WO2014177749A1 - Modelo de globo terráqueo con movimiento de precesión libre - Google Patents

Modelo de globo terráqueo con movimiento de precesión libre Download PDF

Info

Publication number
WO2014177749A1
WO2014177749A1 PCT/ES2014/070380 ES2014070380W WO2014177749A1 WO 2014177749 A1 WO2014177749 A1 WO 2014177749A1 ES 2014070380 W ES2014070380 W ES 2014070380W WO 2014177749 A1 WO2014177749 A1 WO 2014177749A1
Authority
WO
WIPO (PCT)
Prior art keywords
globe
axis
polar
polar axis
model
Prior art date
Application number
PCT/ES2014/070380
Other languages
English (en)
French (fr)
Inventor
José Antonio ALCIBAR ASPURU
Original Assignee
Alcibar Aspuru José Antonio
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alcibar Aspuru José Antonio filed Critical Alcibar Aspuru José Antonio
Publication of WO2014177749A1 publication Critical patent/WO2014177749A1/es

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B27/00Planetaria; Globes
    • G09B27/02Tellurions; Orreries

Definitions

  • the present invention relates to a model of a world globe with free precession movement, which has application in the didactic field, enabling the world globe models that are currently used in homes and schools, to enable have an added utility, by facilitating the development of the ability to understand abstract movements in space, as is the case of the precession movement experienced by planet Earth.
  • the vertical axis or axis of the ecliptic in the terrestrial globe model can rotate freely with respect to a base, which allows the polar axis of the globe model to perform freely the precession movement when the user acts directly on the globe itself.
  • globe models of the globe have been known for several centuries.
  • the globe is substantially spherical, so that it can be understood that the concepts above and below can be reversed and that the right and the left are mere interpretations.
  • These models can be moved by hand and also usually incorporate inscriptions on their spherical surface, representing countries or existing reliefs on planet Earth. Somehow, these models like children because they represent a more reliable and less complicated reality than a blank sheet of paper. In this sense, the globe models constitute a reference to the old schools of arts and crafts, precursors of the universities.
  • a vertical axis perpendicular to the plane of the ecliptic called the ecliptic axis or precession axis, and an inclined axis, or polar axis, perpendicular to the equator line.
  • the ecliptic axis is vertical, embedded in a base that supports the globe set on the horizontal surface, the table or the floor.
  • An arm or some similar mechanical element supports the polar axis.
  • the angle between the polar axis and that of the ecliptic is 23 ° 27 '.
  • the earth sphere is supported on bearings so that it can rotate around the polar axis that crosses it through its center.
  • the current globe models do not respond to a current vision of the universe, since they use time as a temporal reference unit relative to explaining the Earth's rotation around its polar axis and the months, the equinoxes, to explain the rotation of the Earth around the Sun and the change of seasons. With these units, the precession movement, whose period is estimated at around 25,000 years, does not matter. Hence, conventional globes consider fixed or very slow the movement of precession.
  • the globe models currently available allow Understand the geometry of the Earth, the geography, the rotation of our planet, with its implication at different times, as well as the seasons of the year due to the inclination of the polar axis with respect to the sun. But they do not serve to develop the understanding abilities of the movement during the child, school and university learning required by current scientific development.
  • the present invention relates to a model of a world globe with free precession movement, which allows a new use of the terrestrial globe, related to the development of capacities during the stage of infant learning.
  • the invention is aimed at completing the development of writing learning with three-dimensional learning, which facilitates future three-dimensional developments, thanks to a better capacity development in the early stages of learning.
  • the present invention responds to a more current view of the universe, as a consequence of which modern telescopes and artificial satellites are familiarizing us with other magnitudes and distances, which are measured, for example, in years light.
  • a rotation such as the rotation movement of the Earth's precession axis, which completes its cycle every 25,000 years, implies a relatively faster rotation movement, of another order of magnitude, than the Earth's rotation on its own axis, that is to say on the axis that joins both poles, also called polar axis.
  • the present invention allows children to be familiarized with this physical reality, allowing them to get to know and develop themselves, which can mean a qualitative leap in the statement of natural law.
  • the globe model with free precession movement proposed by the invention comprises a globe comprising two poles.
  • Earth globe is understood to mean a preferably hollow element of substantially spherical configuration, flattened by the poles, in correspondence with the configuration of planet Earth.
  • the globe can rotate freely with respect to a polar axis that crosses the poles.
  • the model includes an axis vertical that is attached to the polar axis.
  • the vertical axis can also be called the ecliptic axis or the precession axis.
  • the vertical axis can rotate freely with respect to a base or base, where said base serves as a support for the entire model on a surface, preferably flat, such as a table or a shelf.
  • the polar axis has an inclined arrangement with respect to the vertical axis, hence the polar axis can also be called the inclined axis.
  • said inclined arrangement and said free rotation of the vertical axis with respect to the base allow the model with the base supported on a surface, the polar axis of the globe model can freely perform the precession movement when a user It acts directly with its hands on the globe itself, applying with its fingers a pair on the surface of the globe, while the model experiences the movement of rotation on its own axis, that is, at the same time as the globe rotates with respect to the polar axis
  • the present invention allows the user to implement a rapid movement of the precession axis with a small movement of his hands, which in relative terms of the precession cycle with respect to the distance of the stars, is realistic.
  • Child learning is related to the brain, but also to the mechanics of reversible movements, which allow such learning to be done without joint injuries.
  • the known mechanical models of the atom or the globe did not contemplate the aspect of mechanical reversibility.
  • the traditional way to ensure a sense of rotation is to resort to an irreversible mechanism, such as the commonly known as ratchet, which is used in bicycles.
  • the elements are arranged so that the mechanisms are reversible and the direction of rotation predictable.
  • the present invention by inserting an element that allows the rotation of the vertical axis with respect to the base, for example by means of the arrangement of a bearing in the embedding of the vertical ecliptic axis with the support base of the earth globe assembly.
  • This bearing allows the polar axis to rotate freely around the support base of the assembly, describing a conical movement whose axis is the vertical axis or ecliptic axis and whose generatrix is the polar axis. This movement has been known for centuries as a precession movement.
  • the technical effect provided by the bearing that allows the precession movement is that it allows the forced movement with the hands of a user of the globe to induce the conical or precession movement of the polar axis. That is to say, it is possible to make the rotation of the terrestrial globe around the pole with the hand, but by forcing the movement with the hands, it is possible to keep the terrestrial globe without rotation and make only the polar axis move, that is to say keep the Earth still and the polar axis moving or get the Earth to rotate and also move the polar axis, all depending on the movement applied by the user.
  • the units of time are the hours to refer to the rotation of the Earth and the days to refer to the rotation around the Sun.
  • the precession movement which is measured in thousands of years, it's not important.
  • the precession movement currently estimated at 25,000 years, is a very rapid movement that should be understood if, for example, it is discovered that it is performed around stars that are hundreds or thousands of light years away. This time scale is necessary to understand the images sent by artificial satellites.
  • the globe model comprises an internal globe concentric to the globe, where said inner globe is crossed by the polar axis, to which it is rigidly attached. It is a particular embodiment in which instead of a single sphere there will be two concentric. The objective of this is to have a transparent outer sphere in which the most representative stars appear and an inner sphere that, in accordance with a preferred embodiment, would actually be the globe as such.
  • the inner sphere is integral with the polar axis and the outer one has movement with respect to the internal sphere.
  • the vertical axis represents the precession movement of the globe, which has a period of one turn every 25,000 years.
  • the vertical axis is connected to the polar axis by means of a union axis, so that said union axis is rigidly connected to the vertical axis by a first end and articulated to the polar axis by means of a union bearing, where the axis Polar comprises an extended end beyond the joint bearing, said extended end having an end pinion which is operatively connected to a base plate that is fixed on the base.
  • the polar axis has the rotation possible with respect to the vertical axis.
  • said polar axis is connected by a pinion to a plate fixed to the base, which means that for each complete turn of the union axis (a period of precession, 25,000 years) the earth globe of a greater number of turns (with the dimensions that are contemplated for plate and pinion about 10-15). This is completely removed from the real behavior of the Earth, which in 25,000 years takes a few more turns.
  • the world globe model comprises an internal globe concentric to the earth globe, where the polar axis is broken and comprises a vertical section whose orientation coincides with that of the vertical axis and that crosses the internal globe, so that said inner balloon can rotate freely with respect to the vertical section of the polar axis by means of internal bearings.
  • the model comprises an internal pinion that is fixed to the inner globe and is operatively connected to a toothed crown that is fixed to the globe.
  • a disc In the vicinity of the plane of the equator of planet Earth, but not in the same plane, a disc has been fixed on the outside of which an internal pinion that is a cogwheel has been placed although it can also be a magnet system that can perform the same function.
  • the outer sphere may be transparent and a toothed crown has been attached thereto or, if appropriate, with magnets or ferromagnetic elements so that a gear is produced between this toothed crown and the inner pinion.
  • the assembly formed by the polar axis rigidly attached to the vertical axis itself can rotate freely by virtue of the vertical bearing with respect to the base or base. With this arrangement, the user can rotate the precession axis by applying a moment with his hands on the outer sphere. This rotation of the precession axis induces a relative movement between the axes of the spheres, thanks to which the set of gears rotates the inner sphere that the planet Earth can represent.
  • the embodiment of Figure 1 can serve approximately to place the globe in a position and rotate the celestial globe to explain how the stars move during the night, with the appropriate corrections associated with the ecliptic.
  • the embodiment of Figure 3 is a mechanism that allows one sphere to rotate, the globe inside another and thus position the stars represented in the outer sphere in a certain position relative to the inner world globe. It can be used in a static way, but it does not reproduce real movements of the universe, because, as previously stated, the complete rotation of the precession axis lasts 25,000 years.
  • the torque required to cause rotation of the inner sphere, in the arrangement of Figure 4, can be very small, because the mass of the inner sphere can be very low. For this reason it may be convenient not to use conventional mechanical gears, but to resort to systems typical of simple electronics or toys, such as, for example, by magnetic bands used in old video systems, attached to both spheres, whose magnets they have been oriented similarly to that used in the old video recorders. In this way, due to the effect of magnetism, when the outer sphere is rotated, the rotation of the inner sphere is induced.
  • Another possible light arrangement known, is the use of static electricity technologies, that is, by reproducing the gears with suitable paint and causing their electrostatic charge by means of an auxiliary electrical system.
  • the characteristic element of the arrangements represented in the different embodiments of the invention discussed in the preceding paragraphs is that there is a concentricity in the spheres or a confluence of axes at one point, in the case of Figures 2 and 3, but at the same time , the movement transmission system is designed with a non-confluence of forces with respect to that point, to enable the transmission of pairs of forces or moments that produce the rotation of the spheres.
  • Figure 1 shows a schematic view, according to a longitudinal section, of the globe proposed by the invention.
  • Figure 2 shows a section like that of Figure 1 of an embodiment of the globe comprising an internal globe that is integral with the polar axis, so that the globe remains as an external globe and can rotate with respect to the polar axis.
  • Figure 3 shows a section of a variant of the embodiment represented in Figure 2, in which additionally the polar axis has a prolonged end that is connected by a pinion and a plate to the base.
  • Figure 4 shows a section of another variant of the embodiment represented in Figure 2, where the polar axis is broken and has a vertical section whose orientation coincides with that of the vertical axis, so that in the present case, the balloon internal can rotate with respect to the vertical section of the polar axis.
  • the model of a globe with free precession movement that the invention proposes comprises a globe (4) comprising two poles and which can rotate freely with respect to of a polar axis (5) that crosses the poles.
  • the model comprises a vertical axis (3) that It is attached to the polar axis (5), preferably by a double bend that is constituted as a short section of axis that is joined at its ends to both the vertical axis (3) and the polar axis (5), as can be seen in Figure 1.
  • the vertical axis (3) can rotate freely with respect to a base (1) that serves as a support for the entire model on a flat surface.
  • the polar axis (5) has an inclined arrangement with respect to the vertical axis (3), which allows the polar axis (5) of the globe model to be the model with the base (1) resting on a surface. Earth can freely perform the precession movement when a user acts directly with their hands on the globe itself (4).
  • the polar axis (5) is articulated to each pole of the globe (4) by a polar bearing (6), so that these simple elements serve as support and allow the rotation of the globe (4) on its polar axis (5).
  • the vertical axis (3) is articulated to the base (1) by means of a vertical bearing (2).
  • the polar axis (5) be inclined between 20-30 ° with respect to the vertical axis (3), and preferably 24 °.
  • the characteristic element of the present invention is the insertion in the base (1) of an element that allows the rotation of the whole assembly around the vertical axis (3), known as the ecliptic axis, for example by means of the arrangement of the vertical bearing (2).
  • This constructive arrangement allows that if the globe (4) is grasped with both hands and a pair of forces is produced whose center is displaced with respect to the center of the sphere, the polar axis (5) rotates, following the so-called precession movement . That is, the sphere (4) maintains its position in space, it only balances and it is the polar axis assembly (5) with the ecliptic axis (3), which moves.
  • FIG. 2 An embodiment is shown in Figure 2 in which the model comprises an inner globe (4 ') concentric to the globe (4), where said inner globe (4') is crossed by the polar axis (5), to which it is rigidly attached.
  • Figure 3 A variant of the embodiment shown in Figure 2 is shown in Figure 3, in which the vertical axis (3) is connected to the polar axis (5) by means of a connecting axis (3 '), so that said axis of joint (3 ') is rigidly attached to the vertical axis (3) by a first end and articulated to the polar axis (5) by means of a joint bearing (7), where the polar axis (5) comprises a prolonged end (5') beyond the joint bearing (7), said extended end (5 ') having an end pinion (8) that is operatively connected with a base plate (9) that is fixed on the base (1).
  • the model comprises an internal globe (4 ') concentric to the globe (4), where the polar axis (5) is broken and comprises a vertical section ( 5 ") whose orientation coincides with that of the vertical axis (3) and which crosses the inner balloon (4 '), so that said inner balloon (4') can rotate freely with respect to the vertical section (5") of the polar axis ( 5) by means of internal bearings (10).
  • the globe model comprises an internal pinion (11) that is fixed to the inner globe (4 ') and is operatively connected to a toothed crown (12) which It is fixed to the globe (4).

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Astronomy & Astrophysics (AREA)
  • Business, Economics & Management (AREA)
  • Educational Administration (AREA)
  • Educational Technology (AREA)
  • Theoretical Computer Science (AREA)
  • Toys (AREA)

Abstract

Modelo de globo terráqueo con movimiento de precesión libre, que facilita entender el movimiento de precesión de la Tierra, para lo cualcomprende: -un globo terráqueo (4) que comprende dos polos y que puede rotar libremente respecto de un eje polar (5) que atraviesa dichos polos, -un eje vertical (3) que se encuentra unido al eje polar (5), donde dicho eje vertical (3) puede rotar libremente respecto de una base (1) y el eje polar (5) tiene una disposición inclinada respecto del eje vertical (3).

Description

MODELO DE GLOBO TERRÁQUEO CON MOVIMIENTO DE PRECESIÓN LIBRE
Campo técnico de la invención La presente invención se refiere a un modelo de globo terráqueo con movimiento de precesión libre, que tiene aplicación en el ámbito didáctico, permitiendo posibilitar que los modelos de globo terráqueo que se emplean en la actualidad en hogares y escuelas, puedan tener una utilidad añadida, al facilitar el desarrollo de la capacidad para entender movimientos abstractos en el espacio, como es el caso del movimiento de precesión experimentado por el planeta Tierra. Para conseguir esta nueva funcionalidad del globo terráqueo, de acuerdo con la invención el eje vertical o eje de la eclíptica en el modelo de globo terrestre puede girar libremente respecto de una base, lo que permite que el eje polar del modelo de globo terráqueo pueda realizar libremente el movimiento de precesión cuando el usuario actúa directamente sobre el propio globo.
Antecedentes de la invención
En las últimas décadas se está produciendo un desarrollo del conocimiento de las diversas regiones del cerebro en las que se realizan diferentes actividades cognitivas. Se conoce desde hace tiempo que el movimiento de la mano ocupa una parte importante del cerebro. Se conoce igualmente que el desarrollo de los movimientos en la infancia temprana, tiene incidencia en el aprendizaje de la lectura y escritura y posteriormente en los resultados escolares. Por este motivo existe desde hace algunos años un seguimiento de estos aspectos del desarrollo infantil en los preescolares de países desarrollados.
En edades en torno a los cinco años, los niños y niñas aprenden la disciplina de la escritura, que les lleva a situarse en una hoja plana de papel blanco y les enseña a asociar la parte alejada del papel con la posición "arriba", la parte próxima a su cuerpo representa "abajo" y en dirección perpendicular, en culturas occidentales, aprenden a asociar "derecha" e "izquierda" con la imagen especular del papel. De este modo, los niños aprenden que la mano derecha de alguien que tienen enfrente está situada de manera opuesta a su propia mano derecha. Sin embargo en el papel no ocurre algo exactamente igual, dado que su mano izquierda, por ejemplo, coincide precisamente con la parte izquierda del papel. En culturas no occidentales estas orientaciones son diferentes, pero en todos los casos, es necesario realizar un esfuerzo por parte de los niños, en edades próximas a los cincos años, para trasladar a una superficie plana una realidad que hasta ese momento siempre han percibido en tres dimensiones. En cualquier caso, esta disciplina sobre el papel, plana, acompaña a los niños a lo largo de todo el proceso de escolarización, y aquellos que son capaces de adaptarse con éxito, la continúan en su etapa universitaria y en su vida profesional.
En este contexto, los modelos tridimensionales de globo terráqueo son conocidos desde hace varios siglos. Sin embargo, en contraposición a la disciplina plana mencionada en el párrafo anterior, el globo terráqueo es sustancialmente esférico, de forma que permite entender que los conceptos de arriba y abajo se pueden invertir y que la derecha y la izquierda son meras interpretaciones. Dichos modelos se pueden mover con las manos y además suelen incorporar inscripciones en su superficie esférica, en representación de los países o de los relieves existentes en el planeta Tierra. De algún modo, estos modelos gustan a los niños porque representan una realidad más fiable y menos complicada que una hoja de papel en blanco. En este sentido, los modelos de globo terráqueo constituyen una referencia a las antiguas escuelas de artes y oficios, precursoras de las universidades.
En las primeras décadas del siglo XX, todavía se mantuvo una diferenciación entre quienes desarrollarían su vida profesional sobre el papel y quienes practicarían un oficio. Y en las últimas décadas, la calidad de la enseñanza y la evolución socioeconómica ha permitido que la población de países desarrollados tenga habilidades sobradas sobre el papel y pueda elegir el tipo de actividad profesional. En la actualidad, en el presente siglo, gracias al desarrollo electrónico, se ha optado por priorizar el desarrollo de capacidades planas, sobre el papel y la pantalla del ordenador, y simular la realidad tridimensional, especialmente en el ámbito del ocio, la medicina y en determinadas actividades profesionales. Sin embargo, el desarrollo de modelos tridimensionales, basados en aprendizaje bidimensional, papel, resulta complicado hasta el punto de que está llevando a dedicar recursos importantes al desarrollo de la llamada realidad virtual. En los modelos de globo terráqueo, se pueden identificar esencialmente dos ejes. Un eje vertical perpendicular al plano de la eclíptica, denominado eje de eclíptica o eje de precesión, y un eje inclinado, o eje polar, perpendicular a la línea del ecuador. Los globos existentes en la actualidad se construyen de modo que el eje de eclíptica es vertical, empotrado en una base que soporta el conjunto de globo terráqueo sobre la superficie horizontal, la mesa o el suelo. Un brazo o algún elemento mecánico similar sirven de soporte al eje polar. En los globos terráqueos, el ángulo entre el eje polar y el de la eclíptica es de 23° 27'. Finalmente, la esfera terrestre queda soportada sobre cojinetes de modo que puede rotar alrededor del eje polar que la atraviesa por su centro.
En definitiva, en los modelos actuales únicamente está permitida una rotación libre del globo terráqueo respecto de su eje polar, es decir, aquel que une entre sí ambos polos. Por lo tanto, estos modelos no permiten un aprendizaje tridimensional completo, que permita facilitar futuros desarrollos tridimensionales, gracias a un mejor desarrollo de capacidades en las primeras etapas del aprendizaje.
En el conocimiento relacionado con la física y la astronomía, los modelos de globo terráqueo existentes en la actualidad no responden a una visión actual del universo, dado que emplean la hora como unidad de referencia temporal relativa a explicar el giro de la Tierra alrededor de su eje polar y los meses, los equinoccios, para explicar la rotación de la Tierra alrededor del Sol y el cambio de estaciones. Con estas unidades, el movimiento de precesión, cuyo periodo se estima alrededor de 25000 años, no tiene importancia. De ahí que los globos terráqueos convencionales consideran fijo o muy lento el movimiento de precesión.
Conviene resaltar que en la actualidad, gracias a la información que se recibe del espacio con los modernos satélites y sistemas de investigación espacial, los descubrimientos en astronomía se emplean para nuevas interpretaciones de la física atómica, motivo por el cual una actualización del globo terráqueo que facilite la comprensión de algunos movimientos, puede convertirse en una herramienta de enseñanza novedosa.
En definitiva, los modelos de globo terráqueo existentes en la actualidad permiten entender la geometría de la Tierra, la geografía, la rotación de nuestro planeta, con su implicación en las diferentes horas, así como las estaciones del año debidas a la inclinación del eje polar respecto al sol. Pero no sirven para desarrollar las capacidades de comprensión del movimiento durante el aprendizaje infantil, escolar y universitario que requiere el actual desarrollo científico.
Descripción de la invención
La presente invención se refiere a un modelo de globo terráqueo con movimiento de precesión libre, que permite una nueva utilización del globo terrestre, relacionada con el desarrollo de capacidades durante la etapa de aprendizaje infantil. La invención se dirige a completar el desarrollo del aprendizaje de la escritura con un aprendizaje tridimensional, que permite facilitar futuros desarrollos tridimensionales, gracias a un mejor desarrollo de capacidades en las primeras etapas del aprendizaje.
En el ámbito de la física y la astronomía, la presente invención responde a una visión más actual del universo, como consecuencia de que los modernos telescopios y satélites artificiales nos están familiarizando con otras magnitudes y distancias, que se miden, por ejemplo, en años luz. En estas magnitudes, una rotación como el movimiento de rotación del eje de precesión de la Tierra, que completa su ciclo cada 25000 años supone un movimiento de rotación relativamente más rápido, de otro orden de magnitud, que el giro de la Tierra sobre su propio eje, es decir sobre el eje que une ambos polos, también denominado eje polar. La presente invención permite familiarizar a los niños y niñas con esta realidad física, permitiendo que la vayan conociendo y desarrollando por sí mismos, lo que puede suponer un salto cualitativo en el enunciado de la ley natural.
El modelo de globo terráqueo con movimiento de precesión libre que la invención propone comprende un globo terráqueo que comprende dos polos. Se entiende por globo terráqueo un elemento preferentemente hueco de configuración sustancialmente esférica, achatado por los polos, en correspondencia con la configuración del planeta Tierra. El globo terráqueo puede rotar libremente respecto de un eje polar que atraviesa los polos. Asimismo, el modelo comprende un eje vertical que se encuentra unido al eje polar. El eje vertical, también puede denominarse eje de eclíptica o eje de precesión.
Pues bien de acuerdo con la invención, el eje vertical puede rotar libremente respecto de una base o peana, donde dicha base sirve como apoyo de todo el modelo sobre una superficie, preferentemente plana, como puede ser una mesa o una estantería. Por otra parte, el eje polar tiene una disposición inclinada respecto del eje vertical, de ahí que al eje polar también se le pueda denominar eje inclinado. De este modo, dicha disposición inclinada y dicha rotación libre del eje vertical respecto de la base, permiten que estando el modelo con la base apoyada en una superficie, el eje polar del modelo de globo terráqueo pueda realizar libremente el movimiento de precesión cuando un usuario actúa directamente con sus manos sobre el propio globo terráqueo, aplicando con los dedos un par sobre la superficie del globo, al tiempo que el modelo experimenta el movimiento de rotación sobre su propio eje, es decir, al tiempo que el globo terráqueo gira respecto del eje polar.
La presente invención posibilita que el usuario consiga implementar un movimiento rápido del eje de precesión con un movimiento pequeño de sus manos, lo cual en términos relativos del ciclo de precesión respecto a la distancia de las estrellas, es realista.
Hubo una época en que la Tierra era considerada el centro del universo. Descubrir que giraba alrededor del Sol y enunciar las leyes de la física clásica supuso un avance que todavía, varios siglos después estamos asumiendo. En la actualidad, los escritores científicos tratan de interpretar el movimiento de todo el conjunto y se intenta trasladar estos escritos a la enseñanza obligatoria. Familiarizar en edades escolares a los estudiantes con movimientos a otra escala de tiempo, miles de años y de distancia, años luz, sin influenciarles con teorías no contrastadas, puede facilitar que desarrollen una visión más objetiva del universo.
En la creación del globo terráqueo objeto de la presente invención se contemplan básicamente tres áreas de conocimiento. Por un lado los ya comentados desarrollos actuales en relación con el conocimiento del cerebro y el aprendizaje infantil. Pero esto por sí mismo no permitiría concebir un nuevo desarrollo de globo terráqueo. En la presente invención se contemplan dos áreas de conocimiento actuales, que se encuentran en desarrollo y que en el pasado llevaron a desechar los modelos mecánicos atómicos, como posibles herramientas de comprensión de movimientos en el espacio. Son la mecánica y la matemática.
En el área de conocimiento de la mecánica, la presente invención se requiere prestar atención al concepto de reversibilidad de los mecanismos. Un concepto que está en desarrollo desde hace siglos, pero que sigue sin estar dominado, como se demuestra, a modo de ejemplo, en el hecho de que las prótesis de cadera no son suficientemente reversibles y si se fuerza su movimiento, se dislocan.
El aprendizaje infantil está relacionado con el cerebro, pero también con la mecánica de los movimientos reversibles, que permiten que dicho aprendizaje se realice sin lesiones en las articulaciones. Los conocidos modelos mecánicos del átomo o del globo terráqueo no contemplaban el aspecto de la reversibilidad mecánica.
En el área de la modelización matemática del comportamiento de la naturaleza, los físicos coetáneos de Einstein optaron por elegir recurrir al recurso matemático de elevar al cuadrado, para definir un sentido en el movimiento, debido a que como es bien conocido, al elevar al cuadrado una función, el signo obtenido es positivo y eso permite garantizar el sentido que se quiere dar al resultado final. Encontrar un modelo mecánico que represente la citada función es complicado. En algunas realizaciones de la presente invención se recurre al empleo de la lógica matemática utilizada en la segunda mitad del siglo XX, asociada al desarrollo de la informática. Concretamente, para asegurar un sentido de giro se emplea un dispositivo mecánico en el cual la función mayor número de dientes o menor número de dientes, asegura el sentido de giro sin recurrir a la función cuadrática. Hasta el momento, el modo tradicional de asegurar un sentido de giro es recurrir a un mecanismo irreversible, como el vulgarmente conocido como carraca, que se emplea en las bicicletas. En el modelo propuesto se disponen los elementos de modo que los mecanismos sean reversibles y el sentido de giro predecible. La presente invención, mediante la inserción de un elemento que permite la rotación del eje vertical respecto de la base, por ejemplo mediante la disposición de un cojinete en el empotramiento del eje vertical de eclíptica con la base de soporte del conjunto de globo terráqueo. Este cojinete permite que el eje polar gire libremente alrededor de la base de soporte del conjunto, describiendo un movimiento cónico cuyo eje es el eje vertical o eje de eclíptica y cuya generatriz es el eje polar. Este movimiento es conocido desde hace siglos como movimiento de precesión.
El efecto técnico que aporta el cojinete que permite el movimiento de precesión, es que permite que el movimiento forzado con las manos de un usuario del globo terráqueo induzca el movimiento cónico o de precesión del eje polar. Es decir, es posible hacer que con la mano se pueda provocar la rotación del globo terrestre alrededor del polo, pero forzando el movimiento con las manos, es posible mantener el globo terrestre sin rotación y hacer que se mueva únicamente el eje polar, es decir mantener la Tierra quieta y el eje polar en movimiento o conseguir que gire la Tierra y además se mueva el eje polar, todo ello en función del movimiento aplicado por parte del usuario.
Permitir el movimiento libre del eje polar, de modo que colocando las manos sobre el globo terráqueo se pueda inducir el movimiento de precesión, presenta las siguientes ventajas:
1. Permite asociar durante el aprendizaje aspectos racionales de interpretación de movimientos de la Tierra con el movimiento de las manos. De modo que la interpretación de movimientos en el espacio es más completa. Estos aspectos del aprendizaje están actualmente en pleno desarrollo.
2. Permite una visión del universo más actual, con diferentes escalas de tiempo, como se explica a continuación:
a. En la física clásica, las unidades de tiempo son las horas para referirnos a la rotación de la Tierra y los días para referirnos al giro alrededor del Sol. Con esta escala de tiempo, el movimiento de precesión, que se mide en miles de años, no tiene importancia. b. Sin embargo, en términos científicos, el movimiento de precesión, estimado en la actualidad en 25000 años, es un movimiento muy rápido que conviene entender si por ejemplo se descubre que se realiza alrededor de astros que se encuentran a cientos o miles de años luz. Esta escala de tiempo es necesaria para comprender las imágenes que envían los satélites artificiales.
3. Puede facilitar la comprensión desarrollo de nuevos movimientos espaciales futuros, incluyendo nuevos modelos atómicos, debido a que el globo terrestre es, posiblemente, el modelo tridimensional más fiable que tenemos en esta área de conocimiento.
4. Resulta sencilla la comprensión de movimiento de precesión en edad infantil, debido a que es un movimiento cónico similar al que tenemos en algunas de nuestras articulaciones, como cadera, hombro, dedo pulgar y otros.
5. Facilita la comprensión del concepto de reversibilidad de mecanismos que es inherente a nuestra especie, debido a que si realizamos por accidente algún movimiento en posición inadecuada o lo que es igual, mecánicamente irreversible, sentimos dolor o se produce una rotura de nuestra articulación.
6. Introduce en la comprensión intuitiva del par motor. En el caso concreto del globo terráqueo, si se posicionan las manos según una línea que pase por el centro del globo, aparece un par de fuerzas que hacen rotar el eje, siempre que la dirección de éstas no pase por el centro del globo, es decir se requiere fuerza y distancia para conseguir rotación. Los niños y niñas están familiarizados con estas cuestiones, que les permiten caminar, desde los tres años.
Se contempla la posibilidad de que el modelo de globo terráqueo comprenda un globo interno concéntrico al globo terráqueo, donde dicho globo interno es atravesado por el eje polar, al que está rígidamente unido. Se trata de una realización particular en la que en lugar de una única esfera existirán dos concéntricas. El objetivo de esto es tener una esfera exterior transparente en la que figuren los astros más representativos y una esfera interior que, de acuerdo con una realización preferente sería en realidad el globo terráqueo como tal. La esfera interna es solidaria al eje polar y la exterior tiene movimiento respecto a la esfera interna ella. El eje vertical representa el movimiento de precesión del globo, que tiene un período de una vuelta cada 25.000 años.
Asimismo, se contempla que el eje vertical esté conectado al eje polar mediante un eje de unión, de manera que dicho eje de unión está rígidamente unido al eje vertical por un primer extremo y articulado al eje polar mediante un cojinete de unión, donde el eje polar comprende un extremo prolongado más allá del cojinete de unión, teniendo dicho extremo prolongado un piñón extremo que está operativamente conectado con un plato basal que se encuentra fijado sobre la base.
En este caso, respecto al caso expuesto en el párrafo anterior, el eje polar tiene posibilitado el giro respecto al eje vertical. Por su parte, dicho eje polar está conectado mediante un piñón a un plato fijado a la base, lo que hace que por cada vuelta completa del eje de unión (un período de precesión, 25.000 años) el globo terráqueo de un número superior de vueltas (con las dimensiones que se contemplan para plato y piñón unas 10-15). Esto es completamente alejado del comportamiento real de la Tierra, que en 25.000 años da unas cuantas vueltas más. Se contempla la posibilidad de que el modelo de globo terráqueo comprenda un globo interno concéntrico al globo terráqueo, donde el eje polar está quebrado y comprende un tramo vertical cuya orientación coincide con la del eje vertical y que atraviesa el globo interno, de manera que dicho globo interno puede rotar libremente respecto del tramo vertical del eje polar mediante sendos cojinetes internos. En la presente realización se contempla que el modelo comprenda un piñón interno que está fijo al globo interno y se encuentra operativamente conectado con una corona dentada que está fija al globo terráqueo.
En este caso en lugar de utilizar un piñón y un plato externos a las esferas utiliza un método de transmisión, uno de ellos fijo a la esfera interior y el otro fijo a la esfera exterior. Asimismo se contempla una transmisión por medio de engranajes, imanes, fotones y cualquier otra opción posibles. En esta alternativa el mecanismo de rotación del globo interior se ha introducido entre las dos esferas concéntricas, en lugar de estar emplazado fuera, como en el caso anterior. En el presente caso se ha modificado la geometría del eje polar, o eje de precesión, de modo que la esfera interior que supongamos representa el planeta Tierra, esté suspendida sobre dos cojinetes de modo que se le permite girar libremente. En la proximidad del plano del ecuador del planeta Tierra, pero no en el mismo plano, se ha fijado un disco en cuyo exterior se ha colocado un piñón interno que es una rueda dentada aunque también puede ser un sistema de imanes que pueda realizar la misma función. La esfera exterior puede ser transparente y en ella se ha fijado una corona dentada o si resulta conveniente, con imanes o elementos ferromagnéticos de modo que se produzca un engranaje entre esta corona dentada y el piñón interno. El conjunto formado por el eje polar rígidamente unido al propio eje vertical puede rotar libremente en virtud del cojinete vertical respecto de la base o peana. Con esta disposición, el usuario puede hacer rotar el eje de precesión aplicando un momento con las manos sobre la esfera exterior. Este giro del eje de precesión induce un movimiento relativo entre los ejes de las esferas, gracias al cual el conjunto de engranes hace rotar a la esfera interior que puede representar el planeta Tierra.
Conviene resaltar la importancia de que los centros de las coronas dentadas no coincidan en un mismo punto, de modo que el mecanismo de engranes pueda ser reversible y los esfuerzos de inercia de la esfera interior puedan transmitirse a la esfera exterior sin que se rompa el mecanismo.
Conviene igualmente aclarar que en este ejemplo se ha invertido el movimiento, de forma que es el universo el que tiene movimiento de precesión, mientras la Tierra se encuentra en un eje vertical. Conviene indicar que este modelo puede servir para representar y explicar el comportamiento de otros planetas, como Saturno con su anillo o Júpiter y sus lunas, u otros astros. Una realización de la invención, que permite exponer de modo más detallado la potencialidad de la invención, consiste en sustituir el globo terráqueo por una esfera transparente en la cual pueden representarse las estrellas mediante puntos. Comúnmente conocida como esfera celeste. Imprimiendo con las manos un par motor sobre el citado globo, es posible hacer que el eje inclinado, denominado eje polar, rote alrededor del eje vertical o de precesión.
Insertando dentro del globo transparente, concéntrico con él, un globo terráqueo unido rígidamente al citado eje polar, se tiene un mecanismo que permite que la aplicación de un momento sobre la esfera transparente que representa la esfera celeste, se induce un movimiento de rotación del globo terráqueo interior. De este modo es posible situar las estrellas en una posición relativa respecto a la Tierra, tal y como se representa en la figura 3.
La realización de la figura 1 , puede servir de modo aproximado para situar el globo terráqueo en una posición y hacer rotar el globo celeste para explicar cómo se mueven las estrellas durante la noche, con las debidas correcciones asociadas a la eclíptica.
La realización de la figura 3, es un mecanismo que permite rotar una esfera, el globo terráqueo dentro de otra y posicionar de este modo las estrellas representadas en la esfera exterior en una determinada posición relativa al globo terráqueo interior. Puede ser empleada de un modo estático, pero no reproduce movimientos reales del universo, debido a que como se ha expuesto anteriormente el giro completo del eje de precesión dura 25000 años.
Si se quiere una mayor precisión en cuanto a movimientos relativos de la Tierra respecto a las estrellas, e preciso un mecanismo más complejo, como el que se representa en la figura 4. En dicha realización, se ha introducido una rueda, que en su rodadura sobre la peana, hace girar al globo terráqueo varias rotaciones por una rotación del eje de precesión. Una construcción sencilla, como la reflejada en dicha realización, permite llegar a diez rotaciones por una vuelta del eje de precesión. Permite la enseñanza de posición de las estrellas y además la exposición de que la
Tierra gira como una peonza. Pero no refleja la rotación de velocidades existente entre el giro de la Tierra respecto al eje polar y la rotación de éste respecto al eje de precesión. Si se desea conseguir un modelo de globo terráqueo que gire a la velocidad aproximada real respecto a las estrellas, la relación de reducción sería producto de aproximadamente 365 vueltas al año por aproximadamente 25000 vueltas del eje de precesión respecto a las estrellas, es decir, una relación de rotación de 365 X 25000 = 9.125.000 vueltas.
El par motor necesario para provocar la rotación de la esfera interior, en la disposición de la figura 4, puede ser muy pequeño, debido a que la masa de la esfera interior puede ser muy baja. Por este motivo puede resultar conveniente no emplear engranajes mecánicos convencionales, sino recurrir a sistemas propios de la electrónica sencilla o de los juguetes, como por ejemplo, mediante bandas magnéticas de las empleadas en los antiguos sistemas de vídeo, adheridas a ambas esferas, cuyos imanes se hayan orientado de modo similar al empleado en las antiguas grabadoras de vídeo. De este modo, por efecto del magnetismo, al rotar la esfera exterior, se induce el giro de la esfera interior. Otra posible disposición ligera, conocida, es el empleo de tecnologías de electricidad estática, es decir, reproduciendo los engranes con pintura adecuada y provocando su carga electrostática mediante un sistema eléctrico auxiliar.
En la construcción del mecanismo de la figura 4, podría recurrirse al empleo de imanes u otros modos electrónicos para la realización práctica de dicho mecanismo.
Basada en las definiciones de Newton, la ciencia actual considera que la rotación de la Tierra es inercial, no acoplada al movimiento de las estrellas. El mecanismo que se propone en la figura 4 permite simular o modelizar un movimiento, no es un modelo diseñado para reproducir otros aspectos del conocimiento científico, que siguen siendo objeto de investigación científica, pero los efectos de las fuerzas de inercia asociados a este modelo son muy elevados. El elemento característico de las disposiciones representadas en las diferentes realizaciones de la invención comentadas en los párrafos anteriores es que existe una concentricidad en las esferas o una confluencia de ejes en un punto, en el caso de las figuras 2 y 3, pero al mismo tiempo, el sistema de trasmisión del movimiento se diseña con una no confluencia de fuerzas respecto a ese punto, para posibilitar la transmisión de pares de fuerzas o momentos que producen la rotación de las esferas. La rotación del eje polar en las figuras 2 y 3 es posible, porque las manos se sitúan en una posición que no es diametralmente opuesta respecto al centro de la esfera, o en caso de ser diametralmente opuesta, la dirección de las fuerzas no pasa por el centro, permitiendo de este modo transmitir un par motor, es decir un producto de una fuerza por un distancia.
En la figura 3 el momento de rotación se genera con una rueda, mientras que en la figura 4 el momento de rotación se produce gracias a un mecanismo reversible caracterizado por la posibilidad de transmitir movimientos asociados a la no confluencia de fuerzas en un punto, es decir a la aparición de pares de fuerzas o de fuerzas aplicadas a una determinada distancia respecto al punto o eje de rotación.
La característica de que al permitir la rotación libre del eje de rotación se posibilita la rotación de una esfera concéntrica en su interior es aplicable a producir la rotación de más de una esfera concéntrica, lo que permitiría su empleo para su uso docente en la explicación de orbitales atómicos, poniendo por ejemplo en el interior de una esfera transparente otra esfera transparente con una representación de electrones y en su interior, en lugar del globo terráqueo se representaría el núcleo atómico.
Si se quisiese reproducir el movimiento de nutación además de los anteriores, sería preciso intercalar una tercera esfera concéntrica entre la esfera celeste y el globo terráqueo y dotarle de rotación mediante un mecanismo similar al descrito en la figura 4, con la característica de que el sentido de giro fuese contrario al de la esfera celeste y su eje mostrase otro ángulo diferente al del eje polar. Se contempla emplear la misma disposición para un modelo atómico.
Descripción de los dibujos
Para complementar la descripción que se está realizando y con objeto de ayudar a una mejor comprensión de las características del invento, de acuerdo con un ejemplo preferente de realización práctica del mismo, se acompaña como parte integrante de dicha descripción, un juego de dibujos en donde con carácter ilustrativo y no limitativo, se ha representado lo siguiente:
La figura 1.- Muestra una vista esquemática, según una sección longitudinal, del globo terráqueo que la invención propone.
La figura 2.- Muestra una sección como la de la figura 1 de una realización del globo que comprende un globo interno que es solidario al eje polar, de manera que el globo terráqueo queda como globo externo y puede rotar respecto del eje polar.
La figura 3.- Muestra una sección de una variante de la realización representada en la figura 2, en la que adicionalmente el eje polar tiene un extremo prolongado que se conecta mediante un piñón y un plato a la base.
La figura 4.- Muestra una sección de otra variante de la realización representada en la figura 2, donde el eje polar está quebrado y tiene un tramo vertical cuya orientación coincide con la del eje vertical, de manera que en el presente caso, el globo interno puede rotar respecto del tramo vertical del eje polar.
Realización preferente de la invención
A la vista de la figura reseñada puede observarse cómo en una de las posibles realizaciones de la invención el modelo de globo terráqueo con movimiento de precesión libre que la invención propone comprende un globo terráqueo (4) que comprende dos polos y que puede rotar libremente respecto de un eje polar (5) que atraviesa los polos. Asimismo, el modelo comprende un eje vertical (3) que se encuentra unido al eje polar (5), preferentemente mediante un doble acodamiento que se constituye como un corto tramo de eje que está unido por sus extremos tanto al eje vertical (3) como el eje polar (5), tal y como se aprecia en la figura 1. El eje vertical (3) puede rotar libremente respecto de una base (1) que sirve como apoyo de todo el modelo sobre una superficie plana. Por otra parte, el eje polar (5) tiene una disposición inclinada respecto del eje vertical (3), lo que permite que estando el modelo con la base (1) apoyada en una superficie, el eje polar (5) del modelo de globo terráqueo pueda realizar libremente el movimiento de precesión cuando un usuario actúa directamente con sus manos sobre el propio globo terráqueo (4).
De acuerdo con una realización preferente de la invención, se contempla que el eje polar (5) esté articulado a cada polo del globo terráqueo (4) mediante un cojinete polar (6), de forma que estos sencillos elementos sirven de soporte y permiten el giro del globo terráqueo (4) sobre su eje polar (5). Asimismo, por su parte, se contempla que el eje vertical (3) esté articulado a la base (1) mediante un cojinete vertical (2). Asimismo, se contempla que el eje polar (5) esté inclinado entre 20-30° respecto al eje vertical (3), y preferentemente 24°.
Por lo tanto, el elemento característico de la presente invención es la inserción en la base (1) de un elemento que permite la rotación de todo el conjunto alrededor del eje vertical (3), conocido como eje de eclíptica, por ejemplo mediante la disposición del cojinete vertical (2). Esta disposición constructiva permite que si se agarra el globo terráqueo (4) con las dos manos y se provoca un par de fuerzas cuyo centro está desplazado respecto al centro de la esfera, el eje polar (5) rote, siguiendo el llamado movimiento de precesión. Es decir, la esfera (4) mantiene su posición en el espacio, únicamente se balancea y es el conjunto de eje polar (5) con el eje de eclíptica (3), el que se mueve.
En una escala de tiempo de horas, la posición estática del eje vertical (3), con la que estamos familiarizados, es realista. Pero si se cambia la escala de tiempos a por ejemplo la unidad cien mil años, el movimiento de precesión sería de cuatro vueltas por unidad de tiempo y el giro de la Tierra, sería de 365 x 100000 = 365000 revoluciones por unidad de tiempo, tendría otra interpretación, como por ejemplo color u onda electromagnética, lo cual es más próximo a nuestra interpretación actual del universo. En esa misma escala de tiempo de cien mil años cada unidad el movimiento de precesión de cuatro vueltas por unidad de tiempo, alrededor de una estrella situada a cuatrocientos años luz, empieza a ser comprensible, a mostrar una escala de tiempo y distancia proporcionada. La ubicación del cojinete vertical (2) en la base (1) del modelo tridimensional de globo terráqueo permite usos a diferentes escalas de tiempo, lo cual permite intuir a los estudiantes de física, la importancia de la escala de tiempo en la interpretación de la ley natural, por ejemplo cuando se explican relaciones tradicionalmente denominadas fuerzas fuertes y débiles.
En la figura 2 se muestra una realización en la que el modelo comprende un globo interno (4') concéntrico al globo terráqueo (4), donde dicho globo interno (4') es atravesado por el eje polar (5), al que está rígidamente unido. En la figura 3 se muestra una variante de la realización mostrada en la figura 2, en la que el eje vertical (3) está conectado al eje polar (5) mediante un eje de unión (3'), de manera que dicho eje de unión (3') está rígidamente unido al eje vertical (3) por un primer extremo y articulado al eje polar (5) mediante un cojinete de unión (7), donde el eje polar (5) comprende un extremo prolongado (5') más allá del cojinete de unión (7), teniendo dicho extremo prolongado (5') un piñón extremo (8) que está operativamente conectado con un plato basal (9) que se encuentra fijado sobre la base (1).
Por último, en la figura 4, se muestra otra variante de realización en la que el modelo comprende un globo interno (4') concéntrico al globo terráqueo (4), donde el eje polar (5) está quebrado y comprende un tramo vertical (5") cuya orientación coincide con la del eje vertical (3) y que atraviesa el globo interno (4'), de manera que dicho globo interno (4') puede rotar libremente respecto del tramo vertical (5") del eje polar (5) mediante sendos cojinetes internos (10). De acuerdo con una realización preferente de la variante representada en la figura 4, el modelo de globo terráqueo comprende un piñón interno (11) que está fijo al globo interno (4') y se encuentra operativamente conectado con una corona dentada (12) que está fija al globo terráqueo (4).
A la vista de esta descripción y juego de figuras, el experto en la materia podrá entender que las realizaciones de la invención que se han descrito pueden ser combinadas de múltiples maneras dentro del objeto de la invención. La invención ha sido descrita según algunas realizaciones preferentes de la misma, pero para el experto en la materia resultará evidente que múltiples variaciones pueden ser introducidas en dichas realizaciones preferentes sin exceder el objeto de la invención reivindicada.

Claims

REIVINDICACIONES
1.- Modelo de globo terráqueo con movimiento de precesión libre que comprende:
- un globo terráqueo (4) que comprende dos polos y que puede rotar libremente respecto de un eje polar (5) que atraviesa dichos polos,
- un eje vertical (3) que se encuentra unido al eje polar (5),
caracterizado por que el eje vertical (3) puede rotar libremente respecto de una base (1) y el eje polar (5) tiene una disposición inclinada respecto del eje vertical (3).
2.- Modelo de globo terráqueo según la reivindicación 1 , en el que el eje polar (5) está articulado a cada polo del globo terráqueo (4) mediante un cojinete polar (6).
3. - Modelo de globo terráqueo según cualquiera de las reivindicaciones 1 y 2, en el que el eje vertical (3) está articulado a la base (1) mediante un cojinete vertical (2).
4. - Modelo de globo terráqueo según cualquiera de las reivindicaciones anteriores, en el que el eje polar (5) está inclinado entre 20-30° respecto al eje vertical (3).
5.- Modelo de globo terráqueo según cualquiera de las reivindicaciones anteriores, en el que el eje polar (5) está inclinado 24° respecto al eje vertical (3).
6. - Modelo de globo terráqueo según cualquiera de las reivindicaciones anteriores, que comprende un globo interno (4') concéntrico al globo terráqueo (4), donde dicho globo interno (4') es atravesado por el eje polar (5), al que está rígidamente unido.
7. - Modelo de globo terráqueo según la reivindicación 6, en el que el eje vertical (3) está conectado al eje polar (5) mediante un eje de unión (3'), de manera que dicho eje de unión (3') está rígidamente unido al eje vertical (3) por un primer extremo y articulado al eje polar (5) mediante un cojinete de unión (7), donde el eje polar (5) comprende un extremo prolongado (5') más allá del cojinete de unión (7), teniendo dicho extremo prolongado (5') un piñón extremo (8) que está operativamente conectado con un plato basal (9) que se encuentra fijado sobre la base (1).
8. - Modelo de globo terráqueo según cualquiera de las reivindicaciones 1 a 5, que comprende un globo interno (4') concéntrico al globo terráqueo (4), donde el eje polar (5) está quebrado y comprende un tramo vertical (5") cuya orientación coincide con la del eje vertical (3) y que atraviesa el globo interno (4'), de manera que dicho globo interno (4') puede rotar libremente respecto del tramo vertical (5") del eje polar (5) mediante sendos cojinetes internos (10).
9. - Modelo de globo terráqueo según la reivindicación 8, que comprende un piñón interno (11) que está fijo al globo interno (4') y se encuentra operativamente conectado con una corona dentada (12) que está fija al globo terráqueo (4).
10. - Modelo de globo terráqueo según la reivindicación 8, que comprende un conjunto de transmisión de movimiento de rotación al globo terráqueo (4) y al globo interno (4') que comprende bandas magnéticas o pintura electrostáticas.
1 1. - Uso de un modelo de globo terráqueo de acuerdo con cualquiera de las reivindicaciones anteriores, para explicar el funcionamiento del átomo, o de las corrientes magmáticas de la tierra o para representar, de manera adicional al movimiento de precesión, el movimiento de nutación, y a tal efecto comprenda al menos una esfera concéntrica situada en el interior del globo interno (4').
PCT/ES2014/070380 2013-05-03 2014-04-30 Modelo de globo terráqueo con movimiento de precesión libre WO2014177749A1 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES201330532U ES1079855Y (es) 2013-05-03 2013-05-03 Modelo de globo terraqueo con movimiento de precesion libre
ESU201330532 2013-05-03

Publications (1)

Publication Number Publication Date
WO2014177749A1 true WO2014177749A1 (es) 2014-11-06

Family

ID=48470625

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2014/070380 WO2014177749A1 (es) 2013-05-03 2014-04-30 Modelo de globo terráqueo con movimiento de precesión libre

Country Status (2)

Country Link
ES (1) ES1079855Y (es)
WO (1) WO2014177749A1 (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160074101A (ko) * 2014-12-18 2016-06-28 박성윤 세차운동 확인이 가능한 삼구의조립체

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105679178B (zh) * 2016-04-05 2018-08-14 浙江大学城市学院 一种高精度双轮轴、双游标地轴进动演示与定量测量实验仪

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0653738A1 (en) * 1993-11-11 1995-05-17 Mikihisa Tsuzuki Earth globe
WO2003019499A1 (en) * 2001-08-31 2003-03-06 Mamstar.Com Globe apparatus for showing rotation and revolution
WO2011034288A2 (ko) * 2009-09-18 2011-03-24 Kang Tae Goo 천체 모형 장치 및 그 구동 방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0653738A1 (en) * 1993-11-11 1995-05-17 Mikihisa Tsuzuki Earth globe
WO2003019499A1 (en) * 2001-08-31 2003-03-06 Mamstar.Com Globe apparatus for showing rotation and revolution
WO2011034288A2 (ko) * 2009-09-18 2011-03-24 Kang Tae Goo 천체 모형 장치 및 그 구동 방법

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160074101A (ko) * 2014-12-18 2016-06-28 박성윤 세차운동 확인이 가능한 삼구의조립체
KR101709912B1 (ko) 2014-12-18 2017-02-24 박성윤 세차운동 확인이 가능한 삼구의조립체

Also Published As

Publication number Publication date
ES1079855Y (es) 2013-08-21
ES1079855U (es) 2013-05-23

Similar Documents

Publication Publication Date Title
RU199054U1 (ru) Устройство (фишка-волейбольный мяч) для групповых коррекционно-развивающих занятий и тренировки пространственной памяти
WO2014177749A1 (es) Modelo de globo terráqueo con movimiento de precesión libre
Leverington Babylon to Voyager and beyond: a history of planetary astronomy
KR101450473B1 (ko) 달 운동 관측용 학습도구
US1928025A (en) Astronomical appliance for educational and other purposes
KR100953860B1 (ko) 달 위상변화 모형
JP2005078031A (ja) 天球儀
CN104134396A (zh) 教学与科普天球仪
US2358075A (en) Training aid
CN202102636U (zh) 地球运动教学演示用具
Kerner Our Celestial Clockwork: From Ancient Origins to Modern Astronomy of the Solar System
CN109243288A (zh) 一种用于物理教学的太阳系天体运动模型演示仪
Lanciano Teaching/learning astronomy at the elementary school level
KR200416821Y1 (ko) 천체 학습기
Corin et al. Including students in a model of the Earth, Moon, and Sun System
Usuda-Sato et al. DISSEMINATION OF THE “TOUCH THE UNIVERSE” TACTILE EXHIBITION
JP3148834U (ja) 月齢表示装置
Keeley Formative Assessment Probes: The Day-Night Cycle
Zanazzi et al. A Permanent and Inclusive Exhibition at INAF Arcetri Astrophysical Observatory
CN201126692Y (zh) 地月演示仪
JP3187432U (ja) 月の満ち欠け学習装置
CN203882542U (zh) 地球晨昏仪教学仪器
Morrow et al. Kinesthetic astronomy
TW201606726A (zh) 月球視運動三維立體演示器
Keeley et al. Darkness at Night

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14791529

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: P201590112

Country of ref document: ES

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14791529

Country of ref document: EP

Kind code of ref document: A1