WO2014180270A1 - 一种物理多播信道资源传输方法、基站及用户终端 - Google Patents

一种物理多播信道资源传输方法、基站及用户终端 Download PDF

Info

Publication number
WO2014180270A1
WO2014180270A1 PCT/CN2014/076524 CN2014076524W WO2014180270A1 WO 2014180270 A1 WO2014180270 A1 WO 2014180270A1 CN 2014076524 W CN2014076524 W CN 2014076524W WO 2014180270 A1 WO2014180270 A1 WO 2014180270A1
Authority
WO
WIPO (PCT)
Prior art keywords
pmch
subframe
unicast
resources
subframes
Prior art date
Application number
PCT/CN2014/076524
Other languages
English (en)
French (fr)
Inventor
苟伟
戴博
韩晓钢
彭佛才
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2014180270A1 publication Critical patent/WO2014180270A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/12Access restriction or access information delivery, e.g. discovery data delivery using downlink control channel

Definitions

  • the present invention relates to the field of mobile wireless communications, and more particularly to physical multicast channel (PMCH) resource allocation and use.
  • PMCH physical multicast channel
  • LTE R11 In LTE R11, a new carrier type is discussed. However, in the LTE R11 phase, the standardization of the new carrier is not completed. At present, the LTE R12 phase has been entered, and the standardization of the new carrier is postponed to the LTE R12.
  • the new carrier is being standardized as a new carrier type. Here are some consensus conclusions in the new carrier:
  • a single-port cell-specific pilot (CRS) with a period of 5 milliseconds (5 ms) is used to perform synchronization tracking (referred to as 5 ms CRS, or synchronous tracking CRS), which is apparently the CRS in the existing system. Not the same, and the number of supported ports is different, and the sending period is different.
  • the physical downlink control channel (Physical Downlink Control Channel) is not configured in the new carrier.
  • the original PDCCH field may be used to transmit the PDSCH.
  • PHICH and PCFICH are not configured in the new carrier.
  • the new carrier is divided into two types: non-independent operation and independent operation.
  • the above is a new carrier that is not independently operated.
  • the difference between the independent operation of the new carrier and the non-independent operation of the new carrier is that the non-independent operation NCT needs to be operated with at least one backward compatible carrier aggregation.
  • the general non-independent operation NCT can only be used as the ScelL of the UE.
  • the following descriptions are all named after the new carrier, but the new carrier is actually a kind of carrier, which is only used to distinguish it from the backward compatible carrier.
  • the new carrier type acts as a new carrier, mainly due to some configuration in the carrier. A big change has been made and the old version of UE operation is not supported. Therefore, the following new carrier can also be understood as an LTE carrier.
  • the carrier of the R11, the unicast service resource and the PMCH resource are time-division multiplexed in the MBSFN subframe, and one or two OFDM symbols preceding the MBSFN subframe are used for the unicast service, and are used to transmit the PDCCH.
  • PHICH In LTE R12, how to support the MBMS service in the new carrier is being discussed. Considering that the PDCCH and the PHICH are not supported in the new carrier, the PDCCH and the PHICH cannot be transmitted in the MBSFN subframe, thereby affecting the uplink grant information and public information of the UE. The scheduling information cannot be sent in the MBSFN subframe of the new carrier, and the PHICH cannot be transmitted in the MBSFN subframe, thus affecting the normal transmission of the unicast service.
  • the ePDCCH is supported in the new carrier.
  • the ePDCCH is configured to allocate resources in units of PRB pairs. It can also be understood that resources are allocated simultaneously in both time and frequency.
  • the PDCCH is configured by OFDM. To allocate resources in one dimension of time. However, whether the ePDCCH is supported in the MBSFN subframe is still not discussed. It is assumed that the MBSFN subframe in the new carrier supports the ePDCCH transmission to solve the above-mentioned effects on the unicast service, for example, using the ePDCCH and the ePHICH to control the unicast service in the MBSFN subframe. Signaling transmission.
  • the technical problem to be solved by the present invention is to provide a physical multicast channel resource allocation method and device, so that when the unicast service and the PMCH are multiplexed in a new carrier subframe, the two services have the least influence on each other, and the respective efficiency maximum.
  • the present invention discloses a physical multicast channel (PMCH) resource transmission method, including:
  • the base station sends corresponding data according to the subframe type and/or the serving cell type, where the subframe type includes a multicast/multicast single frequency network (MBSFN) and a non-MBSFN, and the serving cell type includes a cell dedicated guide.
  • the base station sends the corresponding data according to the subframe type and/or the serving cell type:
  • the base station learns or determines configuration information of the unicast and/or PMCH resources in the subframe, and sends data according to the configuration information, the subframe type, and/or the serving cell type.
  • the base station determines the configuration information of the unicast and/or the PMCH resource in the subframe by configuring the unicast and/or the PMCH resource in the subframe; or
  • the unicast and/or the PMCH resources are configured to form configuration signaling, and are sent by the base station to the receiving end, where the base station learns configuration information of the unicast and/or PMCH resources in the subframe from the configuration signaling.
  • the number of physical resource block (PRB) pairs corresponding to the bandwidth of the configured PMCH resource is any one of the following:
  • the unicast resource is used to transmit unicast service data, signaling, and reference signals, where the physical downlink shared channel (PDSCH), the enhanced downlink physical control channel (ePDCCH), and the enhanced physical hybrid are included.
  • PDSCH physical downlink shared channel
  • ePDCCH enhanced downlink physical control channel
  • DMRS demodulation reference signal
  • the PMCH resource is located in a PRB pair on both sides of the system bandwidth, and the unicast service is located in a PRB pair in the middle of the system bandwidth;
  • the PMCH resource is located in a PRB pair on one side of the system bandwidth, and the unicast service is located in the middle of the system bandwidth and in the PRB pair on the other side.
  • the PMCH resource is located in a PRB pair on both sides of the system bandwidth
  • the broadcast service is located in the PRB pair in the middle of the system bandwidth.
  • the PMCH resources are located in the middle or both sides of the system bandwidth. PRB alignment;
  • the PMCH resource is located in the PRB pair on both sides of the system bandwidth, and the unicast service is located in the PRB pair in the middle of the system bandwidth, in the subframe # 1.
  • the PMCH resources are located in the PRB pair in the middle or both sides of the system bandwidth;
  • the PMCH resource is located in the PRB pair on both sides of the system bandwidth, and the unicast service is located in the PRB pair in the middle of the system bandwidth, in the subframe # twenty three, #4, #7, #8, #9, If the subframe is a downlink subframe, the PMCH resource is located in the PRB pair in the middle or both sides of the bandwidth of the subframe system.
  • the unicast service is located in six PRB pairs in the middle of the system bandwidth, and the PMCH resource is located in a PRB pair other than the PRB pair allocated by the unicast service.
  • the starting position of the PMCH resource in the subframe is a first orthogonal frequency division multiplexing (OFDM) symbol.
  • OFDM orthogonal frequency division multiplexing
  • the number of subframes configured as PMCH resources in the radio frame is at most 10 subframes or 8 subframes or 6 subframes, wherein 10 subframes are #0 to #9 subframes, 8 subframes.
  • the frames are #0 to #9 subframes except for #0 and #5 subframes, and 6 subframes refer to #0, #4, #5, and #9 subframes in the #0 to #9 subframes when FDD is used.
  • TDD refers to the downlink subframes of subframes #0 to #9 except #0, #1, #5, and #6.
  • the unicast resources are located in the middle PRB of the system bandwidth of the subframe carrying the PMCH.
  • the PMCH resources are located in the PRB pairs on both sides of the system bandwidth of the subframe carrying the PMCH.
  • the unicast resource configuration in each subframe is the same.
  • the PMCH resource configuration in each subframe is the same.
  • the unicast resource refers to a time and/or frequency resource allocated or reserved for a unicast service in a subframe, and includes one or more of the following forms:
  • Unicast allocated or reserved PRB pair resources unicast allocated or reserved OFDM symbol resources; unicast allocated or reserved frequency resources; unicast allocated or reserved subcarrier resources; unicast allocation Or reserved bandwidth resources.
  • the unicast resource further includes a guard band resource that is not used for sending unicast, and the guard band is located between the unicast and the PMCH, and is in the frequency direction.
  • the size of the guard band resource is previously agreed by the network side and the receiving end, and is a guard interval defined in a subcarrier form or a guard interval defined in a PRB format.
  • the guard interval defined by the subcarrier form is 5 or 6 subcarriers left between the unicast and the PMCH; or the guard interval is a PRB pair between the unicast and the PMCH.
  • the guard band resource is at a boundary between the PMCH and the unicast, and when there are multiple boundaries between the PMCH and the unicast, there are multiple guard band resources.
  • the protection band is pre-agreed by the network side and the receiving end, and includes an agreed protection band form, size, and location.
  • the agreed protection band is included in the unicast resource or the PMCH resource, and the agreement does not exist. band.
  • the PMCH resource refers to a time and/or frequency resource allocated to the PMCH in the subframe, including one or more forms of the subordinate:
  • PRCH allocated resources allocated by PMCH OFDM symbol resources allocated by PMCH; frequency resources allocated by PMCH; subcarrier resources allocated by PMCH; bandwidth resources allocated by PMCH.
  • the configuration information of the PMCH resource in the configuration signaling refers to: in addition to the unicast resource in the subframe, the remaining resources are resources allocated by the PMCH, where, if there is a guard band in the subframe, The unicast resource includes the protection band; or
  • the remaining resources are resources allocated by the PMCH.
  • the unicast resource and the PMCH resource are described in a subframe in units of PRB pairs.
  • the unicast resource is transmitted in an extended CP in a subframe, or the same CP is used as a PMCH resource in the subframe.
  • the PMCH resource refers to a resource for transmitting a multimedia multicast broadcast service (MBMS) service data, control signaling, and a reference signal corresponding to an MBMS service, where the control signaling refers to a multipoint.
  • MBMS multimedia multicast broadcast service
  • the control signaling refers to a multipoint.
  • the reference signal includes reference signals for MBMS services.
  • the PMCH resource is further used to send special service data and a controlled resource, where the special service data is a service other than the MBMS service and the LTE R11 and the unicast service supported by the transmission mode.
  • the special service data is a service other than the MBMS service and the LTE R11 and the unicast service supported by the transmission mode.
  • the special service includes a mobile test center (MTC) service.
  • MTC mobile test center
  • the configuration signaling is further used to describe that the PMCH resource is allocated for the MBMS service and is only used for transmitting the unicast service.
  • the network side exchanges configuration signaling of unicast and/or PMCH resources with each other through the x2 port.
  • the base station in the radio frame, when the subframe #0 is a normal cyclic prefix (CP), if the subframe in which the RCRS is transmitted is a non-MBSFN subframe, the base station sends the RCRS according to the RCRS position of the normal CP. If the subframe in which the RCRS is transmitted is an MBSFN subframe, the base station sends the RCRS according to the RCRS position of the extended CP;
  • CP normal cyclic prefix
  • the base station When the subframe #0 is an extended CP, the base station fixedly transmits the RCRS according to the extended CP in the subframe in which the RCRS is transmitted.
  • the invention also discloses a physical multicast channel (PMCH) resource transmission method, comprising: receiving, by the receiving end, data in a subframe according to a subframe type and/or a serving cell type;
  • PMCH physical multicast channel
  • the subframe type includes a multicast/multicast single frequency network (MBSFN) and a non-MBSFN, where the serving cell type includes a serving cell with cell-specific pilot (CRS) transmission and a serving cell without CRS transmission.
  • the data includes: unicast service data and/or multicast service data.
  • the above method further includes:
  • the receiving end Before receiving the data in the subframe, the receiving end receives configuration signaling of the unicast and/or PMCH resources, and determines the location of the unicast and/or PMCH resources in the subframe.
  • the receiving end receives the PMCH according to one of the following physical resource block (PRB) pairs in a subframe carrying the PMCH resource:
  • PRB physical resource block
  • the receiving end receives the unicast service data, the signaling, and the reference signal in the subframe carrying the PMCH, where the physical downlink shared channel (PDSCH) and the enhanced downlink physical control channel (ePDCCH) are included.
  • PDSCH physical downlink shared channel
  • ePDCCH enhanced downlink physical control channel
  • ePHICH enhanced physical hybrid retransmission indicator channel
  • CRS CRS
  • RCRS reduced cell-specific reference signal
  • CSI-RS channel state information reference symbol
  • DMRS demodulation reference signal
  • the receiving end receives a PMCH in a PRB pair on both sides of a system bandwidth of a subframe carrying a PMCH, and receives a single PRB in the middle of a system bandwidth of the subframe. Broadcasting business; or
  • the PMCH is received in a PRB pair on one side of the system bandwidth of the subframe carrying the PMCH, and the unicast service is received in the middle of the system bandwidth of the subframe and in the PRB pair on the other side.
  • the receiving end when frequency division duplexing (FDD) or time division duplexing (TDD), the receiving end receives the unicast service in the PRB pair in the middle of the system bandwidth of the subframes #0 and #5,
  • the PRB pair on both sides of the system bandwidth of subframes #0 and #5 receives the PMCH, in the middle of the system bandwidth of subframes #1, #2, #3, #4, #6, #7, #8, #9 PRB centering receives PMCH;
  • the receiving end receives the unicast service in the PRB pair in the middle of the system bandwidths of the subframes #0, #4, #5, and #9, and the systems in the subframes #0, #4, #5, and #9
  • the PRBs on both sides of the bandwidth receive the PMCH, and receive the PMCH in the PRB pair in the middle of the system bandwidths of the subframes #1, #2, #3, #6, #7, and #8;
  • the receiving end receives the unicast service in the PRB pair in the middle of the system bandwidths of the subframes #0, #1, #5, and #6, and the systems in the subframes #0, #1, #5, and #6
  • the PRBs on both sides of the bandwidth receive the PMCH.
  • the subframes #2, #3, #4, #7, #8, #9 if the subframe is a downlink subframe, the system in the subframe The PRB in the middle of the bandwidth receives the PMCH.
  • the receiving end receives the unicast service in the PRB pair in the middle of the system bandwidth of the subframe: the receiving end receives the unicast from the middle of the PRB of the system bandwidth of the subframe Business
  • the receiving end receives a PMCH from a PRB pair other than the 6 PRB pairs allocated by the unicast service of the subframe .
  • the starting position of the PMCH resource in the subframe is the first orthogonal frequency division multiplexing (OFDM) symbol.
  • OFDM orthogonal frequency division multiplexing
  • the receiving end determines that the number of subframes in which the PMCH resource can be configured in the radio frame is up to 10 subframes or 8 subframes or 6 subframes, wherein 10 subframes refer to #0 to # 9 subframes, 8 subframes refer to #0 to #9 subframes except #0 and #5 subframes, 6 subframes refer to, in FDD, subframes #0 to #9 except #0, #4, #5 ⁇ #9, TDD refers to the downlink subframes of subframes #0 to #9 except #0, #1, #5, and #6.
  • the receiving end determines that the maximum number of PMCH resource subframes configured in the radio frame is 10 subframes or 8 subframes or 6 subframes, and the receiving end is in a subframe system bandwidth carrying the PMCH.
  • the intermediate PRB center receives the unicast resource, and receives the PMCH resource in the PRB pair on both sides of the subframe system bandwidth carrying the PMCH.
  • the unicast resource received by the receiving end refers to a time and/or frequency resource allocated or reserved for the unicast service in the subframe, where the unicast service includes one or the following Multiple forms:
  • Unicast allocated or reserved PRB pair resources unicast allocated or reserved OFDM symbol resources; unicast allocated or reserved frequency resources; unicast allocated or reserved subcarrier resources; unicast allocation Or reserved bandwidth resources.
  • the unicast resource received by the receiving end further includes a guard band resource that is not used for transmitting unicast, where the guard band is located between the unicast and the PMCH, and is in the frequency direction.
  • the PMCH resource received by the receiving end refers to a time and/or frequency resource allocated to the PMCH in the subframe, and includes one or more of the following forms:
  • PRCH allocated resources allocated by PMCH OFDM symbol resources allocated by PMCH; frequency resources allocated by PMCH; subcarrier resources allocated by PMCH; bandwidth resources allocated by PMCH.
  • the PMCH resource received by the receiving end is a resource for transmitting a multimedia broadcast multicast (MBMS) service data, control signaling, and a reference signal corresponding to the MBMS service, where the control signaling is A point-to-multipoint traffic channel (MTCH) or a point-to-multipoint control channel (MCCH), the reference signal including reference signals for MBMS traffic.
  • MBMS multimedia broadcast multicast
  • MTCH point-to-multipoint traffic channel
  • MCCH point-to-multipoint control channel
  • the PMCH resource received by the receiving end is further used to send special service data and a controlled resource, where the special service data is supported by the MBMS service and the LTE R1 1 and the previous transmission mode.
  • the special service data is supported by the MBMS service and the LTE R1 1 and the previous transmission mode.
  • the special service includes a mobile test center (MTC) service.
  • MTC mobile test center
  • the configuration signaling of the unicast and/or PMCH resources received by the receiving end is further used to describe that the resources of the PMCH are allocated for the MBMS service and are only used for transmitting the unicast service.
  • the receiving end receives and detects according to the RCRS position of the normal CP. If the subframe in which the RCRS is transmitted is an MBSFN subframe, the receiving end receives and detects according to the RCRS position of the extended CP. ;
  • the receiving end fixes the RCRS according to the extended CP in the subframe in which the RCRS is transmitted.
  • the invention also discloses a base station, comprising:
  • a first unit configured to: learn or determine configuration information of a unicast and/or physical multicast channel (PMCH) resource in a subframe;
  • PMCH physical multicast channel
  • a second unit configured to: send corresponding data according to the configuration information, a subframe type, and/or a serving cell type, where the subframe type includes a multicast/multicast single frequency network (MBSFN) and a non-MBSFN
  • the serving cell type includes a serving cell with cell-specific pilot (CRS) transmission and a serving cell without CRS transmission, and the data includes unicast service data and/or multicast service data.
  • CRS cell-specific pilot
  • the first unit is configured to: determine unicast and/or PMCH resource configuration information in a subframe by configuring unicast and/or PMCH resources in a subframe; or receive Configuration signaling of the configuration information carrying the unicast and/or PMCH resources sent by the network side, from which the configuration information of the unicast and/or PMCH resources in the subframe is known.
  • the invention also discloses a user terminal, comprising:
  • the first unit is configured to: receive configuration signaling of a unicast and/or physical multicast channel (PMCH) resource, and determine a location of the unicast and/or PMCH resources in the subframe;
  • PMCH physical multicast channel
  • a second unit configured to: receive data in the subframe according to a location of the unicast and/or PMCH resources in the subframe, a subframe type, and/or a serving cell type;
  • the subframe type includes a multicast/multicast single frequency network (MBSFN) and a non-MBSFN, where the serving cell type includes a serving cell with cell-specific pilot (CRS) transmission and a serving cell without CRS transmission.
  • the data includes: unicast service data and/or multicast service data.
  • the unicast service and the PMCH are more reasonable in the intra-subframe frequency division multiplexing, so that the receiving end of the unicast service accesses the system and works in the system by the PMCH.
  • the impact is minimized, and the impact of the unicast service on the PMCH is minimized, and some methods in the existing standards can be directly used in the system constituted by the method proposed by the embodiment of the present invention, and the frequency division is simplified to the utmost extent.
  • FIG. 1 is a schematic diagram of a base station according to an embodiment of the present invention. Preferred embodiment of the invention
  • the MBSFN subframe supports ePDCCH transmission, which affects the MBMS service transmission in the PMCH, for example, ePDCCH or more, how the unicast service and the PMCH are multiplexed in the subframe.
  • ePDCCH or unicast service
  • PMCH multicast service
  • the inventors of the present invention propose that the base station transmits data in a subframe according to a subframe type and/or a serving cell type (a carrier and a cell are equivalent concepts after introducing a multi-carrier technique in LTE).
  • the subframe type includes an MBSFN and a non-MBSFN subframe
  • the serving cell type includes a serving CRS (referring to the CRS definition according to the LTE R11) and a serving cell not transmitting the CRS
  • the sent data includes: unicast Service data and/or multicast service data (referred to as transmitted through PMCH).
  • the MBSFN subframe refers to a subframe that actually carries the PMCH
  • the non-MBSFN subframe refers to a subframe that does not actually carry the PMCH.
  • the network side configures unicast and/or PMCH resources in the subframe, and forms configuration signaling to the receiving end, where the receiving end includes the base station (the upper node of the receiving base station), the small cell (the receiving base station), and the UE (the receiving base station). Or small cell).
  • the configuration operation is performed by the base station. Then, the base station sends the configuration signaling to the UE or the small cell.
  • the configuration operation is performed by the upper node of the base station, and the upper node of the base station sends the configuration signaling to the base station first, and after the base station parses the processing, the configuration signaling is sent to the UE or the small cell.
  • the description is based on the corresponding PRB pair.
  • there are 6 types which are 6 PRB pairs, 15 PRB pairs, or 25 PRB pairs, or 50.
  • the reason for this is that the existing PMCH transmission takes up all the bandwidth, and the packet and scheduling of the relevant channels such as MTCH and MCCH are optimized according to the entire bandwidth, so the unicast and multicast services are used.
  • the bandwidth occupied by the multicast service should preferentially select the system bandwidth of the existing LTE, so that the MTCH and MCCH grouping and scheduling in the existing protocol can be maximized, thereby reducing the standardization and the complexity of the device implementation. .
  • the corresponding bandwidth of other PRB pairs is for unicast service.
  • the unicast resources described above are used to transmit unicast service data, signaling, and reference signals. It mainly includes PDSCH, ePDCCH and ePHICH, CRS, RCRS, CSI-RS and DMRS. It can also include PSS/SSS, PBCH. Further, it may further include a PRS and a physical discovery signal for small cell discovery.
  • the location of the PMCH resource configured on the network side is preferably located in the PRB pair on both sides of the system bandwidth, and the PRB pair in the middle of the system bandwidth is configured to the unicast service.
  • the location of the PMCH resource is located in the PRB pair on one side of the system bandwidth, and the unicast service is located in the middle of the system bandwidth and the PRB pair on the other side. It also includes the location of the PMCH resource located in the PRB pair on either side or side of the PRB pair of the unicast service in the system bandwidth.
  • a subframe in which the PMCH resource and the unicast resource are multiplexed is configured as FDD or TDD.
  • the PMCH resource is located in a PRB pair on both sides of the system bandwidth, and the unicast service is used.
  • PRB alignment Includes PRB pairs that can also be located on both sides of the system bandwidth, the same below).
  • the synchronization signal and the PBCH in the system are located in the middle of the system bandwidth and the subframe position does not need to be changed, thereby simplifying the design and not affecting the old version UE receiving the synchronization signal and the PBCH.
  • a subframe in which the PMCH resource and the unicast resource are multiplexed is configured to be in the subframes #0, #4, #5, and #9 in the FDD, where the PMCH resource location is located on both sides of the system bandwidth.
  • the unicast service is located in the PRB pair in the middle of the system bandwidth.
  • the PMCH resource is allowed to be located in the PRB pair in the middle of the system bandwidth.
  • the paging message may use the #0, #4, #5, and #9 subframes, if the unicast service in these subframes is placed In the middle of the system bandwidth, the old version UE (especially the low cost UE) can be made to receive paging messages in the system to work.
  • a subframe in which the PMCH resource and the unicast resource are multiplexed is configured to be in the subframes #0, #1, #5, and #6 in the TDD, where the PMCH resource location is located on both sides of the system bandwidth.
  • the unicast service is located in the PRB pair in the middle of the system bandwidth; in TDD, in subframes #2, #3, #4, #7, #8, #9, if the subframe is a downlink subframe (in the text)
  • the downlink subframe includes a special subframe of the TDD, and the PMCH resource is allowed to be located in the PRB pair in the middle of the subframe system bandwidth.
  • the paging message may use the #0, #1, #5, and #6 subframes, if the unicast service in these subframes is placed In the middle of the system bandwidth, the old version UE (especially the low cost UE) can be made to receive paging messages in the system to work.
  • the foregoing unicast service is located in the PRB pair in the middle of the system bandwidth in the subframe, and may specifically be N PRB pairs in the middle of the system bandwidth, where N is a positive integer, greater than or equal to 6 and less than the system bandwidth.
  • N is a positive integer, greater than or equal to 6 and less than the system bandwidth.
  • the N PRB pairs comprise 6 PRB pairs in the middle of the system bandwidth.
  • the PMCH resource is located in a PRB pair other than the N PRB pairs allocated by the unicast service.
  • the PRB pair of the PMCH resource is allocated from a PRB pair other than the N PRB pairs allocated in addition to the unicast service.
  • the bandwidth occupied by the PMCH resource is 2*M PRB pairs (M is a positive integer), and the specific allocation is located in the system bandwidth pair. The first M PRB pairs and the last M PRB pairs in all PRB pairs should be.
  • the above-mentioned PMCH resource is the first OFDM symbol at the beginning of the OFDM symbol in the subframe. Since the PDCCH is not supported in the new carrier, it may be considered to use the first OFDM symbol in the subframe as the PMCH resource. Of course, it can also start from the 3rd or 2nd OFDM symbol. At this time, although the number of OFDM symbols of the PMCH resource of the new carrier is reduced, the old version UE can be received in the new carrier at the same time, provided that the old version is The UE can smoothly access the new carrier.
  • the number of subframes in the radio frame in which the PMCH resource can be configured in the radio frame is up to 10 subframes or 8 subframes or 6 subframes, where 10 subframes refer to #0 ⁇ #9 subframes; 8 subframes are Refers to #0 ⁇ #9 sub-frames except #0 and #5 sub-frames; 6 sub-frames means that, in FDD, sub-frames #0 ⁇ #9 except #0, #4, #5, and #9, TDD Refers to the downlink subframes of #0, #1, #5, and #6 in subframes #0 ⁇ #9.
  • the maximum number of subframes in which the PMCH resource can be configured in the radio frame is 10 subframes or 8 subframes or 6 subframes, mainly the number of subframes in the radio frame (10 subframes in LTE) minus the standard. The number of subframes in the radio frame that cannot be configured to carry the PMCH.
  • each subframe can carry the PMCH
  • the corresponding one is the maximum of 10 subframes
  • Subframes #0 and #5 cannot carry PMCH
  • the corresponding one is the maximum of 8 subframes
  • subframes #0, #4, #5, and #9 FDD
  • subframe # 0, #1, #5, and #6 TDD
  • the corresponding maximum is 6 subframes
  • 10 subframes in the radio frame are downlink subframes and uplink subframes.
  • the frame coexists. Therefore, when the maximum number of subframes configured for the PMCH in the radio frame is 10 subframes or 8 subframes or 6 subframes in the TDD, the uplink subframe is included, but the downlink subframe cannot be used for the PMCH.
  • the intermediate PRB pair of the subframe system bandwidth carrying the PMCH is a unicast resource. Therefore, the scheduling of the unicast resources is relatively easy on the network side.
  • the feedback of the CSI is relatively accurate. For example, if there is a PMCH in the middle of the bandwidth of the subframe system carrying the PMCH, and some are unicast, then the receiving end is a PMCH subframe in the middle. After the CSI measurement is performed and fed back (actually, the non-intermediate PRB pair is measured), but the network side is the unicast service in the middle of the subframe to be scheduled by the receiving end.
  • the PRB pair at this time, the network side cannot refer to the CSI feedback in front of the receiving end, that is, the CSI feedback is invalid, because the resources corresponding to the CSI measurement cannot be sent by the PMCH, but are occupied by the PMCH.
  • the two-side PRB pair of the system bandwidth of the subframe carrying the PMCH in the radio frame can be configured as a PMCH. This is to facilitate the old version of the UE to access the system and work.
  • the unicast resources in each subframe are configured the same, which facilitates unicast service scheduling.
  • the PMCH resources in each subframe are configured the same, which facilitates MBMS service scheduling.
  • At least the PMCH of the same MBSFN area has the same PRB pair in the subframe.
  • the resources (or unicast resources) of the PMCH subframe can be configured differently in the subframe carrying the PMCH.
  • the foregoing unicast resource refers to a time and/or frequency resource allocated or reserved for a unicast service in a subframe, and specifically includes one or more of the following forms: a unicast allocated or reserved PRB pair resource; Unicast allocated or reserved OFDM symbol resources; unicast allocated or reserved frequency resources; unicast allocated or reserved subcarrier resources; unicast allocated or reserved bandwidth resources.
  • the unicast resource also includes a guard band (also referred to as reserved resource) resource that is not used to transmit unicast, wherein the guard band is located between the unicast and the PMCH, and is in the frequency direction. This is because the PMCH is multi-cell joint transmission, the signal will be superimposed on the air interface, so there will be strong interference to the adjacent carrier, so the guard band is reserved.
  • the size of the guard band resource is previously agreed by the network side and the receiving end, and is a guard interval defined by a guard interval defined in a subcarrier form or a PRB format.
  • the guard interval defined by the subcarrier form is K subcarriers left between unicast and PMCH, where K is a positive integer less than or equal to 12, preferably 5 or 6; or the guard interval is a PRB pair in unicast and Between PMCH.
  • the guard band resource is at the boundary between the PMCH and the unicast. When there are multiple boundaries between the PMCH and the unicast, there are multiple guard band resources.
  • the protection band is pre-agreed by the network side and the receiving end, and includes an agreed protection band form, size, and location. The agreed protection band is included in the unicast resource or the PMCH resource, and the protection band does not exist.
  • the foregoing PMCH resource refers to a time and/or frequency resource allocated to the PMCH in the subframe, and specifically includes one or more forms of the subordinate: a PRB pair resource allocated by the PMCH; an OFDM symbol resource allocated by the PMCH; a frequency resource allocated by the PMCH; Allocated subcarrier resources; PMCH The allocated bandwidth resource.
  • the signaling of the PMCH resource is provided by: in the subframe, except for the unicast resource, the remaining resource is a resource allocated by the PMCH, wherein if there is a guard band in the subframe, the unicast resource includes the protection band. If the signaling of the PMCH resource is provided by using a unicast resource description, specifically: in addition to the unicast resource in the subframe, the remaining resource is the PMCH, and there is no guard band at this time.
  • the unicast resource is described in the subframe as a PRB pair or an RBG, and the corresponding PMCH resource is also in the PRB pair or the RBG.
  • the unicast resource is transmitted in the subframe using the extended CP, or the same CP is used as the PMCH resource in the subframe.
  • the PMCH resource refers to a resource for transmitting MBMS service data, control signaling, and a reference signal corresponding to the MBMS service, where the specific transmission includes an MTCH or an MCCH, where the reference signal includes a reference signal for the MBMS service.
  • the PMCH resource is also used to send the special service data and the control resource, where the special service data is a service other than the MBMS service and the LTE R11 and the unicast service supported by the previous transmission mode, and may specifically include the MTC service.
  • the unicast and/or PMCH resources are formed, and the signaling is further used to describe that the resources of the PMCH are allocated for the MBMS service but are only used for transmitting the unicast service.
  • the network side exchanges configuration signaling of unicast and/or PMCH resources with each other through the x2 port.
  • the network side is in the radio frame.
  • the subframe #0 is the Normal CP
  • the network side sends the RCRS according to the RCRS position of the Normal CP, if the subframe in which the RCRS is transmitted is the MBSFN subframe.
  • the network side sends the RCRS according to the RCRS position of the Extended CP.
  • the network side is in the radio frame.
  • the network side sends the RCRS according to the Extended CP in the subframe in which the RCRS is transmitted.
  • the process of the receiving end is as follows (the content of the description of the bit is referred to the description of the network side):
  • the receiving end receives data in the subframe according to the subframe type and/or the serving cell type.
  • the sub-frame type includes an MBSFN and a non-MBSFN subframe
  • the serving cell type includes a serving cell that transmits a CRS and a serving cell that does not transmit a CRS.
  • the data includes: unicast service data and/or multicast service data.
  • the MBSFN subframe refers to a subframe that actually carries a PMCH
  • the non-MBSFN subframe refers to a subframe that does not actually carry a PMCH.
  • the receiving end Receiving, by the receiving end, the data in the subframe, the receiving end receiving the allocation information of the unicast and/or the PMCH resource, and determining the location of the unicast and/or PMCH resources in the subframe.
  • the receiving end receives the PMCH in one of the following PRB pairs in the subframe carrying the PMCH resource: 6, 15, 25, 50, 75, and 100.
  • the receiving end receives unicast service data, signaling, and reference signals in a subframe carrying the PMCH.
  • These include PDSCH, ePDCCH, and ePHICH channels, CRS, RCRS, CSI-RS, and DMRS reference signals.
  • the receiving end receives the PMCH in the PRB pair on both sides of the system bandwidth of the subframe carrying the PMCH, and the receiving end receives the unicast service in the PRB pair in the middle of the system bandwidth of the subframe.
  • the receiving end receives the PMCH in the PRB pair on one side of the system bandwidth of the subframe carrying the PMCH, and unicasts the service in the middle of the system bandwidth of the subframe and in the PRB pair on the other side.
  • the receiving end when the receiving end is in FDD or TDD, the receiving end receives the unicast service in the PRB pair in the middle of the system bandwidth of the subframes #0 and #5, on both sides of the system bandwidth of the subframes #0 and #5.
  • the PRB is in the receiving PMCH; FDD or TDD, the receiving end receives the PMCH in the PRB pair in the middle of the system bandwidths of subframes #1, #2, #3, #4, #6, #7, #8, #9.
  • the receiving end when the receiving end is in the FDD, the receiving end receives the unicast service in the PRB pair in the middle of the system bandwidths of the subframes #0, #4, #5, and #9, in the subframes #0, #4,
  • the PRB pair on both sides of the system bandwidth of #5 and #9 receives the PMCH; in FDD, the receiver receives the PRB in the middle of the system bandwidth of subframes #1, #2, #3, #6, #7, #8 PMCH.
  • the receiving end when the receiving end is in the FDD, in the TDD, the receiving end receives the unicast service in the PRB pair in the middle of the system bandwidths of the subframes #0, #1, #5, and #6, in the subframe #0, The PRBs on both sides of the system bandwidth of #1, #5, and #6 receive the PMCH.
  • the receiving end In TDD, the receiving end is in the subframes #2, #3, #4, #7, #8, #9, if the subframe is a downlink subframe, the PRB pair in the middle of the system bandwidth of the subframe Receive PMCH.
  • the receiving end receives the unicast service in the middle of the system bandwidth in the subframe.
  • the specific one may be received by the N PRBs in the middle of the system bandwidth.
  • the value of N is a positive integer, which is greater than or equal to 6 and less than the system bandwidth.
  • the N PRB pairs comprise 6 PRB pairs in the middle of the system bandwidth.
  • the receiving end receives the PMCH resource in the PRB pair on both sides of the system bandwidth in the subframe.
  • the receiving end receives the PMCH in a PRB pair other than the N PRB pairs allocated by the unicast service. Or receive the PMCH from a PRB pair other than the N PRB pairs allocated by the unicast service.
  • the receiving end receives the unicast service in the PRB pair in the middle of the system bandwidth of the subframe, specifically: the receiving end receives the unicast service from the middle of the system bandwidth of the subframe.
  • the receiving end receives the PMCH in the PRB pair on both sides of the system bandwidth of the subframe carrying the PMCH, specifically: the receiving end receives the PMCH from the PRB pair other than the 6 PRB pairs allocated by the unicast service of the subframe.
  • the receiving end receives the OFDM starting position of the PMCH in the subframe as the first OFDM symbol.
  • the method further includes: the receiving end determines that the number of the PMCH resource subframes that can be configured in the radio frame is up to 10 subframes or 8 subframes or 6 subframes, where 10 subframes refer to #0 ⁇ #9 subframes, 8 subframes In addition to #0 and #5 sub-frames in the #0 ⁇ #9 sub-frame, 6 sub-frames mean that, in FDD, sub-frames #0 ⁇ #9 except #0, #4, #5, and #9, TDD
  • the time is the downlink subframe except #0, #1, #5, and #6 in subframes #0 ⁇ #9.
  • the relevant explanations refer to the foregoing description.
  • the receiving end determines that the number of the PMCH resource subframes that can be configured in the radio frame is up to 10 subframes or 8 subframes or 6 subframes, and the intermediate PRB pairs of the subframe system bandwidth carrying the PMCH are all unicast resources, and bearer
  • the two-sided PRB pair of the subframe system bandwidth of the PMCH can be configured as a PMCH resource.
  • the receiving end considers (equivalent to receiving) that the unicast resource configuration in each subframe in the subframe carrying the PMCH is the same.
  • the receiving end considers that the PMCH resource configuration in each subframe in the subframe carrying the PMCH is the same.
  • At least the PMCH of the same MBSFN area has the same PRB pair in the subframe.
  • the unicast resource refers to a time allocated or reserved for a unicast service in a subframe.
  • And/or frequency resources including one or more of the following forms: unicast allocated or reserved PRB pair resources; unicast allocated or reserved OFDM symbol resources; unicast allocated or reserved frequencies Resources; unicast allocated or reserved subcarrier resources; unicast allocated or reserved bandwidth resources.
  • the receiving end considers that the unicast resource also includes a guard band (also called reserved resource) resource that is not used to send unicast, where the guard band is located between the unicast and the PMCH, and is in the frequency direction.
  • a guard band also called reserved resource
  • the receiving end considers that the size of the guard band resource is previously agreed by the network side and the receiving end, and is a guard interval defined by a guard interval defined in a subcarrier form or a guard interval defined by a PRB form.
  • the receiving end considers that the guard interval defined by the subcarrier form is 5 or 6 subcarriers vacant between unicast and PMCH; or the guard interval is one PRB pair between unicast and PMCH.
  • the guard band resource is considered to be at the boundary of the PMCH and the unicast.
  • there are multiple boundaries between the PMCH and the unicast there are multiple guard band resources.
  • the receiving end considers that the protection band is pre-agreed by the network side and the receiving end, and includes an agreed protection band form, size, and location.
  • the agreed protection band is included in the unicast resource or the PMCH resource, and the protection band does not exist.
  • the PMCH resource refers to a time and/or frequency resource allocated to the PMCH in the subframe, and specifically includes one or more forms of the subordinate: a PRB pair resource allocated by the PMCH; an OFDM symbol resource allocated by the PMCH; and a PMCH allocation Frequency resources; subcarrier resources allocated by PMCH; bandwidth resources allocated by PMCH.
  • the receiving end considers that the signaling of the PMCH resource is provided by: in the subframe, except for the unicast resource, the remaining resource is a resource allocated by the PMCH, wherein if there is a guard band in the subframe, the unicast resource
  • the protective tape is included.
  • the receiving end considers that the signaling of the PMCH resource is provided by using a unicast resource description, specifically: in addition to the unicast resource in the subframe, the remaining resource is the PMCH.
  • the receiving end considers that the unicast resource is described in a subframe as a PRB or RBG pair, and the corresponding PMCH resource is also in a PRB or RBG pair.
  • the receiving end considers that the unicast resource uses the extended CP transmission in the subframe or uses the same CP as the PMCH resource in the subframe.
  • the receiving end considers that the PMCH resource is used to send MBMS service data and control information. And a resource of the reference signal corresponding to the MBMS service, where the specific transmission includes an MTCH or an MCCH, where the reference signal includes a reference signal for the MBMS service.
  • the receiving end considers that the PMCH resource is also used to send the special service data and the controlled resource, where the special service data is a service other than the MBMS service and the LTE R11 and the unicast service supported by the previous transmission mode, specifically Including MTC business.
  • the receiving end considers that the allocation signaling of the unicast and/or PMCH resources is also used to describe that the resources of the PMCH are allocated for the MBMS service but are only used for transmitting the unicast service.
  • the receiving end in the radio frame, when the subframe #0 is the Normal CP, if the subframe in which the RCRS is transmitted is a non-MBSFN subframe, the UE receives and detects according to the RCRS position of the Normal CP, if the subframe in which the RCRS is transmitted is the MBSFN sub- Frame, the UE receives and detects according to the RCRS position of the Extended CP.
  • the UE fixes the RCRS according to the Extended CP in the subframe in which the RCRS is transmitted.
  • the embodiment further includes the following specific manners.
  • the unicast resource information is a resource that describes a reference signal for transmitting unicast data, control signaling, and unicast, where the specific transmission includes an ePDCCH, a PDSCH, or an ePHICH, where the reference signal includes an RCRS, a CRS, a CSI-RS, and a DMRS.
  • the unicast service in the unicast resource in the subframe is transmitted by using the extended CP.
  • the unicast here includes point-to-point unicast service and unicast system broadcast information, and may also be UE D2D communication resource allocation describing D2D service.
  • the resource information of the PMCH is a resource for describing a reference signal corresponding to the MBMS service data, the control signaling, and the MBMS service, where the specific transmission includes an MTCH or an MCCH, where the reference signal includes a reference signal for the MBMS service.
  • the CSI-RS configuration is not allowed on the unicast resource, because the CSI-RS is periodically transmitted, and if the MBSFN and the non-MBSFN are included in the subframe in which the CSI-RS is configured in the period, the frequency domain of the CSI-RS is used.
  • the location has an impact, which affects the scheduling efficiency of the PDSCH.
  • the unicast resource information refers to a time and/or frequency resource that is allocated for unicast or reserved for unicast in an MBSFN subframe or a subframe that carries the PMCH, and specifically includes one or more of the following.
  • the OFDM symbol in this case is located in the first 1 or 2 OFDM in the subframe, or in the last 1 or 2 OFDM symbols in the subframe.
  • 1 or 2 OFDM symbols mainly to avoid interference with signals in the first 1 or 2 OFDM symbols in other carriers, especially in the first 1 or 2 OFDM symbols, If the ePDCCH is transmitted in the first or second OFDM symbols in the same subframe of the neighboring cell, the interference between them will be large. Therefore, one or two OFDM symbols after the subframe are used to transmit the ePDCCH.
  • Unicast allocated or reserved frequency resources In this case, frequency resources are configured for unicast, and unicast traffic is only operated within the allocated frequency resources. 4) Unicast allocated or reserved subcarrier resources.
  • the resource is not greater than 12 subcarriers.
  • the bandwidth resources reserved for unicast allocation In this case, when the agreed unicast and PMCH are frequency-divided in the MBSFN subframe, a certain bandwidth is allocated for unicast.
  • unicast and PMCH are frequency division multiplexed
  • the PMCH channel is jointly transmitted by multiple cells, the signals are superimposed, so the signal strength is very large and will be on the adjacent subcarriers.
  • the unicast service forms interference.
  • the unicast resource allocated in the unicast resource information includes protection.
  • resources also known as reserved resources.
  • the guard band is located in the frequency direction between the unicast and the PMCH. The size of the guard band can be pre-agreed for the network side and the receiving end.
  • guard interval defined in the form of a subcarrier or a guard interval defined in the form of a PRB.
  • the guard interval may be agreed that 5 or 6 subcarriers are left between unicast and PMCH, or a PRB pair is agreed to be used as a guard band.
  • the guard band resources are located at the unicast and PMCH boundaries. When there are multiple boundaries between PMCH and unicast, then each boundary needs a guard band. For example, if the PMCH is in the middle of the bandwidth and the unicast resources are on both sides, there are 2 boundaries, and 2 guard bands are needed.
  • the unicast resources in the carrier between cells in the MBSFN area may be configured differently.
  • the cell 1 may be different from the unicast resource in the MBSFN subframe in the MBSFN subframe. This situation is beneficial for the cooperation between ePDCCHs in the adjacent areas to avoid each other due to Interference caused by the same resources.
  • the resource information of the PMCH is a time and/or frequency resource that is allocated to the PMCH in the MBSFN subframe or the subframe carrying the PMCH, and specifically includes one or more forms of the subordinates: 1) PRB allocated resources allocated by the PMCH.
  • the MCE needs to allocate the same PMCH resources for the MBSFN area in each cell in the same MBSFN area. 2) OFDM symbol resources allocated by PMCH. 3) frequency resources allocated by PMCH; 4) subcarrier resources allocated by PMCH; 5) bandwidth resources allocated by PMCH.
  • the foregoing protection band resource may also be included in the PMCH resource allocated by the PMCH resource information, and the protection band resource is no longer included in the unicast resource.
  • the specific implementation of the guard band is the same as in the unicast resource.
  • the preferred number of PRB pairs configuring the PMCH is one of the following six: 6, 15, 25, 50, 75, and 100.
  • the number of subcarriers of the preferred configured PMCH is one of the following: 72, 90, 150, 300, 900, 1200, or an integer multiple of 12.
  • the resource information for the PMCH may also be provided in the following manner: in the MBSFN subframe or in the subframe carrying the PMCH, except for the unicast resource, the remaining resources are resources allocated for the PMCH, where, if the MBSFN subframe Or the guard band is included in the subframe carrying the PMCH, and the unicast resource includes the guard band.
  • the guard band is reserved in units of subcarriers.
  • the remaining resources are PMCH 0 in the MBSFN subframe or in the subframe carrying the PMCH except the unicast resource.
  • the PRB pair is described as a unit.
  • the network side When the network side describes the unicast and PMCH resource information, the network side describes the resources used for the unicast resource and the PMCH in the MBSFN subframe.
  • the PMCH resource information is a resource describing the signaling for transmitting MBMS service data and MBMS control, and specifically includes MTCH or MCCH.
  • the PMCH resource information may also be used to describe a resource for transmitting special service data and control signaling, where the special service data is a service other than the MBMS service and the LTE R1 1 and the unicast service supported by the previous transmission mode.
  • the special service data is a service other than the MBMS service and the LTE R1 1 and the unicast service supported by the previous transmission mode.
  • MTC service, LTE R12 newly introduced transmission mode, D2D service data and related control signaling This can make these special services Traffic transmission and reception in unicast resources in MBSFN subframes have no effect.
  • the PMCH resource information needs to have information describing the actual use of the resource, such as actually being a PMCH or a unicast service or an MTC service or a D2D service.
  • the PMCH resource information can also be used to describe that the PMCH resource is allocated for the MBMS service, but is only used for transmitting the unicast service. This situation is similar to the special business use described above.
  • the unicast service may be sent in the resources indicated by the PMCH resource information for some high-level UEs.
  • the impact here mainly refers to the impact. If you do not take the above method, the old version of the UE will blindly check the resources without its own data to determine whether it has its own data.
  • the PMCH resource information needs to have information describing the actual use of the resource, such as actually being a PMCH or a unicast service or an MTC service or a D2D service.
  • the base station configures unicast and/or PMCH resource signaling and transmits.
  • unicast and/or PMCH resource signaling is autonomously generated by the base station, and no MCE participates in signaling generation.
  • the advantage of this case is that the base station does not need to interact with the MCE, and the base stations can exchange each other's unicast and/or PMCH resource allocation through the X2 port.
  • the specific unicast and/or PMCH resource signaling usage is the same as described above.
  • the receiving end receives the resource information of the unicast and/or the PMCH transmitted from the system broadcast information or the dedicated channel in the carrier 1, and obtains the resource allocation of the unicast and/or the PMCH in the MBSFN subframe in the carrier 1 according to the resource information. Or the receiving end learns the resource allocation situation of the unicast and/or PMCH in the MBSFN subframe in the carrier 2 paired with the carrier 1 according to the resource information.
  • the unicast resource is used to transmit the PDSCH, the ePDCCH, or the ePHICH, and the PMCH resource is used for the MBMS service data and control information.
  • the system broadcast information is preferably SIB2.
  • the PMCH resource is also used for the unicast service or other non-MBMS services.
  • the PMCH resource signaling includes the service type information actually used by the PMCH resource.
  • the PMCH resource is allocated for the MBMS service, but is actually a resource for transmitting the unicast service.
  • the receiving end receives the unicast service from the PMCH resource, when the UE determines that the unicast service is sent in the PMCH resource according to the PMCH resource information.
  • the UE can determine that the PMCH resource is actually sending a unicast service or actually transmitting an MBMS service by receiving PMCH resource information. of.
  • the UE also receives resource information of the unicast and/or PMCH of the neighboring cell, so that the UE performs neighbor cell measurement or handover.
  • the specific description and usage of the PMCH resource information and the unicast resource information may refer to the foregoing description.
  • the base station determines, in the radio frame, that the subframe type of the RCRS is a non-MBSFN subframe (ie, If the subframe of the PMCH is not configured, the base station sends the RCRS according to the RCRS position of the Normal CP. If the subframe type of the RCRS is the MBSFN subframe (that is, the subframe in which the PMCH is configured), the base station sends the RCRS according to the RCRS position of the Extended CP.
  • the base station When the base station determines that the subframe #0 is an Extended CP in the radio frame, the base station sends the RCRS according to the Extended CP in the subframe in which the RCRS is transmitted (whether or not the subframe is the MBSFN subframe type).
  • the base station When the base station performs the configuration operation, it can directly determine which subframes in the radio frame need to be configured with the PMCH. If the upper node of the base station, that is, the network side device, for example, the multi-cell cooperative entity (MCE) performs the configuration operation, the network side device sends the configuration information to the receiving end by the base station in a manner of configuring signaling, where the base station passes the configuration information. Let us know which PMCHs need to be configured in the subframes in the radio frame.
  • MCE multi-cell cooperative entity
  • the receiving end learns, according to the configuration signaling, which radio frames and the subframes are MBSFN subframes, and further determines, in the radio frame, that when the subframe #0 is a Normal CP, if the subframe in which the RCRS is sent is a non-MBSFN sub-
  • the UE receives and detects according to the RCRS position of the Normal CP. If the subframe in which the RCRS is transmitted is an MBSFN subframe, the UE receives and detects according to the RCRS position of the Extended CP.
  • the UE fixes the RCRS according to the Extended CP in the subframe in which the RCRS is transmitted.
  • Example 2 The base station determines that the serving cell uses the new carrier, that is, when the CRS is not transmitted in the cell, the base station sends the PMCH resource configuration signaling, where the signaling indicates that 10 subframes (subframes #0 ⁇ #9) in the radio frame are configured.
  • the PMCH resource is configured in a PRB pair other than the 6 PRBs in the middle of the system bandwidth, and the PMCH occupies 15 PRB pairs.
  • the base station determines that the serving cell uses the new carrier, that is, when the CRS is not transmitted in the cell, the base station sends the PMCH resource configuration signaling, where the signaling indicates 8 subframes in the radio frame (subframe #0 ⁇ #9 except #0 and #5)
  • the PMCH resource is configured in the middle, and the PMCH resource is configured in a PRB pair other than the six PRBs in the middle of the system bandwidth, and the PRCH pair occupied by the PMCH is 25.
  • the base station determines that the serving cell uses the new carrier, that is, when the CRS is not transmitted in the cell, the base station sends the PMCH resource configuration signaling, where the signaling indicates 8 subframes in the radio frame (subframe #0 ⁇ #9 except #0 and #5)
  • the PMCH resource is configured in the middle, and the PMCH resource is configured in a PRB pair other than the six PRBs in the middle of the system bandwidth, and the PMCH occupies 50 PRB pairs.
  • the base station determines that the serving cell uses the backward compatible carrier, that is, when the CRS is transmitted in the cell, the base station sends PMCH resource configuration signaling, and the signaling indicates 6 subframes in the radio frame (subframe #0 ⁇ #9) PMCH resources are configured in all but #0, #4, #5, and #9, and the PMCH resources are configured in PRB pairs other than the 6 PRBs in the middle of the system bandwidth.
  • the base station determines that the serving cell uses the new carrier, that is, when the CRS is not transmitted in the cell, the base station sends the PMCH resource configuration signaling, where the signaling indicates 10 subframes in the radio frame (subframes #0 ⁇ #9)
  • the PMCH resources are configured in the middle, and the PMCH resources are configured in the PRB pairs except the 6 PRBs in the middle of the system bandwidth in subframes #0 and #5, subframes #1, #2, #3, #4, #6, In #7, #8, and #9, the PMCH allocates resources to occupy the middle 6 PRB pairs.
  • the base station determines that the serving cell uses the new carrier, that is, when the CRS is not transmitted in the cell, the base station sends the PMCH resource configuration signaling, where the signaling indicates 10 subframes in the radio frame (subframes #0 ⁇ #9)
  • the PMCH resource is configured in the middle, and the PMCH resource is configured in the PRB pair except the 6 PRBs in the middle of the system bandwidth in each subframe, and the occupied PRB pairs are the same.
  • the base station determines that the serving cell uses a new carrier, and in the case of synchronizing a new carrier (referring to not transmitting PSS/SSS, PBCH, and paging messages), that is, when the CRS is not transmitted in the cell, the base station sends the PMCH resource configuration signaling.
  • the signaling indicates that PMCH resources are configured in 10 subframes (subframes #0 ⁇ #9) in the radio frame, and the PMCH resources are configured to include 6 PRBs in the middle of the system bandwidth in each subframe.
  • the base station determines that the serving cell uses a new carrier, and in the case of synchronizing a new carrier (referring to not transmitting PSS/SSS, PBCH, and paging messages), that is, when the CRS is not transmitted in the cell, the base station sends the PMCH resource configuration signaling.
  • the signaling indicates that PMCH resources are configured in 10 subframes (subframes #0 ⁇ #9) in the radio frame, and in subframes #0 and #5, or subframes #0, #4, #5 In #9, the PMCH resource is configured to contain 6 PRB pairs in the middle of the system bandwidth.
  • the base station determines that all subframes are configured as MBSFN subframes (subframes carrying PMCH), where, in FDD, PMCH on subframe #0 and subframe #5 (or TDD, configuration subframes #0, #5) Part of the bandwidth is occupied, and the PMCH on other downlink subframes takes up the entire bandwidth.
  • MBSFN subframes subframes carrying PMCH
  • the base station determines the frequency division multiplexing mode of the PMCH and the unicast service, and the base station transmits the CRS on the intermediate L PRB pairs in the subframe, where the PMCH resources are located on both sides of the system bandwidth in the subframe, and when the subframe is configured When it is an MBSFN subframe, the PMCH can also be transmitted on the L PRB pairs.
  • the embodiment provides a base station, as shown in FIG. 1, including a first unit and a second unit, where: the first unit learns or determines a unicast and/or physical multicast channel (PMCH) resource in a subframe. Configuration information;
  • PMCH physical multicast channel
  • a second unit sending corresponding data according to the configuration information, a subframe type, and/or a serving cell type, where the subframe type includes a multicast/multicast single frequency network (MBSFN) and a non-MBSFN,
  • the serving cell type includes a serving cell with cell-specific pilot (CRS) transmission and a serving cell without CRS transmission, and the data includes unicast service data and/or multicast service data.
  • CRS cell-specific pilot
  • the first unit configures the unicast and/or in the subframe
  • the PMCH resource can directly determine the configuration information of the unicast and/or PMCH resources in the subframe. If the network side of the upper layer of the station performs the configuration operation, the first unit receives the configuration signaling that is sent by the network side and carries the configuration information of the unicast and/or the PMCH resource, and learns the unicast and/or the subframe. Configuration information of PMCH resources.
  • Example 3 The embodiment provides a user terminal, which includes at least a first unit and a second unit.
  • a first unit configured to receive configuration signaling of a unicast and/or physical multicast channel (PMCH) resource, to determine a location of a unicast and/or PMCH resource in a subframe;
  • PMCH physical multicast channel
  • a second unit receiving data in the subframe according to a location of the unicast and/or PMCH resources in the subframe, a subframe type, and/or a service cell type;
  • the subframe type includes a multicast/multicast single frequency network (MBSFN) and a non-MBSFN, where the serving cell type includes a serving cell with cell-specific pilot (CRS) transmission and a serving cell without CRS transmission, and the data Includes: Unicast service data and/or multicast service data.
  • MMSFN multicast/multicast single frequency network
  • non-MBSFN where the serving cell type includes a serving cell with cell-specific pilot (CRS) transmission and a serving cell without CRS transmission
  • CRS cell-specific pilot
  • the unicast service and the PMCH are more reasonably frequency-division-multiplexed in the subframe, so that the receiving end of the unicast service accesses the system and the work in the system is minimized from the impact of the PMCH.
  • the impact of the unicast service on the PMCH is minimized, and some of the existing methods can be directly used in the system constructed by the method proposed by the embodiment of the present invention, and the frequency division multiplexing design complexity is simplified to the utmost extent.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种物理多播信道资源传输方法、基站及用户终端,涉及移动无线通信领域。本发明公开的方法包括:基站按照子帧类型和/或服务小区类型,发送对应的数据,其中,所述子帧类型包括多播/组播单频网络(MBSFN)和非MBSFN,所述服务小区类型包括有小区专用导频(CRS)传输的服务小区和没有CRS传输的服务小区,所述数据包括单播业务数据和/或多播业务数据。本申请还公开了一种基站和用户终端。采用本申请技术方案后,使得单播业务和PMCH在子帧内频分复用更加合理,使得单播业务的接收端接入系统以及在系统中工作受到来自PMCH的影响最小化。

Description

一种物理多播信道资源传输方法、 基站及用户终端
技术领域
本发明涉及移动无线通信领域, 特别是涉及物理多播信道(PMCH ) 资 源分配和使用。 背景技术
在 LTE R11中, 就开始讨论一种新载波类型, 但是在 LTE R11阶段, 新 载波的标准化工作没有完成, 目前, 已经进入 LTE R12阶段, 新载波的标准 化工作被顺延到 LTE R12中,并且有了一些初步的结论和又引入了一些新的 功能。
新载波被作为一种新的载波类型正在进行标准化的相关工作, 下面是新 载波中的一些共识性结论:
新载波中釆用 5 毫秒(5ms )周期的单端口小区专用导频(CRS ) 来执 行同步跟踪(文中有称为 5msCRS, 或称为同步跟踪 CRS ) , 显然这里与现 有系统中的 CRS是不相同, 且支持的端口数目不同, 发送周期不同。
新载波中特别是同步新载波中, 目前正在讨论是否配置发送 PSS/SSS和 5msCRS , 多数公司认为同步新载波中仍然需要配置发送 PSS/SSS 和 5msCRS。
新载波中不配置物理下行控制信道 ( Physical Downlink Control Channel,
PDCCH )域, 原有的 PDCCH域可能被用来传输 PDSCH。 新载波中不配置 PHICH和 PCFICH。
新载波区分为非独立运营和独立运营两种,上述的是非独立运营新载波。 对于独立运营新载波与非独立运营新载波的区别在于:非独立运营 NCT需要 和至少一个后向兼容载波聚合运营。 一般的非独立运营 NCT只能做 UE的 ScelL 下面的描述均以新载波为名称, 但是新载波实际也是载波的一种, 只 是为了区别于后向兼容载波而釆用的一种称谓。
总之, 新载波类型作为一种新的载波, 主要是由于载波中的一些配置发 生了较大变化, 并且不支持旧版本 UE运营。 所以下面的新载波也可以理解 是一种 LTE的载波。
对于相关的载波,例如 R11的载波中,单播业务资源和 PMCH资源是时 分复用在 MBSFN子帧中的, MBSFN子帧前面一个或 2个 OFDM符号为单 播业务使用, 被用于发送 PDCCH和 PHICH。 LTE R12中, 目前正在讨论新 载波中如何支持 MBMS业务, 考虑到新载波中不支持 PDCCH和 PHICH, 那么就会造成 MBSFN子帧中不能发送 PDCCH和 PHICH, 从而影响 UE的 上行授权信息以及公共信息的调度信息不能在新载波的 MBSFN子帧中发 送, PHICH也不能在 MBSFN子帧中发送,因此影响了单播业务的正常传输。
新载波中支持 ePDCCH, 其中 ePDCCH是以 PRB对为单位进行配置资 源的, 也可以理解为是时间和频率两个维度同时分配资源的, 而 PDCCH是 以 OFDM为单位进行配置资源的 ,也可以理解为是以时间一个维度分配资源 的。 但是 MBSFN子帧中是否支持 ePDCCH仍然没有被讨论, 本文假设新载 波中 MBSFN子帧支持 ePDCCH传输, 以解决上述对于单播业务的影响, 例 如使用 ePDCCH和 ePHICH为 MBSFN子帧中的单播业务控制信令传输。
发明内容
本发明所要解决的技术问题是, 提供一种物理多播信道资源分配方法及 装置, 使得系统中单播业务和 PMCH在新载波子帧内复用时, 两个业务的彼 此影响最小, 各自效率最大。
为了解决上述技术问题, 本发明公开了一种物理多播信道(PMCH ) 资 源传输方法, 包括:
基站按照子帧类型和 /或服务小区类型, 发送对应的数据, 其中, 所述子 帧类型包括多播 /组播单频网络(MBSFN )和非 MBSFN, 所述服务小区类型 包括有小区专用导频(CRS )传输的服务小区和没有 CRS传输的服务小区, 所述数据包括单播业务数据和 /或多播业务数据。
较佳地, 上述方法中, 所述基站按照子帧类型和 /或服务小区类型, 发送 对应的数据指: 所述基站获知或确定子帧中的单播和 /或 PMCH资源的配置信息, 按照 所述配置信息、 子帧类型和 /或服务小区类型发送数据。
较佳地, 上述方法中, 所述基站通过配置子帧中的单播和 /或 PMCH资 源, 以确定子帧中的单播和 /或 PMCH资源的配置信息; 或者网络侧配置子 帧中的单播和 /或 PMCH资源, 形成配置信令, 并通过所述基站发送给接收 端, 所述基站从该配置信令中获知子帧中的单播和 /或 PMCH资源的配置信 息。
较佳地,上述方法中, 配置 PMCH资源的带宽对应的物理资源块( PRB ) 对数量为下述的任一种:
6、 15、 25、 50、 75、 100。
较佳地, 上述方法中, 所述单播资源用于传输单播业务数据、 信令和参 考信号, 其中, 包括物理下行共享信道(PDSCH ) 、 增强下行物理控制信道 ( ePDCCH )和增强物理混合重传指示信道(ePHICH ) , CRS、 减少的小区 专用参考信号 (RCRS ) 、 信道状态信息参考符号 (CSI-RS )和解调参考信 号 (DMRS ) 。
较佳地, 上述方法中, 所述 PMCH资源位于系统带宽的两侧的 PRB对 中, 单播业务位于系统带宽中间的 PRB对中; 或者
所述 PMCH资源位于系统带宽的其中一侧的 PRB对中, 单播业务位于 系统带宽中间以及另一侧的 PRB对中。
较佳地, 上述方法中, 频分双工 (FDD )或时分双工 (TDD ) 时, 在子 帧 #0和 #5中, 所述 PMCH资源位于系统带宽的两侧的 PRB对中, 单播业务 位于系统带宽中间的 PRB对中, 在子帧 #1、 #2、 #3、 #4、 #6、 #7、 #8、 #9 中, 所述 PMCH资源位于系统带宽中间或两侧的 PRB对中;
FDD时, 在子帧 #0、 #4、 #5和 #9中, 所述 PMCH资源位于系统带宽的 两侧的 PRB对中, 单播业务位于系统带宽中间的 PRB对中, 在子帧 #1、 #2、 #3、 #6、 #7、 #8中, 所述 PMCH资源位于系统带宽中间或两侧的 PRB对中;
TDD时, 在子帧 #0、 #1、 #5和 #6中, 所述 PMCH资源位于系统带宽的 两侧的 PRB对中, 单播业务位于系统带宽中间的 PRB对中, 在子帧 #2、 #3、 #4、 #7、 #8、 #9 中, 如果所述子帧为下行子帧, 则 PMCH资源位于该子帧 系统带宽中间或两侧的 PRB对中。
较佳地,上述方法中,所述单播业务位于系统带宽中间的 6个 PRB对中, 所述 PMCH资源位于除了单播业务分配的 PRB对之外的 PRB对中。
较佳地, 上述方法中, 所述 PMCH资源在子帧内的起始位置为第一个正 交频分复用 (OFDM )符号。
较佳地, 上述方法中, 在无线帧内配置为 PMCH资源的子帧数量最大为 10个子帧或 8个子帧或 6个子帧, 其中, 10个子帧为 #0至 #9子帧, 8个子 帧为 #0至 #9子帧中除了 #0和 #5子帧, 6个子帧是指, FDD时, #0至 #9子 帧中除了 #0、 #4、 #5和 #9子帧, TDD时是指子帧 #0至 #9中除了 #0、 #1、 #5 和 #6的下行子帧。
较佳地, 上述方法中, 当无线帧内配置为 PMCH资源的子帧数量最大为 10个或 8个或 6个子帧时, 则单播资源均位于承载 PMCH的子帧的系统带 宽的中间 PRB对中, PMCH资源均位于承载 PMCH的子帧的系统带宽的两 侧 PRB对中。
较佳地, 上述方法中, 所述承载 PMCH的子帧中, 每一个子帧中的单播 资源配置相同。
较佳地,上述方法中,所述承载 PMCH的子帧中,每一个子帧中的 PMCH 资源配置相同。
较佳地, 上述方法中, 所述单播资源指子帧中为单播业务分配的或预留 的时间和 /或频率资源, 包括下述的一个或多个形式:
单播分配的或预留的 PRB对资源; 单播分配的或预留的 OFDM符号资 源; 单播分配的或预留的频率资源; 单播分配的或预留的子载波资源; 单播 分配的或预留的带宽资源。
较佳地, 上述方法中, 所述单播资源中还包含不用于发送单播的保护带 资源, 所述保护带位于单播和 PMCH之间, 且在频率方向上。
较佳地, 上述方法中, 所述保护带资源的大小为网络侧和接收端事先约 定的, 且是以子载波形式定义的保护间隔或 PRB形式定义的保护间隔。 较佳地, 上述方法中, 所述子载波形式定义的保护间隔为 5或 6个子载 波空留在单播和 PMCH之间; 或者保护间隔为一个 PRB对在单播和 PMCH 之间。
较佳地, 上述方法中, 所述保护带资源在 PMCH和单播的边界处, 当 PMCH和单播存在多个边界时, 存在多个保护带资源。
较佳地, 上述方法中, 所述保护带为网络侧和接收端事先约定的, 包括 约定保护带形式、 大小和位置, 约定保护带包含在单播资源中或 PMCH资源 中, 约定不存在保护带。
较佳地, 上述方法中, 所述 PMCH资源是指子帧中为 PMCH分配的时 间和 /或频率资源, 包括下属的一个或多个形式:
PMCH分配的 PRB对资源; PMCH分配的 OFDM符号资源; PMCH分 配的频率资源; PMCH分配的子载波资源; PMCH分配的带宽资源。
较佳地, 上述方法中, 所述配置信令中 PMCH资源的配置信息指: 在子帧中除了单播资源外, 剩余的资源为 PMCH分配的资源, 其中, 如 果子帧中有保护带, 则单播资源包括所述保护带; 或者
在子帧中除了单播资源外, 剩余的资源为 PMCH分配的资源
较佳地,上述方法中,所述单播资源和 PMCH资源在子帧内描述以 PRB 对为单位。
较佳地, 上述方法中, 所述单播资源在子帧中釆用扩展 CP传输, 或者 与所述子帧中 PMCH资源使用相同的 CP。
较佳地, 上述方法中, 所述 PMCH资源是指用于发送多媒体组播广播服 务(MBMS )业务数据、 控制信令以及 MBMS业务对应的参考信号的资源, 其中,控制信令指点到多点业务信道( MTCH )或点到多点控制信道( MCCH ) 控制信令, 参考信号包括用于 MBMS业务的参考信号。
较佳地, 上述方法中, 所述 PMCH资源还用于发送特殊业务数据和控制 的资源, 其中, 所述特殊业务数据为除 MBMS业务和 LTE R11以及传输模 式支持的单播业务之外的业务
较佳地, 上述方法中, 所述特殊业务包括移动测试中心 (MTC ) 业务。 较佳地,上述方法中,所述配置信令还用于描述 PMCH资源是为 MBMS 业务分配的且仅用于传输单播业务的。
较佳地, 上述方法中, 所述网络侧之间通过 x2 口交互彼此单播和 /或 PMCH资源的配置信令。
较佳地, 上述方法中,在无线帧内, 当子帧 #0为普通循环前缀(CP )时, 如果发送 RCRS的子帧为非 MBSFN子帧, 所述基站按照普通 CP的 RCRS 位置发送 RCRS, 如果发送 RCRS的子帧为 MBSFN子帧, 所述基站按照扩 展 CP的 RCRS位置发送 RCRS;
当子帧 #0为扩展 CP时,所述基站在发送 RCRS的子帧中固定按照扩展 CP发送 RCRS。
本发明还公开了一种物理多播信道(PMCH ) 资源传输方法, 包括: 接收端根据子帧类型和 /或服务小区类型, 接收子帧中的数据;
其中, 所述子帧类型包括多播 /组播单频网络(MBSFN )和非 MBSFN, 所述服务小区类型包括有小区专用导频(CRS )传输的服务小区和没有 CRS 传输的服务小区, 所述数据包括: 单播业务数据和 /或多播业务数据。
较佳地, 上述方法还包括:
所述接收端接收子帧中的数据之前, 接收单播和 /或 PMCH资源的配置 信令, 确定子帧中单播和 /或 PMCH资源的位置。
较佳地, 上述方法中, 所述接收端在承载 PMCH资源的子帧中按照下面 物理资源块( PRB )对数量之一接收 PMCH:
6、 15、 25、 50、 75、 100。
较佳地, 上述方法中, 所述接收端在承载 PMCH的子帧中接收单播业务 数据、 信令和参考信号, 其中, 包括物理下行共享信道(PDSCH ) 、 增强下 行物理控制信道 ( ePDCCH )和增强物理混合重传指示信道 ( ePHICH )信道, CRS、减少的小区专用参考信号(RCRS )、信道状态信息参考符号( CSI-RS ) 和解调参考信号 (DMRS ) 。 较佳地, 上述方法中, 所述接收端在承载 PMCH的子帧的系统带宽的两 侧的 PRB对中接收 PMCH, 在所述子帧的系统带宽中间的 PRB对中接收单 播业务; 或者
在承载 PMCH的子帧的系统带宽的一侧的 PRB对中接收 PMCH, 在所 述子帧的系统带宽中间以及另一侧的 PRB对中接收单播业务。
较佳地, 上述方法中, 频分双工 (FDD )或时分双工 (TDD ) 时, 所述 接收端在子帧 #0和 #5的系统带宽中间的 PRB对中接收单播业务, 在子帧 #0 和 #5的系统带宽两侧的 PRB对中接收 PMCH, 在子帧 #1、 #2、 #3、 #4、 #6、 #7、 #8、 #9的系统带宽中间的 PRB对中接收 PMCH;
FDD时, 所述接收端在子帧 #0、 #4、 #5和 #9的系统带宽中间的 PRB对 中接收单播业务, 在子帧 #0、 #4、 #5和 #9的系统带宽两侧的 PRB对中接收 PMCH, 在子帧 #1、 #2、 #3、 #6、 #7、 #8 的系统带宽中间的 PRB对中接收 PMCH;
TDD时, 所述接收端在子帧 #0、 #1、 #5和 #6的系统带宽中间的 PRB对 中接收单播业务, 在子帧 #0、 #1、 #5和 #6的系统带宽两侧的 PRB对中接收 PMCH, 在子帧 #2、 #3、 #4、 #7、 #8、 #9中, 如果所述子帧为下行子帧, 则 在所述子帧的系统带宽中间的 PRB对中接收 PMCH。
较佳地, 上述方法中, 所述接收端在所述子帧的系统带宽中间的 PRB对 中接收单播业务指:所述接收端从子帧的系统带宽中间 6个 PRB对中接收单 播业务;
所述接收端在承载 PMCH 的子帧的系统带宽的两侧的 PRB 对中接收 PMCH指:所述接收端从子帧的除了单播业务分配的 6个 PRB对之外的 PRB 对中接收 PMCH。
较佳地, 上述方法中, 所述 PMCH资源在子帧内的起始位置为第一个正 交频分复用 (OFDM )符号
较佳地, 上述方法中, 所述接收端确定在无线帧内能被配置 PMCH资源 子帧数量最大为 10个子帧或 8个子帧或 6个子帧, 其中, 10个子帧是指 #0 至 #9子帧, 8个子帧是指 #0至 #9子帧中除了 #0和 #5子帧, 6个子帧是指, FDD时, 子帧 #0至 #9中除了 #0、 #4、 #5和 #9, TDD时是指子帧 #0至 #9中 除了 #0、 #1、 #5和 #6的下行子帧。 较佳地, 上述方法中, 所述接收端确定在无线帧内配置 PMCH资源子帧 数量最大为 10个子帧或 8个子帧或 6个子帧, 则所述接收端在承载 PMCH 的子帧系统带宽的中间 PRB对中接收单播资源, 在承载 PMCH的子帧系统 带宽的两侧 PRB对中接收 PMCH资源。
较佳地, 上述方法中, 所述接收端接收的单播资源是指子帧中为单播业 务分配的或预留的时间和 /或频率资源,所述单播业务包括下述的一个或多个 形式:
单播分配的或预留的 PRB对资源; 单播分配的或预留的 OFDM符号资 源; 单播分配的或预留的频率资源; 单播分配的或预留的子载波资源; 单播 分配的或预留的带宽资源。
较佳地, 上述方法中, 所述接收端接收的单播资源中还包含不用于发送 单播的保护带资源, 其中保护带位于单播和 PMCH之间, 且在频率方向上。
较佳地, 上述方法中, 所述接收端接收的 PMCH 资源是指子帧中为 PMCH分配的时间和 /或频率资源 , 包括如下一种或多种形式:
PMCH分配的 PRB对资源; PMCH分配的 OFDM符号资源; PMCH分 配的频率资源; PMCH分配的子载波资源; PMCH分配的带宽资源。
较佳地, 上述方法中, 所述接收端接收的 PMCH资源是指用于发送多媒 体广播组播(MBMS )业务数据、控制信令以及 MBMS业务对应的参考信号 的资源, 其中, 控制信令为点到多点业务信道(MTCH )或点到多点控制信 道( MCCH ) , 参考信号包括用于 MBMS业务的参考信号。
较佳地, 上述方法中, 所述接收端接收的 PMCH资源还用于发送特殊业 务数据和控制的资源,其中,所述特殊业务数据为除 MBMS业务和 LTE Rl 1 以及之前的传输模式支持的单播业务之外的业务
较佳地, 上述方法中, 所述特殊业务包括移动测试中心 (MTC ) 业务。 较佳地, 上述方法中, 所述接收端接收的单播和 /或 PMCH资源的配置 信令还用于描述 PMCH的资源是为 MBMS业务分配的且仅用于传输单播业 务的。
较佳地, 上述方法中,在无线帧内, 当子帧 #0为普通循环前缀(CP )时, 如果发送 RCRS的子帧为非 MBSFN子帧,所述接收端按照普通 CP的 RCRS 位置接收和检测, 如果发送 RCRS的子帧为 MBSFN子帧, 所述接收端按照 扩展 CP的 RCRS位置接收和检测;
当子帧 #0为扩展 CP时, 所述接收端在发送 RCRS的子帧中固定按照扩 展 CP检测 RCRS。
本发明还公开了一种基站, 包括:
第一单元, 设置为: 获知或确定子帧中的单播和 /或物理多播信道 ( PMCH ) 资源的配置信息;
第二单元, 设置为: 按照所述配置信息、 子帧类型和 /或服务小区类型, 发送对应的数据, 其中, 所述子帧类型包括多播 /组播单频网络(MBSFN ) 和非 MBSFN, 所述服务小区类型包括有小区专用导频(CRS )传输的服务 小区和没有 CRS传输的服务小区, 所述数据包括单播业务数据和 /或多播业 务数据。
较佳地, 上述基站中, 所述第一单元, 设置为: 通过配置子帧中的单播 和 /或 PMCH资源, 以确定子帧中的单播和 /或 PMCH资源的配置信息; 或者 接收网络侧发送的携带有单播和 /或 PMCH资源的配置信息的配置信令, 从中获知子帧中的单播和 /或 PMCH资源的配置信息。
本发明还公开了一种用户终端, 包括:
第一单元, 设置为: 接收单播和 /或物理多播信道(PMCH ) 资源的配置 信令, 确定子帧中单播和 /或 PMCH资源的位置;
第二单元, 设置为: 根据子帧中单播和 /或 PMCH资源的位置, 子帧类 型和 /或服务小区类型, 接收子帧中的数据;
其中, 所述子帧类型包括多播 /组播单频网络( MBSFN )和非 MBSFN, 所述服务小区类型包括有小区专用导频(CRS )传输的服务小区和没有 CRS 传输的服务小区, 所述数据包括: 单播业务数据和 /或多播业务数据。
釆用本申请技术方案后,使得单播业务和 PMCH在子帧内频分复用更加 合理,使得单播业务的接收端接入系统以及在系统中工作受到来自 PMCH的 影响最小化, 也是得单播业务对于 PMCH的影响最小化, 并且使得现有标准 中的部分方法可以直接在本发明实施例建议的方法构成的系统中使用, 且最 大程度上简化了频分复用设计复杂度。 附图概述
图 1是本发明实施例基站的示意图。 本发明的较佳实施方式
引入新载波中 MBSFN子帧支持 ePDCCH传输后, 会对于 PMCH中的 MBMS 业务传输产生影响, 例如, ePDCCH或者更广泛一些, 单播业务和 PMCH在子帧中如何复用。 显然 ePDCCH (或单播业务)需要和 PMCH在子 帧内进行时频两维的复用, 那么具体的复用如何设计呢, 如何设计对于单播 业务和多播业务(PMCH中传输的 MBMS业务)之间的影响最小, 使得各 自的性能最大化呢?
下文将结合附图对本发明技术方案作进一步详细说明。 需要说明的是, 在不冲突的情况下, 本申请的实施例和实施例中的特征可以任意相互组合。
实施例 1
本发明的发明人提出, 基站按照子帧类型和 /或服务小区类型 (在 LTE 中引入多载波技术后, 载波和小区是等同概念)在子帧中发送数据。 其中, 子帧类型包括 MBSFN和非 MBSFN子帧, 服务小区类型包括传输 CRS (是 指按照 LTE R11中给出的 CRS定义)的服务小区和不传输 CRS的服务小区, 发送的数据包括: 单播业务数据和 /或多播业务数据(是指通过 PMCH传输 的 ) 。 MBSFN子帧是指实际承载 PMCH的子帧, 非 MBSFN子帧是指实际 并未承载 PMCH的子帧。 网络侧在子帧中配置单播和 /或 PMCH资源, 并形 成配置信令发送给接收端, 其中接收端包括基站 (接收基站的上层节点) 、 small cell (接收基站的) 、 UE (接收基站或 small cell ) 。 需要说明的是, 配 置操作的执行网元不同造成接收端不同。 例如, 配置操作是由基站执行的, 则基站将配置信令发送给 UE或是 small cell即可。 配置操作是由基站的上层 节点执行的,则基站的上层节点将配置信令先发送给基站,基站解析处理后, 再将配置信令发送给 UE或是 small cell。
对于网络侧在子帧中配置 PMCH资源的带宽大小, 以对应的 PRB对描 述, 优选的, 建议存在 6种, 分别为 6个 PRB对, 或 15个 PRB对, 或 25 个 PRB对, 或 50个 PRB对, 或 75个 PRB对, 或 100个 PRB对。 之所以 这样, 主要考虑到现有的 PMCH发送时, 是占用全部带宽的, 对应 MTCH、 MCCH等相关信道的组包、 调度都是依据全部带宽进行优化设计的, 所以在 单播和多播业务频分复用时,多播业务占用带宽应该优先选择现有的 LTE的 系统带宽, 这样可以最大程度沿用现有协议中的 MTCH、 MCCH的组包和调 度,从而减少标准化以及设备实现的复杂度。对应的其他 PRB对对应的带宽 是为单播业务的。 对于设计单播和多播频分复用时, 存在多播分配其他 PRB 对数量的情况, 也是允许存在的。
上述的单播资源是用来传输单播业务数据、 信令和参考信号。 其中主要 包括 PDSCH、 ePDCCH和 ePHICH, CRS、 RCRS、 CSI-RS和 DMRS。 还可 以包括 PSS/SSS、 PBCH。进一步还可以包括 PRS以及用于小小区( small cell ) 发现的物理发现信令 ( discovery signal ) 。
对于承载 PMCH的子帧中, 网络侧配置 PMCH资源的位置优选地位于 系统带宽的两边的 PRB对中, 将系统带宽中间的 PRB对配置给单播业务。 包括, PMCH资源的位置位于系统带宽的一边的 PRB对,单播业务位于系统 带宽中间以及另一边的 PRB对中。 也包括, 将 PMCH资源的位置位于系统 带宽中单播业务的 PRB对的两边或一边的 PRB对中。 这样有利于确保单播 业务占用系统中间带宽, 以确保系统中的同步信号 (PSS/SSS ) 、 系统广播 信号中的 (PBCH )发送位置不改变, 使得系统设计简单。 并且不会影响其 他旧版本 UE接入该小区或载波。
优选地, 一种 PMCH资源和单播资源复用的子帧配置为, FDD或 TDD 时, 在子帧 #0和 #5中, 所述 PMCH资源位于系统带宽两边的 PRB对中, 单 播业务位于系统带宽中间的 PRB对中; FDD或 TDD时在子帧 #1、 #2、 #3、 #4、 #6、 #7、 #8、 #9中, PMCH资源被允许位于系统带宽中间的 PRB对中 (包含也可以位于系统带宽两侧的 PRB对中, 下同)。 此时可以使得系统中 的同步信号、 PBCH位于系统带宽中间且子帧位置不需要发生改变, 从而使 得设计简单, 且不影响旧版本 UE接收同步信号、 PBCH。
优选的, 一种 PMCH资源和单播资源复用的子帧配置为, FDD时在子 帧 #0、 #4、 #5和 #9中, 所述 PMCH资源位置位于系统带宽的两边的 PRB对 中, 单播业务位于系统带宽中间的 PRB对中; FDD时在子帧 #1、 #2、 #3、 #6、 #7、 #8中, PMCH资源被允许位于系统带宽中间的 PRB对中。 此时进 一步可以使得系统中的寻呼消息的配置受到的影响最小, 因为寻呼消息有可 能使用 #0、 #4、 #5和 #9子帧, 如果将这些子帧中的单播业务放置在系统带宽 中间, 可以使得旧版本 UE (特别是低成本 UE )能够在系统中接收到寻呼消 息, 从而工作。
优选的, 一种 PMCH资源和单播资源复用的子帧配置为, TDD时在子 帧 #0、 #1、 #5和 #6中, 所述 PMCH资源位置位于系统带宽的两边的 PRB对 中, 单播业务位于系统带宽中间的 PRB对中; TDD时在子帧 #2、 #3、 #4、 #7、 #8、 #9中, 如果所述子帧为下行子帧 (文中所述下行子帧包括 TDD的 特殊子帧 ) , 则 PMCH资源被允许位于该子帧系统带宽中间的 PRB对中。 此时进一步可以使得系统中的寻呼消息的配置受到的影响最小, 因为寻呼消 息有可能使用 #0、 #1、 #5和 #6子帧, 如果将这些子帧中的单播业务放置在系 统带宽中间, 可以使得旧版本 UE (特别是低成本 UE )能够在系统中接收到 寻呼消息, 从而工作。
上述的单播业务位于在子帧中系统带宽中间 PRB对,具体的可以是系统 带宽中间的 N个 PRB对中, 其中, N的取值为正整数, 大于等于 6且小于 系统带宽。 优选的, 当 N大于或等于 6时, 所述 N个 PRB对包含系统带宽 最中间的 6个 PRB对中。
上述的 PMCH资源位于在子帧中系统带宽两边的 PRB对中时,优选的,
PMCH资源位于除了单播业务分配的 N个 PRB对之外的 PRB对中。 或者 PMCH资源的 PRB对从除了单播业务分配的 N个 PRB对之外的 PRB对中分 配。 或者, 当 PMCH资源位于系统带宽两边的带宽时, 具体的, PMCH资源 占用的带宽为 2*M个 PRB对(M为正整数) , 则具体分配位于系统带宽对 应的所有 PRB对中的前 M个 PRB对和后 M个 PRB对中。
上述的 PMCH资源在子帧中的 OFDM符号起始位置为第一个 OFDM符 号。 新载波中由于不支持 PDCCH, 所以可以考虑使用子帧中第一个 OFDM 符号为 PMCH资源。 当然也可以从第 3个或第 2个 OFDM符号开始, 此时 虽然使得新载波的 PMCH资源的 OFDM符号数减少了, 但是此时可以让旧 版本 UE在新载波中接收 PMCH, 前提是旧版本 UE能够顺利的接入到新载 波中。
另外, 网络侧在无线帧内能被配置 PMCH资源的子帧数量最大为 10个 子帧或 8个子帧或 6个子帧, 其中, 10个子帧是指 #0~#9子帧; 8个子帧是 指 #0~#9子帧中除了 #0和 #5子帧; 6个子帧是指, FDD时, 子帧 #0~#9中除 了 #0、 #4、 #5和 #9, TDD时是指子帧 #0~#9中除了 #0、 #1、 #5和 #6的下行 子帧。 所述无线帧内能被配置 PMCH资源的子帧数量最大为 10个子帧或 8 个子帧或 6个子帧, 主要是无线帧中的子帧数(LTE中为 10个子帧)减去 通过标准规定的无线帧中不能配置为承载 PMCH的子帧的子帧数, 例如, 如 果标准中规定每一个子帧都可以承载 PMCH, 那么此时对应的就是所述最大 为 10个子帧; 如果标准中规定子帧 #0和 #5不能承载 PMCH, 那么此时对应 的就是所述最大为 8个子帧; 如果标准中规定子帧 #0、 #4、 #5和 #9 ( FDD ) , 或子帧 #0、 #1、 #5和 #6 ( TDD )不能承载 PMCH, 那么此时对应的就是所述 最大为 6个子帧; 显然对于 TDD, 由于无线帧中的 10个子帧是下行子帧和 上行子帧共存的, 所以 TDD时, 无线帧中为 PMCH配置的子帧最大数为 10 个子帧或 8个子帧或 6个子帧时, 是包含上行子帧的, 但是实际上行子帧不 能用于 PMCH。
当无线帧内能被配置 PMCH资源的子帧数量最大为 10个或 8个或 6个 子帧时, 则承载 PMCH的子帧系统带宽的中间 PRB对均为单播资源。 这样 网络侧对于单播资源的调度就比较容易, 特别是 CSI的反馈就比较准确, 例 如如果承载 PMCH的子帧系统带宽的中间有的是 PMCH,有的是单播, 那么 当接收端在中间是 PMCH子帧的中进行 CSI测量并反馈后 (实际是测量了非 中间 PRB对) , 但是, 网络侧为接收端待调度的子帧的中间是单播业务的 PRB对, 此时网络侧则不能参考接收端前面的 CSI反馈, 也就是 CSI反馈是 无效的, 因为 CSI测量对应的资源不能发送单播, 而被 PMCH占用了。 无线 帧中承载 PMCH的子帧的系统带宽的两边 PRB对能被配置为 PMCH。 这是 为了便于旧版本 UE接入系统并工作。
进一步, 承载 PMCH的子帧中, 每一个子帧中的单播资源配置相同, 便 于单播业务调度。 进一步承载 PMCH的子帧中, 每一个子帧中的 PMCH资 源配置相同, 便于 MBMS业务调度。 至少同一 MBSFN区域的 PMCH在子 帧中的具有相同的 PRB对。对于接收端高速运动情况下,一般 CSI反馈的有 效性比较低, 此时可以在承载 PMCH的子帧中将 PMCH子帧的资源 (或单 播资源) 配置的不相同。
前述的单播资源是指子帧中为单播业务分配的或预留的时间和 /或频率 资源, 具体包括下述的一个或多个形式: 单播分配的或预留的 PRB对资源; 单播分配的或预留的 OFDM符号资源; 单播分配的或预留的频率资源; 单播 分配的或预留的子载波资源; 单播分配的或预留的带宽资源。 所述单播资源 中还包含不用于发送单播的保护带 (也称为预留资源) 资源, 其中保护带位 于单播和 PMCH之间, 且在频率方向上。 这是考虑到 PMCH是多小区联合 发送, 信号会在空口进行叠加, 所以会对于邻近载波有强的干扰, 所以预留 保护带。
所述保护带资源的大小为网络侧和接收端事先约定的, 且是以子载波形 式定义的保护间隔或 PRB形式定义的保护间隔。所述子载波形式定义的保护 间隔为 K个子载波空留在单播和 PMCH之间,其中 K为小于等于 12的正整 数 , 优选为 5或 6; 或者保护间隔为一个 PRB对在单播和 PMCH之间。
所述保护带资源在 PMCH和单播的边界处, 当 PMCH和单播存在多个 边界时, 存在多个保护带资源。 所述保护带为网络侧和接收端事先约定的, 包括约定保护带形式、 大小和位置, 约定保护带包含在单播资源中或 PMCH 资源中, 约定不存在保护带。
前述 PMCH资源是指子帧中为 PMCH分配的时间和 /或频率资源, 具体 包括下属的一个或多个形式: PMCH 分配的 PRB 对资源; PMCH分配的 OFDM符号资源; PMCH分配的频率资源; PMCH分配的子载波资源; PMCH 分配的带宽资源。 所述 PMCH资源的信令通过下面方式提供: 在子帧中除了 单播资源外,剩余的资源为 PMCH分配的资源,其中,如果子帧中有保护带, 则单播的资源包括所述保护带。如果所述 PMCH资源的信令通过单播资源描 述来提供, 具体的: 在子帧中除了单播的资源外, 剩余的资源为 PMCH, 此 时没有保护带。
所述单播资源在子帧内描述以 PRB对或 RBG为单位,相应的 PMCH资 源也以 PRB对或 RBG为单位。
所述单播资源在子帧中釆用扩展 CP传输, 或者与所述子帧中 PMCH资 源使用相同的 CP。
所述 PMCH资源是指用于发送 MBMS业务数据、 控制信令以及 MBMS 业务对应的参考信号的资源, 其中具体发送包括 MTCH或 MCCH, 其中参 考信号包括用于 MBMS业务的参考信号。
所述 PMCH资源也用于发送特殊业务数据和控制的资源,其中所述特殊 业务数据为除 MBMS业务和 LTE R11以及之前的传输模式支持的单播业务 之外的业务, 具体可以包括 MTC业务。
所述单播和 /或 PMCH 资源, 并形成信令, 具体所述信令还用于描述 PMCH的资源是为 MBMS业务分配的但是仅用于传输单播业务的。
网络侧之间通过 x2口交互彼此单播和 /或 PMCH资源的配置信令。
网络侧在无线帧内, 当子帧 #0为 Normal CP时, 如果发送 RCRS的子帧 为非 MBSFN子帧, 网络侧按照 Normal CP的 RCRS位置发送 RCRS , 如果 发送 RCRS的子帧为 MBSFN子帧, 网络侧按照 Extended CP的 RCRS位置 发送 RCRS。
网络侧在无线帧内, 当子帧 #0为 Extended CP时, 网络侧在发送 RCRS 的子帧中固定按照 Extended CP发送 RCRS。
对应地, 按照上述方式进行资源配置后, 接收端的过程, 具体如下 (描 述位解释的内容参考网络侧的描述) :
接收端根据子帧类型和 /或服务小区类型, 接收子帧中的数据。 其中, 所 述子帧类型包括 MBSFN和非 MBSFN子帧,所述服务小区类型包括传输 CRS 的服务小区和不传输 CRS的服务小区。 所述数据包括: 单播业务数据和 /或 多播业务数据。 所述 MBSFN子帧是指实际承载 PMCH的子帧, 非 MBSFN 子帧是指实际并未承载 PMCH的子帧。
接收端接收子帧中的数据, 还包括, 接收端接收单播和 /或 PMCH资源 的分配信息,确定子帧中单播和 /或 PMCH资源的位置。接收端在承载 PMCH 资源的子帧中按照下面 PRB对数量之一接收 PMCH: 6、 15、 25、 50、 75和 100。
接收端在承载 PMCH的子帧中接收单播业务数据、信令和参考信号。 其 中包括 PDSCH、 ePDCCH和 ePHICH信道, CRS、 RCRS、 CSI-RS和 DMRS 参考信号。
一种情况, 接收端在承载 PMCH的子帧的系统带宽的两边的 PRB对中 接收 PMCH, 接收端在所述子帧的系统带宽中间的 PRB对中接收单播业务。
一种情况, 接收端在承载 PMCH的子帧的系统带宽的一边的 PRB对中 接收 PMCH, 在所述子帧的系统带宽中间以及另一边的 PRB对中单播业务。
进一步的一种情况, 接收端在 FDD或 TDD时, 接收端在子帧 #0和 #5 的系统带宽中间的 PRB对中接收单播业务, 在子帧 #0和 #5的系统带宽两边 的 PRB对中接收 PMCH; FDD或 TDD时, 接收端在子帧 #1、 #2、 #3、 #4、 #6、 #7、 #8、 #9的系统带宽中间的 PRB对中接收 PMCH。
进一步的一种情况, 接收端在 FDD时, 接收端在子帧 #0、 #4、 #5和 #9 的系统带宽中间的 PRB对中接收单播业务, 在子帧 #0、 #4、 #5和 #9的系统 带宽两边的 PRB对中接收 PMCH; FDD时, 接收端在子帧 #1、 #2、 #3、 #6、 #7、 #8的系统带宽中间的 PRB对中接收 PMCH。
进一步的一种情况, 接收端在 FDD时, TDD时, 接收端在子帧 #0、 #1、 #5和 #6的系统带宽中间的 PRB对中接收单播业务, 在子帧 #0、 #1、 #5和 #6 的系统带宽两边的 PRB对中接收 PMCH。 TDD时, 接收端在子帧 #2、 #3、 #4、 #7、 #8、 #9中, 如果所述子帧为下行子帧, 则在所述子帧的系统带宽中 间的 PRB对中接收 PMCH。 接收端在子帧中系统带宽中间 PRB对接收单播业务,具体的可以是系统 带宽中间的 N个 PRB对中接收, 其中, N的取值为正整数, 大于等于 6且 小于系统带宽。 优选的, 当 N大于或等于 6时, 所述 N个 PRB对包含系统 带宽最中间的 6个 PRB对。
接收端在 PMCH 资源位于在子帧中系统带宽两边的 PRB 对中接收
PMCH时, 优选的 , 接收端在除了单播业务分配的 N个 PRB对之外的 PRB 对中接收 PMCH。 或者从除了单播业务分配的 N个 PRB对之外的 PRB对中 接收 PMCH。
进一步的一种情况,接收端在所述子帧的系统带宽中间的 PRB对中接收 单播业务, 具体为: 接收端从子帧的系统带宽中间 6个 PRB对中接收单播业 务。接收端在承载 PMCH的子帧的系统带宽的两边的 PRB对中接收 PMCH, 具体为: 接收端从子帧的除了单播业务分配的 6个 PRB对之外的 PRB对中 接收 PMCH。
在新载波中, 接收端在子帧内接收 PMCH的 OFDM起始位置为第一个 OFDM符号。
还包括, 接收端确定在无线帧内能被配置 PMCH 资源子帧数量最大为 10个子帧或 8个子帧或 6个子帧, 其中, 10个子帧是指 #0~#9子帧, 8个子 帧是指 #0~#9子帧中除了 #0和 #5子帧, 6个子帧是指, FDD时, 子帧 #0~#9 中除了 #0、 #4、 #5和 #9, TDD时是指子帧 #0~#9中除了 #0、 #1、 #5和 #6的 下行子帧。 其中相关解释参考前述的描述。
所述接收端确定在无线帧内能被配置 PMCH资源子帧数量最大为 10个 子帧或 8个子帧或 6个子帧, 则承载 PMCH的子帧系统带宽的中间 PRB对 均为单播资源,承载 PMCH的子帧系统带宽的两边 PRB对能被配置为 PMCH 资源。
进一步, 接收端认为(等效于接收时按照)在承载 PMCH的子帧中每一 个子帧中的单播资源配置相同。接收端认为在承载 PMCH的子帧中每一个子 帧中的 PMCH资源配置相同。 至少同一 MBSFN区域的 PMCH在子帧中的 具有相同的 PRB对。
接收端, 认为所述单播资源是指子帧中为单播业务分配的或预留的时间 和 /或频率资源, 具体包括下述的一个或多个形式: 单播分配的或预留的 PRB 对资源; 单播分配的或预留的 OFDM符号资源; 单播分配的或预留的频率资 源; 单播分配的或预留的子载波资源; 单播分配的或预留的带宽资源。
接收端, 认为单播资源中还包含不用于发送单播的保护带 (也称为预留 资源) 资源, 其中保护带位于单播和 PMCH之间, 且在频率方向上。
接收端, 认为所述保护带资源的大小为网络侧和接收端事先约定的, 且 是以子载波形式定义的保护间隔或 PRB形式定义的保护间隔。
所述接收端, 认为所述子载波形式定义的保护间隔为 5或 6个子载波空 留在单播和 PMCH之间;或者保护间隔为一个 PRB对在单播和 PMCH之间。
接收端, 认为所述保护带资源在 PMCH和单播的边界处, 当 PMCH和 单播存在多个边界时, 存在多个保护带资源。
接收端, 认为所述保护带为网络侧和接收端事先约定的, 包括约定保护 带形式、 大小和位置, 约定保护带包含在单播资源中或 PMCH资源中, 约定 不存在保护带。
接收端, 认为所述 PMCH资源是指子帧中为 PMCH分配的时间和 /或频 率资源 ,具体包括下属的一个或多个形式: PMCH分配的 PRB对资源; PMCH 分配的 OFDM符号资源; PMCH分配的频率资源; PMCH分配的子载波资 源; PMCH分配的带宽资源。
接收端,认为所述 PMCH资源的信令通过下面方式提供: 在子帧中除了 单播资源外,剩余的资源为 PMCH分配的资源,其中,如果子帧中有保护带, 则单播的资源包括所述保护带。
接收端,认为所述 PMCH资源的信令通过单播资源描述来提供,具体的: 在子帧中除了单播的资源外, 剩余的资源为 PMCH。
接收端, 认为所述单播资源在子帧内描述以 PRB或 RBG对为单位, 相 应的 PMCH资源也以 PRB或 RBG对为单位。
接收端, 认为所述单播资源在子帧中釆用扩展 CP传输, 或者与所述子 帧中 PMCH资源使用相同的 CP。
接收端, 认为所述 PMCH资源是指用于发送 MBMS业务数据、 控制信 令以及 MBMS 业务对应的参考信号的资源, 其中具体发送包括 MTCH或 MCCH, 其中参考信号包括用于 MBMS业务的参考信号。
接收端, 认为所述 PMCH资源也用于发送特殊业务数据和控制的资源, 其中所述特殊业务数据为除 MBMS业务和 LTE R11以及之前的传输模式支 持的单播业务之外的业务, 具体可以包括 MTC业务。
接收端, 认为所述单播和 /或 PMCH资源的分配信令还用于描述 PMCH 的资源是为 MBMS业务分配的但是仅用于传输单播业务的。
接收端, 在无线帧内, 当子帧 #0为 Normal CP时, 如果发送 RCRS的子 帧为非 MBSFN子帧, UE按照 Normal CP的 RCRS位置接收和检测, 如果 发送 RCRS的子帧为 MBSFN子帧, UE按照 Extended CP的 RCRS位置接收 和检测。
接收端, 在无线帧内, 当子帧 #0为 Extended CP时, UE在发送 RCRS 的子帧中固定按照 Extended CP检测 RCRS。
在不相互冲突的情况下, 本实施例还包括下面的具体方式。
单播资源信息为描述用于发送单播数据、 控制信令以及单播对应的参考 信号的资源, 其中具体发送包括 ePDCCH、 PDSCH或 ePHICH, 其中参考信 号包括 RCRS、 CRS、 CSI-RS, DMRS。 优选的, 子帧中的单播资源中的单 播业务釆用扩展 CP传输。 这里的单播包括点到点单播业务和单播的系统广 播信息, 也可以是描述 D2D业务的 UE D2D通信资源分配。 所述 PMCH的 资源信息为描述用于发送 MBMS业务数据、 控制信令以及 MBMS业务对应 的参考信号的资源, 其中具体发送包括 MTCH或 MCCH, 其中参考信号包 括用于 MBMS业务的参考信号。 优选的, 所述单播资源上不允许 CSI-RS配 置, 因为 CSI-RS 是周期发送的, 周期内配置 CSI-RS 的子帧中如果包括 MBSFN和非 MBSFN,会对于 CSI-RS的频域位置有影响,从而影响 PDSCH 的调度效率降低。 但是当所述单播资源中传输 CSI-RS 时, 也是可以的, 只 是基站在调度 PDSCH时, 需要增加考虑规避釆用 MBSFN子帧中的单播资 源进行 CSI测量用于非 MBSFN子帧中单播业务的调度情况发生。 所述的单播的资源信息是指描述 MBSFN子帧中或承载 PMCH的子帧中 为单播分配的或为单播预留的时间和 /或频率资源,具体包括下述的一个或多 个形式: 1 )单播分配的或预留的 PRB对资源。 这种情况下的 PRB对是从子 帧中第一个 OFDM符号开始为单播使用。 2 )单播分配的或预留的 OFDM符 号资源。 这种情况下的 OFDM符号位于子帧中前 1个或 2个 OFDM, 或者 位于子帧中后 1个或 2个 OFDM符号。 对于位于后 1个或 2个 OFDM符号 主要为了避免与其他载波中的前 1个或 2个 OFDM符号中的信号彼此干扰, 特别是在前 1个或 2个 OFDM符号中发送 PDCCH, 使用了较大功率, 如果 邻区的同样子帧中前 1个或 2个 OFDM符号中发送 ePDCCH,那么彼此之间 的干扰会很大, 所以釆用子帧后 1个或 2个 OFDM符号发送 ePDCCH。 3 ) 单播分配的或预留的频率资源。 这种情况下, 为单播配置频率资源, 单播业 务仅仅在分配的频率资源内运营。 4 )单播分配或预留的子载波资源。 这种情 况下, 是适合为单播配置较少的资源, 例如仅仅传输少量的信息时, 例如资 源不会大于 12个子载波。 5 )单播分配的会预留的带宽资源。 这种情况是在 约定的单播和 PMCH在 MBSFN子帧中频分时, 为单播分配一定的带宽。
考虑到如果单播和 PMCH (承载多小区 MBMS业务)进行频分复用时, 由于 PMCH信道是多小区联合发送的, 所以信号会进行叠加, 所以信号强度 非常大, 会对于紧邻子载波上的单播业务形成干扰, 为了避免这种干扰, 本 专利中提出的单播的资源信息分配时, 在存在单播和 PMCH频分的情况时, 单播的资源信息中分配的单播资源包含保护带资源 (也称为预留资源) 。 其 中保护带位于单播和 PMCH之间的频率方向上。保护带的大小可以是为网络 侧和接收端事先约定的。可以是子载波形式定义的保护间隔或 PRB形式定义 的保护间隔。 当以子载波形式定义的保护间隔时, 可以约定 5或 6个子载波 空留在单播和 PMCH之间, 或者约定一个 PRB对被作为保护带。 保护带资 源位于在单播和 PMCH边界处, 当 PMCH和单播存在多个边界时, 那么每 一个边界都需要有保护带。 例如, PMCH位于带宽的中间, 单播资源位于两 边, 此时就有 2个边界, 则需要 2个保护带。 MBSFN区域内个小区之间该 载波中的单播资源可以配置的不同的。 例如, 同一 MBSFN区域内的两个小 区, 小区 1可以将 MBSFN子帧中单播资源与小区 2中 MBSFN子帧中的单 播资源不同。 这种情况有利于邻区之间的 ePDCCH进行协作, 避免彼此由于 资源相同而产生的干扰。
PMCH 的资源信息是描述 MBSFN子帧中或承载 PMCH 的子帧中为 PMCH 分配的时间和 /或频率资源, 具体包括下属的一个或多个形式: 1 ) PMCH分配的 PRB对资源。 这种情况下 , MCE需要将同一 MBSFN区域内 各个小区中为该 MBSFN 区域的 PMCH 资源分配相同。 2 ) PMCH分配的 OFDM符号资源。 3 ) PMCH分配的频率资源; 4 ) PMCH分配的子载波资源; 5 ) PMCH分配的带宽资源。 可选的, 前述的保护带资源也可以通过 PMCH 的资源信息分配的 PMCH 资源来包含, 此时单播资源中不再包含保护带资 源。 保护带的具体实施与在单播资源中相同。 当 PMCH按照 PRB对进行配 置时, 优选的配置 PMCH的 PRB对数量为下面 6个中的一个: 6、 15、 25、 50、 75和 100。 当 PMCH按照子载波进行配置时, 优选的配置 PMCH的子 载波数量为下述的一个: 72、 90、 150、 300、 900、 1200, 或为 12的整数倍。
对于 PMCH的资源信息还可以通过下面方式提供,在 MBSFN子帧中或 在承载 PMCH的子帧中除了单播的资源外, 剩余的资源都是为 PMCH分配 的资源, 其中, 如果 MBSFN子帧中或承载 PMCH的子帧中有保护带, 则单 播资源包括所述保护带。 所述保护带以子载波为单位预留。
或者没有保护带时, 当 PMCH 资源通过单播资源描述来提供时, 在 MBSFN子帧中或在承载 PMCH 的子帧中除了单播资源外, 剩余的资源为 PMCH0
当单播资源在子帧内描述以 PRB对为单位时, 相应的 PMCH资源也以
PRB对为单位描述。
当网络侧以单播和 PMCH 资源信息描述时, 是指网络侧分别描述 MBSFN子帧中用于单播资源和 PMCH的资源。 PMCH资源信息为描述用于 发送 MBMS 业务数据和 MBMS 控制相关的信令的资源, 其中具体包括 MTCH或 MCCH。
进一步, PMCH资源信息也可以用于描述发送特殊业务数据和控制信令 的资源, 其中所述特殊业务数据为除 MBMS业务和 LTE Rl 1以及之前的传 输模式支持的单播业务之外的业务, 例如 MTC业务, LTE R12新引入的传 输模式, D2D 业务数据和相关控制信令。 这样可以使得这些特殊业务对于 MBSFN子帧中的单播资源中的业务发送和接收不产生影响。这里需要 PMCH 资源信息中有描述该资源实际用途的信息,例如实际是为 PMCH或是为单播 业务或 MTC业务或 D2D业务等。
更进一步, PMCH资源信息也可以用于描述 PMCH资源是为 MBMS业 务分配的, 但是仅用于传输单播业务的。 这种情况和上述的特殊业务用途是 类似的。 例如, 为了避免旧版本 UE在 MBSFN单播资源中或非 MBSFN子 帧中接收单播业务的影响, 对于一些高版本 UE可以在 PMCH资源信息指示 的资源中发送单播业务。 这里的影响主要是指影响, 如果不釆取上述方式, 旧版本 UE就会在没有自己数据的资源中盲检, 以判断是否有自己数据。 这 里需要 PMCH 资源信息中有描述该资源实际用途的信息, 例如实际是为 PMCH或是为单播业务或 MTC业务或 D2D业务等。
基站配置单播和 /或 PMCH资源信令, 并发送。 此时单播和 /或 PMCH资 源信令是由基站自主生成的, 不再有 MCE参与信令生成。 这种情况的优点 是基站不需要和 MCE交互, 基站之间可以通过 X2 口交互彼此的单播和 /或 PMCH资源分配情况。 其中具体的单播和 /或 PMCH资源信令的用法与前述 的相同。
作为接收基站信令的接收端, 例如 UE。 接收端接收从载波 1 中系统广 播信息或专用信道中发送单播和 /或 PMCH的资源信息, 并根据所述资源信 息获知载波 1中 MBSFN子帧中的单播和 /或 PMCH的资源分配情况,或者接 收端才艮据所述资源信息获知与所述载波 1配对的载波 2中 MBSFN子帧中的 单播和 /或 PMCH的资源分配情况。其中,单播资源用于传输 PDSCH、 ePDCCH 或 ePHICH, PMCH资源用于 MBMS业务数据和控制信息。 系统广播信息优 选为 SIB2。
其中, PMCH资源也存在为单播业务或其他非 MBMS业务使用的情况, 此时 PMCH资源信令中包含 PMCH资源实际使用的业务类型信息。 这时, PMCH资源是为 MBMS业务分配的, 但是实际是传输单播业务的资源。
接收端根据 PMCH资源信息,当 UE确定所述 PMCH资源中发送的是单 播业务,则 UE从所述 PMCH资源中接收单播业务。 UE能够通过接收 PMCH 资源信息来确定该 PMCH资源是实际发送单播业务或实际发送 MBMS业务 的。 UE还接收邻小区的所述单播和 /或 PMCH的资源信息 , 以便于 UE进行 邻区测量或切换。
所述 PMCH 资源信息以及单播资源信息具体描述方式和使用方式可以 参考前述描述。
下面列举一些具体应用实例。
实例 1
基站获知或确定哪些无线帧中的子帧中需要配置 PMCH时,基站在所述 无线帧内, 确定子帧 #0为 Normal CP时, 如果发送 RCRS的子帧类型为非 MBSFN子帧(即指不配置 PMCH的子帧 ) ,则基站按照 Normal CP的 RCRS 位置发送 RCRS, 如果发送 RCRS 的子帧类型为 MBSFN子帧 (即指配置 PMCH的子帧) , 基站按照 Extended CP的 RCRS位置发送 RCRS。
基站在所述无线帧内 ,确定子帧 #0为 Extended CP时,基站在发送 RCRS 的子帧(此时不管该子帧是否为 MBSFN子帧类型 )中固定按照 Extended CP 发送 RCRS。
其中, 基站进行配置操作时, 即可直接确定哪些无线帧中的子帧中需要 配置 PMCH。 如果是基站的上层节点, 即网络侧设备, 例如多小区协作实体 ( MCE )进行配置操作, 则网络侧设备将配置信息以配置信令的方式由基站 发送给接收端, 其中, 基站通过配置信令即可获知哪些无线帧中的子帧中需 要配置 PMCH。
对应的, 接收端, 根据配置信令获知哪些无线帧以及子帧是 MBSFN子 帧, 进一步在所述无线帧内, 确定子帧 #0为 Normal CP时, 如果发送 RCRS 的子帧为非 MBSFN子帧, UE按照 Normal CP的 RCRS位置接收和检测, 如果发送 RCRS的子帧为 MBSFN子帧, UE按照 Extended CP的 RCRS位置 接收和检测。
进一步地, 接收端在所述无线帧内, 确定子帧 #0为 Extended CP时, UE 在发送 RCRS的子帧中固定按照 Extended CP检测 RCRS。
实例 2 基站确定服务小区使用的是新载波中, 即小区中不传输 CRS时,基站发 送 PMCH资源配置信令, 该信令指示出无线帧中 10个子帧(子帧 #0~#9 )中 都配置有 PMCH资源, 且 PMCH资源被配置到除系统带宽中间 6个 PRB之 外的 PRB对中, 且 PMCH占用的 PRB对为 15个。
实例 3
基站确定服务小区使用的是新载波中, 即小区中不传输 CRS时,基站发 送 PMCH资源配置信令, 该信令指示出无线帧中 8个子帧(子帧 #0~#9除了 #0和 #5 ) 中都配置有 PMCH资源, 且 PMCH资源被配置到除系统带宽中间 6个 PRB之外的 PRB对中, 且 PMCH占用的 PRB对为 25个。
实例 4
基站确定服务小区使用的是新载波中, 即小区中不传输 CRS时,基站发 送 PMCH资源配置信令, 该信令指示出无线帧中 8个子帧(子帧 #0~#9除了 #0和 #5 ) 中都配置有 PMCH资源, 且 PMCH资源被配置到除系统带宽中间 6个 PRB之外的 PRB对中, 且 PMCH占用的 PRB对为 50个。
实例 5
FDD 时, 基站确定服务小区使用的是后向兼容载波中, 即小区中传输 CRS时,基站发送 PMCH资源配置信令,该信令指示出无线帧中 6个子帧(子 帧 #0~#9除了 #0、 #4、 #5和 #9 ) 中都配置有 PMCH资源, 且 PMCH资源被 配置到除系统带宽中间 6个 PRB之外的 PRB对中。
实例 6
FDD 时, 基站确定服务小区使用的是新载波中, 即小区中不传输 CRS 时, 基站发送 PMCH资源配置信令, 该信令指示出无线帧中 10个子帧 (子 帧 #0~#9 ) 中都配置有 PMCH资源, 且在子帧 #0和 #5中 PMCH资源被配置 到除系统带宽中间 6个 PRB之外的 PRB对中, 子帧 #1、 #2、 #3、 #4、 #6、 #7、 #8和 #9中 , PMCH配置资源时有的占用了所述中间 6个 PRB对。
实例 7
FDD 时, 基站确定服务小区使用的是新载波中, 即小区中不传输 CRS 时, 基站发送 PMCH资源配置信令, 该信令指示出无线帧中 10个子帧 (子 帧 #0~#9 )中都配置有 PMCH资源, 且在每一个子帧中 PMCH资源都被配置 到除系统带宽中间 6个 PRB之外的 PRB对中, 且占用 PRB对相同。
实例 8
FDD时, 基站确定服务小区使用的是新载波, 且为同步新载波(是指不 传输 PSS/SSS、 PBCH和寻呼消息) 中, 即小区中不传输 CRS时, 基站发送 PMCH资源配置信令, 该信令指示出无线帧中 10个子帧 (子帧 #0~#9 ) 中都 配置有 PMCH资源, 且在每一个子帧中 PMCH资源都被配置为包含系统带 宽中间 6个 PRB。
实例 9
FDD时, 基站确定服务小区使用的是新载波, 且为同步新载波 (是指不 传输 PSS/SSS、 PBCH和寻呼消息) 中, 即小区中不传输 CRS时, 基站发送 PMCH资源配置信令, 该信令指示出无线帧中 10个子帧 (子帧 #0~#9 ) 中都 配置有 PMCH资源,且在子帧 #0和 #5中,或者子帧 #0、 #4、 #5和 #9中, PMCH 资源被配置包含系统带宽中间 6个 PRB对。
实例 10
基站确定所有子帧被配置为 MBSFN子帧(承载 PMCH的子帧),其中, FDD时, 配置子帧 #0和子帧 #5 (或 TDD时, 配置子帧 #0, #5 )上的 PMCH 占用部分带宽, 其他下行子帧上的 PMCH占用全部带宽。
或者, 其中, FDD时, 配置子帧 #0、 #4、 #5、 #9 (或 TDD时, 配置子 帧 #0, #1 , #5, #6 )上的 PMCH 占用部分带宽, 其他下行子帧上的 PMCH 占用全部带宽。
对。 5' A ' 5
实例 11
基站确定 PMCH和单播业务频分复用方式, 基站在子帧中在中间 L个 PRB对上传输 CRS, PMCH资源位于所述子帧中系统带宽两侧, 且, 当所述 子帧被配置为 MBSFN子帧时, 在所述 L个 PRB对上也可以传输 PMCH。
实施例 2
本实施例提供一种基站, 如图 1所示, 包括第一单元和第二单元, 其中: 第一单元, 获知或确定子帧中的单播和 /或物理多播信道(PMCH )资源 的配置信息;
第二单元, 按照所述配置信息、 子帧类型和 /或服务小区类型, 发送对应 的数据,其中,所述子帧类型包括多播 /组播单频网络( MBSFN )和非 MBSFN, 所述服务小区类型包括有小区专用导频(CRS )传输的服务小区和没有 CRS 传输的服务小区, 所述数据包括单播业务数据和 /或多播业务数据。
其中, 基站进行配置操作时, 第一单元, 通过配置子帧中的单播和 /或
PMCH资源, 即可直接确定子帧中的单播和 /或 PMCH资源的配置信息。 如 果^^站上层的网络侧进行配置操作, 则第一单元, 接收网络侧发送的携带 有单播和 /或 PMCH资源的配置信息的配置信令, 从中获知子帧中的单播和 / 或 PMCH资源的配置信息。
具体地, 基站的发送操作可参见上述实施例 1的相应内容, 在此不现赘 述。
实施例 3 本实施例提供一种用户终端, 至少包括第一单元和第二单元。
第一单元, 接收单播和 /或物理多播信道(PMCH )资源的配置信令, 确 定子帧中单播和 /或 PMCH资源的位置;
第二单元, 根据子帧中单播和 /或 PMCH资源的位置, 子帧类型和 /或服 务小区类型, 接收子帧中的数据;
其中, 子帧类型包括多播 /组播单频网络(MBSFN )和非 MBSFN, 所述 服务小区类型包括有小区专用导频 ( CRS )传输的服务小区和没有 CRS传输 的服务小区, 所述数据包括: 单播业务数据和 /或多播业务数据。
具体地, 接收端的接收操作可参见上述实施例 1的相应内容, 在此不现 赘述。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可通过程序 来指令相关硬件完成, 所述程序可以存储于计算机可读存储介质中, 如只读 存储器、 磁盘或光盘等。 可选地, 上述实施例的全部或部分步骤也可以使用 一个或多个集成电路来实现。 相应地, 上述实施例中的各模块 /单元可以釆用 硬件的形式实现, 也可以釆用软件功能模块的形式实现。 本申请不限制于任 何特定形式的硬件和软件的结合。
以上所述, 仅为本发明的较佳实例而已, 并非用于限定本发明的保护范 围。 凡在本发明的精神和原则之内, 所做的任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。
工业实用性
釆用本申请技术方案后 ,使得单播业务和 PMCH在子帧内频分复用更加 合理,使得单播业务的接收端接入系统以及在系统中工作受到来自 PMCH的 影响最小化, 也是得单播业务对于 PMCH的影响最小化, 并且使得现有标准 中的部分方法可以直接在本发明实施例建议的方法构成的系统中使用, 且最 大程度上简化了频分复用设计复杂度。

Claims

权 利 要 求 书
1、 一种物理多播信道(PMCH ) 资源传输方法, 包括:
基站按照子帧类型和 /或服务小区类型, 发送对应的数据, 其中, 所述子 帧类型包括多播 /组播单频网络(MBSFN )和非 MBSFN, 所述服务小区类型 包括有小区专用导频(CRS )传输的服务小区和没有 CRS传输的服务小区, 所述数据包括单播业务数据和 /或多播业务数据。
2、 如权利要求 1所述的方法, 其中, 所述基站按照子帧类型和 /或服务 小区类型, 发送对应的数据指:
所述基站获知或确定子帧中的单播和 /或 PMCH资源的配置信息, 按照 所述配置信息、 子帧类型和 /或服务小区类型发送数据。
3、 如权利要求 2所述的方法, 其中,
所述基站通过配置子帧中的单播和 /或 PMCH资源, 以确定子帧中的单 播和 /或 PMCH资源的配置信息; 或者网络侧配置子帧中的单播和 /或 PMCH 资源, 形成配置信令, 并通过所述基站发送给接收端, 所述基站从该配置信 令中获知子帧中的单播和 /或 PMCH资源的配置信息。
4、 如权利要求 3所述的方法, 其中,
配置 PMCH资源的带宽对应的物理资源块(PRB )对数量为下述的任一 种:
6、 15、 25、 50、 75、 100。 5、 如权利要求 3所述的方法, 其中,
所述单播资源用于传输单播业务数据、 信令和参考信号, 其中, 包括物 理下行共享信道(PDSCH ) 、 增强下行物理控制信道(ePDCCH )和增强物 理混合重传指示信道(ePHICH ) , CRS、减少的小区专用参考信号( RCRS ) 、 信道状态信息参考符号 (CSI-RS )和解调参考信号 (DMRS ) 。 6、 如权利要求 3所述的方法, 其中, 所述 PMCH资源位于系统带宽的两侧的 PRB对中 , 单播业务位于系统 带宽中间的 PRB对中; 或者
所述 PMCH资源位于系统带宽的其中一侧的 PRB对中, 单播业务位于 系统带宽中间以及另一侧的 PRB对中。
7、 如权利要求 6所述的方法, 其中,
频分双工( FDD )或时分双工( TDD )时,在子帧 #0和 #5中 ,所述 PMCH 资源位于系统带宽的两侧的 PRB对中, 单播业务位于系统带宽中间的 PRB 对中, 在子帧 #1、 #2、 #3、 #4、 #6、 #7、 #8、 #9 中, 所述 PMCH资源位于 系统带宽中间或两侧的 PRB对中;
FDD时, 在子帧 #0、 #4、 #5和 #9中, 所述 PMCH资源位于系统带宽的 两侧的 PRB对中, 单播业务位于系统带宽中间的 PRB对中, 在子帧 #1、 #2、 #3、 #6、 #7、 #8中, 所述 PMCH资源位于系统带宽中间或两侧的 PRB对中;
TDD时, 在子帧 #0、 #1、 #5和 #6中, 所述 PMCH资源位于系统带宽的 两侧的 PRB对中, 单播业务位于系统带宽中间的 PRB对中, 在子帧 #2、 #3、 #4、 #7、 #8、 #9 中, 如果所述子帧为下行子帧, 则 PMCH资源位于该子帧 系统带宽中间或两侧的 PRB对中。
8、 如权利要求 7所述的方法, 其中,
所述单播业务位于系统带宽中间的 6个 PRB对中, 所述 PMCH资源位 于除了单播业务分配的 PRB对之外的 PRB对中。
9、 如权利要求 8所述的方法, 其中, 所述 PMCH资源在子帧内的起始 位置为第一个正交频分复用 (OFDM )符号。
10、 如权利要求 2所述的方法, 其中,
在无线帧内配置为 PMCH资源的子帧数量最大为 10个子帧或 8个子帧 或 6个子帧, 其中, 10个子帧为 #0至 #9子帧, 8个子帧为 #0至 #9子帧中除 了 #0和 #5子帧, 6个子帧是指, FDD时, #0至 #9子帧中除了 #0、 #4、 #5 和 #9子帧, TDD时是指子帧 #0至 #9中除了 #0、 #1、 #5和 #6的下行子帧。
11、 如权利要求 10所述的方法, 其中, 当无线帧内配置为 PMCH资源 的子帧数量最大为 10个或 8个或 6个子帧时,则单播资源均位于承载 PMCH 的子帧的系统带宽的中间 PRB对中, PMCH资源均位于承载 PMCH的子帧 的系统带宽的两侧 PRB对中。
12、 如权利要求 11所述的方法, 其中, 所述承载 PMCH的子帧中, 每 一个子帧中的单播资源配置相同。
13、如权利要求 11或 12所述的方法,其中,所述承载 PMCH的子帧中, 每一个子帧中的 PMCH资源配置相同。
14、 如权利要求 3所述的方法, 其中, 所述单播资源指子帧中为单播业 务分配的或预留的时间和 /或频率资源, 包括下述的一个或多个形式:
单播分配的或预留的 PRB对资源; 单播分配的或预留的 OFDM符号资 源; 单播分配的或预留的频率资源; 单播分配的或预留的子载波资源; 单播 分配的或预留的带宽资源。
15、 如权利要求 3所述的方法, 其中, 所述单播资源中还包含不用于发 送单播的保护带资源,所述保护带位于单播和 PMCH之间,且在频率方向上。
16、如权利要求 15所述的方法, 其中, 所述保护带资源的大小为网络侧 和接收端事先约定的,且是以子载波形式定义的保护间隔或 PRB形式定义的 保护间隔。
17、如权利要求 16所述的方法, 其中, 所述子载波形式定义的保护间隔 为 5或 6个子载波空留在单播和 PMCH之间; 或者保护间隔为一个 PRB对 在单播和 PMCH之间。
18、 如权利要求 17所述的方法, 其中, 所述保护带资源在 PMCH和单 播的边界处, 当 PMCH和单播存在多个边界时, 存在多个保护带资源。
19、如权利要求 15所述的方法, 其中, 所述保护带为网络侧和接收端事 先约定的, 包括约定保护带形式、 大小和位置, 约定保护带包含在单播资源 中或 PMCH资源中, 约定不存在保护带。
20、 如权利要求 3 所述的方法, 其中, 所述 PMCH资源是指子帧中为 PMCH分配的时间和 /或频率资源 , 包括下属的一个或多个形式:
PMCH分配的 PRB对资源; PMCH分配的 OFDM符号资源; PMCH分 配的频率资源; PMCH分配的子载波资源; PMCH分配的带宽资源。
21、 如权利要求 3所述的方法, 其中, 所述配置信令中 PMCH资源的配 置信息指:
在子帧中除了单播资源外, 剩余的资源为 PMCH分配的资源, 其中, 如 果子帧中有保护带, 则单播资源包括所述保护带; 或者
在子帧中除了单播资源外, 剩余的资源为 PMCH分配的资源。
22、 如权利要求 3所述的方法, 其中, 所述单播资源和 PMCH资源在子 帧内描述以 PRB对为单位。
23、 如权利要求 3所述的方法, 其中, 所述单播资源在子帧中釆用扩展 CP传输, 或者与所述子帧中 PMCH资源使用相同的 CP。
24、 如权利要求 3所述的方法, 其中, 所述 PMCH资源是指用于发送多 媒体组播广播服务( MBMS )业务数据、控制信令以及 MBMS业务对应的参 考信号的资源, 其中, 控制信令指点到多点业务信道(MTCH )或点到多点 控制信道(MCCH )控制信令, 参考信号包括用于 MBMS业务的参考信号。
25、 如权利要求 3所述的方法, 其中, 所述 PMCH资源还用于发送特殊 业务数据和控制的资源, 其中, 所述特殊业务数据为除 MBMS业务和 LTE
R11以及传输模式支持的单播业务之外的业务。
26、如权利要求 25所述的方法, 其中, 所述特殊业务包括移动测试中心 ( MTC )业务。
27、 如权利要求 3所述的方法, 其中, 所述配置信令还用于描述 PMCH 资源是为 MBMS业务分配的且仅用于传输单播业务的。
28、如权利要求 3所述的方法, 其中, 所述网络侧之间通过 x2口交互彼 此单播和 /或 PMCH资源的配置信令。
29、 如权利要求 1至 3任一项所述的方法, 其中, 在无线帧内, 当子帧 #0为普通循环前缀(CP )时, 如果发送 RCRS的子帧为非 MBSFN子帧, 所 述基站按照普通 CP 的 RCRS位置发送 RCRS, 如果发送 RCRS 的子帧为 MBSFN子帧, 所述基站按照扩展 CP的 RCRS位置发送 RCRS;
当子帧 #0为扩展 CP时,所述基站在发送 RCRS的子帧中固定按照扩展 CP发送 RCRS。
30、 一种物理多播信道(PMCH ) 资源传输方法, 该方法包括: 接收端根据子帧类型和 /或服务小区类型, 接收子帧中的数据;
其中, 所述子帧类型包括多播 /组播单频网络(MBSFN )和非 MBSFN, 所述服务小区类型包括有小区专用导频(CRS )传输的服务小区和没有 CRS 传输的服务小区, 所述数据包括: 单播业务数据和 /或多播业务数据。
31、 如权利要求 30所述的方法, 其中, 该方法还包括:
所述接收端接收子帧中的数据之前, 接收单播和 /或 PMCH资源的配置 信令, 确定子帧中单播和 /或 PMCH资源的位置。
32、 如权利要求 31所述的方法, 其中, 所述接收端在承载 PMCH资源 的子帧中按照下面物理资源块(PRB )对数量之一接收 PMCH:
6、 15、 25、 50、 75、 100。
33、 如权利要求 31所述的方法, 其中, 所述接收端在承载 PMCH的子 帧中接收单播业务数据、 信令和参考信号, 其中, 包括物理下行共享信道 ( PDSCH ) 、 增强下行物理控制信道(ePDCCH )和增强物理混合重传指示 信道(ePHICH )信道, CRS、 减少的小区专用参考信号 (RCRS ) 、 信道状 态信息参考符号 (CSI-RS )和解调参考信号 (DMRS ) 。
34、 如权利要求 31所述的方法, 其中, 所述接收端在承载 PMCH的子 帧的系统带宽的两侧的 PRB对中接收 PMCH,在所述子帧的系统带宽中间的 PRB对中接收单播业务; 或者
在承载 PMCH的子帧的系统带宽的一侧的 PRB对中接收 PMCH, 在所 述子帧的系统带宽中间以及另一侧的 PRB对中接收单播业务。
35、 如权利要求 33所述的方法, 其中,
频分双工 (FDD ) 或时分双工 (TDD ) 时, 所述接收端在子帧 #0 和 #5 的系统带宽中间的 PRB对中接收单播业务, 在子帧 #0和 #5的系统带宽两侧 的 PRB对中接收 PMCH, 在子帧 #1、 #2、 #3、 #4、 #6、 #7、 #8、 #9的系统 带宽中间的 PRB对中接收 PMCH;
FDD时, 所述接收端在子帧 #0、 #4、 #5和 #9的系统带宽中间的 PRB对 中接收单播业务, 在子帧 #0、 #4、 #5和 #9的系统带宽两侧的 PRB对中接收 PMCH, 在子帧 #1、 #2、 #3、 #6、 #7、 #8 的系统带宽中间的 PRB对中接收 PMCH;
TDD时, 所述接收端在子帧 #0、 #1、 #5和 #6的系统带宽中间的 PRB对 中接收单播业务, 在子帧 #0、 #1、 #5和 #6的系统带宽两侧的 PRB对中接收 PMCH, 在子帧 #2、 #3、 #4、 #7、 #8、 #9中, 如果所述子帧为下行子帧, 则 在所述子帧的系统带宽中间的 PRB对中接收 PMCH。
36、如权利要求 33所述的方法, 其中, 所述接收端在所述子帧的系统带 宽中间的 PRB 对中接收单播业务指: 所述接收端从子帧的系统带宽中间 6 个 PRB对中接收单播业务;
所述接收端在承载 PMCH 的子帧的系统带宽的两侧的 PRB 对中接收
PMCH指:所述接收端从子帧的除了单播业务分配的 6个 PRB对之外的 PRB 对中接收 PMCH。
37、 如权利要求 31所述的方法, 其中, 所述 PMCH资源在子帧内的起 始位置为第一个正交频分复用 (OFDM )符号。
38、如权利要求 31所述的方法, 其中, 所述接收端确定在无线帧内能被 配置 PMCH资源子帧数量最大为 10个子帧或 8个子帧或 6个子帧, 其中, 10个子帧是指 #0至 #9子帧, 8个子帧是指 #0至 #9子帧中除了 #0和 #5子帧, 6个子帧是指, FDD时, 子帧 #0至 #9中除了 #0、 #4、 #5和 #9, TDD时是指 子帧 #0至 #9中除了 #0、 #1、 #5和 #6的下行子帧。
39、如权利要求 38所述的方法, 其中, 所述接收端确定在无线帧内配置 PMCH资源子帧数量最大为 10个子帧或 8个子帧或 6个子帧, 则所述接收 端在承载 PMCH 的子帧系统带宽的中间 PRB 对中接收单播资源, 在承载 PMCH的子帧系统带宽的两侧 PRB对中接收 PMCH资源。
40、 如权利要求 39所述的方法, 其中,
所述接收端接收的单播资源是指子帧中为单播业务分配的或预留的时间 和 /或频率资源, 所述单播业务包括下述的一个或多个形式:
单播分配的或预留的 PRB对资源; 单播分配的或预留的 OFDM符号资 源; 单播分配的或预留的频率资源; 单播分配的或预留的子载波资源; 单播 分配的或预留的带宽资源。
41、如权利要求 31所述的方法, 其中, 所述接收端接收的单播资源中还 包含不用于发送单播的保护带资源, 其中保护带位于单播和 PMCH之间, 且 在频率方向上。
42、 如权利要求 41所述的方法, 其中,
所述接收端接收的 PMCH资源是指子帧中为 PMCH分配的时间和 /或频 率资源, 包括如下一种或多种形式:
PMCH分配的 PRB对资源; PMCH分配的 OFDM符号资源; PMCH分 配的频率资源; PMCH分配的子载波资源; PMCH分配的带宽资源。
43、 如权利要求 31所述的方法, 其中, 所述接收端接收的 PMCH资源 是指用于发送多媒体广播组播(MBMS ) 业务数据、 控制信令以及 MBMS 业务对应的参考信号的资源, 其中, 控制信令为点到多点业务信道(MTCH ) 或点到多点控制信道( MCCH ) ,参考信号包括用于 MBMS业务的参考信号。
44、 如权利要求 31所述的方法, 其中, 所述接收端接收的 PMCH资源 还用于发送特殊业务数据和控制的资源, 其中, 所述特殊业务数据为除 MBMS业务和 LTE R11以及之前的传输模式支持的单播业务之外的业务。
45、如权利要求 44所述的方法, 其中, 所述特殊业务包括移动测试中心 ( MTC )业务。
46、如权利要求 31所述的方法,其中,所述接收端接收的单播和 /或 PMCH 资源的配置信令还用于描述 PMCH的资源是为 MBMS业务分配的且仅用于 传输单播业务的。
47、 如权利要求 31所述的方法, 其中, 在无线帧内, 当子帧 #0为普通 循环前缀(CP )时, 如果发送 RCRS的子帧为非 MBSFN子帧, 所述接收端 按照普通 CP的 RCRS位置接收和检测, 如果发送 RCRS的子帧为 MBSFN 子帧, 所述接收端按照扩展 CP的 RCRS位置接收和检测;
当子帧 #0为扩展 CP时, 所述接收端在发送 RCRS的子帧中固定按照扩 展 CP检测 RCRS。
48、 一种基站, 包括:
第一单元, 设置为: 获知或确定子帧中的单播和 /或物理多播信道 ( PMCH ) 资源的配置信息;
第二单元, 设置为: 按照所述配置信息、 子帧类型和 /或服务小区类型, 发送对应的数据, 其中, 所述子帧类型包括多播 /组播单频网络(MBSFN ) 和非 MBSFN, 所述服务小区类型包括有小区专用导频(CRS )传输的服务 小区和没有 CRS传输的服务小区, 所述数据包括单播业务数据和 /或多播业 务数据。
49、 如权利要求 48所述的基站, 其中,
所述第一单元, 设置为: 通过配置子帧中的单播和 /或 PMCH资源, 以 确定子帧中的单播和 /或 PMCH资源的配置信息; 或者
接收网络侧发送的携带有单播和 /或 PMCH资源的配置信息的配置信令, 从中获知子帧中的单播和 /或 PMCH资源的配置信息。
50、 一种用户终端, 包括: 第一单元, 设置为: 接收单播和 /或物理多播信道(PMCH ) 资源的配置 信令, 确定子帧中单播和 /或 PMCH资源的位置;
第二单元, 设置为: 根据子帧中单播和 /或 PMCH资源的位置, 子帧类 型和 /或服务小区类型, 接收子帧中的数据;
其中, 所述子帧类型包括多播 /组播单频网络(MBSFN )和非 MBSFN, 所述服务小区类型包括有小区专用导频(CRS )传输的服务小区和没有 CRS 传输的服务小区, 所述数据包括: 单播业务数据和 /或多播业务数据。
PCT/CN2014/076524 2013-05-09 2014-04-29 一种物理多播信道资源传输方法、基站及用户终端 WO2014180270A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310169207.7 2013-05-09
CN201310169207.7A CN104144384B (zh) 2013-05-09 2013-05-09 一种物理多播信道资源传输方法、基站及用户终端

Publications (1)

Publication Number Publication Date
WO2014180270A1 true WO2014180270A1 (zh) 2014-11-13

Family

ID=51853435

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/076524 WO2014180270A1 (zh) 2013-05-09 2014-04-29 一种物理多播信道资源传输方法、基站及用户终端

Country Status (2)

Country Link
CN (1) CN104144384B (zh)
WO (1) WO2014180270A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106455063A (zh) * 2015-08-05 2017-02-22 夏普株式会社 子帧配置指示方法、子帧配置获取方法、基站和用户设备
US10798600B2 (en) * 2015-11-02 2020-10-06 Telefonaktiebolaget Lm Ericsson (Publ) Adapting D2D operation on non-serving carrier frequency
CN107046458A (zh) * 2016-02-05 2017-08-15 中兴通讯股份有限公司 参考信号的发送、接收方法、装置及传输系统
CN109155996A (zh) * 2016-05-17 2019-01-04 华为技术有限公司 子帧配置方法及装置
EP4012967A1 (en) * 2016-09-30 2022-06-15 Motorola Mobility LLC Flexible radio resource allocation
CN113300814B (zh) * 2020-02-24 2022-08-09 国家广播电视总局广播电视科学研究院 基于多小区协作的混合业务传输方法、装置存储介质
CN113950006B (zh) * 2020-07-17 2024-01-23 维沃移动通信有限公司 业务传输方法、终端及网络侧设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101998281A (zh) * 2009-08-11 2011-03-30 大唐移动通信设备有限公司 一种传输数据的方法、系统和装置
CN102577520A (zh) * 2009-10-06 2012-07-11 高通股份有限公司 单频网络上多媒体广播/多播服务子帧的产生及针对单播的处理
WO2012170365A2 (en) * 2011-06-10 2012-12-13 Qualcomm Incorporated Tracking loop design for unicast and multicast/broadcast signals

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101998264B (zh) * 2009-08-17 2013-03-20 华为技术有限公司 一种mbsfn子帧位置、用途的通知方法及装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101998281A (zh) * 2009-08-11 2011-03-30 大唐移动通信设备有限公司 一种传输数据的方法、系统和装置
CN102577520A (zh) * 2009-10-06 2012-07-11 高通股份有限公司 单频网络上多媒体广播/多播服务子帧的产生及针对单播的处理
WO2012170365A2 (en) * 2011-06-10 2012-12-13 Qualcomm Incorporated Tracking loop design for unicast and multicast/broadcast signals

Also Published As

Publication number Publication date
CN104144384B (zh) 2019-10-25
CN104144384A (zh) 2014-11-12

Similar Documents

Publication Publication Date Title
US10917883B2 (en) Control information sending method, receiving method, and device
US10334560B2 (en) Method and apparatus for user equipment receiving MBMS service processing semi-permanent scheduling from MBSFN subframe in wireless communication system
WO2014180270A1 (zh) 一种物理多播信道资源传输方法、基站及用户终端
WO2015180551A1 (zh) 信息发送方法、信息接收方法、装置及系统
EP2466922B1 (en) Service bearer method and apparatus, service data receiving method and receiving terminal
US20140342747A1 (en) Device-to-device communication method and a device therefor
JP2018504052A (ja) Ptm(ポイントツーマルチポイント)送信の送信モードのサポートおよびpdcchブラインド復号に対する影響
WO2013148076A1 (en) Extending cyclic prefix length in lte with mixed unicast broadcast subframe
WO2013139197A1 (zh) 一种增强的下行控制信道的传输方法及装置
WO2013056593A1 (zh) 一种传输控制信息的方法、系统及设备
CN105706520A (zh) 用于具有双连接性的无线通信的方法和设备
WO2013135094A1 (zh) 一种集群业务传输方法及装置
WO2014180258A1 (zh) Mbsfn区域内的载波资源处理方法、装置和系统
WO2014135002A1 (zh) Pmch传输方法和设备
WO2014086313A1 (zh) 信道状态信息参考信号的传输方法和设备
WO2017036328A1 (zh) 发送、接收低时延业务的配置信息的方法和装置
WO2014015699A1 (zh) 新载波参考信号发送、接收方法及装置
US20230292092A1 (en) Mbs data transmission method and device therefor
WO2014008814A1 (zh) 上行授权信息发送方法、授权信息指示方法及基站
WO2014180157A1 (zh) 一种下行控制信令传输方法及装置
CN104144488A (zh) 同步跟踪公共参考信号的发送方法及装置
US20230109809A1 (en) Scheduling for sidelink communications
US20220417906A1 (en) Method and device for receiving mbs data
WO2014146304A1 (zh) 一种信号传输方法及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14795269

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14795269

Country of ref document: EP

Kind code of ref document: A1