonomous mobile body 100 is the side opposite to the side on which the operation unit 5 is attached.
  • the movement control device 2 is electrically connected to the moving unit 1.
  • the movement control device 2 is connected to a detection unit 3.
  • the traveling mode of the autonomous mobile body 100 is the teaching mode
  • the movement control device 2 controls the moving unit 1 based on the operation of the operating unit 5 by the user.
  • the traveling mode of the autonomous mobile body 100 is a mode in which the autonomous mobile body 100 moves autonomously (autonomous movement mode)
  • the movement control device 2 creates a movement command for the autonomous mobile body 100.
  • the movement control apparatus 2 controls the moving part 1 based on the produced movement command.
  • the movement control device 2 grasps the position information of the obstacle S.
  • the movement control device 2 determines whether the obstacle S and the autonomous mobile body 100 interfere with each other based on the position information of the obstacle S.
  • the details of the configuration of the moving unit 1, the movement control device 2, the detection unit 3, and the operation unit 5 of the autonomous moving body 100 will be described later.
  • the autonomous mobile body 100 further includes an auxiliary wheel unit 8.
  • the auxiliary wheel portion 8 has two auxiliary wheels 8a and 8b.
  • the two auxiliary wheels 8a and 8b are attached so that each can rotate independently.
  • the autonomous mobile body 100 can move stably and smoothly.
  • the moving part 1 itself has the structure which can drive
  • the moving unit 1 includes two main wheels 11a and 11b and two motors 13a and 13b.
  • each main wheel 11a, 11b can rotate independently.
  • the attitude (described later) of the autonomous moving body 100 is changed by causing a difference in the rotational speeds of the main wheels 11a and 11b.
  • the main wheels 11a and 11b are connected to output rotation shafts of the motors 13a and 13b, respectively. Thereby, the main wheel 11a rotates according to the rotation of the motor 13a, and the main wheel 11b rotates according to the rotation of the motor 13b.
  • the motors 13 a and 13 b are electrically connected to the movement control device 2.
  • the motors 13a and 13b can be independently controlled by motor drivers 25a and 25b (FIG. 3) of the movement control device 2, respectively. Therefore, each of the motors 13a and 13b can independently generate an arbitrary rotational speed and torque. As a result, the main wheels 11a and 11b can independently control the rotation speed and torque.
  • electric motors such as servo motors and brushless motors can be used as servo motors and brushless motors can be used.
  • the detection unit 3 detects an obstacle S around the travel route (FIG. 11A) of the autonomous mobile body 100 and outputs position information of the obstacle S. Therefore, the detection unit 3 includes a front detector 31 and a rear detector 33.
  • the front detector 31 detects the obstacle S in front of the autonomous mobile body 100.
  • the rear detector 33 detects the obstacle S behind the autonomous mobile body 100. Further, the front detector 31 and the rear detector 33 output signals including information on the distance between the autonomous mobile body 100 and the obstacle S, information on the direction in which the obstacle S is seen from the autonomous mobile body 100, and the like. To do.
  • the detection unit 3 can output relative position information of the obstacle S viewed from the autonomous mobile body 100 to the movement control device 2.
  • a laser range finder (LRF) or the like can be used as the front detector 31 and the rear detector 33 of the detection unit 3.
  • FIG. 2 is a diagram illustrating a configuration of the operation unit 5.
  • the operation unit 5 includes operation handles 51 a and 51 b, a setting unit 53, a display unit 55, and an interface 57.
  • the operation handles 51a and 51b are respectively attached to the left and right of the housing 59 of the operation unit 5 so as to be rotatable.
  • the operation handles 51 a and 51 b are connected to the interface 57.
  • the rotation amounts (operation amounts) of the operation handles 51 a and 51 b are converted into electrical signals at the interface 57 and input to the movement control device 2.
  • the user can operate the autonomous mobile body 100 by appropriately adjusting the rotation amounts of the operation handles 51a and 51b.
  • the operation handles 51a and 51b in the present embodiment are throttle type operation handles, but are not limited thereto. Considering the application and operability of the autonomous mobile body 100, operation handles 51a and 51b other than the throttle type can be used.
  • the setting unit 53 is connected to the interface 57.
  • the setting unit 53 inputs signals for performing various settings of the autonomous mobile body 100 to the movement control device 2 via the interface 57.
  • the setting unit 53 can be configured by, for example, a switch or a keyboard for performing various settings of the autonomous mobile body 100.
  • the setting unit 53 may be configured as a touch panel and formed integrally with the display unit 55.
  • the display unit 55 is connected to the interface 57.
  • the display unit 55 reads and displays various settings and position information of the autonomous mobile body 100 from the movement control device 2 via the interface 57.
  • a display such as a liquid crystal display can be used as the display unit 55.
  • a display with a touch panel function can be used as the display unit 55 (and the setting unit 53).
  • the interface 57 is connected to the movement control device 2.
  • the interface 57 converts the operation amounts of the operation handles 51 a and 51 b, the switches and key inputs of the setting unit 53 into electrical signals, and outputs them to the movement control device 2. Further, the interface 57 reads information on the autonomous mobile body 100 from the movement control device 2 in accordance with a user's instruction and the like and displays the information on the display unit 55. Accordingly, the interface 57 includes a signal converter that converts the amount of rotation of the operation handles 51a and 51b and the setting state in the setting unit 53 into an electric signal, a display unit driving circuit for displaying information on the display unit 55, and movement.
  • a microcomputer board provided with a communication interface for transmitting and receiving signals to and from the control device 2 can be used.
  • FIG. 3 is a diagram illustrating an overall configuration of the movement control device 2.
  • the movement control device 2 includes a CPU (Central Processing Unit), a hard disk device, a ROM (Read Only Memory), a RAM (Random Access Memory), a storage device such as a storage medium reading device, an interface for signal conversion, and the like. It can be realized by a microcomputer system. In addition, some or all of the functions of the respective units of the movement control device 2 described below may be realized as a program. Further, the program may be stored in a storage device of the microcomputer board.
  • a CPU Central Processing Unit
  • ROM Read Only Memory
  • RAM Random Access Memory
  • the movement control device 2 includes a teaching unit 21, a self-position estimation unit 22, a storage unit 23, a travel control unit 24, a motor drive unit 25, and an obstacle information acquisition unit 26.
  • the teaching unit 21 acquires a movement route when the user moves the autonomous mobile body 100 using the operation unit 5 at a predetermined time interval when the traveling mode is the teaching mode. Then, the teaching unit 21 converts the acquired movement route into a coordinate value on a coordinate system (hereinafter referred to as a movement coordinate) representing a movement plane on which the autonomous mobile body 100 moves, and the coordinate value and Associate the travel route with the acquired time. Furthermore, the teaching unit 21 stores the coordinate-converted movement route in the storage unit 23.
  • a coordinate system hereinafter referred to as a movement coordinate
  • a set of coordinate values of the movement route generated by the teaching unit 21 as described above will be referred to as a scheduled travel route.
  • the movement route that has undergone coordinate conversion is referred to as a travel target point. That is, the planned travel route is an aggregate including a plurality of travel target points. Each travel target point is associated with a time when the travel route is acquired. Therefore, the planned travel route is a collection of coordinate values including time information.
  • the teaching unit 21 may acquire the posture of the autonomous mobile body 100 that is moving on the moving route when acquiring the moving route.
  • position of the autonomous mobile body 100 means the direction where the front of the autonomous mobile body 100 faced.
  • the scheduled travel route can further include information (posture information) regarding the posture of the autonomous mobile body 100.
  • the travel control unit 24 may generate the predicted travel locus T (FIG. 11C).
  • the self-position estimating unit 22 estimates the position of the autonomous mobile body 100 on the moving plane.
  • the self-position estimation unit 22 can estimate the position of the autonomous mobile body 100 on the movement plane using, for example, a SLAM (Simultaneous Localization And Mapping) method.
  • the self-position estimation unit 22 converts the relative position information of the obstacle S as viewed from the autonomous mobile body 100 acquired by the detection unit 3 into coordinate values on the movement coordinates. Then, based on the position information of the obstacle S detected by the front detector 31 and the rear detector 33 of the detection unit 3, map information (referred to as a local map) of the moving plane around the autonomous mobile body 100 is obtained. create.
  • the self-position estimation unit 22 stores map information (referred to as an environment map) on the moving plane in the storage unit 23. Then, the self-position estimation unit 22 compares the environment map and the local map to estimate at which position on the moving plane the autonomous mobile body 100 exists. Furthermore, the self-position estimation unit 22 may be configured to estimate the position of the autonomous mobile body 100 even based on the rotation speeds of the motors 13a and 13b.
  • map information referred to as an environment map
  • the storage unit 23 corresponds to a storage device of the microcomputer system (or a part of a storage area of the storage device).
  • Storage unit 23 various settings, planned travel route of the autonomous mobile unit 100, the position information of the obstacle S, the travel route information T n (FIG. 11C), storage of information such as the autonomous moving body area A (Fig. 5).
  • the storage unit 23 may store the software.
  • the travel control unit 24 is connected to the motor drive unit 25.
  • the traveling control unit 24 instructs the motor drive unit 25 to control the motors 13 a and 13 b of the moving unit 1 based on the operation amount input from the operation unit 5 when the traveling mode is the teaching mode.
  • the traveling control unit 24 creates a movement command for controlling the moving unit 1.
  • the travel control unit 24 controls the motor drive unit 25 based on the created movement command. The detailed configuration and operation of the travel control unit 24 will be described later.
  • the motor drive unit 25 is connected to the travel control unit 24. Accordingly, the motor drive unit 25 can control the motors 13a and 13b based on the movement command created by the travel control unit 24.
  • the motor drive unit 25 of the present embodiment includes two motor drivers 25a and 25b.
  • the motor drivers 25a and 25b are connected to the motors 13a and 13b, respectively.
  • the motor drivers 25a and 25b control the motors 13a and 13b independently based on the movement command created by the travel control unit 24.
  • appropriate motor driving devices can be used according to the types of the motors 13a and 13b.
  • the obstacle information acquisition unit 26 is connected to the front detector 31 and the rear detector 33 of the detection unit 3.
  • the obstacle information acquisition unit 26 acquires position information of the obstacle S based on signals output from the front detector 31 and the rear detector 33.
  • the obstruction information acquisition part 26 memorize
  • the obstacle information acquisition unit 26 may output the position information of the obstacle S to the self-position estimation unit 22.
  • the self-position estimation unit 22 may convert the position information of the obstacle S into a coordinate value on the moving coordinates, and store the position information of the obstacle S in the storage unit 23.
  • FIG. 4 is a diagram illustrating a configuration of the travel control unit 24.
  • the travel control unit 24 includes a calculation unit 241, a determination unit 243, and a movement control unit 245.
  • the calculation unit 241 calculates the predicted travel locus T based on the current position of the autonomous mobile body 100, the travel route information Tn, and the autonomous mobile body area A.
  • the predicted travel trajectory T refers to a trajectory that is expected to be drawn by the autonomous mobile body region A when the autonomous mobile body 100 travels in the autonomous travel mode.
  • the travel route information T n the autonomous moving body 100 is information indicating a travel route from the current position to a future position is a position where the traveling a predetermined distance.
  • the travel route information T n includes a travel route that is generated based on the planned travel route taught to the autonomous mobile body 100. Accordingly, the calculation unit 241 generates a travel route from the planned travel route.
  • the autonomous mobile body area A is a planar area defined in the movement plane. Further, the autonomous mobile body region A has a predetermined shape including the autonomous mobile body 100. Therefore, the autonomous mobile body region A is defined so as to include the maximum planar cross section of the autonomous mobile body 100.
  • the autonomous mobile body region A is an ellipse that includes the maximum planar cross section of the autonomous mobile body 100 and has a minor axis length of W and a major axis length of L. is there.
  • the major axis of the autonomous mobile body region A is parallel to the front-rear direction of the autonomous mobile body 100.
  • the axis of the autonomous mobile body region A that is parallel to the front-rear direction of the autonomous mobile body 100 is referred to as a reference axis of the autonomous mobile body 100.
  • the autonomous mobile body region A is defined based on the shape of the autonomous mobile body 100. Therefore, in this embodiment, the autonomous mobile body area A is defined in advance and stored in the storage unit 23 of the movement control device 2.
  • the autonomous mobile body area A in the present embodiment is anisotropic like an ellipse as shown in FIG.
  • the travel route information T n are further includes a posture information of the autonomous moving body 100 on the travel route.
  • the posture information of the autonomous mobile body 100 refers to information corresponding to the direction in which the front of the autonomous mobile body 100 is facing on the moving plane.
  • the attitude information of the autonomous mobile body 100 is obtained by rotating the autonomous mobile body area A around the normal axis of the movement coordinate plane passing through the center V of the autonomous mobile body area as shown in FIG.
  • the autonomous mobile body area A rotated around the normal axis of the movement coordinate plane passing through the center V of the autonomous mobile body area A will be referred to as a rotational autonomous mobile body area.
  • the calculation unit 241 considers the shape and posture of the autonomous mobile body 100. Thus, it is possible to create a more accurate predicted traveling locus.
  • the determination unit 243 determines whether the obstacle S detected by the detection unit 3 and the expected traveling locus T interfere with each other. In the determination unit 243, by determining whether or not the obstacle S is included in the region of the predicted traveling locus T, or whether there is a portion where the region of the predicted traveling locus T and the obstacle S overlap, It is determined whether the obstacle S and the predicted traveling trajectory T interfere with each other. A specific determination method for determining whether or not the obstacle S and the predicted traveling locus T interfere with each other will be described later.
  • the movement control unit 245 creates a movement command for controlling the moving unit 1.
  • the movement command is a command including a control command for the motor drivers 25a and 25b of the motor drive unit 25. Accordingly, the movement command includes, for example, a command for instructing the movement start of the autonomous mobile body 100, a time after the autonomous mobile body 100 starts moving, a direction (movement direction) of the autonomous mobile body 100 at the time, and the time It includes information such as the distance traveled. Further, the movement command may include control information on the rotational speeds of the motors 13a and 13b.
  • the movement control unit 245 when the determination unit 243 determines that the obstacle S and the predicted traveling locus T do not interfere with each other, the movement control unit 245 creates a movement command that reproduces the predicted traveling locus T generated by the calculation unit 241. . Thereby, the autonomous mobile body 100 can travel faithfully on the travel route without performing a useless operation for avoiding the obstacle S.
  • the determination unit 243 determines that the obstacle S and the predicted travel path interfere, the movement control unit 245 performs an obstacle collision avoidance operation for avoiding a collision between the obstacle S and the autonomous mobile body 100. Create a movement command.
  • a movement command for performing the obstacle collision avoidance operation for example, if the position where the obstacle S and the predicted traveling locus T interfere is at a distance close to the current position of the autonomous moving body 100, the autonomous moving body 100 is stopped. If there is a distance far from the current position of the autonomous mobile body 100, there is a movement command for decelerating the autonomous mobile body 100.
  • the autonomous mobile body 100 can travel on the travel route as much as possible within a range in which the obstacle S and the autonomous mobile body 100 do not collide. Thereby, the autonomous mobile body 100 can travel the travel route more faithfully without colliding with the obstacle S.
  • the movement command for performing the obstacle collision avoidance operation may be a movement command for stopping the autonomous mobile body 100.
  • the autonomous mobile body 100 does not collide with an obstacle.
  • the movement control unit 245 can create an arbitrary movement command according to the use of the autonomous mobile body 100 and the like.
  • FIG. 7 is a diagram illustrating a configuration of the calculation unit 241.
  • the calculation unit 241 includes a base point generation unit 2411, a rotating autonomous mobile body region generation unit 2413, and an expected travel locus generation unit 2415.
  • the base point generation unit 2411 generates a plurality of base points B on the travel route as position information of the travel route information. Since a plurality of base points B are arranged on the travel route, it can be said that the base points are passing target points when the autonomous mobile body 100 moves from the current position to the future position.
  • the base point B may be arranged so as to divide the travel route at the same predetermined interval. Alternatively, as a result of arranging the base points, the interval between the two base points may be different. How to arrange the base points can be arbitrarily determined according to the use of the autonomous mobile body 100 or the like.
  • time information is associated with the arranged base point B.
  • information on the elapsed time since the autonomous mobile body 100 started moving from the current position is associated with the arranged base point B.
  • a multiple of a control cycle in which the movement control device 2 controls the autonomous mobile body 100 is used. Specifically, if the control period was T c, 0 the time of the current position of the autonomous moving body 100, in order from the base point B closer to the current position, T c, 2T c, 3T c ⁇ nT c Associate time information with base point B (n: integer).
  • the movement control unit 245 of the travel control unit 24 can create a movement command by a simpler calculation.
  • the travel route information can be expressed as discrete information (array), the structure of the travel route information can be simplified.
  • the rotational autonomous mobile body region generation unit 2413 generates the posture information ⁇ of the autonomous mobile body 100 at each base point B generated by the base point generation unit 2411.
  • the posture information ⁇ of the autonomous mobile body 100 at the base point B is obtained by matching the environment map stored in the self-position estimation unit 22 with the local map. That is, in order to match (match) the environmental map and the local map, the posture information ⁇ is obtained from the rotation angle obtained by rotating the local map or the environmental map.
  • the present invention is not limited to this, and a line connecting two adjacent first base points and a second base point (the autonomous mobile body 100 moves from the first base point to the second base point) and a movement An angle formed by the coordinate x-axis (horizontal axis) may be used as posture information of the autonomous mobile body 100 at the first base point.
  • region can be produced
  • the predicted travel locus generation unit 2415 arranges the rotation autonomous mobile body region generated by the rotation autonomous mobile body region generation unit 2413 at each of the base points B generated by the base point generation unit 2411 to predict the predicted travel A trajectory T is generated. Specifically, the predicted travel locus generation unit 2415 associates the posture information ⁇ of the autonomous mobile body 100 generated by the rotating autonomous mobile body region generation unit 2413 with the base point B generated by the base point generation unit 2411. Thereby, the calculating part 241 can create the predicted traveling locus T by a simpler calculation.
  • FIG. 8 is a diagram illustrating a configuration of the base point generation unit 2411.
  • the base point generation unit 2411 includes a target point extraction unit 2411-1, a target point selection unit 2411-3, a calculation unit 2411-5, and a base point arrangement unit 2411-7.
  • the target point extraction unit 2411-1 extracts a predetermined number of travel target points (referred to as front travel target points) existing ahead of the current travel position in the planned travel route from the travel target points.
  • the target point selection unit 2411-3 is at the shortest position from the current position among the forward travel target points included in the circle C1 (FIG.
  • the travel target point (referred to as the first travel target point P1 (FIG. 13B)) and the forward travel target point existing outside the circle C1, the travel target point (second travel target point P2) that is the shortest distance from the current position. (Referred to as FIG. 13B).
  • the calculator 2411-5 calculates a virtual travel target point VP (FIG. 13C) that is an intersection of the line segment P1P2 (FIG. 13C) connecting the first travel target point P1 and the second travel target point P2 and the circumference of the circle C1. ) Is calculated.
  • the base point arrangement unit 2411-7 connects the current position, the virtual travel target point VP, the second travel target point P2, and the other forward travel target points existing outside the circle in the order from the current position. Generate a travel route. Then, base points B are arranged at predetermined intervals on the generated travel route.
  • the autonomous mobile body 100 Even if the autonomous mobile body 100 is at a position slightly deviated from the planned travel path by the base point generation unit 2411 having such a configuration, the autonomous mobile body 100 corrects this positional shift, and the planned travel path Can travel more faithfully.
  • a specific method for generating the base point B in the base point generating unit 2411 having such a configuration will be described later.
  • FIG. 9 is a flowchart showing the autonomous traveling operation of the autonomous mobile body 100.
  • the detection unit 3 detects the obstacle S (step S1).
  • the obstacle information acquisition unit 26 acquires the position information of the obstacle S from the signals output from the front detector 31 and the rear detector 33 of the detection unit 3. Then, the acquired position information of the obstacle S is stored in the storage unit 23.
  • the self-position estimation unit 22 determines the current position of the autonomous mobile body 100 on the movement coordinates (the autonomous mobile body 100 starts autonomous traveling). Corresponding to position information). Then, the current position of the autonomous mobile body 100 is stored in the storage unit 23.
  • the calculation unit 241 calculates the predicted travel locus T based on the current position of the autonomous mobile body 100, the travel route information Tn, and the autonomous mobile body area A (step S2).
  • a specific method for calculating the predicted travel trajectory T in step S2 will be described later.
  • the determination unit 243 determines whether or not the generated predicted traveling locus T and the obstacle S interfere with each other (step S3). A specific method for determining whether or not the predicted traveling locus T and the obstacle S interfere with each other will be described later.
  • the movement control device 2 causes the moving unit 1 to reproduce the predicted travel locus T. Is controlled (step S4). Specifically, the movement control unit 245 creates a movement command that reproduces the predicted traveling locus T.
  • the motor drive unit 25 controls the motors 13a and 13b based on the movement command generated in the movement control unit 245. Thereby, the autonomous mobile body 100 can travel faithfully on the predicted travel locus T (travel route) without performing a useless operation for avoiding the obstacle S.
  • step S5 when the determination unit 243 determines that the obstacle S and the predicted traveling locus T interfere with each other (in the case of “Yes” in step S3), the movement control device 2 An instruction is given to execute an operation that avoids a collision with the obstacle S (obstacle collision avoidance operation) (step S5).
  • the movement control device 2 stops the movement if the position where the obstacle S and the predicted travel trajectory T interfere with each other is close to the current position of the autonomous mobile body 100, and If the vehicle is far from the current position, the vehicle is instructed to decelerate.
  • the movement control unit 245 creates a movement command for causing the autonomous mobile body 100 to travel at a lower speed than usual until it does not collide with the obstacle S.
  • the autonomous mobile body 100 can travel on the travel route as much as possible within a range in which the obstacle S and the autonomous mobile body 100 do not collide. Thereby, the autonomous mobile body 100 can travel the travel route more faithfully without colliding with the obstacle S.
  • step S5 or step S3 the determination unit 243 acquires information on which position of the predicted traveling locus T the autonomous mobile body region A interferes with the obstacle S. Thereby, the traveling control part 24 can grasp
  • FIG. 1 the traveling control part 24 can grasp
  • the movement control unit 245 may create a movement command that instructs the autonomous mobile body 100 to stop moving. By using such a movement command, the autonomous mobile body 100 does not collide with the obstacle S.
  • the movement control device 2 of the autonomous mobile body 100 determines whether or not the predicted traveling locus and the obstacle interfere with each other in step S3 in FIG. By judging whether or not to perform the collision avoidance action on the obstacle, it is judged. Thereby, it can be judged with higher accuracy whether the autonomous mobile body 100 takes an avoidance action against an obstacle. As a result, the autonomous mobile body 100 can travel faithfully on the planned travel route taught by the user without performing useless obstacle avoidance behavior.
  • FIG. 10 is a flowchart showing a method for generating the predicted traveling locus T.
  • the calculation unit 241 first reads the current position of the autonomous mobile body 100, the planned travel route, and the autonomous mobile body area A from the storage unit 23 (steps S21 to S23).
  • FIG. 11A schematically shows the travel route and base points generated in step S24.
  • the travel route is indicated by a thick solid line.
  • Eight circle points arranged on the travel route indicated by the thick solid line are base points B 1, B 2 ,... B 8 .
  • a general base point B n is expressed as coordinate values (x n , y n ) (n: integer) on moving coordinates.
  • t n is associated with the base point B n as the elapsed time after the autonomous mobile body 100 starts moving.
  • the rotation autonomous mobile body region generation unit 2413 rotates the autonomous mobile body region A around the normal axis of the movement plane to generate a rotation autonomous mobile body region (step S25). Specifically, the rotational autonomous mobile body region generation unit 2413 generates the posture information ⁇ of the autonomous mobile body 100 at the base point B generated by the base point generation unit 2411.
  • FIG. 11B schematically shows generation of the rotating autonomous mobile body region in step S25. As shown in FIG. 11B, at each base point Bn , the reference axis of the autonomous mobile body region A (dotted arrow in the autonomous mobile body region A) is tilted with respect to the horizontal axis (x axis) of the movement coordinates. The angle ⁇ n is generated as posture information at the base point B n .
  • the predicted traveling locus generation unit 2415 After generating the rotational autonomous mobile region, the predicted traveling locus generation unit 2415 generates the rotational autonomous mobile region generated by the rotational autonomous mobile region generation unit 2413 at the base point B generated by the base point generation unit 2411.
  • FIG. 11C schematically shows generation of the predicted traveling locus T in step S26.
  • an expected traveling locus T is generated by arranging a corresponding rotating autonomous moving body region at each of the base points Bn .
  • the predicted traveling locus T has a planar shape on the movement coordinates. This is because the autonomous mobile body region A is planar on the movement coordinates.
  • planar predicted traveling locus T as shown in FIG. 11C is expressed as a function of x and y of the moving coordinates, a very complicated expression is obtained.
  • the predicted traveling locus T is expressed by the coordinate values of the movement coordinates, a very large number of coordinate values (data amount) are required.
  • the generated posture information ⁇ n of the autonomous mobile body 100 is associated with the corresponding travel route information T n to generate a four-dimensional travel route information T n aggregate.
  • each of the travel route information T n are generated predicted travel locus T associates predefined autonomous moving body region A.
  • the predicted travel trajectory T can be expressed as an aggregate of values (x n , y n , t n , ⁇ n ) of the same dimension (four dimensions) as the travel route information T n .
  • the predicted traveling locus T as a set of low-dimensional values of about four dimensions, the predicted traveling locus T can be expressed without requiring a complicated formula or a large amount of data.
  • the predicted traveling trajectory T as a low-dimensional assembly of about four dimensions, the interference between the autonomous mobile body region A and the obstacle S can be determined by a relatively simple calculation formula. .
  • FIG. 12 is a flowchart showing the base point generation method in the base point generation step (step S24) in the present embodiment.
  • FIG. 13A a case where the current position of the center V of the autonomous mobile body region A of the autonomous mobile body 100 is deviated from the planned travel route will be described.
  • the target point extraction unit 2411-1 extracts a predetermined number of forward traveling target points (step S241).
  • the forward travel target point is a travel target point that exists ahead of the current position of the autonomous mobile body 100 in the traveling direction.
  • travel target points other than the travel target point P0 indicated by the dotted line are extracted.
  • the target point selection unit 2411-3 selects a circle C1 (FIG. 13B) having a predetermined radius r centered on the current position of the autonomous mobile body 100 (the center V of the autonomous mobile body area in FIG. 13A).
  • the predetermined radius r is a value sufficiently smaller than the distance from the center V of the autonomous mobile body region A to the boundary defining the autonomous mobile body region A on the movement coordinates.
  • the predetermined radius r is a value smaller than the elliptical minor axis W.
  • the autonomous mobile body 100 By setting the predetermined radius r to a value smaller than the distance from the center V of the autonomous mobile body region A to the boundary, it can be considered that the autonomous mobile body 100 has passed the travel target point in the circle C1 having the predetermined radius r. . Moreover, the autonomous mobile body 100 can return to a travel target point earlier from the position shifted
  • the target point selection unit 2411-3 selects a travel target point (first travel target point) that is the shortest position from the current position of the autonomous mobile body 100 from among the forward travel target points included in the circle C1. (Step S243).
  • the travel target point P1 is the first travel target point.
  • the target point selection unit 2411-3 selects a travel target point (second travel target point) that is the shortest distance from the current position of the autonomous mobile body 100 from among the forward travel target points outside the circle C1. (Step S244).
  • the travel target point P2 is the second travel target point.
  • step S245 After selecting the first travel target point P1 and the second travel target point P2, the calculation unit 2411-5, the line segment P1P2 connecting the first travel target point P1 and the second travel target point P2, and the circle of the circle C1 An intersection with the circumference is calculated (step S245). Then, the intersection calculated by the calculation unit 2411-5 is determined as a virtual travel target point VP (FIG. 13C).
  • the base point arrangement unit 2411-7 sets a line segment R1 connecting the current position and the virtual travel target point VP, the virtual travel target point VP, and the second travel target point P2.
  • the connected line segment R2 is connected to the second travel target point P2 and the line R3 formed by connecting all the forward travel target points that are ahead of the second travel target point P2 in the traveling direction in the order closer to the current position.
  • To the travel route step S246).
  • the base point placement unit 2411-7 places base points B at predetermined intervals on the travel route generated in step S246 (step S247).
  • eight base points B 1 to B 8 including the current position of the autonomous mobile body 100 (center V of the autonomous mobile body area A) are on the travel route. Is arranged.
  • the autonomous mobile body 100 is positioned at this position even if the autonomous mobile body 100 is slightly deviated from the planned travel route. It is possible to travel more faithfully on the travel route by correcting the deviation.
  • FIG. 14 is a flowchart illustrating a method for determining interference between the obstacle S and the predicted travel trajectory T. 14, the determination whether or not the predicted travel locus T obstacle S to interference in the running route information position information expressed in T n (corresponding to the coordinates of the base point B), the obstacle S autonomic This is done by determining whether or not it overlaps the moving object area A.
  • the determination unit 243 determines that the obstacle S and the autonomous mobile body area A interfere with each other. That is, in this case, the determination unit 243 determines that the obstacle S and the predicted traveling locus T interfere with each other. On the other hand, the determination unit 243 determines that the obstacle S and the autonomous mobile body area A do not interfere with each other unless the obstacle S overlaps the autonomous mobile body area A at all base points B. That is, in this case, the determination unit 243 determines that the obstacle S and the predicted traveling locus T do not interfere with each other.
  • the determination unit 243 determines whether the obstacle S and the predicted traveling locus T interfere with each other. First, the determination unit 243 converts the moving coordinates into a coordinate system in which the center V of the autonomous moving body region A arranged at the base point B is the origin (step S31). The coordinate system after conversion will be referred to as second movement coordinates.
  • the determination unit 243 rotates the second movement coordinates so that the reference axis of the autonomous mobile body region A overlaps the horizontal axis (step S32).
  • the rotated second movement coordinates will be referred to as third movement coordinates.
  • the determination unit 243 expands or compresses the third movement coordinate in the y-axis direction or the x-axis direction so that the shape of the autonomous mobile body region A is circular (step S33).
  • the third movement coordinate expanded or compressed in the axial direction will be referred to as the fourth movement coordinate.
  • the determination unit 243 calculates a distance d between the center V of the autonomous mobile body region A (the origin of the fourth movement coordinates) and the obstacle S on the fourth movement coordinates. Then, the determination unit 243 determines whether or not the distance d is larger than the radius of a circle that defines the autonomous mobile body area A on the fourth movement coordinate (step S34). When the distance d is larger than the radius of the circle of the autonomous mobile body area A, that is, when the autonomous mobile body area A and the obstacle S do not overlap (in the case of “Yes” in step S34), the autonomous mobile body It is determined that the area A does not interfere with the obstacle S. Then, the process proceeds to step S35.
  • the autonomous movement It is determined that the body region A interferes with the obstacle S. If it is determined that the autonomous mobile body region A interferes with the obstacle S at a certain base point B, at that time, without making a determination at another base point. It is determined that the predicted travel locus T interferes with the obstacle S (step S36). Then, the determination unit 243 ends the determination of the interference between the predicted traveling locus T and the obstacle S.
  • step S35 the determination unit 243 confirms whether or not the interference between the autonomous mobile body region A and the obstacle S is determined at all the base points B. This is a case where interference between the autonomous mobile body region A and the obstacle S is determined at all base points B (in the case of “Yes” in step S35), and at all base points B, the autonomous mobile body region A and When it is determined that the obstacle S does not interfere (in the case of “Yes” in step S34), it is determined that the predicted traveling locus T does not interfere with the obstacle S (step S37). Then, the determination unit 243 ends the determination of the predicted traveling locus T and the obstacle S.
  • the determination unit 243 may store in the storage unit 23 or the like at which base point B it is determined that the autonomous mobile body region A and the obstacle S interfere.
  • the determination unit 243 stores the subscript number n of the base point B n determined that the autonomous mobile body region A and the obstacle S interfere with each other in the storage unit 23 or the like.
  • the base point B n (travel route information T n ) is expressed by an array (for example, expressed as B [n])
  • the determination unit 243 stores the number of the element n in the storage unit 23 or the like To remember.
  • the base point B m where the autonomous mobile body region A and the obstacle S interfere with each other is decelerated and moved to the base point B m ⁇ 1 behind the autonomous mobile body 100 in the traveling direction. Obstacle collision avoidance action can be executed. As a result, the autonomous mobile body 100 can travel on the travel route more faithfully without colliding with the obstacle S.
  • FIG. 15A to FIG. 15A schematically show the autonomous moving body region A and the obstacle S on the movement coordinates with respect to the method for determining the interference between the predicted traveling locus T and the obstacle S described above with reference to FIG.
  • the autonomous mobile region A in the coordinates also referred to as the base point B 6
  • the position information of the travel route information T 6 (x 6 , y 6 , t 6 , ⁇ 6 )
  • a method for determining interference with the obstacles S 1 to S 6 will be described.
  • the coordinates represented by the position information of the other travel route information T n so can be explained like the following will be omitted.
  • FIG. 15B shows a diagram when the autonomous mobile body region A at the base point B 6 and the obstacles S 1 to S 6 are arranged on the movement coordinates.
  • step S31 in FIG. 14 the center V of the autonomous moving body region A disposed on the base point B 6 is moved coordinates are converted such that the origin of the coordinate.
  • the movement coordinate is translated by ⁇ x 6 in the horizontal axis (x-axis) direction and by ⁇ y 6 in the vertical axis (y-axis) direction.
  • the obstacles S 1 to S 6 are also parallel from the coordinates on the movement coordinates by ⁇ x 6 in the x-axis direction and ⁇ y 6 in the vertical axis (y-axis) direction. It is moved and arranged on the second movement coordinate.
  • FIG. 15C The arrangement of the autonomous mobile body region A and the obstacles S 1 to S 6 on the second movement coordinates is shown in FIG. 15C.
  • the second movement coordinate is rotated so that the reference axis of the autonomous moving body region A on the second movement coordinate overlaps the horizontal axis (x axis) of the movement coordinate.
  • the second movement coordinates are rotated in a direction (clockwise in FIG. 15C) opposite to the direction in which the posture information ⁇ of the autonomous mobile body 100 is defined (the direction in which ⁇ is a positive value).
  • the second movement coordinate is rotated clockwise by an angle ⁇ 6 .
  • the rotated second movement coordinates are referred to as third movement coordinates.
  • FIG. 15D shows the arrangement of the autonomous moving body region A and the obstacles S 1 to S 6 on the third movement coordinates.
  • the third movement coordinate is L / W times (L) in the y-axis direction so that the autonomous mobile body region A becomes a circle having a radius L (the major axis of the autonomous mobile body region A). / W is called the expansion rate).
  • the third movement coordinate in which the y-axis direction is extended will be referred to as a fourth movement coordinate.
  • the y-coordinate value of the coordinate on the third movement coordinate is multiplied by L / W (L / W is referred to as the expansion rate) and arranged on the fourth movement coordinate.
  • the obstacles S 1 to S 6 on the third movement coordinate are arranged on the fourth movement coordinate with the coordinate value multiplied by L / W.
  • FIG. 15E shows the arrangement of the autonomous mobile body region A and the obstacles S 1 to S 6 on the fourth movement coordinate.
  • the shapes of the obstacles S 1 to S 6 are deformed vertically long (in FIG. 15D, from a circle to a vertically long ellipse), but the center V of the autonomous mobile body region A and the obstacle S the positional relationship between the 1 ⁇ S 6 does not change.
  • step S34 of FIG. 14 it is determined whether or not the autonomous mobile body region A and the obstacles S 1 to S 6 interfere on the fourth movement coordinate.
  • the distances d 1 to d 6 from the center V of the autonomous moving body region (the origin of the fourth movement coordinates) and the obstacles S 1 to S 6 are as follows. Calculated. By calculating the distances d 1 to d 6 as the distances from the origin of the fourth movement coordinates to the obstacles S 1 to S 6 , the calculation of the distances d 1 to d 6 can be simplified.
  • the interference between the autonomous mobile body region A and the obstacles S 1 to S 6 is only whether the distances d 1 to d 6 are larger than the major axis L of the autonomous mobile body region A. Can be judged. This is because the autonomous mobile body region A is expressed as a circle with a radius L having no anisotropy on the fourth movement coordinates. Thereby, interference with the autonomous mobile body area
  • the coordinate conversion as described above can be calculated relatively easily using a determinant.
  • a calculation formula for calculating the distance d from the autonomous mobile body region A to the obstacle S is calculated in advance, and the calculation formula is stored in the storage unit 23 or the like. Also good. Then, an appropriate value may be substituted into this calculation formula to calculate the distance d from the autonomous mobile body region A to the obstacle S represented by specific numerical values.
  • determinants that perform coordinate translation, rotation, and expansion / compression may be stored in the storage unit 23 or the like. In this case, an appropriate value is substituted into the stored determinant to calculate a determinant expressed by a specific numerical value. And after performing coordinate conversion of a movement coordinate using the determinant expressed with the specific numerical value, the distance d from the autonomous mobile body area
  • the movement control device 2 of the autonomous mobile body 100 includes a movement unit 1 (an example of a movement unit) and a detection unit 3 (detection) that detects an obstacle S (an example of an obstacle).
  • An autonomous mobile body 100 (an example of an autonomous mobile body) that moves so as to reproduce a planned travel route (an example of a planned travel route) created in advance.
  • the movement control device 2 of the autonomous mobile body 100 includes a calculation unit 241 (an example of a calculation unit), a determination unit 243 (an example of a calculation unit), and a movement control unit 245 (an example of a movement control unit).
  • the calculation unit 241 includes the current position of the autonomous mobile body 100, travel route information T n (an example of travel route information) representing a travel route to a future position that is a position traveled a predetermined distance from the current position, and autonomous movement. Based on the autonomous mobile body region A (an example of an autonomous mobile body region) having a predetermined shape including the body 100, an expected travel locus T (an example of an expected travel locus from the current position to the future position) is calculated. .
  • the determination unit 243 determines whether or not the obstacle S detected by the detection unit 3 and the predicted traveling locus T interfere with each other.
  • the movement control unit 245 controls the moving unit 1 so as to reproduce the predicted traveling locus T calculated by the calculating unit 241 when the determining unit 243 determines that the obstacle S and the predicted traveling locus T do not interfere with each other. Create a movement command.
  • the calculation unit 241 creates the predicted traveling locus T based on the traveling route information Tn and the autonomous mobile body area A.
  • the determination unit 243 determines whether or not the obstacle S detected by the detection unit 3 of the autonomous mobile body 100 and the predicted travel locus T interfere with each other. If the movement control unit 245 determines that the obstacle S and the predicted travel locus T do not interfere with each other in the determination unit 243, the movement unit 1 of the autonomous mobile body 100 is moved so as to reproduce the predicted travel locus T. Create a movement command to control.
  • the determination as to whether or not the autonomous mobile body 100 and the obstacle S collide is based on the determination as to whether or not the predicted traveling locus T and the obstacle S interfere with each other. Thereby, it can be judged with higher accuracy whether the autonomous mobile body 100 takes the avoidance action with respect to the obstacle S. As a result, the autonomous mobile body 100 can travel more faithfully on the planned travel route taught by the user without performing useless avoidance action on the obstacle S.
  • the shape of the autonomous moving body region A in the moving plane of the autonomous moving body 100 has anisotropy.
  • the travel route information T n is the position information of the autonomous mobile body 100 on the travel route, and the coordinates of the base point B (an example of position information) and the posture information ⁇ (posture information of the posture information) of the autonomous mobile body 100 on the travel route. Example).
  • the calculating part 241 can create a more accurate predicted traveling locus in consideration of the shape and posture of the autonomous mobile body 100.
  • the determination unit 243 can more reliably determine whether the obstacle S and the autonomous mobile body 100 interfere with each other.
  • the shape of the autonomous moving body region A on the moving plane is an ellipse.
  • the determination part 243 can determine whether the obstruction S and the autonomous mobile body 100 interfere with each other by fewer calculations.
  • the travel route information T n further includes time information t n (an example of time information) on the travel route of the autonomous mobile body 100.
  • time information t n an example of time information
  • the movement control part 245 can create a movement command by a simpler calculation. Since it represented a travel route information T n as discrete information (sequence) can be simplified the structure of the travel route information T n.
  • the calculation unit 241 includes a base point generation unit 2411 (an example of a base point generation unit), a rotation autonomous mobile body region generation unit 2413 (an example of a rotation autonomous mobile body region generation unit), and an expected travel locus generation.
  • Unit 2415 an example of an expected travel locus generation unit.
  • Base point generation unit 2411 as the position information of the traveling route information T n, to generate a plurality of base points B (an example of a base point) on the travel path.
  • Rotating the autonomous moving body area generation unit 2413 based on the attitude information of the traveling route information T n theta, the autonomous moving body region A, to generate a rotating autonomous moving body region by rotation about a normal axis of the moving plane.
  • the predicted travel locus generation unit 2415 arranges the rotation autonomous mobile body region generated by the rotation autonomous mobile body region generation unit 2413 at each of the base points B generated by the base point generation unit 2411 to predict the predicted travel A trajectory T is generated. Thereby, the calculating part 241 can create the predicted traveling locus T by a simpler calculation.
  • the movement control unit 245 determines that the autonomous mobile body 100 is detected if the interference unit is located at a distance close to the current position when the determination unit 243 determines that the obstacle S and the predicted travel locus T interfere with each other. Stop. Moreover, if it exists in the distance far from the present position, the moving part 1 will be controlled so that the autonomous mobile body 100 may be decelerated. Thereby, the autonomous mobile body 100 can travel the travel route more faithfully without colliding with the obstacle S.
  • an autonomous mobile body 200 according to a second embodiment will be described.
  • description about the same thing as the autonomous mobile body 100 which concerns on 1st Embodiment among the structures of the autonomous mobile body 200 which concerns on 2nd Embodiment is abbreviate
  • the base point generation method in the base point generation unit 2412 is different from the generation method in the base point generation unit 2411 of the autonomous mobile body 100 according to the first embodiment. Therefore, the configuration of the base point generation unit 2412 of the autonomous mobile body 200 according to the second embodiment and the base point generation method in the base point generation unit 2412 will be described below. First, the configuration of the base point generation unit 2412 according to the second embodiment will be described with reference to FIG. FIG.
  • the base point generation unit 2412 includes a target point extraction unit 2412-1, a target point selection unit 2412-3, a calculation unit 2412-5, and a base point arrangement unit 2412-7. .
  • the target point extraction unit 2412-1 extracts a forward travel target point.
  • the forward travel target point has a first radius r 1 (FIG. 18A) centered on the current position from the current position of the autonomous mobile body 200.
  • the first travel target point P3 (FIG. 18A) that is closest to the current position and is ahead of the current position in the traveling direction of the autonomous mobile body 200. It is a driving target point until.
  • the target point selection unit 2412-3 selects the second travel target point P4 (FIG. 18B).
  • the second travel target point P4 in the target point selection unit 2412-3 according to the second embodiment is a second circle C4 having a second radius r 2 (FIG. 18B) centered on the current position of the autonomous mobile body 100 (FIG. 18B).
  • the forward travel target point is the shortest distance from the current position.
  • the calculation unit 2412-5 calculates a virtual travel target point VP1 that is an intersection of a line segment P4-V (FIG. 18C) connecting the current position of the autonomous mobile body 100 and the second travel target point P4 and the circumference of the circle C4. (FIG. 18C) is calculated.
  • the base point arrangement unit 2412-7 arranges base points at a predetermined interval on the travel route.
  • the travel route includes a current position, a virtual travel target point VP1, a second travel target point P4, and a forward travel target point between the second travel target point P4 and the first travel target point P3 from the current position. It is generated by connecting in the closest order.
  • FIG. 17 is a flowchart illustrating a base point generation method in the base point generation unit 2412 of the autonomous mobile body 200 according to the second embodiment.
  • FIG. 18A is a diagram schematically illustrating a method of setting the first travel target point P3.
  • the traveling extraction unit 2412-1 has a first circle C 3 having a first radius r 1 centered on the current position of the autonomous mobile body 200 (corresponding to the center V of the autonomous mobile body area A in FIG. 18A).
  • the first radius r 1 is determined based on the traveling speed of the autonomous mobile body 200, the detectable distance of the obstacle S in the detection unit 3, and the like.
  • a travel target point closest to the current position of the autonomous mobile body 200 is selected from the travel target points outside the first circle C3. Furthermore, among the selected travel target points, a travel target point that is ahead of the autonomous mobile body 200 in the traveling direction is defined as a first travel target point P3.
  • the target point extraction unit 2412-1 is a travel target point that is ahead of the current position in the traveling direction and is between the current position of the autonomous mobile body 200 and the first travel target point P 3.
  • the target point is extracted as a forward travel target point (step S2412).
  • the traveling target point indicated by the solid line is the forward traveling target point.
  • the target point selection unit 2412-3 sets the second travel target point P4 (step S2413).
  • a method for setting the second travel target point P4 in the target point selection unit 2412-3 will be described with reference to FIG. 18B.
  • FIG. 18B is a schematic diagram illustrating a method of setting the second travel target point P4.
  • a target point selection unit 2412-3 was centered on the current position of the autonomous moving body 200, defining a second circle C4 having a second radius r 2.
  • the second radius r 2 determines an allowable range of deviation between the autonomous mobile body 200 and the travel target point.
  • the second radius r 2 be as small as possible.
  • the second radius r 2 is a radius that includes only the forward travel target point closest to the autonomous mobile body 200.
  • an appropriate first value is determined depending on an allowable range of deviation between the autonomous mobile body 200 and the travel target point, and how quickly the deviation from the travel target point is to be corrected. The value of 2 radius r 2 is selected.
  • the target point selection unit 2412-3 selects a forward travel target point that is the shortest distance from the current position among the forward travel target points that exist outside the second circle C4. Then, the target point selection unit 2412-3 sets the selected travel target point as the second travel target point P4.
  • the calculation unit 2412-5 calculates the virtual travel target point VP1 (step S2414). As shown in FIG. 18C, the calculation unit 2412-5 obtains an intersection point between the line P4-V connecting the current position and the second travel target point and the second circle C4. Then, the intersection point is set as a virtual travel target point VP1 (a point indicated by a black circle in FIG. 18C).
  • the base point placement unit 2412-7 generates a travel route for placing the base point B (step S2415).
  • a travel route R4 connecting the current position of the autonomous mobile body 200 and the virtual travel target point VP1 set in step S2414, and virtual travel All of the forward travel target points existing between the travel route R5 connecting the target point VP1 and the second travel target point P4 set in step S2413 and between the second travel target point P4 and the first travel target point P3.
  • the travel route R6 is connected to generate a travel route.
  • the base point placement unit 2412-7 places base points B at predetermined intervals on the travel route generated in step S2415 (step S2416).
  • the interval at which the base point B is arranged is determined based on, for example, a control cycle T c that is a cycle for controlling the autonomous mobile body 200.
  • the base point generation unit 2412 of the autonomous mobile body 200 according to the second embodiment is similar to the base point generation unit 2411 of the autonomous mobile body 100 according to the first embodiment. Even if the position is slightly deviated from the planned travel route, this position deviation can be corrected. Therefore, the autonomous mobile body 200 according to the second embodiment can travel more faithfully on the planned travel route.
  • the moving part 1 of the autonomous mobile body 100 in 1st Embodiment had the two main wheels 11a and 11b. And each of the main wheels 11a and 11b was rotatably connected to the output rotating shafts of the motors 13a and 13b.
  • the number of main wheels and motors is not limited to two.
  • the moving unit may include two or more main wheels and a plurality of motors connected to each of the main wheels. Depending on the application of the autonomous mobile body, the degree of freedom of movement, etc., the moving unit can be configured by an arbitrary number of main wheels and motors.
  • the present invention is widely applicable to an autonomous mobile body that autonomously travels while detecting an obstacle with a sensor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Electromagnetism (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

An objective of the present invention is to control an autonomous moving body to travel precisely along a taught travel path without carrying out unnecessary avoidance travel. A movement control device (2) of an autonomous moving body (100), comprising a movement unit (1), and a detection unit (3), and which moves to reproduce a pre-planned travel path, comprises a computation unit (241), a determination unit (243), and a movement control unit (245). The computation unit (241) computes a predicted travel trajectory (T), on the basis of a present location of the autonomous moving body (100), travel path information (Tn) which represents a travel path to a future location which is a location which is traveled a prescribed distance from the present location, and an autonomous moving body region (A) having a prescribed shape which encompasses the autonomous moving body (100). The determination unit (243) determines whether an obstacle (S) which the detection unit (3) detects and the predicted travel trajectory (T) interfere with one another. If it is determined in the determination unit (243) that the obstacle (S) and the predicted travel trajectory (T) do not interfere with one another, the movement control unit (245) creates a movement command which controls the movement unit (1) to reproduce the predicted travel trajectory (T) which is computed by the computation unit (241).

Description

自律移動体の移動制御装置、自律移動体、及び自律移動体の制御方法Autonomous mobile object movement control device, autonomous mobile object, and autonomous mobile object control method
 本発明は、センサにより障害物を検出しながら自律走行する自律移動体、自律移動体の移動制御装置、及び自律移動体の制御方法に関する。 The present invention relates to an autonomous mobile body that autonomously travels while detecting an obstacle with a sensor, a movement control device for the autonomous mobile body, and a control method for the autonomous mobile body.
 従来、センサにより障害物を検出しながら自律走行する自律移動体が知られている。例えば、特許文献1には、自律移動体を円モデルで近似せず、長軸と短軸とを備えた異方性のある異方性モデルを利用して、自律移動体の姿勢角を変化させながら併進して障害物を回避する自律移動体が開示されている。
 特許文献1の自律移動体は、自律移動体の並進に関するポテンシャルと、回転に関するポテンシャルとを用いて、障害物を回避する。
Conventionally, an autonomous mobile body that autonomously travels while detecting an obstacle by a sensor is known. For example, in Patent Document 1, an autonomous moving body is not approximated by a circular model, and the posture angle of the autonomous moving body is changed using an anisotropic model having an anisotropy having a major axis and a minor axis. An autonomous mobile body that avoids obstacles by parallel translation is disclosed.
The autonomous mobile body of patent document 1 avoids an obstacle using the potential regarding the translation of an autonomous mobile body, and the potential regarding rotation.
 特許文献1における障害物を回避するために用いられるポテンシャル法は、目的地に対する引力ポテンシャルと、回避すべき障害物に対する斥力ポテンシャルとを生成し、これらのポテンシャルを重ね合わせた力場の勾配により制御量を発生させる方法である。 The potential method used to avoid an obstacle in Patent Document 1 generates an attractive potential for a destination and a repulsive potential for an obstacle to be avoided, and is controlled by a gradient of a force field obtained by superimposing these potentials. It is a method of generating a quantity.
特開2011-108129号公報JP 2011-108129 A
 特許文献1のポテンシャル法を用いた障害物の回避方法においては、自律移動体が障害物に近づくと大きな斥力ポテンシャルが働く。このため、本来は回避行動をすることなく障害物を回避可能な場合でも、自律移動体は障害物を回避するような動作を行ってしまう。自律移動体がこのような無駄な回避行動を実行した場合、自律移動体が、ユーザにより教示された走行経路を忠実に走行できない場合がある。 In the obstacle avoidance method using the potential method of Patent Document 1, a large repulsive potential works when the autonomous mobile body approaches the obstacle. For this reason, even when an obstacle can be avoided without originally performing an avoidance action, the autonomous mobile body performs an operation to avoid the obstacle. When the autonomous mobile body performs such a useless avoidance action, the autonomous mobile body may not be able to travel faithfully along the travel route taught by the user.
 本発明の課題は、無駄な障害物の回避行動を行うことなく、ユーザにより教示された走行経路(予定走行経路)を忠実に走行するように自律移動体を制御することにある。 An object of the present invention is to control an autonomous mobile body so as to travel faithfully on a travel route (planned travel route) taught by a user without performing useless obstacle avoidance behavior.
 以下に、課題を解決するための手段として複数の態様を説明する。これら態様は、必要に応じて任意に組み合せることができる。
 本発明の一見地に係る自律移動体の移動制御装置は、移動部と、障害物を検出する検出部とを備え、予め作成した予定走行経路を再現するように移動する自律移動体の移動制御装置である。
 自律移動体の移動制御装置は、演算部と、判断部と、移動制御部と、を備える。演算部は、自律移動体の現在位置と、現在位置から所定の距離を走行した位置である将来位置までの走行経路を表す走行経路情報と、自律移動体を内包した所定の形状を有する自律移動体領域と、に基づいて、現在位置から将来位置までの予想走行軌跡を演算する。判断部は、検出部が検出した障害物と予想走行軌跡とが互いに干渉するか否かを判断する。移動制御部は、判断部において障害物と予想走行軌跡とが干渉しないと判断された場合、演算部により演算された予想走行軌跡を再現するように移動部を制御する移動指令を作成する。
Hereinafter, a plurality of modes will be described as means for solving the problems. These aspects can be arbitrarily combined as necessary.
A movement control device for an autonomous mobile body according to an aspect of the present invention includes a movement unit and a detection unit that detects an obstacle, and the movement control of the autonomous mobile body moves so as to reproduce a pre-created scheduled travel route. Device.
The movement control device for an autonomous mobile body includes a calculation unit, a determination unit, and a movement control unit. The calculation unit includes an autonomous mobile object having a predetermined shape including a current position of the autonomous mobile body, travel route information representing a travel path to a future position that is a position traveled a predetermined distance from the current position, and an autonomous mobile object Based on the body region, an expected traveling locus from the current position to the future position is calculated. The determination unit determines whether or not the obstacle detected by the detection unit and the predicted traveling locus interfere with each other. A movement control part produces the movement command which controls a movement part so that the prediction driving | running | working locus | trajectory calculated by the calculating part may be reproduced, when a judgment part determines that an obstruction and an estimated driving | running | working locus do not interfere.
 この移動制御装置では、最初に、演算部が、走行経路情報と自律移動体領域とに基づいて、予想走行軌跡を作成する。次に、判断部が、自律移動体の検出部が検出した障害物と予想走行軌跡とが互いに干渉するか否かを判断する。そして、移動制御部が、判断部において障害物と予想走行軌跡とが干渉しないと判断されていれば、予想走行軌跡を再現するように、自律移動体の移動部を制御する移動指令を作成する。 In this movement control device, first, the calculation unit creates an expected traveling locus based on the traveling route information and the autonomous mobile body region. Next, the determination unit determines whether or not the obstacle detected by the detection unit of the autonomous mobile body and the predicted traveling locus interfere with each other. Then, if the movement control unit determines that the obstacle and the predicted traveling locus do not interfere with each other in the determining unit, the movement control unit creates a movement command for controlling the moving unit of the autonomous mobile body so as to reproduce the predicted traveling locus. .
 この移動制御装置では、自律移動体と障害物とが衝突するかどうかの判断が、予想走行軌跡と障害物とが互いに干渉するか否かの判断に基づいている。これにより、自律移動体が障害物に対して回避行動を取るかどうかを、より高い確度で判断できる。その結果、自律移動体は、障害物に対して無駄な回避行動を行うことなく、ユーザにより教示された予定走行経路をより忠実に走行できる。 In this movement control device, the determination as to whether or not the autonomous mobile body and the obstacle collide is based on the determination as to whether or not the predicted traveling locus and the obstacle interfere with each other. Thereby, it can be judged with higher accuracy whether an autonomous moving body takes avoidance action against an obstacle. As a result, the autonomous mobile body can travel more faithfully on the planned travel route taught by the user without performing useless avoidance action on the obstacle.
 自律移動体領域の、自律移動体の移動平面における形状は異方性を有していてもよい。また、この場合、走行経路情報は、自律移動体の走行経路における位置情報と、走行経路上における自律移動体の姿勢情報とを含んでいてもよい。
 これにより、演算部は、自律移動体の形状や姿勢を考慮してより正確な予想走行軌跡を作成できる。その結果、判断部は、障害物と自律移動体とが互いに干渉するかどうかをより確実に判断できる。
The shape of the autonomous mobile body region in the plane of movement of the autonomous mobile body may have anisotropy. In this case, the travel route information may include position information on the travel route of the autonomous mobile body and posture information of the autonomous mobile body on the travel route.
Thereby, the calculating part can create a more accurate predicted traveling locus in consideration of the shape and posture of the autonomous mobile body. As a result, the determination unit can more reliably determine whether the obstacle and the autonomous mobile body interfere with each other.
 自律移動体領域の移動平面における形状は楕円であってもよい。これにより、判断部は、より少ない演算により障害物と自律移動体とが互いに干渉するかどうかを判断できる。 The shape of the autonomous moving body area on the moving plane may be an ellipse. Thereby, the determination unit can determine whether the obstacle and the autonomous mobile body interfere with each other with fewer operations.
 走行経路情報は、自律移動体の走行経路上における時間情報をさらに含んでいてもよい。これにより、移動制御部は、より単純な演算によりに移動指令を作成できる。また、走行経路情報を離散的な情報(配列)として表現できるので、走行経路情報の構造を単純化できる。 The travel route information may further include time information on the travel route of the autonomous mobile body. Thereby, the movement control part can create a movement command by a simpler calculation. In addition, since the travel route information can be expressed as discrete information (array), the structure of the travel route information can be simplified.
 演算部は、ベース点生成部と、回転自律移動体領域生成部と、予想走行軌跡生成部と、を備えていてもよい。ベース点生成部は、走行経路情報の位置情報として、走行経路上に複数のベース点を生成する。回転自律移動体領域生成部は、走行経路情報の姿勢情報に基づいて、自律移動体領域を移動平面の法線軸周りに回転することで回転自律移動体領域を生成する。予想走行軌跡生成部は、ベース点生成部にて生成されたベース点のそれぞれに、回転自律移動体領域生成部にて生成された回転自律移動体領域を配置して、予想走行軌跡を生成する。これにより、演算部は、より単純な演算により、予想走行軌跡を作成できる。 The calculation unit may include a base point generation unit, a rotating autonomous mobile region generation unit, and an expected travel locus generation unit. The base point generation unit generates a plurality of base points on the travel route as position information of the travel route information. The rotation autonomous mobile body region generation unit generates the rotation autonomous mobile body region by rotating the autonomous mobile body region around the normal axis of the movement plane based on the posture information of the travel route information. The predicted travel locus generation unit generates the predicted travel locus by arranging the rotation autonomous mobile body region generated by the rotation autonomous mobile body region generation unit on each of the base points generated by the base point generation unit. . Thereby, the calculating part can create an expected traveling locus by a simpler calculation.
 予定走行経路は、複数の走行目標点により構成されていてもよい。この場合、ベース点生成部は、目標点抽出部と、目標点選択部と、算出部と、ベース点配置部と、を備えていてもよい。目標点抽出部は、走行目標点のうち、現在位置から、現在位置を中心とする所定の第1半径を有する第1の円の外側に存在する走行目標点のうち、現在位置に最も近く、かつ、現在位置よりも進行方向前方に存在する第1走行目標点までの走行目標点である前方走行目標点を抽出する。目標点選択部は、現在位置を中心とする所定の第2半径を有する第2の円の外側に存在する前方走行目標点のうち、現在位置から最短の距離にある第2走行目標点を抽出する。算出部は、現在位置と第2走行目標点とを結ぶ線と、第2の円の円周との交点である仮想走行目標点を算出する。ベース点配置部は、現在位置と、仮想走行目標点と、第2走行目標点と、第2走行目標点から第1走行目標点までの間の前方走行目標点とを、現在位置に近い順に結んで生成される走行経路上に、ベース点を所定の間隔にて配置する。
 これにより、自律移動体が予定走行経路から多少ずれた位置にあっても、自律移動体は、この位置のずれを補正して予定走行経路を忠実に走行できる。
The planned travel route may be composed of a plurality of travel target points. In this case, the base point generation unit may include a target point extraction unit, a target point selection unit, a calculation unit, and a base point arrangement unit. The target point extraction unit is closest to the current position among the travel target points that are located outside the first circle having a predetermined first radius centered on the current position from the current position, And the front travel target point which is a travel target point to the 1st travel target point which exists ahead in the advancing direction rather than the present position is extracted. The target point selection unit extracts the second travel target point that is the shortest distance from the current position among the forward travel target points existing outside the second circle having the predetermined second radius centered on the current position. To do. The calculation unit calculates a virtual travel target point that is an intersection of a line connecting the current position and the second travel target point and the circumference of the second circle. The base point arrangement unit sets the current position, the virtual travel target point, the second travel target point, and the forward travel target points between the second travel target point and the first travel target point in order from the current position. Base points are arranged at predetermined intervals on the travel route formed by tying.
Thereby, even if the autonomous mobile body is at a position slightly deviated from the planned travel route, the autonomous mobile body can travel on the planned travel route faithfully by correcting this positional shift.
 移動制御部は、判断部において障害物と予想走行軌跡とが干渉すると判断された場合、干渉する位置が現在位置から近い距離にあれば、自律移動体を停止してもよい。また、現在位置から遠い距離にあれば、自律移動体を減速するように、移動部を制御してもよい。これにより、自律移動体は、障害物に衝突することなく、より忠実に走行経路を走行できる。 The movement control unit may stop the autonomous moving body if the determination unit determines that the obstacle and the predicted traveling locus interfere with each other if the interference position is close to the current position. Further, the moving unit may be controlled so as to decelerate the autonomous mobile body if it is at a distance far from the current position. Thereby, the autonomous mobile body can drive | work a driving | running route more faithfully, without colliding with an obstruction.
 移動制御部は、判断部において障害物と予想走行軌跡とが干渉すると判断された場合、自律移動体を停止するように移動部を制御してもよい。これにより、自律移動体は、障害物に衝突することがなくなる。 The movement control unit may control the moving unit so as to stop the autonomous moving body when the determination unit determines that the obstacle and the predicted traveling locus interfere with each other. Thereby, the autonomous mobile body does not collide with the obstacle.
 本発明の他の見地に係る自律移動体は、移動部と、検出部と、上記の移動制御装置とを備えている。 An autonomous moving body according to another aspect of the present invention includes a moving unit, a detecting unit, and the above movement control device.
 この自律移動体では、自律移動体と障害物とが衝突するかどうかの判断が、予想走行軌跡と障害物とが互いに干渉するか否かの判断に基づいている。これにより、自律移動体が障害物に対して回避行動を取るかどうかを、より高い確度で判断できる。その結果、自律移動体は、障害物に対する無駄な回避行動を行うことなく、予定走行経路をより忠実に走行できる。 In this autonomous mobile body, the determination as to whether or not the autonomous mobile body and the obstacle collide is based on the determination as to whether or not the predicted traveling locus and the obstacle interfere with each other. Thereby, it can be judged with higher accuracy whether an autonomous moving body takes avoidance action against an obstacle. As a result, the autonomous mobile body can travel more faithfully on the planned travel route without performing useless avoidance action on the obstacle.
 本発明のさらに他の見地に係る自律移動体の制御方法は、移動部と、障害物を検出する検出部とを備え、予め作成した予定走行経路を再現するように移動する自律移動体の制御方法である。
 自律移動体の制御方法は以下のステップを含む。
 ◎自律移動体の現在位置と、現在位置から所定の距離を走行した位置である将来位置までの走行経路を表す走行経路情報と、自律移動体を内包した所定の形状を有する自律移動体領域と、に基づいて、現在位置から将来位置までの予想走行軌跡を演算するステップ。
 ◎検出部が検出した障害物と予想走行軌跡とが干渉するか否かを判断するステップ。
 ◎障害物と予想走行軌跡とが干渉しないと判断された場合、演算された予想走行軌跡を再現するように移動部を制御するステップ。
An autonomous mobile body control method according to still another aspect of the present invention includes a mobile unit and a detection unit that detects an obstacle, and controls an autonomous mobile body that moves so as to reproduce a planned travel route that has been created in advance. Is the method.
The autonomous mobile control method includes the following steps.
◎ Current position of the autonomous mobile body, travel route information representing a travel route to a future position that is a position traveled a predetermined distance from the current position, and an autonomous mobile body region having a predetermined shape including the autonomous mobile body Based on the above, a step of calculating an expected travel locus from the current position to the future position.
A step of determining whether or not the obstacle detected by the detection unit interferes with the expected traveling locus.
A step of controlling the moving unit so as to reproduce the calculated predicted traveling locus when it is determined that the obstacle and the predicted traveling locus do not interfere with each other.
 この自律移動体の制御方法では、自律移動体と障害物とが衝突するかどうかの判断が、予想走行軌跡と障害物とが互いに干渉するか否かの判断に基づいている。これにより、自律移動体が障害物に対して回避行動を取るかどうかを、より高い確度で判断できる。その結果、自律移動体は、障害物に対する無駄な回避行動を行うことなく、予定走行経路を忠実に走行できる。 In this autonomous mobile body control method, the determination as to whether or not the autonomous mobile body and the obstacle collide is based on the determination as to whether or not the predicted travel locus and the obstacle interfere with each other. Thereby, it can be judged with higher accuracy whether an autonomous moving body takes avoidance action against an obstacle. As a result, the autonomous mobile body can travel faithfully on the planned travel route without performing useless avoidance action on the obstacle.
 無駄な障害物の回避行動を行うことなく、予定走行経路を忠実に走行できる。 ∙ It is possible to travel faithfully on the planned travel route without performing unnecessary obstacle avoidance actions.
自律移動体の構成を示す図Diagram showing the configuration of an autonomous mobile body 操作部の構成を示す図Diagram showing the configuration of the operation unit 移動制御装置の全体構成を示す図The figure which shows the whole structure of a movement control apparatus 走行制御部の構成を示す図Diagram showing the configuration of the travel control unit 楕円形状の自律移動体領域を示す図Diagram showing an elliptical autonomous mobile region 回転自律移動体領域を示す図Diagram showing rotating autonomous moving body area 演算部の構成を示す図Diagram showing the configuration of the calculation unit 第1実施形態に係るベース点生成部の構成を示す図The figure which shows the structure of the base point production | generation part which concerns on 1st Embodiment. 自律移動体の自律走行動作を示すフローチャートFlow chart showing autonomous running operation of autonomous mobile body 予想走行軌跡の生成方法を示すフローチャートFlow chart showing a method for generating an expected travel locus 予想走行軌跡の生成方法において生成される走行経路及びベース点を模式的に示す図The figure which shows typically the driving | running route and base point which are produced | generated in the production | generation method of an estimated driving | running locus | trajectory 予想走行軌跡の生成方法における回転自律移動体領域の生成を模式的に示す図The figure which shows typically the production | generation of the rotation autonomous mobile body area | region in the production | generation method of an estimated driving | running track 予想走行軌跡を示す図Diagram showing the expected travel path ベース点生成方法を示すフローチャートFlow chart showing base point generation method 自律移動体領域Aの中心Vの現在位置、予定走行経路、及び選択されない走行目標点P0の位置関係を示す図The figure which shows the positional relationship of the present position of the center V of the autonomous mobile body area | region A, a scheduled driving | running route, and the driving target point P0 which is not selected. 所定の半径を有する円、第1走行目標点、及び第2走行目標点の位置関係を示す図The figure which shows the positional relationship of the circle | round | yen which has a predetermined radius, a 1st driving | running | working target point, and a 2nd driving | running | working target point. 線分P1P2と仮想走行目標点VPの位置関係を示す図The figure which shows the positional relationship of line segment P1P2 and virtual driving | running | working target point VP. 走行経路の生成を示す図Diagram showing travel route generation 走行経路上のベース点の配置を示す図Diagram showing the arrangement of base points on the travel route 障害物と予想走行軌跡との干渉の判断方法を示すフローチャートFlow chart illustrating a method for determining interference between an obstacle and an expected travel path 移動座標上の6つの障害物を示す図Diagram showing six obstacles on moving coordinates ベース点Bにおける自律移動体領域と6つの障害物の移動座標における配置を示す図Shows the placement of the movement coordinate of the autonomous moving body region and six obstacles in the base point B 6 第2移動座標における自律移動体領域と障害物の配置を示す図The figure which shows arrangement | positioning of the autonomous mobile body area | region and an obstruction in a 2nd movement coordinate 第3移動座標における自律移動体領域と障害物の配置を示す図The figure which shows arrangement | positioning of the autonomous mobile body area | region and an obstruction in a 3rd movement coordinate 第4移動座標における自律移動体領域と障害物の配置を示す図The figure which shows arrangement | positioning of the autonomous mobile body area | region and an obstruction in a 4th movement coordinate 第2実施形態に係るベース点生成部の構成を示す図The figure which shows the structure of the base point production | generation part which concerns on 2nd Embodiment. 第2実施形態に係るベース点生成部におけるベース点生成方法を示すフローチャートThe flowchart which shows the base point production | generation method in the base point production | generation part which concerns on 2nd Embodiment. 第2実施形態における自律移動体領域Aの中心Vの現在位置、予定走行経路、第1の円、第1走行目標点、及び選択されない走行目標点の位置関係を示す図The figure which shows the positional relationship of the present position of the center V of the autonomous mobile body area | region A in 2nd Embodiment, a scheduled driving | running route, a 1st circle | round | yen, a 1st driving | running | working target point, and the driving | running | working target point which is not selected. 第2実施形態における第2の円、及び、第2走行目標点の位置関係を示す図The figure which shows the positional relationship of the 2nd circle | round | yen in 2nd Embodiment, and a 2nd driving | running | working target point. 第2実施形態における仮想走行目標点VPの位置関係を示す図The figure which shows the positional relationship of the virtual driving | running | working target point VP in 2nd Embodiment. 第2実施形態における走行経路の生成を示す図The figure which shows the production | generation of the travel route in 2nd Embodiment. 第2実施形態におけるベース点の配置を示す図The figure which shows arrangement | positioning of the base point in 2nd Embodiment.
1.第1実施形態
(1)自律移動体の全体構成
 まず、本実施形態に係る自律移動体の全体構成を図1を用いて説明する。図1は、自律移動体の構成を示す図である。本実施形態の自律移動体100は、ユーザにより教示された経路(予定走行経路)を再現しながら、自律して走行可能な移動体である。
 自律移動体100は、移動部1と、移動制御装置2と、検出部3と、操作部5と、備える。移動部1は、自律移動体100を移動させる。検出部3は、移動制御装置2に接続されている。そして、検出部3は、障害物S(後述)を検出し、障害物Sの位置情報を移動制御装置2に出力する。操作部5は、自律移動体100の本体7に、取付部材9を介して固定されている。また、操作部5は、移動制御装置2に信号の送受信が可能なように接続されている。操作部5は、ユーザが自律移動体100に予定走行経路を教示する(教示モード)とき、ユーザにより操作される。これにより、自律移動体100の走行モードが教示モードのときに、自律移動体100は、ユーザによる操作部5の操作に基づいて制御される。また、操作部5は、自律移動体100の各種設定を行う。
 なお、自律移動体100の前方は、操作部5が取り付けられた側とは反対側であるとする。
1. First Embodiment (1) Overall Configuration of Autonomous Mobile Body First, the overall configuration of an autonomous mobile body according to the present embodiment will be described with reference to FIG. FIG. 1 is a diagram illustrating a configuration of an autonomous mobile body. The autonomous mobile body 100 according to the present embodiment is a mobile body that can travel autonomously while reproducing a route (scheduled travel route) taught by a user.
The autonomous mobile body 100 includes a moving unit 1, a movement control device 2, a detection unit 3, and an operation unit 5. The moving unit 1 moves the autonomous mobile body 100. The detection unit 3 is connected to the movement control device 2. Then, the detection unit 3 detects an obstacle S (described later) and outputs position information of the obstacle S to the movement control device 2. The operation unit 5 is fixed to the main body 7 of the autonomous mobile body 100 via an attachment member 9. The operation unit 5 is connected to the movement control device 2 so that signals can be transmitted and received. The operation unit 5 is operated by the user when the user teaches the planned traveling route to the autonomous mobile body 100 (teaching mode). Thereby, when the traveling mode of the autonomous mobile body 100 is the teaching mode, the autonomous mobile body 100 is controlled based on the operation of the operation unit 5 by the user. In addition, the operation unit 5 performs various settings of the autonomous mobile body 100.
It is assumed that the front side of the autonomous mobile body 100 is the side opposite to the side on which the operation unit 5 is attached.
 移動制御装置2は、移動部1に電気的に接続されている。また、移動制御装置2には、検出部3が接続されている。移動制御装置2は、自律移動体100の走行モードが教示モードのときには、ユーザによる操作部5の操作に基づいて、移動部1を制御する。一方、自律移動体100の走行モードが自律移動するモード(自律移動モード)のときには、移動制御装置2は、自律移動体100の移動指令を作成する。そして、移動制御装置2は、作成された移動指令に基づいて移動部1を制御する。
 また、移動制御装置2は、障害物Sの位置情報を把握する。そして、移動制御装置2は、障害物Sの位置情報に基づき、障害物Sと自律移動体100とが干渉するかどうかを判定する。
 なお、自律移動体100の移動部1、移動制御装置2、検出部3、及び操作部5の構成の詳細については、後述する。
The movement control device 2 is electrically connected to the moving unit 1. The movement control device 2 is connected to a detection unit 3. When the traveling mode of the autonomous mobile body 100 is the teaching mode, the movement control device 2 controls the moving unit 1 based on the operation of the operating unit 5 by the user. On the other hand, when the traveling mode of the autonomous mobile body 100 is a mode in which the autonomous mobile body 100 moves autonomously (autonomous movement mode), the movement control device 2 creates a movement command for the autonomous mobile body 100. And the movement control apparatus 2 controls the moving part 1 based on the produced movement command.
Further, the movement control device 2 grasps the position information of the obstacle S. Then, the movement control device 2 determines whether the obstacle S and the autonomous mobile body 100 interfere with each other based on the position information of the obstacle S.
The details of the configuration of the moving unit 1, the movement control device 2, the detection unit 3, and the operation unit 5 of the autonomous moving body 100 will be described later.
 自律移動体100は、補助輪部8をさらに備える。補助輪部8は、2つの補助車輪8a、8bを有する。2つの補助車輪8aと8bは、それぞれが独立に回転可能なように取り付けられている。補助輪部8を備えることにより、自律移動体100は安定に、かつ、スムーズに移動できる。
 なお、移動部1が2以上の車輪を有する場合など、移動部1自体が自律移動体100を安定に走行できる構造を有している場合には、補助輪部8は無くてもよい。
The autonomous mobile body 100 further includes an auxiliary wheel unit 8. The auxiliary wheel portion 8 has two auxiliary wheels 8a and 8b. The two auxiliary wheels 8a and 8b are attached so that each can rotate independently. By providing the auxiliary wheel part 8, the autonomous mobile body 100 can move stably and smoothly.
In addition, when the moving part 1 itself has the structure which can drive | work the autonomous mobile body 100 stably, when the moving part 1 has two or more wheels, the auxiliary wheel part 8 may not be provided.
(2)移動部の構成
 次に、移動部1の構成について図1を用いて詳細に説明する。移動部1は、2つの主輪11a、11bと、2つのモータ13a、13bと、を有する。本実施形態の移動部1においては、それぞれの主輪11a、11bは独立に回転可能である。このような構成の移動部1においては、主輪11aと11bの回転数に差を生じさせることにより、自律移動体100の姿勢(後述)を変化させる。
 主輪11a、11bは、それぞれ、モータ13a、13bの出力回転軸に接続されている。これにより、主輪11aはモータ13aの回転に従って回転し、主輪11bはモータ13bの回転に従って回転する。
(2) Configuration of Moving Unit Next, the configuration of the moving unit 1 will be described in detail with reference to FIG. The moving unit 1 includes two main wheels 11a and 11b and two motors 13a and 13b. In the moving part 1 of this embodiment, each main wheel 11a, 11b can rotate independently. In the moving unit 1 having such a configuration, the attitude (described later) of the autonomous moving body 100 is changed by causing a difference in the rotational speeds of the main wheels 11a and 11b.
The main wheels 11a and 11b are connected to output rotation shafts of the motors 13a and 13b, respectively. Thereby, the main wheel 11a rotates according to the rotation of the motor 13a, and the main wheel 11b rotates according to the rotation of the motor 13b.
 モータ13a、13bは、移動制御装置2に電気的に接続されている。モータ13a、13bはそれぞれ、移動制御装置2のモータドライバ25a、25b(図3)により、独立して制御可能となっている。従って、モータ13a、13bは、それぞれ独立に、任意の回転数及びトルクなどを発生できる。その結果、主輪11a、11bは、それぞれ独立に、回転数及びトルクの制御が可能となっている。
 モータ13a、13bとしては、サーボモータやブラシレスモータなどの電動モータを用いることができる。
The motors 13 a and 13 b are electrically connected to the movement control device 2. The motors 13a and 13b can be independently controlled by motor drivers 25a and 25b (FIG. 3) of the movement control device 2, respectively. Therefore, each of the motors 13a and 13b can independently generate an arbitrary rotational speed and torque. As a result, the main wheels 11a and 11b can independently control the rotation speed and torque.
As the motors 13a and 13b, electric motors such as servo motors and brushless motors can be used.
(3)検出部の構成
 次に、検出部3の構成を図1を用いて説明する。検出部3は、自律移動体100の走行経路(図11A)周辺の障害物Sを検出し、障害物Sの位置情報を出力する。そのため、検出部3は、前方検出器31と、後方検出器33と、を有する。前方検出器31は、自律移動体100の前方にある障害物Sを検出する。後方検出器33は、自律移動体100の後方にある障害物Sを検出する。また、前方検出器31と後方検出器33は、自律移動体100と障害物Sとの間の距離や、自律移動体100から見た障害物Sが存在する方向に関する情報などを含む信号を出力する。これにより、検出部3は、自律移動体100からみた障害物Sの相対的な位置情報を、移動制御装置2に出力できる。
 検出部3の前方検出器31及び後方検出器33としては、例えば、レーザレンジファインダ(Laser Range Finder、LRF)などを用いることができる。
(3) Configuration of Detection Unit Next, the configuration of the detection unit 3 will be described with reference to FIG. The detection unit 3 detects an obstacle S around the travel route (FIG. 11A) of the autonomous mobile body 100 and outputs position information of the obstacle S. Therefore, the detection unit 3 includes a front detector 31 and a rear detector 33. The front detector 31 detects the obstacle S in front of the autonomous mobile body 100. The rear detector 33 detects the obstacle S behind the autonomous mobile body 100. Further, the front detector 31 and the rear detector 33 output signals including information on the distance between the autonomous mobile body 100 and the obstacle S, information on the direction in which the obstacle S is seen from the autonomous mobile body 100, and the like. To do. Thereby, the detection unit 3 can output relative position information of the obstacle S viewed from the autonomous mobile body 100 to the movement control device 2.
As the front detector 31 and the rear detector 33 of the detection unit 3, for example, a laser range finder (LRF) or the like can be used.
(4)操作部の構成
 次に、操作部5の構成を図2を用いて説明する。図2は、操作部5の構成を示した図である。操作部5は、操作ハンドル51a、51bと、設定部53と、表示部55と、インターフェース57と、を備える。
 操作ハンドル51a、51bは、それぞれ、操作部5の筐体59の左右に回動可能に取り付けられている。また、操作ハンドル51a、51bは、インターフェース57と接続されている。これにより、操作ハンドル51a、51bの回動量(操作量)は、インターフェース57において電気信号に変換され、移動制御装置2に入力される。
 このため、自律移動体100の走行モードが教示モードであるとき、ユーザは、操作ハンドル51a、51bの回動量を適切に調節して、自律移動体100を操作できる。
 なお、本実施形態における操作ハンドル51a、51bは、スロットルタイプの操作ハンドルであるがこれに限られない。自律移動体100の用途や操作性などを考慮して、スロットルタイプ以外の操作ハンドル51a、51bを用いることもできる。
(4) Configuration of Operation Unit Next, the configuration of the operation unit 5 will be described with reference to FIG. FIG. 2 is a diagram illustrating a configuration of the operation unit 5. The operation unit 5 includes operation handles 51 a and 51 b, a setting unit 53, a display unit 55, and an interface 57.
The operation handles 51a and 51b are respectively attached to the left and right of the housing 59 of the operation unit 5 so as to be rotatable. The operation handles 51 a and 51 b are connected to the interface 57. As a result, the rotation amounts (operation amounts) of the operation handles 51 a and 51 b are converted into electrical signals at the interface 57 and input to the movement control device 2.
For this reason, when the travel mode of the autonomous mobile body 100 is the teaching mode, the user can operate the autonomous mobile body 100 by appropriately adjusting the rotation amounts of the operation handles 51a and 51b.
The operation handles 51a and 51b in the present embodiment are throttle type operation handles, but are not limited thereto. Considering the application and operability of the autonomous mobile body 100, operation handles 51a and 51b other than the throttle type can be used.
 設定部53は、インターフェース57に接続されている。設定部53は、自律移動体100の各種設定を行うための信号を、インターフェース57を介して、移動制御装置2に入力する。設定部53は、例えば、自律移動体100の各種設定を行うためのスイッチやキーボードなどにより構成できる。又は、設定部53は、タッチパネルとして構成され、表示部55と一体に形成されていてもよい。 The setting unit 53 is connected to the interface 57. The setting unit 53 inputs signals for performing various settings of the autonomous mobile body 100 to the movement control device 2 via the interface 57. The setting unit 53 can be configured by, for example, a switch or a keyboard for performing various settings of the autonomous mobile body 100. Alternatively, the setting unit 53 may be configured as a touch panel and formed integrally with the display unit 55.
 表示部55は、インターフェース57に接続されている。表示部55は、インターフェース57を介して、移動制御装置2から自律移動体100の各種設定や位置情報などの情報を、読み出して表示する。表示部55としては、液晶ディスプレイなどのディスプレイを用いることができる。また、上述のように設定部53と表示部55とを一体に形成する場合は、表示部55(と設定部53)として、タッチパネル機能付きディスプレイを用いることができる。 The display unit 55 is connected to the interface 57. The display unit 55 reads and displays various settings and position information of the autonomous mobile body 100 from the movement control device 2 via the interface 57. A display such as a liquid crystal display can be used as the display unit 55. When the setting unit 53 and the display unit 55 are integrally formed as described above, a display with a touch panel function can be used as the display unit 55 (and the setting unit 53).
 インターフェース57は、移動制御装置2に接続されている。インターフェース57は、操作ハンドル51a、51bの操作量や、設定部53のスイッチやキー入力などを電気信号に変換し、移動制御装置2へ出力する。また、インターフェース57は、ユーザの指示などに応じて、移動制御装置2から自律移動体100に関する情報を読み出して、表示部55に表示する。
 従って、インターフェース57としては、操作ハンドル51a、51bの回動量や設定部53における設定状態を電気信号に変換する信号変換器と、表示部55に情報を表示するための表示部駆動回路と、移動制御装置2と信号を送受信するための通信インターフェースと、などを備えたマイコンボードなどを用いることができる。
The interface 57 is connected to the movement control device 2. The interface 57 converts the operation amounts of the operation handles 51 a and 51 b, the switches and key inputs of the setting unit 53 into electrical signals, and outputs them to the movement control device 2. Further, the interface 57 reads information on the autonomous mobile body 100 from the movement control device 2 in accordance with a user's instruction and the like and displays the information on the display unit 55.
Accordingly, the interface 57 includes a signal converter that converts the amount of rotation of the operation handles 51a and 51b and the setting state in the setting unit 53 into an electric signal, a display unit driving circuit for displaying information on the display unit 55, and movement. A microcomputer board provided with a communication interface for transmitting and receiving signals to and from the control device 2 can be used.
(5)移動制御装置の構成
 I.移動制御装置の全体構成
 次に、移動部1の移動制御装置2の全体構成について図3を用いて説明する。図3は、移動制御装置2の全体構成を示す図である。
 なお、移動制御装置2は、CPU(Central Processing Unit)、ハードディスク装置、ROM(Read Only Memory)、RAM(Random Access Memory)、記憶媒体読み出し装置などの記憶装置、信号変換を行うインターフェースなどを備えたマイコンシステムなどにより、実現できる。また、以下に示す移動制御装置2の各部の機能の一部又は全部は、プログラムとして実現されていてもよい。さらに、当該プログラムは、マイコンボードの記憶装置に記憶されていてもよい。又は、移動制御装置2の各部の機能の一部又は全部は、カスタムICなどにより実現されていてもよい。
 移動制御装置2は、教示部21と、自己位置推定部22と、記憶部23と、走行制御部24と、モータドライブ部25と、障害物情報取得部26と、を有する。
(5) Configuration of movement control device Overall Configuration of Movement Control Device Next, the overall configuration of the movement control device 2 of the moving unit 1 will be described with reference to FIG. FIG. 3 is a diagram illustrating an overall configuration of the movement control device 2.
The movement control device 2 includes a CPU (Central Processing Unit), a hard disk device, a ROM (Read Only Memory), a RAM (Random Access Memory), a storage device such as a storage medium reading device, an interface for signal conversion, and the like. It can be realized by a microcomputer system. In addition, some or all of the functions of the respective units of the movement control device 2 described below may be realized as a program. Further, the program may be stored in a storage device of the microcomputer board. Alternatively, some or all of the functions of the respective units of the movement control device 2 may be realized by a custom IC or the like.
The movement control device 2 includes a teaching unit 21, a self-position estimation unit 22, a storage unit 23, a travel control unit 24, a motor drive unit 25, and an obstacle information acquisition unit 26.
 教示部21は、走行モードが教示モードのときに、ユーザが操作部5を用いて自律移動体100を移動させた際の移動経路を所定の時間間隔にて取得する。そして、教示部21は、取得した移動経路を、自律移動体100が移動する移動平面を表現した座標系(以後、移動座標と呼ぶことにする)上の座標値に変換し、当該座標値と移動経路を取得した時間とを関連付ける。さらに、教示部21は、座標変換された移動経路を記憶部23に記憶する。 The teaching unit 21 acquires a movement route when the user moves the autonomous mobile body 100 using the operation unit 5 at a predetermined time interval when the traveling mode is the teaching mode. Then, the teaching unit 21 converts the acquired movement route into a coordinate value on a coordinate system (hereinafter referred to as a movement coordinate) representing a movement plane on which the autonomous mobile body 100 moves, and the coordinate value and Associate the travel route with the acquired time. Furthermore, the teaching unit 21 stores the coordinate-converted movement route in the storage unit 23.
 ここで、上記のようにして教示部21が生成した移動経路の座標値の集合体を、予定走行経路と呼ぶことにする。そして、座標変換された移動経路のことを、走行目標点と呼ぶことにする。すなわち、予定走行経路は、複数の走行目標点を含む集合体である。そして、走行目標点のそれぞれには、移動経路を取得した時間が関連付けられている。従って、予定走行経路は、時間情報を含む座標値の集合体である。 Here, a set of coordinate values of the movement route generated by the teaching unit 21 as described above will be referred to as a scheduled travel route. Then, the movement route that has undergone coordinate conversion is referred to as a travel target point. That is, the planned travel route is an aggregate including a plurality of travel target points. Each travel target point is associated with a time when the travel route is acquired. Therefore, the planned travel route is a collection of coordinate values including time information.
 また、教示部21は、移動経路上を移動中の自律移動体100の姿勢を、移動経路を取得するときに取得してもよい。ここで、自律移動体100の姿勢とは、自律移動体100の前方が向いた方向のことを言う。これにより、予定走行経路は、自律移動体100の姿勢に関する情報(姿勢情報)をさらに含むことができる。また、予定走行経路に含まれた自律移動体100の姿勢情報に基づいて、走行制御部24は予想走行軌跡T(図11C)を生成してもよい。 Further, the teaching unit 21 may acquire the posture of the autonomous mobile body 100 that is moving on the moving route when acquiring the moving route. Here, the attitude | position of the autonomous mobile body 100 means the direction where the front of the autonomous mobile body 100 faced. Thereby, the scheduled travel route can further include information (posture information) regarding the posture of the autonomous mobile body 100. Further, based on the posture information of the autonomous mobile body 100 included in the planned travel route, the travel control unit 24 may generate the predicted travel locus T (FIG. 11C).
 自己位置推定部22は、移動平面上における自律移動体100の位置を推定する。自己位置推定部22は、例えば、SLAM(Simultaneous Localization And Mapping)法などを用いて、自律移動体100の移動平面上における位置を推定できる。
 自己位置推定部22は、検出部3において取得された自律移動体100からみた障害物Sの相対的な位置情報を、移動座標上の座標値へと変換する。そして、検出部3の前方検出器31及び後方検出器33が検出した障害物Sの位置情報に基づいて、自律移動体100の周囲の移動平面の地図情報(ローカルマップと呼ぶことにする)を作成する。また、自己位置推定部22は、移動平面の地図情報(環境地図と呼ぶことにする)を記憶部23に記憶している。そして、自己位置推定部22は、環境地図とローカルマップとを比較して、自律移動体100が移動平面のどの位置に存在するかを推定する。
 さらに、自己位置推定部22は、モータ13a、13bの回転数に基づいても、自律移動体100の位置を推定できるようになっていてもよい。
The self-position estimating unit 22 estimates the position of the autonomous mobile body 100 on the moving plane. The self-position estimation unit 22 can estimate the position of the autonomous mobile body 100 on the movement plane using, for example, a SLAM (Simultaneous Localization And Mapping) method.
The self-position estimation unit 22 converts the relative position information of the obstacle S as viewed from the autonomous mobile body 100 acquired by the detection unit 3 into coordinate values on the movement coordinates. Then, based on the position information of the obstacle S detected by the front detector 31 and the rear detector 33 of the detection unit 3, map information (referred to as a local map) of the moving plane around the autonomous mobile body 100 is obtained. create. In addition, the self-position estimation unit 22 stores map information (referred to as an environment map) on the moving plane in the storage unit 23. Then, the self-position estimation unit 22 compares the environment map and the local map to estimate at which position on the moving plane the autonomous mobile body 100 exists.
Furthermore, the self-position estimation unit 22 may be configured to estimate the position of the autonomous mobile body 100 even based on the rotation speeds of the motors 13a and 13b.
 記憶部23は、移動制御装置2がマイコンシステムにより実現されている場合は、マイコンシステムの記憶装置(あるいは、記憶装置の記憶領域の一部)に対応するものである。記憶部23は、自律移動体100の各種設定、予定走行経路、障害物Sの位置情報、走行経路情報T(図11C)、自律移動体領域A(図5)などの情報を記憶する。また、移動制御装置2の各部の機能の一部又は全部がソフトウェアにより実現されているとき、記憶部23は、当該ソフトウェアを記憶してもよい。 When the movement control device 2 is realized by a microcomputer system, the storage unit 23 corresponds to a storage device of the microcomputer system (or a part of a storage area of the storage device). Storage unit 23, various settings, planned travel route of the autonomous mobile unit 100, the position information of the obstacle S, the travel route information T n (FIG. 11C), storage of information such as the autonomous moving body area A (Fig. 5). Further, when some or all of the functions of the respective units of the movement control device 2 are realized by software, the storage unit 23 may store the software.
 走行制御部24は、モータドライブ部25に接続されている。走行制御部24は、走行モードが教示モードのとき、操作部5から入力される操作量に基づいて移動部1のモータ13a及び13bを制御するよう、モータドライブ部25に指令する。
 一方、走行モードが自律走行モードのときは、走行制御部24は、移動部1を制御する移動指令を作成する。そして、走行制御部24は、作成された移動指令に基づいて、モータドライブ部25を制御する。
 なお、走行制御部24の詳細な構成及び動作については、後述する。
The travel control unit 24 is connected to the motor drive unit 25. The traveling control unit 24 instructs the motor drive unit 25 to control the motors 13 a and 13 b of the moving unit 1 based on the operation amount input from the operation unit 5 when the traveling mode is the teaching mode.
On the other hand, when the traveling mode is the autonomous traveling mode, the traveling control unit 24 creates a movement command for controlling the moving unit 1. Then, the travel control unit 24 controls the motor drive unit 25 based on the created movement command.
The detailed configuration and operation of the travel control unit 24 will be described later.
 モータドライブ部25は、走行制御部24に接続されている。これにより、モータドライブ部25は、走行制御部24により作成された移動指令に基づいて、モータ13a、13bを制御できる。
 本実施形態のモータドライブ部25は、2つのモータドライバ25a、25bを有する。モータドライバ25a、25bは、それぞれ、モータ13a、13bに接続されている。これにより、モータドライバ25a、25bは、走行制御部24により作成された移動指令に基づき、モータ13a、13bを、それぞれ独立に制御する。
 モータドライバ25a、25bとしては、モータ13a、13bの種類に応じて、適切なモータ駆動装置を用いることができる。
The motor drive unit 25 is connected to the travel control unit 24. Accordingly, the motor drive unit 25 can control the motors 13a and 13b based on the movement command created by the travel control unit 24.
The motor drive unit 25 of the present embodiment includes two motor drivers 25a and 25b. The motor drivers 25a and 25b are connected to the motors 13a and 13b, respectively. Thus, the motor drivers 25a and 25b control the motors 13a and 13b independently based on the movement command created by the travel control unit 24.
As the motor drivers 25a and 25b, appropriate motor driving devices can be used according to the types of the motors 13a and 13b.
 障害物情報取得部26は、検出部3の前方検出器31と後方検出器33とに接続されている。障害物情報取得部26は、前方検出器31と後方検出器33とから出力される信号に基づき、障害物Sの位置情報を取得する。そして、障害物情報取得部26は、必要に応じて、障害物Sの位置情報を記憶部23に記憶する。このとき、障害物情報取得部26は、自己位置推定部22に障害物Sの位置情報を出力してもよい。そして、自己位置推定部22が、障害物Sの位置情報を移動座標上の座標値に変換して、障害物Sの位置情報を記憶部23に記憶してもよい。 The obstacle information acquisition unit 26 is connected to the front detector 31 and the rear detector 33 of the detection unit 3. The obstacle information acquisition unit 26 acquires position information of the obstacle S based on signals output from the front detector 31 and the rear detector 33. And the obstruction information acquisition part 26 memorize | stores the positional information on the obstruction S in the memory | storage part 23 as needed. At this time, the obstacle information acquisition unit 26 may output the position information of the obstacle S to the self-position estimation unit 22. Then, the self-position estimation unit 22 may convert the position information of the obstacle S into a coordinate value on the moving coordinates, and store the position information of the obstacle S in the storage unit 23.
 II.走行制御部の構成
 次に、走行制御部24の構成について図4を用いて説明する。図4は、走行制御部24の構成を示す図である。走行制御部24は、演算部241と、判断部243と、移動制御部245と、を有する。
 演算部241は、自律移動体100の現在位置と、走行経路情報Tと、自律移動体領域Aとに基づいて、予想走行軌跡Tを演算する。ここで、予想走行軌跡Tとは、自律移動体100が自律走行モードにおいて走行するときに、自律移動体領域Aが描くと予想される軌跡のことを言う。
II. Configuration of Travel Control Unit Next, the configuration of the travel control unit 24 will be described with reference to FIG. FIG. 4 is a diagram illustrating a configuration of the travel control unit 24. The travel control unit 24 includes a calculation unit 241, a determination unit 243, and a movement control unit 245.
The calculation unit 241 calculates the predicted travel locus T based on the current position of the autonomous mobile body 100, the travel route information Tn, and the autonomous mobile body area A. Here, the predicted travel trajectory T refers to a trajectory that is expected to be drawn by the autonomous mobile body region A when the autonomous mobile body 100 travels in the autonomous travel mode.
 また、走行経路情報Tとは、自律移動体100が、現在位置から所定の距離を走行した位置である将来位置までの走行経路を表す情報である。本実施形態においては、走行経路情報Tは、自律移動体100に教示された予定走行経路に基づいて生成される走行経路を含んでいる。従って、演算部241は、予定走行経路から走行経路を生成する。 Further, the travel route information T n, the autonomous moving body 100 is information indicating a travel route from the current position to a future position is a position where the traveling a predetermined distance. In the present embodiment, the travel route information T n includes a travel route that is generated based on the planned travel route taught to the autonomous mobile body 100. Accordingly, the calculation unit 241 generates a travel route from the planned travel route.
 さらに、自律移動体領域Aとは、移動平面において定義される平面状の領域である。また、自律移動体領域Aは、自律移動体100を内包した所定の形状を有する。従って、自律移動体領域Aは、自律移動体100の最大平面断面を内包するように定義される。本実施形態においては、自律移動体領域Aは、図5に示すように、自律移動体100の最大平面断面を内包する、短径の長さがW、長径の長さがLの楕円形である。図5に示す楕円形の自律移動体領域Aにおいて、自律移動体領域Aの長径は、自律移動体100の前後方向に平行である。このように、自律移動体100の前後方向に平行である自律移動体領域Aの軸を、自律移動体100の基準軸ということにする。
 自律移動体領域Aを楕円により定義することにより、より少ない演算により、障害物Sと自律移動体100とが互いに干渉するかどうかを判断できる。
 なお、上記のように、自律移動体領域Aは自律移動体100の形状に基づいて定義される。そのため、本実施形態においては、自律移動体領域Aは予め定義されて、移動制御装置2の記憶部23に記憶されている。
Furthermore, the autonomous mobile body area A is a planar area defined in the movement plane. Further, the autonomous mobile body region A has a predetermined shape including the autonomous mobile body 100. Therefore, the autonomous mobile body region A is defined so as to include the maximum planar cross section of the autonomous mobile body 100. In this embodiment, as shown in FIG. 5, the autonomous mobile body region A is an ellipse that includes the maximum planar cross section of the autonomous mobile body 100 and has a minor axis length of W and a major axis length of L. is there. In the elliptical autonomous mobile body region A shown in FIG. 5, the major axis of the autonomous mobile body region A is parallel to the front-rear direction of the autonomous mobile body 100. As described above, the axis of the autonomous mobile body region A that is parallel to the front-rear direction of the autonomous mobile body 100 is referred to as a reference axis of the autonomous mobile body 100.
By defining the autonomous mobile body region A by an ellipse, it can be determined whether or not the obstacle S and the autonomous mobile body 100 interfere with each other with fewer operations.
Note that, as described above, the autonomous mobile body region A is defined based on the shape of the autonomous mobile body 100. Therefore, in this embodiment, the autonomous mobile body area A is defined in advance and stored in the storage unit 23 of the movement control device 2.
 本実施形態における自律移動体領域Aは、図5に示したような楕円のように、異方性をしている。この場合、走行経路情報Tは、走行経路上における自律移動体100の姿勢情報をさらに含んでいる。ここで、自律移動体100の姿勢情報とは、移動平面上において、自律移動体100の前方が向いている方向に対応する情報を言う。本実施形態においては、自律移動体100の姿勢情報は、図6に示すように、自律移動体領域Aを自律移動体領域の中心Vを通る移動座標平面の法線軸まわりに回転したときに、移動座標の水平軸(x軸)と自律移動体領域の基準軸(本実施形態の場合は、楕円の長軸)とがなす角度θで定義される。なお、自律移動体領域Aの中心Vを通る移動座標平面の法線軸まわりに回転した自律移動体領域Aを、回転自律移動体領域と呼ぶことにする。
 このように、自律移動体領域Aに異方性を持たせ、走行経路情報Tに自律移動体100の姿勢情報を含めることにより、演算部241は、自律移動体100の形状や姿勢を考慮してより正確な予想走行軌跡を作成できる。
The autonomous mobile body area A in the present embodiment is anisotropic like an ellipse as shown in FIG. In this case, the travel route information T n are further includes a posture information of the autonomous moving body 100 on the travel route. Here, the posture information of the autonomous mobile body 100 refers to information corresponding to the direction in which the front of the autonomous mobile body 100 is facing on the moving plane. In the present embodiment, the attitude information of the autonomous mobile body 100 is obtained by rotating the autonomous mobile body area A around the normal axis of the movement coordinate plane passing through the center V of the autonomous mobile body area as shown in FIG. It is defined by an angle θ formed by the horizontal axis (x axis) of the moving coordinates and the reference axis (in the case of this embodiment, the long axis of the ellipse) of the autonomous mobile body region. In addition, the autonomous mobile body area A rotated around the normal axis of the movement coordinate plane passing through the center V of the autonomous mobile body area A will be referred to as a rotational autonomous mobile body area.
As described above, by giving anisotropy to the autonomous mobile body region A and including the posture information of the autonomous mobile body 100 in the travel route information T n , the calculation unit 241 considers the shape and posture of the autonomous mobile body 100. Thus, it is possible to create a more accurate predicted traveling locus.
 なお、演算部241の構成及び演算部241において行われる具体的な動作の詳細については、後述する。 Note that details of the configuration of the calculation unit 241 and specific operations performed in the calculation unit 241 will be described later.
 判断部243は、検出部3が検出した障害物Sと予想走行軌跡Tとが互いに干渉するか否かを判断する。判断部243においては、予想走行軌跡Tの領域中に障害物Sが含まれるかどうか、又は、予想走行軌跡Tの領域と障害物Sとが重複する箇所があるかどうかを判断することにより、障害物Sと予想走行軌跡Tとが互いに干渉するかどうかを判定する。障害物Sと予想走行軌跡Tとが互いに干渉するかどうかの具体的な判定方法は、後述する。 The determination unit 243 determines whether the obstacle S detected by the detection unit 3 and the expected traveling locus T interfere with each other. In the determination unit 243, by determining whether or not the obstacle S is included in the region of the predicted traveling locus T, or whether there is a portion where the region of the predicted traveling locus T and the obstacle S overlap, It is determined whether the obstacle S and the predicted traveling trajectory T interfere with each other. A specific determination method for determining whether or not the obstacle S and the predicted traveling locus T interfere with each other will be described later.
 移動制御部245は、移動部1を制御する移動指令を作成する。移動指令とは、モータドライブ部25のモータドライバ25a、25bに対する制御命令を含む指令のことである。従って、移動指令は、例えば、自律移動体100の移動開始を指示する命令、自律移動体100が移動を開始してからの時間、当該時間における自律移動体100の向き(移動方向)、当該時間における移動距離、などの情報を含むものである。また、移動指令は、モータ13a、13bの回転数の制御情報を含んでいてもよい。 The movement control unit 245 creates a movement command for controlling the moving unit 1. The movement command is a command including a control command for the motor drivers 25a and 25b of the motor drive unit 25. Accordingly, the movement command includes, for example, a command for instructing the movement start of the autonomous mobile body 100, a time after the autonomous mobile body 100 starts moving, a direction (movement direction) of the autonomous mobile body 100 at the time, and the time It includes information such as the distance traveled. Further, the movement command may include control information on the rotational speeds of the motors 13a and 13b.
 移動制御部245においては、判断部243において障害物Sと予想走行軌跡Tとが干渉しないと判断された場合、演算部241により生成された予想走行軌跡Tを再現するような移動指令を作成する。これにより、自律移動体100は、障害物Sを回避するための無駄な動作をすることなく、走行経路を忠実に走行できる。
 一方、判断部243において障害物Sと予想走行軌跡とが干渉すると判断された場合、移動制御部245は、障害物Sと自律移動体100との衝突を避ける障害物衝突回避動作を行うための移動指令を作成する。
In the movement control unit 245, when the determination unit 243 determines that the obstacle S and the predicted traveling locus T do not interfere with each other, the movement control unit 245 creates a movement command that reproduces the predicted traveling locus T generated by the calculation unit 241. . Thereby, the autonomous mobile body 100 can travel faithfully on the travel route without performing a useless operation for avoiding the obstacle S.
On the other hand, when the determination unit 243 determines that the obstacle S and the predicted travel path interfere, the movement control unit 245 performs an obstacle collision avoidance operation for avoiding a collision between the obstacle S and the autonomous mobile body 100. Create a movement command.
 障害物衝突回避動作を行うための移動指令としては、例えば、障害物Sと予想走行軌跡Tが干渉する位置が自律移動体100の現在位置から近い距離にあれば、自律移動体100を停止し、自律移動体100の現在位置から遠い距離にあれば、自律移動体100を減速するような移動指令がある。
 このような移動指令により、自律移動体100は、障害物Sと自律移動体100とが衝突しない範囲にて、できる限り走行経路を走行できる。これにより、自律移動体100は、障害物Sに衝突することなく、より忠実に走行経路を走行できる。
As a movement command for performing the obstacle collision avoidance operation, for example, if the position where the obstacle S and the predicted traveling locus T interfere is at a distance close to the current position of the autonomous moving body 100, the autonomous moving body 100 is stopped. If there is a distance far from the current position of the autonomous mobile body 100, there is a movement command for decelerating the autonomous mobile body 100.
By such a movement command, the autonomous mobile body 100 can travel on the travel route as much as possible within a range in which the obstacle S and the autonomous mobile body 100 do not collide. Thereby, the autonomous mobile body 100 can travel the travel route more faithfully without colliding with the obstacle S.
 または、障害物衝突回避動作を行うための移動指令は、自律移動体100を停止させるような移動指令であってもよい。このような移動指令を用いることにより、自律移動体100は、障害物に衝突することがなくなる。 Alternatively, the movement command for performing the obstacle collision avoidance operation may be a movement command for stopping the autonomous mobile body 100. By using such a movement command, the autonomous mobile body 100 does not collide with an obstacle.
 その他、移動制御部245は、自律移動体100の用途などに応じて、任意の移動指令を作成できる。 In addition, the movement control unit 245 can create an arbitrary movement command according to the use of the autonomous mobile body 100 and the like.
 III.演算部の構成
 次に、演算部241の構成の詳細について図7を用いて説明する。図7は演算部241の構成を示す図である。演算部241は、ベース点生成部2411と、回転自律移動体領域生成部2413と、予想走行軌跡生成部2415と、を有する。
 ベース点生成部2411は、走行経路情報の位置情報として、走行経路上に複数のベース点Bを生成する。ベース点Bは走行経路上に複数個配置されるものであるので、ベース点は、自律移動体100が現在位置から将来位置まで移動するときの、通過目標点であると言える。
III. Configuration of Calculation Unit Next, details of the configuration of the calculation unit 241 will be described with reference to FIG. FIG. 7 is a diagram illustrating a configuration of the calculation unit 241. The calculation unit 241 includes a base point generation unit 2411, a rotating autonomous mobile body region generation unit 2413, and an expected travel locus generation unit 2415.
The base point generation unit 2411 generates a plurality of base points B on the travel route as position information of the travel route information. Since a plurality of base points B are arranged on the travel route, it can be said that the base points are passing target points when the autonomous mobile body 100 moves from the current position to the future position.
 ベース点Bは、走行経路を同一の所定の間隔に分割するように配置してもよい。又は、ベース点を配置した結果、2つのベース点間の間隔が異なっていてもよい。ベース点をどのように配置するかは、自律移動体100の用途などに応じて、任意に決定できる。 The base point B may be arranged so as to divide the travel route at the same predetermined interval. Alternatively, as a result of arranging the base points, the interval between the two base points may be different. How to arrange the base points can be arbitrarily determined according to the use of the autonomous mobile body 100 or the like.
 また、配置したベース点Bには、時間に関する情報を関連付ける。本実施形態においては、配置したベース点Bに、自律移動体100が現在位置から移動を開始してからの経過時間に関する情報を関連付ける。当該経過時間としては、移動制御装置2が自律移動体100を制御する制御周期の倍数を用いる。具体的には、制御周期をTとした場合、自律移動体100の現在位置の時刻を0として、現在位置から近いベース点Bから順に、T、2T、3T・・・nT(n:整数)をベース点Bに時間情報を関連付ける。
 配置したベース点Bに時間に関する情報を関連付けることにより、走行制御部24の移動制御部245は、より単純な演算によりに移動指令を作成できる。また、走行経路情報を離散的な情報(配列)として表現できるので、走行経路情報の構造を単純化できる。
In addition, time information is associated with the arranged base point B. In the present embodiment, information on the elapsed time since the autonomous mobile body 100 started moving from the current position is associated with the arranged base point B. As the elapsed time, a multiple of a control cycle in which the movement control device 2 controls the autonomous mobile body 100 is used. Specifically, if the control period was T c, 0 the time of the current position of the autonomous moving body 100, in order from the base point B closer to the current position, T c, 2T c, 3T c ··· nT c Associate time information with base point B (n: integer).
By associating time-related information with the arranged base point B, the movement control unit 245 of the travel control unit 24 can create a movement command by a simpler calculation. In addition, since the travel route information can be expressed as discrete information (array), the structure of the travel route information can be simplified.
 なお、ベース点生成部2411の構成及びベース点Bを走行経路上に配置する具体的な方法は、後述する。 Note that the configuration of the base point generation unit 2411 and a specific method for arranging the base point B on the travel route will be described later.
 回転自律移動体領域生成部2413は、走行経路情報Tの姿勢情報として、自律移動体領域を、移動平面(移動座標平面)の法線軸周りに回転して回転自律移動体領域を生成する。具体的には、回転自律移動体領域生成部2413は、ベース点生成部2411において生成されたそれぞれのベース点Bにおける自律移動体100の姿勢情報θを生成する。
 本実施形態においては、ベース点Bにおける自律移動体100の姿勢情報θは、自己位置推定部22が記憶している環境地図とローカルマップとをマッチングさせることにより得られる。つまり、環境地図とローカルマップが一致(マッチング)するために、ローカルマップ、又は、環境地図を回転した回転角から姿勢情報θが得られる。しかし、これに限られず、隣接した2つの第1ベース点と第2ベース点(自律移動体100は、第1ベース点から第2ベース点へと移動するものとする)を結ぶ線と、移動座標のx軸(水平軸)とがなす角度を、第1ベース点における自律移動体100の姿勢情報としてもよい。これにより、より単純な演算で回転自律移動体領域を生成できる。
Rotating the autonomous moving body area generation unit 2413, as the posture information of the travel route information T n, the autonomous moving body region, generates a rotating autonomous moving body region by rotation about a normal axis of the moving plane (moving coordinate plane). Specifically, the rotational autonomous mobile body region generation unit 2413 generates the posture information θ of the autonomous mobile body 100 at each base point B generated by the base point generation unit 2411.
In the present embodiment, the posture information θ of the autonomous mobile body 100 at the base point B is obtained by matching the environment map stored in the self-position estimation unit 22 with the local map. That is, in order to match (match) the environmental map and the local map, the posture information θ is obtained from the rotation angle obtained by rotating the local map or the environmental map. However, the present invention is not limited to this, and a line connecting two adjacent first base points and a second base point (the autonomous mobile body 100 moves from the first base point to the second base point) and a movement An angle formed by the coordinate x-axis (horizontal axis) may be used as posture information of the autonomous mobile body 100 at the first base point. Thereby, a rotation autonomous mobile body area | region can be produced | generated by simpler calculation.
 予想走行軌跡生成部2415は、ベース点生成部2411にて生成されたベース点Bのそれぞれに、回転自律移動体領域生成部2413にて生成された回転自律移動体領域を配置して、予想走行軌跡Tを生成する。具体的には、予想走行軌跡生成部2415は、ベース点生成部2411において生成されたベース点Bに、回転自律移動体領域生成部2413において生成された自律移動体100の姿勢情報θを関連付ける。これにより、より単純な演算により、演算部241は予想走行軌跡Tを作成できる。 The predicted travel locus generation unit 2415 arranges the rotation autonomous mobile body region generated by the rotation autonomous mobile body region generation unit 2413 at each of the base points B generated by the base point generation unit 2411 to predict the predicted travel A trajectory T is generated. Specifically, the predicted travel locus generation unit 2415 associates the posture information θ of the autonomous mobile body 100 generated by the rotating autonomous mobile body region generation unit 2413 with the base point B generated by the base point generation unit 2411. Thereby, the calculating part 241 can create the predicted traveling locus T by a simpler calculation.
 IV.ベース点生成部の構成
 次に、ベース点生成部2411の構成について図8を用いて説明する。図8はベース点生成部2411の構成を示す図である。ベース点生成部2411は、目標点抽出部2411-1と、目標点選択部2411-3と、算出部2411-5と、ベース点配置部2411-7と、を有する。
 目標点抽出部2411-1は、走行目標点のうち、現在位置よりも予定走行経路において前方に存在する所定の数の走行目標点(前方走行目標点という)を抽出する。目標点選択部2411-3は、自律移動体100の現在位置を中心とする所定の半径を有する円C1(図13B)内に含まる前方走行目標点のうち、現在位置から最短の位置にある走行目標点(第1走行目標点P1(図13B)という)と、円C1の外側に存在する前方走行目標点のうち、現在位置から最短の距離にある走行目標点(第2走行目標点P2(図13B)という)を抽出する。
IV. Configuration of Base Point Generation Unit Next, the configuration of the base point generation unit 2411 will be described with reference to FIG. FIG. 8 is a diagram illustrating a configuration of the base point generation unit 2411. The base point generation unit 2411 includes a target point extraction unit 2411-1, a target point selection unit 2411-3, a calculation unit 2411-5, and a base point arrangement unit 2411-7.
The target point extraction unit 2411-1 extracts a predetermined number of travel target points (referred to as front travel target points) existing ahead of the current travel position in the planned travel route from the travel target points. The target point selection unit 2411-3 is at the shortest position from the current position among the forward travel target points included in the circle C1 (FIG. 13B) having a predetermined radius centered on the current position of the autonomous mobile body 100. Of the travel target point (referred to as the first travel target point P1 (FIG. 13B)) and the forward travel target point existing outside the circle C1, the travel target point (second travel target point P2) that is the shortest distance from the current position. (Referred to as FIG. 13B).
 算出部2411-5は、第1走行目標点P1と第2走行目標点P2とを結ぶ線分P1P2(図13C)と、円C1の円周との交点である仮想走行目標点VP(図13C)を算出する。ベース点配置部2411-7は、現在位置と、仮想走行目標点VPと、第2走行目標点P2と、円の外側に存在する他の前方走行目標点とを、現在位置に近い順に結んで走行経路を生成する。そして、生成された走行経路上に、所定の間隔にてベース点Bを配置する。
 このような構成を有したベース点生成部2411により、自律移動体100が予定走行経路から多少ずれた位置にあっても、自律移動体100は、この位置のずれを補正して、予定走行経路をより忠実に走行できる。
 なお、このような構成を有したベース点生成部2411における、具体的なベース点Bの生成方法については、後述する。
The calculator 2411-5 calculates a virtual travel target point VP (FIG. 13C) that is an intersection of the line segment P1P2 (FIG. 13C) connecting the first travel target point P1 and the second travel target point P2 and the circumference of the circle C1. ) Is calculated. The base point arrangement unit 2411-7 connects the current position, the virtual travel target point VP, the second travel target point P2, and the other forward travel target points existing outside the circle in the order from the current position. Generate a travel route. Then, base points B are arranged at predetermined intervals on the generated travel route.
Even if the autonomous mobile body 100 is at a position slightly deviated from the planned travel path by the base point generation unit 2411 having such a configuration, the autonomous mobile body 100 corrects this positional shift, and the planned travel path Can travel more faithfully.
A specific method for generating the base point B in the base point generating unit 2411 having such a configuration will be described later.
(6)自律移動体の動作
 I.自律走行動作
 次に、自律移動体100の自律走行動作について図9を用いて説明する。図9は、自律移動体100の自律走行動作を示すフローチャートである。
 自律移動体100が自律走行モードによる自律走行を開始すると、まず、検出部3が、障害物Sを検出する(ステップS1)。具体的には、検出部3の前方検出器31及び後方検出器33から出力される信号から、障害物情報取得部26が障害物Sの位置情報を取得する。そして、取得した障害物Sの位置情報を記憶部23に記憶する。
 このとき、障害物Sの検出と同時に、障害物Sの位置情報に基づいて、自己位置推定部22が、移動座標上における自律移動体100の現在位置(自律移動体100が自律走行を開始する位置の情報に対応)を取得する。そして、自律移動体100の現在位置を記憶部23に記憶する。
(6) Operation of autonomous mobile body Autonomous Traveling Operation Next, the autonomous traveling operation of the autonomous mobile body 100 will be described with reference to FIG. FIG. 9 is a flowchart showing the autonomous traveling operation of the autonomous mobile body 100.
When the autonomous mobile body 100 starts autonomous traveling in the autonomous traveling mode, first, the detection unit 3 detects the obstacle S (step S1). Specifically, the obstacle information acquisition unit 26 acquires the position information of the obstacle S from the signals output from the front detector 31 and the rear detector 33 of the detection unit 3. Then, the acquired position information of the obstacle S is stored in the storage unit 23.
At this time, simultaneously with the detection of the obstacle S, based on the position information of the obstacle S, the self-position estimation unit 22 determines the current position of the autonomous mobile body 100 on the movement coordinates (the autonomous mobile body 100 starts autonomous traveling). Corresponding to position information). Then, the current position of the autonomous mobile body 100 is stored in the storage unit 23.
 次に、演算部241が、自律移動体100の現在位置と、走行経路情報Tと、自律移動体領域Aとに基づいて、予想走行軌跡Tを演算する(ステップS2)。ステップS2における、具体的な予想走行軌跡Tの演算方法については、後述する。 Next, the calculation unit 241 calculates the predicted travel locus T based on the current position of the autonomous mobile body 100, the travel route information Tn, and the autonomous mobile body area A (step S2). A specific method for calculating the predicted travel trajectory T in step S2 will be described later.
 予想走行軌跡Tを生成(演算)した後、判断部243が、生成した予想走行軌跡Tと障害物Sとが互いに干渉するか否かを判断する(ステップS3)。予想走行軌跡Tと障害物Sとが干渉するかどうかの具体的な判定方法については、後述する。
 そして、障害物Sと予想走行軌跡Tとが互いに干渉しないと判断された場合(ステップS3にて「No」の場合)、移動制御装置2が、予想走行軌跡Tを再現するように移動部1を制御する(ステップS4)。具体的には、移動制御部245が、予想走行軌跡Tを再現するような移動指令を作成する。そして、モータドライブ部25が、移動制御部245において生成された移動指令に基づき、モータ13a、13bを制御する。
 これにより、自律移動体100は、障害物Sを回避するための無駄な動作をすることなく、予想走行軌跡T(走行経路)を忠実に走行できる。
After generating (calculating) the predicted traveling locus T, the determination unit 243 determines whether or not the generated predicted traveling locus T and the obstacle S interfere with each other (step S3). A specific method for determining whether or not the predicted traveling locus T and the obstacle S interfere with each other will be described later.
When it is determined that the obstacle S and the predicted travel locus T do not interfere with each other (“No” in step S3), the movement control device 2 causes the moving unit 1 to reproduce the predicted travel locus T. Is controlled (step S4). Specifically, the movement control unit 245 creates a movement command that reproduces the predicted traveling locus T. Then, the motor drive unit 25 controls the motors 13a and 13b based on the movement command generated in the movement control unit 245.
Thereby, the autonomous mobile body 100 can travel faithfully on the predicted travel locus T (travel route) without performing a useless operation for avoiding the obstacle S.
 一方、判断部243において、障害物Sと予想走行軌跡Tとが互いに干渉すると判断された場合(ステップS3にて「Yes」の場合)、移動制御装置2は、自律移動体100に対して、障害物Sとの衝突を回避するような動作(障害物衝突回避動作)を実行するように指示する(ステップS5)。 On the other hand, when the determination unit 243 determines that the obstacle S and the predicted traveling locus T interfere with each other (in the case of “Yes” in step S3), the movement control device 2 An instruction is given to execute an operation that avoids a collision with the obstacle S (obstacle collision avoidance operation) (step S5).
 この場合、本実施形態の移動制御装置2は、障害物Sと予想走行軌跡Tが干渉する位置が自律移動体100の現在位置から近い距離にあれば、移動を停止し、自律移動体100の現在位置から遠い距離にあれば、減速して走行するように指示する。具体的には、移動制御部245は、障害物Sと衝突しない位置まで、自律移動体100を通常よりも低速に走行させる移動指令を作成する。
 このような移動指令により、自律移動体100は、障害物Sと自律移動体100とが衝突しない範囲にて、できる限り走行経路を走行できる。これにより、自律移動体100は、障害物Sに衝突することなく、より忠実に走行経路を走行できる。
 なお、この場合、ステップS5又はステップS3において、判断部243は、自律移動体領域Aが予想走行軌跡Tのどの位置において障害物Sと干渉するかについての情報を取得する。これにより、走行制御部24は、自律移動体100がどの位置まで障害物Sと衝突することなく移動できるかを把握できる。
In this case, the movement control device 2 according to the present embodiment stops the movement if the position where the obstacle S and the predicted travel trajectory T interfere with each other is close to the current position of the autonomous mobile body 100, and If the vehicle is far from the current position, the vehicle is instructed to decelerate. Specifically, the movement control unit 245 creates a movement command for causing the autonomous mobile body 100 to travel at a lower speed than usual until it does not collide with the obstacle S.
By such a movement command, the autonomous mobile body 100 can travel on the travel route as much as possible within a range in which the obstacle S and the autonomous mobile body 100 do not collide. Thereby, the autonomous mobile body 100 can travel the travel route more faithfully without colliding with the obstacle S.
In this case, in step S5 or step S3, the determination unit 243 acquires information on which position of the predicted traveling locus T the autonomous mobile body region A interferes with the obstacle S. Thereby, the traveling control part 24 can grasp | ascertain to which position the autonomous mobile body 100 can move, without colliding with the obstruction S. FIG.
 または、障害物Sと予想走行軌跡Tとが互いに干渉すると判断された場合、移動制御部245は、自律移動体100に対して移動を停止するよう指示する移動指令を作成してもよい。このような移動指令を用いることにより、自律移動体100は、障害物Sに衝突することがなくなる。
 以上に述べたように、自律移動体100の移動制御装置2は、図9のステップS3において、自律移動体100と障害物とが衝突するかどうかを、予想走行軌跡と障害物とが互いに干渉するか否かにより判断することにより、その障害物に対して衝突回避行動を取るべきかどうかを判断している。これにより、自律移動体100が障害物に対して回避行動を取るかどうかを、より高い確度で判断できる。その結果、自律移動体100は、無駄な障害物の回避行動を行うことなく、ユーザにより教示された予定走行経路を忠実に走行できる。
Alternatively, when it is determined that the obstacle S and the predicted travel trajectory T interfere with each other, the movement control unit 245 may create a movement command that instructs the autonomous mobile body 100 to stop moving. By using such a movement command, the autonomous mobile body 100 does not collide with the obstacle S.
As described above, the movement control device 2 of the autonomous mobile body 100 determines whether or not the predicted traveling locus and the obstacle interfere with each other in step S3 in FIG. By judging whether or not to perform the collision avoidance action on the obstacle, it is judged. Thereby, it can be judged with higher accuracy whether the autonomous mobile body 100 takes an avoidance action against an obstacle. As a result, the autonomous mobile body 100 can travel faithfully on the planned travel route taught by the user without performing useless obstacle avoidance behavior.
 II.予想走行軌跡生成方法
 II-1.予想走行軌跡生成方法
 次に、自律走行動作を示すフローチャート(図9)のステップS2における、予想走行軌跡Tの生成方法について図10~図11Cを用いて説明する。図10は、予想走行軌跡Tの生成方法を示すフローチャートである。
 予想走行軌跡Tの生成を開始すると、演算部241は、まず、自律移動体100の現在位置、予定走行経路、及び自律移動体領域Aを記憶部23から読み出す(ステップS21~S23)。
II. Predictive travel locus generation method II-1. Next, a method for generating the predicted travel locus T in step S2 of the flowchart (FIG. 9) showing the autonomous travel operation will be described with reference to FIGS. 10 to 11C. FIG. 10 is a flowchart showing a method for generating the predicted traveling locus T.
When the generation of the predicted travel locus T is started, the calculation unit 241 first reads the current position of the autonomous mobile body 100, the planned travel route, and the autonomous mobile body area A from the storage unit 23 (steps S21 to S23).
 次に、演算部241のベース点生成部2411が、走行経路上に複数のベース点Bを生成する(ステップS24)。ベース点生成部2411における、具体的な走行経路の作成方法及びベース点Bの生成方法は、後述する。
 ステップS24において生成される走行経路及びベース点を模式的に示した図を図11Aに示す。図11Aにおいて、太い実線にて示されるのが走行経路である。太い実線にて示された走行経路上に配置された8つの丸点がベース点B1、、・・・Bである。本実施形態においては、一般的なベース点Bは、移動座標上の座標値(x,y)(n:整数)として表現される。
 ここで、ベース点Bに、自律移動体100が移動を開始してからの経過時間としてtを関連付ける。そして、経過時間tを関連付けたベース点Bを、走行経路情報T(n=1~8)とする。従って、走行経路情報Tは、この時点において、時間の情報を含めて、(x,y,t)と3次元的な値として表現できる。
Next, the base point generation unit 2411 of the calculation unit 241 generates a plurality of base points B on the travel route (step S24). A specific travel route creation method and base point B generation method in the base point generation unit 2411 will be described later.
FIG. 11A schematically shows the travel route and base points generated in step S24. In FIG. 11A, the travel route is indicated by a thick solid line. Eight circle points arranged on the travel route indicated by the thick solid line are base points B 1, B 2 ,... B 8 . In the present embodiment, a general base point B n is expressed as coordinate values (x n , y n ) (n: integer) on moving coordinates.
Here, t n is associated with the base point B n as the elapsed time after the autonomous mobile body 100 starts moving. The base point B n associated with the elapsed time t n is set as travel route information T n (n = 1 to 8). Therefore, the travel route information T n can be expressed as a three-dimensional value (x n , y n , t n ) including time information at this time point.
 ベース点Bの生成後、回転自律移動体領域生成部2413が、自律移動体領域Aを移動平面の法線軸周りに回転して回転自律移動体領域を生成する(ステップS25)。具体的には、回転自律移動体領域生成部2413は、ベース点生成部2411において生成されたベース点Bにおける自律移動体100の姿勢情報θを生成する。
 ステップS25における、回転自律移動体領域の生成を模式的に示した図を図11Bに示す。図11Bに示すように、ベース点Bのそれぞれにおいて、自律移動体領域Aの基準軸(自律移動体領域A中の点線矢印)が、移動座標の水平軸(x軸)に対して傾いた角度θが、ベース点Bにおける姿勢情報として生成されている。
After the generation of the base point B, the rotation autonomous mobile body region generation unit 2413 rotates the autonomous mobile body region A around the normal axis of the movement plane to generate a rotation autonomous mobile body region (step S25). Specifically, the rotational autonomous mobile body region generation unit 2413 generates the posture information θ of the autonomous mobile body 100 at the base point B generated by the base point generation unit 2411.
FIG. 11B schematically shows generation of the rotating autonomous mobile body region in step S25. As shown in FIG. 11B, at each base point Bn , the reference axis of the autonomous mobile body region A (dotted arrow in the autonomous mobile body region A) is tilted with respect to the horizontal axis (x axis) of the movement coordinates. The angle θ n is generated as posture information at the base point B n .
 回転自律移動体領域を生成後、予想走行軌跡生成部2415が、ベース点生成部2411にて生成されたベース点Bに、回転自律移動体領域生成部2413にて生成された回転自律移動体領域を配置して、予想走行軌跡T(図11C)を生成する(ステップS26)。
 ステップS26における、予想走行軌跡Tの生成を模式的に示した図を図11Cに示す。図11Cに示すように、ベース点Bのそれぞれに、対応する回転自律移動体領域を配置することにより、予想走行軌跡Tが生成される。図11Cに示すように、予想走行軌跡Tは、移動座標上において平面状となっている。なぜなら、自律移動体領域Aが、移動座標上において平面状であるからである。なお、図11Cに示すような平面状の予想走行軌跡Tを、移動座標のx及びyの関数として表現すると非常に複雑な式となってしまう。また、予想走行軌跡Tを移動座標の座標値により表現すると、非常に多くの座標値(データ量)を必要とする。
After generating the rotational autonomous mobile region, the predicted traveling locus generation unit 2415 generates the rotational autonomous mobile region generated by the rotational autonomous mobile region generation unit 2413 at the base point B generated by the base point generation unit 2411. Are arranged to generate the predicted travel trajectory T (FIG. 11C) (step S26).
FIG. 11C schematically shows generation of the predicted traveling locus T in step S26. As shown in FIG. 11C, an expected traveling locus T is generated by arranging a corresponding rotating autonomous moving body region at each of the base points Bn . As shown in FIG. 11C, the predicted traveling locus T has a planar shape on the movement coordinates. This is because the autonomous mobile body region A is planar on the movement coordinates. In addition, if the planar predicted traveling locus T as shown in FIG. 11C is expressed as a function of x and y of the moving coordinates, a very complicated expression is obtained. In addition, when the predicted traveling locus T is expressed by the coordinate values of the movement coordinates, a very large number of coordinate values (data amount) are required.
 一方、本実施形態においては、生成された自律移動体100の姿勢情報θを、対応する走行経路情報Tに関連付けて、4次元の走行経路情報Tの集合体を生成している。そして、走行経路情報Tのそれぞれに、予め定義された自律移動体領域Aを関連付けて予想走行軌跡Tを生成している。このような場合、予想走行軌跡Tは、走行経路情報Tと同次元(4次元)の値(x,y,t,θ)の集合体として表現できる。このように、予想走行軌跡Tを4次元程度の低次元の値の集合体として表現することにより、複雑な式や大量のデータ量を必要とすることなく予想走行軌跡Tを表現できる。また、後述するように、4次元程度の低次元の集合体として予想走行軌跡Tを表現することにより、自律移動体領域Aと障害物Sとの干渉を、比較的簡単な計算式により判定できる。 On the other hand, in this embodiment, the generated posture information θ n of the autonomous mobile body 100 is associated with the corresponding travel route information T n to generate a four-dimensional travel route information T n aggregate. Then, each of the travel route information T n, are generated predicted travel locus T associates predefined autonomous moving body region A. In such a case, the predicted travel trajectory T can be expressed as an aggregate of values (x n , y n , t n , θ n ) of the same dimension (four dimensions) as the travel route information T n . In this way, by expressing the predicted traveling locus T as a set of low-dimensional values of about four dimensions, the predicted traveling locus T can be expressed without requiring a complicated formula or a large amount of data. Further, as will be described later, by expressing the predicted traveling trajectory T as a low-dimensional assembly of about four dimensions, the interference between the autonomous mobile body region A and the obstacle S can be determined by a relatively simple calculation formula. .
 II-2.ベース点生成方法
 次に、予想走行軌跡Tの生成におけるベース点Bの生成方法を、図12~図13Eを用いて説明する。図12は、本実施形態における、ベース点生成ステップ(ステップS24)におけるベース点生成方法を示すフローチャートである。
 ここでは、図13Aに示すように、自律移動体100の自律移動体領域Aの中心Vの現在位置が予定走行経路からずれている場合について説明する。
 ベース点生成部2411がベース点Bの生成を開始すると、まず、目標点抽出部2411-1が、前方走行目標点を所定の数、抽出する(ステップS241)。ここで、前方走行目標点とは、自律移動体100の現在位置よりも進行方向前方に存在する走行目標点のことである。図13Aにおいては、点線にて示した走行目標点P0以外の走行目標点が抽出される。
II-2. Base Point Generation Method Next, a base point B generation method in generating the predicted traveling locus T will be described with reference to FIGS. 12 to 13E. FIG. 12 is a flowchart showing the base point generation method in the base point generation step (step S24) in the present embodiment.
Here, as shown in FIG. 13A, a case where the current position of the center V of the autonomous mobile body region A of the autonomous mobile body 100 is deviated from the planned travel route will be described.
When the base point generation unit 2411 starts generating the base point B, first, the target point extraction unit 2411-1 extracts a predetermined number of forward traveling target points (step S241). Here, the forward travel target point is a travel target point that exists ahead of the current position of the autonomous mobile body 100 in the traveling direction. In FIG. 13A, travel target points other than the travel target point P0 indicated by the dotted line are extracted.
 次に、目標点選択部2411-3が、自律移動体100の現在位置(図13Aにおいては、自律移動体領域の中心V)を中心とする所定の半径rを有する円C1(図13B)を定義する(ステップS242)。ここで、所定の半径rは、移動座標上において、自律移動体領域Aの中心Vから自律移動体領域Aを定める境界までの距離よりも、十分に小さい値としている。
 本実施形態における楕円形の自律移動体領域Aの場合は、所定の半径rは、楕円形の短径Wよりも小さい値とする。所定の半径rを、自律移動体領域Aの中心Vから境界までの距離よりも小さい値とすることにより、自律移動体100が所定の半径rの円C1中の走行目標点を通過したとみなせる。また、自律移動体100は、走行目標点からずれた位置から、より早く走行目標点に復帰できる。これにより、自律移動体100は、走行目標点を忠実に再現した走行経路を忠実に走行できる。
Next, the target point selection unit 2411-3 selects a circle C1 (FIG. 13B) having a predetermined radius r centered on the current position of the autonomous mobile body 100 (the center V of the autonomous mobile body area in FIG. 13A). Define (step S242). Here, the predetermined radius r is a value sufficiently smaller than the distance from the center V of the autonomous mobile body region A to the boundary defining the autonomous mobile body region A on the movement coordinates.
In the case of the elliptical autonomous mobile body region A in the present embodiment, the predetermined radius r is a value smaller than the elliptical minor axis W. By setting the predetermined radius r to a value smaller than the distance from the center V of the autonomous mobile body region A to the boundary, it can be considered that the autonomous mobile body 100 has passed the travel target point in the circle C1 having the predetermined radius r. . Moreover, the autonomous mobile body 100 can return to a travel target point earlier from the position shifted | deviated from the travel target point. Thereby, the autonomous mobile body 100 can travel faithfully on a travel route that faithfully reproduces the travel target point.
 そして、目標点選択部2411-3は、円C1内に含まれる前方走行目標点の中から、自律移動体100の現在位置から最短の位置にある走行目標点(第1走行目標点)を選択する(ステップS243)。図13Bにおいては、走行目標点P1が第1走行目標点となる。 Then, the target point selection unit 2411-3 selects a travel target point (first travel target point) that is the shortest position from the current position of the autonomous mobile body 100 from among the forward travel target points included in the circle C1. (Step S243). In FIG. 13B, the travel target point P1 is the first travel target point.
 さらに、目標点選択部2411-3は、円C1の外側にある前方走行目標点の中から、自律移動体100の現在位置から最短の距離にある走行目標点(第2走行目標点)を選択する(ステップS244)。図13Bにおいては、走行目標点P2が第2走行目標点となる。 Further, the target point selection unit 2411-3 selects a travel target point (second travel target point) that is the shortest distance from the current position of the autonomous mobile body 100 from among the forward travel target points outside the circle C1. (Step S244). In FIG. 13B, the travel target point P2 is the second travel target point.
 第1走行目標点P1及び第2走行目標点P2を選択した後、算出部2411-5が、第1走行目標点P1と第2走行目標点P2とを結ぶ線分P1P2と、円C1の円周との交点を算出する(ステップS245)。そして、算出部2411-5において算出した交点を、仮想走行目標点VPと定める(図13C)。 After selecting the first travel target point P1 and the second travel target point P2, the calculation unit 2411-5, the line segment P1P2 connecting the first travel target point P1 and the second travel target point P2, and the circle of the circle C1 An intersection with the circumference is calculated (step S245). Then, the intersection calculated by the calculation unit 2411-5 is determined as a virtual travel target point VP (FIG. 13C).
 次に、ベース点配置部2411-7が、図13Dに示すように、現在位置と仮想走行目標点VPとを結んだ線分R1と、仮想走行目標点VPと第2走行目標点P2とを結んだ線分R2と、第2走行目標点P2と第2走行目標点P2よりも進行方向前方にある前方走行目標点の全てを、現在位置より近い順に結んでできる線R3と、を接続して走行経路とする(ステップS246)。 Next, as shown in FIG. 13D, the base point arrangement unit 2411-7 sets a line segment R1 connecting the current position and the virtual travel target point VP, the virtual travel target point VP, and the second travel target point P2. The connected line segment R2 is connected to the second travel target point P2 and the line R3 formed by connecting all the forward travel target points that are ahead of the second travel target point P2 in the traveling direction in the order closer to the current position. To the travel route (step S246).
 そして、ベース点配置部2411-7が、ステップS246にて生成した走行経路上に、ベース点Bを所定の間隔にて配置する(ステップS247)。本実施形態においては、図13Eに示すように、自律移動体100の現在位置(自律移動体領域Aの中心V)を含めて、B~Bまでの8つのベース点Bが走行経路上に配置されている。 Then, the base point placement unit 2411-7 places base points B at predetermined intervals on the travel route generated in step S246 (step S247). In the present embodiment, as shown in FIG. 13E, eight base points B 1 to B 8 including the current position of the autonomous mobile body 100 (center V of the autonomous mobile body area A) are on the travel route. Is arranged.
 上記の方法により、走行経路を定めてからベース点Bを走行経路上に配置することにより、自律移動体100が予定走行経路から多少ずれた位置にあっても、自律移動体100は、この位置のずれを補正して、走行経路をより忠実に走行できる。 By positioning the base point B on the travel route after the travel route is determined by the above method, the autonomous mobile body 100 is positioned at this position even if the autonomous mobile body 100 is slightly deviated from the planned travel route. It is possible to travel more faithfully on the travel route by correcting the deviation.
 III.障害物と予想走行軌跡との干渉の判断方法
 次に、上述の自律走行動作における、障害物Sと予想走行軌跡Tとの干渉の判断方法について、図14~図15Eを用いて説明する。図14は、障害物Sと予想走行軌跡Tとの干渉の判断方法を示したフローチャートである。図14に示す、障害物Sと予想走行軌跡Tとが干渉するかどうかの判断は、走行経路情報Tに表現された位置情報(ベース点Bの座標に対応)において、障害物Sが自律移動体領域Aと重なるかどうか判定することにより行う。判断部243は、障害物Sが自律移動体領域Aと重なっていれば、障害物Sと自律移動体領域Aとが互いに干渉していると判断する。すなわち、判断部243は、その場合に、障害物Sと予想走行軌跡Tとが互いに干渉していると判断する。
 一方、判断部243は、全てのベース点Bにおいて障害物Sが自律移動体領域Aと重なっていなければ、障害物Sと自律移動体領域Aとは干渉していないと判断する。すなわち、判断部243は、その場合に、障害物Sと予想走行軌跡Tとは互いに干渉していないと判断する。
III. Method for Determining Interference Between Obstacle and Expected Travel Trajectory Next, a method for determining interference between the obstacle S and the expected travel trajectory T in the above-described autonomous traveling operation will be described with reference to FIGS. 14 to 15E. FIG. 14 is a flowchart illustrating a method for determining interference between the obstacle S and the predicted travel trajectory T. 14, the determination whether or not the predicted travel locus T obstacle S to interference in the running route information position information expressed in T n (corresponding to the coordinates of the base point B), the obstacle S autonomic This is done by determining whether or not it overlaps the moving object area A. If the obstacle S overlaps the autonomous mobile body area A, the determination unit 243 determines that the obstacle S and the autonomous mobile body area A interfere with each other. That is, in this case, the determination unit 243 determines that the obstacle S and the predicted traveling locus T interfere with each other.
On the other hand, the determination unit 243 determines that the obstacle S and the autonomous mobile body area A do not interfere with each other unless the obstacle S overlaps the autonomous mobile body area A at all base points B. That is, in this case, the determination unit 243 determines that the obstacle S and the predicted traveling locus T do not interfere with each other.
 具体的には、以下のように、判断部243は、障害物Sと予想走行軌跡Tとが互いに干渉するかどうかを判定する。
 まず、判断部243は、移動座標を、ベース点Bに配置された自律移動体領域Aの中心Vが原点となるような座標系に変換する(ステップS31)。変換後の座標系を第2移動座標と呼ぶことにする。
Specifically, as described below, the determination unit 243 determines whether the obstacle S and the predicted traveling locus T interfere with each other.
First, the determination unit 243 converts the moving coordinates into a coordinate system in which the center V of the autonomous moving body region A arranged at the base point B is the origin (step S31). The coordinate system after conversion will be referred to as second movement coordinates.
 次に、判断部243は、自律移動体領域Aの基準軸が水平軸と重なるように、第2移動座標を回転する(ステップS32)。回転された第2移動座標を第3移動座標と呼ぶことにする。 Next, the determination unit 243 rotates the second movement coordinates so that the reference axis of the autonomous mobile body region A overlaps the horizontal axis (step S32). The rotated second movement coordinates will be referred to as third movement coordinates.
 さらに、判断部243は、自律移動体領域Aの形状が円形となるように、第3移動座標をy軸方向又はx軸方向に、伸張又は圧縮する(ステップS33)。軸方向に伸張又は圧縮された第3移動座標を第4移動座標と呼ぶことにする。 Further, the determination unit 243 expands or compresses the third movement coordinate in the y-axis direction or the x-axis direction so that the shape of the autonomous mobile body region A is circular (step S33). The third movement coordinate expanded or compressed in the axial direction will be referred to as the fourth movement coordinate.
 次に、判断部243は、第4移動座標上において、自律移動体領域Aの中心V(第4移動座標の原点)と障害物Sまでの距離dを算出する。そして、判断部243は、距離dが第4移動座標上の自律移動体領域Aを定める円の半径よりも大きいかどうかを判断する(ステップS34)。
 距離dが自律移動体領域Aの円の半径よりも大きい場合、すなわち、自律移動体領域Aと障害物Sとが重ならない場合(ステップS34にて「Yes」の場合)には、自律移動体領域Aは障害物Sと干渉しないと判断される。そして、ステップS35に進む。
 一方、距離dが自律移動体領域Aの円の半径よりも小さい場合、すなわち、自律移動体領域Aと障害物Sとが重なる場合(ステップS34にて「No」の場合)には、自律移動体領域Aは障害物Sと干渉すると判断される。あるベース点Bにおいて、自律移動体領域Aが障害物Sと干渉すると判断されたら、その時点で、他のベース点における判断を行うことなく。予想走行軌跡Tが障害物Sと干渉すると判断される(ステップS36)。そして、判断部243は、予想走行軌跡Tと障害物Sとの干渉の判定を終了する。
Next, the determination unit 243 calculates a distance d between the center V of the autonomous mobile body region A (the origin of the fourth movement coordinates) and the obstacle S on the fourth movement coordinates. Then, the determination unit 243 determines whether or not the distance d is larger than the radius of a circle that defines the autonomous mobile body area A on the fourth movement coordinate (step S34).
When the distance d is larger than the radius of the circle of the autonomous mobile body area A, that is, when the autonomous mobile body area A and the obstacle S do not overlap (in the case of “Yes” in step S34), the autonomous mobile body It is determined that the area A does not interfere with the obstacle S. Then, the process proceeds to step S35.
On the other hand, when the distance d is smaller than the radius of the circle of the autonomous mobile body area A, that is, when the autonomous mobile body area A and the obstacle S overlap (in the case of “No” in step S34), the autonomous movement It is determined that the body region A interferes with the obstacle S. If it is determined that the autonomous mobile body region A interferes with the obstacle S at a certain base point B, at that time, without making a determination at another base point. It is determined that the predicted travel locus T interferes with the obstacle S (step S36). Then, the determination unit 243 ends the determination of the interference between the predicted traveling locus T and the obstacle S.
 ステップS35においては、判断部243は、全てのベース点Bにおいて、自律移動体領域Aと障害物Sとの干渉が判定されたかどうかを確認する。全てのベース点Bにおいて自律移動体領域Aと障害物Sとの干渉が判定された場合(ステップS35にて「Yes」の場合)であり、全てのベース点Bにおいて、自律移動体領域Aと障害物Sとが干渉しないと判断された場合(ステップS34にて「Yes」の場合)に、予想走行軌跡Tは障害物Sと干渉しないと判断される(ステップS37)。そして、判断部243は、予想走行軌跡Tと障害物Sとの判定を終了する。 In step S35, the determination unit 243 confirms whether or not the interference between the autonomous mobile body region A and the obstacle S is determined at all the base points B. This is a case where interference between the autonomous mobile body region A and the obstacle S is determined at all base points B (in the case of “Yes” in step S35), and at all base points B, the autonomous mobile body region A and When it is determined that the obstacle S does not interfere (in the case of “Yes” in step S34), it is determined that the predicted traveling locus T does not interfere with the obstacle S (step S37). Then, the determination unit 243 ends the determination of the predicted traveling locus T and the obstacle S.
 なお、このとき、判断部243は、どのベース点Bにて、自律移動体領域Aと障害物Sとが干渉すると判定されたかを記憶部23などに記憶するようにしてもよい。この場合、判断部243は、自律移動体領域Aと障害物Sとが干渉すると判定されたベース点Bの下付き番号nを、記憶部23などに記憶する。ベース点B(走行経路情報T)が配列により表現されている(例えば、B[n]のように表現される)場合には、判断部243は、要素nの数字を記憶部23などに記憶する。
 この場合、例えば、自律移動体領域Aと障害物Sとが干渉するベース点Bよりも、自律移動体100の進行方向において後ろのベース点Bm-1までは減速して移動するなどの障害物衝突回避行動を実行できる。その結果、自律移動体100は、障害物Sに衝突することなく、より忠実に走行経路を走行できる。
At this time, the determination unit 243 may store in the storage unit 23 or the like at which base point B it is determined that the autonomous mobile body region A and the obstacle S interfere. In this case, the determination unit 243 stores the subscript number n of the base point B n determined that the autonomous mobile body region A and the obstacle S interfere with each other in the storage unit 23 or the like. When the base point B n (travel route information T n ) is expressed by an array (for example, expressed as B [n]), the determination unit 243 stores the number of the element n in the storage unit 23 or the like To remember.
In this case, for example, the base point B m where the autonomous mobile body region A and the obstacle S interfere with each other is decelerated and moved to the base point B m−1 behind the autonomous mobile body 100 in the traveling direction. Obstacle collision avoidance action can be executed. As a result, the autonomous mobile body 100 can travel on the travel route more faithfully without colliding with the obstacle S.
 図14を用いて上記において説明した、予想走行軌跡Tと障害物Sとの干渉の判定方法について、移動座標上の自律移動体領域Aと障害物Sとを模式的に示した図15A~図15Eを用いて詳細に説明する。
 ここで、例として、走行経路情報T(x,y,t,θ)の位置情報にて表現される座標(ベース点Bとも言い換えられる)における、自律移動体領域Aと障害物S~Sとの干渉の判断方法について述べることにする。ここで、自律走行動作の障害物検出ステップ(図9のステップS1)において、6つの障害物S~Sが、図15Aに示すような位置において検出されたとする。
 なお、他の走行経路情報Tの位置情報にて表現される座標については、以下と同様に説明できるので、省略する。
FIG. 15A to FIG. 15A schematically show the autonomous moving body region A and the obstacle S on the movement coordinates with respect to the method for determining the interference between the predicted traveling locus T and the obstacle S described above with reference to FIG. This will be described in detail using 15E.
Here, as an example, the autonomous mobile region A in the coordinates (also referred to as the base point B 6 ) expressed by the position information of the travel route information T 6 (x 6 , y 6 , t 6 , θ 6 ) A method for determining interference with the obstacles S 1 to S 6 will be described. Here, it is assumed that six obstacles S 1 to S 6 are detected at the positions shown in FIG. 15A in the obstacle detection step (step S1 in FIG. 9) of the autonomous traveling operation.
Note that the coordinates represented by the position information of the other travel route information T n, so can be explained like the following will be omitted.
 図15Bに、ベース点Bにおける自律移動体領域Aと、障害物S~Sとを、移動座標上に配置したときの図を示す。まず、図14のステップS31においては、ベース点Bに配置された自律移動体領域Aの中心Vが、座標の原点となるように移動座標が変換される。この場合、移動座標が水平軸(x軸)方向に-x、垂直軸(y軸)方向に-yだけ平行移動される。
 上記のように移動座標が平行移動されると、障害物S~Sも、移動座標上の座標から、x軸方向に-x、垂直軸(y軸)方向に-yだけ平行移動されて第2移動座標上に配置される。第2移動座標上の自律移動体領域Aと障害物S~Sの配置を図15Cに示す。
FIG. 15B shows a diagram when the autonomous mobile body region A at the base point B 6 and the obstacles S 1 to S 6 are arranged on the movement coordinates. First, in step S31 in FIG. 14, the center V of the autonomous moving body region A disposed on the base point B 6 is moved coordinates are converted such that the origin of the coordinate. In this case, the movement coordinate is translated by −x 6 in the horizontal axis (x-axis) direction and by −y 6 in the vertical axis (y-axis) direction.
When the movement coordinates are translated as described above, the obstacles S 1 to S 6 are also parallel from the coordinates on the movement coordinates by −x 6 in the x-axis direction and −y 6 in the vertical axis (y-axis) direction. It is moved and arranged on the second movement coordinate. The arrangement of the autonomous mobile body region A and the obstacles S 1 to S 6 on the second movement coordinates is shown in FIG. 15C.
 次に、図14のステップS32において、第2移動座標上の自律移動体領域Aの基準軸が、移動座標の水平軸(x軸)と重なるように、第2移動座標が回転される。この場合、第2移動座標は、自律移動体100の姿勢情報θが定義された方向(θが正の値となる方向)とは反対方向(図15Cにおいては、時計回り)に回転される。具体的には、図15Cにおいては、第2移動座標が時計回りに角度θだけ回転される。ここで、回転された第2移動座標を、第3移動座標と呼ぶことにする。
 上記のように、第2移動座標が時計回りにθ回転されると、障害物S~Sも、第2移動座標の原点の中心を通る法線軸周りに、時計回りにθだけ回転されて第3移動座標上に配置される。第3移動座標上における、自律移動体領域Aと障害物S~Sの配置を図15Dに示す。
Next, in step S32 in FIG. 14, the second movement coordinate is rotated so that the reference axis of the autonomous moving body region A on the second movement coordinate overlaps the horizontal axis (x axis) of the movement coordinate. In this case, the second movement coordinates are rotated in a direction (clockwise in FIG. 15C) opposite to the direction in which the posture information θ of the autonomous mobile body 100 is defined (the direction in which θ is a positive value). Specifically, in FIG. 15C, the second movement coordinate is rotated clockwise by an angle θ 6 . Here, the rotated second movement coordinates are referred to as third movement coordinates.
As described above, when the second movement coordinate is rotated by θ 6 clockwise, the obstacles S 1 to S 6 are also rotated by θ 6 clockwise around the normal axis passing through the center of the origin of the second movement coordinate. It is rotated and placed on the third movement coordinate. FIG. 15D shows the arrangement of the autonomous moving body region A and the obstacles S 1 to S 6 on the third movement coordinates.
 次に、図14のステップS33において、自律移動体領域Aが、半径L(自律移動体領域Aの長径)の円となるように、第3移動座標がy軸方向にL/W倍(L/Wを伸張率と呼ぶ)だけ伸張される。y軸方向が伸張された第3移動座標を、第4移動座標と呼ぶことにする。
 この場合、第3移動座標上の座標のy座標値は、L/W倍(L/Wを伸張率と呼ぶ)されて第4移動座標上に配置される。これにより、第3移動座標上の障害物S~Sは、座標値がL/W倍されて、第4移動座標上に配置される。図15Eに、第4移動座標上における、自律移動体領域Aと障害物S~Sの配置を示す。なお、図15Eにおいて、障害物S~Sの形状が縦長に変形(図15Dにおいては、円から縦長の楕円に変形)されているが、自律移動体領域Aの中心Vと障害物S~Sとの位置関係は変わらない。
Next, in step S33 of FIG. 14, the third movement coordinate is L / W times (L) in the y-axis direction so that the autonomous mobile body region A becomes a circle having a radius L (the major axis of the autonomous mobile body region A). / W is called the expansion rate). The third movement coordinate in which the y-axis direction is extended will be referred to as a fourth movement coordinate.
In this case, the y-coordinate value of the coordinate on the third movement coordinate is multiplied by L / W (L / W is referred to as the expansion rate) and arranged on the fourth movement coordinate. Thus, the obstacles S 1 to S 6 on the third movement coordinate are arranged on the fourth movement coordinate with the coordinate value multiplied by L / W. FIG. 15E shows the arrangement of the autonomous mobile body region A and the obstacles S 1 to S 6 on the fourth movement coordinate. In FIG. 15E, the shapes of the obstacles S 1 to S 6 are deformed vertically long (in FIG. 15D, from a circle to a vertically long ellipse), but the center V of the autonomous mobile body region A and the obstacle S the positional relationship between the 1 ~ S 6 does not change.
 次に、図14のステップS34において、第4移動座標上において、自律移動体領域Aと障害物S~Sとが干渉するかどうかが判断される。このとき、図15Eに示すように、第4移動座標において、自律移動体領域の中心V(第4移動座標の原点)と障害物S~Sのそれぞれまでの距離d~dが算出される。距離d~dが、第4移動座標の原点から障害物S~Sのそれぞれまでの距離として算出するようにすることにより、距離d~dの計算を単純化できる。
 そして、第4移動座標上においては、自律移動体領域Aと障害物S~Sとの干渉は、距離d~dが、自律移動体領域Aの長径Lよりも大きいかどうかのみで判断できる。なぜなら、第4移動座標上では、自律移動体領域Aは、異方性を有しない半径Lの円として表現されるからである。これにより、より簡単に自律移動体領域Aと障害物Sとの干渉を判断できる。その結果、予想走行軌跡Tと障害物Sとの干渉の判断時間を短縮できる。
Next, in step S34 of FIG. 14, it is determined whether or not the autonomous mobile body region A and the obstacles S 1 to S 6 interfere on the fourth movement coordinate. At this time, as shown in FIG. 15E, in the fourth movement coordinates, the distances d 1 to d 6 from the center V of the autonomous moving body region (the origin of the fourth movement coordinates) and the obstacles S 1 to S 6 are as follows. Calculated. By calculating the distances d 1 to d 6 as the distances from the origin of the fourth movement coordinates to the obstacles S 1 to S 6 , the calculation of the distances d 1 to d 6 can be simplified.
On the fourth movement coordinate, the interference between the autonomous mobile body region A and the obstacles S 1 to S 6 is only whether the distances d 1 to d 6 are larger than the major axis L of the autonomous mobile body region A. Can be judged. This is because the autonomous mobile body region A is expressed as a circle with a radius L having no anisotropy on the fourth movement coordinates. Thereby, interference with the autonomous mobile body area | region A and the obstruction S can be judged more easily. As a result, it is possible to shorten the time for determining the interference between the predicted traveling locus T and the obstacle S.
 なお、上記で示したような座標の変換は、行列式を用いて、比較的簡単に計算できる。この場合、行列式を用いて、自律移動体領域Aから障害物Sまでの距離dを算出するための算出式を予め計算しておいて、算出式を記憶部23などに記憶するようにしてもよい。そして、この算出式に適切な値を代入して、具体的な数値で表される自律移動体領域Aから障害物Sまでの距離dを算出してもよい。
 あるいは、座標の平行移動、回転、及び伸張/圧縮を行う行列式を記憶部23などに記憶しておいてもよい。この場合、記憶された行列式に適切な値を代入して具体的な数値にて表現された行列式を算出する。そして、具体的な数値にて表現された行列式を用いて、移動座標の座標変換を行った後、自律移動体領域Aから障害物Sまでの距離dを算出する。
Note that the coordinate conversion as described above can be calculated relatively easily using a determinant. In this case, by using a determinant, a calculation formula for calculating the distance d from the autonomous mobile body region A to the obstacle S is calculated in advance, and the calculation formula is stored in the storage unit 23 or the like. Also good. Then, an appropriate value may be substituted into this calculation formula to calculate the distance d from the autonomous mobile body region A to the obstacle S represented by specific numerical values.
Alternatively, determinants that perform coordinate translation, rotation, and expansion / compression may be stored in the storage unit 23 or the like. In this case, an appropriate value is substituted into the stored determinant to calculate a determinant expressed by a specific numerical value. And after performing coordinate conversion of a movement coordinate using the determinant expressed with the specific numerical value, the distance d from the autonomous mobile body area | region A to the obstruction S is calculated.
(7)本実施形態の効果
 以下に、本実施形態における効果について述べる。
 自律移動体100の移動制御装置2(自律移動体の移動制御装置の一例)は、移動部1(移動部の一例)と、障害物S(障害物の一例)を検出する検出部3(検出部の一例)とを備え、予め作成した予定走行経路(予定走行経路の一例)を再現するように移動する自律移動体100(自律移動体の一例)の移動制御装置である。
 自律移動体100の移動制御装置2は、演算部241(演算部の一例)と、判断部243(演算部の一例)と、移動制御部245(移動制御部の一例)と、を備える。演算部241は、自律移動体100の現在位置と、現在位置から所定の距離を走行した位置である将来位置までの走行経路を表す走行経路情報T(走行経路情報の一例)と、自律移動体100を内包した所定の形状を有する自律移動体領域A(自律移動体領域の一例)と、に基づいて、予想走行軌跡T(現在位置から将来位置までの予想走行軌跡の一例)を演算する。判断部243は、検出部3が検出した障害物Sと予想走行軌跡Tとが互いに干渉するか否かを判断する。移動制御部245は、判断部243において障害物Sと予想走行軌跡Tとが干渉しないと判断された場合、演算部241により演算された予想走行軌跡Tを再現するように移動部1を制御する移動指令を作成する。
(7) Effects of this embodiment The effects of this embodiment will be described below.
The movement control device 2 of the autonomous mobile body 100 (an example of a movement control device of an autonomous mobile body) includes a movement unit 1 (an example of a movement unit) and a detection unit 3 (detection) that detects an obstacle S (an example of an obstacle). An autonomous mobile body 100 (an example of an autonomous mobile body) that moves so as to reproduce a planned travel route (an example of a planned travel route) created in advance.
The movement control device 2 of the autonomous mobile body 100 includes a calculation unit 241 (an example of a calculation unit), a determination unit 243 (an example of a calculation unit), and a movement control unit 245 (an example of a movement control unit). The calculation unit 241 includes the current position of the autonomous mobile body 100, travel route information T n (an example of travel route information) representing a travel route to a future position that is a position traveled a predetermined distance from the current position, and autonomous movement. Based on the autonomous mobile body region A (an example of an autonomous mobile body region) having a predetermined shape including the body 100, an expected travel locus T (an example of an expected travel locus from the current position to the future position) is calculated. . The determination unit 243 determines whether or not the obstacle S detected by the detection unit 3 and the predicted traveling locus T interfere with each other. The movement control unit 245 controls the moving unit 1 so as to reproduce the predicted traveling locus T calculated by the calculating unit 241 when the determining unit 243 determines that the obstacle S and the predicted traveling locus T do not interfere with each other. Create a movement command.
 この移動制御装置2では、最初に、演算部241が、走行経路情報Tと自律移動体領域Aとに基づいて、予想走行軌跡Tを作成する。次に、判断部243が、自律移動体100の検出部3が検出した障害物Sと予想走行軌跡Tとが互いに干渉するか否かを判断する。そして、移動制御部245が、判断部243において障害物Sと予想走行軌跡Tとが干渉しないと判断されていれば、予想走行軌跡Tを再現するように、自律移動体100の移動部1を制御する移動指令を作成する。 In this movement control device 2, first, the calculation unit 241 creates the predicted traveling locus T based on the traveling route information Tn and the autonomous mobile body area A. Next, the determination unit 243 determines whether or not the obstacle S detected by the detection unit 3 of the autonomous mobile body 100 and the predicted travel locus T interfere with each other. If the movement control unit 245 determines that the obstacle S and the predicted travel locus T do not interfere with each other in the determination unit 243, the movement unit 1 of the autonomous mobile body 100 is moved so as to reproduce the predicted travel locus T. Create a movement command to control.
 この移動制御装置2では、自律移動体100と障害物Sとが衝突するかどうかの判断が、予想走行軌跡Tと障害物Sとが互いに干渉するか否かの判断に基づいている。これにより、自律移動体100が障害物Sに対して回避行動を取るかどうかを、より高い確度で判断できる。その結果、自律移動体100は、障害物Sに対する無駄な回避行動を行うことなく、ユーザにより教示された予定走行経路をより忠実に走行できる。 In this movement control device 2, the determination as to whether or not the autonomous mobile body 100 and the obstacle S collide is based on the determination as to whether or not the predicted traveling locus T and the obstacle S interfere with each other. Thereby, it can be judged with higher accuracy whether the autonomous mobile body 100 takes the avoidance action with respect to the obstacle S. As a result, the autonomous mobile body 100 can travel more faithfully on the planned travel route taught by the user without performing useless avoidance action on the obstacle S.
 本実施形態においては、自律移動体領域Aの、自律移動体100の移動平面における形状は異方性を有している。また、走行経路情報Tは、自律移動体100の走行経路における位置情報として、ベース点Bの座標(位置情報の一例)と、走行経路上における自律移動体100の姿勢情報θ(姿勢情報の一例)とを含んでいる。
 これにより、演算部241は、自律移動体100の形状や姿勢を考慮してより正確な予想走行軌跡を作成できる。その結果、判断部243は、障害物Sと自律移動体100とが互いに干渉するかどうかをより確実に判断できる。
In the present embodiment, the shape of the autonomous moving body region A in the moving plane of the autonomous moving body 100 has anisotropy. In addition, the travel route information T n is the position information of the autonomous mobile body 100 on the travel route, and the coordinates of the base point B (an example of position information) and the posture information θ (posture information of the posture information) of the autonomous mobile body 100 on the travel route. Example).
Thereby, the calculating part 241 can create a more accurate predicted traveling locus in consideration of the shape and posture of the autonomous mobile body 100. As a result, the determination unit 243 can more reliably determine whether the obstacle S and the autonomous mobile body 100 interfere with each other.
 本実施形態においては、自律移動体領域Aの移動平面における形状は楕円である。これにより、判断部243は、より少ない演算により障害物Sと自律移動体100とが互いに干渉するかどうかを判断できる。 In the present embodiment, the shape of the autonomous moving body region A on the moving plane is an ellipse. Thereby, the determination part 243 can determine whether the obstruction S and the autonomous mobile body 100 interfere with each other by fewer calculations.
 本実施形態において、走行経路情報Tは、自律移動体100の走行経路上における時間情報t(時間情報の一例)をさらに含んでいる。これにより、移動制御部245は、より単純な演算によりに移動指令を作成できる。また、走行経路情報Tを離散的な情報(配列)として表現できるので、走行経路情報Tの構造を単純化できる。 In the present embodiment, the travel route information T n further includes time information t n (an example of time information) on the travel route of the autonomous mobile body 100. Thereby, the movement control part 245 can create a movement command by a simpler calculation. Since it represented a travel route information T n as discrete information (sequence) can be simplified the structure of the travel route information T n.
 本実施形態において、演算部241は、ベース点生成部2411(ベース点生成部の一例)と、回転自律移動体領域生成部2413(回転自律移動体領域生成部の一例)と、予想走行軌跡生成部2415(予想走行軌跡生成部の一例)と、を備えている。ベース点生成部2411は、走行経路情報Tの位置情報として、走行経路上に複数のベース点B(ベース点の一例)を生成する。回転自律移動体領域生成部2413は、走行経路情報Tの姿勢情報θに基づいて、自律移動体領域Aを、移動平面の法線軸周りに回転して回転自律移動体領域を生成する。予想走行軌跡生成部2415は、ベース点生成部2411にて生成されたベース点Bのそれぞれに、回転自律移動体領域生成部2413にて生成された回転自律移動体領域を配置して、予想走行軌跡Tを生成する。これにより、演算部241は、より単純な演算により、予想走行軌跡Tを作成できる。 In the present embodiment, the calculation unit 241 includes a base point generation unit 2411 (an example of a base point generation unit), a rotation autonomous mobile body region generation unit 2413 (an example of a rotation autonomous mobile body region generation unit), and an expected travel locus generation. Unit 2415 (an example of an expected travel locus generation unit). Base point generation unit 2411, as the position information of the traveling route information T n, to generate a plurality of base points B (an example of a base point) on the travel path. Rotating the autonomous moving body area generation unit 2413, based on the attitude information of the traveling route information T n theta, the autonomous moving body region A, to generate a rotating autonomous moving body region by rotation about a normal axis of the moving plane. The predicted travel locus generation unit 2415 arranges the rotation autonomous mobile body region generated by the rotation autonomous mobile body region generation unit 2413 at each of the base points B generated by the base point generation unit 2411 to predict the predicted travel A trajectory T is generated. Thereby, the calculating part 241 can create the predicted traveling locus T by a simpler calculation.
 本実施形態において、移動制御部245は、判断部243において障害物Sと予想走行軌跡Tとが干渉すると判断された場合、干渉する位置が現在位置から近い距離にあれば、自律移動体100を停止する。また、現在位置から遠い距離にあれば、自律移動体100を減速するように、移動部1を制御する。これにより、自律移動体100は、障害物Sに衝突することなく、より忠実に走行経路を走行できる。 In the present embodiment, the movement control unit 245 determines that the autonomous mobile body 100 is detected if the interference unit is located at a distance close to the current position when the determination unit 243 determines that the obstacle S and the predicted travel locus T interfere with each other. Stop. Moreover, if it exists in the distance far from the present position, the moving part 1 will be controlled so that the autonomous mobile body 100 may be decelerated. Thereby, the autonomous mobile body 100 can travel the travel route more faithfully without colliding with the obstacle S.
2.第2実施形態
 次に、第2実施形態に係る自律移動体200について説明する。なお、ここでは、第2実施形態に係る自律移動体200の構成のうち、第1実施形態に係る自律移動体100と同じものについての説明は省略する。
 第2実施形態においては、ベース点生成部2412におけるベース点の生成方法が、第1実施形態に係る自律移動体100のベース点生成部2411における生成方法と異なる。従って、以下に、第2実施形態に係る自律移動体200のベース点生成部2412の構成と、ベース点生成部2412におけるベース点生成方法について述べる。
 まず、第2実施形態に係るベース点生成部2412の構成について、図16を用いて説明する。図16は、第2実施形態に係るベース点生成部2412の構成を示す図である。ベース点生成部2412は、図16に示すように、目標点抽出部2412-1と、目標点選択部2412-3と、算出部2412-5と、ベース点配置部2412-7と、を有する。
2. Second Embodiment Next, an autonomous mobile body 200 according to a second embodiment will be described. In addition, description about the same thing as the autonomous mobile body 100 which concerns on 1st Embodiment among the structures of the autonomous mobile body 200 which concerns on 2nd Embodiment is abbreviate | omitted here.
In the second embodiment, the base point generation method in the base point generation unit 2412 is different from the generation method in the base point generation unit 2411 of the autonomous mobile body 100 according to the first embodiment. Therefore, the configuration of the base point generation unit 2412 of the autonomous mobile body 200 according to the second embodiment and the base point generation method in the base point generation unit 2412 will be described below.
First, the configuration of the base point generation unit 2412 according to the second embodiment will be described with reference to FIG. FIG. 16 is a diagram illustrating a configuration of the base point generation unit 2412 according to the second embodiment. As shown in FIG. 16, the base point generation unit 2412 includes a target point extraction unit 2412-1, a target point selection unit 2412-3, a calculation unit 2412-5, and a base point arrangement unit 2412-7. .
 目標点抽出部2412-1は、前方走行目標点を抽出する。第2実施形態に係る目標点抽出部2412-1における、前方走行目標点は、自律移動体200の現在位置から、現在位置を中心とする第1半径r(図18A)を有する第1の円C3(図18A)の外側に存在する走行目標点のうち、現在位置に最も近く、かつ、現在位置よりも自律移動体200の進行方向前方に存在する第1走行目標点P3(図18A)までの走行目標点である。 The target point extraction unit 2412-1 extracts a forward travel target point. In the target point extraction unit 2412-1 according to the second embodiment, the forward travel target point has a first radius r 1 (FIG. 18A) centered on the current position from the current position of the autonomous mobile body 200. Among the travel target points existing outside the circle C3 (FIG. 18A), the first travel target point P3 (FIG. 18A) that is closest to the current position and is ahead of the current position in the traveling direction of the autonomous mobile body 200. It is a driving target point until.
 目標点選択部2412-3は、第2走行目標点P4(図18B)を選択する。第2実施形態に係る目標点選択部2412-3における第2走行目標点P4は、自律移動体100の現在位置を中心とする第2半径r(図18B)を有する第2の円C4(図18B)の外側に存在する前方走行目標点のうち、現在位置から最短の距離にある前方走行目標点である。 The target point selection unit 2412-3 selects the second travel target point P4 (FIG. 18B). The second travel target point P4 in the target point selection unit 2412-3 according to the second embodiment is a second circle C4 having a second radius r 2 (FIG. 18B) centered on the current position of the autonomous mobile body 100 (FIG. 18B). Among the forward travel target points existing outside FIG. 18B), the forward travel target point is the shortest distance from the current position.
 算出部2412-5は、自律移動体100の現在位置と第2走行目標点P4とを結ぶ線分P4-V(図18C)と、円C4の円周との交点である仮想走行目標点VP1(図18C)を算出する。ベース点配置部2412-7は、走行経路上にベース点を所定の間隔にて配置する。走行経路は、現在位置と、仮想走行目標点VP1と、第2走行目標点P4と、第2走行目標点P4から第1走行目標点P3までの間の前方走行目標点と、を現在位置から近い順に結んで生成される。 The calculation unit 2412-5 calculates a virtual travel target point VP1 that is an intersection of a line segment P4-V (FIG. 18C) connecting the current position of the autonomous mobile body 100 and the second travel target point P4 and the circumference of the circle C4. (FIG. 18C) is calculated. The base point arrangement unit 2412-7 arranges base points at a predetermined interval on the travel route. The travel route includes a current position, a virtual travel target point VP1, a second travel target point P4, and a forward travel target point between the second travel target point P4 and the first travel target point P3 from the current position. It is generated by connecting in the closest order.
 次に、第2実施形態に係る自律移動体200のベース点生成部2412におけるベース点の生成方法について、図17~図18Eを用いて説明する。図17は、第2実施形態に係る自律移動体200のベース点生成部2412におけるベース点の生成方法を示すフローチャートである。 Next, a base point generation method in the base point generation unit 2412 of the autonomous mobile body 200 according to the second embodiment will be described with reference to FIGS. 17 to 18E. FIG. 17 is a flowchart illustrating a base point generation method in the base point generation unit 2412 of the autonomous mobile body 200 according to the second embodiment.
 最初に、目標点抽出部2412-1が、第1走行目標点P3を設定する(ステップS2411)。このときの第1走行目標点P3の設定方法を、図18Aを用いて説明する。図18Aは、第1走行目標点P3の設定方法を模式的に示した図である。走行抽出部2412-1は、まず、自律移動体200の現在位置(図18Aにおいて、自律移動体領域Aの中心Vに対応)を中心とした、第1半径rを有する第1の円C3を定義する。このとき、第1半径rは、自律移動体200の走行速度や、検出部3における障害物Sの検出可能距離などに基づいて決定される。
 そして、第1の円C3の外にある走行目標点のうち、自律移動体200の現在位置に最も近い走行目標点を選択する。さらに、選択された走行目標点のうち、自律移動体200の進行方向前方にある走行目標点を、第1走行目標点P3とする。
First, the target point extraction unit 2412-1 sets the first travel target point P3 (step S2411). The setting method of the 1st driving | running | working target point P3 at this time is demonstrated using FIG. 18A. FIG. 18A is a diagram schematically illustrating a method of setting the first travel target point P3. First, the traveling extraction unit 2412-1 has a first circle C 3 having a first radius r 1 centered on the current position of the autonomous mobile body 200 (corresponding to the center V of the autonomous mobile body area A in FIG. 18A). Define At this time, the first radius r 1 is determined based on the traveling speed of the autonomous mobile body 200, the detectable distance of the obstacle S in the detection unit 3, and the like.
Then, a travel target point closest to the current position of the autonomous mobile body 200 is selected from the travel target points outside the first circle C3. Furthermore, among the selected travel target points, a travel target point that is ahead of the autonomous mobile body 200 in the traveling direction is defined as a first travel target point P3.
 次に、目標点抽出部2412-1が、現在位置よりも進行方向前方に存在する走行目標点であって、自律移動体200の現在位置から、第1走行目標点P3までの間にある走行目標点を、前方走行目標点として抽出する(ステップS2412)。図18Aにおいては、実線で示された走行目標点が、前方走行目標点となる。 Next, the target point extraction unit 2412-1 is a travel target point that is ahead of the current position in the traveling direction and is between the current position of the autonomous mobile body 200 and the first travel target point P 3. The target point is extracted as a forward travel target point (step S2412). In FIG. 18A, the traveling target point indicated by the solid line is the forward traveling target point.
 前方走行目標点を抽出後、目標点選択部2412-3が、第2走行目標点P4を設定する(ステップS2413)。目標点選択部2412-3における第2走行目標点P4の設定方法を、図18Bを用いて説明する。図18Bは、第2走行目標点P4の設定方法を示す模式図である。まず、目標点選択部2412-3は、自律移動体200の現在位置を中心とした、第2半径rを有する第2の円C4を定義する。
 ここで、第2半径rは、自律移動体200と走行目標点とのずれの許容範囲を決定する。また、自律移動体200と走行目標点とのずれを速やかに修正したい場合には、第2半径rは、なるべく小さな値とすることが好ましい。例えば、図18Bに示す例においては、第2半径rは、自律移動体200に最も近い前方走行目標点のみが含まれる程度の半径である。
 第2実施形態の自律移動体200においては、自律移動体200と走行目標点とのずれの許容範囲や、どの程度速やかに走行目標点とのずれを修正したいかなどに応じて、適切な第2半径rの値が選択される。
After extracting the forward travel target point, the target point selection unit 2412-3 sets the second travel target point P4 (step S2413). A method for setting the second travel target point P4 in the target point selection unit 2412-3 will be described with reference to FIG. 18B. FIG. 18B is a schematic diagram illustrating a method of setting the second travel target point P4. First, a target point selection unit 2412-3 was centered on the current position of the autonomous moving body 200, defining a second circle C4 having a second radius r 2.
Here, the second radius r 2 determines an allowable range of deviation between the autonomous mobile body 200 and the travel target point. In addition, when it is desired to quickly correct the deviation between the autonomous mobile body 200 and the travel target point, it is preferable that the second radius r 2 be as small as possible. For example, in the example illustrated in FIG. 18B, the second radius r 2 is a radius that includes only the forward travel target point closest to the autonomous mobile body 200.
In the autonomous mobile body 200 of the second embodiment, an appropriate first value is determined depending on an allowable range of deviation between the autonomous mobile body 200 and the travel target point, and how quickly the deviation from the travel target point is to be corrected. The value of 2 radius r 2 is selected.
 次に、目標点選択部2412-3が、第2の円C4の外側に存在する前方走行目標点のうち、現在位置から最短の距離にある前方走行目標点を選択する。そして、目標点選択部2412-3が、当該選択された走行目標点を第2走行目標点P4として設定する。 Next, the target point selection unit 2412-3 selects a forward travel target point that is the shortest distance from the current position among the forward travel target points that exist outside the second circle C4. Then, the target point selection unit 2412-3 sets the selected travel target point as the second travel target point P4.
 第2走行目標点P4を設定後、算出部2412-5が、仮想走行目標点VP1を算出する(ステップS2414)。算出部2412-5は、図18Cに示すように、現在位置と第2走行目標点とを結ぶ線P4-Vと、第2の円C4との交点を求める。そして、当該交点を仮想走行目標点VP1(図18Cにおいては、黒丸にて示した点)として設定する。 After setting the second travel target point P4, the calculation unit 2412-5 calculates the virtual travel target point VP1 (step S2414). As shown in FIG. 18C, the calculation unit 2412-5 obtains an intersection point between the line P4-V connecting the current position and the second travel target point and the second circle C4. Then, the intersection point is set as a virtual travel target point VP1 (a point indicated by a black circle in FIG. 18C).
 次に、ベース点配置部2412-7が、ベース点Bを配置する走行経路を生成する(ステップS2415)。本実施形態のベース点配置部2412-7では、図18Dに示したように、自律移動体200の現在位置とステップS2414において設定された仮想走行目標点VP1とを結ぶ走行経路R4と、仮想走行目標点VP1とステップS2413において設定された第2走行目標点P4とを結ぶ走行経路R5と、第2走行目標点P4から第1走行目標点P3までの間に存在する前方走行目標点の全てを結ぶ走行経路R6と、を結んで走行経路を生成する。 Next, the base point placement unit 2412-7 generates a travel route for placing the base point B (step S2415). In the base point arrangement unit 2412-7 of this embodiment, as shown in FIG. 18D, a travel route R4 connecting the current position of the autonomous mobile body 200 and the virtual travel target point VP1 set in step S2414, and virtual travel All of the forward travel target points existing between the travel route R5 connecting the target point VP1 and the second travel target point P4 set in step S2413 and between the second travel target point P4 and the first travel target point P3. The travel route R6 is connected to generate a travel route.
 最後に、図18Eに示すように、ベース点配置部2412-7が、ステップS2415において生成された走行経路上に、所定の間隔にてベース点Bを配置する(ステップS2416)。ベース点Bを配置する間隔は、例えば、自律移動体200を制御する周期である制御周期Tに基づいて、決定される。 Finally, as shown in FIG. 18E, the base point placement unit 2412-7 places base points B at predetermined intervals on the travel route generated in step S2415 (step S2416). The interval at which the base point B is arranged is determined based on, for example, a control cycle T c that is a cycle for controlling the autonomous mobile body 200.
 上記のような方法により、第2実施形態に係る自律移動体200のベース点生成部2412も、第1実施形態に係る自律移動体100のベース点生成部2411と同様に、自律移動体200が予定走行経路から多少ずれた位置にあっても、この位置のずれを補正できる。従って、第2実施形態に係る自律移動体200は、予定走行経路をより忠実に走行できる。 By the method as described above, the base point generation unit 2412 of the autonomous mobile body 200 according to the second embodiment is similar to the base point generation unit 2411 of the autonomous mobile body 100 according to the first embodiment. Even if the position is slightly deviated from the planned travel route, this position deviation can be corrected. Therefore, the autonomous mobile body 200 according to the second embodiment can travel more faithfully on the planned travel route.
3.他の実施形態
 以上、本発明の一実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、発明の要旨を逸脱しない範囲で種々の変更が可能である。特に、本明細書に書かれた複数の実施形態及び変形例は必要に応じて任意に組み合せ可能である。
(A)自律移動体の構成についての他の実施形態
 第1実施形態における自律移動体100の移動部1は、2つの主輪11aと11bを有していた。そして、主輪11a、11bのそれぞれが、モータ13a、13bの出力回転軸に回転可能に接続されていた。しかし、主輪及びモータの数は2に限られない。移動部は、2以上の主輪と、主輪のそれぞれに接続される複数のモータとにより構成されていてもよい。自律移動体の用途や、移動の自由度などに応じて、移動部は任意の数の主輪やモータにより構成できる。
3. Other Embodiments Although one embodiment of the present invention has been described above, the present invention is not limited to the above embodiment, and various modifications can be made without departing from the scope of the invention. In particular, a plurality of embodiments and modifications described in this specification can be arbitrarily combined as necessary.
(A) Other embodiment about structure of autonomous mobile body The moving part 1 of the autonomous mobile body 100 in 1st Embodiment had the two main wheels 11a and 11b. And each of the main wheels 11a and 11b was rotatably connected to the output rotating shafts of the motors 13a and 13b. However, the number of main wheels and motors is not limited to two. The moving unit may include two or more main wheels and a plurality of motors connected to each of the main wheels. Depending on the application of the autonomous mobile body, the degree of freedom of movement, etc., the moving unit can be configured by an arbitrary number of main wheels and motors.
 本発明は、センサにより障害物を検出しながら自律走行する自律移動体に、広く適用可能である。 The present invention is widely applicable to an autonomous mobile body that autonomously travels while detecting an obstacle with a sensor.
100、200  自律移動体
1    移動部
11a、11b   主輪
13a、13b   モータ
2    移動制御装置
21   教示部
22   自己位置推定部
23   記憶部
24   走行制御部
241  演算部
2411、2412 ベース点生成部
2411-1、2412-1   目標点抽出部
2411-3、2412-3   目標点選択部
2411-5、2412-5   算出部
2411-7、2412-7   ベース点配置部
2413 回転自律移動体領域生成部
2415 予想走行軌跡生成部
243  判断部
245  移動制御部
25   モータドライブ部
25a、25b   モータドライバ
26   障害物情報取得部
3    検出部
31   前方検出器
33   後方検出器
5    操作部
51a、51b   操作ハンドル
53   設定部
55   表示部
57   インターフェース
59   筐体
7    本体
8    補助輪部
8a、8b   補助車輪
9    取付部材
A    自律移動体領域
V    自律移動体領域の中心
L    楕円形の自律移動体領域の長径
W    楕円形の自律移動体領域の短径
B    ベース点
   一般的なベース点
   ベース点(走行経路情報)のx座標
   ベース点(走行経路情報)のy座標
C1   円
C3   第1の円
C4   第2の円
r    円の半径
   第1半径
   第2半径
P0   選択されない走行目標点
P1、P3   第1走行目標点
P2、P4   第2走行目標点
VP、VP1   仮想走行目標点
P4-V   現在位置と第2走行目標点とを結ぶ線
S    障害物
    障害物
d    障害物と自律移動体領域の中心との間の距離
    障害物と自律移動体領域の中心との間の距離
T    予想走行軌跡
    走行経路情報
    時間情報
θ    姿勢情報
θ    姿勢情報
R1、R2、R3、R4、R5、R6   走行経路
m    正の整数
n    正の整数
θ    回転角
100, 200 Autonomous moving body 1 Moving parts 11a, 11b Main wheels 13a, 13b Motor 2 Movement control device 21 Teaching part 22 Self-position estimating part 23 Storage part 24 Traveling control part 241 Calculation parts 2411, 2412 Base point generation part 2411-1 , 2412-1 Target point extraction unit 2411-3, 2412-3 Target point selection unit 2411-5, 2412-5 Calculation unit 2411-7, 2412-7 Base point placement unit 2413 Rotating autonomous mobile body region generation unit 2415 Expected travel Trajectory generation unit 243 Determination unit 245 Movement control unit 25 Motor drive unit 25a, 25b Motor driver 26 Obstacle information acquisition unit 3 Detection unit 31 Front detector 33 Rear detector 5 Operation unit 51a, 51b Operation handle 53 Setting unit 55 Display unit 57 Interface 59 Housing 7 Body 8 Auxiliary Wheels 8a, 8b Auxiliary Wheel 9 Attaching Member A Autonomous Mobile Object Region V Center of Autonomous Mobile Object Region Long Diameter W of Elliptical Autonomous Mobile Object Region Short Diameter B of Elliptical Autonomous Mobile Object Region Base Point B n General base point xn x coordinate of base point (travel route information) y coordinate of n base point (travel route information) C1 circle C3 first circle C4 second circle r circle radius r 1 first radius r 2 Second radius P0 Unselected travel target points P1, P3 First travel target point P2, P4 Second travel target point VP, VP1 Virtual travel target point P4-V Line S connecting the current position and the second travel target point Obstacle S n Obstacle d Distance between the obstacle and the center of the autonomous mobile body region dn Distance between the obstacle and the center of the autonomous mobile body region T Expected travel locus T n Travel route information t n Time information θ posture information θ n posture information R1, R2, R3, R4, R5, R6 travel route m a positive integer n is a positive integer θ rotation angle

Claims (14)

  1.  移動部と、障害物を検出する検出部とを備え、予め作成した予定走行経路を再現するように移動する自律移動体の移動制御装置であって、
     前記自律移動体の現在位置と、前記現在位置から所定の距離を走行した位置である将来位置までの走行経路を表す走行経路情報と、前記自律移動体を内包した所定の形状を有する自律移動体領域と、に基づいて、前記現在位置から前記将来位置までの予想走行軌跡を演算する演算部と、
     前記検出部が検出した前記障害物と前記予想走行軌跡とが互いに干渉するか否かを判断する、判断部と、
     前記判断部において前記障害物と前記予想走行軌跡とが干渉しないと判断された場合、前記演算部により演算された前記予想走行軌跡を再現するように前記移動部を制御する移動指令を作成する移動制御部と、
    を備えた自律移動体の移動制御装置。
    A movement control device for an autonomous mobile body that includes a moving unit and a detecting unit that detects an obstacle, and moves so as to reproduce a planned travel route created in advance.
    An autonomous mobile body having a current shape of the autonomous mobile body, travel route information representing a travel route to a future position that is a position traveled a predetermined distance from the current position, and a predetermined shape including the autonomous mobile body A calculation unit that calculates an expected travel locus from the current position to the future position based on the area;
    A determination unit that determines whether or not the obstacle detected by the detection unit and the predicted traveling locus interfere with each other;
    When the determination unit determines that the obstacle and the predicted traveling locus do not interfere with each other, a movement for generating a movement command for controlling the moving unit to reproduce the predicted traveling locus calculated by the calculation unit A control unit;
    A mobile control device for an autonomous mobile body.
  2.  前記自律移動体領域の、前記自律移動体の移動平面における形状は異方性を有し、
     前記走行経路情報は、前記自律移動体の前記走行経路における位置情報と、前記走行経路上における前記自律移動体の姿勢情報とを含む、
     請求項1に記載の自律移動体の移動制御装置。
    The shape of the autonomous moving body region in the moving plane of the autonomous moving body has anisotropy,
    The travel route information includes position information on the travel route of the autonomous mobile body and posture information of the autonomous mobile body on the travel route,
    The autonomous mobile body movement control device according to claim 1.
  3.  前記自律移動体領域の前記移動平面における形状は楕円である、請求項2に記載の自律移動体の移動制御装置。 The autonomous mobile body movement control device according to claim 2, wherein a shape of the autonomous mobile body region in the movement plane is an ellipse.
  4.  前記走行経路情報は、前記自律移動体の前記走行経路上における時間情報をさらに含む、請求項2又は3に記載の自律移動体の移動制御装置。 4. The autonomous mobile body movement control device according to claim 2, wherein the travel route information further includes time information of the autonomous mobile body on the travel route.
  5.  前記演算部は、
     前記走行経路情報の前記位置情報として、前記走行経路上に複数のベース点を生成するベース点生成部と、
     前記走行経路情報の前記姿勢情報として、前記自律移動体領域を、前記移動平面の法線軸周りに回転して回転自律移動体領域を生成する、回転自律移動体領域生成部と、
     前記ベース点生成部にて生成された前記ベース点のそれぞれに、前記回転自律移動体領域生成部にて生成された前記回転自律移動体領域を配置することで、前記予想走行軌跡を生成する予想走行軌跡生成部と、
     を備える請求項2~4のいずれかに記載の自律移動体の移動制御装置。
    The computing unit is
    As the position information of the travel route information, a base point generation unit that generates a plurality of base points on the travel route;
    As the posture information of the travel route information, a rotating autonomous moving body region generating unit that generates a rotating autonomous moving body region by rotating the autonomous moving body region around a normal axis of the moving plane;
    Prediction for generating the predicted travel locus by arranging the rotation autonomous mobile body region generated by the rotation autonomous mobile body region generation unit at each of the base points generated by the base point generation unit. A travel locus generator,
    The autonomous mobile body movement control device according to any one of claims 2 to 4, further comprising:
  6.  前記予定走行経路は、複数の走行目標点により構成されており、
     前記ベース点生成部は、
     前記走行目標点のうち、前記現在位置から、前記現在位置を中心とする第1半径を有する第1の円の外側に存在する前記走行目標点のうち、前記現在位置に最も近く、かつ、前記現在位置よりも進行方向前方に存在する第1走行目標点までの前記走行目標点である前方走行目標点を抽出する目標点抽出部と、
     前記現在位置を中心とする第2半径を有する第2の円の外側に存在する前記前方走行目標点のうち、前記現在位置から最短の距離にある第2走行目標点を抽出する目標点選択部と、
     前記現在位置と前記第2走行目標点とを結ぶ線と、前記第2の円の円周との交点である仮想走行目標点を算出する算出部と、
     前記現在位置と、前記仮想走行目標点と、前記第2走行目標点と、前記第2走行目標点から前記第1走行目標点までの間の前記前方走行目標点とを、前記現在位置に近い順に結んで生成される前記走行経路上に、前記ベース点を所定の間隔にて配置するベース点配置部と、
     を備える、請求項5に記載の自律移動体の移動制御装置。
    The planned travel route is composed of a plurality of travel target points,
    The base point generator is
    Among the travel target points, the travel target points that are located outside the first circle having the first radius centered on the current position from the current position, the travel target point closest to the current position, and the A target point extraction unit that extracts a forward travel target point that is the travel target point up to a first travel target point that exists ahead of the current position in the traveling direction;
    A target point selection unit that extracts a second travel target point that is the shortest distance from the current position among the forward travel target points that exist outside a second circle having a second radius centered on the current position. When,
    A calculation unit that calculates a virtual travel target point that is an intersection of a line connecting the current position and the second travel target point and a circumference of the second circle;
    The current position, the virtual travel target point, the second travel target point, and the forward travel target point between the second travel target point and the first travel target point are close to the current position. A base point arrangement unit that arranges the base points at predetermined intervals on the travel route that is generated by connecting in order,
    The movement control apparatus of the autonomous mobile body of Claim 5 provided with these.
  7.  前記移動制御部は、前記判断部において前記障害物と前記予想走行軌跡とが干渉すると判断された場合、干渉する位置が前記現在位置から近い距離にあれば、前記自律移動体を停止し、前記現在位置から遠い距離にあれば、前記自律移動体を減速するように、前記移動部を制御する、請求項1~6のいずれかに記載の自律移動体の移動制御装置。 When the determination unit determines that the obstacle and the predicted travel locus interfere with each other, the movement control unit stops the autonomous mobile body if the interference position is close to the current position, The movement control device for an autonomous mobile body according to any one of claims 1 to 6, wherein the mobile unit is controlled so as to decelerate the autonomous mobile body at a distance far from a current position.
  8.  前記移動制御部は、前記判断部において前記障害物と前記予想走行軌跡とが干渉すると判断された場合、前記自律移動体を停止するように前記移動部を制御する、請求項1~6のいずれかに記載の自律移動体の移動制御装置。 The movement control unit controls the moving unit to stop the autonomous moving body when the determination unit determines that the obstacle and the predicted traveling locus interfere with each other. The movement control apparatus of the autonomous mobile body described in Crab.
  9.  移動部と、
     障害物を検出する検出部と、
     請求項1~8のいずれかに記載の移動制御装置と、
     を備えた自律移動体。
    A moving part;
    A detection unit for detecting obstacles;
    The movement control device according to any one of claims 1 to 8,
    Autonomous mobile body equipped with.
  10.  移動部と、障害物を検出する検出部とを備え、予め作成した予定走行経路を再現するように移動する自律移動体の制御方法であって、
     前記自律移動体の現在位置と、前記現在位置から所定の距離を走行した位置である将来位置までの走行経路を表す走行経路情報と、前記自律移動体を内包した所定の形状を有する自律移動体領域と、に基づいて、前記現在位置から前記将来位置までの予想走行軌跡を演算するステップと、
     前記検出部が検出した前記障害物と前記予想走行軌跡とが互いに干渉するか否かを判断するステップと、
     前記障害物と前記予想走行軌跡とが干渉しないと判断された場合、演算された前記予想走行軌跡を再現するように前記移動部を制御するステップと、
     を含む、自律移動体の移動制御方法。
    A method for controlling an autonomous mobile body that includes a moving unit and a detecting unit that detects an obstacle, and moves so as to reproduce a planned travel route created in advance.
    An autonomous mobile body having a current shape of the autonomous mobile body, travel route information representing a travel route to a future position that is a position traveled a predetermined distance from the current position, and a predetermined shape including the autonomous mobile body Calculating a predicted travel locus from the current position to the future position based on the area;
    Determining whether the obstacle detected by the detection unit and the predicted traveling locus interfere with each other;
    When it is determined that the obstacle and the predicted travel locus do not interfere with each other, the step of controlling the moving unit to reproduce the calculated predicted travel locus;
    A method for controlling the movement of an autonomous mobile body.
  11.  前記自律移動体領域の、前記自律移動体の移動平面における形状は異方性を有し、
     前記走行経路情報は、前記自律移動体の前記走行経路における位置情報と、前記走行経路上における前記自律移動体の姿勢情報とを含む、
     請求項10に記載の自律移動体の移動制御方法。
    The shape of the autonomous moving body region in the moving plane of the autonomous moving body has anisotropy,
    The travel route information includes position information on the travel route of the autonomous mobile body and posture information of the autonomous mobile body on the travel route,
    The movement control method of the autonomous mobile body according to claim 10.
  12.  前記自律移動体領域の前記移動平面における形状は楕円である、請求項11に記載の自律移動体の移動制御方法。 The autonomous mobile body movement control method according to claim 11, wherein a shape of the autonomous mobile body region in the moving plane is an ellipse.
  13.  前記走行経路情報は、前記自律移動体の前記走行経路上における時間情報をさらに含む、請求項11又は12に記載の自律移動体の移動制御方法。 The movement control method for an autonomous mobile body according to claim 11 or 12, wherein the travel route information further includes time information on the travel path of the autonomous mobile body.
  14.  前記予想走行軌跡を演算するステップは、
     前記走行経路情報の前記位置情報として、前記走行経路上に複数のベース点を生成するステップと、
     前記走行経路情報の前記姿勢情報として、前記自律移動体領域を、前記移動平面の法線軸周りに回転して回転自律移動体領域を生成するステップと、
     前記ベース点生成部にて生成された前記ベース点のそれぞれに、前記回転自律移動体領域生成部にて生成された前記回転自律移動体領域を配置することで、前記予想走行軌跡を生成するステップと、
     を備える請求項11~13のいずれかに記載の自律移動体の移動制御方法。
    The step of calculating the predicted traveling locus includes
    Generating a plurality of base points on the travel route as the position information of the travel route information;
    As the posture information of the travel route information, rotating the autonomous mobile body region around a normal axis of the moving plane to generate a rotational autonomous mobile body region;
    The step of generating the predicted travel locus by arranging the rotation autonomous mobile body region generated by the rotation autonomous mobile body region generation unit at each of the base points generated by the base point generation unit. When,
    The movement control method for an autonomous mobile body according to any one of claims 11 to 13, further comprising:
PCT/JP2014/060716 2013-05-07 2014-04-15 Autonomous moving body movement control device, autonomous moving body, and autonomous moving body control method WO2014181647A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013097780A JP6135289B2 (en) 2013-05-07 2013-05-07 Autonomous mobile object movement control device, autonomous mobile object, and autonomous mobile object control method
JP2013-097780 2013-05-07

Publications (1)

Publication Number Publication Date
WO2014181647A1 true WO2014181647A1 (en) 2014-11-13

Family

ID=51867129

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/060716 WO2014181647A1 (en) 2013-05-07 2014-04-15 Autonomous moving body movement control device, autonomous moving body, and autonomous moving body control method

Country Status (2)

Country Link
JP (1) JP6135289B2 (en)
WO (1) WO2014181647A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110609543A (en) * 2018-06-15 2019-12-24 丰田自动车株式会社 Autonomous moving body and control program for autonomous moving body
WO2020194253A1 (en) * 2019-03-27 2020-10-01 Rapyuta Robotics Co., Ltd. Generating a 2d-navigation map for collision-free navigation by multiple robots
WO2021039378A1 (en) * 2019-08-29 2021-03-04 ソニー株式会社 Information processing device, information processing method, and program

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102079524B1 (en) * 2015-07-29 2020-02-20 야마하하쓰도키 가부시키가이샤 Automatic driving vehicle and automatic driving system with the same
JP6690904B2 (en) * 2015-08-07 2020-04-28 ヤマハ発動機株式会社 Self-driving vehicle
JP7527950B2 (en) 2020-12-21 2024-08-05 株式会社東芝 Control device and program
JP7234446B1 (en) * 2022-05-11 2023-03-07 Dmg森精機株式会社 unmanned carrier system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06254741A (en) * 1993-03-03 1994-09-13 Makino Milling Mach Co Ltd Machining method
JPH0926826A (en) * 1995-07-07 1997-01-28 Tokyu Car Corp Obstacle detection method and device for automated guided vehicle
JP2009187343A (en) * 2008-02-07 2009-08-20 Toyota Motor Corp Autonomous mobile body, and method and system for controlling the same
JP2010092279A (en) * 2008-10-08 2010-04-22 Murata Machinery Ltd Autonomous mobile body and movement control method for the autonomous mobile body
JP2011141663A (en) * 2010-01-06 2011-07-21 Hitachi Plant Technologies Ltd Automated guided vehicle and travel control method for the same
JP2012168990A (en) * 2012-06-11 2012-09-06 Panasonic Corp Autonomous mobile device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06254741A (en) * 1993-03-03 1994-09-13 Makino Milling Mach Co Ltd Machining method
JPH0926826A (en) * 1995-07-07 1997-01-28 Tokyu Car Corp Obstacle detection method and device for automated guided vehicle
JP2009187343A (en) * 2008-02-07 2009-08-20 Toyota Motor Corp Autonomous mobile body, and method and system for controlling the same
JP2010092279A (en) * 2008-10-08 2010-04-22 Murata Machinery Ltd Autonomous mobile body and movement control method for the autonomous mobile body
JP2011141663A (en) * 2010-01-06 2011-07-21 Hitachi Plant Technologies Ltd Automated guided vehicle and travel control method for the same
JP2012168990A (en) * 2012-06-11 2012-09-06 Panasonic Corp Autonomous mobile device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110609543A (en) * 2018-06-15 2019-12-24 丰田自动车株式会社 Autonomous moving body and control program for autonomous moving body
WO2020194253A1 (en) * 2019-03-27 2020-10-01 Rapyuta Robotics Co., Ltd. Generating a 2d-navigation map for collision-free navigation by multiple robots
US11054273B2 (en) 2019-03-27 2021-07-06 Rapyuta Robotics Co., Ltd. Generating a 2D-navigation map for collision-free navigation by multiple robots
CN113728287A (en) * 2019-03-27 2021-11-30 睿普育塔机器人株式会社 Generating a 2D navigation map for collision-free navigation by multiple robots
JP2021535504A (en) * 2019-03-27 2021-12-16 Rapyuta Robotics株式会社 Computer-implemented methods, computer systems, and computer-readable media to generate 2D navigation maps for collision-free movement by multiple robots.
CN113728287B (en) * 2019-03-27 2022-08-09 睿普育塔机器人株式会社 Generating a 2D navigation map for collision-free navigation by multiple robots
JP7184309B2 (en) 2019-03-27 2022-12-06 Rapyuta Robotics株式会社 Computer-implemented method, computer system, and computer-readable medium for generating a 2D navigation map for collision-free locomotion by multiple robots
WO2021039378A1 (en) * 2019-08-29 2021-03-04 ソニー株式会社 Information processing device, information processing method, and program
US11892852B2 (en) 2019-08-29 2024-02-06 Sony Group Corporation Information processing apparatus and information processing method
JP7548235B2 (en) 2019-08-29 2024-09-10 ソニーグループ株式会社 Information processing device, information processing method, and program

Also Published As

Publication number Publication date
JP6135289B2 (en) 2017-05-31
JP2014219799A (en) 2014-11-20

Similar Documents

Publication Publication Date Title
WO2014181647A1 (en) Autonomous moving body movement control device, autonomous moving body, and autonomous moving body control method
JP6340824B2 (en) Autonomous vehicle
JP6711138B2 (en) Self-position estimating device and self-position estimating method
JP3217281B2 (en) Robot environment recognition apparatus and control method thereof
JP6263970B2 (en) Data structure of autonomous traveling vehicle and planned traveling route data
JP6136543B2 (en) Autonomous mobile
JP4467534B2 (en) A mobile robot that moves autonomously in an environment with obstacles and a method for controlling the mobile robot.
JP5157803B2 (en) Autonomous mobile device
JP6340812B2 (en) Autonomous vehicle
KR20160089285A (en) Autonomous driving vehicle system
JP5699670B2 (en) Travel route generation device and travel route generation method
JP2015111336A (en) Mobile robot
WO2014178273A1 (en) Movement control device for autonomous moving body, autonomous moving body, and movement control method
KR20150049861A (en) Apparatus and method for generating driving path of vehicle
JP4467533B2 (en) Folding line following mobile robot and control method of broken line following mobile robot
JP5947644B2 (en) Unmanned mobile system
JP6402436B2 (en) Autonomous traveling vehicle, planned traveling route data processing method, and program
JP7058761B2 (en) Mobile control device, mobile control learning device, and mobile control method
JP5439552B2 (en) Robot system
JP2021096602A (en) Apparatus and method for planning route and autonomous travel truck
WO2016072186A1 (en) Location detecting device, control method, and autonomous vehicle
TW200921316A (en) Multi-degree-of-freedom stage control apparatus
JP6589578B2 (en) Travel amount estimation device, autonomous mobile body, and travel amount estimation method
JP4975693B2 (en) Mobile robot apparatus and mobile robot control method
JP2023155919A (en) Travel area determination method and autonomous traveling body

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14794659

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14794659

Country of ref document: EP

Kind code of ref document: A1