WO2014178409A1 - Boiler - Google Patents

Boiler Download PDF

Info

Publication number
WO2014178409A1
WO2014178409A1 PCT/JP2014/062012 JP2014062012W WO2014178409A1 WO 2014178409 A1 WO2014178409 A1 WO 2014178409A1 JP 2014062012 W JP2014062012 W JP 2014062012W WO 2014178409 A1 WO2014178409 A1 WO 2014178409A1
Authority
WO
WIPO (PCT)
Prior art keywords
supply amount
moving average
combustion
average value
boiler
Prior art date
Application number
PCT/JP2014/062012
Other languages
French (fr)
Japanese (ja)
Inventor
航 伊東
浩二 三浦
裕明 池内
Original Assignee
三浦工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三浦工業株式会社 filed Critical 三浦工業株式会社
Publication of WO2014178409A1 publication Critical patent/WO2014178409A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/02Regulating fuel supply conjointly with air supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/18Systems for controlling combustion using detectors sensitive to rate of flow of air or fuel

Definitions

  • the present invention relates to a boiler. More specifically, the present invention relates to a boiler that can suppress the occurrence of deviation between the supply amount of combustion air and the fuel supply amount.
  • This application claims priority based on Japanese Patent Application No. 2013-096666 filed in Japan on May 1, 2013, the contents of which are incorporated herein by reference.
  • the blower includes a fan, a motor that rotates the fan, and an inverter that varies the drive (rotation speed) of the motor, and increases or decreases the rotation speed of the motor (fan) according to the combustion rate.
  • a technique for controlling the amount of fuel supplied to the burner according to the amount of combustion air supplied to the burner is used (for example, refer to Patent Document 1).
  • the air pressure in the air supply duct connected from the blower to the burner is detected by a sensor, and the fuel supply amount to the burner is controlled according to the detection result Is done.
  • the detected value tends to vary and is not stable.
  • the change in the fuel supply amount with respect to the large change in the amount of combustion air supplied to the burner is delayed. That is, when the amount of combustion air supplied to the burner changes significantly due to fluctuations in the target load of the vapor pressure, etc., the fuel supply amount to the burner is the past of the period during which the moving average value is calculated. Delay is caused by the value. In this case, a deviation occurs in the ratio (air-fuel ratio) between the amount of combustion air supplied to the burner and the fuel supply amount.
  • the present invention provides a boiler capable of suppressing the occurrence of a deviation between the supply amount of combustion air and the fuel supply amount while stabilizing the control of the fuel supply amount against changes in the supply amount of combustion air.
  • the purpose is to provide.
  • the present invention is a boiler that changes the supply amount of fuel in accordance with the supply amount of combustion air, and is obtained by assigning a greater weight to the supply amount of combustion air within a predetermined period as it is closer to the present time. It is related with a boiler provided with the control part which controls the supply_amount
  • control unit changes a weight given to the supply amount of the combustion air according to a change in the supply amount of the combustion air.
  • control unit changes the length of the predetermined period for obtaining the weighted average value according to a change in the supply amount of the combustion air.
  • control unit controls the fuel supply amount using a weighted moving average value as the weighted moving average value.
  • control unit controls the fuel supply amount using an exponential moving average value as the weighted moving average value.
  • the boiler of the present invention it is possible to suppress the occurrence of a deviation between the supply amount of the combustion air and the fuel supply amount while stabilizing the control of the fuel supply amount with respect to the change in the supply amount of the combustion air. .
  • FIG. 6 is a schematic diagram showing a comparison of the response of the vapor pressure to the fluctuation of the target load when the fuel gas supply amount is controlled using various moving average values of the wind pressure in the air supply duct 30.
  • the boiler 1 of the present embodiment is a steam boiler that generates steam by heating water.
  • the boiler 1 includes a can body 10, a blower 20 that sends combustion air to the can body 10, and an air supply duct 30 that connects the can body 10 and the blower 20 and through which combustion air flows.
  • the can 10 includes a boiler housing 11, a plurality of water pipes 12, a lower header 13, an upper header 14, and a burner 15.
  • casing 11 comprises the external shape of the can 10, and is formed in the rectangular parallelepiped shape of planar view.
  • An air supply port 16 is formed in the first side surface 11a located on one end side in the longitudinal direction of the boiler casing 11, and a second side surface 11b located on the other end side in the longitudinal direction of the boiler casing 11 is An exhaust port 17 is formed.
  • the plurality of water pipes 12 are disposed so as to extend in the vertical direction inside the boiler housing 11 and are disposed at predetermined intervals in the longitudinal direction and the width direction of the boiler housing 11.
  • the lower header 13 is disposed at the lower part of the boiler casing 11.
  • the lower header 13 is connected to the lower ends of the plurality of water pipes 12.
  • the upper header 14 is disposed on the upper portion of the boiler casing 11.
  • the upper header 14 is connected to the upper ends of the plurality of water pipes 12.
  • the burner 15 is disposed in the air supply port 16.
  • the blower 20 includes a blower body 21 having a fan and a motor that rotates the fan, and an inverter 22 that increases or decreases the number of rotations of the fan (motor).
  • the blower 20 feeds combustion air into the can body 10 when the fan rotates at a predetermined rotation speed in accordance with the frequency input to the inverter 22.
  • the air supply duct 30 has an upstream end connected to the blower 20 and a downstream end connected to the air supply port 18.
  • the air supply duct 30 supplies the combustion air sent from the blower 20 to the can body 10.
  • the damper 40 is in a closed state in which the combustion air flow path inside the air supply duct 30 is closed and rotated 90 degrees from this closed state to open the combustion air flow path in the air supply duct 30. It is arranged to be rotatable between states.
  • the fuel supply device 50 includes a gas supply line 51, and an adjustment valve 52 and a nozzle 53 provided in the gas supply line.
  • the gas supply line 51 is connected to the downstream side of the air supply duct 30 from the position where the damper 40 is disposed, and supplies the fuel gas to the air supply duct 30.
  • the adjustment valve 52 adjusts the flow rate of the fuel gas supplied to the air supply duct 30.
  • the nozzle 53 is disposed at the tip of the gas supply line 51 and ejects fuel gas into the air supply duct 30.
  • the exhaust tube 60 is connected to the exhaust port 17.
  • the exhaust cylinder 60 discharges the combustion gas generated by the combustion of the fuel gas inside the can 10.
  • the control device 70 controls the combustion state (combustion rate) of the boiler 1 by adjusting the supply amount of combustion air and the supply amount of fuel gas to the can body 10 and adjusts the amount of steam generated by the boiler 1. To do.
  • the vapor pressure sensor 80 detects the vapor pressure in the upper header 14 and outputs the detection result to the control device 70.
  • the wind pressure sensor 90 detects the wind pressure at the downstream position of the damper 40 in the air supply duct 30 and outputs the detection result to the control device 70.
  • the combustion air fed into the air supply duct 30 by the blower 20 is mixed with the fuel gas supplied from the gas supply line 51, and the mixed gas of the fuel gas and the combustion air is burned. 15 is injected into the inside of the can 10 and burned. And the water supplied with the combustion of the mixed gas by the burner 15 heats the water supplied from the lower header 13 to the inside of the plurality of water pipes 12, and generates steam.
  • the steam generated in the plurality of water pipes 12 is collected in the upper header 14 and then led to the outside through a steam outlet pipe (not shown). Further, the combustion gas generated by the combustion of the mixed gas is discharged from the exhaust cylinder 60 to the outside.
  • the boiler 1 is comprised by the proportional control boiler which can change a combustion rate continuously.
  • the proportional control boiler is a boiler in which the combustion rate can be continuously controlled at least in the range from the minimum combustion state (for example, the combustion state at a combustion rate of 20% of the maximum combustion amount) to the maximum combustion state. .
  • the change of the combustion rate between the combustion stop state of the boiler 1 and the minimum combustion state is controlled by turning on / off the combustion of the boiler 1 (burner).
  • the combustion rate can be controlled continuously.
  • control of the combustion state in the boiler 1 in which the combustion rate can be continuously changed in the range of 20% to 100% will be described.
  • the controller 70 changes the combustion rate of the boiler 1 and adjusts the amount of steam generated according to the amount of steam consumed by the load equipment to which the boiler 1 supplies steam.
  • the control device 70 includes a control unit 71 and a storage unit 72.
  • the control unit 71 increases or decreases the rotational speed of the fan of the blower 20 by increasing or decreasing the frequency input to the inverter 22, and controls the amount of combustion air fed into the air supply duct 30. In addition, the control unit 71 controls the amount of combustion air flowing through the air supply duct 30 toward the burner 15 by controlling the opening degree of the damper 40. Further, the control unit 71 controls the amount of fuel gas supplied to the burner 15 by controlling the opening of the adjustment valve 52.
  • the storage unit 72 opens the damper 40 according to the content of the instruction given to the boiler 1 under the control of the control unit 71, information such as the combustion state of the boiler 1, and the combustion state (combustion rate) of the boiler 1.
  • information such as the combustion state of the boiler 1, and the combustion state (combustion rate) of the boiler 1.
  • the setting of the wind pressure value detected by the wind pressure sensor 90 in the past predetermined period, the weighted moving average value calculated from the wind pressure value in the past predetermined period, the frequency input to the inverter, and the opening of the adjustment valve 52 Store information and so on.
  • the control unit 71 determines the supply amount of combustion air based on the vapor pressure in the upper header 14 detected by the vapor pressure sensor 80.
  • the control unit 71 determines the supply amount of the fuel gas based on the wind pressure in the air supply duct 30 detected by the wind pressure sensor 90. At this time, the value of the wind pressure in the air supply duct 30 detected by the wind pressure sensor 90 tends to be unstable and unstable. Therefore, it is possible to calculate the moving average value of the wind pressure value within the past predetermined period (for example, the past several seconds) by the control unit 71, and to determine the supply amount of the fuel gas based on this moving average value.
  • the simple moving average value is used as the moving average value of the wind pressure value within a predetermined period in the past, the moving average value when the supply amount of combustion air changes greatly due to fluctuations in the target load of the vapor pressure, etc. Because of the influence of the past value of the predetermined period for calculating the fuel gas, there is a delay until the fuel gas supply amount changes corresponding to the change.
  • a weighted moving average obtained by assigning a larger weight closer to the present time than a simple moving average value. A value is calculated, and the supply amount of the fuel gas is controlled based on the weighted moving average value.
  • control unit 71 acquires the vapor pressure in the upper header 14 detected by the vapor pressure sensor 80, and calculates the amount of combustion air necessary to control this vapor pressure to the target load. . Further, the controller 71 increases or decreases the rotation speed of the fan of the blower 20 or controls the opening degree of the damper 40 by increasing or decreasing the frequency input to the inverter 22 based on the calculated amount of combustion air. Thus, the amount of combustion air fed into the air supply duct 30 is controlled.
  • control unit 71 acquires the value of the wind pressure in the air supply duct 30 detected by the wind pressure sensor 90, and calculates the weighted moving average value of the wind pressure value within the past predetermined period (for example, the past several seconds). .
  • the weighted moving average value a weighted moving average value obtained by assigning a larger weight as it is closer to the present time is used.
  • the weighted moving average value it is possible to use a weighted moving average value that gives a linearly larger weight to the wind pressure value in the past predetermined period to obtain a moving average value as it gets closer to the present.
  • an exponential moving average value that gives a moving average value by assigning an exponentially larger weight to the wind pressure value in the past predetermined period can be used.
  • the supply amount of the fuel gas can be changed with a smaller delay with respect to the change in the target load of the vapor pressure.
  • the control unit 71 controls the supply amount of the fuel gas to the burner 15 by controlling the opening degree of the adjustment valve 52 based on the weighted moving average value of the wind pressure values in the past predetermined period.
  • the moving average value (specifically, the weighted moving average value) of the detected value. Therefore, control can be performed based on a stable value with little variation.
  • the detected value of the wind pressure in the air supply duct 30 by the wind pressure sensor 90 is greatly changed (that is, when the supply amount of combustion air is greatly changed), it is obtained by assigning a larger weight to the current value.
  • the weighted moving average value it is possible to change the supply amount of the fuel gas more quickly in response to the change.
  • FIG. 2 is a schematic diagram showing a comparison of the response of the vapor pressure to the change in the target load when the supply amount of the fuel gas is controlled using various moving average values of the wind pressure in the air supply duct 30.
  • the solid line is the target load
  • the broken line is the vapor pressure when using the simple moving average value
  • the dashed line is the vapor pressure when using the weighted moving average value
  • the two-dot chain line is the exponential moving average value. It shows the vapor pressure when
  • the detected value of the wind pressure in the air supply duct 30 detected within the past predetermined period (within the moving average period indicated by the double arrow in FIG. 2).
  • the weighted moving average value is calculated, and the fuel gas supply amount is controlled based on the weighted moving average value.
  • the target load does not fluctuate before time T0.
  • the supply amount of the combustion gas is the same regardless of whether the simple moving average value, the weighted moving average value, or the exponential moving average value is used. Be controlled.
  • the target load starts to increase at time T0
  • the actual vapor pressure is delayed with respect to the change in the target load.
  • the vapor pressure in the case of the simple moving average value indicated by the broken line has the largest delay with respect to the target load. .
  • the vapor pressure in the case of the weighted moving average value indicated by the one-dot chain line and the exponential moving average value indicated by the two-dot chain line has a smaller delay with respect to the target load than the vapor pressure in the case of the simple moving average value.
  • the vapor pressure in the case of the weighted moving average value and the vapor pressure in the case of the exponential moving average value is better than the vapor pressure in the case of the weighted moving average value. The delay with respect to the target load is small.
  • the boiler 1 of the present embodiment even when the supply amount of combustion air changes greatly, the delay in the change in the supply amount of fuel gas is smaller than that in the conventional technology. ing. Accordingly, it is possible to suppress a situation in which a deviation occurs in the ratio between the combustion air and the fuel gas (air-fuel ratio). That is, according to the boiler 1 of the present embodiment, a deviation between the supply amount of the combustion air and the fuel supply amount occurs while stabilizing the control of the fuel supply amount with respect to the change in the supply amount of the combustion air. This can be suppressed.
  • the weighting is fixed when calculating the weighted moving average value obtained by assigning a larger weight to the detected value of the wind pressure in the air supply duct 30 as it is closer to the present.
  • the weighting in calculating the weighted moving average value may be changed with respect to the detected value of the wind pressure in the air supply duct 30.
  • the inclination of weighting is made smaller, and when the fluctuation of the wind pressure is larger than the threshold, the inclination of weighting is made larger. It is possible.
  • the calculation target of the weighted moving average value it is assumed that the length of the predetermined period in the past is fixed, but is not limited thereto. That is, the length of the past predetermined period to be calculated when calculating the weighted moving average value with respect to the detected value of the wind pressure in the air supply duct 30 may be changed.
  • the length of the past predetermined period to be calculated is made longer, and when the fluctuation of the wind pressure is larger than the threshold It is possible to make the length of the past predetermined period to be calculated longer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Regulation And Control Of Combustion (AREA)

Abstract

The purpose of the present invention is to provide a boiler capable of inhibiting deviation between the combustion-air supply amount and the fuel supply amount, while stabilizing control of the fuel supply amount, during changes in the combustion-air supply amount. Accordingly, a boiler (1), which changes a fuel supply amount in accordance with a combustion-air supply amount, is provided with a controller (71) which controls the fuel supply amount using weighted moving average values obtained by imparting, to the combustion-air supply amount within a prescribed time period, weights commensurate with proximity to the present. It is preferable that the controller (71) change the weights imparted to the combustion-air supply amount, in accordance with changes in the combustion-air supply amount.

Description

ボイラboiler
 本発明は、ボイラに関する。より詳細には、燃焼用空気の供給量と燃料供給量とのずれが発生することを抑制できるボイラに関する。本願は、2013年5月1日に日本に出願された特願2013-096666号に基づき優先権を主張し、その内容をここに援用する。 The present invention relates to a boiler. More specifically, the present invention relates to a boiler that can suppress the occurrence of deviation between the supply amount of combustion air and the fuel supply amount. This application claims priority based on Japanese Patent Application No. 2013-096666 filed in Japan on May 1, 2013, the contents of which are incorporated herein by reference.
 従来、燃料を燃焼させるバーナと、このバーナに燃料を供給する燃料供給装置と、バーナに燃焼用空気を供給する送風機と、を備え、複数の燃焼状態(燃焼率)で燃焼されるボイラにおいては、燃焼率に応じて燃焼に必要とされる空気の量が異なる。そこで、送風機を、ファンと、このファンを回転させるモータと、このモータの駆動(回転速度)を可変させるインバータと、を含んで構成し、燃焼率に応じてモータ(ファン)の回転速度を増減させることで適切な量の燃焼用空気をバーナに供給する技術が用いられている。 Conventionally, in a boiler that includes a burner that burns fuel, a fuel supply device that supplies fuel to the burner, and a blower that supplies combustion air to the burner and is burned in a plurality of combustion states (combustion rates) The amount of air required for combustion differs depending on the combustion rate. Therefore, the blower includes a fan, a motor that rotates the fan, and an inverter that varies the drive (rotation speed) of the motor, and increases or decreases the rotation speed of the motor (fan) according to the combustion rate. Thus, a technique for supplying an appropriate amount of combustion air to the burner is used.
 また、このようなボイラにおいて、バーナに供給される燃焼用空気の量に応じて、バーナへの燃料供給量を制御する技術が用いられている(例えば、特許文献1参照)。具体的には、バーナに供給される燃焼用空気の量として、送風機からバーナにつながる給気ダクト内の風圧等をセンサによって検出し、その検出結果に応じて、バーナへの燃料供給量が制御される。しかしながら、給気ダクト内の風圧等をセンサによって検出した場合、検出された値は、ばらつきを生じ、安定しない傾向がある。 In such a boiler, a technique for controlling the amount of fuel supplied to the burner according to the amount of combustion air supplied to the burner is used (for example, refer to Patent Document 1). Specifically, as the amount of combustion air supplied to the burner, the air pressure in the air supply duct connected from the blower to the burner is detected by a sensor, and the fuel supply amount to the burner is controlled according to the detection result Is done. However, when the wind pressure or the like in the air supply duct is detected by a sensor, the detected value tends to vary and is not stable.
 そこで、センサによって検出された値の移動平均値を制御に用いることで、ばらつきが少なく安定した値によって、バーナへの燃料供給量を制御することが可能となる。 Therefore, by using the moving average value of the value detected by the sensor for the control, it becomes possible to control the fuel supply amount to the burner with a stable value with little variation.
特開平8-178271号公報JP-A-8-178271
 しかしながら、上述のように、センサによって検出された値の移動平均値を燃料供給量の制御に用いた場合、バーナに供給される燃焼用空気の量の大きな変化に対して、燃料供給量の変化に遅れが生じる。即ち、蒸気圧の目標負荷が変動すること等に伴い、バーナに供給される燃焼用空気の量が大きく変化した場合に、バーナへの燃料供給量は、移動平均値を算出する期間の過去の値の影響を受けて遅れが生じる。この場合、バーナに供給される燃焼用空気の量と燃料供給量との比(空燃比)にずれが発生する。 However, as described above, when the moving average value of the value detected by the sensor is used for the control of the fuel supply amount, the change in the fuel supply amount with respect to the large change in the amount of combustion air supplied to the burner. Is delayed. That is, when the amount of combustion air supplied to the burner changes significantly due to fluctuations in the target load of the vapor pressure, etc., the fuel supply amount to the burner is the past of the period during which the moving average value is calculated. Delay is caused by the value. In this case, a deviation occurs in the ratio (air-fuel ratio) between the amount of combustion air supplied to the burner and the fuel supply amount.
 従って、本発明は、燃焼用空気の供給量の変化に対して、燃料供給量の制御を安定化しつつ、燃焼用空気の供給量と燃料供給量とのずれが発生することを抑制できるボイラを提供することを目的とする。 Therefore, the present invention provides a boiler capable of suppressing the occurrence of a deviation between the supply amount of combustion air and the fuel supply amount while stabilizing the control of the fuel supply amount against changes in the supply amount of combustion air. The purpose is to provide.
 本発明は、燃焼用空気の供給量に応じて燃料の供給量を変化させるボイラであって、所定期間内における燃焼用空気の供給量に対して、現在に近いほど大きい重みを付与して得られる重み付け移動平均値により、前記燃料の供給量を制御する制御部を備えるボイラに関する。 The present invention is a boiler that changes the supply amount of fuel in accordance with the supply amount of combustion air, and is obtained by assigning a greater weight to the supply amount of combustion air within a predetermined period as it is closer to the present time. It is related with a boiler provided with the control part which controls the supply_amount | feed_rate of the said fuel by the weighted moving average value to be performed.
 また、前記制御部は、前記燃焼用空気の供給量の変化に応じて、前記燃焼用空気の供給量に付与する重みを変化させることが好ましい。 Further, it is preferable that the control unit changes a weight given to the supply amount of the combustion air according to a change in the supply amount of the combustion air.
 また、前記制御部は、前記燃焼用空気の供給量の変化に応じて、前記重み付け平均値を得るための前記所定期間の長さを変化させることが好ましい。 Further, it is preferable that the control unit changes the length of the predetermined period for obtaining the weighted average value according to a change in the supply amount of the combustion air.
 また、前記制御部は、前記重み付け移動平均値として、加重移動平均値を用いて前記燃料の供給量を制御することが好ましい。 Further, it is preferable that the control unit controls the fuel supply amount using a weighted moving average value as the weighted moving average value.
 また、前記制御部は、前記重み付け移動平均値として、指数移動平均値を用いて前記燃料の供給量を制御することが好ましい。 Further, it is preferable that the control unit controls the fuel supply amount using an exponential moving average value as the weighted moving average value.
 本発明のボイラによれば、燃焼用空気の供給量の変化に対して、燃料供給量の制御を安定化しつつ、燃焼用空気の供給量と燃料供給量とのずれが発生することを抑制できる。 According to the boiler of the present invention, it is possible to suppress the occurrence of a deviation between the supply amount of the combustion air and the fuel supply amount while stabilizing the control of the fuel supply amount with respect to the change in the supply amount of the combustion air. .
本発明のボイラの一実施形態を模式的に示す図である。It is a figure showing typically one embodiment of the boiler of the present invention. 給気ダクト30内の風圧の各種移動平均値を用いて燃料ガスの供給量を制御した場合において、目標負荷の変動に対する蒸気圧の応答を比較して示す模式図である。FIG. 6 is a schematic diagram showing a comparison of the response of the vapor pressure to the fluctuation of the target load when the fuel gas supply amount is controlled using various moving average values of the wind pressure in the air supply duct 30.
 以下、本発明のボイラの好ましい一実施形態について図面を参照しながら説明する。
 本実施形態のボイラ1は、水を加熱して蒸気を生成する蒸気ボイラである。このボイラ1は、図1に示すように、缶体10と、缶体10に燃焼用空気を送り込む送風機20と、缶体10と送風機20とを接続し燃焼用空気が流通する給気ダクト30と、給気ダクト30に配置されるダンパ40と、給気ダクト30に燃料ガスを供給する燃料供給装置50と、缶体10から排出される燃焼ガスが流通する排気筒60と、缶体10に水を供給する給水路(図示せず)と、ボイラ1の燃焼状態を制御する制御装置70と、上部ヘッダ14内の蒸気圧を検出する蒸気圧センサ80と、給気ダクト30内におけるダンパ40下流位置の風圧を検出する風圧センサ90と、を備える。
Hereinafter, a preferred embodiment of a boiler of the present invention will be described with reference to the drawings.
The boiler 1 of the present embodiment is a steam boiler that generates steam by heating water. As shown in FIG. 1, the boiler 1 includes a can body 10, a blower 20 that sends combustion air to the can body 10, and an air supply duct 30 that connects the can body 10 and the blower 20 and through which combustion air flows. A damper 40 disposed in the air supply duct 30, a fuel supply device 50 that supplies fuel gas to the air supply duct 30, an exhaust pipe 60 through which the combustion gas discharged from the can body 10 circulates, and the can body 10 A water supply path (not shown) for supplying water to the boiler, a control device 70 for controlling the combustion state of the boiler 1, a vapor pressure sensor 80 for detecting the vapor pressure in the upper header 14, and a damper in the supply duct 30 40, a wind pressure sensor 90 for detecting the wind pressure at the downstream position.
 缶体10は、図1に示すように、ボイラ筐体11と、複数の水管12と、下部ヘッダ13と、上部ヘッダ14と、バーナ15と、を備える。
 ボイラ筐体11は、缶体10の外形を構成し、平面視矩形形状の直方体状に形成される。このボイラ筐体11の長手方向の一端側に位置する第1側面11aには、給気口16が形成され、ボイラ筐体11の長手方向の他端側に位置する第2側面11bには、排気口17が形成される。
As shown in FIG. 1, the can 10 includes a boiler housing 11, a plurality of water pipes 12, a lower header 13, an upper header 14, and a burner 15.
The boiler housing | casing 11 comprises the external shape of the can 10, and is formed in the rectangular parallelepiped shape of planar view. An air supply port 16 is formed in the first side surface 11a located on one end side in the longitudinal direction of the boiler casing 11, and a second side surface 11b located on the other end side in the longitudinal direction of the boiler casing 11 is An exhaust port 17 is formed.
 複数の水管12は、ボイラ筐体11の内部に上下方向に延びて配置されると共に、ボイラ筐体11の長手方向及び幅方向に所定の間隔をあけて配置される。
 下部ヘッダ13は、ボイラ筐体11の下部に配置される。下部ヘッダ13には、複数の水管12の下端部が接続される。
The plurality of water pipes 12 are disposed so as to extend in the vertical direction inside the boiler housing 11 and are disposed at predetermined intervals in the longitudinal direction and the width direction of the boiler housing 11.
The lower header 13 is disposed at the lower part of the boiler casing 11. The lower header 13 is connected to the lower ends of the plurality of water pipes 12.
 上部ヘッダ14は、ボイラ筐体11の上部に配置される。上部ヘッダ14には、複数の水管12の上端部が接続される。
 バーナ15は、給気口16に配置される。
The upper header 14 is disposed on the upper portion of the boiler casing 11. The upper header 14 is connected to the upper ends of the plurality of water pipes 12.
The burner 15 is disposed in the air supply port 16.
 送風機20は、ファン及びこのファンを回転させるモータを有する送風機本体21と、ファン(モータ)の回転数を増減させるインバータ22と、を備える。送風機20は、インバータ22に入力される周波数に応じて、ファンが所定の回転数で回転することで、缶体10に燃焼用空気を送り込む。 The blower 20 includes a blower body 21 having a fan and a motor that rotates the fan, and an inverter 22 that increases or decreases the number of rotations of the fan (motor). The blower 20 feeds combustion air into the can body 10 when the fan rotates at a predetermined rotation speed in accordance with the frequency input to the inverter 22.
 給気ダクト30は、上流側の端部が送風機20に接続され、下流側の端部が給気口18に接続される。給気ダクト30は、送風機20から送り込まれた燃焼用空気を缶体10に供給する。
 ダンパ40は、給気ダクト30の内部の燃焼用空気の流路を塞いだ閉状態と、この閉状態から90度回転し、給気ダクト30の内部の燃焼用空気の流路を開放した開状態との間で回転可能に配置される。
The air supply duct 30 has an upstream end connected to the blower 20 and a downstream end connected to the air supply port 18. The air supply duct 30 supplies the combustion air sent from the blower 20 to the can body 10.
The damper 40 is in a closed state in which the combustion air flow path inside the air supply duct 30 is closed and rotated 90 degrees from this closed state to open the combustion air flow path in the air supply duct 30. It is arranged to be rotatable between states.
 燃料供給装置50は、ガス供給ライン51と、このガス供給ラインに設けられる調整弁52及びノズル53と、を備える。
 ガス供給ライン51は、給気ダクト30におけるダンパ40が配置された位置よりも下流側に接続され、給気ダクト30に燃料ガスを供給する。
 調整弁52は、給気ダクト30に供給される燃料ガスの流通量を調整する。
 ノズル53は、ガス供給ライン51の先端部に配置され、給気ダクト30に燃料ガスを噴出する。
The fuel supply device 50 includes a gas supply line 51, and an adjustment valve 52 and a nozzle 53 provided in the gas supply line.
The gas supply line 51 is connected to the downstream side of the air supply duct 30 from the position where the damper 40 is disposed, and supplies the fuel gas to the air supply duct 30.
The adjustment valve 52 adjusts the flow rate of the fuel gas supplied to the air supply duct 30.
The nozzle 53 is disposed at the tip of the gas supply line 51 and ejects fuel gas into the air supply duct 30.
 排気筒60は、排気口17に接続される。排気筒60は、缶体10の内部で燃料ガスが燃焼して生じた燃焼ガスを排出する。
 制御装置70は、缶体10への燃焼用空気の供給量及び燃料ガスの供給量を制御することで、ボイラ1の燃焼状態(燃焼率)を制御し、ボイラ1による蒸気の生成量を調整する。
 蒸気圧センサ80は、上部ヘッダ14内の蒸気圧を検出し、検出結果を制御装置70に出力する。
 風圧センサ90は、給気ダクト30内におけるダンパ40下流位置の風圧を検出し、検出結果を制御装置70に出力する。
The exhaust tube 60 is connected to the exhaust port 17. The exhaust cylinder 60 discharges the combustion gas generated by the combustion of the fuel gas inside the can 10.
The control device 70 controls the combustion state (combustion rate) of the boiler 1 by adjusting the supply amount of combustion air and the supply amount of fuel gas to the can body 10 and adjusts the amount of steam generated by the boiler 1. To do.
The vapor pressure sensor 80 detects the vapor pressure in the upper header 14 and outputs the detection result to the control device 70.
The wind pressure sensor 90 detects the wind pressure at the downstream position of the damper 40 in the air supply duct 30 and outputs the detection result to the control device 70.
 以上のボイラ1によれば、送風機20により給気ダクト30に送り込まれた燃焼用空気は、ガス供給ライン51から供給された燃料ガスと混合され、燃料ガスと燃焼用空気との混合ガスがバーナ15から缶体10の内部に噴出され、燃焼される。そして、バーナ15による混合ガスの燃焼に伴って発生する熱により、下部ヘッダ13から複数の水管12の内部に供給された水が加熱され、蒸気が生成される。複数の水管12の内部において生成された蒸気は、上部ヘッダ14に集合された後、蒸気導出管(図示せず)を介して外部に導出される。また、混合ガスの燃焼により生じた燃焼ガスは、排気筒60から外部に排出される。 According to the boiler 1 described above, the combustion air fed into the air supply duct 30 by the blower 20 is mixed with the fuel gas supplied from the gas supply line 51, and the mixed gas of the fuel gas and the combustion air is burned. 15 is injected into the inside of the can 10 and burned. And the water supplied with the combustion of the mixed gas by the burner 15 heats the water supplied from the lower header 13 to the inside of the plurality of water pipes 12, and generates steam. The steam generated in the plurality of water pipes 12 is collected in the upper header 14 and then led to the outside through a steam outlet pipe (not shown). Further, the combustion gas generated by the combustion of the mixed gas is discharged from the exhaust cylinder 60 to the outside.
 次に、制御装置70によるボイラ1の燃焼状態の制御の詳細について説明する。
 本実施形態では、ボイラ1は、燃焼率を連続的に変更可能な比例制御ボイラにより構成される。比例制御ボイラとは、少なくとも、最小燃焼状態(例えば、最大燃焼量の20%の燃焼率における燃焼状態)から最大燃焼状態の範囲で、燃焼率が連続的に制御可能とされているボイラである。
Next, details of control of the combustion state of the boiler 1 by the control device 70 will be described.
In this embodiment, the boiler 1 is comprised by the proportional control boiler which can change a combustion rate continuously. The proportional control boiler is a boiler in which the combustion rate can be continuously controlled at least in the range from the minimum combustion state (for example, the combustion state at a combustion rate of 20% of the maximum combustion amount) to the maximum combustion state. .
 本実施形態では、ボイラ1の燃焼停止状態と最小燃焼状態との間の燃焼率の変更は、ボイラ1(バーナ)の燃焼をオン/オフすることで制御される。そして、最小燃焼状態から最大燃焼状態の範囲においては、燃焼率が連続的に制御可能となっている。
 尚、以下においては、燃焼率を20%~100%の範囲で連続的に変更可能なボイラ1における燃焼状態の制御について説明する。
In this embodiment, the change of the combustion rate between the combustion stop state of the boiler 1 and the minimum combustion state is controlled by turning on / off the combustion of the boiler 1 (burner). In the range from the minimum combustion state to the maximum combustion state, the combustion rate can be controlled continuously.
In the following, control of the combustion state in the boiler 1 in which the combustion rate can be continuously changed in the range of 20% to 100% will be described.
 制御装置70は、ボイラ1が蒸気を供給する負荷機器による蒸気の消費量に応じて、ボイラ1の燃焼率を変更し、蒸気の生成量を調整する。この制御装置70は、制御部71と、記憶部72と、を備える。 The controller 70 changes the combustion rate of the boiler 1 and adjusts the amount of steam generated according to the amount of steam consumed by the load equipment to which the boiler 1 supplies steam. The control device 70 includes a control unit 71 and a storage unit 72.
 制御部71は、インバータ22に入力する周波数を増減させることで、送風機20のファンの回転速度を増減させ、給気ダクト30に送り込む燃焼用空気の量を制御する。また、制御部71は、ダンパ40の開度を制御することで、給気ダクト30の内部をバーナ15に向かって流れる燃焼用空気の量を制御する。更に、制御部71は、調整弁52の開度を制御することで、バーナ15への燃料ガスの供給量を制御する。 The control unit 71 increases or decreases the rotational speed of the fan of the blower 20 by increasing or decreasing the frequency input to the inverter 22, and controls the amount of combustion air fed into the air supply duct 30. In addition, the control unit 71 controls the amount of combustion air flowing through the air supply duct 30 toward the burner 15 by controlling the opening degree of the damper 40. Further, the control unit 71 controls the amount of fuel gas supplied to the burner 15 by controlling the opening of the adjustment valve 52.
 記憶部72は、制御部71の制御によりボイラ1に対して行われた指示の内容や、ボイラ1の燃焼状態等の情報、ボイラ1の燃焼状態(燃焼率)に応じたダンパ40の開度、過去の所定期間内に風圧センサ90によって検出された風圧の値、過去の所定期間内における風圧の値から算出した重み付け移動平均値、インバータに入力する周波数及び調整弁52の開度に関する設定の情報等を記憶する。 The storage unit 72 opens the damper 40 according to the content of the instruction given to the boiler 1 under the control of the control unit 71, information such as the combustion state of the boiler 1, and the combustion state (combustion rate) of the boiler 1. The setting of the wind pressure value detected by the wind pressure sensor 90 in the past predetermined period, the weighted moving average value calculated from the wind pressure value in the past predetermined period, the frequency input to the inverter, and the opening of the adjustment valve 52 Store information and so on.
 ここで、比例制御ボイラにおいては、最小燃焼状態から最大燃焼状態までの範囲において、安定的な燃焼状態を保ちつつ燃焼率を連続的に変更させるために、燃焼用空気の供給量及び燃料ガスの供給量についても連続的に変更させる必要がある。
 燃焼用空気の供給に関しては、制御部71により、蒸気圧センサ80によって検出された上部ヘッダ14内の蒸気圧に基づいて、燃焼用空気の供給量を決定する。
Here, in the proportional control boiler, in order to continuously change the combustion rate while maintaining a stable combustion state in the range from the minimum combustion state to the maximum combustion state, the supply amount of combustion air and the amount of fuel gas It is also necessary to continuously change the supply amount.
Regarding the supply of combustion air, the control unit 71 determines the supply amount of combustion air based on the vapor pressure in the upper header 14 detected by the vapor pressure sensor 80.
 一方、燃料ガスの供給に関しては、制御部71により、風圧センサ90によって検出された給気ダクト30内の風圧に基づいて、燃料ガスの供給量を決定する。このとき、風圧センサ90によって検出される給気ダクト30内の風圧の値は、ばらつきを生じて安定しない傾向がある。そのため、制御部71により過去の所定期間内(例えば過去数秒間)における風圧の値の移動平均値を算出し、この移動平均値に基づいて、燃料ガスの供給量を決定することができる。しかしながら、過去の所定期間内における風圧の値の移動平均値として、単純移動平均値を用いると、蒸気圧の目標負荷の変動等により燃焼用空気の供給量が大きく変化した場合に、移動平均値を算出する上記所定期間の過去の値の影響を受けることから、その変化に対応して燃料ガスの供給量が変化するまでに遅れが生じる。 On the other hand, regarding the supply of the fuel gas, the control unit 71 determines the supply amount of the fuel gas based on the wind pressure in the air supply duct 30 detected by the wind pressure sensor 90. At this time, the value of the wind pressure in the air supply duct 30 detected by the wind pressure sensor 90 tends to be unstable and unstable. Therefore, it is possible to calculate the moving average value of the wind pressure value within the past predetermined period (for example, the past several seconds) by the control unit 71, and to determine the supply amount of the fuel gas based on this moving average value. However, if the simple moving average value is used as the moving average value of the wind pressure value within a predetermined period in the past, the moving average value when the supply amount of combustion air changes greatly due to fluctuations in the target load of the vapor pressure, etc. Because of the influence of the past value of the predetermined period for calculating the fuel gas, there is a delay until the fuel gas supply amount changes corresponding to the change.
 そこで、本実施形態では、過去の所定期間内(例えば過去数秒間)における風圧の値の移動平均値として、単純移動平均値ではなく、現在に近いほど大きい重みを付与して得られる重み付け移動平均値を算出し、この重み付け移動平均値に基づいて、燃料ガスの供給量を制御する。 Therefore, in this embodiment, as a moving average value of wind pressure values within a predetermined period in the past (for example, the past several seconds), a weighted moving average obtained by assigning a larger weight closer to the present time than a simple moving average value. A value is calculated, and the supply amount of the fuel gas is controlled based on the weighted moving average value.
 具体的には、制御部71は、蒸気圧センサ80によって検出された上部ヘッダ14内の蒸気圧を取得し、この蒸気圧を目標負荷に制御するために必要な燃焼用空気の量を算出する。また、制御部71は、算出した燃焼用空気の量に基づいて、インバータ22に入力する周波数を増減させることで、送風機20のファンの回転速度を増減させ、又はダンパ40の開度を制御することで、給気ダクト30に送り込む燃焼用空気の量を制御する。 Specifically, the control unit 71 acquires the vapor pressure in the upper header 14 detected by the vapor pressure sensor 80, and calculates the amount of combustion air necessary to control this vapor pressure to the target load. . Further, the controller 71 increases or decreases the rotation speed of the fan of the blower 20 or controls the opening degree of the damper 40 by increasing or decreasing the frequency input to the inverter 22 based on the calculated amount of combustion air. Thus, the amount of combustion air fed into the air supply duct 30 is controlled.
 また、制御部71は、風圧センサ90によって検出された給気ダクト30内の風圧の値を取得し、過去の所定期間内(例えば過去数秒間)における風圧の値の重み付け移動平均値を算出する。本実施形態では、重み付け移動平均値として、現在に近いほど大きい重みを付与して得られる重み付け移動平均値を用いる。例えば、重み付け移動平均値として、過去の所定期間内における風圧の値に対して、現在に近いほど線形的に大きい重みを付与して移動平均値とする加重移動平均値を用いることができる。 Further, the control unit 71 acquires the value of the wind pressure in the air supply duct 30 detected by the wind pressure sensor 90, and calculates the weighted moving average value of the wind pressure value within the past predetermined period (for example, the past several seconds). . In the present embodiment, as the weighted moving average value, a weighted moving average value obtained by assigning a larger weight as it is closer to the present time is used. For example, as the weighted moving average value, it is possible to use a weighted moving average value that gives a linearly larger weight to the wind pressure value in the past predetermined period to obtain a moving average value as it gets closer to the present.
 なお、重み付け移動平均値として、過去の所定期間内における風圧の値に対して、現在に近いほど指数的に大きい重みを付与して移動平均値とする指数移動平均値を用いることもできる。重み付け移動平均値として、指数移動平均値を用いた場合、蒸気圧の目標負荷の変動に対して、より小さい遅れによって、燃料ガスの供給量を変化させることができる。
 また、制御部71は、過去の所定期間内における風圧の値の重み付け移動平均値に基づいて、調整弁52の開度を制御することで、バーナ15への燃料ガスの供給量を制御する。
In addition, as the weighted moving average value, an exponential moving average value that gives a moving average value by assigning an exponentially larger weight to the wind pressure value in the past predetermined period can be used. When an exponential moving average value is used as the weighted moving average value, the supply amount of the fuel gas can be changed with a smaller delay with respect to the change in the target load of the vapor pressure.
Further, the control unit 71 controls the supply amount of the fuel gas to the burner 15 by controlling the opening degree of the adjustment valve 52 based on the weighted moving average value of the wind pressure values in the past predetermined period.
 これにより、風圧センサ90による給気ダクト30内の風圧の検出値に基づいて、燃料ガスの供給量を制御する場合に、検出値の移動平均値(具体的には重み付け移動平均値)を用いていることにより、ばらつきが少なく安定した値に基づいて制御を行うことができる。また、風圧センサ90による給気ダクト30内の風圧の検出値が大きく変化した場合(即ち、燃焼用空気の供給量が大きく変化した場合)に、現在に近いほど大きい重みを付与して得られる重み付け移動平均値を用いていることにより、その変化に対応して、より速やかに燃料ガスの供給量を変化させることができる。 Thereby, when the supply amount of fuel gas is controlled based on the detected value of the wind pressure in the air supply duct 30 by the wind pressure sensor 90, the moving average value (specifically, the weighted moving average value) of the detected value is used. Therefore, control can be performed based on a stable value with little variation. In addition, when the detected value of the wind pressure in the air supply duct 30 by the wind pressure sensor 90 is greatly changed (that is, when the supply amount of combustion air is greatly changed), it is obtained by assigning a larger weight to the current value. By using the weighted moving average value, it is possible to change the supply amount of the fuel gas more quickly in response to the change.
 図2は、給気ダクト30内の風圧の各種移動平均値を用いて燃料ガスの供給量を制御した場合において、目標負荷の変動に対する蒸気圧の応答を比較して示す模式図である。
 なお、図2において、実線は目標負荷、破線は単純移動平均値を用いた場合の蒸気圧、一点鎖線は加重移動平均値を用いた場合の蒸気圧、二点鎖線は指数移動平均値を用いた場合の蒸気圧を示している。
FIG. 2 is a schematic diagram showing a comparison of the response of the vapor pressure to the change in the target load when the supply amount of the fuel gas is controlled using various moving average values of the wind pressure in the air supply duct 30.
In FIG. 2, the solid line is the target load, the broken line is the vapor pressure when using the simple moving average value, the dashed line is the vapor pressure when using the weighted moving average value, and the two-dot chain line is the exponential moving average value. It shows the vapor pressure when
 図2に示すように、本実施形態のボイラ1では、過去の所定期間内(図2中の両矢印で示す移動平均期間内)に検出された給気ダクト30内の風圧の検出値に対して、重み付け移動平均値を算出し、この重み付け移動平均値に基づいて、燃料ガスの供給量を制御している。
 図2において、時刻T0以前は目標負荷の変動がなく、この場合、単純移動平均値、加重移動平均値及び指数移動平均値の場合のいずれを用いた場合でも、同様に燃焼ガスの供給量が制御される。
As shown in FIG. 2, in the boiler 1 of the present embodiment, the detected value of the wind pressure in the air supply duct 30 detected within the past predetermined period (within the moving average period indicated by the double arrow in FIG. 2). Thus, the weighted moving average value is calculated, and the fuel gas supply amount is controlled based on the weighted moving average value.
In FIG. 2, the target load does not fluctuate before time T0. In this case, the supply amount of the combustion gas is the same regardless of whether the simple moving average value, the weighted moving average value, or the exponential moving average value is used. Be controlled.
 これに対し、時刻T0で目標負荷が増加傾向に転じた場合、実際の蒸気圧には目標負荷の変動に対して遅れが生じる。
 このとき、単純移動平均値、加重移動平均値及び指数移動平均値を用いた場合の蒸気圧において、破線で示す単純移動平均値の場合の蒸気圧は、目標負荷に対する遅れが最も大きくなっている。
On the other hand, when the target load starts to increase at time T0, the actual vapor pressure is delayed with respect to the change in the target load.
At this time, in the case of using the simple moving average value, the weighted moving average value, and the exponential moving average value, the vapor pressure in the case of the simple moving average value indicated by the broken line has the largest delay with respect to the target load. .
 一方、一点鎖線で示す加重移動平均値及び二点鎖線で示す指数移動平均値の場合の蒸気圧は、単純移動平均値の場合の蒸気圧よりも目標負荷に対する遅れが小さくなっている。また、加重移動平均値の場合の蒸気圧と指数移動平均値の場合の蒸気圧とを比べると、加重移動平均値の場合の蒸気圧よりも、指数移動平均値の場合の蒸気圧の方が、目標負荷に対する遅れが小さくなっている。 On the other hand, the vapor pressure in the case of the weighted moving average value indicated by the one-dot chain line and the exponential moving average value indicated by the two-dot chain line has a smaller delay with respect to the target load than the vapor pressure in the case of the simple moving average value. In addition, comparing the vapor pressure in the case of the weighted moving average value and the vapor pressure in the case of the exponential moving average value, the vapor pressure in the case of the exponential moving average value is better than the vapor pressure in the case of the weighted moving average value. The delay with respect to the target load is small.
 このように、本実施形態のボイラ1では、燃焼用空気の供給量が大きく変化した場合であっても、従来の技術に比べて、燃料ガスの供給量の変化における遅れがより小さいものとなっている。
 従って、燃焼用空気と燃料ガスとの比(空燃比)にずれが生じる事態を抑制することができる。
 即ち、本実施形態のボイラ1によれば、燃焼用空気の供給量の変化に対して、燃料供給量の制御を安定化しつつ、燃焼用空気の供給量と燃料供給量とのずれが発生することを抑制できる。
As described above, in the boiler 1 of the present embodiment, even when the supply amount of combustion air changes greatly, the delay in the change in the supply amount of fuel gas is smaller than that in the conventional technology. ing.
Accordingly, it is possible to suppress a situation in which a deviation occurs in the ratio between the combustion air and the fuel gas (air-fuel ratio).
That is, according to the boiler 1 of the present embodiment, a deviation between the supply amount of the combustion air and the fuel supply amount occurs while stabilizing the control of the fuel supply amount with respect to the change in the supply amount of the combustion air. This can be suppressed.
 以上、本発明のボイラの好ましい一実施形態について説明したが、本発明は、上述した実施形態に制限されるものではなく、適宜変更が可能である。
 例えば、本実施形態では、給気ダクト30内の風圧の検出値に対して、現在に近いほど大きい重みを付与して得られる重み付け移動平均値を算出する場合に、重み付けが固定されているものとしたが、これに限られない。
 即ち、給気ダクト30内の風圧の検出値に対して、重み付け移動平均値を算出する場合の重み付けを変化させても良い。具体的には、過去の所定期間内における風圧の変動が閾値よりも小さい場合には、重み付けの傾斜をより小さくし、風圧の変動が閾値よりも大きい場合には、重み付けの傾斜をより大きくすることが可能である。
As mentioned above, although one preferable embodiment of the boiler of this invention was described, this invention is not restrict | limited to embodiment mentioned above, It can change suitably.
For example, in this embodiment, the weighting is fixed when calculating the weighted moving average value obtained by assigning a larger weight to the detected value of the wind pressure in the air supply duct 30 as it is closer to the present. However, it is not limited to this.
That is, the weighting in calculating the weighted moving average value may be changed with respect to the detected value of the wind pressure in the air supply duct 30. Specifically, when the fluctuation of the wind pressure in the past predetermined period is smaller than the threshold, the inclination of weighting is made smaller, and when the fluctuation of the wind pressure is larger than the threshold, the inclination of weighting is made larger. It is possible.
 また、本実施形態では、給気ダクト30内の風圧の検出値に対して、現在に近いほど大きい重みを付与して得られる重み付け移動平均値を算出する場合に、重み付け移動平均値の算出対象とする過去の所定期間の長さが固定されているものとしたが、これに限られない。
 即ち、給気ダクト30内の風圧の検出値に対して、重み付け移動平均値を算出する場合に算出対象とする過去の所定期間の長さを変化させても良い。具体的には、過去の所定期間内における風圧の変動が閾値よりも小さい場合には、算出対象とする過去の所定期間の長さをより長くし、風圧の変動が閾値よりも大きい場合には、算出対象とする過去の所定期間の長さをより長くすることが可能である。
Further, in the present embodiment, when calculating a weighted moving average value obtained by assigning a greater weight to the detected value of the wind pressure in the air supply duct 30 as it is closer to the present, the calculation target of the weighted moving average value It is assumed that the length of the predetermined period in the past is fixed, but is not limited thereto.
That is, the length of the past predetermined period to be calculated when calculating the weighted moving average value with respect to the detected value of the wind pressure in the air supply duct 30 may be changed. Specifically, when the fluctuation of the wind pressure in the past predetermined period is smaller than the threshold, the length of the past predetermined period to be calculated is made longer, and when the fluctuation of the wind pressure is larger than the threshold It is possible to make the length of the past predetermined period to be calculated longer.
 本発明は、その精神又は主要な特徴から逸脱することなく、他のいろいろな形で実施することができる。そのため、上記の実施形態若しくは実施例は、あらゆる点で単なる例示に過ぎず、限定的に解釈してはならない。本発明の範囲は、請求の範囲によって示すものであって、明細書本文には何ら拘束されない。更に、請求の範囲の均等範囲に属する変形や変更は、全て本発明の範囲内のものである。 The present invention can be implemented in various other forms without departing from the spirit or main features thereof. Therefore, the above-described embodiments or examples are merely examples in all respects and should not be interpreted in a limited manner. The scope of the present invention is indicated by the scope of claims, and is not restricted by the text of the specification. Further, all modifications and changes belonging to the equivalent scope of the claims are within the scope of the present invention.
 1 ボイラ
 15 バーナ
 20 送風機
 40 ダンパ
 71 制御部
 80 蒸気圧センサ
 90 風圧センサ
1 Boiler 15 Burner 20 Blower 40 Damper 71 Control Unit 80 Vapor Pressure Sensor 90 Wind Pressure Sensor

Claims (5)

  1.  燃焼用空気の供給量に応じて燃料の供給量を変化させるボイラであって、
     所定期間内における燃焼用空気の供給量に対して、現在に近いほど大きい重みを付与して得られる重み付け移動平均値により、前記燃料の供給量を制御する制御部を備えるボイラ。
    A boiler that changes the supply amount of fuel according to the supply amount of combustion air,
    A boiler provided with a control part which controls the amount of supply of the above-mentioned fuel by the weighted moving average value obtained by assigning a larger weight to the amount of supply of combustion air within a predetermined period as it is closer to the present.
  2.  前記制御部は、前記燃焼用空気の供給量の変化に応じて、前記燃焼用空気の供給量に付与する重みを変化させる請求項1に記載のボイラ。 2. The boiler according to claim 1, wherein the control unit changes a weight given to the supply amount of the combustion air according to a change in the supply amount of the combustion air.
  3.  前記制御部は、前記燃焼用空気の供給量の変化に応じて、前記重み付け平均値を得るための前記所定期間の長さを変化させる請求項1または2に記載のボイラ。 The boiler according to claim 1 or 2, wherein the control unit changes a length of the predetermined period for obtaining the weighted average value in accordance with a change in a supply amount of the combustion air.
  4.  前記制御部は、前記重み付け移動平均値として、加重移動平均値を用いて前記燃料の供給量を制御する請求項1~3のいずれかに記載のボイラ。 The boiler according to any one of claims 1 to 3, wherein the control unit controls the fuel supply amount using a weighted moving average value as the weighted moving average value.
  5.  前記制御部は、前記重み付け移動平均値として、指数移動平均値を用いて前記燃料の供給量を制御する請求項1~3のいずれかに記載のボイラ。 The boiler according to any one of claims 1 to 3, wherein the control unit controls the fuel supply amount using an exponential moving average value as the weighted moving average value.
PCT/JP2014/062012 2013-05-01 2014-04-30 Boiler WO2014178409A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-096666 2013-05-01
JP2013096666A JP6003792B2 (en) 2013-05-01 2013-05-01 boiler

Publications (1)

Publication Number Publication Date
WO2014178409A1 true WO2014178409A1 (en) 2014-11-06

Family

ID=51843533

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/062012 WO2014178409A1 (en) 2013-05-01 2014-04-30 Boiler

Country Status (2)

Country Link
JP (1) JP6003792B2 (en)
WO (1) WO2014178409A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0271009A (en) * 1988-09-05 1990-03-09 Sanyo Electric Co Ltd Combustion control and combustion control device
JPH08178271A (en) * 1994-12-20 1996-07-12 Ebara Boiler Kk Combustion control method for boiler
JPH11159751A (en) * 1997-11-25 1999-06-15 Samson Co Ltd Fuel feed amount change control device for boiler
JP2000146162A (en) * 1998-10-30 2000-05-26 Miura Co Ltd Combustion equipment
JP2001141234A (en) * 1999-10-06 2001-05-25 Siemens Building Technologies Ag Method of adjusting characteristic curve of burner

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3345964B2 (en) * 1993-06-11 2002-11-18 松下電器産業株式会社 Combustion equipment

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0271009A (en) * 1988-09-05 1990-03-09 Sanyo Electric Co Ltd Combustion control and combustion control device
JPH08178271A (en) * 1994-12-20 1996-07-12 Ebara Boiler Kk Combustion control method for boiler
JPH11159751A (en) * 1997-11-25 1999-06-15 Samson Co Ltd Fuel feed amount change control device for boiler
JP2000146162A (en) * 1998-10-30 2000-05-26 Miura Co Ltd Combustion equipment
JP2001141234A (en) * 1999-10-06 2001-05-25 Siemens Building Technologies Ag Method of adjusting characteristic curve of burner

Also Published As

Publication number Publication date
JP6003792B2 (en) 2016-10-05
JP2014219120A (en) 2014-11-20

Similar Documents

Publication Publication Date Title
US9879859B2 (en) Combustion apparatus supplying combustion air via suction type fan and method for controlling the same
JP5800226B2 (en) boiler
KR20060087071A (en) System and control method of oil burner' suitable burning ratio using air pressure sensor
JP2018004140A (en) Boiler device
WO2014178408A1 (en) Boiler
JP6003792B2 (en) boiler
JP5679698B2 (en) Fuel gas supply amount adjusting device and boiler having the device
JP2022009609A (en) boiler
JP2016008803A (en) Boiler equipment
JP6221351B2 (en) boiler
JP6102350B2 (en) boiler
JP2016020792A (en) Boiler device
JP6107391B2 (en) boiler
JP6209980B2 (en) Boiler and boiler system
JP6492434B2 (en) Boiler equipment
JP6310789B2 (en) Combustion device
JP5534333B2 (en) Combustion device
JPWO2016157925A1 (en) Boiler equipment
JP7342483B2 (en) Air blower
JP6409382B2 (en) Boiler equipment
JP6413415B2 (en) Boiler equipment
US10113770B2 (en) Warm air heater
JP6277873B2 (en) boiler
JP7348011B2 (en) combustion device
JP7069803B2 (en) Combustion device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14791305

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14791305

Country of ref document: EP

Kind code of ref document: A1