WO2014181572A1 - 情報変換装置及び気象予測システム - Google Patents

情報変換装置及び気象予測システム Download PDF

Info

Publication number
WO2014181572A1
WO2014181572A1 PCT/JP2014/055437 JP2014055437W WO2014181572A1 WO 2014181572 A1 WO2014181572 A1 WO 2014181572A1 JP 2014055437 W JP2014055437 W JP 2014055437W WO 2014181572 A1 WO2014181572 A1 WO 2014181572A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
model
social
weather
meteorological
Prior art date
Application number
PCT/JP2014/055437
Other languages
English (en)
French (fr)
Inventor
将一 和田
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Priority to SG11201506760UA priority Critical patent/SG11201506760UA/en
Priority to EP14794315.3A priority patent/EP2996072A4/en
Priority to BR112015020533A priority patent/BR112015020533A2/pt
Publication of WO2014181572A1 publication Critical patent/WO2014181572A1/ja
Priority to US14/835,274 priority patent/US20150362624A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01WMETEOROLOGY
    • G01W1/00Meteorology
    • G01W1/10Devices for predicting weather conditions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01WMETEOROLOGY
    • G01W1/00Meteorology

Definitions

  • Embodiments of the present invention provide observation data acquired by social sensors used in social infrastructure, and social model data calculated by a social model that simulates social activities in social infrastructure.
  • the present invention relates to an information conversion device for converting into a weather and a weather prediction system using the device.
  • meteorological model Conventionally, prediction of meteorological phenomena has been performed by atmospheric simulation software called a meteorological model using equations such as fluid dynamics and thermodynamics. Meteorological phenomena affect many social activities. For example, if the temperature rises in summer, the power demand increases due to cooling by an air conditioner or the like. On the other hand, if the temperature drops in winter, the demand for electric power and gas increases to warm it. Therefore, the weather model data calculated by the weather model is used in a social model that simulates social activities in social infrastructure, and is useful for predicting power demand and the like.
  • meteorological data such as temperature, humidity, and rain observed by meteorological sensors has been used in social models, but power consumption, power generation, traffic, etc., observed by social sensors used in social infrastructure. The observation data was not used in the weather model.
  • meteorological data and meteorological model data have been used to calculate social model data in social models, but observation data and social model data have not been used in meteorological models. .
  • the purpose is to use an information conversion device that can convert observation data and social model data so that it can be used in a weather model, and use observation data and social model data converted by this device in a weather model.
  • the object is to provide a weather prediction system for predicting the weather.
  • the information conversion device is used in a weather prediction system including a weather sensor and a weather model calculation device.
  • the meteorological sensor generates meteorological data obtained by observing meteorological elements.
  • the meteorological model calculation device calculates the weather model data that predicts the local weather by taking the wide-area weather forecast information and the weather data into a pre-built weather model and executing a simulation using the weather model To do.
  • the information conversion device includes an observation data conversion unit and a social model conversion unit.
  • the observation data conversion unit receives observation data obtained by observing state quantities in social infrastructure, converts the received observation data into a format that can be reflected in the weather model, and transmits the converted data to the weather model calculation device.
  • the social model conversion unit receives social model data in which the state quantity in the social infrastructure is simulated, converts the received social model data into a format that can be reflected in the weather model, and converts the converted data to the weather Send to model calculator.
  • FIG. 1 is a diagram illustrating a configuration of a weather prediction system according to the first embodiment.
  • FIG. 2 is a block diagram showing a functional configuration of the weather prediction system shown in FIG.
  • FIG. 3 is a block diagram showing a functional configuration of the information conversion apparatus shown in FIG.
  • FIG. 4 is a diagram showing a flowchart when the weather prediction system shown in FIG. 1 calculates weather model data.
  • FIG. 5 is a diagram illustrating a configuration of a weather prediction system according to the second embodiment.
  • FIG. 1 is a diagram illustrating a configuration of a weather prediction system according to the first embodiment.
  • a solar power plant 11, a wind power plant 12, a road traffic infrastructure 13, a customer 14, and a water treatment infrastructure 15 are shown as examples of social infrastructure.
  • Social infrastructure is not limited to this, and there are various types of infrastructure such as heat supply infrastructure and medical infrastructure.
  • the solar power plant 11, the wind power plant 12, the road traffic infrastructure 13, the customer 14, and the water treatment infrastructure 15 are provided with social sensors.
  • the solar power plant 11 includes a power meter 111 that measures the amount of solar power generation.
  • the wind power plant 12 includes a power meter 121 that measures the amount of wind power generation.
  • the road traffic infrastructure 13 includes a traffic measurement sensor 131 that measures traffic.
  • the consumer 14 includes a gas meter 141 that measures the amount of gas consumed by the consumer 14 and a smart meter 142 that measures the amount of power consumed by the consumer 14.
  • the water treatment infrastructure 15 includes a water amount sensor 151 that measures the amount of water used for the consumer 14.
  • the surveillance camera 161 is a social sensor that monitors the movement of clouds. 1 shows a case where the surveillance camera 161 does not belong to any social infrastructure, the solar power plant 11, the wind power plant 12, the road traffic infrastructure 13, the customer 14, and the water treatment infrastructure. It may be provided in any of 15 social infrastructures.
  • the meteorological sensors 21 are arranged in various places, and include a temperature / humidity meter, a solar radiation meter, a wind direction anemometer, a ground rain meter and the like.
  • the thermohygrometer measures temperature and humidity.
  • the solar radiation meter measures the amount of solar radiation.
  • the wind direction anemometer measures the wind direction and the wind speed.
  • the ground rain gauge measures the rainfall due to rainfall.
  • the solar power plant 11, the wind power plant 12, the road traffic infrastructure 13, the customer 14, the water treatment infrastructure 15, the monitoring camera 161, and the weather sensor 21 are connected to a communication line of a communication network.
  • the cloud computing system 100 is connected to a communication network via a gateway (GW) 101 by a communication line.
  • a communication network is taken as an example of a guarantee type network. That is, in the present embodiment, the cloud computing system 100, the infrastructures 11 to 15, the monitoring camera 161, and the weather sensor 21 are connected via a network that can guarantee a communication band.
  • the communication network a dedicated line using optical communication technology, a VPN (Virtual Private Network) constructed in an IP (Internet Protocol) network, or the like is adopted.
  • the cloud computing system 100 includes a weather model calculation device 102, an information conversion device 103, and a social model calculation device 104.
  • the weather model calculation device 102 is connected to the cloud communication network via the information conversion device 103.
  • the social model calculation device 104 is included in a social infrastructure cloud, and is formed from a single computer or a server composed of a plurality of computers and a database.
  • the database may be provided in one computer or may be distributed in a plurality of computers.
  • FIG. 2 is a block diagram showing a functional configuration of the weather prediction system shown in FIG.
  • the meteorological sensor 21 includes a temperature / humidity meter, a solar radiation meter, a wind direction anemometer, a ground rain meter, and the like.
  • the thermohygrometer transmits the temperature and humidity to be measured to the weather model calculation device 102 and the social model calculation device 104 as weather data.
  • the solar radiation meter transmits the amount of solar radiation to be measured to the weather model calculation device 102 and the social model calculation device 104 as weather data.
  • the wind direction anemometer transmits the measured wind direction and wind speed to the weather model calculation device 102 and the social model calculation device 104 as weather data.
  • the ground rain gauge transmits the rainfall to be measured to the weather model calculation device 102 and the social model calculation device 104 as weather data.
  • Social sensors include power meters 111 and 121, a traffic measurement sensor 131, a gas meter 141, a smart meter 142, and a monitoring camera 161.
  • the power meter 111 transmits the amount of photovoltaic power generation to be measured to the information conversion device 103 and the social model calculation device 104 as observation data.
  • the power meter 121 transmits the wind power generation amount to be measured to the information conversion device 103 and the social model calculation device 104 as observation data.
  • the traffic volume measurement sensor 131 transmits the traffic volume to be measured to the information conversion apparatus 103 and the social model calculation apparatus 104 as observation data.
  • the gas meter 141 transmits the gas consumption to be measured to the information conversion device 103 and the social model calculation device 104 as observation data.
  • the smart meter 142 transmits the power consumption to be measured to the information conversion device 103 and the social model calculation device 104 as observation data.
  • the water amount sensor 151 transmits the amount of water to be measured to the information conversion device 103 and the social model calculation device 104 as observation data.
  • the social model calculation device 104 periodically collects weather data transmitted from the weather sensor 21 and observation data transmitted from the social sensor.
  • the social model calculation device 104 receives weather model data that is weather information predicted by the weather model calculation device 102.
  • the social model calculation device 104 reflects weather data, observation data, and weather model data in the social model.
  • the social model is a model that simulates social activities in social infrastructure.
  • the social model calculation device 104 calculates social model data by executing a simulation based on this social model.
  • Social model data predicts the amount of state in social infrastructure.
  • the social model calculation device 104 transmits the calculated social model data to each social infrastructure and the information conversion device 103.
  • the social model calculation device 104 records the relationship between the amount of photovoltaic power generation included in the observation data and the temperature and the amount of solar radiation included in the weather data as past results.
  • the social model calculation device 104 predicts the amount of photovoltaic power generation by comparing the temperature and the amount of solar radiation included in the weather model data with past results.
  • the social model calculation device 104 transmits the predicted photovoltaic power generation amount to the photovoltaic power plant 11 and the information conversion device 103. In the photovoltaic power plant 11, the in-house device is driven according to the predicted photovoltaic power generation amount.
  • the social model calculation device 104 records the relationship between the wind power generation amount included in the observation data and the wind direction and wind speed included in the weather data as past results.
  • the social model calculation device 104 predicts the amount of wind power generation by comparing the wind direction and wind speed included in the weather model data with the past performance.
  • the social model calculation device 104 transmits the predicted wind power generation amount to the wind power plant 12 and the information conversion device 103. In the wind power plant 12, the in-house device is driven according to the predicted wind power generation amount.
  • the social model calculation device 104 records the relationship between the traffic volume included in the observation data and the wind direction, wind speed, and rainfall included in the weather data as past results.
  • the social model calculation device 104 predicts the traffic distribution by comparing the wind direction, wind speed, and rainfall included in the weather model data with past results.
  • the social model calculation device 104 transmits the predicted traffic distribution to the road traffic infrastructure 13 and the information conversion device 103. In the road traffic infrastructure 13, devices in the infrastructure are driven according to the predicted traffic distribution.
  • the social model calculation device 104 records the relationship between the gas consumption included in the observation data and the temperature included in the weather data as a past performance.
  • the social model calculation device 104 predicts the gas demand by comparing the temperature included in the weather model data with the past performance.
  • the social model calculation device 104 transmits the predicted gas demand to the customer 14.
  • the consumer 14 exists in a gas supply area to which gas is supplied, and drives the equipment in the building or the home according to the predicted gas demand.
  • the social model calculation device 104 creates a surface distribution of gas demand representing the gas demand for each gas supply area based on the predicted gas demand.
  • the social model calculation device 104 transmits the created gas demand surface distribution to the information conversion device 103.
  • the social model calculation device 104 records the relationship between the power consumption included in the observation data and the temperature and humidity included in the weather data as past results.
  • the social model calculation device 104 predicts the power demand by comparing the temperature and humidity included in the weather model data with the past performance.
  • the social model calculation device 104 transmits the predicted power demand to the customer 14.
  • the consumer 14 exists in a power supply area to which power is supplied, and drives a device in the building or home according to the predicted power demand.
  • the social model calculation device 104 creates a surface distribution of power demand that represents power demand for each power supply area based on the predicted power demand.
  • the social model calculation device 104 transmits the created surface distribution of power demand to the information conversion device 103.
  • the social model calculation device 104 records the relationship between the water amount and power consumption included in the observation data and the temperature and humidity included in the weather data as past results.
  • the social model calculation device 104 predicts the water demand by comparing the temperature and humidity included in the weather model data with the power demand predicted by the social model calculation device 104 in the past.
  • the social model calculation device 104 transmits the predicted water demand to the water treatment infrastructure 15. In the water treatment infrastructure 15, devices in the infrastructure are driven according to the predicted water demand.
  • the social model calculation device 104 can obtain information useful for social activities by using the weather model data calculated by the weather model calculation device 102.
  • the social model calculation device 104 calculates social model data by substituting the weather model data predicted by the weather model calculation device 102 into the created approximate expression.
  • the social model calculation device 104 may perform large-scale processing for approximate expression calculation in real time.
  • the social model calculation device 104 refers to the created table data and calculates social model data from the weather model data predicted by the weather model calculation device 102. As described above, the social model calculation apparatus 104 may perform a large-scale process for creating table data offline.
  • the information conversion device 103 converts the observation data transmitted from the social sensor and the social model data transmitted from the social model calculation device 104 so that the weather model calculation device 102 can use them.
  • FIG. 3 is a block diagram illustrating a functional configuration of the information conversion apparatus 103 according to the first embodiment.
  • the information conversion apparatus 103 includes an observation data conversion unit 1031, a social model conversion unit 1032, and a database 1033.
  • observation data measured by the social sensor and weather data measured by the weather sensor 21 are recorded for a preset period, for example, for one year.
  • the observation data conversion unit 1031 refers to past information recorded in the database 1033, and converts the observation data measured by the social sensor into a format that can be used by the weather model calculation apparatus 102.
  • the observation data conversion unit 1031 transmits the converted data to the weather model calculation device 102.
  • the observation data conversion unit 1031 refers to past information about the amount of sunlight recorded in the database 1033, and converts the amount of solar power generation measured by the power meter 111 into the amount of solar radiation. Further, the observation data conversion unit 1031 refers to past information about the wind speed recorded in the database 1033, and converts the wind power generation amount measured by the power meter 121 into the wind speed. In addition, the observation data conversion unit 1031 refers to information on the amount of heat per vehicle and the amount of discharged water vapor recorded in the database 1033, and converts the traffic volume measured by the traffic volume sensor 131 into sensible heat and water vapor. To do.
  • observation data conversion unit 1031 refers to information on the amount of heat per gas consumption recorded in the database 1033, the amount of discharged steam, and the like, and converts the gas consumption measured by the gas meter 141 into sensible heat and water vapor. Further, the observation data conversion unit 1031 refers to information on the amount of heat per power consumption recorded in the database 1033 and converts the power consumption measured by the smart meter 142 into sensible heat. In addition, the observation data conversion unit 1031 refers to past information about the cloud distribution recorded in the database 1033, and converts the captured image captured by the monitoring camera 161 into a cloud distribution.
  • the social model conversion unit 1032 is generated for each grid point, which will be described later, used in the weather model calculation device 102 from the gas demand surface distribution, the power demand surface distribution, and the traffic volume distribution predicted by the social model calculation device 104. Predict the amount of heat generated.
  • the amount of generated heat corresponds to sensible heat from the ground surface.
  • the social model conversion unit 1032 calculates the amount of water vapor generated at each lattice point described later, which is used in the weather model calculation device 102, from the surface distribution and traffic volume distribution of the gas demand predicted by the social model calculation device 104. Predict.
  • the social model conversion unit 1032 transmits the predicted heat generation amount and water vapor generation amount to the weather model calculation apparatus 102.
  • the meteorological model calculation device 102 includes GSM (Global Spectrum Model), RSM (Regional Spectrum Model), MSM (Mesoscale Spectrum Model), ECMWF (European Center for Medium-Range Weather, Forecasts), etc. distributed online from the Japan Meteorological Agency and overseas organizations.
  • the forecast data of meteorological elements on grid points called GPV (Grid Point Value) data (provided by the Japan Meteorological Agency twice a day, 9 o'clock and 9 o'clock) are received as parent model data.
  • GPV Grid Point Value
  • the weather model calculation apparatus 102 periodically collects weather data measured by the weather sensor 21.
  • the weather model calculation device 102 receives the conversion data converted by the information conversion device 103.
  • the conversion data includes the cloud distribution, the solar radiation amount, the wind speed, the sensible heat, and the water vapor converted from the observation data, and the generated heat amount and the generated water vapor amount converted from the social model data.
  • the meteorological model calculation apparatus 102 reflects the parent model data, meteorological data, and conversion data in atmospheric simulation software called a meteorological model constructed using equations such as fluid dynamics and thermodynamics, and performs simulation using the meteorological model. To predict weather phenomena. As a result, the weather model calculation apparatus 102 calculates weather model data that is local weather prediction information having a grid interval smaller than that of the GPV data at a predetermined time while taking into account the results of social activities in the social infrastructure. . The weather model calculation apparatus 102 supplies the calculated weather model data to countries, local governments, companies, and the like that require weather prediction data, and transmits the data to the social model calculation apparatus 104.
  • FIG. 4 is a diagram illustrating a flowchart when the weather prediction system according to the first embodiment calculates weather model data.
  • the meteorological model calculation apparatus 102 receives the parent model data and the meteorological data, and executes a simulation using a meteorological model reflecting the received parent model data and meteorological data (step S41). Thereby, weather model data in which a local weather condition at a predetermined time is predicted is calculated.
  • the meteorological model calculation apparatus 102 supplies the calculated meteorological model data to the social model calculation apparatus 104 and countries, local governments, companies, and the like that require weather forecast data.
  • the social model calculation device 104 calculates social model data based on the weather data measured by the weather sensor 21, the observation data observed by the social sensor, and the weather model data calculated by the weather model calculation device 102. (Step S42). The social model calculation device 104 transmits the calculated social model data to the information conversion device 103 and the social infrastructure.
  • the information conversion device 103 converts the observation data measured by the social sensor and the social model data calculated by the social model calculation device 104 into a format that can be used by the weather model in the weather model calculation device 102 (step S43). ).
  • the information conversion device 103 transmits the conversion data to the weather model calculation device 102.
  • the meteorological model calculation apparatus 102 receives the parent model data, the meteorological data, and the converted data, and executes a simulation using a meteorological model reflecting the received parent model data, meteorological data, and converted data (step S44). Thereby, the weather model data in which the local weather condition at the predetermined time is predicted is calculated while taking into consideration the result of the social activity in the social infrastructure.
  • the meteorological model calculation apparatus 102 supplies the calculated meteorological model data to the social model calculation apparatus 104 and countries, local governments, companies, and the like that require weather forecast data. Thereby, a process transfers to step S42.
  • the information conversion device 103 converts the observation data observed by the social sensor into a state quantity that can be reflected in the weather model data, and calculates the social calculated by the social model calculation device 104.
  • the model data is converted into the amount of heat generated and the amount of water vapor generated.
  • the information conversion device 103 can convert the observation data and the social model data so that they can be used in the weather model in the weather model calculation device 102.
  • the information conversion apparatus 103 uses the observation data observed by the social sensor and the social model data calculated by the social model calculation apparatus 104 for the weather model in the weather model calculation apparatus 102. Data assimilation.
  • the weather model calculation apparatus 102 calculates the weather model data using the converted data obtained by converting the observation data and the social data model, the parent model data, and the weather data. As a result, it is possible to reflect in the meteorological model phenomena that directly affect meteorological phenomena, such as temperature and humidity increases, which occur as a result of social activities.
  • the weather prediction system it is possible to predict the weather condition with high accuracy in consideration of social activities in the social infrastructure. Furthermore, since the weather condition can be predicted with high accuracy, the accuracy of the social model is increased, leading to the efficiency of social activities.
  • FIG. 5 is a diagram illustrating a configuration of a weather prediction system according to the second embodiment.
  • the information conversion device 105 is included in the social infrastructure cloud together with the social model calculation device 104.
  • the information conversion device 105 receives the observation data measured by the social sensor and the social model data calculated by the social model calculation device 104, and converts the received data into a format that can be used by the weather model calculation device 102. To do.
  • the information conversion apparatus 105 transmits the converted data after conversion to the weather model calculation apparatus 102 via the cloud communication network.
  • the information conversion apparatus 105 uses the observation data observed by the social sensor and the social model data calculated by the social model calculation apparatus 104 for the weather model in the weather model calculation apparatus 102. Data assimilation.

Landscapes

  • Environmental & Geological Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Ecology (AREA)
  • Environmental Sciences (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

 情報変換装置は、気象センサ及び気象モデル計算装置を備える気象予測システムで用いられる。気象センサは、気象要素を観測した気象データを生成する。気象モデル計算装置は、広域気象予測情報と前記気象データとを予め構築された気象モデルに取り込み、前記気象モデルによるシミュレーションを実行することで、局所的な地域の気象を予測した気象モデルデータを算出する。情報変換装置は、観測データ変換部及び社会モデル変換部を備える。観測データ変換部は、社会インフラにおける状態量を観測した観測データを受信し、前記受信した観測データを、前記気象モデルへ反映可能な形式に変換し、この変換データを前記気象モデル計算装置へ送信する。社会モデル変換部は、社会インフラにおける状態量を模擬的に予測した社会モデルデータを受信し、前記受信した社会モデルデータを、前記気象モデルへ反映可能な形式に変換し、この変換データを前記気象モデル計算装置へ送信する。

Description

情報変換装置及び気象予測システム
 本発明の実施形態は、社会インフラで用いられる社会センサにより取得される観測データと、社会インフラにおける社会活動をシミュレートする社会モデルで算出される社会モデルデータとを、気象予測で利用可能なデータへ変換する情報変換装置と、この装置を用いる気象予測システムに関する。
 従来、気象現象の予測は、流体力学及び熱力学等の方程式を用いた気象モデルと呼ばれる大気シミュレーションソフトウェアにより行われている。気象現象は、多くの社会活動に影響を与える。例えば、夏場に気温が高くなれば、エアコン等による冷却のために電力需要が増大する。一方、冬場に気温が下がれば、温めるために電力やガスの需要が増大する。そのため、気象モデルにより算出される気象モデルデータは、社会インフラにおける社会活動をシミュレートする社会モデルで利用され、電力需要等の予測に役立っている。
 ところで、近年では社会活動は大規模化し、気象現象に影響を与えるようになった。例えば、電力消費及びガスの消費が増えると、空間に熱が放出され気温が上昇する。しかしながら、気象モデルで社会活動がもたらす影響が考慮されることはなかった。すなわち、社会モデルを用いて算出された社会モデルデータが気象モデルで利用されることはなかった。
 同様に、気象センサで観測される気温、湿度及び雨等の気象データは社会モデルで利用されてきたが、社会インフラにおいて使用される社会センサにより観測される電力消費、発電量及び交通量等の観測データは、気象モデルで利用されることはなかった。
特開2005-134243号公報
 以上のように、従来では、気象データ及び気象モデルデータは、社会モデルにおいて社会モデルデータを算出するのに利用されていたが、観測データ及び社会モデルデータが気象モデルで利用されることはなかった。
 そこで、目的は、観測データ及び社会モデルデータを、気象モデルで利用可能なように変換することが可能な情報変換装置と、この装置により変換した観測データ及び社会モデルデータを気象モデルで利用して気象を予測する気象予測システムとを提供することにある。
 実施形態によれば、情報変換装置は、気象センサ及び気象モデル計算装置を備える気象予測システムで用いられる。気象センサは、気象要素を観測した気象データを生成する。気象モデル計算装置は、広域気象予測情報と前記気象データとを予め構築された気象モデルに取り込み、前記気象モデルによるシミュレーションを実行することで、局所的な地域の気象を予測した気象モデルデータを算出する。情報変換装置は、観測データ変換部及び社会モデル変換部を備える。観測データ変換部は、社会インフラにおける状態量を観測した観測データを受信し、前記受信した観測データを、前記気象モデルへ反映可能な形式に変換し、この変換データを前記気象モデル計算装置へ送信する。社会モデル変換部は、社会インフラにおける状態量を模擬的に予測した社会モデルデータを受信し、前記受信した社会モデルデータを、前記気象モデルへ反映可能な形式に変換し、この変換データを前記気象モデル計算装置へ送信する。
図1は、第1の実施形態に係る気象予測システムの構成を示す図である。 図2は、図1に示す気象予測システムの機能構成を示すブロック図である。 図3は、図2に示す情報変換装置の機能構成を示すブロック図である。 図4は、図1に示す気象予測システムが気象モデルデータを算出する際のフローチャートを示す図である。 図5は、第2の実施形態に係る気象予測システムの構成を示す図である。
 以下、実施の形態について、図面を参照して説明する。
 (第1の実施形態) 
 図1は、第1の実施形態に係る気象予測システムの構成を示す図である。図1において、社会インフラの例として太陽光発電所11、風力発電所12、道路交通インフラ13、需要家14、及び水処理インフラ15を示す。なお、社会インフラは、これに限らず熱供給インフラ及び医療インフラ等、多種多様に存在する。
 太陽光発電所11、風力発電所12、道路交通インフラ13、需要家14、及び水処理インフラ15は、社会センサを備える。例えば、太陽光発電所11は、太陽光発電量を計測する電力メータ111を備える。風力発電所12は、風力発電量を計測する電力メータ121を備える。道路交通インフラ13は、交通量を計測する交通量計測センサ131を備える。需要家14は、需要家14によるガスの消費量を計測するガスメータ141と、需要家14による電力の消費量を計測するスマートメータ142を備える。水処理インフラ15は、需要家14へ使用する水量を計測する水量センサ151を備える。
 監視カメラ161は、雲の動きを監視する社会センサである。なお、図1では、監視カメラ161は、いずれの社会インフラにも属していない場合を示しているが、太陽光発電所11、風力発電所12、道路交通インフラ13、需要家14及び水処理インフラ15等の社会インフラのいずれに設けられていても構わない。
 気象センサ21は、それぞれ各地に配置され、温湿度計、日射量計、風向風速計及び地上雨量計等を含む。温湿度計は、温度及び湿度を計測する。日射量計は、日射量を計測する。風向風速計は、風向及び風速を計測する。地上雨量計は、降雨による雨量を計測する。
 太陽光発電所11、風力発電所12、道路交通インフラ13、需要家14、水処理インフラ15、監視カメラ161、及び、気象センサ21は、通信ネットワークの通信回線に接続される。
 クラウドコンピューティングシステム100は、通信回線によりゲートウェイ(GW)101を介して通信ネットワークに接続される。本実施形態では、ギャランティ型ネットワークの一例として通信ネットワークを採りあげる。つまり、本実施形態では、クラウドコンピューティングシステム100と、各インフラ11~15、監視カメラ161及び気象センサ21とは、通信帯域を保証可能なネットワークを介して接続される。通信ネットワークには、光通信技術を応用した専用回線、及び、IP(Internet Protocol)ネットワークに構築したVPN(Virtual Private Network)等が採用される。
 クラウドコンピューティングシステム100は、気象モデル計算装置102、情報変換装置103及び社会モデル計算装置104を備える。気象モデル計算装置102は、情報変換装置103を介してクラウド通信網と接続する。社会モデル計算装置104は、社会インフラクラウドに含まれ、単体のコンピュータ、又は、複数のコンピュータの総体から構成されるサーバと、データベースとから形成される。データベースは、一つのコンピュータに備えられていても、複数のコンピュータに分散して配置されていてもよい。
 図2は、図1に示す気象予測システムの機能構成を示すブロック図である。
 気象センサ21は、温湿度計、日射量計、風向風速計及び地上雨量計等を含む。温湿度計は、計測する温度及び湿度を気象データとして気象モデル計算装置102及び社会モデル計算装置104へ送信する。日射量計は、計測する日射量を気象データとして気象モデル計算装置102及び社会モデル計算装置104へ送信する。風向風速計は、計測する風向及び風速を気象データとして気象モデル計算装置102及び社会モデル計算装置104へ送信する。地上雨量計は、計測する雨量を気象データとして気象モデル計算装置102及び社会モデル計算装置104へ送信する。
 社会センサは、電力メータ111,121、交通量計測センサ131、ガスメータ141、スマートメータ142及び監視カメラ161を含む。電力メータ111は、計測する太陽光発電量を観測データとして情報変換装置103及び社会モデル計算装置104へ送信する。電力メータ121は、計測する風力発電量を観測データとして情報変換装置103及び社会モデル計算装置104へ送信する。交通量計測センサ131は、計測する交通量を観測データとして情報変換装置103及び社会モデル計算装置104へ送信する。ガスメータ141は、計測するガス消費量を観測データとして情報変換装置103及び社会モデル計算装置104へ送信する。スマートメータ142は、計測する電力消費量を観測データとして情報変換装置103及び社会モデル計算装置104へ送信する。水量センサ151は、計測する水量を観測データとして情報変換装置103及び社会モデル計算装置104へ送信する。
 社会モデル計算装置104は、気象センサ21から送信される気象データ、及び、社会センサから送信される観測データを定期的に収集する。また、社会モデル計算装置104は、気象モデル計算装置102により予測される気象情報である気象モデルデータを受信する。社会モデル計算装置104は、気象データ、観測データ及び気象モデルデータを、社会モデルに反映させる。社会モデルは、社会インフラにおける社会活動を模擬するモデルである。社会モデル計算装置104は、この社会モデルによるシミュレーションを実行することで、社会モデルデータを算出する。社会モデルデータは、社会インフラにおける状態量を予測するものである。社会モデル計算装置104は、算出した社会モデルデータを各社会インフラ及び情報変換装置103へ送信する。
 例えば、社会モデル計算装置104は、観測データに含まれる太陽光発電量と、気象データに含まれる気温及び日射量との関係を過去の実績として記録する。社会モデル計算装置104は、気象モデルデータに含まれる気温及び日射量を、過去の実績に照らし合わせ、太陽光発電量を予測する。社会モデル計算装置104は、予測した太陽光発電量を太陽光発電所11及び情報変換装置103へ送信する。太陽光発電所11では、予測された太陽光発電量に応じて所内の装置が駆動される。
 また、社会モデル計算装置104は、観測データに含まれる風力発電量と、気象データに含まれる風向及び風速との関係を過去の実績として記録する。社会モデル計算装置104は、気象モデルデータに含まれる風向及び風速を、過去の実績に照らし合わせ、風力発電量を予測する。社会モデル計算装置104は、予測した風力発電量を風力発電所12及び情報変換装置103へ送信する。風力発電所12では、予測された風力発電量に応じて所内の装置が駆動される。
 また、社会モデル計算装置104は、観測データに含まれる交通量と、気象データに含まれる風向、風速及び雨量との関係を過去の実績として記録する。社会モデル計算装置104は、気象モデルデータに含まれる風向、風速及び雨量を、過去の実績に照らし合わせ、交通量分布を予測する。社会モデル計算装置104は、予測した交通量分布を道路交通インフラ13及び情報変換装置103へ送信する。道路交通インフラ13では、予測された交通量分布に応じてインフラにおける装置が駆動される。
 また、社会モデル計算装置104は、観測データに含まれるガス消費量と、気象データに含まれる気温との関係を過去の実績として記録する。社会モデル計算装置104は、気象モデルデータに含まれる気温を、過去の実績に照らし合わせ、ガス需要量を予測する。社会モデル計算装置104は、予測したガス需要量を需要家14へ送信する。需要家14は、ガスが供給されるガス供給エリア内に存在しており、予測されたガス需要量に応じ、ビル内又は家庭内の機器を駆動させる。社会モデル計算装置104は、予測したガス需要量に基づき、ガス供給エリア毎のガス需要を表すガス需要の面分布を作成する。社会モデル計算装置104は、作成したガス需要の面分布を情報変換装置103へ送信する。
 また、社会モデル計算装置104は、観測データに含まれる電力消費量と、気象データに含まれる気温及び湿度との関係を過去の実績として記録する。社会モデル計算装置104は、気象モデルデータに含まれる気温及び湿度を、過去の実績に照らし合わせ、電力需要量を予測する。社会モデル計算装置104は、予測した電力需要量を需要家14へ送信する。需要家14は、電力が供給される電力供給エリア内に存在しており、予測された電力需要量に応じ、ビル内又は家庭内の機器を駆動させる。社会モデル計算装置104は、予測した電力需要量に基づき、電力供給エリア毎の電力需要を表す電力需要の面分布を作成する。社会モデル計算装置104は、作成した電力需要の面分布を情報変換装置103へ送信する。
 また、社会モデル計算装置104は、観測データに含まれる水量及び電力消費量と、気象データに含まれる気温及び湿度との関係を過去の実績として記録する。社会モデル計算装置104は、気象モデルデータに含まれる気温及び湿度と、社会モデル計算装置104により予測される電力需要量とを、過去の実績に照らし合わせ、水需要量を予測する。社会モデル計算装置104は、予測した水需要量を水処理インフラ15へ送信する。水処理インフラ15では、予測された水需要量に応じてインフラ内の装置が駆動される。
 このように、社会モデル計算装置104は、気象モデル計算装置102により算出される気象モデルデータを利用することで、社会活動に有益な情報を得ることが可能となる。
 なお、社会モデル計算装置104において過去の実績を参照する方法としては、例えば、過去の情報を統計解析することにより、気象データと、観測データとの関係を表す近似式を予め作成する方法が挙げられる。社会モデル計算装置104は、作成した近似式に、気象モデル計算装置102により予測される気象モデルデータを代入することで、社会モデルデータを算出する。このように、社会モデル計算装置104は、リアルタイムで近似式計算についての大規模処理を行っても良い。
 また、過去の情報を統計解析することで、気象データと、観測データとをテーブルデータ等により予め関連付けるようにしても良い。社会モデル計算装置104は、作成したテーブルデータを参照し、気象モデル計算装置102により予測される気象モデルデータから社会モデルデータを算出する。このように、社会モデル計算装置104は、オフラインでテーブルデータ作成についての大規模処理を行っておくようにしても良い。
 情報変換装置103は、社会センサから送信される観測データと、社会モデル計算装置104から送信される社会モデルデータとを、気象モデル計算装置102で使用可能なように変換する。図3は、第1の実施形態に係る情報変換装置103の機能構成を示すブロック図である。情報変換装置103は、観測データ変換部1031、社会モデル変換部1032及びデータベース1033を備える。データベース1033には、社会センサにより計測された観測データと、気象センサ21により計測される気象データとが、予め設定された期間分、例えば、1年分だけ記録されている。
 観測データ変換部1031は、データベース1033に記録される過去の情報を参照し、社会センサにより計測された観測データを気象モデル計算装置102で使用可能な形式に変換する。観測データ変換部1031は、変換後のデータを気象モデル計算装置102へ送信する。
 例えば、観測データ変換部1031は、データベース1033に記録される日照量についての過去の情報を参照し、電力メータ111により計測される太陽光発電量を日射量に変換する。また、観測データ変換部1031は、データベース1033に記録される風速についての過去の情報を参照し、電力メータ121により計測される風力発電量を風速に変換する。また、観測データ変換部1031は、データベース1033に記録される車1台当たりの熱量及び排出水蒸気量等に関する情報を参照し、交通量計測センサ131により計測される交通量を顕熱及び水蒸気に変換する。また、観測データ変換部1031は、データベース1033に記録されるガス消費量当たりの熱量及び排出水蒸気量等に関する情報を参照し、ガスメータ141により計測されるガス消費量を顕熱及び水蒸気に変換する。また、観測データ変換部1031は、データベース1033に記録される電力消費量当たりの熱量等に関する情報を参照し、スマートメータ142により計測される電力消費量を顕熱に変換する。また、観測データ変換部1031は、データベース1033に記録される雲分布についての過去の情報を参照し、監視カメラ161により撮影される撮影画像を雲分布に変換する。
 社会モデル変換部1032は、社会モデル計算装置104により予測されるガス需要の面分布、電力需要の面分布及び交通量分布から、気象モデル計算装置102において用いられる、後述の格子点毎に発生する発生熱量を予測する。ここで、発生熱量は、地表面からの顕熱に相当するものである。
 また、社会モデル変換部1032は、社会モデル計算装置104により予測されるガス需要の面分布及び交通量分布から、気象モデル計算装置102において用いられる、後述の格子点毎に発生する発生水蒸気量を予測する。社会モデル変換部1032は、予測した発生熱量及び発生水蒸気量を気象モデル計算装置102へ送信する。
 気象モデル計算装置102は、気象庁や海外機関からオンラインで配信されるGSM(Global Spectrum Model)、RSM(Regional Spectrum Model)、MSM(Mesoscale Spectrum Model)、ECMWF(European Centre for Medium-Range Weather Forecasts)等のGPV(Grid Point Value)データと呼ばれる格子点上の気象要素の予測データ(1日2回、9時及び21時に気象庁から提供される)を親モデルデータとして受け取る。また、気象モデル計算装置102は、気象センサ21により計測される気象データを定期的に収集する。また、気象モデル計算装置102は、情報変換装置103で変換された変換データを受け取る。ここで、変換データには、観測データが変換された雲分布、日射量、風速、顕熱及び水蒸気と、社会モデルデータが変換された発生熱量及び発生水蒸気量が含まれる。
 気象モデル計算装置102は、親モデルデータ、気象データ及び変換データを、流体力学、熱力学等の方程式を用いて構築される気象モデルと称される大気シミュレーションソフトウェアに反映させ、この気象モデルによるシミュレーションを実行することで、気象現象を予測する。これにより、気象モデル計算装置102は、社会インフラでの社会活動の結果を加味しつつ、所定時刻において、GPVデータよりも細かい格子間隔の局地的な気象予測情報である気象モデルデータを算出する。気象モデル計算装置102は、算出した気象モデルデータを、気象予測データを必要とする国、地方自治体及び企業等へ供給すると共に、社会モデル計算装置104へ送信する。
 次に、以上のように構成された気象予測システムによる動作を説明する。図4は、第1の実施形態に係る気象予測システムが気象モデルデータを算出する際のフローチャートを示す図である。
 まず、気象モデル計算装置102は、親モデルデータ及び気象データを受け取り、受け取った親モデルデータ及び気象データを反映させた気象モデルによるシミュレーションを実行する(ステップS41)。これにより、所定時刻における局所的な気象状態が予測された気象モデルデータが算出される。気象モデル計算装置102は、算出した気象モデルデータを、社会モデル計算装置104及び気象予測データを必要とする国、地方自治体及び企業等へ供給する。
 社会モデル計算装置104は、気象センサ21により計測される気象データと、社会センサにより観測される観測データと、気象モデル計算装置102により算出される気象モデルデータとに基づき、社会モデルデータを算出する(ステップS42)。社会モデル計算装置104は、算出した社会モデルデータを、情報変換装置103及び社会インフラへ送信する。
 情報変換装置103は、社会センサにより計測される観測データと、社会モデル計算装置104により算出された社会モデルデータとを、気象モデル計算装置102における気象モデルで利用可能な形式に変換する(ステップS43)。情報変換装置103は、変換データを気象モデル計算装置102へ送信する。
 気象モデル計算装置102は、親モデルデータ、気象データ及び変換データを受け取り、受け取った親モデルデータ、気象データ及び変換データを反映させた気象モデルによるシミュレーションを実行する(ステップS44)。これにより、社会インフラでの社会活動の結果が加味されつつ、所定時刻における局所的な気象状態が予測された気象モデルデータが算出される。気象モデル計算装置102は、算出した気象モデルデータを、社会モデル計算装置104及び気象予測データを必要とする国、地方自治体及び企業等へ供給する。これにより、処理がステップS42へ移行する。
 以上のように、第1の実施形態では、情報変換装置103は、社会センサにより観測された観測データを気象モデルデータに反映可能な状態量に変換し、社会モデル計算装置104により算出された社会モデルデータを発生熱量及び発生水蒸気量へ変換するようにしている。これにより、情報変換装置103は、観測データ及び社会モデルデータを、気象モデル計算装置102における気象モデルで利用可能なように変換することが可能となる。
 したがって、第1の実施形態に係る情報変換装置103は、社会センサにより観測される観測データと、社会モデル計算装置104により算出される社会モデルデータとを、気象モデル計算装置102における気象モデルに対してデータ同化させることができる。
 また、第1の実施形態では、気象モデル計算装置102は、観測データ及び社会データモデルが変換された変換データ、親モデルデータ及び気象データを用いて気象モデルデータを算出するようにしている。これにより、社会活動の結果発生する、温度及び湿度の上昇等の、気象現象に直接作用する現象を気象モデルに反映させることが可能となる。
 したがって、第1の実施形態に係る気象予測システムによれば、社会インフラにおける社会活動を加味し、気象状態を高精度に予測することができる。さらに、気象状態を高精度に予測することができることにより、社会モデルの精度が高くなり、社会活動の効率化につながることとなる。
 (第2の実施形態) 
 図5は、第2の実施形態に係る気象予測システムの構成を示す図である。図5によれば、情報変換装置105は、社会モデル計算装置104と共に、社会インフラクラウドに含まれる。
 情報変換装置105は、社会センサにより計測された観測データ、及び、社会モデル計算装置104で算出された社会モデルデータを受け取り、受け取ったこれらのデータを気象モデル計算装置102で利用可能な形式に変換する。情報変換装置105は、変換後の変換データをクラウド通信網を介して気象モデル計算装置102へ送信する。
 したがって、第2の実施形態に係る情報変換装置105は、社会センサにより観測される観測データと、社会モデル計算装置104により算出される社会モデルデータとを、気象モデル計算装置102における気象モデルに対してデータ同化させることができる。
 いくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。

Claims (6)

  1.  気象要素を観測した気象データを生成する気象センサと、
     広域気象予測情報と、前記気象データとを予め構築された気象モデルに取り込み、前記気象モデルによるシミュレーションを実行することで、局所的な地域の気象を予測した気象モデルデータを算出する気象モデル計算装置と
    を備える気象予測システムで用いられ、
     社会インフラにおける状態量を観測した観測データを受信し、前記受信した観測データを、前記気象モデルへ反映可能な形式に変換し、この変換データを前記気象モデル計算装置へ送信する観測データ変換部と、
     社会インフラにおける状態量を模擬的に予測した社会モデルデータを受信し、前記受信した社会モデルデータを、前記気象モデルへ反映可能な形式に変換し、この変換データを前記気象モデル計算装置へ送信する社会モデル変換部と
    を具備する情報変換装置。
  2.  前記観測データには、電力消費量及びガス消費量が含まれ、
     前記社会モデルデータには、ガス需要量及び電力需要量が含まれ、
     前記観測データ変換部は、前記電力消費量及び前記ガス消費量に基づいて顕熱情報を取得し、前記ガス消費量に基づいて水蒸気情報を取得し、
     前記社会モデル変換部は、前記ガス需要量及び電力需要量に基づいて発生熱量を取得し、前記ガス需要量に基づいて発生水蒸気量を取得する請求項1記載の情報変換装置。
  3.  前記情報変換装置は、前記観測データと、前記気象データとについての過去の情報を記録するデータベースを備え、
     前記観測データ変換部は、前記データベースに記録される過去の情報を参照し、前記観測データを変換する請求項1記載の情報変換装置。
  4.  気象要素を観測した気象データを生成する気象センサと、
     社会インフラにおける状態量を観測した観測データを生成する社会センサと、
     前記気象データ、前記観測データ、及び、局所的な地域の気象を予測する気象モデルデータを、社会インフラにおける社会活動を模擬する社会モデルに取り込み、前記社会モデルによるシミュレーションを実行することで、社会インフラにおける状態量を予測する社会モデルデータを算出する社会モデル計算装置と、
     前記観測データを、予め構築された気象モデルへ反映可能な形式の第1の変換データに変換し、前記社会モデルデータを、前記気象モデルへ反映可能な形式の第2の変換データに変換する情報変換装置と、
     広域気象予測情報、前記気象データ、及び、前記第1及び第2の変換データを前記気象モデルに取り込み、前記気象モデルによるシミュレーションを実行することで、前記気象モデルデータを算出する気象モデル計算装置と
    を具備する気象予測システム。
  5.  前記観測データには、電力消費量及びガス消費量が含まれ、
     前記社会モデルデータには、ガス需要量及び電力需要量が含まれ、
     前記情報変換装置は、前記電力消費量及び前記ガス消費量に基づいて顕熱情報を取得し、前記ガス消費量に基づいて水蒸気情報を取得し、前記ガス需要量及び電力需要量に基づいて発生熱量を取得し、前記ガス需要量に基づいて発生水蒸気量を取得する請求項4記載の気象予測システム。
  6.  前記情報変換装置は、前記観測データと、前記気象データとについての過去の情報を記録し、前記過去の情報を参照し、前記観測データを変換する請求項4記載の気象予測システム。
PCT/JP2014/055437 2013-05-10 2014-03-04 情報変換装置及び気象予測システム WO2014181572A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
SG11201506760UA SG11201506760UA (en) 2013-05-10 2014-03-04 Information conversion apparatus and weather prediction system
EP14794315.3A EP2996072A4 (en) 2013-05-10 2014-03-04 INFORMATION CONVERSION DEVICE AND WEATHER FORECASTING SYSTEM
BR112015020533A BR112015020533A2 (pt) 2013-05-10 2014-03-04 aparelho de conversão de informações e sistema de previsão de tempo
US14/835,274 US20150362624A1 (en) 2013-05-10 2015-08-25 Information conversion apparatus and weather prediction system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-100341 2013-05-10
JP2013100341A JP6104698B2 (ja) 2013-05-10 2013-05-10 情報変換装置及び気象予測システム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/835,274 Continuation US20150362624A1 (en) 2013-05-10 2015-08-25 Information conversion apparatus and weather prediction system

Publications (1)

Publication Number Publication Date
WO2014181572A1 true WO2014181572A1 (ja) 2014-11-13

Family

ID=51867058

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/055437 WO2014181572A1 (ja) 2013-05-10 2014-03-04 情報変換装置及び気象予測システム

Country Status (6)

Country Link
US (1) US20150362624A1 (ja)
EP (1) EP2996072A4 (ja)
JP (1) JP6104698B2 (ja)
BR (1) BR112015020533A2 (ja)
SG (1) SG11201506760UA (ja)
WO (1) WO2014181572A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106443833A (zh) * 2015-08-06 2017-02-22 中国电力科学研究院 一种基于云计算的数值天气预报方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9772428B2 (en) * 2013-06-18 2017-09-26 Google Technology Holdings LLC Determining micro-climates based on weather-related sensor data from mobile devices
US10088601B2 (en) * 2014-10-28 2018-10-02 Google Llc Weather forecasting using satellite data and mobile-sensor data from mobile devices
JP6489930B2 (ja) * 2015-05-18 2019-03-27 三菱電機株式会社 使用電力量管理装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005134243A (ja) 2003-10-30 2005-05-26 Toshiba Corp 気象予測システム及び電力需要予測システムと気象予測方法及び電力需要予測方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005134243A (ja) 2003-10-30 2005-05-26 Toshiba Corp 気象予測システム及び電力需要予測システムと気象予測方法及び電力需要予測方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
See also references of EP2996072A4 *
TOSHIAKI ICHINOSE ET AL.: "Upgrade of Surface Boundary Condition for Numerical Simulation of Urban Climate Based on Very Precise Geographic Information", TENKI, vol. 44, no. 11, 30 November 1997 (1997-11-30), pages 23 - 34, XP008181733 *
YUKITAKA OHASHI ET AL.: "Tatemono Yoto no Kotonaru Fukusu Gaiku o Taisho to shita Heat Island Taisaku no Suchi Simulation", KANKYO SYSTEM KENKYU RONBUNSHU, vol. 37, 24 October 2009 (2009-10-24), pages 73 - 81, XP008181787 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106443833A (zh) * 2015-08-06 2017-02-22 中国电力科学研究院 一种基于云计算的数值天气预报方法
CN106443833B (zh) * 2015-08-06 2019-02-19 中国电力科学研究院 一种基于云计算的数值天气预报方法

Also Published As

Publication number Publication date
BR112015020533A2 (pt) 2017-07-18
SG11201506760UA (en) 2015-09-29
EP2996072A4 (en) 2016-12-21
US20150362624A1 (en) 2015-12-17
JP2014219916A (ja) 2014-11-20
EP2996072A1 (en) 2016-03-16
JP6104698B2 (ja) 2017-03-29

Similar Documents

Publication Publication Date Title
US7523001B2 (en) Method and apparatus for operating wind turbine generators
US20140278107A1 (en) Methods and systems for real-time solar forecasting incorporating a ground network
US10215162B2 (en) Forecasting output power of wind turbine in wind farm
JP6297689B2 (ja) 雷警報のための方法及び風力発電装置
US20140278108A1 (en) Methods and Systems for Optical Flow Modeling Applications for Wind and Solar Irradiance Forecasting
JP4202890B2 (ja) 気象予測システム及び電力需要予測システムと気象予測方法及び電力需要予測方法
JP2016136001A (ja) 予測装置
Ayodele et al. Viability and economic analysis of wind energy resource for power generation in Johannesburg, South Africa
JP6104698B2 (ja) 情報変換装置及び気象予測システム
JP2010207085A5 (ja)
You et al. Present and projected degree days in China from observation, reanalysis and simulations
CA2996731C (en) Methods and systems for energy use normalization and forecasting
Su et al. Compound hydrometeorological extremes across multiple timescales drive volatility in California electricity market prices and emissions
JP2002262458A (ja) 気象予測情報を利用した電力供給システム
CN107194141B (zh) 一种区域风能资源精细化评估方法
KR20150118699A (ko) Gis 기반 실시간 기상정보를 활용한 풍력 예측 발전량 시각화 방법
CN104008284A (zh) 测风塔在数值天气预报中的校正方法
Parfenenko et al. Information system for monitoring and forecast of building heat consumption
JP2005274171A (ja) 電力消費地点の気温予測システム及び方法
CN115438554A (zh) 一种基于天气预报的风电覆冰预测方法
JP2012161167A (ja) グリーンエネルギー認証システム
KR20130030605A (ko) 댐 유역 정량 강우 예측 시스템
Dong et al. Atmospheric energetics over the tropical Pacific during the ENSO cycle
Tooke et al. A review of remote sensing for urban energy system management and planning
Jagtap et al. Smart monitoring and controlling of wind farms based on WSN

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14794315

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2014794315

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015020533

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112015020533

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150825