WO2014178650A1 - 에너지 하비스터 및 이를 포함하는 무선 센서 장치 - Google Patents

에너지 하비스터 및 이를 포함하는 무선 센서 장치 Download PDF

Info

Publication number
WO2014178650A1
WO2014178650A1 PCT/KR2014/003861 KR2014003861W WO2014178650A1 WO 2014178650 A1 WO2014178650 A1 WO 2014178650A1 KR 2014003861 W KR2014003861 W KR 2014003861W WO 2014178650 A1 WO2014178650 A1 WO 2014178650A1
Authority
WO
WIPO (PCT)
Prior art keywords
vibration
mass
elastic
central axis
railway vehicle
Prior art date
Application number
PCT/KR2014/003861
Other languages
English (en)
French (fr)
Inventor
김재훈
이제윤
이관섭
김영일
여건민
Original Assignee
한국철도기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020130048539A external-priority patent/KR101420276B1/ko
Priority claimed from KR20130048545A external-priority patent/KR101488420B1/ko
Priority claimed from KR1020130127338A external-priority patent/KR101539340B1/ko
Application filed by 한국철도기술연구원 filed Critical 한국철도기술연구원
Publication of WO2014178650A1 publication Critical patent/WO2014178650A1/ko
Priority to US14/927,861 priority Critical patent/US9701325B2/en
Priority to US15/430,665 priority patent/US10046779B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L15/00Indicators provided on the vehicle or train for signalling purposes
    • B61L15/0018Communication with or on the vehicle or train
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q9/00Arrangements in telecontrol or telemetry systems for selectively calling a substation from a main station, in which substation desired apparatus is selected for applying a control signal thereto or for obtaining measured values therefrom
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61KAUXILIARY EQUIPMENT SPECIALLY ADAPTED FOR RAILWAYS, NOT OTHERWISE PROVIDED FOR
    • B61K9/00Railway vehicle profile gauges; Detecting or indicating overheating of components; Apparatus on locomotives or cars to indicate bad track sections; General design of track recording vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L15/00Indicators provided on the vehicle or train for signalling purposes
    • B61L15/0018Communication with or on the vehicle or train
    • B61L15/0027Radio-based, e.g. using GSM-R
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L15/00Indicators provided on the vehicle or train for signalling purposes
    • B61L15/0081On-board diagnosis or maintenance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L27/00Central railway traffic control systems; Trackside control; Communication systems specially adapted therefor
    • B61L27/40Handling position reports or trackside vehicle data
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L27/00Central railway traffic control systems; Trackside control; Communication systems specially adapted therefor
    • B61L27/50Trackside diagnosis or maintenance, e.g. software upgrades
    • B61L27/57Trackside diagnosis or maintenance, e.g. software upgrades for vehicles or trains, e.g. trackside supervision of train conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L27/00Central railway traffic control systems; Trackside control; Communication systems specially adapted therefor
    • B61L27/70Details of trackside communication
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D11/00Component parts of measuring arrangements not specially adapted for a specific variable
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/02Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using mechanical means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M17/00Testing of vehicles
    • G01M17/08Railway vehicles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K35/00Generators with reciprocating, oscillating or vibrating coil system, magnet, armature or other part of the magnetic circuit
    • H02K35/02Generators with reciprocating, oscillating or vibrating coil system, magnet, armature or other part of the magnetic circuit with moving magnets and stationary coil systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/18Structural association of electric generators with mechanical driving motors, e.g. with turbines
    • H02K7/1892Generators with parts oscillating or vibrating about an axis
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/18Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing electrical output from mechanical input, e.g. generators
    • H02N2/186Vibration harvesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L25/00Recording or indicating positions or identities of vehicles or trains or setting of track apparatus
    • B61L25/02Indicating or recording positions or identities of vehicles or trains
    • B61L25/04Indicating or recording train identities
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2209/00Arrangements in telecontrol or telemetry systems
    • H04Q2209/40Arrangements in telecontrol or telemetry systems using a wireless architecture
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2209/00Arrangements in telecontrol or telemetry systems
    • H04Q2209/80Arrangements in the sub-station, i.e. sensing device
    • H04Q2209/88Providing power supply at the sub-station
    • H04Q2209/886Providing power supply at the sub-station using energy harvesting, e.g. solar, wind or mechanical

Definitions

  • the present invention relates to an energy harvester that can be used in a system for monitoring the condition of a railway vehicle in real time, and a wireless sensor device including the same.
  • Korean Patent Laid-Open Publication No. 10-2009-0056086 (name of the invention: a railroad facility safety monitoring system and method) is installed in a railroad facility to detect the status of railroad facilities, based on the detected railroad facility status detection information, Receives a plurality of sensor nodes transmitting and processing wireless communication signals, a sink node collecting and transmitting railroad facility status detection information sent from each sensor node, and receiving railroad facility status detection information sent from the sink node and moving the received sensing information. Receives railroad facility status detection information from gateways and gateways by processing communication signals, stores received detection information in output and memory areas, and checks the numerical values of the received railroad facility status detection information. If the standard value is exceeded, the railroad facility may have a safety fault.
  • a railroad facility safety monitoring system and method including a control server unit for outputting a warning message and a warning sound for notification.
  • Such a conventional railroad monitoring system has a limitation in that it is possible to diagnose a railroad vehicle condition only in a limited installation position by diagnosing a failure according to state detection information detected through a sensor installed in a ground (or maintenance window) railroad facility. . Accordingly, the reliability of the diagnosis result is lowered, and only after the failure occurs, only the diagnosis is possible, and it is impossible to predict and prevent the failure through real-time monitoring of the railway vehicle status.
  • Energy harvesting technology is a technology that converts the energy discarded from the surroundings into electrical energy that can be harvested or scavenged. Energy harvesting technology absorbs natural light energy, low temperature waste heat energy from human body or combustion engine, fine vibration energy of portable device mounting / attachment device, dissipation energy due to human physical activity, etc. Elements, electrochemical reactions, DC / AC generators, piezoelectric transducers, capacitor transducers, photovoltaic cells and the like. In general, the power levels available through energy harvesting techniques range from microwatts to milliwatts.
  • This energy harvesting technique can be applied to various fields. For example, it is possible to take advantage of the vibration generated in the railroad or vehicle running at high speed, and the status of various systems such as train operating system, high pressure system, traction system, braking system, auxiliary power supply, body electric device, etc.
  • a wireless sensor for monitoring can be combined with a railroad vehicle, and sensed information can be transmitted via a wireless communication path.
  • Korean Laid-Open Patent No. 2013-0024071 (name of the invention: a multi-degree of freedom vibration-based broadband energy harvesting device) allows a rigid body to vibrate in multiple degrees of freedom so that a plurality of natural frequencies appear adjacent to the external vibration.
  • a technique for efficiently obtaining electricity in a wide frequency range is disclosed by increasing the resonant frequency band.
  • U.S. Patent Publication No. 2012-0255349 (name of the invention: MICRO-POWER SYSTEMS) is an electric power harvesting structure attached to a vehicle to produce and manage energy, and to drive the module to perform RF communication Disclosed are techniques for utilizing the energy produced and managed.
  • MICRO-POWER SYSTEMS name of the invention: MICRO-POWER SYSTEMS
  • high vibration or high heat is generated in a railway, a vehicle, or a mechanical device that generates high vibration, it may be difficult to secure reliability of data transmission through wireless communication.
  • the present invention has been made to solve the above-mentioned problems of the prior art, and some embodiments of the present invention implement a self-powered wireless sensor network in a main accessory device of a railway vehicle, and a system and method for real-time monitoring of the status of the railway vehicle. To provide.
  • some embodiments of the present invention sets the vibration frequency in the high-speed section and the vibration frequency in the low-speed section, vibrate according to the frequency, energy harvester for performing self-generation using the vibration energy of the surrounding energy source And it provides a wireless sensor device combined with a communication module for smooth wireless communication.
  • some embodiments of the present invention provide a wireless sensor device having a mechanical filter capable of ensuring both the performance of the energy harvester requiring vibration for self-generation and the communication module requiring no vibration for smooth wireless communication.
  • some embodiments of the present invention provide a method of performing a communication of a wireless sensor device having a mechanical filter that can prevent the performance degradation of wireless communication that occurs as vibration is continuously applied.
  • the technical problem to be achieved in this embodiment is not limited to the technical problem as described above, there may be another technical problem.
  • the railroad vehicle monitoring system installed on the railroad vehicle according to the first aspect of the present invention is installed for each accessory device of the railroad car, the sensor for sensing the state of the accessory device And a wireless sensor node wirelessly transmitting a sensing value sensed by the sensor in real time, and wirelessly receiving the sensing value from at least one wireless sensor node, and real-time railroad vehicle state information incorporating the received sensing value. It includes a sink node for outputting and receiving the railway vehicle state information output from the at least one sink node integrated management, the vehicle monitoring device for outputting the integrated railway vehicle state information in real time.
  • the railroad vehicle monitoring method through a railroad vehicle monitoring system installed on the railroad vehicle according to the second aspect of the present invention (a) a plurality of wireless sensor nodes including a sensor for sensing the state of the accessory device of the railroad vehicle Receiving a sensing value wirelessly transmitted in real time, (b) generating railway vehicle state information including the received sensing value and identification information of the wireless sensor node, and (c) real time realizing the railway vehicle state information. It includes the step of outputting. In this case, step (c) includes at least one of outputting the railroad vehicle status information through a display unit installed on the railroad vehicle and wirelessly transmitting the railroad vehicle status information to an external control apparatus through a wireless communication network. do.
  • the wireless sensor device is an energy harvester for converting the vibration generated from the broadband excitation source into electricity, the elastic member disposed to receive the vibration and the energy is fixed by the elastic member And a communication module for receiving the converted electricity from the master and for transmitting the measured sensing information, wherein the elastic member acts as a mechanical filter for limiting the range of frequency and the magnitude of acceleration for the communication module.
  • the wireless sensor device performs a communication method comprising the steps of receiving the electricity from the energy harvester for converting the vibration generated from the broadband excitation source into electricity; And transmitting, by the communication module fixed by the elastic member arranged to receive the vibration, the sensing information transmitted from the sensor, wherein the elastic member limits the range of frequency and the magnitude of the acceleration for the communication module. It consists of a mechanical filter structure, and transmits the vibrations through the mechanical filter structure to the communication module.
  • the energy harvester for converting vibration to electricity is a first elastic portion designed to vibrate in response to a vibration having a first vibration frequency as the center frequency, the first coupled to the first elastic portion 1 mass part, a first magnetic body coupled to said first mass portion, a second elastic portion designed to vibrate in response to a vibration having a second vibration frequency as a center frequency, a second mass portion coupled to said second elastic portion, A second axis coupled to the second mass portion, the first elastic portion, the second elastic portion, a first axis portion, a second axis portion, a central axis to which the first magnetic body and the second magnetic body are coupled, and the first mass A third elastic portion coupled between the portion and the second mass portion and a coil portion disposed along the central axis, the coil portion being formed such that the first magnetic body or the second magnetic body is drawn in according to the vibration of the first elastic portion or the second elastic portion, respectively.
  • an energy harvester for converting vibrations into electricity is disposed along a first central axis, the first central axis, and designed to vibrate in response to a vibration having a first vibration frequency as a center frequency.
  • a first elastic part disposed along the first central axis and coupled to the first elastic part; a first magnetic body disposed along the first central axis and coupled to the first mass part; A second elastic axis disposed along the same axis as the first central axis, a second elastic portion disposed along the second central axis and designed to vibrate in response to a vibration having the second vibration frequency as the center frequency; A second mass part coupled to the second elastic part, a second magnetic body disposed along the second center axis and coupled to the second mass part, and a damping part connecting the first center axis and the second center axis; And
  • the coil unit may be disposed along the first central axis and the second central axis, and the first magnetic body or the second magnetic body may be respectively retracted in response to the vibration of the first elastic part or the second elastic part.
  • any one of the problem solving means of the present invention by providing an integrated sensor node device capable of low power communication and self-power generation, it is very easy to install on all the accessory devices of the railway vehicle, poor wireless communication such as high-speed traveling In the environment, it is possible to obtain highly reliable railway vehicle status information.
  • any one of the problem solving means of the present invention it is possible to obtain more accurate vehicle state information by correcting the data sensed by the sensor node device to be optimized for the driving environment of the railway vehicle.
  • any one of the problem solving means of the present invention by including an elastic member consisting of a mechanical filter structure for limiting the range of the frequency and the magnitude of the acceleration, stably perform RF wireless communication even if exposed to random vibration for a long time can do.
  • any one of the problem solving means of the present invention it is possible to produce the maximum energy from the vibration, and at the same time it is possible to transmit the sensing information stably measured via RF wireless communication.
  • any one of the problem solving means of the present invention it is possible to use a wireless sensor network system semi-permanently by self-generation using the vibration energy generated from the excitation source.
  • a wireless sensor network system semi-permanently by self-generation using the vibration energy generated from the excitation source.
  • both the vibration frequency in the high-speed section and the vibration frequency in the low-speed section are considered, it is possible to expand the frequency band that can be generated.
  • FIG. 1 is a block diagram for explaining a railway vehicle monitoring system according to an embodiment of the present invention.
  • FIG. 2 is a block diagram illustrating a configuration of a railway vehicle monitoring system according to an embodiment of the present invention.
  • FIG 3 is a view for explaining an example of a wireless sensor node installed in the vehicle in one embodiment of the present invention.
  • FIG. 4 is a flowchart illustrating a railway vehicle monitoring method according to an embodiment of the present invention.
  • FIG. 5 is a diagram illustrating a structure of a wireless sensor node having a mechanical filter according to an embodiment of the present invention.
  • FIG. 6 is a view for explaining the detailed configuration of the communication module according to an embodiment of the present invention.
  • FIG. 7 is a diagram illustrating an example of a location where a wireless sensor node is installed.
  • 8A to 8D are graphs illustrating random vibrations occurring in a train that is actually driving.
  • FIG. 9 is a flowchart illustrating a communication method of a wireless sensor device having a mechanical filter according to an embodiment of the present invention.
  • FIG. 10 is a perspective view of a cross section of the energy harvester according to an embodiment of the present invention.
  • FIG. 11 is a front view of a cross section of an energy harvester according to an embodiment of the present invention.
  • FIG. 12 is a diagram illustrating a coil part included in an energy harvester according to an embodiment of the present invention.
  • FIG. 13 is a view illustrating a state in which an energy harvester and a support plate are coupled according to an embodiment of the present invention.
  • FIG. 14 is a perspective view of an energy harvester according to an embodiment of the present invention.
  • 15 is a front view of an energy harvester according to an embodiment of the present invention.
  • 16 is a perspective view of a cross section of the wireless sensor device according to an embodiment of the present invention.
  • FIG. 1 is a block diagram for explaining a railway vehicle monitoring system according to an embodiment of the present invention.
  • the railroad vehicle monitoring system 100 is installed on a railroad vehicle, and a wireless sensor installed for each of a plurality of accessory devices provided on a car body and a bogie.
  • the wireless communication network applied to an embodiment of the present invention may be a wireless communication network of various forms, including a mobile communication network, and the on-vehicle monitoring apparatus 400 may transmit and receive data according to a communication standard of each wireless communication network. have.
  • the railroad vehicle monitoring system 100 may transmit the railroad car state / diagnosis information including sensing data sensing the state of each accessory device to the external train control system 900.
  • the railway vehicle monitoring system 100 may receive maintenance and repair instruction information from the train control system 900 through a wireless communication network.
  • the railroad vehicle monitoring system 100 implements a wireless sensor network on a railroad vehicle, and acquires vehicle state detection data through a low power / self-powered wireless sensor installed for each accessory device. Highly reliable vehicle condition monitoring is possible even in harsh wireless communication environments such as high speed driving.
  • the external control device interworking with the railway vehicle monitoring system 100 is collectively referred to as a train control system 900, but the train control system 900 includes a central traffic control device (CTC), each of which is a train control system 900.
  • CTC central traffic control device
  • Various control devices such as control devices of railway stations and control devices of a plurality of maintenance bases may be included.
  • two or more control devices included on the train control system 900 may transmit and receive data.
  • the train centralized control apparatus (CTC) wirelessly receiving the railroad vehicle status / diagnosis information from the railroad vehicle monitoring system 100 according to an embodiment of the present invention may determine the status of the railroad vehicle based on the received sensing data. Diagnosis can be made, and as a result of the diagnosis, it is possible to determine when maintenance is required inside / outside the railway vehicle.
  • the train centralized control device (CTC) is transmitted to the railway vehicle monitoring system 100 through the wireless communication network maintenance / maintenance instruction information that needs processing, and the maintenance / maintenance instruction information that needs to be processed outside the railway vehicle It can be transmitted to the control device of the railway station or maintenance base on the route on which the railway vehicle is traveling.
  • the train centralized control device (CTC) may receive and manage the maintenance and repair processing result information from other control devices and the railway vehicle monitoring system 100.
  • FIG. 2 is a block diagram illustrating a configuration of a railway vehicle monitoring system according to an embodiment of the present invention.
  • the railroad vehicle monitoring system 100 includes a wireless sensor node 200, a sink node 300, and a vehicle monitoring apparatus 400.
  • the wireless sensor nodes 200, 202, and 204 are installed for each accessory device of a railway vehicle, and include one or more sensors for sensing the state of the accessory device, and wirelessly transmit sensing values sensed by each sensor in real time.
  • the wireless sensor node 200 includes an energy harvester 210, a sensor unit 220, a sensing data processor 230, and a communication unit 240.
  • the energy harvester 210 collects and converts at least one kind of energy generated by traveling of the railway vehicle into electrical energy, and converts the obtained electrical energy into a power source for sensing operation, sensing value signal processing, and wireless communication. to provide.
  • the energy harvester 210 may convert energy such as vibration and heat generated when the railroad vehicle travels at high speed into electrical energy.
  • the detailed configuration of the energy harvester 210 will be described later in detail.
  • the sensor unit 220 includes at least one sensor for each accessory device of the railway vehicle, and each sensor detects a change according to a driving state of the accessory device in real time to generate a sensor value.
  • FIG. 3 is a view for explaining an example of a wireless sensor node installed in a trolley in an embodiment of the present invention.
  • FIG. 3 illustrates an example of an accessory device in which each sensor is installed in a trolley portion of a configuration of a railway vehicle to which an embodiment of the present invention is applied.
  • a bogie hunting sensor a shaft sensor, an axle bearing sensor, a bogie frame sensor, a derailment sensor, a wheel monitoring sensor, a gearbox oil sensor, a motor sensor, an axle sensor and a reducer / gear sensor Indicated.
  • the accessory device configured in the bogie is described among the accessory devices of the railroad vehicle.
  • the wireless sensor node 200 may be installed in various accessory devices (including a driving device) on the body of the railroad vehicle.
  • the sensing data processor 230 generates the sensing value sensed by the sensor of the sensor unit 220 as digital data.
  • the sensing data processor 230 generates digital data by performing a predetermined sampling process and quantization process on the original sensing value (ie, 'raw data') sensed by the sensor unit 220.
  • the preset sampling processing and quantization processing compresses the size of the raw data sensed by the sensor unit 220 to wirelessly transmit the sensing data even at low power.
  • the sensing data processor 230 may update the condition during the sampling process based on the vibration frequency generated when the railroad vehicle travels. This is to enable the transmission and reception of sensing values under optimum conditions in a wireless communication environment of a railroad vehicle traveling at high speed.
  • the vibration frequency may be obtained from the energy harvester 210, and the sensing data processor 230 continuously measures vibrations when the rail vehicle runs, or includes a separate measuring device (not shown). It is also possible to acquire.
  • the communicator 240 wirelessly transmits digital data (that is, a sensing value) generated by the sensing data processor 230 according to a set wireless communication scheme.
  • the communication unit 240 may wirelessly transmit digital data and identification information of the corresponding wireless sensor node 200.
  • the communication unit 240 may transmit digital data according to a short range wireless communication standard in order to increase the reliability of data transmission and reception in a high speed communication environment such as a railway vehicle.
  • the sink node 300 wirelessly receives the sensing value from the wireless sensor node 200 and outputs the railroad vehicle state information incorporating the received sensing value in real time.
  • a plurality of sink nodes 300 may be provided, and each sink node 300, 302, 304 is a wired / wireless integrated communication device and wired / wired with another sink node 300 and the on-vehicle monitoring device 400. Can communicate wirelessly.
  • the reliability of transmission / reception data may be further increased in a poor wireless communication environment at high speeds.
  • the sink node 300 receives a sensing value from at least one wireless sensor node 200, matches identification information and sensing values for each wireless sensor node 200, and then integrates the railroad vehicle state information. Create
  • the sink node 300 transmits the generated railway vehicle state information to the on-vehicle monitoring apparatus 400 in real time.
  • the on-vehicle monitoring apparatus 400 collects and displays data (ie, railway vehicle state information) from the sink nodes 300 and transmits the collected data to an external device through a wireless communication network.
  • data ie, railway vehicle state information
  • the on-vehicle monitoring apparatus 400 serves as a gateway device on the wireless sensor network.
  • the on-vehicle monitoring apparatus 400 receives and manages the railroad vehicle state information output by the at least one sink node 300, and outputs the integrated railroad car state information in real time.
  • the on-vehicle monitoring apparatus 400 includes a on-vehicle display control unit 410, a state diagnosis unit 420, a state report processing unit 430, and a maintenance support unit 440.
  • the on-vehicle display control unit 410 outputs the integrated railway vehicle state information through a display unit (not shown) installed on the railway vehicle.
  • the display unit may be a control panel that allows the controller (driver) to check and control the vehicle status for control on the railway vehicle, and may identify railway vehicle status information as information that can be identified as a monitor. It may also be a display device (not shown) which can be displayed.
  • the state diagnosis unit 420 performs failure occurrence determination and failure prediction processing for each accessory device based on the railway vehicle state information, and generates railway vehicle diagnostic information based on the result of the failure occurrence determination and prediction processing.
  • the state diagnosis unit 420 compares the sensing value matched by the identification information of the wireless sensor node 200 included in the railway vehicle state information with a first threshold value which is a reference value for determining a failure occurrence for each accessory device. It is possible to determine whether a corresponding accessory device has failed. In this case, the state diagnosis unit 420 may determine that a failure occurs when the received sensing value is equal to or greater than the first threshold value.
  • the state diagnosis unit 420 may compare the identification information and the sensing value of the wireless sensor node 200 with a second threshold value, which is a reference value of a preset failure occurrence prediction for each accessory device, to predict the possibility of failure of the accessory device. have.
  • the state determination unit 420 may predict that a failure may occur when the received sensing value is less than the first threshold but is greater than or equal to the second threshold.
  • the second threshold value is set to a value lower than the first threshold value, so that the case where the state of the accessory device is abnormal before an actual failure occurs in the accessory device of the railway vehicle can be predicted / warned.
  • the state diagnosis unit 420 generates the railway vehicle diagnostic information including the result of the failure occurrence determination and the failure prediction processing for each accessory device of the railway vehicle, and then displays the railway vehicle diagnostic information through the on-vehicle display control unit 410 (not shown). Can be printed.
  • the railroad vehicle diagnostic information may be wirelessly transmitted to the train control system 900 through the status report processor 430 to be described below.
  • the status report processor 430 wirelessly transmits at least one of the railroad vehicle status information and the railroad vehicle diagnostic information to an external control apparatus through a wireless communication network.
  • the status report processor 430 may also transmit at least one piece of information of the identification information and the location information of the corresponding railway vehicle.
  • the maintenance support unit 440 receives maintenance and repair instruction information from the external control apparatus 200 in response to the railway vehicle state information wirelessly transmitted by the status report processing unit 430.
  • the maintenance support unit 440 may transmit the received maintenance and repair instruction information to the vehicle display control unit 410 to control the display unit to be output through the display unit (not shown).
  • the on-vehicle monitoring apparatus 400 has been described that it is possible to determine and predict the failure occurrence for each accessory device of the railway vehicle through the state diagnosis unit 420.
  • the on-vehicle monitoring apparatus 400 according to another embodiment of the present invention transmits the integrated railway vehicle state information to the train control system 900, and the failure occurrence determination and prediction processed by the train control system 900 It is also possible to receive and display the results.
  • FIG. 4 is a flowchart illustrating a railway vehicle monitoring method according to an embodiment of the present invention.
  • the wireless sensor node 200 installed for each accessory device of the railway vehicle receives a sensing value wirelessly transmitted in real time (S410).
  • the sink node 300 may receive a sensing value from at least one adjacent wireless sensor node 200.
  • at least one sink node 300 is installed on the railroad car.
  • the railroad vehicle state information including the received sensing value and the identification information of the wireless sensor node that transmitted the sensing value is generated (S420).
  • the railway vehicle state information includes a sensing value transmitted by at least one wireless sensor node 200 in real time.
  • the railroad vehicle state information is output to the display unit on the railroad car and the train control system 900 (S430).
  • step S430 before the step (S430) based on the railroad vehicle state information, the failure occurrence determination and prediction processing for each accessory device is performed, and the failure occurrence determination and prediction processing Based on the result, railway vehicle diagnostic information can be generated. Accordingly, in step S430, at least one of railroad vehicle status information and railroad vehicle diagnostic information may be output.
  • whether the failure of the corresponding accessory device occurs by comparing the sensing value matched by the identification information of the wireless sensor node 200 included in the railroad vehicle state information with a first threshold value which is a reference value for determining a failure occurrence for each accessory device. Can be determined.
  • the sensing value matched by the identification information of the wireless sensor node 200 may be compared with a second threshold value, which is a preset failure occurrence prediction reference value for each accessory device, to determine a possibility of failure of the accessory device.
  • the second threshold value is set lower than the first threshold value.
  • the following steps may be performed for each wireless sensor node 200 before the step (S410).
  • the wireless sensor node 200 converts at least one kind of energy generated by traveling of the railway vehicle into electrical energy, and the wireless sensor node 200 drives the sensor using the electrical energy as a power source. Signal processing of the sensed value and wireless transmission of the sensed value may be performed. At this time, the wireless sensor node 200 converts the raw data sensed by the sensor into digital data through preset signal processing (preset sampling processing, quantization processing, etc.), but based on the vibration frequency generated by the driving of the railway vehicle. The condition of the signal processing can be updated.
  • the railroad vehicle monitoring method in response to the radio transmission state information of the railroad vehicle, wirelessly receive the maintenance and repair instruction information from the train control system 900
  • the received maintenance and repair instruction information may be output through a display unit installed on the railway vehicle.
  • FIG. 5 is a diagram illustrating a structure of a wireless sensor node having a mechanical filter according to an embodiment of the present invention.
  • the wireless sensor node 200 includes an energy harvester 210, an elastic member 250, and a communication unit 240.
  • the sensor unit 220 and the sensing data processor 230 may be included in the communication unit 240, respectively.
  • the energy harvester 210 converts the vibration generated from the broadband excitation source into electricity.
  • the energy harvester 210 may convert the vibration into electricity using a frequency when the average acceleration for each frequency of the vibration is maximum, thereby increasing the energy conversion efficiency.
  • broadband excitation sources are sources of vibrations over a wide frequency band, such as mechanical parts, mechanical structures, or transportation machinery (railroad cars, aircraft, ships, etc.) and rotating machines (motors, pumps, reducers / accelerators, wind power generators). Blades, etc.).
  • the elastic member 250 is disposed to receive the vibration and is made of a mechanical filter structure for limiting the frequency range and the magnitude of the acceleration for the communication unit 240 to be described later.
  • the arrangement position of the elastic member 250 may be an upper surface of the energy harvester 210, as shown in Figure 5, but is not particularly limited as long as it can receive the vibration generated from the broadband excitation source.
  • the elastic member 250 may include a spring 251, an elastic mass 252, and a damper 253.
  • the spring 251 has a natural frequency preset according to the specification of the communication unit 240, and limits the range of the frequency.
  • the natural frequency f may be preset as shown in Equation 1 below based on the mass M 1 of the communication unit 240, the mass M 2 of the elastic mass 252, and the intrinsic constant k of the spring. have.
  • m (kg) in Equation 1 is the sum of M 1 and M 2 .
  • the frequency range may be limited by the spring 251 in a state in which the average acceleration for each frequency of vibration is equal to or less than a preset reference value, which will be described later.
  • the elastic mass 252 may be disposed on the spring 251 to limit the magnitude of the acceleration. Since the acceleration of the vibration applied to the communication unit 240 is limited, the communication unit 240 can stably perform wireless communication, and can minimize performance reduction.
  • the damper 253 may limit the displacement of the spring 251 and the elastic mass 252. Since the damper 253 is disposed around the spring 251 and the elastic mass 252 to limit their displacement, the damper 253 can improve the limiting effect of the spring 251 and the elastic mass 252.
  • the communication unit 240 is fixed by the elastic member 250 described above to receive the electricity converted from the energy harvester 210, and transmits the sensing information measured from the sensor 220 to be described later.
  • the communication unit 240 will be described with reference to FIG. 6.
  • FIG. 6 is a diagram for describing a detailed configuration of the communication module illustrated in FIG. 5.
  • the communication unit 240 may include a power converter 241, a sensor 220, a machine control unit 230, a wireless communication unit 243, and an antenna 245.
  • the power converter 241 may be connected to the energy harvester 210 and the cable 260, and may receive electricity converted from the energy harvester 210 to appropriately distribute the power required by each component. have.
  • the sensor 220 is a configuration for continuously monitoring the state, performance, etc. of each facility, and may transmit the measured sensing information to the controller 230.
  • the sensor 220 may vary in type, shape, specifications, etc. according to the installation position.
  • the sensor 220 may be included in the communication unit 240 as shown in FIG. 6, the sensor 220 may be installed at a position capable of accurately monitoring the state and performance of each facility, and the location at which it is installed is specifically limited. no.
  • the controller 230 may process the sensing information transmitted from the sensor 220 as described above and send it to the wireless communication unit 243 connected to the antenna 245.
  • the controller 230 may include an analog to digital converter (ADC), and the sensing information may be processed through the analog to digital converter.
  • the wireless communication unit 243 may receive command information transmitted from the manager analyzing the state or performance of the facility based on the sensing information, and transmit the command information to the controller 230.
  • FIG. 7 is a diagram illustrating an example of a location where a wireless sensor node is installed.
  • the communication unit 240 is continuously exposed to vibration during the RF wireless communication, and the vibration may reduce the transmission / reception rate of the communication and adversely affect the performance of the overall wireless sensor node 200. Can be.
  • the wireless sensor node 200 having a mechanical filter proposed in the present invention includes an elastic member 250 having a mechanical filter structure, thereby appropriately attenuating vibration transmitted to the communication unit 240.
  • the performance of the energy harvester 210 and the communication unit 240 may be maintained at a predetermined level or more.
  • 8A to 8D are graphs illustrating random vibrations occurring in a train that is actually driving.
  • Figure 8a shows the vertical acceleration compared to the time measured on the axle while driving the train.
  • the measured acceleration RMS value is 46.65 m / s 2 , and it can be seen that random vibrations with a large acceleration of the broadband occur in the axle when driving the train.
  • FIG. 8b shows the average acceleration for each frequency of the above-mentioned random vibration. This is a result of FFT of the data shown in FIG. 8A and plots the average value of accelerations generated at each frequency during the entire driving time. It can be seen that the maximum average acceleration is 3.86 m / s 2 for the entire driving time, and the frequency at the maximum average acceleration is 53 Hz.
  • the energy harvester 210 may convert vibration into electricity by using a frequency of 53 Hz, thereby increasing energy conversion efficiency.
  • the elastic member 250 is made of a structure that limits the range of the frequency and the magnitude of the acceleration, the range of the frequency is the elastic member 250 in a state that the average acceleration for each frequency of the random vibration is less than or equal to a predetermined reference value (A) Or spring 251. That is, the elastic member 250 may serve as a mechanical filter that limits the range of frequency to the frequency region B that is about 200 Hz or more. Since the vibration having a limited range of frequencies is transmitted to the communication unit 240, and the spring 251, the elastic mass 252, and the damper 253 work together, the performance of the communication unit 240 is guaranteed to be higher than a certain level. Can be.
  • FIG. 8C shows the frequency filtering effect by the elastic member 250
  • FIG. 8D shows the average voltage for each frequency.
  • the average voltage peak value in the frequency region C after about 53 Hz is a harmonic component, and it can be seen that the average voltage value is formed lower than the average voltage value at 53 Hz.
  • FIG. 9 is a flowchart illustrating a communication method of a wireless sensor device having a mechanical filter according to an embodiment of the present invention.
  • the wireless sensor node 200 is driven by receiving electricity converted by the energy harvester 210 generated from the broadband excitation source (S910).
  • the communication unit 240 in the wireless sensor node 200 fixed by the elastic member 250 arranged to receive the vibration transmits the sensing information transmitted from the sensor 220 (S920).
  • the elastic member 250 is composed of a mechanical filter structure that limits the range of the frequency and the magnitude of the acceleration, and transmits the vibration passed through the mechanical filter to the communication unit 240.
  • the communication unit 240 may maintain a certain level or more of performance.
  • the frequency range may be limited by the elastic member 250 in a state in which an average acceleration for each frequency of vibration is equal to or less than a preset reference value.
  • FIG. 10 is a perspective view of a cross section of the energy harvester 600 according to the first embodiment of the present invention
  • FIG. 11 is a front view of a cross section of the energy harvester 600 according to the first embodiment of the present invention
  • FIG. The coil part included in the harvester 600 is illustrated.
  • the energy harvester 600 converts vibrations generated from an excitation source into electricity, and includes a first elastic part 610, a first mass part 620, and a first magnetic body ( 630, a second elastic portion 640, a second mass portion 650, a second magnetic body 660, a central axis 670, a third elastic portion 680, and a coil portion 690.
  • the excitation source is a source for generating vibration over a wide frequency band, and is a mechanical part, a mechanical structure or a transportation machine (railroad car, automobile, aircraft, ship, etc.) and a rotating machine (motor, pump, plant, factory, reducer / Gearboxes, wind turbine blades, etc.).
  • the first elastic portion 610 is designed to vibrate in response to a vibration having the first vibration frequency as the center frequency. That is, the first elastic portion 610 is designed to have a first elastic modulus k1 having the first vibration frequency as the center frequency, thereby responding to vibration.
  • the first mass portion 620 is coupled to the first elastic portion 610, and the first magnetic body 630 is coupled to the first mass portion 620. Since the first mass part 620 is coupled to the first elastic part 610, the first mass part 620 vibrates together when the first elastic part 610 vibrates. In this case, since the first magnetic body 630 is coupled to the first mass part 620, the first magnetic part 620 vibrates together as the first mass part 620 vibrates and is introduced into the coil part 690 as described below.
  • the second elastic portion 640 is designed to vibrate in response to a vibration having the second vibration frequency as the center frequency. That is, the second elastic portion 640 is designed to have a second elastic modulus k2 having the second vibration frequency as the center frequency to respond to vibration.
  • the second mass portion 650 is coupled to the second elastic portion 640, and the second magnetic body 660 is coupled to the second mass portion 650.
  • the second mass portion 650 is coupled to the second elastic portion 640 to vibrate together when the second elastic portion 640 vibrates in response to a vibration having the second vibration frequency as the center frequency.
  • the second magnetic body 660 since the second magnetic body 660 is coupled to the second mass part 650, when the second mass part 650 vibrates, the second magnetic body 660 vibrates together and is introduced into the coil part 690.
  • the second vibration frequency may correspond to vibration frequency corresponding to the case where the second vibration frequency is equal to or less than the preset second speed.
  • the first speed may have a speed value faster than the second speed.
  • the energy harvester 600 since the energy harvester 600 according to the present invention considers both the vibration frequency in the high speed section and the vibration frequency in the low speed section, it is possible to expand the frequency band that can be generated.
  • the energy harvester 600 according to the present invention can be applied not only to the environment in which the high speed section and the low speed section are clearly divided, but also to the environment in which the center frequency changes.
  • the energy harvester 600 according to the present invention may be applied.
  • the vibration frequency is changed when a large operating load is applied to the rotary machine, so that the energy harvester 600 according to the present invention can be applied.
  • the energy harvester 600 according to the present invention may produce power under various conditions such as a wide range of applied frequencies or when dual frequencies are applied.
  • the first elastic part 610, the second elastic part 640, the first mass part 620, the second mass part 650, the first magnetic body 630, and the second magnetic body 660 are central axes 670. ) Is combined.
  • the first elastic portion 610, the second elastic portion 640, the first mass portion 620, the second mass portion 650, the first magnetic body 630 and the second magnetic body 660 are the central axis 670 includes an opening formed to pass through, each may be formed in a cylindrical shape.
  • outer surfaces of the first elastic part 610 and the second elastic part 640 may be formed in a radial shape. For example, it may be formed in a radial shape extending crosswise about the central axis 670.
  • the cylindrical shape in which the opening is formed is just one example, and may be formed in various shapes according to the shape and purpose of the excitation circle.
  • the shapes of the first elastic part 610 and the second elastic part 640 may be formed in various shapes as well as the cross-radiation.
  • first mass part 620 and the second mass part 650 may be formed to be spaced apart from the coil part 690 by a predetermined interval.
  • the first magnetic body 630 or the second magnetic body 660 is drawn into the coil part 690 as the first mass part 620 or the second mass part 650 vibrates by being spaced apart from the coil part 690. Can be.
  • the third elastic portion 680 is coupled between the first mass portion 620 and the second mass portion 650.
  • the upper side surface of the third elastic portion 680 may be coupled to the first mass portion 620
  • the lower side surface of the third elastic portion 680 may be coupled to the second mass portion 650.
  • the first mass portion 620 coupled to the upper side of the third elastic portion 680 is coupled to the lower portion of the first elastic portion 610
  • the first magnetic body 630 is the lower portion of the first mass portion 620.
  • Coupled to the coil part 690 may be inserted into the upper portion.
  • the second mass portion 650 coupled to the lower side of the third elastic portion 680 is coupled to the upper portion of the second elastic portion 640
  • the second magnetic body 660 is the second mass portion 650. It may be coupled to the upper portion of the coil portion 690 to be inserted into the lower portion.
  • the coil part 690 is disposed along the central axis 670, and the first magnetic body 630 or the second magnetic body 660 may be the first elastic part 610 or the second elastic part 120.
  • the first magnetic body 630 or the second magnetic body 660 may be the first elastic part 610 or the second elastic part 120.
  • the vibration of each is formed to be drawn. That is, when the vibration having the first vibration frequency as the center frequency occurs, as the first elastic part 610 vibrates, the first magnetic body 630 coupled to the first mass part 620 is applied to the coil part 690.
  • the second magnetic body 660 coupled with the second mass part 650 may be a coil part ( Optional 690).
  • the first magnetic material 630 or the second magnetic material 660 is selectively drawn in means that the first magnetic material 630 when the vibration with the center frequency of the first vibration frequency or the second vibration frequency from the excitation source is generated.
  • the second magnetic material 660 enters the coil part 690 and the retracting and withdrawing process again coming out is repeatedly performed.
  • the coil part 690 may include hollow parts 191 and 193 formed on one side of the first magnetic body 630 and the other side of the second magnetic body 660. Accordingly, the first magnetic body 630 and the second magnetic body 660 may be selectively introduced into the coil unit 690.
  • the coil part 690 illustrated in FIGS. 1 and 2 is formed by separating the hollow parts 691 and 693 into which the first magnetic material 630 and the second magnetic material 660 are inserted, but are not limited thereto. The first magnetic body 630 and the second magnetic body 660 may be selectively introduced into one hollow part.
  • the coil part 690 may include a first groove formed along an inner circumferential surface of the first mass part 620, a second groove formed along an inner circumferential surface of the second mass part 650, and a first groove and a second groove.
  • Each of the grooves may include a coil wound. That is, the coil part 690 may be formed in a bobbin shape.
  • the coil part 690 has hollow parts 691 and 693 formed therein to allow the first magnetic material 630 and the second magnetic material 660 to be drawn in, and is formed in a bobbin shape and the coil is wound to form a first magnetic material.
  • the 630 and the second magnetic body 660 may be selectively drawn in accordance with the vibration to convert the vibration generated from the excitation source into electricity.
  • FIG. 13 is a view illustrating a state in which the energy harvester 600 and the support plate are coupled according to the first embodiment.
  • the energy harvester 600 may be fixedly installed on the excitation circle by coupling the support plate.
  • the energy harvester 600 may include a lower support plate 601, a side support plate 603, and an upper support plate 605.
  • the lower support plate 601 is fixedly installed on the excitation circle, is connected to and fixed to the central axis 670, and may be formed to be spaced apart from the second elastic portion 640.
  • the side support plate 603 may be connected to the lower support plate 601, and may be formed to be spaced apart from the circumferential surfaces of the first mass part 620 and the second mass part 650.
  • the upper support plate 605 may be connected to and fixed to the central axis 670, connected to the side support plate 603, and spaced apart from the first elastic part 610.
  • FIG. 14 is a perspective view of an energy harvester 700 according to a second embodiment of the present invention
  • FIG. 15 is a front view of the energy harvester 700 according to the second embodiment of the present invention.
  • the energy harvester 700 includes a first central axis 771, a first elastic portion 710, a first mass portion 720, a first magnetic body 730, a second central axis 773, The second elastic part 740, the second mass part 750, the second magnetic body 760, the damping part 775, and the coil part 790 are included.
  • the energy harvester 700 is formed by separating a central axis into a first central axis 771 and a second central axis 773 disposed along the same axis as the first central axis 771.
  • a damping part 775 is formed to connect the first central axis 771 and the second central axis 773 instead of the third elastic part 680 included in the first embodiment to absorb vibration generated from the excitation source. can do.
  • the first elastic portion 710 is disposed along the first central axis 771 and is designed to vibrate in response to a vibration having the first vibration frequency as the center frequency. That is, the first elastic portion 710 is designed to have a first elastic modulus k1 to respond to vibrations having the first vibration frequency as the center frequency.
  • the first mass part 720 is disposed along the first central axis 771 and is coupled to the first elastic part 710.
  • the first magnetic body 730 is disposed along the first central axis 771, and is coupled to the first mass part 720. Since the first mass portion 720 is coupled to the first elastic portion 710, the first mass portion 720 vibrates together when the first elastic portion 710 vibrates. At this time, since the first magnetic body 730 is coupled to the first mass part 720, the first magnetic part 720 vibrates together as the first mass part 720 vibrates and is selectively introduced into the coil part 790.
  • the second elastic part 740 is disposed along the second central axis 773 and is designed to vibrate in response to a vibration having the second vibration frequency as the center frequency. That is, the second elastic portion 740 is designed to have a second elastic modulus k2 and responds to vibrations having the second vibration frequency as the center frequency.
  • the second mass portion 750 is disposed along the second central axis 773 and is coupled to the second elastic portion 740.
  • the second magnetic body 760 is disposed along the second central axis 773 and is coupled to the second mass part 750.
  • the second mass portion 750 is coupled to the second elastic portion 740 to vibrate together when the second elastic portion 740 vibrates in response to the vibration having the second vibration frequency as the center frequency.
  • the second magnetic body 760 since the second magnetic body 760 is coupled to the second mass part 750, when the second mass part 750 vibrates, the second magnetic body 760 vibrates together and is introduced into the coil part 790.
  • the first elastic portion 710, the second elastic portion 740, the first mass portion 720, the second mass portion 750, the first magnetic body 730, and the second magnetic body 760 are the first It includes an opening formed to pass through the central axis (771) or the second central axis (773), each may be formed to have a cylindrical shape.
  • the cylindrical shape in which the opening is formed is merely one example, and may be formed in various shapes according to the shape and purpose of the excitation circle.
  • first elastic portion 710 and the second elastic portion 740 may be formed in a radial shape.
  • it may be formed in a radial shape extending crosswise about the central axis 771.
  • shape of the first elastic portion 710 and the second elastic portion 740 may be formed in a variety of shapes as well as the cross-radiation.
  • the coil unit 790 is disposed along the first central axis 771 and the second central axis 773, and the first magnetic body 730 or the second magnetic body 760 is the first elastic portion 710 or the second elastic member. Each is selectively introduced according to the vibration of the unit 740.
  • the first magnetic material 730 or the second magnetic material 760 is selectively drawn in means that the first magnetic material 730 when the vibration with the center frequency of the first vibration frequency or the second vibration frequency from the excitation source is generated.
  • the drawing of the second magnetic material 760 after entering the coil part 790 may be repeated.
  • the coil unit 790 includes hollow parts 791 and 793 formed on one side of the first magnetic body 730 and the other side of the second magnetic body 760. Accordingly, the first magnetic body 730 and the second magnetic body 760 may be selectively introduced into the coil unit 790. However, the coil part 790 illustrated in FIGS. 5 and 6 is formed by separating the hollow parts 791 and 793 into which the first magnetic material 730 and the second magnetic material 760 are inserted, but are not limited thereto. The first magnetic body 730 and the second magnetic body 760 may be selectively introduced into one hollow part.
  • the coil part 790 may include a first groove formed along the inner circumferential surface of the first mass part 720, a second groove formed along the inner circumferential surface of the second mass part 750, and a first groove and a second groove.
  • Each of the grooves may include a coil wound. That is, the coil unit 790 may be formed in a bobbin shape as shown in FIG. 3.
  • the coil part 790 may be formed to be spaced apart from the first mass part 720 and the second mass part 750 by a predetermined interval. As the coil part 790 is formed to be spaced apart from the first mass part 720 and the second mass part 750, the first magnetic body 730 as the first mass part 720 or the second mass part 750 vibrates. ) Or a second magnetic body 760 may be selectively introduced into the coil unit 790.
  • the coil part 790 has hollow parts 791 and 793 formed therein to allow the first magnetic material 730 and the second magnetic material 760 to be drawn in.
  • the coil part 790 is formed in a bobbin shape and the coil is wound to form a first magnetic material. 730 and the second magnetic body 760 may be selectively drawn in accordance with the vibration to convert the vibration generated from the excitation source into electricity.
  • the second vibration frequency corresponds to an oscillation frequency corresponding to or less than the preset second speed.
  • the first speed has a speed value faster than the second speed.
  • the energy harvester 700 according to the present invention can be applied not only to the environment in which the high speed section and the low speed section are clearly divided, but also to the environment in which the center frequency changes, so that a wide frequency band environment or a dual frequency is applied. Power can be produced under a variety of conditions, for example.
  • Energy harvester 700 can be installed is fixed to the excitation circle is coupled to the support plate.
  • the energy harvester 700 may include a lower support plate, a side support plate and an upper support plate.
  • the lower support plate is fixedly installed on the excitation circle, is connected to and fixed to the second central axis 773, and may be formed to be spaced apart from the second elastic portion 740.
  • the side support plate may be connected to the lower support plate, and may be formed to be spaced apart from the circumferential surfaces of the first mass part 720 and the second mass part 750.
  • the upper support plate may be connected to and fixed to the first central axis 771, may be connected to the side support plate, and may be spaced apart from the first elastic portion 710.
  • the shape in which the energy harvester 700 and the support plate are coupled to each other according to the second embodiment of the present invention may be formed as shown in FIG. 12 in which the energy harvester 600 and the support plate according to the first embodiment are coupled to each other.
  • the laminated structure of the energy harvester 700 may be formed as follows.
  • One side surface of the damping unit 775 may be connected to the lower surface of the first central axis 771, and the other side surface of the damping unit 775 may be connected to the upper surface of the second central shaft 773.
  • the first mass portion 720 is coupled to the lower portion of the first elastic portion 710
  • the first magnetic body 730 is coupled to the lower portion of the first mass portion 720 to the upper portion of the coil portion 790. Can be pulled in.
  • the second magnetic body 760 is coupled to the upper portion of the second mass portion 750
  • the second mass portion 750 is coupled to the upper portion of the second elastic portion 740 to the lower portion of the coil portion 790. Can be pulled in.
  • the upper portion of the energy harvester 700 may be coupled in the order of the first elastic portion 710, the first mass portion 720, and the first magnetic body 730 around the first central axis 771.
  • the lower elastic part 740 may be coupled in the order of the second elastic part 740, the second mass part 750, and the second magnetic body 760 around the second central axis 773.
  • the damping unit 775 is connected between the first central axis 771 and the second central axis 773.
  • the stacking order of the energy harvester 700 is not limited thereto, and the upper and lower parts may be combined with each other, and may be stacked and combined in various forms according to the purpose of use.
  • 16 is a perspective view of a cross section of the wireless sensor device 300 according to the third embodiment of the present invention.
  • the wireless sensor device 200 includes the energy harvester 600 and the communication module 240 according to the first and second embodiments of the present invention.
  • the communication module 240 receives the converted energy from the energy harvester 600 and transmits the measured sensing information.
  • the wireless sensor device including the energy harvester and the communication module may have a structure as shown in FIG. 5.
  • the energy harvester 600 may be inserted into the wireless sensor device 200 in a state in which the lower support plate 601, the upper support plate 605, and the side support plate 603 are enclosed, as shown in FIG. 16.
  • the 240 may be inserted into the wireless sensor device 200 in a state surrounded by a cylindrical housing portion 241.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)

Abstract

본 발명에 따른 에너지 하비스터는 제 1 진동 주파수를 중심 주파수로 하는 진동에 반응하여 진동하도록 설계된 제 1 탄성부, 상기 제 1 탄성부에 결합된 제 1 질량부, 상기 제 1 질량부에 결합된 제 1 자성체, 제 2 진동 주파수를 중심 주파수로 하는 진동에 반응하여 진동하도록 설계된 제 2 탄성부, 상기 제 2 탄성부에 결합된 제 2 질량부, 상기 제 2 질량부에 결합된 제 2 자성체, 상기 제 1 탄성부, 제 2 탄성부, 제 1 질량부, 제 2 질량부, 제 1 자성체 및 제 2 자성체가 결합되는 중심축, 상기 제 1 질량부와 제 2 질량부 사이에 결합된 제 3 탄성부 및 상기 중심축을 따라 배치되며 상기 제 1 자성체 또는 제 2 자성체가 상기 제 1 탄성부 또는 제 2 탄성부의 진동에 따라 각각 인입되도록 형성된 코일부를 포함한다.

Description

에너지 하비스터 및 이를 포함하는 무선 센서 장치
본 발명은 철도 차량의 상태를 실시간으로 모니터링하는 시스템에 사용될 수 있는 에너지 하비스터 및 이를 포함하는 무선 센서 장치에 관한 것이다.
기존의 철도 모니터링 시스템은 유선 센서 모니터링 기술에 의존하고 있어, 유지, 보수 및 관리시 신뢰성 및 안정성 보장에 한계가 있었다. 특히, 철도 차량의 대차 및 주행 장치는 부품에 대한 접근 및 유선 센서 설치에 제약이 있어, 차량 자체의 주요 장치들에 대한 실시간 감시 데이터를 획득하기 어렵다는 문제가 있었다.
이와 관련하여, 대한민국 공개특허 제10-2009-0056086호(발명의 명칭: 철도 시설물 안전 모니터링 시스템 및 방법)는, 철도 시설물에 설치되어 철도 시설물의 상태를 감지하여 감지된 철도 시설물 상태 감지 정보를 근거리 무선통신 신호 처리하여 송출하는 다수 개의 센서 노드, 각 센서 노드로부터 송출된 철도 시설물 상태 감지 정보를 수집하여 송출하는 싱크 노드, 싱크 노드에서 송출된 철도 시설물 상태 감지 정보를 수신하고 수신된 감지 정보를 이동통신 신호 처리하여 송출하는 게이트웨이, 게이트웨이로부터 철도 시설물 상태 감지 정보를 수신하고, 수신된 감지 정보를 출력 및 메모리 영역에 저장하는 한편 수신된 철도 시설물 상태 감지 정보의 수치를 확인하여 확인된 수치가 기설정된 기준값을 초과하는 경우에는 철도 시설물 안전 이상 발생을 알리기 위한 경고 메시지 및 경고음을 출력하는 관제 서버부를 포함하는 철도 시설물 안전 모니터링 시스템 및 방법을 개시하고 있다.
그런데, 이러한 종래의 철도 모니터링 시스템은 지상(또는 정비창)의 철도 시설물에 설치된 센서를 통해 감지된 상태 감지 정보에 따라 고장을 진단함으로써, 한정된 설치 위치에서만 철도 차량 상태에 대한 진단이 가능하다는 한계가 있다. 이에 따라, 진단 결과의 신뢰도가 떨어지며, 고장이 발생된 이후의 진단만 가능할 뿐 철도 차량 상태에 대한 실시간 감시를 통한 고장의 예측 및 방지가 불가능하다.
이와 같은 문제를 해결하기 위하여, 철도 차량의 각 구성요소의 동작 상태를 모니터링 하는 무선 센서를 결합시키는 연구가 진행 중에 있으나, 무선 센서의 경우 전력 공급이 원활하지 않아 철도 차량에 존재하는 다양한 에너지원으로부터 자가 발전을 수행하는 자가 발전 모듈을 추가하려는 시도가 있었다.
자가 발전 모듈의 대표적인 기술 중 하나로 에너지 하베스팅(Energy Harvesting) 기술을 들 수 있다. 에너지 하베스팅 기술은 주변에서 버려지는 에너지를 수확(harvesting) 또는 폐이용(scavenge)하여 사용할 수 있는 전기 에너지로 변환하는 기술이다. 에너지 하베스팅 기술은 자연의 빛 에너지, 인간 신체 또는 연소형 엔진으로부터의 저온 폐열 에너지, 휴대용 기기 탑재/부착 장치의 미세 진동 에너지, 인간의 신체 활동으로 인한 소산 에너지 등을 흡수하고, 열전소자 (Thermoelectric Element), 전기화학반응(Electrochemical Reaction), DC/AC 제너레이터, 피에조전기 트랜스듀서(Piezoelectric Transducer), 커패시터 트랜스듀서, 광전지 셀(Photovoltaic Cell) 등과 같은 에너지 하베스팅 소자들을 이용할 수 있다. 일반적으로, 에너지 하베스팅 기술을 통해 얻을 수 있는 전력 수준은 대략 마이크로 와트(㎼)에서 밀리 와트(㎽)급 정도이다.
이러한 에너지 하베스팅 기술은 다양한 분야에 적용할 수 있다. 예를 들어, 고속으로 운행하는 철도 또는 차량 등에서 발생하는 진동을 활용할 수 있으며, 철도 차량에 포함되는 열차운영 시스템, 고압시스템, 견인시스템, 제동시스템, 보조전원 장치, 차체전기장치 등 다양한 시스템의 상태를 모니터링하기 위한 무선 센서가 철도 차량과 결합될 수 있고, 센싱된 정보가 무선 통신 경로를 통해 전송될 수 있다.
이와 관련하여, 한국공개특허 제2013-0024071호(발명의 명칭: 다자유도 진동기반 광대역 에너지 수확장치)는 강체가 다자유도로 진동하도록 하여 그 복수의 고유주파수들이 인접하여 나타나도록 함으로써 외부 진동에 대한 공진 주파수 대역이 넓어지도록 함으로써 광대역 주파수 범위에서 효율적으로 전기를 얻을 수 있는 기술을 개시하고 있다.
다만, 위 선행기술은 고속 및 저속 구간의 진동 주파수를 모두 고려하고 있지 않으므로, 발전 가능한 주파수 대역을 확장하는데 한계가 있다.
또한, 미국공개특허 제 2012-0255349호(발명의 명칭: MICRO-POWER SYSTEMS)는 차량에 부착되는 에너지 하베스팅 구조를 통해 에너지를 생산 및 관리하고, RF 통신을 수행하는 모듈을 구동시키는 전력으로 이렇게 생산 및 관리된 에너지를 활용하는 기술에 대해 개시하고 있다. 다만, 고속으로 운행하는 철도, 차량 또는 심한 진동을 발생시키는 기계 장치의 경우 고진동 또는 고열이 발생되기 때문에, 무선 통신을 통한 데이터 전송의 신뢰성이 담보되기 어려울 수 있다.
본 발명은 전술한 종래 기술의 문제점을 해결하기 위한 것으로서, 본 발명의 일부 실시예는 철도 차량의 주요 부속 장치에 자가 발전형의 무선 센서 네트워크를 구현하여 철도 차량의 상태를 실시간 모니터링하는 시스템 및 방법을 제공하고자 한다.
또한, 본 발명의 일부 실시예는 고속 구간에서의 진동 주파수 및 저속 구간에서의 진동 주파수를 설정하고, 해당 주파수에 맞게 진동하며, 주변 에너지원 중 진동 에너지를 이용하여 자가 발전을 수행하는 에너지 하비스터 및 원활한 무선 통신을 위해 통신 모듈이 결합된 무선 센서 장치를 제공한다.
또한, 본 발명의 일부 실시예는 자가 발전을 위해 진동이 필요한 에너지 하비스터 및 원활한 무선 통신을 위해 진동이 불필요한 통신 모듈의 성능을 모두 보장할 수 있는 기계적 필터를 구비한 무선 센서 장치를 제공한다.
또한, 본 발명의 일부 실시예는 지속적으로 진동이 가해짐에 따라 발생하는 무선 통신의 성능 저하를 방지할 수 있는 기계적 필터를 구비한 무선 센서 장치의 통신 수행 방법을 제공한다.
한편, 본 실시예가 이루고자 하는 기술적 과제는 상기된 바와 같은 기술적 과제로 한정되지 않으며, 또 다른 기술적 과제들이 존재할 수 있다.
상술한 기술적 과제를 달성하기 위한 기술적 수단으로서, 본 발명의 제 1 측면에 따른 철도 차량 상에 설치된 철도 차량 모니터링 시스템은 상기 철도 차량의 부속 장치 별로 설치되며, 상기 부속 장치의 상태를 센싱하는 센서를 포함하고, 상기 센서가 센싱한 센싱 값을 실시간으로 무선 송출하는 무선 센서 노드, 적어도 하나의 상기 무선 센서 노드로부터 상기 센싱 값을 무선 수신하고, 상기 수신한 센싱 값을 통합한 철도 차량 상태 정보를 실시간 출력하는 싱크 노드 및 적어도 하나의 상기 싱크 노드가 출력한 상기 철도 차량 상태 정보를 입력받아 통합 관리하되, 통합된 상기 철도 차량 상태 정보를 실시간으로 출력하는 차상 모니터링 장치를 포함한다.
또한, 본 발명의 제 2 측면에 따른 철도 차량 상에 설치된 철도 차량 모니터링 시스템을 통한 철도 차량 모니터링 방법은 (a) 상기 철도 차량의 부속 장치의 상태를 센싱하는 센서를 포함하는 복수의 무선 센서 노드가 실시간으로 무선 전송한 센싱 값을 수신하는 단계, (b) 상기 수신한 센싱 값 및 상기 무선 센서 노드의 식별 정보들을 포함하는 철도 차량 상태 정보를 생성하는 단계 및 (c) 상기 철도 차량 상태 정보를 실시간으로 출력하는 단계를 포함한다. 이때, (c) 단계는 상기 철도 차량 상태 정보를 철도 차량 상에 설치된 표시부를 통해 출력하는 단계 및 상기 철도 차량 상태 정보를 무선 통신망을 통해 외부 관제 장치로 무선 송출하는 단계 중 적어도 하나의 단계를 포함한다.
또한, 본 발명의 제 3 측면에 따른 무선 센서 장치는 광대역 가진원으로부터 발생된 진동을 전기로 변환하는 에너지 하비스터, 상기 진동을 전달받도록 배치되는 탄성 부재 및 상기 탄성부재에 의해 고정되어 상기 에너지 하비스터로부터 상기 변환된 전기를 제공받고, 측정된 센싱 정보를 송신하는 통신 모듈을 포함하되, 상기 탄성 부재는 상기 통신 모듈을 위해 주파수의 범위 및 가속도의 크기를 제한하는 기계적 필터로서 동작한다.
또한, 본 발명의 제 4 측면에 따른 무선 센서 장치가 통신을 수행하는 방법은 광대역 가진원으로부터 발생된 진동을 전기로 변환시키는 에너지 하비스터로부터 상기 전기를 제공받아 구동되는 단계; 및 상기 진동을 전달받도록 배치되는 탄성 부재에 의해 고정된 통신 모듈이 센서로부터 전달된 센싱 정보를 송신하는 단계를 포함하고, 상기 탄성 부재는 상기 통신 모듈을 위해 주파수의 범위 및 가속도의 크기를 제한하는 기계적 필터 구조로 이루어져, 상기 기계적 필터 구조를 거친 진동을 상기 통신 모듈로 전달한다.
또한, 본 발명의 제 5 측면에 따른 진동을 전기로 변환하는 에너지 하비스터는 제 1 진동 주파수를 중심 주파수로 하는 진동에 반응하여 진동하도록 설계된 제 1 탄성부, 상기 제 1 탄성부에 결합된 제 1 질량부, 상기 제 1 질량부에 결합된 제 1 자성체, 제 2 진동 주파수를 중심 주파수로 하는 진동에 반응하여 진동하도록 설계된 제 2 탄성부, 상기 제 2 탄성부에 결합된 제 2 질량부, 상기 제 2 질량부에 결합된 제 2 자성체, 상기 제 1 탄성부, 제 2 탄성부, 제 1 질량부, 제 2 질량부, 제 1 자성체 및 제 2 자성체가 결합되는 중심축, 상기 제 1 질량부와 제 2 질량부 사이에 결합된 제 3 탄성부 및 상기 중심축을 따라 배치되며 상기 제 1 자성체 또는 제 2 자성체가 상기 제 1 탄성부 또는 제 2 탄성부의 진동에 따라 각각 인입되도록 형성된 코일부를 포함한다.
또한, 본 발명의 제 6 측면에 따른 진동을 전기로 변환하는 에너지 하비스터는 제 1 중심축, 상기 제 1 중심축을 따라 배치되며, 제 1 진동 주파수를 중심 주파수로 하는 진동에 반응하여 진동하도록 설계된 제 1 탄성부, 상기 제 1 중심축을 따라 배치되며, 상기 제 1 탄성부에 결합된 제 1 질량부, 상기 제 1 중심축을 따라 배치되며, 상기 제 1 질량부에 결합된 제 1 자성체, 상기 제 1 중심축과 동일한 축을 따라 배치된 제 2 중심축, 상기 제 2 중심축을 따라 배치되며, 제 2 진동 주파수를 중심 주파수로 하는 진동에 반응하여 진동하도록 설계된 제 2 탄성부, 상기 제 2 중심축을 따라 배치되며, 상기 제 2 탄성부에 결합된 제 2 질량부, 상기 제 2 중심축을 따라 배치되며 상기 제 2 질량부에 결합된 제 2 자성체, 상기 제 1 중심축과 제 2 중심축을 연결하는 댐핑부 및 상기 제 1 중심축 및 제 2 중심축을 따라 배치되며 상기 제 1 자성체 또는 제 2 자성체가 상기 제 1 탄성부 또는 제 2 탄성부의 진동에 따라 각각 인입되는 코일부를 포함한다.
전술한 본 발명의 과제 해결 수단 중 어느 하나에 의하면, 철도 차량 자체에 모니터링 시스템을 구현함으로써, 지연없이 실시간으로 차량 상태를 감지 및 진단할 수 있는 효과가 있다.
그리고, 본 발명의 과제 해결 수단 중 어느 하나에 의하면, 저전력 통신 및 자가발전이 가능한 일체형 센서 노드 장치를 설치함으로써, 철도 차량의 모든 부속 장치 상에 설치가 매우 용이하고, 고속 주행과 같은 열악한 무선 통신 환경에서도 신뢰도가 높은 철도 차량 상태 정보를 획득할 수 있는 효과가 있다.
또한, 본 발명의 과제 해결 수단 중 어느 하나에 의하면, 센서 노드 장치가 센싱한 데이터를 철도 차량의 주행 환경에 최적화되도록 보정함으로써 보다 정확한 차량 상태 정보를 획득할 수 있는 효과가 있다.
또한, 본 발명의 과제 해결 수단 중 어느 하나에 의하면, 주파수의 범위 및 가속도의 크기를 제한하는 기계적 필터 구조로 이루어지는 탄성 부재를 포함함으로써, 랜덤 진동에 오랜 시간 동안 노출되더라도 안정적으로 RF 무선 통신을 수행할 수 있다.
또한, 본 발명의 과제 해결 수단 중 어느 하나에 의하면, 진동으로부터 최대의 에너지를 생산할 수 있고, 그와 동시에 RF 무선 통신을 통해 안정적으로 측정된 센싱 정보를 전송할 수 있다.
또한, 본 발명의 과제 해결 수단 중 어느 하나에 의하면, 가진원으로부터 발생된 진동 에너지를 이용하여 자가 발전을 함으로써, 반영구적으로 무선 센서 네트워크 시스템을 사용할 수 있다. 또한, 고속 구간에서의 진동 주파수와 저속 구간에서의 진동 주파수를 모두 고려하므로, 발전 가능한 주파수 대역을 확장할 수 있다.
도 1은 본 발명의 일 실시예에 따른 철도 차량 모니터링 시스템을 설명하기 위한 구성도이다.
도 2는 본 발명의 일 실시예에 따른 철도 차량 모니터링 시스템의 구성을 설명하기 위한 블록도이다.
도 3은 본 발명의 일 실시예에서 대차에 설치된 무선 센서 노드의 일례를 설명하기 위한 도면이다.
도 4는 본 발명의 일 실시예에 따른 철도 차량 모니터링 방법을 설명하기 위한 순서도이다.
도 5는 본 발명의 일 실시예에 따른 기계적 필터를 구비한 무선 센서 노드의 구조를 도시한 도면이다.
도 6은 본 발명의 일 실시예에 따른 통신 모듈의 상세 구성을 설명하기 위한 도면이다.
도 7은 무선 센서 노드가 설치되는 위치의 일 예를 나타내는 도면이다.
도 8a 내지 도 8d는 실제 주행 중인 열차에서 발생하는 랜덤 진동을 분석한 그래프이다.
도 9는 본 발명의 일 실시예에 따른 기계적 필터를 구비한 무선 센서 장치의 통신 수행 방법을 나타낸 순서도이다.
도 10은 본 발명의 일 실시예에 따른 에너지 하비스터 단면의 사시도이다.
도 11은 본 발명의 일 실시예에 따른 에너지 하비스터 단면의 정면도이다.
도 12는 본 발명의 일 실시예에 따른 에너지 하비스터에 포함된 코일부를 도시한 도면이다.
도 13은 본 발명의 일 실시예에 따른 에너지 하비스터와 지지판이 결합된 모습을 도시한 도면이다.
도 14는 본 발명의 일 실시예에 따른 에너지 하비스터의 사시도이다.
도 15는 본 발명의 일 실시예에 따른 에너지 하비스터의 정면도이다.
도 16은 본 발명의 일 실시예에 따른 무선 센서 장치 단면의 사시도이다.
아래에서는 첨부한 도면을 참조하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예를 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.
명세서 전체에서, 어떤 부분이 다른 부분과 "연결"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐 아니라, 그 중간에 다른 소자를 사이에 두고 "전기적으로 연결"되어 있는 경우도 포함한다. 또한 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.
도 1은 본 발명의 일 실시예에 따른 철도 차량 모니터링 시스템을 설명하기 위한 구성도이다.
도 1에 도시한 바와 같이, 본 발명의 일 실시예에 따른 철도 차량 모니터링 시스템(100)은 철도 차량 상에 설치되며, 차체(car body) 및 대차 상에 구비된 복수의 부속 장치 별로 설치된 무선 센서 노드(200), 무선 센서 노드(200)들로부터 센싱 데이터를 무선 수신하는 싱크 노드(300) 및 싱크 노드(300)로부터 통합된 센싱 데이터를 수신하여 외부로 무선 송출하는 차상 모니터링 장치(400)를 포함하여 구성된다. 참고로, 본 발명의 일 실시예에 적용되는 무선 통신망은 이동통신망 등을 포함하는 다양한 형태의 무선 통신망일 수 있으며, 차상 모니터링 장치(400)는 각 무선 통신망의 통신 규격에 따라 데이터를 송수신할 수 있다.
이때, 철도 차량 모니터링 시스템(100)은 각 부속 장치의 상태를 감지한 센싱 데이터를 포함하는 철도 차량 상태/진단 정보를 외부의 열차 관제 시스템(900)으로 송출할 수 있다. 그리고, 철도 차량 모니터링 시스템(100)은 무선 통신망을 통해 열차 관제 시스템(900)으로부터 유지 및 보수 지시 정보를 수신할 수 있다.
본 발명의 일 실시예에 따른 철도 차량 모니터링 시스템(100)은 철도 차량 상에 무선 센서 네트워크를 구현하되, 각 부속 장치 별로 설치된 저전력/자가발전형의 무선 센서를 통해 차량 상태 감지 데이터를 획득함으로써, 고속 주행과 같은 열악한 무선 통신 환경에서도 높은 신뢰도의 차량 상태 모니터링이 가능하다.
한편, 도 1에서는 철도 차량 모니터링 시스템(100)과 연동되는 외부 관제 장치를 열차 관제 시스템(900)이라고 총칭하였으나, 열차 관제 시스템(900)에는 열차 집중제어장치(Central Traffic Control device, CTC), 각 철도역의 관제 장치 및 복수의 정비기지의 관제 장치 등 다양한 관제 장치들이 포함될 수 있다.
이처럼, 열차 관제 시스템(900) 상에 포함되는 둘 이상의 관제 장치들은 데이터를 송수신할 수 있다. 예를 들어, 본 발명의 일 실시예에 따른 철도 차량 모니터링 시스템(100)으로부터 철도 차량 상태/진단 정보를 무선 수신한 열차 집중제어장치(CTC)는 수신한 센싱 데이터에 기초하여 철도 차량의 상태를 진단하고, 진단 결과 철도 차량 내/외부의 정비가 필요한 경우를 판단할 수 있다. 이때, 열차 집중제어장치(CTC)는 철도 차량 상에서 처리가 필요한 유지/보수 지시 정보는 무선 통신망을 통해 철도 차량 모니터링 시스템(100)으로 전송하고, 철도 차량 외부에서 처리가 필요한 유지/보수 지시 정보는 해당 철도 차량이 주행 중인 경로 상의 철도역 또는 정비기지의 관제 장치로 전송할 수 있다. 그리고, 열차 집중제어장치(CTC)는 유지 및 보수 지시 정보를 송출한 이후 다른 관제 장치 및 철도 차량 모니터링 시스템(100)으로부터 유지 및 보수 처리 결과 정보를 수신하여 관리할 수 있다.
이하, 도 2 내지 도 5를 참조하여 본 발명의 일 실시예에 따른 철도 차량 모니터링 시스템(100)의 구성 및 동작에 대해 상세히 설명하도록 한다.
도 2는 본 발명의 일 실시예에 따른 철도 차량 모니터링 시스템의 구성을 설명하기 위한 블록도이다.
도 2에 도시한 바와 같이, 본 발명의 일 실시예에 따른 철도 차량 모니터링 시스템(100)은 무선 센서 노드(200), 싱크 노드(300) 및 차상 모니터링 장치(400)를 포함하여 구성된다.
무선 센서 노드(200, 202, 204)는 철도 차량의 부속 장치 별로 설치되며, 부속 장치의 상태를 센싱하는 하나 이상의 센서를 포함하고, 각 센서가 센싱한 센싱 값을 실시간으로 무선 송출한다.
구체적으로, 무선 센서 노드(200)는 에너지 하비스터(210), 센서부(220), 센싱 데이터 처리부(230) 및 통신부(240)를 포함한다.
에너지 하비스터(210)는 철도 차량의 주행에 의해 발생된 적어도 하나의 종류의 에너지를 수집하여 전기 에너지로 변환하고, 이에 따라 획득된 전기 에너지를 센싱 동작, 센싱 값 신호 처리 및 무선 통신의 동력원으로 제공한다. 예를 들어, 에너지 하비스터(210)는 철도 차량이 고속 주행할 시에 발생되는 진동 및 열 등의 에너지를 전기 에너지로 변환할 수 있다. 에너지 하비스터(210)의 구체적인 구성에 대해서는 추후 상세히 설명하기로 한다.
센서부(220)는 철도 차량의 부속 장치 별로 설치된 적어도 하나의 센서를 포함하되, 각 센서는 부속 장치의 구동 상태에 따른 변화를 실시간으로 감지하여 센서 값을 발생시킨다.
예를 들어, 도 3은 본 발명의 일 실시예에서 대차에 설치된 무선 센서 노드의 일례를 설명하기 위한 도면이다.
도 3에서는 본 발명의 일 실시예이 적용되는 철도 차량의 구성 중 대차 부분에 각 센서가 설치되는 부속 장치의 일례를 나타내었다. 도 3에서는, 대차 헌팅 감지 센서, 샤프트 감지 센서, 차축 베어링 감지 센서, 대차 프레임 감지 센서, 탈선 감지 센서, 차륜 감시 센서, 기어박스 오일 감지 센서, 모터 감지 센서, 차축 감지 센서 및 감속기/기어 감지 센서를 나타내었다.
한편, 도 3에서는 철도 차량의 부속 장치 중 대차에 구성된 부속 장치를 설명하였으나, 이외에도 철도 차량의 차체 상의 다양한 부속 장치(주행 장치 포함)에도 무선 센서 노드(200)가 설치될 수 있다.
다시 도 2로 돌아가서, 센싱 데이터 처리부(230)는 센서부(220)의 센서가 센싱한 센싱 값을 디지털 데이터로 생성한다.
구체적으로, 센싱 데이터 처리부(230)는 센서부(220)를 통해 센싱된 원본 센싱 값(즉, ‘원시 데이터’)를 기설정된 샘플링 처리 및 양자화 처리를 하여 디지털 데이터를 생성한다. 이때, 기설정된 샘플링 처리 및 양자화 처리는 센서부(220)가 센싱한 원시 데이터의 크기를 압축하여 저전력으로도 센싱 데이터를 무선 송출하기 위한 것이다.
특히, 본 발명의 일 실시예에 따른 센싱 데이터 처리부(230)는 철도 차량의 주행 시 발생된 진동 주파수에 기초하여 샘플링 처리 시의 조건을 갱신할 수 있다. 이는, 고속 주행 중인 철도 차량의 무선 통신 환경에서 최적의 조건으로 센싱 값을 송수신할 수 있도록 하기 위한 것이다. 참고로, 상기 진동 주파수는 에너지 하비스터(210)로부터 획득될 수 있으며, 센싱 데이터 처리부(230)가 자체적으로 철도 차량의 주행 시 진동을 연속적으로 측정하거나 별도의 측정 장치(미도시)를 구비하여 획득하는 것도 가능하다.
통신부(240)는 센싱 데이터 처리부(230)가 생성한 디지털 데이터(즉, 센싱 값)을 설정된 무선 통신 방식에 따라 무선 송출한다. 이때, 통신부(240)는 디지털 데이터 및 해당 무선 센서 노드(200)의 식별 정보를 함께 무선 송출할 수 있다.
예를 들어, 통신부(240)는 철도 차량과 같이 고속 주행하는 통신 환경에서 데이터 송수신의 신뢰도를 높이기 위하여 근거리 무선 통신 규격에 따라 디지털 데이터를 송출할 수 있다.
다음으로, 싱크 노드(300)는 무선 센서 노드(200)로부터 센싱 값을 무선 수신하고, 수신한 센싱 값을 통합한 철도 차량 상태 정보를 실시간 출력한다. 이때, 싱크 노드(300)는 복수 개가 구비될 수 있으며, 각 싱크 노드(300, 302, 304)는 유/무선 통합형의 통신 장치로서 다른 싱크 노드(300) 및 차상 모니터링 장치(400)와 유/무선으로 통신할 수 있다. 참고로, 싱크 노드(300) 간, 또는 싱크 노드(300)와 차상 모니터링 장치(400) 간에 유선 통신을 수행할 경우 고속 주행 시 열악한 무선 통신 환경에서 송수신 데이터의 신뢰도를 더욱 높일 수 있다.
구체적으로, 싱크 노드(300)는 적어도 하나의 무선 센서 노드(200)로부터 센싱 값을 수신하고, 각 무선 센서 노드(200) 별 식별 정보와 센싱 값을 매칭한 후 이를 통합한 철도 차량 상태 정보를 생성한다.
그리고, 싱크 노드(300)는 생성한 철도 차량 상태 정보를 실시간으로 차상 모니터링 장치(400)로 전송한다.
다음으로, 차상 모니터링 장치(400)는 싱크 노드(300)들로부터 데이터(즉, 철도 차량 상태 정보)를 수집하여 표시 출력하고, 수집된 데이터를 무선 통신망을 통해 외부 장치로 전송한다. 즉, 무선 센서 네트워크 상에서 게이트웨이 장치의 역할을 수행한다.
구체적으로, 차상 모니터링 장치(400)는 적어도 하나의 싱크 노드(300)가 출력한 철도 차량 상태 정보를 입력받아 통합 관리하되, 통합된 철도 차량 상태 정보를 실시간으로 출력한다.
도 2에 도시한 바와 같이, 차상 모니터링 장치(400)는 차상 표시 제어부(410), 상태 진단부(420), 상태 보고 처리부(430), 유지 보수 지원부(440)를 포함하여 구성된다.
차상 표시 제어부(410)는 통합된 철도 차량 상태 정보를 철도 차량 상에 설치된 표시부(미도시)를 통해 출력한다. 참고로, 표시부(미도시)는 철도 차량 상의 관제를 위해 관제사(운전자)가 차량 상태를 확인하고 제어할 수 있는 제어반(control panel)일 수 있으며, 모니터와 같이 철도 차량 상태 정보를 식별 가능한 정보로 표시할 수 있는 표시장치(미도시)인 것도 가능하다.
상태 진단부(420)는 철도 차량 상태 정보에 기초하여 부속 장치 별 고장 발생 판단 및 고장 예측 처리를 수행하고, 고장 발생 판단 및 예측 처리의 결과에 기초한 철도 차량 진단 정보를 생성한다.
구체적으로, 상태 진단부(420)는 철도 차량 상태 정보에 포함된 무선 센서 노드(200)의 식별 정보 별로 매칭된 센싱 값과 기설정된 부속 장치 별 고장 발생 판단의 기준 값인 제 1 임계 값을 비교하여 해당 부속 장치의 고장 발생 여부를 판단할 수 있다. 이때, 상태 진단부(420)는 수신된 센싱 값이 제 1 임계 값 이상인 경우 고장 발생으로 판단할 수 있다.
그리고, 상태 진단부(420)는 무선 센서 노드(200)의 식별 정보 및 센싱 값과 기설정된 부속 장치 별 고장 발생 예측의 기준 값인 제 2 임계 값을 비교하여 해당 부속 장치의 고장 발생 가능성을 예측할 수 있다. 이때, 상태 판단부(420)는 수신된 센싱 값이 제 1 임계 값 미만이되 제 2 임계 값 이상인 경우 고장 발생이 가능한 것으로 예측 판단할 수 있다. 참고로, 제 2 임계 값은 제 1 임계 값 보다 낮은 값으로 설정되며, 이에 따라 철도 차량의 부속 장치에 실제 고장이 발생되기 이전에 해당 부속 장치의 상태가 비정상적인 경우를 예측/경고할 수 있다.
상태 진단부(420)는 철도 차량의 부속 장치 별 고장 발생 판단 및 고장 예측 처리한 결과를 포함하는 철도 차량 진단 정보를 생성한 후, 차상 표시 제어부(410)를 통해 철도 차량 진단 정보를 표시부(미도시)에 출력할 수 있다. 그리고, 하기에서 설명할 상태 보고 처리부(430)를 통해 상기 철도 차량 진단 정보를 열차 관제 시스템(900)으로 무선 송출할 수도 있다.
상태 보고 처리부(430)는 철도 차량 상태 정보 및 철도 차량 진단 정보 중 적어도 하나를 무선 통신망을 통해 외부 관제 장치로 무선 송출한다. 이때, 상태 보고 처리부(430)는 해당 철도 차량의 식별 정보 및 위치 정보 중 적어도 하나의 정보를 함께 전송하는 것도 가능하다.
유지 보수 지원부(440)는 상태 보고 처리부(430)가 무선 송출한 철도 차량 상태 정보에 대응하여 외부 관제 장치(200)로부터 유지 및 보수 지시 정보를 수신한다.
이때, 유지 보수 지원부(440)는 수신된 유지 및 보수 지시 정보를 차상 표시 제어부(410)로 전달하여, 표시부(미도시)를 통해 출력되도록 제어할 수 있다.
한편, 본 발명의 일 실시예에 따른 차상 모니터링 장치(400)는 상태 진단부(420)를 통해 자체적으로 철도 차량의 부속 장치 별 고장 발생 판단 및 예측 처리가 가능한 것을 설명하였다. 그런데, 본 발명의 다른 실시예에 따른 차상 모니터링 장치(400)는 상기 통합된 철도 차량 상태 정보를 열차 관제 시스템(900)으로 전송하고, 열차 관제 시스템(900)에서 처리된 고장 발생 판단 및 예측의 결과를 수신하여 표시 처리하는 것도 가능하다.
이하, 도 4를 참조하여 본 발명의 일 실시예에 따른 철도 차량 모니터링 방법에 대해서 상세히 설명하도록 한다.
도 4는 본 발명의 일 실시예에 따른 철도 차량 모니터링 방법을 설명하기 위한 순서도이다.
먼저, 철도 차량의 부속 장치 별로 설치된 무선 센서 노드(200)가 실시간으로 무선 전송한 센싱 값을 수신한다(S410).
이때, 싱크 노드(300)는 적어도 하나의 근접한 무선 센서 노드(200)로부터 센싱 값을 수신할 수 있다. 참고로, 철도 차량 상에 적어도 하나의 싱크 노드(300)가 설치된 상태이다.
그런 후, 수신된 센싱 값 및 해당 센싱 값을 전송한 무선 센서 노드의 식별 정보를 포함하는 철도 차량 상태 정보를 생성한다(S420).
이때, 철도 차량 상태 정보에는 적어도 하나 이상의 무선 센서 노드(200)가 실시간으로 전송한 센싱 값이 포함된다.
다음으로, 철도 차량 상태 정보를 철도 차량 상의 표시부 및 열차 관제 시스템(900)으로 출력한다(S430).
한편, 본 발명의 일 실시예에 따른 철도 차량 모니터링 방법에서는, 상기 단계(S430) 이전에 철도 차량 상태 정보에 기초하여 부속 장치 별 고장 발생 판단 및 예측 처리를 수행하고, 고장 발생 판단 및 예측 처리의 결과에 기초하여 철도 차량 진단 정보를 생성할 수 있다. 이에 따라, 상기 단계(S430)에서는 철도 차량 상태 정보 및 철도 차량 진단 정보 중 적어도 하나의 정보를 출력할 수 있다.
구체적으로, 철도 차량 상태 정보에 포함된 무선 센서 노드(200)의 식별 정보 별로 매칭된 센싱 값을 기설정된 부속 장치 별 고장 발생 판단의 기준 값인 제 1 임계 값과 비교하여 해당 부속 장치의 고장 발생 여부를 판단할 수 있다. 그리고, 무선 센서 노드(200)의 식별 정보 별로 매칭된 센싱 값을 기설정된 부속 장치 별 고장 발생 예측 기준 값인 제 2 임계 값과 비교하여 해당 부속 장치의 고장 발생 가능성을 판단할 수 있다. 참고로, 제 2 임계 값은 상기 제 1 임계 값보다 낮게 설정된다.
또한, 본 발명의 일 실시예에 따른 철도 차량 모니터링 방법에서는, 상기 단계(S410) 이전에 각 무선 센서 노드(200) 별로 다음과 같은 단계를 수행할 수 있다.
구체적으로, 무선 센서 노드(200)가 철도 차량의 주행에 의해 발생된 적어도 하나의 종류의 에너지를 전기 에너지로 변환하는 단계 및 무선 센서 노드(200)가 전기 에너지를 동력원으로 하여 센서의 구동, 센서가 센싱한 센싱 값의 신호 처리 및 센싱 값의 무선 전송을 수행하는 단계를 수행할 수 있다. 이때, 무선 센서 노드(200)는 센서가 센싱한 원시 데이터를 기설정된 신호 처리(기설정된 샘플링 처리 및 양자화 처리 등)를 통해 디지털 데이터로 변환하되, 철도 차량의 주행에 의해 발생된 진동 주파수에 기초하여 상기 신호 처리의 조건이 갱신될 수 있다.
또한, 본 발명의 일 실시예에 따른 철도 차량 모니터링 방법에서는, 상기 단계 (S430) 이후에, 상기 무선 송출한 철도 차량 상태 정보에 대응하여 열차 관제 시스템(900)으로부터 유지 및 보수 지시 정보를 무선 수신하고, 수신된 유지 및 보수 지시 정보를 철도 차량 상에 설치된 표시부를 통해 출력할 수 있다.
이제, 무선 센서 노드와 에너지 하비스터의 구체적인 구성을 살펴보기로 한다.
도 5는 본 발명의 일 실시예에 따른 기계적 필터를 구비한 무선 센서 노드의 구조를 도시한 도면이다.
본 발명의 일 실시예에 따른 무선 센서 노드(200)는 에너지 하비스터(210), 탄성 부재(250) 및 통신부(240)를 포함한다. 또한, 센서부(220)와 센싱 데이터 처리부(230)는 각각 통신부(240)에 포함될 수 있다.
에너지 하비스터(210)는 광대역 가진원으로부터 발생된 진동을 전기로 변환한다. 이때, 에너지 하비스터(210)는 진동이 가지는 주파수 별 평균 가속도가 최대일 때의 주파수를 이용하여 진동을 전기로 변환할 수 있고, 그로 인해 에너지 변환 효율을 증대시킬 수 있다. 또한, 광대역 가진원이란 넓은 주파수 대역에 걸쳐서 진동을 발생시키는 근원지로서, 기계 부품, 기계구조물 또는 운송기계(철도차량, 항공기, 선박 등) 및 회전기계(모터, 펌프, 감속기/증속기, 풍력발전기 블레이드 등) 등이 이에 포함될 수 있다.
탄성 부재(250)는 진동을 전달받도록 배치되고, 후술할 통신부(240)를 위해 주파수의 범위 및 가속도의 크기를 제한하는 기계적 필터 구조로 이루어진다. 이때, 탄성 부재(250)의 배치 위치는 도 5와 같이, 에너지 하비스터(210)의 윗면일 수 있으나, 광대역 가진원으로부터 발생된 진동을 전달받을 수 있는 위치라면 특별히 제한되는 것은 아니다.
구체적으로, 탄성 부재(250)는 스프링(251), 탄성 매쓰(252) 및 댐퍼(253)를 포함할 수 있다.
스프링(251)은 통신부(240)의 스펙에 따라 미리 설정된 고유 주파수를 가지고, 주파수의 범위를 제한한다.
이때, 고유 주파수(f)는 통신부(240)의 질량(M1), 탄성 매쓰(252)의 질량(M2) 및 스프링의 고유 상수(k)를 기초로 아래 수학식 1처럼 미리 설정될 수 있다. 참고로, 수학식 1에서 m(kg)은 M1과 M2를 더한 값이다.
[수학식 1]
Figure PCTKR2014003861-appb-I000001
또한, 주파수의 범위는, 진동이 가지는 주파수 별 평균 가속도가 미리 설정된 기준 값 이하인 상태로, 스프링(251)에 의해 제한될 수 있는데, 상세한 설명은 후술하기로 한다.
탄성 매쓰(252)는 스프링(251) 상에 배치되어 가속도의 크기를 제한할 수 있다. 이렇게 통신부(240)에 가해지는 진동의 가속도가 제한되기 때문에, 통신부(240)가 안정적으로 무선 통신을 수행할 수 있고, 성능 감소를 최소화할 수 있다.
댐퍼(253)는 스프링(251) 및 탄성 매쓰(252)의 이동 변위를 제한할 수 있다. 댐퍼(253)는 스프링(251) 및 탄성 매쓰(252)의 주변에 배치되어 이들의 이동 변위를 제한하기 때문에, 스프링(251) 및 탄성 매쓰(252)에 의한 제한 효과를 향상시킬 수 있다.
통신부(240)는 상술한 탄성부재(250)에 의해 고정되어 에너지 하비스터(210)로부터 변환된 전기를 제공받고, 후술할 센서(220)로부터 측정된 센싱 정보를 송신한다. 이하, 도 6을 참고하여 통신부(240)에 대해 설명하기로 한다. 도 6은 도 5에 도시된 통신 모듈의 상세 구성을 설명하기 위한 도면이다.
통신부(240)는 전력 변환부(241), 센서(220), 제어부(Machine Control Unit, 230), 무선 통신부(243) 및 안테나(245)를 포함할 수 있다.
전력 변환부(241)는 에너지 하비스터(210)과 케이블(260)을 통해 연결될 수 있고, 에너지 하비스터(210)로부터 변환된 전기를 제공받아 각 구성들이 필요로 하는 전력을 적절하게 분배할 수 있다.
센서(220)는 각 설비의 상태, 성능 등을 지속적으로 모니터링하기 위한 구성으로서, 측정된 센싱 정보를 제어부(230)로 전달할 수 있다. 또한, 센서(220)는 설치되는 위치에 따라 종류, 형태, 스펙 등이 달라질 수 있다. 덧붙여, 센서(220)는 도 6에 도시된 것처럼 통신부(240) 내에 포함될 수 있지만, 각 설비의 상태, 성능을 정확하게 모니터링할 수 있는 위치에 설치될 수도 있으며, 설치되는 위치가 특별하게 한정되는 것은 아니다.
제어부(230)는 상술한 센서(220)로부터 전달된 센싱 정보를 처리하여 안테나(245)와 연결된 무선 통신부(243)로 보낼 수 있다. 또한, 제어부(230)는 아날로그 디지털 컨버터(ADC)를 구비할 수 있고, 센싱 정보는 아날로그 디지털 컨버터를 거쳐 처리될 수 있다. 덧붙여, 무선 통신부(243)는 센싱 정보를 기초로 설비의 상태나 성능을 분석하는 관리자로부터 전달된 명령 정보를 수신할 수 있고, 명령 정보를 제어부(230)로 전달할 수 있다.
에너지 하비스터(210)를 포함하는 무선 센서 노드(200)가 도 7과 같이 진동이 발생하는 위치 또는 광대역 가진원 부근에 설치되기 때문에, 통신부(240)는 무선 통신을 방해받을 수 있다. 한편, 도 7은 무선 센서 노드가 설치되는 위치의 일 예를 나타내는 도면이다.
다시 말하자면, 통신부(240)는 RF 무선 통신을 수행하는 도중에 지속적으로 진동에 노출된 상태이고, 이러한 진동은 통신의 송수신율을 감소시킬 수 있으며, 전체적인 무선 센서 노드(200)의 성능에 악영향을 끼칠 수 있다.
따라서, 본 발명에서 제안되는 기계적 필터를 구비한 무선 센서 노드(200)는 기계적 필터 구조로 이루어진 탄성 부재(250)를 포함함으로써, 통신부(240)로 전달되는 진동을 적절하게 감쇄시킬 수 있다. 이로 인해 에너지 하비스터(210) 및 통신부(240)의 성능을 일정 수준 이상으로 유지시킬 수 있다.
도 8a 내지 도 8d는 실제 주행 중인 열차에서 발생하는 랜덤 진동을 분석한 그래프이다.
구체적으로, 도 8a는 열차 주행시 차축에서 측정된 시간 대비 수직 방향 가속도를 나타낸 것이다. 측정된 가속도 RMS 값은 46.65 m/s2이고, 열차 주행시 차축에서 광대역의 큰 가속도를 가진 랜덤 진동이 발생한다는 것을 확인할 수 있다.
도 8b는 상술한 랜덤 진동이 가지는 주파수 별 평균 가속도를 나타낸 것이다. 이는 도 8a 에 나타난 데이터를 FFT한 결과이고, 전체 주행 시간 동안 각 주파수에서 발생한 가속도의 평균 값을 도식화한 것이다. 전체 주행 시간 동안 최대 평균 가속도는 3.86 m/s2이라는 것을 알 수 있고, 평균 가속도가 최대인 때의 주파수는 53Hz이다. 에너지 하비스터(210)는 53Hz의 주파수를 이용하여 진동을 전기로 변환할 수 있고, 그로 인해 에너지 변환 효율을 증대시킬 수 있다.
또한, 탄성 부재(250)는 주파수의 범위 및 가속도의 크기를 제한하는 구조로 이루어지고, 주파수의 범위는 랜덤 진동이 가지는 주파수 별 평균 가속도가 미리 설정된 기준 값(A) 이하인 상태로 탄성 부재(250) 또는 스프링(251)에 의해 제한될 수 있다. 즉, 탄성 부재(250)는 주파수의 범위를 약 200Hz 이상인 주파수 영역(B)으로 제한하는 기계적 필터 역할을 수행할 수 있다. 이렇게 제한된 범위의 주파수를 가진 진동이 통신부(240)로 전달되고, 스프링(251), 탄성 매쓰(252) 및 댐퍼(253)가 함께 작용하므로, 통신부(240)의 성능이 일정 수준 이상으로 보장될 수 있다.
나아가, 도 8c는 탄성 부재(250)에 의한 주파수 필터링 효과를 나타낸 것이고, 도 8d는 주파수 별 평균 전압을 나타낸 것이다. 약 53Hz 이후 주파수 영역(C)에서의 평균 전압 피크 값은 고조파 성분으로서, 53Hz에서의 평균 전압 값보다 낮게 형성된다는 것을 확인할 수 있다.
한편, 본 발명의 일 실시예에 따른 기계적 필터를 구비한 무선 센서 장치(100)가 에너지 하비스터를 통해 통신을 수행하는 방법에 대해 도 9를 참고하여 설명한다.
도 9는 본 발명의 일 실시예에 따른 기계적 필터를 구비한 무선 센서 장치의 통신 수행 방법을 나타낸 순서도이다.
무선 센서 노드(200)는, 광대역 가진원으로부터 발생된 에너지 하비스터(210)에 의해 변환된 전기를 제공받아 구동된다(S910).
또한, 진동을 전달받도록 배치되는 탄성 부재(250)에 의해 고정된 무선 센서 노드(200) 내 통신부(240)가 센서(220)로부터 전달된 센싱 정보를 송신한다(S920).
특히, 탄성 부재(250)는 주파수의 범위 및 가속도의 크기를 제한하는 기계적 필터 구조로 이루어져, 기계적 필터를 거친 진동을 통신부(240)로 전달한다. 이로 인해 랜덤 진동에 오랜 시간 노출되더라도 통신부(240)는 일정 수준 이상의 성능을 유지할 수 있다.
이때, 주파수의 범위는, 진동이 가지는 주파수 별 평균 가속도가 미리 설정된 기준 값 이하인 상태로, 탄성 부재(250)에 의해 제한될 수 있다.
지금까지 설명한 본 발명에서 제안된 기계적 필터를 구비한 무선 센서 장치의 통신 수행 방법을 사용하면, 기계적 필터를 거친 진동을 전달받게 되어 일정 수준 이상의 RF 무선 통신을 안정적으로 수행할 수 있다.
이제, 에너지 하비스터의 구체적인 실시예를 살펴보도록 한다.
도 10은 본 발명의 제1 실시예에 따른 에너지 하비스터(600) 단면의 사시도이고, 도 11은 본 발명의 제 1 실시예에 따른 에너지 하비스터(600) 단면의 정면도이며, 도 12는 에너지 하비스터(600)에 포함된 코일부를 도시한 도면이다.
먼저, 도 2 및 도 3을 참조하면, 에너지 하비스터(600)는 가진원으로부터 발생된 진동을 전기로 변환하며, 제 1 탄성부(610), 제 1 질량부(620), 제 1 자성체(630), 제 2 탄성부(640), 제 2 질량부(650), 제 2 자성체(660), 중심축(670), 제 3 탄성부(680) 및 코일부(690)를 포함하고 있다. 이때, 가진원이란 넓은 주파수 대역에 걸쳐서 진동을 발생시키는 근원지로서, 기계 부품, 기계구조물 또는 운송기계(철도차량, 자동차, 항공기, 선박 등) 및 회전기계(모터, 펌프, 플랜트, 공장, 감속기/증속기, 풍력발전기 블레이드 등) 등이 이에 포함될 수 있다.
제 1 탄성부(610)는 제 1 진동 주파수를 중심 주파수로 하는 진동에 반응하여 진동하도록 설계된다. 즉, 제 1 탄성부(610)는 제 1 진동 주파수를 중심 주파수로 하는 제 1 탄성계수(k1)를 갖도록 설계되어 진동에 반응하게 된다.
제 1 질량부(620)는 제 1 탄성부(610)와 결합되어 있으며, 제 1 자성체(630)는 제 1 질량부(620)와 결합되어 있다. 제 1 질량부(620)는 제 1 탄성부(610)와 결합되어 있으므로, 제 1 탄성부(610)가 진동할 때 함께 진동한다. 이때, 제 1 자성체(630)는 제 1 질량부(620)와 결합되어 있으므로, 제 1 질량부(620)가 진동함에 따라 함께 진동하여 아래에서 설명하는 바와 같이 코일부(690)에 인입된다.
제 2 탄성부(640)는 제 2 진동 주파수를 중심 주파수로 하는 진동에 반응하여 진동하도록 설계된다. 즉, 제 2 탄성부(640)는 제 2 진동 주파수를 중심 주파수로 하는 제 2 탄성계수(k2)를 갖도록 설계되어 진동에 반응하게 된다.
제 2 질량부(650)는 제 2 탄성부(640)와 결합되어 있으며, 제 2 자성체(660)는 제 2 질량부(650)와 결합되어 있다. 제 2 질량부(650)는 제 2 탄성부(640)와 결합되어 있어, 제 2 탄성부(640)가 제 2 진동 주파수를 중심 주파수로 하는 진동에 반응하여 진동할 때 함께 진동한다. 이때, 제 2 자성체(660)는 제 2 질량부(650)와 결합되어 있으므로, 제 2 질량부(650)가 진동할 때 함께 진동하여 코일부(690)에 인입된다.
한편, 제 1 진동 주파수는 기 설정된 제 1 속도 이상의 경우, 제 2 진동 주파수는 기 설정된 제 2 속도 이하의 경우에 대응하는 진동 주파수에 해당할 수 있다. 이때, 제 1 속도는 제 2 속도보다 빠른 속도값을 가질 수 있다.
이와 같이, 본 발명에 따른 에너지 하비스터(600)는 고속 구간에서의 진동 주파수와 저속 구간에서의 진동 주파수를 모두 고려하고 있으므로, 발전 가능한 주파수 대역을 확장할 수 있다.
이와 더불어, 본 발명에 따른 에너지 하비스터(600)는 고속 구간 및 저속 구간이 분명하게 나뉘어진 환경뿐만 아니라 중심 주파수가 변하는 환경에서도 적용할 수 있다. 예를 들어 철도차량, 자동차 등의 운송기계의 경우, 운송기계의 속도가 변함에 따라 중심 주파수가 변할 수 있으므로, 본 발명에 따른 에너지 하비스터(600)를 적용할 수 있다. 또한, 모터나 펌프 등의 회전기계의 경우, 회전기계에 작동 부하가 많이 걸리게 되면 진동 주파수가 변하게 되므로, 본 발명에 따른 에너지 하비스터(600)를 적용할 수 있다. 이와 같이, 본 발명에 따른 에너지 하비스터(600)는 적용되는 주파수의 범위가 넓거나, 이중 주파수가 적용되는 경우 등 다양한 조건에서 전력을 생산할 수 있다.
제 1 탄성부(610), 제 2 탄성부(640), 제 1 질량부(620), 제 2 질량부(650), 제 1 자성체(630) 및 제 2 자성체(660)는 중심축(670)과 결합되어 있다. 이때, 제 1 탄성부(610), 제 2 탄성부(640), 제 1 질량부(620), 제 2 질량부(650), 제 1 자성체(630) 및 제 2 자성체(660)는 중심축(670)이 통과하도록 형성된 개구부를 포함하고 있으며, 각각 원기둥 형상으로 형성될 수 있다. 그리고 제 1 탄성부(610) 및 제 2 탄성부(640)의 외측면은 방사형 형태로 형성될 수 있다. 예를 들어, 중심축(670)을 중심으로 십자 형태로 뻗어나간 방사형 형태로 형성될 수 있다.
한편, 개구부가 형성된 원기둥 형상은 일 예시에 불과하며, 가진원의 형상 및 목적에 따라 다양한 형상으로 형성될 수 있다. 또한, 제 1 탄성부(610) 및 제 2 탄성부(640)의 형상은 십자 방사 형태뿐만 아니라 다양한 형상으로 형성될 수 있다.
이와 더불어, 제 1 질량부(620) 및 제 2 질량부(650)는 코일부(690)와 미리 설정된 간격만큼 이격되도록 형성될 수 있다. 코일부(690)와 이격되도록 형성됨으로써 제 1 질량부(620) 또는 제 2 질량부(650)가 진동함에 따라 제 1 자성체(630) 또는 제 2 자성체(660)가 코일부(690)에 인입될 수 있다.
제 3 탄성부(680)는 제 1 질량부(620)와 제 2 질량부(650) 사이에 결합되어 있다. 이때, 제 3 탄성부(680)의 상측면은 제 1 질량부(620)와 결합될 수 있으며, 제 3 탄성부(680)의 하측면은 제 2 질량부(650)와 결합될 수 있다. 제 3 탄성부(680)의 상측면과 결합된 제 1 질량부(620)는 제 1 탄성부(610)의 하부에 결합되고, 제 1 자성체(630)는 제 1 질량부(620)의 하부에 결합되어 코일부(690)의 상부에 인입될 수 있다. 또한, 제 3 탄성부(680)의 하측면과 결합된 제 2 질량부(650)는 제 2 탄성부(640)의 상부에 결합되고, 제 2 자성체(660)는 제 2 질량부(650)의 상부에 결합되어 코일부(690)의 하부에 인입될 수 있다.
도 12를 참조하면, 코일부(690)는 중심축(670)을 따라 배치되며 제 1 자성체(630) 또는 제 2 자성체(660)가 제 1 탄성부(610) 또는 제 2 탄성부(120)의 진동에 따라 각각 인입되도록 형성된다. 즉, 제 1 진동 주파수를 중심 주파수로 하는 진동이 발생한 경우 제 1 탄성부(610)가 진동함에 따라 제 1 질량부(620)와 결합되어 있는 제 1 자성체(630)가 코일부(690)에 선택적으로 인입되고, 제 2 진동 주파수를 중심 주파수로 하는 진동이 발생한 경우 제 2 탄성부(640)가 진동함에 따라 제 2 질량부(650)와 결합되어 있는 제 2 자성체(660)가 코일부(690)에 선택적으로 인입된다. 이때, 제 1 자성체(630) 또는 제 2 자성체(660)가 선택적으로 인입된다는 의미는 가진원으로부터 제 1 진동 주파수 또는 제 2 진동 주파수를 중심 주파수로 하는 진동이 발생한 경우, 제 1 자성체(630) 또는 제 2 자성체(660)가 코일부(690)에 들어간 후 다시 나오는 인입 및 인출 과정이 반복적으로 수행되는 것을 말한다.
이때, 코일부(690)는 제 1 자성체(630)가 인입되는 일측면과 제 2 자성체(660)가 인입되는 타측면에 각각 형성된 중공부(191, 193)를 포함할 수 있다. 이에 따라, 제 1 자성체(630)와 제 2 자성체(660)가 코일부(690)의 내부에 선택적으로 인입될 수 있다. 다만, 도 1 및 도 2에 도시된 코일부(690)는 제 1 자성체(630) 및 제 2 자성체(660)가 인입되는 중공부(691, 693)가 분리되어 형성되어 있으나, 반드시 이에 한정되는 것은 아니며, 하나의 중공부가 형성되어 제 1 자성체(630) 및 제 2 자성체(660)가 선택적으로 인입될 수 있다.
또한, 코일부(690)는 제 1 질량부(620)의 내측 둘레면을 따라 형성된 제 1 홈, 제 2 질량부(650)의 내측 둘레면을 따라 형성된 제 2 홈 및 제 1 홈과 제 2 홈에 각각 감긴 코일을 포함할 수 있다. 즉, 코일부(690)는 보빈(bobbin) 형태로 형성될 수 있다.
이와 같이 코일부(690)는 제 1 자성체(630) 및 제 2 자성체(660)가 인입될 수 있도록 중공부(691, 693)가 형성되어 있고, 보빈 형태로 형성되고 코일이 감겨 있어 제 1 자성체(630) 및 제 2 자성체(660)가 진동에 따라 선택적으로 인입됨으로써 가진원으로부터 발생된 진동을 전기로 변환할 수 있다.
도 13은 제 1 실시예에 따른 에너지 하비스터(600)와 지지판이 결합된 모습을 도시한 도면이다.
본 발명에 따른 에너지 하비스터(600)는 지지판이 결합됨으로써 가진원에 고정되어 설치될 수 있다. 이를 위해, 에너지 하비스터(600)는 하부 지지판(601), 측면 지지판(603) 및 상부 지지판(605)을 포함할 수 있다.
하부 지지판(601)은 가진원에 고정되어 설치되며, 중심축(670)과 연결되어 고정되고, 제 2 탄성부(640)와 이격하여 형성될 수 있다. 그리고 측면 지지판(603)은 하부 지지판(601)과 연결되며, 제 1 질량부(620) 및 제 2 질량부(650)의 둘레면과 이격하여 형성될 수 있다. 상부 지지판(605)은 중심축(670)과 연결되어 고정되고, 측면 지지판(603)과 연결되며, 제 1 탄성부(610)와 이격하여 형성될 수 있다.
도 14는 본 발명의 제 2 실시예에 따른 에너지 하비스터(700)의 사시도이고, 도 15는 본 발명의 제 2 실시예에 따른 에너지 하비스터(700)의 정면도이다.
본 발명에 따른 에너지 하비스터(700)는 제 1 중심축(771), 제 1 탄성부(710), 제 1 질량부(720), 제 1 자성체(730), 제 2 중심축(773), 제 2 탄성부(740), 제 2 질량부(750), 제 2 자성체(760), 댐핑부(775) 및 코일부(790)를 포함한다.
본 발명에 따른 에너지 하비스터(700)는 중심축이 제 1 중심축(771) 및 제 1 중심축(771)과 동일한 축을 따라 배치된 제 2 중심축(773)으로 분리되어 형성된다. 그리고 제 1 실시예에 포함된 제 3 탄성부(680) 대신 제 1 중심축(771)과 제 2 중심축(773)을 연결하는 댐핑부(775)가 형성되어 가진원으로부터 발생된 진동을 흡수할 수 있다.
제 1 탄성부(710)는 제 1 중심축(771)을 따라 배치되며, 제 1 진동 주파수를 중심 주파수로 하는 진동에 반응하여 진동하도록 설계된다. 즉, 제 1 탄성부(710)는 제 1 탄성계수(k1)를 갖도록 설계되어 제 1 진동 주파수를 중심 주파수로 하는 진동에 반응한다.
제 1 질량부(720)는 제 1 중심축(771)을 따라 배치되며, 제 1 탄성부(710)와 결합되어 있다. 제 1 자성체(730)는 제 1 중심축(771)을 따라 배치되며, 제 1 질량부(720)와 결합되어 있다. 제 1 질량부(720)는 제 1 탄성부(710)와 결합되어 있으므로, 제 1 탄성부(710)가 진동할 때 함께 진동한다. 이때, 제 1 자성체(730)는 제 1 질량부(720)와 결합되어 있으므로, 제 1 질량부(720)가 진동함에 따라 함께 진동하여 코일부(790)에 선택적으로 인입된다.
제 2 탄성부(740)는 제 2 중심축(773)을 따라 배치되며, 제 2 진동 주파수를 중심 주파수로 하는 진동에 반응하여 진동하도록 설계된다. 즉, 제 2 탄성부(740)는 제 2 탄성계수(k2)를 갖도록 설계되어 제 2 진동 주파수를 중심 주파수로 하는 진동에 반응한다.
제 2 질량부(750)는 제 2 중심축(773)을 따라 배치되며, 제 2 탄성부(740)와 결합되어 있다. 제 2 자성체(760)는 제 2 중심축(773)을 따라 배치되며, 제 2 질량부(750)와 결합되어 있다. 제 2 질량부(750)는 제 2 탄성부(740)와 결합되어 있어, 제 2 탄성부(740)가 제 2 진동 주파수를 중심 주파수로 하는 진동에 반응하여 진동할 때 함께 진동한다. 이때, 제 2 자성체(760)는 제 2 질량부(750)와 결합되어 있으므로, 제 2 질량부(750)가 진동할 때 함께 진동하여 코일부(790)에 인입된다.
이와 같은 제 1 탄성부(710), 제 2 탄성부(740), 제 1 질량부(720), 제 2 질량부(750), 제 1 자성체(730) 및 제 2 자성체(760)는 제 1 중심축(771) 또는 제 2 중심축(773)이 통과하도록 형성된 개구부를 포함하고 있으며, 각각 원기둥 형상이 되도록 형성될 수 있다. 다만, 개구부가 형성된 원기둥 형상은 일 예시에 불과하며, 가진원의 형상 및 목적에 따라 다양한 형상으로 형성될 수 있다.
이와 더불어 제 1 탄성부(710) 및 제 2 탄성부(740)의 외측면은 방사형 형태로 형성될 수 있다. 예를 들어, 중심축(771)을 중심으로 십자 형태로 뻗어나간 방사형 형태로 형성될 수 있다. 한편, 제 1 탄성부(710) 및 제 2 탄성부(740)의 형상은 십자 방사 형태뿐만 아니라 다양한 형상으로 형성될 수 있다.
코일부(790)는 제 1 중심축(771) 및 제 2 중심축(773)을 따라 배치되며 제 1 자성체(730) 또는 제 2 자성체(760)가 제 1 탄성부(710) 또는 제 2 탄성부(740)의 진동에 따라 각각 선택적으로 인입된다. 이때, 제 1 자성체(730) 또는 제 2 자성체(760)가 선택적으로 인입된다는 의미는 가진원으로부터 제 1 진동 주파수 또는 제 2 진동 주파수를 중심 주파수로 하는 진동이 발생한 경우, 제 1 자성체(730) 또는 제 2 자성체(760)가 코일부(790)에 들어간 후 다시 나오는 인입 및 인출 과정이 반복적으로 수행되는 것을 말한다.
코일부(790)는 제 1 자성체(730)가 인입되는 일측면과 제 2 자성체(760)가 인입되는 타측면에 각각 형성된 중공부(791, 793)를 포함하고 있다. 이에 따라, 제 1 자성체(730)와 제 2 자성체(760)가 코일부(790)의 내부에 선택적으로 인입될 수 있다. 다만, 도 5 및 도 6에 도시된 코일부(790)는 제 1 자성체(730) 및 제 2 자성체(760)가 인입되는 중공부(791, 793)가 분리되어 형성되어 있으나, 반드시 이에 한정되는 것은 아니며, 하나의 중공부가 형성되어 제 1 자성체(730) 및 제 2 자성체(760)가 선택적으로 인입될 수 있다.
또한, 코일부(790)는 제 1 질량부(720)의 내측 둘레면을 따라 형성된 제 1 홈, 제 2 질량부(750)의 내측 둘레면을 따라 형성된 제 2 홈 및 제 1 홈과 제 2 홈에 각각 감긴 코일을 포함할 수 있다. 즉, 코일부(790)는 도 3과 같은 보빈(bobbin) 형태로 형성될 수 있다.
이와 더불어, 코일부(790)는 제 1 질량부(720) 및 제 2 질량부(750)와 미리 설정된 간격만큼 이격되도록 형성될 수 있다. 코일부(790)가 제 1 질량부(720) 및 제 2 질량부(750)와 이격되도록 형성됨으로써 제 1 질량부(720) 또는 제 2 질량부(750)가 진동함에 따라 제 1 자성체(730) 또는 제 2 자성체(760)가 코일부(790)에 선택적으로 인입될 수 있다.
이와 같이 코일부(790)는 제 1 자성체(730) 및 제 2 자성체(760)가 인입될 수 있도록 중공부(791, 793)가 형성되어 있고, 보빈 형태로 형성되고 코일이 감겨 있어 제 1 자성체(730) 및 제 2 자성체(760)가 진동에 따라 선택적으로 인입됨으로써 가진원으로부터 발생된 진동을 전기로 변환할 수 있다.
한편, 제 1 진동 주파수는 기 설정된 제 1 속도 이상의 경우, 제 2 진동 주파수는 기 설정된 제 2 속도 이하의 경우에 대응하는 진동 주파수에 해당한다. 이때, 제 1 속도는 제 2 속도보다 빠른 속도값을 가진다. 이와 같이, 본 발명에 따른 에너지 하비스터(700)는 고속 구간에서의 진동 주파수와 저속 구간에서의 진동 주파수를 모두 고려하고 있으므로, 발전 가능한 주파수 대역을 확장할 수 있다.
이와 더불어, 본 발명에 따른 에너지 하비스터(700)는 고속 구간 및 저속 구간이 분명하게 나뉘어진 환경 뿐만 아니라 중심 주파수가 변하는 환경에서도 적용할 수 있어, 넓은 주파수 대역의 환경이나, 이중 주파수가 적용되는 경우 등 다양한 조건에서 전력을 생산할 수 있다.
본 발명에 따른 에너지 하비스터(700)는 지지판이 결합되어 가진원과 고정되어 설치될 수 있다. 이를 위해, 에너지 하비스터(700)는 하부 지지판, 측면 지지판 및 상부 지지판을 포함할 수 있다.
하부 지지판은 가진원에 고정되어 설치되며, 제 2 중심축(773)과 연결되어 고정되고, 제 2 탄성부(740)와 이격하여 형성될 수 있다. 그리고 측면 지지판은 하부 지지판과 연결되며, 제 1 질량부(720) 및 제 2 질량부(750)의 둘레면과 이격하여 형성될 수 있다. 상부 지지판은 제 1 중심축(771)과 연결되어 고정되고, 측면 지지판과 연결되며, 제 1 탄성부(710)와 이격하여 형성될 수 있다. 본 발명의 제 2 실시예에 따른 에너지 하비스터(700)와 지지판이 결합된 형상은 제 1 실시예에 따른 에너지 하비스터(600)와 지지판이 결합된 도 12와 같은 형태로 형성될 수 있다.
한편, 본 발명에 따른 에너지 하비스터(700)의 적층 구조는 다음과 같이 형성될 수 있다. 댐핑부(775)의 일측면은 제 1 중심축(771)의 하부면과 연결되고, 댐핑부(775)의 타측면은 제 2 중심축(773)의 상부면과 연결될 수 있다. 그리고, 제 1 질량부(720)는 제 1 탄성부(710)의 하부에 결합되고, 제 1 자성체(730)는 제 1 질량부(720)의 하부에 결합되어 코일부(790)의 상부에 인입될 수 있다. 또한, 제 2 자성체(760)는 제 2 질량부(750)의 상부에 결합되고, 제 2 질량부(750)는 제 2 탄성부(740)의 상부에 결합되어 코일부(790)의 하부에 인입될 수 있다.
즉, 에너지 하비스터(700)의 상부에는 제 1 중심축(771)을 중심으로 제 1 탄성부(710), 제 1 질량부(720) 및 제 1 자성체(730)의 순서로 결합될 수 있으며, 하부에는 제 2 중심축(773)을 중심으로 제 2 탄성부(740), 제 2 질량부(750) 및 제 2 자성체(760)의 순서로 결합될 수 있다. 그리고 제 1 중심축(771)와 제 2 중심축(773)의 사이에는 댐핑부(775)가 연결된다. 다만, 에너지 하비스터(700)의 적층 순서는 이에 한정되는 것이 아니며, 상부와 하부가 바뀌어 결합될 수도 있으며, 사용되는 목적에 따라 다양한 형태로 적층되어 결합될 수 있다.
도 16은 본 발명의 제 3 실시예에 따른 무선 센서 장치(300) 단면의 사시도이다.
본 발명에 따른 무선 센서 장치(200)는 본 발명의 제 1 실시예 및 제 2 실시예에 따른 에너지 하비스터(600) 및 통신 모듈(240)을 포함하고 있다. 이때, 통신 모듈(240)은 에너지 하비스터(600)로부터 변환된 에너지를 제공 받고, 측정된 센싱 정보를 송신한다. 에너지 하비스터와 통신 모듈이 포함된 무선 센서 장치는 도 5와 같은 구조로 형성될 수 있다.
한편, 에너지 하비스터(600)는 도 16과 같이 하부 지지판(601), 상부 지지판(605)과 측면 지지판(603)이 둘러 쌓인 상태로 무선 센서 장치(200) 내부에 삽입될 수 있으며, 통신 모듈(240)은 원통형 형상의 하우징부(241)로 둘러 쌓인 상태로 무선 센서 장치(200)의 내부에 삽입될 수 있다.
전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수 있다.
본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.

Claims (35)

  1. 철도 차량 상에 설치된 철도 차량 모니터링 시스템에 있어서,
    상기 철도 차량의 부속 장치 별로 설치되며, 상기 부속 장치의 상태를 센싱하는 센서를 포함하고, 상기 센서가 센싱한 센싱 값을 실시간으로 무선 송출하는 무선 센서 노드;
    적어도 하나의 상기 무선 센서 노드로부터 상기 센싱 값을 무선 수신하고, 상기 수신한 센싱 값을 통합한 철도 차량 상태 정보를 실시간 출력하는 싱크 노드; 및
    적어도 하나의 상기 싱크 노드가 출력한 상기 철도 차량 상태 정보를 입력받아 통합 관리하되, 통합된 상기 철도 차량 상태 정보를 실시간으로 출력하는 차상 모니터링 장치를 포함하는 철도 차량 모니터링 시스템.
  2. 제 1 항에 있어서,
    상기 차상 모니터링 장치는,
    상기 통합된 철도 차량 상태 정보를 상기 철도 차량 상에 설치된 표시부를 통해 출력하는 차상 표시 제어부;
    상기 철도 차량 상태 정보를 무선 통신망을 통해 외부 관제 장치로 무선 송출하는 상태 보고 처리부; 및
    상기 무선 송출한 철도 차량 상태 정보에 대응하여 상기 외부 관제 장치로부터 유지 및 보수 지시 정보를 수신하는 유지 보수 지원부를 포함하되,
    상기 유지 보수 지원부가 상기 유지 및 보수 지시 정보를 수신하면 상기 차상 표시 제어부가 상기 표시부를 통해 상기 유지 및 보수 지시 정보를 출력하는 철도 차량 모니터링 시스템.
  3. 제 2 항에 있어서,
    상기 차상 모니터링 장치는,
    상기 철도 차량 상태 정보에 기초하여 상기 부속 장치 별 고장 발생 판단 및 고장 예측 처리를 수행하고, 상기 고장 발생 판단 및 예측 처리의 결과에 기초한 철도 차량 진단 정보를 생성하는 상태 진단부를 더 포함하되,
    상기 차상 표시 제어부는 상기 철도 차량 진단 정보를 상기 표시부를 통해 실시간 출력하고,
    상기 상태 보고 처리부는 상기 철도 차량 진단 정보를 상기 외부 관제 장치로 무선 송출하는 철도 차량 모니터링 시스템.
  4. 제 3 항에 있어서,
    상기 상태 진단부는,
    상기 철도 차량 상태 정보에 포함된 상기 무선 센서 노드의 식별 정보 별로 매칭된 센싱 값과 기설정된 상기 부속 장치 별 고장 발생 판단의 기준 값인 제 1 임계 값을 비교하여 해당 부속 장치의 고장 발생 여부를 판단하고,
    상기 무선 센서 노드의 식별 정보 및 센싱 값과 기설정된 상기 부속 장치 별 고장 발생 예측의 기준 값인 제 2 임계 값을 비교하여 해당 부속 장치의 고장 발생 가능성을 판단하되,
    상기 제 2 임계 값은 상기 제 1 임계 값보다 낮게 설정되며,
    상기 센싱 값이 상기 제 1 임계 값 이상인 경우 고장 발생으로 판단하고,
    상기 센싱 값이 상기 제 1 임계 값 미만 상기 제 2 임계 값 이상인 경우 고장 발생 가능으로 판단하는 철도 차량 모니터링 시스템.
  5. 제 1 항에 있어서,
    상기 무선 센서 노드는,
    상기 철도 차량의 주행에 의해 발생된 적어도 하나의 종류의 에너지를 수집하여 전기 에너지로 변환하고, 상기 전기 에너지를 센싱 동작, 센싱 값 신호 처리 및 무선 통신의 동력원으로 사용하는 에너지 하비스터를 포함하는 철도 차량 모니터링 시스템.
  6. 제 1 항에 있어서,
    상기 무선 센서 노드는,
    상기 센서가 센싱한 원시 데이터를 기설정된 신호 처리를 하여 디지털 데이터를 생성하는 센싱 데이터 처리 모듈을 포함하는 철도 차량 모니터링 시스템.
  7. 제 6 항에 있어서,
    상시 센싱 데이터 처리부는,
    상기 원시 데이터를 기설정된 샘플링 처리 및 양자화 처리하여 상기 디지털 데이터를 생성하되,
    상기 철도 차량의 주행에 의해 발생된 진동 주파수에 기초하여 상기 샘플링 처리의 조건을 갱신하는 철도 차량 모니터링 시스템.
  8. 철도 차량 상에 설치된 철도 차량 모니터링 시스템을 통한 철도 차량 모니터링 방법에 있어서,
    (a) 상기 철도 차량의 부속 장치의 상태를 센싱하는 센서를 포함하는 복수의 무선 센서 노드가 실시간으로 무선 전송한 센싱 값을 수신하는 단계;
    (b) 상기 수신한 센싱 값 및 상기 무선 센서 노드의 식별 정보들을 포함하는 철도 차량 상태 정보를 생성하는 단계; 및
    (c) 상기 철도 차량 상태 정보를 실시간으로 출력하는 단계를 포함하되,
    상기 (c) 단계는,
    상기 철도 차량 상태 정보를 철도 차량 상에 설치된 표시부를 통해 출력하는 단계; 및
    상기 철도 차량 상태 정보를 무선 통신망을 통해 외부 관제 장치로 무선 송출하는 단계 중 적어도 하나의 단계를 포함하는 철도 차량 모니터링 방법.
  9. 제 8 항에 있어서,
    상기 (c) 단계 이전에,
    상기 철도 차량 상태 정보에 기초하여 상기 부속 장치 별 고장 발생 판단 및 예측 처리를 수행하는 단계; 및
    상기 고장 발생 판단 및 예측 처리의 결과에 기초하여 철도 차량 진단 정보를 생성하는 단계를 더 포함하는 철도 차량 모니터링 방법.
  10. 제 9 항에 있어서,
    상기 (c) 단계는,
    상기 철도 차량 상태 정보 및 상기 철도 차량 진단 정보 중 적어도 하나를 실시간 출력하는 철도 차량 모니터링 방법.
  11. 제 9 항에 있어서,
    상기 고장 발생 판단 및 예측 처리를 수행하는 단계는,
    상기 철도 차량 상태 정보에 포함된 상기 무선 센서 노드의 식별 정보 별로 매칭된 센싱 값을 기설정된 상기 부속 장치 별 고장 발생 판단의 기준 값인 제 1 임계 값과 비교하여 해당 부속 장치의 고장 발생 여부를 판단하고,
    상기 무선 센서 노드의 식별 정보 별로 매칭된 센싱 값을 기설정된 상기 부속 장치 별 고장 발생 예측 기준 값인 제 2 임계 값과 비교하여 해당 부속 장치의 고장 발생 가능성을 판단하되,
    상기 제 2 임계 값은 상기 제 1 임계 값보다 낮게 설정된 철도 차량 모니터링 방법.
  12. 제 8 항에 있어서,
    상기 (c) 단계 이후에,
    상기 무선 송출한 철도 차량 상태 정보에 대응하여 상기 외부 관제 장치로부터 유지 및 보수 지시 정보를 무선 수신하는 단계; 및
    상기 유지 및 보수 지시 정보를 상기 표시부를 통해 출력하는 단계를 더 포함하는 철도 차량 모니터링 방법.
  13. 제 8 항에 있어서,
    상기 (a) 단계 이전에,
    상기 무선 센서 노드가 상기 철도 차량의 주행에 의해 발생된 적어도 하나의 종류의 에너지를 전기 에너지로 변환하는 단계; 및
    상기 무선 센서 노드가 상기 전기 에너지를 동력원으로 하여 상기 센서의 구동, 상기 센서가 센싱한 센싱 값의 신호 처리 및 상기 센싱 값의 무선 전송을 수행하는 단계를 더 포함하는 철도 차량 모니터링 방법.
  14. 제 8 항에 있어서,
    상기 (a) 단계 이전에,
    상기 무선 센서 노드가 상기 센서가 센싱한 원시 데이터를 기설정된 신호 처리를 통해 디지털 데이터로 변환하는 단계를 더 포함하되,
    상기 기설정된 신호 처리는 기설정된 샘플링 처리 및 양자화 처리를 포함하며, 상기 철도 차량의 주행에 의해 발생된 진동 주파수에 기초하여 상기 샘플링 처리의 조건이 갱신되는 철도 차량 모니터링 방법.
  15. 무선 센서 장치에 있어서,
    광대역 가진원으로부터 발생된 진동을 전기로 변환하는 에너지 하비스터;
    상기 진동을 전달받도록 배치되는 탄성 부재; 및
    상기 탄성부재에 의해 고정되어 상기 에너지 하비스터로부터 상기 변환된 전기를 제공받고, 측정된 센싱 정보를 송신하는 통신 모듈을 포함하되,
    상기 탄성 부재는 상기 통신 모듈을 위해 주파수의 범위 및 가속도의 크기를 제한하는 기계적 필터로서 동작하는 무선 센서 장치.
  16. 제 15 항에 있어서,
    상기 탄성 부재는
    상기 통신 모듈의 스펙에 따라 미리 설정된 고유 주파수를 가지고, 상기 주파수의 범위를 제한하는 스프링; 및
    상기 스프링 상에 배치되어 상기 가속도의 크기를 제한하는 탄성 매쓰(mass)를 포함하는 무선 센서 장치.
  17. 제 16 항에 있어서,
    상기 고유 주파수는 상기 통신 모듈의 질량, 상기 탄성 매쓰의 질량 및 상기 스프링의 고유 상수를 기초로 미리 설정되는 것인 무선 센서 장치.
  18. 제 16 항에 있어서,
    상기 탄성 부재는
    상기 스프링 및 상기 탄성 매쓰의 이동 변위를 제한하는 댐퍼(damper)를 더 포함하는 무선 센서 장치.
  19. 제 15 항에 있어서,
    상기 주파수의 범위는 상기 진동이 가지는 주파수 별 평균 가속도가 미리 설정된 기준 값 이하인 상태로 제한되는 무선 센서 장치.
  20. 제 15 항에 있어서,
    상기 에너지 하비스터는 상기 진동이 가지는 주파수 별 평균 가속도가 최대일 때의 주파수를 이용하여 상기 진동을 전기로 변환하는 무선 센서 장치.
  21. 무선 센서 장치가 통신을 수행하는 방법에 있어서,
    광대역 가진원으로부터 발생된 진동을 전기로 변환시키는 에너지 하비스터로부터 상기 전기를 제공받아 구동되는 단계; 및
    상기 진동을 전달받도록 배치되는 탄성 부재에 의해 고정된 통신 모듈이 센서로부터 전달된 센싱 정보를 송신하는 단계를 포함하고,
    상기 탄성 부재는 상기 통신 모듈을 위해 주파수의 범위 및 가속도의 크기를 제한하는 기계적 필터 구조로 이루어져, 상기 기계적 필터 구조를 거친 진동을 상기 통신 모듈로 전달하는 것인 무선 센서 장치의 통신 수행 방법.
  22. 제 21 항에 있어서,
    상기 주파수의 범위는 상기 진동이 가지는 주파수 별 평균 가속도가 미리 설정된 기준 값 이하인 상태로 제한되는 구비한 무선 센서 장치의 통신 수행 방법.
  23. 진동을 전기로 변환하는 에너지 하비스터에 있어서,
    제 1 진동 주파수를 중심 주파수로 하는 진동에 반응하여 진동하도록 설계된 제 1 탄성부,
    상기 제 1 탄성부에 결합된 제 1 질량부,
    상기 제 1 질량부에 결합된 제 1 자성체,
    제 2 진동 주파수를 중심 주파수로 하는 진동에 반응하여 진동하도록 설계된 제 2 탄성부,
    상기 제 2 탄성부에 결합된 제 2 질량부,
    상기 제 2 질량부에 결합된 제 2 자성체,
    상기 제 1 탄성부, 제 2 탄성부, 제 1 질량부, 제 2 질량부, 제 1 자성체 및 제 2 자성체가 결합되는 중심축,
    상기 제 1 질량부와 제 2 질량부 사이에 결합된 제 3 탄성부 및
    상기 중심축을 따라 배치되며 상기 제 1 자성체 또는 제 2 자성체가 상기 제 1 탄성부 또는 제 2 탄성부의 진동에 따라 각각 인입되도록 형성된 코일부를 포함하는 에너지 하비스터.
  24. 제 23 항에 있어서,
    제 1 탄성부, 제 2 탄성부, 제 1 질량부, 제 2 질량부, 제 1 자성체 및 제 2 자성체는 상기 중심축이 통과하도록 형성된 개구부를 포함하며, 각각 원기둥 형상을 갖는 것인 에너지 하비스터.
  25. 제 23 항에 있어서,
    상기 제 1 진동 주파수는 기 설정된 제 1 속도 이상의 경우, 상기 제 2 진동 주파수는 기 설정된 제 2 속도 이하의 경우에 대응하는 진동 주파수로서, 상기 제 1 속도는 상기 제 2 속도보다 빠른 속도값을 갖는 것인 에너지 하비스터.
  26. 제 23 항에 있어서,
    상기 코일부는 상기 제 1 질량부의 내측 둘레면을 따라 형성된 제 1 홈, 상기 제 2 질량부의 내측 둘레면을 따라 형성된 제 2 홈 및 상기 제 1 홈 및 제 2 홈에 각각 감긴 코일을 더 포함하는 에너지 하비스터.
  27. 제 23 항에 있어서,
    상기 가진원에 고정되어 설치되며, 상기 중심축과 연결되어 고정되고, 상기 제 2 탄성부와 이격하여 형성된 하부 지지판,
    상기 하부 지지판과 연결되며, 상기 제 1 질량부 및 상기 제 2 질량부의 둘레면과 이격하여 형성된 측면 지지판 및
    상기 중심축과 연결되어 고정되고, 상기 측면 지지판과 연결되며, 상기 제 1 탄성부와 이격하여 형성된 상부 지지판을 더 포함하는 에너지 하비스터.
  28. 제 23 항에 있어서,
    상기 제 3 탄성부의 상측면과 결합한 상기 제 1 질량부는 상기 제 1 탄성부의 하부에 결합되고, 상기 제 1 자성체는 상기 제 1 질량부의 하부에 결합되어 상기 코일부의 상부에 인입되며,
    상기 제 3 탄성부의 하측면과 결합한 상기 제 2 질량부는 상기 제 2 탄성부의 상부에 결합되고, 상기 제 2 자성체는 상기 제 2 질량부의 상부에 결합되어 상기 코일부의 하부에 인입되는 에너지 하비스터.
  29. 진동을 전기로 변환하는 에너지 하비스터에 있어서,
    제 1 중심축,
    상기 제 1 중심축을 따라 배치되며, 제 1 진동 주파수를 중심 주파수로 하는 진동에 반응하여 진동하도록 설계된 제 1 탄성부,
    상기 제 1 중심축을 따라 배치되며, 상기 제 1 탄성부에 결합된 제 1 질량부,
    상기 제 1 중심축을 따라 배치되며, 상기 제 1 질량부에 결합된 제 1 자성체,
    상기 제 1 중심축과 동일한 축을 따라 배치된 제 2 중심축,
    상기 제 2 중심축을 따라 배치되며, 제 2 진동 주파수를 중심 주파수로 하는 진동에 반응하여 진동하도록 설계된 제 2 탄성부,
    상기 제 2 중심축을 따라 배치되며, 상기 제 2 탄성부에 결합된 제 2 질량부,
    상기 제 2 중심축을 따라 배치되며 상기 제 2 질량부에 결합된 제 2 자성체,
    상기 제 1 중심축과 제 2 중심축을 연결하는 댐핑부 및
    상기 제 1 중심축 및 제 2 중심축을 따라 배치되며 상기 제 1 자성체 또는 제 2 자성체가 상기 제 1 탄성부 또는 제 2 탄성부의 진동에 따라 각각 인입되는 코일부를 포함하는 에너지 하비스터.
  30. 제 29 항에 있어서,
    제 1 탄성부, 제 2 탄성부, 제 1 질량부, 제 2 질량부, 제 1 자성체 및 제 2 자성체는 상기 제 1 중심축 또는 제 2 중심축이 통과하도록 형성된 개구부를 포함하며, 각각 원기둥 형상을 갖는 것인 에너지 하비스터.
  31. 제 29 항에 있어서,
    상기 제 1 진동 주파수는 기 설정된 제 1 속도 이상의 경우, 상기 제 2 진동 주파수는 기 설정된 제 2 속도 이하의 경우에 대응하는 진동 주파수로서, 상기 제 1 속도는 상기 제 2 속도보다 빠른 속도값을 갖는 것인 에너지 하비스터.
  32. 제 29 항에 있어서,
    상기 코일부는 상기 제 1 질량부의 내측 둘레면을 따라 형성된 제 1 홈, 상기 제 2 질량부의 내측 둘레면을 따라 형성된 제 2 홈 및 상기 제 1 홈 및 제 2 홈에 각각 감긴 코일을 더 포함하는 에너지 하비스터.
  33. 제 29 항에 있어서,
    상기 가진원에 고정되어 설치되며, 상기 제 2 중심축과 연결되어 고정되고, 상기 제 2 탄성부와 이격하여 형성된 하부 지지판,
    상기 하부 지지판과 연결되며, 상기 제 1 질량부 및 상기 제 2 질량부의 둘레면과 이격하여 형성된 측면 지지판 및
    상기 제 1 중심축과 연결되어 고정되고, 상기 측면 지지판과 연결되며, 상기 제 1 탄성부와 이격하여 형성된 상부 지지판를 더 포함하는 에너지 하비스터.
  34. 제 29 항에 있어서,
    상기 제 1 중심축의 하부면은 상기 댐핑부의 일측면과 연결되고, 상기 제 2 중심축의 상부면은 상기 댐핑부의 타측면과 연결되며,
    상기 제 1 질량부는 상기 제 1 탄성부의 하부에 결합되고, 상기 제 1 자성체는 상기 제 1 질량부의 하부에 결합되어 상기 코일부의 상부에 인입되며,
    상기 제 2 질량부는 상기 제 2 탄성부의 상부에 결합되고, 상기 제 2 자성체는 상기 제 2 질량부의 상부에 결합되어 상기 코일부의 하부에 인입되는 에너지 하비스터.
  35. 무선 센서 장치에 있어서,
    제 23 항 내지 제 34 항 중 어느 한 항에 기재된 에너지 하비스터 및
    상기 에너지 하비스터로부터 변환된 에너지를 제공 받고, 측정된 센싱 정보를 송신하는 통신 모듈을 포함하는 무선 센서 장치.
PCT/KR2014/003861 2013-04-30 2014-04-30 에너지 하비스터 및 이를 포함하는 무선 센서 장치 WO2014178650A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/927,861 US9701325B2 (en) 2013-04-30 2015-10-30 Energy harvester, wireless sensor device having the energy harvester, and system for monitoring railroad vehicle using the same
US15/430,665 US10046779B2 (en) 2013-04-30 2017-02-13 Energy harvester and wireless sensor device having energy harvester

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR1020130048539A KR101420276B1 (ko) 2013-04-30 2013-04-30 기계적 필터를 구비한 무선 센서 장치 및 기계적 필터를 구비한 무선 센서 장치의 통신 수행 방법
KR20130048545A KR101488420B1 (ko) 2013-04-30 2013-04-30 무선 및 자가발전 센서를 이용한 철도 차량 모니터링 시스템 및 방법
KR10-2013-0048545 2013-04-30
KR10-2013-0048539 2013-04-30
KR1020130127338A KR101539340B1 (ko) 2013-10-24 2013-10-24 에너지 하비스터 및 이를 포함하는 무선 센서 장치
KR10-2013-0127338 2013-10-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/927,861 Continuation US9701325B2 (en) 2013-04-30 2015-10-30 Energy harvester, wireless sensor device having the energy harvester, and system for monitoring railroad vehicle using the same

Publications (1)

Publication Number Publication Date
WO2014178650A1 true WO2014178650A1 (ko) 2014-11-06

Family

ID=51843700

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/003861 WO2014178650A1 (ko) 2013-04-30 2014-04-30 에너지 하비스터 및 이를 포함하는 무선 센서 장치

Country Status (2)

Country Link
US (2) US9701325B2 (ko)
WO (1) WO2014178650A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106645938A (zh) * 2017-02-16 2017-05-10 中国科学院广州能源研究所 一种城市轨道交通电能管理系统及方法
DE102016109263A1 (de) * 2016-05-20 2017-11-23 Knorr-Bremse Systeme für Schienenfahrzeuge GmbH Telemetrievorrichtung für ein Schienenfahrzeug

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014178650A1 (ko) * 2013-04-30 2014-11-06 한국철도기술연구원 에너지 하비스터 및 이를 포함하는 무선 센서 장치
DE102014110184A1 (de) * 2014-07-18 2016-01-21 Infineon Technologies Ag Reifendruck-Sensormodule, Reifendruck-Überwachungssystem, Rad, Verfahren und Computerprogramme zum Bereitstellen von auf einen Reifendruck bezogenen Informationen
US10280070B2 (en) * 2015-09-30 2019-05-07 Stmicroelectronics S.R.L. Magnetic inertial sensor energy harvesting and scavenging methods, circuits and systems
DE102016202770A1 (de) * 2016-02-23 2017-08-24 Mahle International Gmbh Motorsteuersystem für eine Brennkraftmaschine
US10311740B2 (en) * 2016-06-27 2019-06-04 Honeywell International Inc. Aggregation and distribution of real-time data
DE102016120108A1 (de) * 2016-10-21 2018-04-26 Endress+Hauser Process Solutions Ag Verfahren, Kommunikationsmodul und System zur Übermittlung von Diagnosedaten eines Feldgeräts in einer Anlage der Prozessautomatisierung
KR102610913B1 (ko) * 2016-12-12 2023-12-06 한국전자통신연구원 진동원과 풍력원을 사용하는 하이브리드 자가발전 장치 및 이를 이용하는 무선 센서
WO2019060879A1 (en) 2017-09-25 2019-03-28 Fluid Handling Llc CONVERTING THE MECHANICAL ENERGY OF AN ELECTRIC POWER VIBRATION FOR POWERING A CIRCUIT BOARD FOR STATUS MONITORING OF ROTARY MACHINES
GB2568036B (en) * 2017-10-27 2021-02-03 Perpetuum Ltd Monitoring an axle of a railway vehicle
EP3490125A1 (en) * 2017-11-22 2019-05-29 Nokia Technologies Oy Vibration energy harvester
KR102096973B1 (ko) * 2018-03-26 2020-05-27 한국철도기술연구원 에너지 하비스터 및 이를 이용한 엔진 모니터링 시스템
CN108860215A (zh) * 2018-09-12 2018-11-23 湖南磁浮技术研究中心有限公司 一种中低速磁浮轨道振动衰减与感应装置
US10868479B2 (en) 2018-10-04 2020-12-15 Stmicroelectronics S.R.L. Inverse electrowetting and magnetic energy harvesting and scavenging methods, circuits and systems
DE102018219705A1 (de) * 2018-11-16 2020-05-20 Zf Friedrichshafen Ag Fahrzeugkomponente mit einer Schwingeinheit
EP3935581A4 (en) 2019-03-04 2022-11-30 Iocurrents, Inc. DATA COMPRESSION AND COMMUNICATION USING MACHINE LEARNING
US11697443B2 (en) 2019-05-08 2023-07-11 Amsted Rail Company, Inc. Apparatus for locating a mobile railway asset
US10823099B1 (en) 2019-09-23 2020-11-03 Caterpillar Inc. Engine monitoring system
EP3798945A1 (en) * 2019-09-30 2021-03-31 Siemens Mobility S.A.S. System, apparatus and method for remotely managing operation of rail vehicles
US11677269B2 (en) * 2019-11-12 2023-06-13 Baker Hughes Oilfield Operations Llc Systems and methods for harvesting vibration energy using a hybrid device
DE102020200568A1 (de) * 2020-01-17 2021-07-22 Mtu Friedrichshafen Gmbh Verfahren zum Überwachen der Funktionsfähigkeit eines Fahrzeugs, Steuerung für einen Antrieb eines Fahrzeugs, Antrieb mit einer solchen Steuerung, und Fahrzeug mit einem solchen Antrieb
CN111341970B (zh) * 2020-03-31 2023-03-24 湖北亿纬动力有限公司 一种电池防爆结构、单体电池、及电池模组
EP3892491A1 (en) * 2020-04-06 2021-10-13 CNH Industrial Belgium N.V. A vehicle including a data generator mesh
GB202005316D0 (en) * 2020-04-09 2020-05-27 Hamilton Sundstrand Corp Sensor system
JP7527868B2 (ja) * 2020-07-06 2024-08-05 キヤノン株式会社 情報取得装置、情報取得システム
JP7447045B2 (ja) * 2021-03-22 2024-03-11 株式会社東芝 検査システム、検査装置及び検査方法
CN113815678A (zh) * 2021-10-09 2021-12-21 中车大连电力牵引研发中心有限公司 一种轨道车辆振动微发电的无线定位装置及方法
JP2024041225A (ja) * 2022-09-14 2024-03-27 オムロン株式会社 モータ監視センサ

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100693891B1 (ko) * 2004-07-10 2007-03-12 최낙봉 실시간 열차고장 관리시스템
KR20080019788A (ko) * 2006-08-29 2008-03-05 (주)디유위더스 유에스엔 및 알에프아이디 기술을 이용한 철도 차량과부속물의 이력관리 및 상태감시 장치
JP2008168761A (ja) * 2007-01-11 2008-07-24 Railway Technical Res Inst 鉄道車両の異常検知方法およびそのシステム
KR101044208B1 (ko) * 2010-02-03 2011-06-29 삼성전기주식회사 압전 액추에이터 모듈
KR101093021B1 (ko) * 2009-12-21 2011-12-13 한국철도기술연구원 정보 통합형 철도 시스템

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070205881A1 (en) * 2000-09-08 2007-09-06 Automotive Technologies International, Inc. Energy Harvesting Systems and Methods for Vehicles
US8410945B2 (en) * 2002-06-11 2013-04-02 Intelligent Technologies International, Inc Atmospheric monitoring
US6984902B1 (en) * 2003-02-03 2006-01-10 Ferro Solutions, Inc. High efficiency vibration energy harvester
US7368918B2 (en) * 2006-07-27 2008-05-06 Siemens Energy & Automation Devices, systems, and methods for adaptive RF sensing in arc fault detection
GB2439411B (en) 2007-04-27 2008-07-23 Perpetuum Ltd An electromechanical generator for converting mechanical vibrational energy into electrical energy
KR20090056086A (ko) 2007-11-29 2009-06-03 한국건설기술연구원 철도 시설물 안전 모니터링 시스템 및 방법
US8036847B2 (en) * 2008-09-25 2011-10-11 Rockwell Automation Technologies, Inc. Maximum information capture from energy constrained sensor nodes
EP2508364B1 (en) 2011-04-06 2015-02-18 Stichting IMEC Nederland Improvements in or relating to micro-power systems for a self-powered monitoring sensor
KR101735119B1 (ko) 2011-08-30 2017-05-12 한온시스템 주식회사 차량용 공조장치
US9063165B2 (en) * 2012-06-01 2015-06-23 Landauer, Inc. System for motion and activity correlation with dose for occupational and environmental dosimetry
JP2015531052A (ja) * 2012-06-01 2015-10-29 ランダウアー インコーポレイテッド 職業および環境用線量測定のためのワイヤレス、動作および位置センシング集積放射線センサ
US20140263989A1 (en) * 2012-06-01 2014-09-18 Landauer, Inc. Geometry Layout and Filter Packaging for System for Wireless, Motion and Position-Sensing, Integrating Radiation Sensor for Occupational and Environmental Dosimetry
US8648480B1 (en) * 2012-06-25 2014-02-11 The United States Of America As Represented By The Secretary Of The Navy Energy harvesting system using flow-induced vibrations
US20140046494A1 (en) * 2012-08-13 2014-02-13 Mcalister Technologies, Llc Dynamic sensors
KR101417971B1 (ko) * 2012-09-03 2014-07-16 연세대학교 산학협력단 선형발전기 및 이를 이용한 발전방법
US9751540B2 (en) * 2013-03-15 2017-09-05 Clean Train Propulsion Hybrid systems for locomotives
WO2014178650A1 (ko) * 2013-04-30 2014-11-06 한국철도기술연구원 에너지 하비스터 및 이를 포함하는 무선 센서 장치
KR102135676B1 (ko) * 2013-11-06 2020-07-20 삼성전자주식회사 압전 에너지 하베스터 및 이를 구비하는 모바일 기기
US9350274B2 (en) * 2014-02-07 2016-05-24 Emmanuel F. C. Chimamkpam Device and method for harvesting energy

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100693891B1 (ko) * 2004-07-10 2007-03-12 최낙봉 실시간 열차고장 관리시스템
KR20080019788A (ko) * 2006-08-29 2008-03-05 (주)디유위더스 유에스엔 및 알에프아이디 기술을 이용한 철도 차량과부속물의 이력관리 및 상태감시 장치
JP2008168761A (ja) * 2007-01-11 2008-07-24 Railway Technical Res Inst 鉄道車両の異常検知方法およびそのシステム
KR101093021B1 (ko) * 2009-12-21 2011-12-13 한국철도기술연구원 정보 통합형 철도 시스템
KR101044208B1 (ko) * 2010-02-03 2011-06-29 삼성전기주식회사 압전 액추에이터 모듈

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016109263A1 (de) * 2016-05-20 2017-11-23 Knorr-Bremse Systeme für Schienenfahrzeuge GmbH Telemetrievorrichtung für ein Schienenfahrzeug
CN106645938A (zh) * 2017-02-16 2017-05-10 中国科学院广州能源研究所 一种城市轨道交通电能管理系统及方法

Also Published As

Publication number Publication date
US20160152252A1 (en) 2016-06-02
US10046779B2 (en) 2018-08-14
US20170151964A1 (en) 2017-06-01
US9701325B2 (en) 2017-07-11

Similar Documents

Publication Publication Date Title
WO2014178650A1 (ko) 에너지 하비스터 및 이를 포함하는 무선 센서 장치
US20060145881A1 (en) Wireless sensor, rolling bearing with sensor, management apparatus and monitoring system
WO2012005552A2 (ko) 전기자동차 및 그 비상제어방법
CN102980782A (zh) 桥梁和重大基础设施结构安全监测及预警的异构传感器网络与方法
CN204458220U (zh) 一种风力发电机组状态监测系统
WO2019107688A1 (ko) 분산음향광센서 기반 철도운행 상태 감시 시스템 및 그 방법
WO2016194375A1 (ja) 橋梁異常検知装置
CN106226689A (zh) Gis设备隔离开关异常振动在线监测系统
CN102183697A (zh) 一种电力变压器声音和振动监测系统
WO2019189960A1 (ko) 에너지 하비스터 및 이를 이용한 엔진 모니터링 시스템
CN209505760U (zh) 一种铁路货车运行状态无线监测系统
JP2014220981A (ja) 光電力伝送装置を用いた送電鉄塔電力供給システム及び方法、光電力伝送装置を用いたデータ送受信方法
WO2019189950A1 (ko) 설비의 원격 진단 방법, 시스템 및 프로그램
WO2017131434A1 (ko) 사물인터넷 기반 독립 전원형 산업설비 예지보전 시스템 및 방법
WO2013105769A1 (ko) 풍력터빈의 블레이드 처짐 감시 시스템
CN100426908C (zh) 测试移动台中设备的方法和装置
IT201800009325A1 (it) Dispositivo di rilevazione di archi elettrici,corrispondenti rete di diagnosi e procedimento.
JP2774419B2 (ja) 配電線路障害監視システムおよび監視装置
WO2016064130A1 (ko) 무전원 무선 통합 센서
CN206096372U (zh) 一种gis设备隔离开关异常振动在线监测系统
WO2019240316A1 (ko) 분산온도광센서를 통한 실시간 철로 온도 감시 시스템
CN202600421U (zh) 一种风力发电机组状态监测装置
EP4332540A1 (en) Motion state monitoring system and locomotive
WO2019009657A1 (ko) 무전원 무선 센서를 이용한 온도 측정 시스템 및 그에 의한 온도 측정 방법
Saponara et al. A network of vibration measuring nodes with integrated signal processing for predictive maintenance of high power transformers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14792281

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14792281

Country of ref document: EP

Kind code of ref document: A1