WO2014178459A1 - 트랜스듀서 제작방법 - Google Patents

트랜스듀서 제작방법 Download PDF

Info

Publication number
WO2014178459A1
WO2014178459A1 PCT/KR2013/003765 KR2013003765W WO2014178459A1 WO 2014178459 A1 WO2014178459 A1 WO 2014178459A1 KR 2013003765 W KR2013003765 W KR 2013003765W WO 2014178459 A1 WO2014178459 A1 WO 2014178459A1
Authority
WO
WIPO (PCT)
Prior art keywords
backing
laminate
dummy
transducer
layer
Prior art date
Application number
PCT/KR2013/003765
Other languages
English (en)
French (fr)
Inventor
이수성
이한상
Original Assignee
알피니언메디칼시스템 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 알피니언메디칼시스템 주식회사 filed Critical 알피니언메디칼시스템 주식회사
Publication of WO2014178459A1 publication Critical patent/WO2014178459A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R31/00Apparatus or processes specially adapted for the manufacture of transducers or diaphragms therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4444Constructional features of the ultrasonic, sonic or infrasonic diagnostic device related to the probe
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R17/00Piezoelectric transducers; Electrostrictive transducers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/20Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators

Definitions

  • This embodiment relates to a method of manufacturing a transducer. More particularly, the present invention relates to a method of manufacturing a transducer for use in an ultrasound medical apparatus capable of performing diagnosis or treatment of a subject using ultrasound.
  • Ultrasonic transducers are a kind of device that converts electrical energy into mechanical energy and vice versa, and have become an important component in ultrasonic medical devices.
  • Such an ultrasonic transducer is generally manufactured by laminating a piezoelectric body and an acoustic matching layer on a backing layer and performing a precise cutting process.
  • the prior art has a problem that the deformation of the positional flatness of the micro device is changed during the lamination process or the cutting process, so that the quality of the image generated by the transducer is degraded.
  • the present embodiment proposes a new transducer manufacturing method in which the position flatness of the micro device is not degraded while the transducer is manufactured.
  • One embodiment of the present invention is a laminating step of forming a laminate by laminating a piezoelectric material and an acoustic matching layer on a substrate (Substrate); A dicing step of performing a plurality of dicings on the laminate; A dummy backing block attaching step of attaching a dummy backing block to a rear surface of the diced laminate; A lens forming step of forming a lens on a front surface of the laminate to which the dummy backing block is attached; And a backing layer forming step of separating the dummy backing block and forming a real backing layer on a rear surface of the stack in which the dummy backing block is separated.
  • an embodiment of the present invention provides a medical device comprising a transducer manufactured by the above-described manufacturing method.
  • the position flatness of the micro device is not reduced.
  • the heat transfer efficiency is increased to suppress the temperature rise at the front surface of the lens. This allows higher Tx energy to be used, resulting in improved sensitivity and improved Penetration.
  • the effect of the present invention has a variety of effects, such as having excellent durability according to the embodiment, such effects can be clearly seen in the description of the embodiments described later.
  • 1 is a view showing a method of manufacturing the transducer.
  • FIG. 2 is a flowchart illustrating a method of manufacturing a transducer according to an embodiment of the present invention.
  • FIG. 3 is a schematic view showing a method of manufacturing a transducer according to an embodiment of the present invention.
  • Figure 3 is a transducer manufacturing method according to an embodiment of the present invention, shows the appearance of forming a backing layer by bonding a pre-processed backing block.
  • FIG. 4 illustrates a method of forming a real backing layer by pouring a backing material in the transducer manufacturing method according to an embodiment of the present invention.
  • FIG. 5 shows a state in which the real backing layer is formed with two heat sinks inserted therein.
  • Figure 6 shows the heat sink is attached to both sides of the backing layer.
  • the transducer may be a component included in an ultrasonic probe according to an embodiment.
  • the transducer according to an embodiment of the present invention is a kind of energy conversion device capable of converting vibration energy into electrical energy or electrical energy into vibration energy.
  • Such a transducer may, depending on the embodiment, be a component of an ultrasonic probe.
  • One embodiment of the ultrasonic probe is to irradiate an ultrasonic wave to a subject or to receive an echo signal or an excited ultrasonic signal reflected from the subject and convert it into an electrical signal to obtain an image of the subject, or Ultrasound may be irradiated to perform a role of treating a subject.
  • the ultrasonic probe is generally connected to an ultrasonic medical device to perform this role.
  • 1 is a view showing a method of manufacturing the transducer.
  • a general method of fabricating a transducer is to first laminate and dice a piezoelectric body 2 and an acoustic matching layer 3 on a backing layer 1 to secure a plurality of fine elements 4. Many of these microelements 4 are in direct contact with the backing layer 1. In this state, the lens layer 5 is formed on the front surface of the micro device, that is, the surface on which the ultrasonic wave is transmitted and received.
  • FIG. 2 is a flowchart illustrating a method of manufacturing a transducer according to an embodiment of the present invention.
  • 3 is a schematic view showing a method of manufacturing a transducer according to an embodiment of the present invention.
  • the piezoelectric body 11 and the acoustic matching layer 12 are laminated on the substrate 10 to form the laminate 13. It may include a lamination step (S100) to make.
  • the stack 13 may include a dicing step (S200) for performing a plurality of dicing (Dicing).
  • a dummy backing block attaching step (S300) of attaching a dummy backing block (Dummy backing block) 14 to the rear surface of the diced laminate 13 may be included.
  • a lens forming step (S400) of forming the lens layer 15 on the front surface of the stack 13 to which the dummy backing block 14 is attached may be included.
  • the backing layer forming step of separating the dummy backing block 14 and forming a real backing layer 16 on the rear surface of the stack 13 in which the dummy backing block 14 is separated (S500). ) May be included.
  • the substrate 10 is a layer serving as a kind of support for supporting the plurality of microelements 17 and is made of an insulator which is not electrically conductive, and generally uses a material such as a backing layer or a material having similar acoustic properties. I use it.
  • the piezoelectric body 11 is a substance which produces a piezoelectric effect.
  • PZT may be used.
  • the acoustic matching layer 12 matches the acoustic impedance of the piezoelectric body 11 with the acoustic impedance of the object so that ultrasonic signals generated from the piezoelectric body 11 can be efficiently transmitted to the object. It is provided to have an intermediate value between the acoustic impedance of the object and the acoustic impedance of the object.
  • the acoustic matching layer 12 may be formed of a ceramic, a resin material, or a composite material in which a powder such as metal or ceramic is mixed with a resin material.
  • the first acoustic matching layer 12a and the second acoustic matching layer 12b may be different from each other.
  • the lens layer 15 may serve to focus an ultrasonic signal traveling forward at a specific point.
  • a lens material 19 in a molten state is placed in the lens casting mold 18, and the laminate 13 is placed thereon, so that the front surface of the laminate 13 is disposed.
  • the lens layer 15 may be formed.
  • the material of the lens layer 15 may be an RTV silicon-based material.
  • the backing layer also called a sound absorbing layer, suppresses free vibration of the piezoelectric body 11 to reduce the pulse width of the ultrasonic wave, and prevents the ultrasonic wave from being unnecessarily propagated to the rear of the piezoelectric body 11 to prevent image distortion.
  • the method may include a laminating step (S100) of sequentially stacking the piezoelectric element 11 and the acoustic matching layer 12 on the substrate 10 and bonding the piezoelectric element 11 to the substrate 10 to form the laminate 13.
  • the ground layer and the flexible printed circuit board may be attached to the front part and the rear part of the piezoelectric body 11, respectively.
  • the ground layer and the flexible printed circuit board provide an electrical signal to the piezoelectric member 11 so that the piezoelectric member 11 functions as an energy converter.
  • a plurality of dicings are performed on the laminate 13 in a first direction (X direction), and the microelements are formed along a second direction (Y direction) perpendicular to the first direction (X direction). It is made to arrange at regular intervals (S200). Dicing is performed such that the depth is made up to a part of the substrate 10.
  • the microelement is a portion remaining after dicing the laminate 13 and blowing it off.
  • the plurality of fine elements 17 are attached to each other with the substrate 10 as a base.
  • Each of the microelements is electrically independent and may independently transmit and receive ultrasonic waves.
  • One of the features of the embodiments of the present invention lies in the method of forming the real backing layer 16 and the lens layer 15 described above.
  • a dummy backing block attaching step of attaching a dummy backing block 14 to the rear surface of the diced laminate 13 to form the real backing layer 16 and the lens layer 15 is performed. It may pass through (S300).
  • the dummy backing block 14 temporarily supports the stack 13 in the process of forming the lens layer 15 on the diced stack 13.
  • the dummy backing block 14 is attached to the rear surface of the diced laminate 13, and the lens layer 15 is formed on the front surface of the laminate 13 to which the dummy backing block 14 is attached.
  • the dummy backing block 14 is separated again, and the backing layer 16 is formed on the rear surface of the stack 13 from which the dummy backing block 14 is separated.
  • the layer forming step (S500) is to go through.
  • the dummy backing block 14 may be a hard material having rigidity enough to maintain the flatness of the front surface of the diced laminate 13.
  • the material of the dummy backing block 14 may include either ceramic or metal.
  • the front surface of the micro device should be geometrically flat. This allows all microdevices to achieve the same performance.
  • a time of flight may be used as an index indicating the performance of the fine devices.
  • TOF may refer to a time when the ultrasonic wave irradiated from the micro device goes to the target point and returns. If the ultrasonic waves emitted from each of the plurality of microelements 17 go to the target point and then return, the plurality of microelements 17 may have the same performance. In other words, as the time of flight variation is minimized, the quality of an image obtained from the transducer may be improved.
  • the backing layer is the bulkiest of the laminates 13, and generally, a variety of fillers are added to the epoxy base material to increase the sound attenuation. Since the backing layer is basically a polymer material, its rigidity is low and its thermal strain is large.
  • the backing layer is the bulkiest of the laminate 13 because the backing layer must be able to operate as a base surface such as the piezoelectric body 11 or the acoustic matching layer 12. Therefore, even if the same heat deformation occurs, much larger deformation occurs in the bulky backing layer.
  • the prior art performs a lamination process of laminating a piezoelectric layer and an acoustic matching layer directly on the backing layer, followed by a dicing process.
  • deformations such as positional flatness of the microelement array may be changed during the lamination process and the dicing process due to the small deformation.
  • the lens material 19 when the lens material 19 is poured with the positional flatness which is already distorted as described above, as the curing proceeds at a temperature higher than room temperature, additional flatness may be lowered.
  • non-uniformity may occur in the thickness of the lens layer 15 for each microelement.
  • a nonuniformity of sensitivity between the microelements and a time difference may occur during transmission and reception of ultrasonic waves in the transducer. This phenomenon eventually leads to image degradation.
  • the transducer manufacturing method since the dicing process is performed after laminating the piezoelectric body 11 and the acoustic matching layer 12 on the substrate 10 rather than the backing layer from the beginning, thermal deformation, etc. There is an effect that the decrease in flatness due to the difference of.
  • the thickness of the lens layer 15 may be uniformly formed in each micro device.
  • a linear array type including a phased array type has a very flat geometry, thereby minimizing time of flight variation, and convex array type.
  • each micro-element can be precisely positioned at the radius of curvature already designed to minimize the time of flight variation. This allows each of the microelements to have a uniform sensitivity.
  • the dummy backing block 14 Since the dummy backing block 14 is temporarily attached, it should be easy to attach and detach. Thus, in order to attach the dummy backing block 14 to the diced laminate 13, an adhesive that becomes liquid at a first temperature and becomes a solid at a second temperature lower than the first temperature can be used.
  • the dummy backing block 14 can be separated from the diced stack 13 by raising the temperature to the first temperature again.
  • the adhesive may be wax.
  • Transducer manufacturing method after the dummy backing block 14 is separated from the diced stack 13, the dummy backing block 14 is separated from the back of the stack 13
  • a backing layer forming step (S500) of forming the real backing layer 16 may be included.
  • FIG. 3 shows a method of forming a real backing layer 16 by adhering a backing block 16 processed in advance in the method of manufacturing a transducer according to an embodiment of the present invention.
  • the real backing layer 16 may be formed by attaching a pre-processed backing block 16 to a rear surface thereof.
  • the adhesion of the pre-processed backing block 16 is such that the dummy backing block 14 is separated after the front part 15a of the lens layer 15 formed on the laminate 13 is brought into close contact with the fixture 20. It may be made with respect to the rear portion of the stack (13).
  • the fixture 20 may have the same shape as the inner surface 20a of the front portion 15a of the lens layer 15. Therefore, when the stack 13 is seated on the fixture 20, the inner surface 20a of the fixture 20 and the front portion 15a of the lens layer 15 may be completely in contact with each other. In this state of being in close contact, the pre-processed backing block 16 is adhered to the rear surface of the laminate 13. After the adhesion is completed, the laminate 13 is separated from the fixture 20.
  • the pre-processed backing block 16 When the pre-processed backing block 16 is attached to the laminate 13, deformation may occur in the lens layer 15 made of a soft material. As a result, a decrease in flatness may occur.
  • the front layer 15a of the lens layer 15 is laminated by using the fixture 20 to hold the front surface 15a of the lens layer 15 as it is.
  • the real backing layer 16 can be formed while maintaining the flatness originally formed on the sieve 13.
  • FIG 4 illustrates a state in which the backing material 16 is poured to form the real backing layer 16 in the method of manufacturing the transducer according to the embodiment of the present invention.
  • the real backing layer 16 is formed by seating the laminate 13 on the mold 30 and pouring a backing material 16. can do.
  • the mold 30 may include a nosepiece or a mold having the same shape as the interior of the nosepiece.
  • the nosepiece may mean a housing of the transducer. That is, the stack 13 may be seated in the housing of the transducer, and the backing material 16, which is a fluid, may be poured and cured to form the real backing layer 16.
  • the real body 13 may be formed by seating the stack 13 and pouring the backing material 16 into a mold having an internal shape identical to that of the nosepiece of the transducer. After the backing material 16 has cured, it may be removed from the mold and seated in the nosepiece of the transducer.
  • the shape of the backing layer is made by performing machining with very high precision. Therefore, the processing cost is very expensive.
  • the real backing layer 16 is formed by pouring the backing material 16 as in the present embodiment, the processing cost can be greatly reduced, thereby improving product productivity.
  • the heat generated by the medical ultrasonic transducer is a piezoelectric element 11 driven by receiving electrical energy as a heat source.
  • Such heat if not released, can be unpleasant to the patient upon treatment and, in some cases, cause burns.
  • the user of the medical device has no choice but to use a method such as stopping the use of the medical device to prevent this. This delays the treatment time.
  • the structure of the transducer to release heat toward the backing layer in order to minimize the temperature rise in the front portion 15a of the lens layer 15.
  • a structure in which a heat sink is attached to the backing layer may be considered.
  • FIG. 5 shows a state in which the real backing layer 16 is formed with two heat sinks 40 inserted therein.
  • the real backing layer 16 may be formed with at least one heat sink 40 inserted therein.
  • the method of forming the backing material 16 by pouring the mold 30 into the mold 30 in forming the real backing layer 16 may easily fit the heat sink 40 into the real backing layer 16.
  • FIG 6 shows the heat sink 40 attached to both sides of the backing layer.
  • the transducer 60 generally has a structure in which a heat sink 40 is attached to a side or a rear surface of a backing layer of the transducer 60 to drain heat (see FIG. 6). Therefore, since only one side 40a of the heat sink 40 takes a structure that can be used for heat transfer, the efficiency of heat transfer is low.
  • the transducer 50 may pour the backing material 16 to form the real backing layer 16, so that the heat sink 40 is inserted into the backing layer when the backing layer is formed.
  • the heat sink 40 may be made to have a structure that is internal to the backing layer. This structure can increase the efficiency of heat transfer because both sides (40a, 40b) of the heat sink 40 can be used for heat transfer.
  • the heat sink 40 may be made by processing copper having excellent thermal conductivity in the form of a sheet.
  • one side of the heat sink 40 may be connected to the piezoelectric body 11, and the other side of the heat sink 40 exiting from the inside of the backing layer may be connected to a shield of an electric wire to drain heat. Can be.
  • One embodiment of the medical device according to the present invention may include a transducer 50 manufactured by the above-described transducer manufacturing method. Any medical device that can apply the transducer 50 produced by the method of manufacturing the transducer according to the above-described embodiment may be used. Since the medical device itself is much known in the art, detailed description thereof will be omitted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Radiology & Medical Imaging (AREA)
  • Medical Informatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Manufacturing & Machinery (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Transducers For Ultrasonic Waves (AREA)

Abstract

본 발명의 일 실시예는 서브스트레이트(Substrate)에 압전체와 음향정합층을 적층하여 적층체를 만드는 적층단계; 상기 적층체에 복수의 다이싱(Dicing)을 수행하는 다이싱단계; 상기 다이싱된 적층체의 후면부에 더미 배킹 블록(Dummy backing block)을 부착하는 더미배킹블록부착단계; 상기 더미 배킹 블록이 부착된 적층체의 전면부에 렌즈를 형성하는 렌즈형성단계; 및 상기 더미 배킹 블록을 분리시키고, 상기 더미 배킹 블록이 분리된 상기 적층체의 후면부에 리얼(Real) 배킹층을 형성하는 배킹층형성단계를 포함하는 트랜스듀서 제작방법을 제공한다.

Description

트랜스듀서 제작방법
본 실시예는 트랜스듀서를 제작하는 방법에 관한 것이다. 더욱 상세하게는 초음파를 사용하여 피검체의 진단 또는 치료를 수행할 수 있는 초음파 의료기기에 사용되는 트랜스듀서를 제작하는 방법에 관한 것이다.
이 부분에 기술된 내용은 단순히 본 발명의 실시예에 대한 배경 정보를 제공할 뿐 종래기술을 구성하는 것은 아니다.
근자에 초음파 의료기술이 발전하면서 인체 또는 동물의 병변 등을 진단하거나 치료하는 초음파 의료기기의 연구 개발이 활성화되고 있다.
초음파 트랜스듀서는 전기에너지를 기계적 에너지로 변환하거나 그 역을 수행하는 일종의 장치로서 초음파 의료기기에 있어서 중요한 구성요소가 되고 있다.
이러한 초음파 트랜스듀서는 일반적으로 배킹층에 압전체와 음향정합층 등을 적층하고 이에 대해서 정밀한 절삭공정을 수행하여 제작된다.
그러나 종래기술은 적층공정이나 절삭공정을 수행하면서 미세 소자의 위치 평탄도가 틀어지는 등 변형이 생기므로 트랜스듀서가 만들어내는 이미지의 질이 저하되는 문제가 있다.
또한, 초음파 이미지 영상 기술의 발달에 따라 기존의 기법에서 탈피하여 탄성 영상을 구현하는 방법 등의 새로운 영상화 기법의 도입이 진전되면서 초음파 트랜스듀서의 발열 제어가 절실히 요구되고 있다. 이러한 발열 제어를 위하여 트랜스듀서의 배킹층에 방열판을 부착하는 기법이 활성화되고 있다.
그러나 종래기술은 방열판이 배킹층의 측면 또는 후면에 부착되므로 방열판의 한 면만 열 전달 면으로 사용되기 때문에 열 전달에 있어서 효율이 떨어지는 문제가 있다.
전술한 종래기술의 문제점을 해결하기 위해서 본 실시예는 트랜스듀서가 제작되는 도중에 미세 소자의 위치 평탄도가 저하되지 않는 새로운 트랜스듀서 제작방법을 제시한다.
또한, 열 전달이 효율적으로 일어날 수 있도록 새로운 구조를 갖는 트랜스듀서를 제공한다.
본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 기술적 과제로 제한되지 않으며 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명의 일 실시예는 서브스트레이트(Substrate)에 압전체와 음향정합층을 적층하여 적층체를 만드는 적층단계; 상기 적층체에 복수의 다이싱(Dicing)을 수행하는 다이싱단계; 상기 다이싱된 적층체의 후면부에 더미 배킹 블록(Dummy backing block)을 부착하는 더미배킹블록부착단계; 상기 더미 배킹 블록이 부착된 적층체의 전면부에 렌즈를 형성하는 렌즈형성단계; 및 상기 더미 배킹 블록을 분리시키고, 상기 더미 배킹 블록이 분리된 상기 적층체의 후면부에 리얼(Real) 배킹층을 형성하는 배킹층형성단계를 포함하는 트랜스듀서 제작방법을 제공한다.
또한, 본 발명의 일 실시예는 전술한 제작방법에 의하여 제작된 트랜스듀서를 포함하는 의료기기를 제공한다.
본 실시예에 따른 새로은 트랜스듀서를 제작방법에 의하면 더미 배킹 블록을 부착하여 트랜스듀서를 제작하게 되므로 미세 소자의 위치 평탄도가 저하되지 않는 효과가 있다.
또한, 본 실시예에 따르면 방열판을 배킹층의 내부에 위치시켜 열 전달 면적을 늘림으로써 열 전달의 효율이 늘어나 렌즈 전면부에서의 온도 상승을 억제할 수 있다. 이로 인하여 더 높은 Tx 에너지를 사용할 수 있어 감도가 향상되고 Penetration 향상 효과를 거둘 수 있다.
이외에도, 본 발명의 효과는 실시예에 따라서 우수한 내구성을 가지는 등 다양한 효과를 가지며, 그러한 효과에 대해서는 후술하는 실시예의 설명 부분에서 명확하게 확인될 수 있다.
도 1은 트랜스듀서의 제작방법을 나타내는 도면이다.
도 2는 본 발명의 일 실시예에 의한 트랜스듀서를 제작하는 방법을 나타내는 순서도이다.
도 3은 본 발명의 일 실시예에 의한 트랜스듀서를 제작하는 방법을 나타내는 개략도이다. 또한, 도 3은 본 발명의 일 실시예에 의한 트랜스듀서 제작방법에 있어서, 미리 가공된 배킹 블록을 접착시켜 배킹층을 형성하는 모습을 나타낸다.
도 4는 본 발명의 일 실시예에 의한 트랜스듀서 제작방법에 있어서, 배킹 재료(Backing material)를 부어서 리얼 배킹층을 형성하는 모습을 나타낸다.
도 5는 리얼 배킹층이 내부에 두 개의 방열판이 삽입된 채로 형성되는 모습을 나타낸다.
도 6은 방열판이 배킹층의 양 측면에 부착된 모습을 나타낸다.
이하, 본 발명의 일부 실시예를 예시적인 도면을 통해 상세하게 설명한다. 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 발명을 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.
또한, 도면에 도시된 구성요소의 크기나 형상 등은 설명의 명료성과 편의상 과장되게 도시될 수 있다. 또한, 본 발명의 구성 및 작용을 고려하여 특별히 정의된 용어들은 본 발명의 실시예를 설명하기 위한 것일 뿐이고, 본 발명의 범위를 한정하는 것이 아니다.
우선 트랜스듀서는 실시예에 따라서 초음파 프로브에 포함되는 구성요소일 수 있다.
본 발명의 일 실시예에 따른 트랜스듀서는 진동에너지를 전기에너지로 또는 전기에너지를 진동에너지로 변환할 수 있는 일종의 에너지 변환장치다.
이러한 트랜스듀서는 실시예에 따라서는 초음파 프로브의 일 구성요소일 수 있다.
초음파 프로브의 일 실시예는 피검체에 초음파를 조사하거나 피검체로부터 반사되는 에코신호 또는 여기된 초음파신호를 수신하여 이를 전기적인 신호 등으로 변환 처리를 하여 피검체의 이미지를 획득하거나, 피검체에 초음파를 조사하여 피검체를 치료하는 등의 역할을 수행할 수 있다. 초음파 프로브는 일반적으로 초음파 의료기기 등에 연결되어 이러한 역할을 수행하게 된다.
도 1은 트랜스듀서의 제작방법을 나타내는 도면이다.
도 1을 참조하면, 트랜스듀서를 제작하는 일반적인 방법은 우선 배킹층(1)에 압전체(2)와 음향정합층(3)을 적층시키고 다이싱하여 다수의 미세 소자(4)를 확보하는 것이다. 이 다수의 미세 소자(4)는 배킹층(1) 위에 직접 붙어있는 상태이다. 이 상태에서 미세 소자의 전면부, 즉, 초음파가 송수신되는 면에 렌즈층(5)를 형성하게 된다.
도 2는 본 발명의 일 실시예에 의한 트랜스듀서를 제작하는 방법을 나타내는 순서도이다. 도 3은 본 발명의 일 실시예에 의한 트랜스듀서를 제작하는 방법을 나타내는 개략도이다.
도 2 및 도 3을 참조하면, 본 발명의 일 실시예에 따른 트랜스듀서 제작방법은 서브스트레이트(Substrate, 10)에 압전체(11)와 음향정합층(12)을 적층하여 적층체(13)를 만드는 적층단계(S100)를 포함할 수 있다. 또한, 상기 적층체(13)에 복수의 다이싱(Dicing)을 수행하는 다이싱단계(S200)를 포함할 수 있다. 또한, 상기 다이싱된 적층체(13)의 후면부에 더미 배킹 블록(Dummy backing block, 14)을 부착하는 더미배킹블록부착단계(S300)를 포함할 수 있다. 또한, 상기 더미 배킹 블록(14)이 부착된 적층체(13)의 전면부에 렌즈층(15)를 형성하는 렌즈형성단계(S400)를 포함할 수 있다. 그리고, 상기 더미 배킹 블록(14)을 분리시키고, 상기 더미 배킹 블록(14)이 분리된 상기 적층체(13)의 후면부에 리얼(Real) 배킹층(16)을 형성하는 배킹층형성단계(S500)를 포함할 수 있다.
여기서 서브스트레이트(10)는 다수의 미세 소자(17)를 지지하는 일종의 지지대 역할을 하는 층으로 전기가 통하지 않는 절연물로 이루어지며, 일반적으로 배킹층과 같은 재료를 이용하거나 유사한 음향 물성을 가진 재료를 이용한다.
또한, 압전체(11)는 압전효과를 발생시키는 물질을 말한다. 실시예에 따라서는 PZT를 사용할 수 있다.
또한, 음향정합층(12)은 압전체(11)의 음향 임피던스와 대상체의 음향 임피던스를 정합시켜 압전체(11)에서 발생되는 초음파 신호가 대상체로 효율적으로 전달되도록 하는 역할을 하는 것으로 대체로 압전체(11)의 음향 임피던스와 대상체의 음향 임피던스의 중간값을 갖도록 구비된다. 음향정합층(12)은 세라믹, 수지 재질 또는 수지 재질에 금속이나 세라믹 등의 파우더(powder)를 섞은 복합체로 형성될 수 있으며, 음향 임피던스가 압전체(11)로부터 대상체를 향해 단계적으로 변화하도록 재질이 서로 다른 제1 음향정합층(12a)과 제2 음향정합층(12b)을 포함할 수 있다.
또한, 렌즈층(15)는 전방으로 진행되는 초음파 신호를 특정 지점에 집속시키는 역할을 할 수 있다. 렌즈층(15)를 형성하는 방법은 렌즈케스팅주형(18)에 용융된 상태의 렌즈 재료(Lens material, 19)를 넣고 그 위에 적층체(13)를 위치시켜 적층체(13)의 전면부에 렌즈층(15)이 형성되도록 할 수 있다. 렌즈층(15)의 재료는 실시예에 따라서는 RTV 실리콘 계열의 물질을 사용할 수 있다.
배킹층은 흡음층이라고도 하며 압전체(11)의 자유진동을 억제하여 초음파의 펄스 폭을 감소시키며, 초음파가 불필요하게 압전체(11)의 후방으로 전파되는 것을 차단시켜 영상 왜곡을 방지한다.
본 실시예에 따른 트랜스듀서 제작방법을 더욱 상세하게 설명한다. 본 방법은 서브스트레이트(10)에 압전체(11)와 음향정합층(12)을 차례로 적층하여 이를 접착하여 적층체(13)를 만드는 적층단계(S100)를 포함할 수 있다. 이 때 압전체(11)의 전면부와 후면부에는 각각 접지층과 플렉시블 인쇄회로기판을 부착할 수 있다. 접지층과 플렉시블 인쇄회로기판은 압전체(11)에 전기적인 신호를 제공하여 압전체(11)가 에너지 변환기로서의 역할을 수행하도록 한다.
그 다음 단계로서 적층체(13)를 제1방향(X방향)으로 복수의 다이싱(Dicing)을 진행하여 제1방향(X방향)과 수직한 제2방향(Y방향)을 따라서 미세 소자가 일정한 간격을 두고 배열하도록 만든다(S200). 다이싱은 그 깊이가 서브스트레이트(10)의 일부분까지 이루어지도록 수행한다. 여기서 미세 소자는 적층체(13)를 다이싱 가공하여 날려버리고 남은 부분이다. 다수의 미세 소자(17)는 서브스트레이트(10)를 기저면으로 하여 서로 붙어있다. 미세 소자 각각은 전기적으로 독립적이며, 독립적으로 초음파를 송수신할 수 있다.
본 발명 실시예가 갖는 여러 특징 중 하나는 전술한 리얼 배킹층(16)과 렌즈층(15)을 형성하는 방법에 있다.
본 실시예에 따르면 리얼 배킹층(16)과 렌즈층(15)을 형성하기 위하여 다이싱된 적층체(13)의 후면부에 더미 배킹 블록(Dummy backing block, 14)을 부착하는 더미배킹블록부착단계(S300)를 거칠 수 있다. 더미 배킹 블록(14)은 다이싱된 적층체(13)에 렌즈층(15)을 형성하는 과정에서 적층체(13)를 임시로 지지하는 역할을 한다. 다시 말하면 다이싱된 적층체(13)의 후면부에 더미 배킹 블록(14)을 부착하고, 상기 더미 배킹 블록(14)이 부착된 적층체(13)의 전면부에 렌즈층(15)을 형성하는 렌즈형성단계(S400)를 거친 뒤에 다시 상기 더미 배킹 블록(14)을 분리시키고, 상기 더미 배킹 블록(14)이 분리된 상기 적층체(13)의 후면부에 리얼 배킹층(16)을 형성하는 배킹층형성단계(S500)를 거치는 것이다. 상기 더미 배킹 블록(14)은 상기 다이싱된 적층체(13)의 전면부가 평탄함을 유지할 정도의 강성을 갖는 단단한 재질일 수 있다. 실시예에 따라서는 더미 배킹 블록(14)의 재질은 세라믹 또는 금속 중 어느 하나를 포함할 수 있다.
미세 소자의 전면부는 기하학적(Geometric)으로 평탄(flat)해야 한다. 그래야 모든 미세 소자들이 동일한 성능을 발휘할 수 있다. 실시예에 따라서 미세 소자들의 성능을 알 수 있는 지표로서 TOF(Time of flight)를 사용할 수 있다. TOF는 미세 소자에서 조사된 초음파가 목표지점까지 갔다가 되돌아오는 시간을 의미할 수 있다. 다수의 미세 소자(17) 각각에서 조사된 초음파가 목표지점까지 갔다가 되돌아오는 시간(Time of flight)이 모두 동일하다면 다수의 미세 소자(17)들이 동일한 성능을 갖는다고 볼 수 있다. 다시 말하면, TOF의 편차(Time of flight variation)가 최소화될수록 트랜스듀서로부터 얻을 수 있는 이미지의 질이 향상될 수 있다.
배킹층은 적층체(13) 중에서 가장 부피가 크고, 일반적으로 에폭시 모재에 각종 필러(Filler)를 첨가하여 음향 감쇄도를 증가시킨 것을 많이 사용한다. 배킹층은 기본적으로 폴리머(Polymer)재질이므로 강성이 떨어지고 열변형률이 크다.
또한, 배킹층은 압전체(11)나 음향정합층(12) 등의 기저면으로 작동할 수 있어야 하므로 적층체(13) 중에서 가장 부피가 크다. 따라서 같은 열변형이 일어나더라도 부피가 큰 배킹층에서 훨씬 큰 변형이 일어난다.
종래기술은 배킹층 위에 직접 압전층과 음향정합층을 적층하는 적층 공정을 수행하고 그 뒤에 다이싱 공정을 수행한다. 따라서 작은 변형에 의해 적층 공정 및 다이싱 공정 중에 미세 소자 배열의 위치 평탄도가 틀어지는 등의 변형이 생길 수 밖에 없다.
더욱이 이와 같이 이미 틀어진 위치 평탄도를 가진 채로 렌즈 재료(19)가 부어질 경우 상온보다 높은 온도에서 경화가 진행되면서 추가적인 평탄도 저하가 나타날 수 있다. 또한, 이를 통해 각 미세 소자 별 렌즈층(15)의 두께에 불균일이 발생될 수 밖에 없다. 또한, 트랜스듀서 내에서 미세 소자간 감도의 불균일과 초음파의 송수신시 시간 차이(Phase difference)가 발생할 수 밖에 없다. 이러한 현상은 결국 이미지 질 저하를 유발하게 된다.
그러나 본 발명의 일 실시예에 따른 트랜스듀서 제작방법은 처음부터 배킹층이 아닌 서브스트레이트(10)에 압전체(11)와 음향정합층(12)을 적층한 뒤에 다이싱 공정을 수행하므로 열변형 등의 차이에 의한 평탄도 저하가 줄어드는 효과가 있다.
또한, 강성을 갖는 더미 배킹 블록(14)을 부착하고 렌즈층(15)을 형성시키므로 렌즈형성과정에서 추가적인 미세 소자의 평탄도 저하를 방지할 수 있다. 이로 인하여 각 미세 소자에서 렌즈층(15)의 두께를 균일하게 형성시킬 수 있다. 예컨대 페이스드 어레이 타입(Phased array type)을 포함하는 리니어 어레이 타입(Linear array type)의 경우 매우 평탄한 기하학적 구조를 가지도록 함으로써 TOF의 편차(Time of flight variation)를 최소화시킬 수 있으며, 컨벡스 어레이 타입(Convex array type)의 경우도 각 미세 소자를 이미 설계된 곡률반경에 정확히 위치하도록 하여 역시 TOF의 편차(Time of flight variation)를 최소화시킬 수 있다. 그로 인하여 각 미세 소자들이 균일한 감도를 가지게 할 수 있다.
더미 배킹 블록(14)은 임시로 부착하는 것이므로 부착과 분리가 용이해야 한다. 따라서 더미 배킹 블록(14)을 다이싱된 적층체(13)에 부착하기 위하여 제1온도에서 액체가 되고 상기 제1온도보다 낮은 제2온도에서 고체가 되는 접착제를 사용할 수 있다.
즉 제1온도에서 접착제를 사용하여 더미 배킹 블록(14)을 다이싱된 적층체(13)에 부착시키고 온도를 제2온도로 내려서 접착제를 고체로 만들어 접착력을 유지시킨 뒤에 렌즈형성공정을 수행하고 다시 온도를 제1온도로 올려서 더미 배킹 블록(14)을 다이싱된 적층체(13)에서 분리할 수 있다.
실시예에 따라서는 이러한 접착제는 왁스(Wax)일 수 있다.
본 발명의 일 실시예에 따른 트랜스듀서 제작방법은 더미 배킹 블록(14)을 다이싱된 적층체(13)에서 분리한 뒤에는 더미 배킹 블록(14)이 분리된 상기 적층체(13)의 후면부에 리얼 배킹층(16)을 형성하는 배킹층형성단계(S500)를 포함할 수 있다.
또한, 도 3은 본 발명의 일 실시예에 의한 트랜스듀서 제작방법에 있어서, 미리 가공된 배킹 블록(16)을 접착시켜 리얼 배킹층(16)을 형성하는 모습을 나타낸다.
도 3을 참조하면, 실시예에 따라서는 배킹층형성단계(S500)에서 리얼 배킹층(16)은 미리 가공된 배킹 블록(16)을 후면부에 접착시켜 형성할 수 있다. 여기서 미리 가공된 배킹 블록(16)의 접착은 상기 적층체(13)에 형성된 렌즈층(15)의 전면부(15a)를 고정구(20)에 밀착시킨 뒤에 상기 더미 배킹 블록(14)이 분리된 상기 적층체(13)의 후면부에 대하여 이루어질 수 있다. 여기서 고정구(20)는 내면(20a)이 렌즈층(15)의 전면부(15a)와 동일한 형상을 할 수 있다. 따라서 적층체(13)를 고정구(20)에 안착시키면 고정구(20)의 내면(20a)과 렌즈층(15)의 전면부(15a)가 완전하게 밀착될 수 있다. 이렇게 밀착시킨 상태에서 미리 가공된 배킹 블록(16)을 적층체(13)의 후면부에 접착시킨다. 접착이 완료된 뒤에는 고정구(20)에서 적층체(13)를 분리한다.
미리 가공된 배킹 블록(16)을 적층체(13)에 부착시키는 공정을 수행할 때 부드러운 재질의 렌즈층(15)에 변형이 발생할 수 있다. 그로 인하여 평탄도의 저하가 일어날 수 있다.
따라서 리얼 배킹층(16)을 형성할 때 고정구(20)를 사용하여 적층체(13)의 렌즈층(15)의 형상이 그대로 유지되도록 렌즈층(15)의 전면부(15a)를 잡아줌으로써 적층체(13)에 원래 형성되었던 평탄도를 그대로 유지시키면서 리얼 배킹층(16)을 형성시킬 수 있다.
도 4는 본 발명의 일 실시예에 의한 트랜스듀서 제작방법에 있어서, 배킹 재료(Backing material, 16)를 부어서 리얼 배킹층(16)을 형성하는 모습을 나타낸다.
도 4를 참조하면, 실시예에 따라서는 배킹층형성단계(S500)에서 리얼 배킹층(16)은 적층체(13)를 주형(30)에 안착시키고 배킹 재료(Backing material, 16)를 부어서 형성할 수 있다. 실시예에 따라서는 상기 주형(30)은 노우즈피스(Nosepiece) 또는 내부가 상기 노우즈피스의 내부와 동일한 형상을 갖는 주형을 포함할 수 있다.
여기서 노우즈피스는 트랜스듀서의 하우징을 의미할 수 있다. 즉 트랜스듀서의 하우징에 적층체(13)를 안착시키고 유동체인 배킹 재료(16)를 부어서 경화시켜 리얼 배킹층(16)을 형성할 수 있다. 실시예에 따라서는 내부가 트랜스듀서의 노우즈피스의 내부와 동일한 형상을 갖는 주형에 적층체(13)를 안착시키고 배킹 재료(16)를 부어서 리얼 배킹층(16)을 형성할 수 있다. 배킹 재료(16)가 경화된 뒤에 주형에서 꺼내어 트랜스듀서의 노우즈피스에 안착시킬 수 있다.
일반적으로 배킹층의 형상은 정밀도가 매우 높은 기계가공을 수행하여 만든다. 따라서 가공비가 매우 비싸다.
따라서 본 실시예에서와 같이 리얼 배킹층(16)을 배킹 재료(16)를 부어서 형성한다면 가공비가 대폭 절감되므로 제품 생산성을 향상시킬 수 있다.
최근에는 초음파 이미지 영상 기술의 발달에 따라 탄성 이미지를 구현하는 방법 등의 새로운 영상화 기법의 도입이 진전됨에 따라 트랜스듀서에서의 열 제어가 절실히 요구되고 있다. 일반적으로 의료용 초음파 트랜스듀서에서의 발열은 전기 에너지를 받아 구동되는 압전체(11)가 열원이 된다.
이러한 열은 방출되지 않는다면 치료시 환자에게 불쾌감을 줄 수 있으며, 경우에 따라서는 화상을 초래할 수도 있다. 의료기기의 사용자는 이를 방지하기 위하여 의료기기의 사용을 중단하는 등의 방법을 쓸 수밖에 없다. 이는 치료시간을 지연시킨다.
따라서 렌즈층(15)의 전면부(15a)에서의 온도 상승을 최소화하기 위해서 배킹층 쪽으로 열을 방출해 주도록 트랜스듀서의 구조를 설계하는 것이 중요하다. 이러한 구조의 하나로서 배킹층에 방열판이 부착된 구조를 고려할 수 있다.
도 5는 리얼 배킹층(16)이 내부에 두 개의 방열판(40)이 끼워진 채로 형성되는 모습을 나타낸다.
도 5를 참조하면, 실시예에 따라서는 리얼 배킹층(16)은 내부에 적어도 하나 이상의 방열판(40)이 끼워진 채로 형성될 수 있다. 즉 본 실시예에 따라서 리얼 배킹층(16)을 형성함에 있어서 주형(30)에 배킹 재료(16)를 부어서 형성하는 방법는 방열판(40)을 리얼 배킹층(16) 내부에 쉽게 끼울 수 있다.
도 6은 방열판(40)이 배킹층의 양 측면에 부착된 모습을 나타낸다.
종래기술에 의한 트랜스듀서(60)는 일반적으로 트랜스듀서(60)의 배킹층의 측면 또는 후면에 방열판(40)을 부착하여 열을 드레인시키는 구조를 갖는다(도 6을 참조). 따라서 방열판(40)의 일 측면(40a)만 열 전달에 사용될 수 있는 구조를 취하므로 열 전달에 효율성이 떨어졌다.
그러나 본 발명의 일 실시예에 따른 트랜스듀서(50)는 배킹 재료(16)를 부어서 리얼 배킹층(16)을 형성할 수 있으므로 배킹층을 형성할 때 방열판(40)을 배킹층의 내부에 끼워 방열판(40)이 배킹층의 내부에 내재되는 구조를 갖도록 만들 수 있다. 이러한 구조는 방열판(40)의 양 측면(40a,40b)을 모두 열 전달에 사용할 수 있게 되므로 열 전달의 효율을 높일 수 있다. 실시예에 따라서 방열판(40)은 열전도도가 우수한 동을 시트(Sheet)의 형태로 가공하여 만들 수 있다.
도 5에 도시되지는 않았지만 방열판(40)의 일측은 압전체(11)에 연결될 수 있으며, 배킹층의 내부에서 빠져나온 방열판(40)의 타측은 전기선의 실드(Shield)에 연결되어 열을 드레인시킬 수 있다.
본 발명에 의한 의료기기의 일 실시예는 전술한 트랜스듀서 제작방법에 의하여 제작된 트랜스듀서(50)를 포함할 수 있다. 전술한 실시예에 의한 트랜스듀서 제작방법에 의하여 제작된 트랜스듀서(50)를 적용할 수 있는 의료기기라면 어떠한 것이라도 무방하다. 이러한 의료기기 자체는 종래에 많이 알려져 있으므로 상세한 설명은 생략한다.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다.
따라서, 본 발명에 개시된 실시예는 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.
(부호의 설명)
10 : 서브스트레이트
13 : 적층체
14 : 더미 배킹 블록
15 : 렌즈층
16 : 리얼 배킹층
20 : 고정구
30 : 주형
40 : 방열판
50 : 트랜스듀서
CROSS-REFERENCE TO RELATED APPLICATION
본 특허출원은 2013년 04월 30일 한국에 출원한 특허출원번호 제 10-2013-0048799 호에 대해 미국 특허법 119(a)조(35 U.S.C § 119(a))에 따라 우선권을 주장하면, 그 모든 내용은 참고문헌으로 본 특허출원에 병합된다. 아울러, 본 특허출원은 미국 이외에 국가에 대해서도 위와 동일한 이유로 우선권을 주장하면 그 모든 내용은 참고문헌으로 본 특허출원에 병합된다.

Claims (10)

  1. 서브스트레이트(Substrate)에 압전체와 음향정합층을 적층하여 적층체를 만드는 적층단계;
    상기 적층체에 복수의 다이싱(Dicing)을 수행하는 다이싱단계;
    상기 다이싱된 적층체의 후면부에 더미 배킹 블록(Dummy backing block)을 부착하는 더미배킹블록부착단계;
    상기 더미 배킹 블록이 부착된 적층체의 전면부에 렌즈를 형성하는 렌즈형성단계; 및
    상기 더미 배킹 블록을 분리시키고, 상기 더미 배킹 블록이 분리된 상기 적층체의 후면부에 리얼(Real) 배킹층을 형성하는 배킹층형성단계
    를 포함하는 트랜스듀서 제작방법.
  2. 제1항에 있어서,
    상기 더미 배킹 블록은 상기 다이싱된 적층체의 전면부가 평탄함을 유지할 수 있는 정도의 강성을 갖는 재질인 것을 특징으로 하는 트랜스듀서 제작방법.
  3. 제1항에 있어서,
    상기 더미 배킹 블록의 상기 재질은 세라믹 또는 금속 중 어느 하나를 포함하는 것을 특징으로 하는 트랜스듀서 제작방법.
  4. 제1항에 있어서,
    상기 더미 배킹 블록의 부착은 제1온도에서 액체가 되고 상기 제1온도보다 낮은 제2온도에서 고체가 되는 접착제로 부착하는 것을 특징으로 하는 트랜스듀서 제작방법.
  5. 제1항에 있어서,
    상기 배킹층형성단계에서 상기 리얼 배킹층은 미리 가공된 배킹 블록을 상기 후면부에 접착시켜 형성하는 것을 특징으로 하는 트랜스듀서 제작방법.
  6. 제5항에 있어서,
    상기 미리 가공된 배킹 블록의 접착은 상기 적층체에 형성된 렌즈의 전면부를 고정구에 밀착시킨 뒤에 이루어지는 것을 특징으로 하는 트랜스듀서 제작방법.
  7. 제1항에 있어서,
    상기 배킹층형성단계에서 상기 리얼 배킹층은 상기 적층체를 주형에 안착시키고 배킹 재료(Backing material)를 부어서 형성하는 것을 특징으로 하는 트랜스듀서 제작방법.
  8. 제7항에 있어서,
    상기 주형은 노우즈피스(Nosepiece) 또는 상기 노우즈피스의 내부와 동일한 형상을 갖는 주형을 포함하는 것을 특징으로 하는 트랜스듀서 제작방법.
  9. 제8항에 있어서,
    상기 리얼 배킹층은 내부에 적어도 하나 이상의 방열판이 끼워진 채로 형성되는 것을 특징으로 하는 트랜스듀서 제작방법.
  10. 제1항 내지 제9항 중 어느 하나의 항에 의한 제작방법에 의하여 제작된 트랜스듀서를 포함하는 의료기기.
PCT/KR2013/003765 2013-04-30 2013-04-30 트랜스듀서 제작방법 WO2014178459A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020130048799A KR101540714B1 (ko) 2013-04-30 2013-04-30 트랜스듀서 제작방법
KR10-2013-0048799 2013-04-30

Publications (1)

Publication Number Publication Date
WO2014178459A1 true WO2014178459A1 (ko) 2014-11-06

Family

ID=51843578

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/003765 WO2014178459A1 (ko) 2013-04-30 2013-04-30 트랜스듀서 제작방법

Country Status (2)

Country Link
KR (1) KR101540714B1 (ko)
WO (1) WO2014178459A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11678865B2 (en) * 2017-12-29 2023-06-20 Fujifilm Sonosite, Inc. High frequency ultrasound transducer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040011134A1 (en) * 2002-07-19 2004-01-22 Aloka Co., Ltd. Ultrasonic probe and manufacturing method thereof
JP2005110116A (ja) * 2003-10-01 2005-04-21 Fuji Photo Film Co Ltd 超音波トランスデューサアレイ及びその製造方法
JP2008048276A (ja) * 2006-08-18 2008-02-28 Fujifilm Corp 超音波トランスデューサ及び超音波トランスデューサアレイ
US20080154135A1 (en) * 2004-12-13 2008-06-26 Fujinon Corporation Ultrasonic probe for intra-cavity diagnosis and manufacturing method thereof
JP2012039495A (ja) * 2010-08-10 2012-02-23 Hitachi Aloka Medical Ltd 超音波探触子およびその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040011134A1 (en) * 2002-07-19 2004-01-22 Aloka Co., Ltd. Ultrasonic probe and manufacturing method thereof
JP2005110116A (ja) * 2003-10-01 2005-04-21 Fuji Photo Film Co Ltd 超音波トランスデューサアレイ及びその製造方法
US20080154135A1 (en) * 2004-12-13 2008-06-26 Fujinon Corporation Ultrasonic probe for intra-cavity diagnosis and manufacturing method thereof
JP2008048276A (ja) * 2006-08-18 2008-02-28 Fujifilm Corp 超音波トランスデューサ及び超音波トランスデューサアレイ
JP2012039495A (ja) * 2010-08-10 2012-02-23 Hitachi Aloka Medical Ltd 超音波探触子およびその製造方法

Also Published As

Publication number Publication date
KR20140129890A (ko) 2014-11-07
KR101540714B1 (ko) 2015-07-31

Similar Documents

Publication Publication Date Title
WO2015005586A1 (en) Ultrasonic probe and manufacturing method thereof
WO2010093083A1 (ko) 초음파 탐촉자, 초음파 영상 장치 및 그의 제조 방법
US7103960B2 (en) Method for providing a backing member for an acoustic transducer array
CN103300889A (zh) 一种超声阵列探头信号采集元件及其探头与其制备方法
US20060261707A1 (en) Ultrasound transducer with enhanced thermal conductivity
WO2014069499A1 (ja) 超音波探触子
JP2011229976A (ja) 超音波探触子および超音波画像装置
WO2016104820A1 (ko) 연성 인쇄회로기판의 금속층이 두꺼운 초음파 트랜스듀서 및 그 제조방법
EP3253294B1 (en) Systems, methods, and apparatuses for thermal management of ultrasound transducers
WO2011087191A1 (ko) 초음파 프로브
CN104241303A (zh) 电器件、其制造方法和放射线检查装置
JP5065593B2 (ja) 超音波探触子および超音波画像装置
JP2015142629A5 (ja) 超音波デバイス、超音波デバイスの製造方法、プローブ、電子機器、超音波画像装置
KR20060069516A (ko) 마이크로폰 콤포넌트와 그 제조 방법
WO2015129938A1 (ko) 개선된 방열 특성을 갖는 초음파 프로브
WO2014178459A1 (ko) 트랜스듀서 제작방법
US10058891B2 (en) Ultrasound device
CN213551915U (zh) 一种新型抗干扰超声成像换能器
US20170317264A1 (en) Ultrasonic transducer and method for manufacturing the same
WO2014133211A1 (ko) 초음파 트랜스듀서 및 그 제작방법
WO2014193012A1 (ko) 이미지 품질을 개선하기 위한 트랜스듀서 구조
WO2016117721A1 (ko) 열 분산 향상을 위한 흡음층을 가진 초음파 트랜스듀서
KR101493670B1 (ko) 단위 초음파 프로브, 이를 갖는 초음파 프로브 모듈 및 이를 갖는 초음파 프로브 장치
WO2014185559A1 (ko) 트랜스듀서 제조방법 및 그 방법에 의해 제조된 트랜스듀서
WO2014035049A1 (ko) 초음파 프로브용 후면블록 및 그의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13883723

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13883723

Country of ref document: EP

Kind code of ref document: A1