WO2014177023A1 - 业务类型确定方法和装置 - Google Patents
业务类型确定方法和装置 Download PDFInfo
- Publication number
- WO2014177023A1 WO2014177023A1 PCT/CN2014/076256 CN2014076256W WO2014177023A1 WO 2014177023 A1 WO2014177023 A1 WO 2014177023A1 CN 2014076256 W CN2014076256 W CN 2014076256W WO 2014177023 A1 WO2014177023 A1 WO 2014177023A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- data
- service
- determining
- packet
- service type
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L43/00—Arrangements for monitoring or testing data switching networks
- H04L43/02—Capturing of monitoring data
- H04L43/026—Capturing of monitoring data using flow identification
Definitions
- the present invention relates to the field of communications, and in particular to a service type determining method and apparatus.
- network communication software ie, applications
- VoIP Voice Over
- Network communication software has more and more users, which has caused great impact on the mainstream business of operators. At the same time, it also brings many problems, such as occupying a large amount of network bandwidth and increasing the burden on the network.
- Network communication software generally supports text chat, file/picture transmission, voice/video call and other services.
- the current identification method is to identify the traffic of the overall software, and does not distinguish and identify the traffic of each service. In fact, in these services, the voice/video call service has the greatest impact on the operator, and the data transmission with normal file transmission output does not affect the traditional. The voice service of the operator.
- a service type determining method including: sampling a data stream of an application to obtain a data packet; determining, according to an attribute of the data packet, a service type corresponding to the data flow, The attribute includes at least one of the following: length, rate.
- Determining, according to the attribute of the data packet, determining a service type corresponding to the data flow including: determining a relationship between a rate of the data packet and one or more thresholds; determining, according to the relationship, the data flow corresponding to Type of business.
- determining, according to an attribute of the data packet, a service type corresponding to the data flow comprising: counting, by a predetermined number of data packets, a number of data packets whose length falls within one or more predetermined ranges; The result determines the type of service corresponding to the data stream.
- counting the number of data packets whose length in the predetermined number of data packets falls within one or more predetermined ranges comprises: counting, according to the protocol type of the data packet, respectively, the length of the predetermined number of data packets falls into The number of packets in one or more predetermined ranges.
- the protocol type of the data packet is a Transmission Control Protocol (TCP) or a User Datagram Protocol (UDP).
- TCP Transmission Control Protocol
- UDP User Datagram Protocol
- the method before the sampling of the data stream of the application to obtain the data packet, the method further includes: counting a distribution of the attribute of the data packet in the data stream of the multiple service types, where the data obtained by sampling The attributes of the packet are referenced to the distribution, to determine the type of service corresponding to the data stream in which the data packet is located.
- a service type determining apparatus including: a sampling module, configured to sample a data stream of an application to obtain a data packet; and a determining module, configured to set an attribute according to the data packet Determining a service type corresponding to the data flow, where the attribute includes at least one of the following: length, rate.
- the determining module includes: a first determining unit, configured to determine a relationship between a rate of the data packet and one or more thresholds; a second determining unit, configured to determine the data stream according to the relationship The corresponding business type.
- the determining module includes: a statistical unit configured to count the number of data packets whose length in the predetermined number of data packets falls within one or more predetermined ranges; and the third determining unit is configured to be configured according to the statistics The result of the unit statistics determines the type of service corresponding to the data stream.
- the statistical unit is further configured to separately count, according to the protocol type of the data packet, the number of data packets whose length in the predetermined number of data packets falls within one or more predetermined ranges.
- the device further includes: a statistics module, configured to collect a distribution of the attributes of the data packets in the data flows of the multiple service types, where the attributes of the sampled data packets are referenced by referring to the distribution , to determine the type of service corresponding to the data stream in which the data packet is located.
- the embodiment of the present invention adopts a method of sampling a data stream of an application to obtain a data packet, and determining a service type corresponding to the data flow according to the attribute of the data packet, where the attribute includes at least one of the following: length, rate.
- the embodiment of the invention solves the problem that the software type cannot be accurately controlled according to the overall traffic classification type, and proposes a service type determination scheme, thereby providing support for precise control of the service.
- FIG. 1 is a schematic flowchart of a service type determining method according to an embodiment of the present invention
- FIG. 2 is a structural block diagram of a service type determining apparatus according to an embodiment of the present invention
- FIG. 3 is a service type according to an embodiment of the present invention.
- 1 is a block diagram of a preferred structure of a service type determining apparatus according to an embodiment of the present invention
- FIG. 5 is a block diagram 3 of a preferred structure of a service type determining apparatus according to an embodiment of the present invention
- FIG. 7 is a structural block diagram of a traffic accurate subdivision identification system according to a preferred embodiment of the present invention
- FIG. 1 is a schematic flowchart of a service type determining method according to an embodiment of the present invention
- FIG. 2 is a structural block diagram of a service type determining apparatus according to an embodiment of the present invention
- FIG. 3 is a service type according to an embodiment of the present invention.
- 1 is a block diagram of a preferred structure of a service type
- FIG. 8 is a flowchart of a service data model construction method according to a preferred embodiment of the present invention
- FIG. 9 is a flow chart of a method for statistically measuring a packet length according to a preferred embodiment of the present invention
- FIG. 10 is a flow chart showing a method for detecting a packet rate according to a preferred embodiment of the present invention
- FIG. 11 is a preferred embodiment of the present invention.
- Step S102 sampling an application data stream And obtaining a data packet.
- Step S104 Determine, according to an attribute of the data packet, a service type corresponding to the data flow, where the attribute includes at least one of the following: length, rate.
- the service type of the data packet is determined by the attribute of the data packet sampled in the data stream, and the method for performing the subsequent processing according to the type of the overall traffic partitioning application according to the application in the related art, the embodiment of the present invention provides A way of further subdividing the data stream of the application, so that it is possible to perform fine management of the service according to the service type of the data stream.
- the problem that the software type cannot be accurately controlled according to the overall traffic classification type is solved, and a service type determination scheme is proposed, thereby providing support for precise control of the service.
- there are various ways to determine the service type corresponding to the data flow according to the attributes of the data packet and the following three preferred modes are described.
- the service type corresponding to the data flow can be determined according to the rate of the data packet.
- the rate of data flow of different service types has different characteristics. For example, in a Skype (a VOIP application, which can be used for voice calls) application, the rate of data packets for text chat is less than 50 pps; The rate of packets used for voice/video calling services is greater than 50 pps. Therefore, according to the rate of the data packet in the same application, the service type corresponding to the data stream (for example, for text chat service, for voice and video call service, etc.) can be determined.
- the rate of data packets used for text chat may be different in different applications, the above rules can be followed, that is, data packets for text chat or voice/video calls or other services in the same application.
- the rate has different characteristics, and the type of service corresponding to the data flow of the application can be determined according to the difference of these characteristics. For example, determining a relationship between a rate of the sampled data packet and one or more thresholds; determining a service type corresponding to the data flow according to the relationship.
- a preferred manner of classifying the service type of the service flow according to the attributes of the data packet is provided by determining the service type corresponding to the data flow according to the rate of the data packet.
- the length distribution of data packets in different service types has certain characteristics. For example, in a Skype application, 300 data packets obtained by continuous/discontinuous sampling are used for files/ In the data packet of the picture transmission, the number of UDP protocol types greater than 1300 bytes is greater than 60; the number of data packets of the UDP protocol type longer than 1300 bytes in the data packet for voice/video call service is less than 60 . Therefore, for this Skype application, the service type corresponding to the data stream can be determined by the length of the data packet (for example, for file picture transmission service, or for voice/video call service, etc.).
- the length of a predetermined number of packets sampled in data streams of different service types has different characteristics, according to The difference in these characteristics determines the type of service that the data stream corresponds to in this application. For example, the number of data packets whose length falls within one or more predetermined ranges in a predetermined number of data packets obtained by statistical sampling; and the service type corresponding to the data flow is determined according to the statistical result.
- the foregoing predetermined number of data packets may be data packets obtained by continuously/discontinuously sampling a predetermined number from a predetermined position of one data stream.
- a preferred manner of classifying the service type of the service flow according to the attributes of the data packet is provided.
- the foregoing preferred mode 1 and the preferred mode 2 may be used in combination, that is, the service type of the data stream is determined according to the rate of the data packet and the length distribution of the predetermined number of data packets. In this way, feature matching is performed on a plurality of features of the data stream, so that the service type of the data stream can be determined more accurately.
- the service type of the data stream may also be determined for the attributes of the data packets of different protocol types according to different protocol types of the data packets.
- the number of data packets having a length of 500 to 520 Bytes is greater than 50 for file/picture transmission.
- the number of data packets longer than 1300 bytes is greater than 60; in the 300 data packets, the number of data packets longer than 500 Bytes in the TCP data packet for voice/video call service.
- the number is less than 50, and in the UDP data packet for the voice/video call service, the number of data packets having a length greater than 1300 bytes is less than 60.
- the number of data packets whose length falls within one or more predetermined ranges in a predetermined number of data packets may be separately calculated according to different protocol types of the data packets, and the data packets of different data types obtained according to statistics are respectively collected.
- the distribution of lengths further determines the type of traffic for the data stream.
- the above-described method and preferred embodiment can distinguish between service types corresponding to known attribute distributions of data streams.
- the data in the application Before the stream is sampled to obtain the data packet, the distribution of the attributes of the data packet in the data stream of multiple different service types in the application may be counted. After the distribution of the attribute is obtained, the attributes of the data packet obtained by the subsequent sampling are passed.
- the embodiment can also provide a computer program for executing the above embodiment and a carrier for storing the above computer program. That is, the above embodiment of the present application can perform a natural law-compliant operation process through a suitable computing architecture.
- the present application is described in the above context, the above-described computer programs for implementing the steps are not meant to be limiting, and various aspects of the described actions and operations may be implemented in hardware.
- the embodiment further provides a service type determining apparatus, which is used to implement the foregoing service type determining method.
- 2 is a structural block diagram of a service type determining apparatus according to an embodiment of the present invention.
- the apparatus includes: a sampling module 22 and a determining module 24, wherein the sampling module 22 is configured to sample an application data stream. The data packet is obtained; the determining module 24 is coupled to the sampling module 22, and is configured to determine a service type corresponding to the data stream according to the attribute of the data packet, where the attribute includes at least one of the following: length, rate.
- FIG. 3 is a block diagram of a preferred structure of a service type determining apparatus according to an embodiment of the present invention. As shown in FIG.
- the determining module 24 may include: a first determining unit 32 configured to determine a rate of a data packet and one or The relationship between the plurality of thresholds; the second determining unit 34 is coupled to the first determining unit 32, and is arranged to determine the type of service corresponding to the data stream according to the relationship.
- 4 is a block diagram of a preferred structure of a service type determining apparatus according to an embodiment of the present invention. As shown in FIG. 4, preferably, the determining module 24 may include: a calculating unit 42 configured to count the length of the predetermined number of data packets.
- the third determining unit 44 is coupled to the statistics unit 42 and configured to determine the service type corresponding to the data stream based on the result of the statistical unit statistics.
- 5 is a block diagram 3 of a preferred structure of a service type determining apparatus according to an embodiment of the present invention.
- the determining module may include: a first determining unit 32, a second determining unit 34, a statistics unit 42 and a The third determining unit 44.
- the statistics unit 42 is further configured to separately count, according to the protocol type of the data packet, the number of data packets whose length in the predetermined number of data packets falls within one or more predetermined ranges.
- the protocol type of the data packet is TCP or UDP.
- FIG. 6 is a block diagram of a preferred structure of a service type determining apparatus according to an embodiment of the present invention.
- the service type determining apparatus further includes: a statistics module 62 coupled to the sampling module 22, configured to count multiple The distribution of the attributes of the data packets in the data stream of the service type, wherein the attributes of the sampled data packets are referenced to the distribution, to determine the service type corresponding to the data flow in which the data packet is located.
- a statistics module 62 coupled to the sampling module 22, configured to count multiple The distribution of the attributes of the data packets in the data stream of the service type, wherein the attributes of the sampled data packets are referenced to the distribution, to determine the service type corresponding to the data flow in which the data packet is located.
- the preferred embodiment provides a method for subdividing and identifying the traffic of the software. It should be noted that the preferred embodiment does not describe in detail the full details of the VOIP software traffic identification method, but rather explains and explains the service type determination scheme involved in the embodiment of the present invention. In practical applications, the method for identifying the traffic described in the preferred embodiment may also be combined with existing methods for identifying based on load, application layer signature, traffic statistics, and the like. That is, in the preferred embodiment, based on the above existing traffic identification method, the traffic is further subdivided and accurately identified, so as to confirm the specific service corresponding to the traffic.
- the preferred embodiment provides a method for identifying VOIP subdivision services based on packet statistics and traffic speed measurement, which can accurately identify voice streams and other data streams in VOIP traffic, and facilitate subsequent precise control for each service.
- the technical solution of the preferred embodiment includes: Step 1: Perform packet capture on the text chat, file/picture transmission, and voice/video call service of the VOIP software based on the P2P technology, and obtain packets corresponding to each service. (equivalent to the above data packet) length range and corresponding packet rate model; Step 2: Perform real-time detection on the packet length and the packet rate of the real-time stream (that is, the real-time data stream).
- Step 3 Compare the detected value of the real-time stream with the data model of each service, and determine that the current stream (ie, the data stream) is satisfied. Which kind of business data model; finally get the specific business information corresponding to the real-time flow.
- the service data streams of the VOIP software can be subdivided, and the text chat, file/picture transmission, and voice/video call service streams are separately identified for accurate control of subsequent service traffic.
- the preferred embodiment further provides a system for accurately segmenting and identifying VOIP traffic, including:
- VOIP business data model construction module Set to construct a data model of each VOIP service, so as to facilitate subsequent determination of a specific service flow according to the corresponding model.
- the statistics module of the packet length information of the packet is set to count the number of packets whose packet length meets certain conditions, and obtains the number of packets in a certain packet length range.
- the definition is performed.
- the statistical range [N, N+M] indicates that the packet length information of M packets is counted from the Nth packet, and the statistical result Sx ⁇ y indicates that the packet length is within the range of [x, y] bytes (ie, Byte).
- the packet rate detection module is set to detect the packet exchange rate (ie, rate) of the current stream; for example, setting a packet rate per packet (packs per second, pps for short), by statistics
- the number of packets received per unit time is used to determine whether the specified rate has been reached; wherein the packet rate T pps indicates that there are approximately T packets interacting in 1 second.
- the message accurate identification result processing module is set to determine the current flow belongs to the service data model according to the packet length statistics result and the packet rate detection result, and outputs the result to facilitate accurate control of the subsequent traffic.
- the preferred embodiments are further described below. The method and system in the preferred embodiment described above can accurately identify the traffic of various software.
- FIG. 7 is a structural block diagram of a traffic accurate subdivision identification system according to a preferred embodiment of the present invention.
- the preferred embodiment is based on the system of FIG. 7 and is applied to a network device and a background analysis service, where the network device may be a core network gateway, and a wireless device. Controller, peripheral Deep Packet Inspection (DPI) and other devices.
- the system of the preferred embodiment includes the following structure:
- the VOIP service data model construction module 72 is configured to analyze the packet length and the packet rate corresponding to each VOIP service by data sampling, and construct a corresponding data model.
- the VOIP service data model construction module 72 performs analysis on the messages of the Skype text chat, the file/picture transmission, and the voice/video call service. Through data analysis, the following characteristics can be obtained: A. File/picture transmission: Most of them are transmitted through UDP, and can also be transmitted through TCP. When UDP transmission, there will be consecutive large packet lengths (packet length greater than 1300 Bytes). TCP packet The length is generally in the range of 500 ⁇ 520Bytes;
- Voice/video call The voice call length is generally below 200 Bytes, the video call length is generally below 500 Bytes, and occasionally there are large messages above lOOOBytes, but the number is relatively small; the packet rate is generally 50 pps. the above.
- the packet length is generally small, below 200Bytes, the packet rate is generally below 50 pps.
- the packet length statistics module 74 is configured to count the number of packets whose statistical packet length meets certain conditions. For example, the packet length statistics module 74 receives the data stream of the Skype.
- the packet rate detection module 76 is configured to detect a packet exchange rate of the current stream. For example, message rate detection module 76 receives the data stream of Skype and detects if the rate of the Skype traffic flow has reached a specified rate.
- the message accurate identification result processing module 78 is configured to compare the data model of the corresponding service according to the packet length statistics result and the rate detection result to determine which service the data stream belongs to.
- FIG. 8 is a schematic flowchart of a method for constructing a service data model according to a preferred embodiment of the present invention. As shown in FIG. 8, the method includes the following steps: Step S802: separately sampling Skype text chat, file/picture transmission, and voice/video call services. Step S804, analyzing differences and characteristics of Skype services in terms of packet size and packet rate; Step S806, constructing a corresponding feature model according to the characteristics of the Skype service in terms of the packet size and the packet rate; for example, after the data sampling analysis, the feature models corresponding to the Skype services that can be obtained are as follows:
- A Skype text chat: packet rate is less than 50 pps;
- B Skype file / picture transmission: In the 200,500 packets, the number of UDP packets longer than 1300 Bytes is greater than 60; the length of TCP packets is 500 ⁇ 520 Bytes The number of packets is greater than 50;
- FIG. 9 is a schematic flowchart of a packet length statistics method according to a preferred embodiment of the present invention. As shown in FIG.
- Step S902 When receiving a packet, determine whether an application layer payload packet length statistics is to be performed. If not required, return directly; where, the received message refers to the traffic flow message of Skype.
- Step S904 determining the packet length. For the Skype packet, if the UDP packet length is greater than 1300 Bytes and the TCP packet length is between 500 and 520 Bytes, the corresponding packet statistics count is incremented by one; FIG. 10 is a preferred implementation according to the present invention.
- the flow chart of the packet rate detection method of the example includes the following steps: Step S1002: determining, according to the packet processed by the packet length statistics module 74, whether it is the first speed measurement; if it is the first speed measurement, executing step S1004, otherwise performing step S1006 Step S1004, initializing the packet rate-related information, and recording the test rate and the number of tokens corresponding to the token bucket; wherein, in the above preferred embodiment, the test rate may be 50 pps, and the corresponding token number is the corresponding rate.
- Step S1006 checking whether the current message timestamp and the last speed measurement time interval is greater than 1 second; if greater than step S1010, otherwise step S1008; Step S1008, the number of tokens is decreased by 1, and then step S1012 is performed; in step S1010, the number of tokens is increased (the number of seconds of the interval * the test rate); in step S1012, it is determined whether the number of tokens is 0; if 0, step S1014 is performed. Otherwise, step S1016 is performed; in step S1014, the rate detection is successful; in step S1016, the rate detection fails, and the subsequent message is continuously detected; FIG.
- Step S1102 The result output by the message rate detecting module 76 is input, and the VOIP business model data is determined; wherein the service model data is the Skype obtained by the VOIP business data model building module 72.
- Step S1104 determining whether the packet length statistics meet the packet length limit of the service model; wherein the packet length of the service model is limited to the packet length feature in each of the Skype service models in the VOIP service data model construction module 72; Step S1106, determining whether the packet rate statistics meet the rate requirement of the service model; wherein the rate requirement of the service model is VOIP
- Each of the service data model construction modules 72 has a packet rate characteristic in each Skype service model.
- Step S1108 Output corresponding service information conforming to the data model feature; the service information is a service type corresponding to the Skype data packet, for example: Chat or file/picture transfer or voice/video call.
- the above embodiment of the present invention solves the problem that the software of the software cannot be accurately controlled according to the overall traffic classification type, and a scheme for determining the service type is proposed, thereby providing support for precise control of the service. It will be apparent to those skilled in the art that the various modules or steps of the present invention described above can be implemented by a general-purpose computing device that can be centralized on a single computing device or distributed across multiple computing devices.
- the computing device may be implemented by program code executable by the computing device, such that they may be stored in the storage device by the computing device and, in some cases, may be different from this
- the steps shown or described are performed sequentially, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps thereof are fabricated as a single integrated circuit module.
- the invention is not limited to any specific combination of hardware and software.
- the above is only a preferred embodiment of the present invention, and is not intended to limit the present invention, and various modifications and changes can be made to the present invention. Any modifications, equivalent substitutions, improvements, etc. made within the spirit and scope of the present invention are intended to be included within the scope of the present invention.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Data Exchanges In Wide-Area Networks (AREA)
Abstract
本发明公开了一种业务类型确定方法和装置,其中,该方法包括:对应用的数据流进行采样,得到数据包;根据数据包的属性确定数据流对应的业务类型,其中,该属性包括以下至少之一:长度、速率。通过本发明,解决了根据整体流量划分软件类型而无法对软件的业务进行精确控制的问题,提出了一种业务类型确定的方案,从而提供了对业务进行精确控制的支持。
Description
业务类型确定方法和装置 技术领域 本发明涉及通信领域, 具体而言, 涉及业务类型确定方法和装置。 背景技术 随着计算机网络的迅速发展,网络通信软件(即,应用),例如网络电话(Voice Over
Internet Protocal,简称为 VOIP)已经广泛应用于信息共享、实时通信、信息检索等领域。 网络通信软件拥有了越来越多的用户, 对运营商的主流业务造成了极大的冲击, 同时 也带来了众多问题, 例如大量占用网络带宽、 加重网络负担等。 网络通信软件一般都支持文字聊天、文件 /图片传输、语音 /视频通话等业务。 当前 的识别方法是识别整体软件的流量, 未对各个业务的流量进行区分识别, 而实际上在 这些业务中语音 /视频通话业务对运营商影响最大, 而文件传输输出正常的数据业务不 影响传统运营商的语音业务。 针对相关技术中根据整体流量划分软件类型而无法对软件的业务进行精确控制的 问题, 目前尚未提出有效的解决方案。 发明内容 本发明实施例提供了一种业务类型确定方法和装置, 以至少解决相关技术中根据 整体流量划分软件类型而无法对软件的业务进行精确控制的问题。 根据本发明实施例的一个方面, 提供了一种业务类型确定方法, 包括: 对应用的 数据流进行采样, 得到数据包; 根据所述数据包的属性, 确定所述数据流对应的业务 类型, 其中, 所述属性包括以下至少之一: 长度、 速率。 优选地, 根据所述数据包的属性确定所述数据流对应的业务类型包括: 确定所述 数据包的速率与一个或多个阈值之间的关系; 根据所述关系, 确定所述数据流对应的 业务类型。 优选地, 根据所述数据包的属性确定所述数据流对应的业务类型包括: 统计预定 数量的数据包中长度落入到一个或多个预定范围内的数据包的个数; 根据所述统计的 结果确定所述数据流对应的业务类型。
优选地, 统计预定数量的数据包中长度落入到一个或多个预定范围内的数据包的 个数包括: 根据所述数据包的协议类型, 分别统计预定数量的数据包中长度落入到一 个或多个预定范围内的数据包的个数。 优选地, 所述数据包的协议类型为传输控制协议 (Transmission Control Protocol, 简称为 TCP) 或者用户数据包协议 (User Datagram Protocol, 简称为 UDP)。 优选地, 所述对应用的数据流进行采样得到数据包之前, 所述方法还包括: 统计 多个业务类型的数据流中数据包的所述属性的分布情况, 其中, 采样得到的所述数据 包的属性通过参考所述分布情况, 以确定所述数据包所在的数据流对应的业务类型。 根据本发明实施例的另一方面, 还提供了一种业务类型确定装置, 包括: 采样模 块, 设置为对应用的数据流进行采样得到数据包; 确定模块, 设置为根据所述数据包 的属性确定所述数据流对应的业务类型, 其中, 所述属性包括以下至少之一: 长度、 速率。 优选地, 所述确定模块包括: 第一确定单元, 设置为确定所述数据包的速率与一 个或多个阈值之间的关系; 第二确定单元, 设置为根据所述关系确定所述数据流对应 的业务类型。 优选地, 所述确定模块包括: 统计单元, 设置为统计预定数量的数据包中长度落 入到一个或多个预定范围内的数据包的个数; 第三确定单元, 设置为根据所述统计单 元统计的结果确定所述数据流对应的业务类型。 优选地, 所述统计单元还设置为根据所述数据包的协议类型, 分别统计预定数量 的数据包中长度落入到一个或多个预定范围内的数据包的个数。 优选地, 所述装置还包括: 统计模块, 设置为统计多个业务类型的数据流中数据 包的所述属性的分布情况, 其中, 采样得到的所述数据包的属性通过参考所述分布情 况, 以确定所述数据包所在的数据流对应的业务类型。 通过本发明实施例, 采用了对应用的数据流进行采样, 得到数据包; 根据数据包 的属性确定数据流对应的业务类型的方式, 其中, 该属性包括以下至少之一: 长度、 速率。 本发明实施例解决了根据整体流量划分软件类型而无法对软件的业务进行精确 控制的问题, 提出了一种业务类型确定的方案, 从而提供了对业务进行精确控制的支 持。
附图说明 此处所说明的附图用来提供对本发明实施例的进一步理解,构成本申请的一部分, 本发明的示意性实施例及其说明用于解释本发明, 并不构成对本发明的不当限定。 在 附图中: 图 1是根据本发明实施例的业务类型确定方法的流程示意图; 图 2是根据本发明实施例的业务类型确定装置的结构框图; 图 3是根据本发明实施例的业务类型确定装置的优选结构框图一; 图 4是根据本发明实施例的业务类型确定装置的优选结构框图二; 图 5是根据本发明实施例的业务类型确定装置的优选结构框图三; 图 6是根据本发明实施例的业务类型确定装置的优选结构框图四; 图 7是根据本发明优选实施例的流量精确细分识别系统的结构框图; 图 8是根据本发明优选实施例的业务数据模型构造方法的流程示意图; 图 9是根据本发明优选实施例的数据包长度统计方法的流程示意图; 图 10是根据本发明优选实施例的数据包速率检测方法的流程示意图; 图 11是根据本发明优选实施例的报文细分识别结果处理方法的流程示意图。 具体实施方式 需要说明的是, 在不冲突的情况下, 本申请中的实施例及实施例中的特征可以相 互组合。 下面将参考附图并结合实施例来详细说明本发明。 需要说明的是, 在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的 计算机系统中执行, 并且, 虽然在流程图中示出了逻辑顺序, 但是在某些情况下, 可 以以不同于此处的顺序执行所示出或描述的步骤。 以下实施例可以使用其它通用或专用计算或通信环境或配置来操作。 适用于以下 实施例的众所周知的计算系统、 环境和配置的示例包括但不限于, 个人计算机、 服务
器, 多处理器系统、 基于微处理的系统、 小型机、 大型计算机、 智能设备、 终端 (包 括移动终端)、 以及包括任一上述系统或设备的分布式计算环境。 本实施例提供了一种业务类型确定方法, 图 1是根据本发明实施例的业务类型确 定方法的流程示意图, 如图 1所示, 包括如下的步骤: 步骤 S102, 对应用的数据流进行采样, 得到数据包; 步骤 S104, 根据数据包的属性, 确定数据流对应的业务类型, 其中, 该属性包括 以下至少之一: 长度、 速率。 通过上述步骤, 通过数据流中采样得到的数据包的属性确定数据流的业务类型, 相对于相关技术中根据应用的整体流量划分应用的类型, 以进行后续处理的方式, 本 发明实施例提供了一种对应用的数据流进一步细分的方式, 从而使得根据数据流的业 务类型进行业务的精细化管理成为了可能。 通过本发明的上述实施例, 解决了根据整 体流量划分软件类型而无法对软件的业务进行精确控制的问题, 提出了一种业务类型 确定的方案, 从而提供了对业务进行精确控制的支持。 优选地, 在根据数据包的属性确定数据流对应的业务类型的方式有多种, 下面例 举三种优选方式进行说明。 优选方式一 可以根据数据包的速率确定数据流对应的业务类型。 对于同一应用而言, 不同的 业务类型的数据流的速率具有不同的特点, 例如, 在一个 Skype (—种 VOIP应用, 可 以用于语音通话) 应用中, 用于文字聊天的数据包的速率小于 50pps; 用于语音 /视频 通话业务的数据包的速率大于 50pps。 因此, 根据同一个应用中数据包的速率可以对 数据流对应的业务类型 (例如用于文字聊天业务, 用于语音视频通话业务等) 进行确 定。 虽然在不同的应用中, 用于文字聊天的数据包的速率可能不相同, 但是, 都可以 遵循上述的规律, 即在同一个应用中用于文字聊天或语音 /视频通话或其他业务的数据 包的速率具有不同的特征, 根据这些特征的不同即可确定在这一个应用的数据流对应 的业务类型。 例如, 确定采样得到的数据包的速率与一个或多个阈值之间的关系; 根 据该关系确定数据流对应的业务类型。 通过根据数据包的速率确定数据流对应的业务 类型的方式, 提供了一种根据数据包的属性对业务流的业务类型进行分类的一种优选 方式。 优选方式二
还可以根据预定数量的数据包的长度确定数据流对应的业务类型。 对于同一应用 而言, 不同的业务类型的数据流中的数据包的长度分布具有一定的特点, 例如, 在一 个 Skype应用中,连续 /不连续采样得到的 300个数据包中,用于文件 /图片传输的数据 包中 UDP协议类型的长度大于 1300bytes的数据包的个数大于 60个; 用于语音 /视频 通话业务的数据包中 UDP协议类型的长度大于 1300bytes的数据包的个数小于 60个。 因此,对于这个 Skype应用,就可以通过数据包的长度确定数据流对应的业务类型(例 如用于文件图片传输业务, 或用于语音 /视频通话业务等)。 同样的, 虽然在不同的应 用中数据包长度的分布会有所不同, 但是都遵循上述的规律, 即不同业务类型的数据 流中采样得到的预定数量的数据包的长度具有不同的特征, 根据这些特征的不同即可 确定在这一个应用中数据流对应的业务类型。 例如, 统计采样得到的预定数量的数据 包中长度落入到一个或多个预定范围内的数据包的个数; 根据统计的结果确定数据流 对应的业务类型。 需要说明的是, 上述预定数量的数据包可以是从一个数据流的预定 位置进行连续 /不连续采样预定数量得到的数据包。通过根据预定数量的数据包的长度 确定数据流对应的业务类型的方式, 提供了一种根据数据包的属性对业务流的业务类 型进行分类的一种优选方式。 优选方式三 此外, 还可以将上述优选方式一和优选方式二结合使用, 即同时根据数据包的速 率和预定数量的数据包的长度分布的特征, 对数据流的业务类型进行确定。 通过这样 的方式, 对数据流的多个特征进行特征匹配, 从而可以更准确地确定数据流的业务类 型。 在一些优选的实施方式中, 还可以根据数据包的协议类型的不同, 针对不同协议 类型的数据包的属性确定数据流的业务类型。 例如, 在一个 Skype应用中, 采样得到 的 300个数据包中, 用于文件 /图片传输的 TCP数据包中, 长度在 500~520Bytes的数 据包的个数大于 50个而用于文件 /图片传输的 UDP数据包中, 长度大于 1300bytes的 数据包的个数大于 60个;同样是在这 300个数据包中,用于语音 /视频通话业务的 TCP 数据包中, 长度大于 500Bytes的数据包的个数小于 50个, 而用于语音 /视频通话业务 的 UDP数据包中, 长度大于 1300bytes的数据包的个数小于 60个。 因此, 还可以结 合数据包的协议类型的不同, 分别统计预定数量的数据包中长度落入到一个或多个预 定范围内的数据包的个数, 根据统计得到的不同数据类型的数据包的长度的分布, 进 一步准确地确定数据流的业务类型。 通过上述的方法和优选实施例可以对数据流的已知的属性分布对应的业务类型进 行区分。 优选地, 为了对未知的属性分布对应的业务类型进行区分, 在对应用的数据
流进行采样得到数据包之前, 还可以对应用中多个不同的业务类型的数据流中数据包 的属性的分布情况进行统计, 在得到属性的分布情况之后, 后续采样得到的数据包的 属性通过参考该分布情况, 就可以确定数据包所在的数据流对应的业务类型。 通过对 不同的应用的不同业务的数据流中数据包的属性的分布情况进行统计, 就能针对不同 应用的数据流中数据包的属性确定分别对应的。 本实施例还可以提供一个用于执行上述实施例的计算机程序以及保存上述计算机 程序的载体, 即本申请上述实施例可以通过一个合适的计算体系结构来进行符合自然 规律的运行过程。 另外, 尽管在上述上下文中描述本申请, 但上述用于实现执行步骤 的计算机程序并不意味着是限制性的, 所描述的动作和操作的各方面也可用硬件来实 现。 本实施例还提供了一种业务类型确定装置, 该装置用于实现上述业务类型确定方 法。 图 2是根据本发明实施例的业务类型确定装置的结构框图, 如图 2所示, 该装置 包括: 采样模块 22和确定模块 24, 其中, 采样模块 22, 设置为对应用的数据流进行 采样得到数据包; 确定模块 24耦合至采样模块 22, 设置为根据数据包的属性确定数 据流对应的业务类型, 其中, 属性包括以下至少之一: 长度、 速率。 通过上述装置, 解决了根据整体流量划分软件类型而无法对软件的业务进行精确 控制的问题, 提出了一种业务类型确定的方案, 从而提供了对业务进行精确控制的支 持。 本实施例中所涉及到的模块、 单元可以通过软件的方式实现, 也可以通过硬件的 方式来实现。 本实施例中所描述的模块、 单元也可以设置在处理器中, 例如, 可以描 述为: 一种处理器包括采样模块 22和确定模块 24。 其中, 这些模块的名称在某些情 况下并不构成对该模块本身的限定, 例如, 采样模块还可以被描述为 "用于对应用的 数据流进行采样得到数据包的模块"。 在该装置中涉及的对应功能也能结合上述方法所对应的描述进行结合描述和说 明, 在此不再赘述。 图 3是根据本发明实施例的业务类型确定装置的优选结构框图一, 如图 3所示, 优选地, 确定模块 24可以包括: 第一确定单元 32, 设置为确定数据包的速率与一个 或多个阈值之间的关系; 第二确定单元 34耦合至第一确定单元 32, 设置为根据关系 确定数据流对应的业务类型。
图 4是根据本发明实施例的业务类型确定装置的优选结构框图二, 如图 4所示, 优选地, 确定模块 24可以包括: 统计单元 42, 设置为统计预定数量的数据包中长度 落入到一个或多个预定范围内的数据包的个数; 第三确定单元 44耦合至统计单元 42, 设置为根据统计单元统计的结果确定数据流对应的业务类型。 图 5是根据本发明实施例的业务类型确定装置的优选结构框图三, 如图 5所示, 优选地, 确定模块可以包括: 第一确定单元 32、 第二确定单元 34、 统计单元 42和第 三确定单元 44。 优选地, 统计单元 42还设置为根据数据包的协议类型,分别统计预定数量的数据 包中长度落入到一个或多个预定范围内的数据包的个数。 优选地, 数据包的协议类型为 TCP或者 UDP。 图 6是根据本发明实施例的业务类型确定装置的优选结构框图四, 如图 6所示, 优选地, 该业务类型确定装置还包括: 统计模块 62耦合至采样模块 22, 设置为统计 多个业务类型的数据流中数据包的属性的分布情况, 其中, 采样得到的数据包的属性 通过参考分布情况, 以确定数据包所在的数据流对应的业务类型。 下面结合优选实施例进行说明。 针对相关技术中仅仅识别出这类软件的流量并不能完全满足应用的要求, 还需要 能够细分识别各业务的流量, 本优选实施例提供了一种针对软件的流量进行细分识别 的方法。 在此需要说明的是本优选实施例并没有详细说明 VOIP软件流量的识别方法 的全部细节, 而是对本发明实施例中涉及的业务类型确定方案的解释和说明。 在实际 应用中, 本优选实施例中描述的流量的识别方法还可以结合已有的基于载荷、 应用层 签名、 流量统计等方法的识别方法。 即, 本优选实施例是在上述已有的流量识别方法 的基础上, 对流量进行进一步的细分精确识别, 以便确认流量对应的具体业务。 本优选实施例提供了一种基于报文统计和流量测速来识别 VOIP细分业务的方法, 可以实现对 VOIP流量中语音流和其它数据流的精确识别, 便于后续针对各业务进行 精确控制。 为达到上述目的, 本优选实施例的技术方案包括: 步骤 1, 针对基于 P2P技术的 VOIP软件的文字聊天、 文件 /图片传输、 语音 /视频 通话业务进行抓包采样, 得到各业务对应的报文 (相当于上述的数据包) 长度范围和 对应的数据包速率模型;
步骤 2, 对实时流 (即实时的数据流) 的报文长度、 数据包速率进行实时检测; 步骤 3, 比较实时流的检测值和各业务的数据模型, 判断当前流 (即数据流) 满 足哪种业务的数据模型; 最后得到实时流对应的具体业务信息。 通过本优选实施例, 可以将 VOIP软件各业务数据流进行细分, 将文字聊天、 文 件 /图片传输、 语音 /视频通话业务流分别识别出来, 用于后续业务流量的精确控制。 本优选实施例还提供了一种 VOIP流量精确细分识别的系统, 包括:
VOIP各业务数据模型构造模块: 设置为构造 VOIP各业务的数据模型, 便于后续 根据对应的模型来判断具体的业务流。 报文的包长信息的统计模块, 设置为按流为单位, 分别统计报文长度满足一定条 件的报文个数, 得到一定包长范围中的报文个数; 在本实施例中, 定义了统计范围 [N, N+M]表示从第 N个包开始, 统计 M个包的包长信息, 统计结果 Sx~y表示包长在 [x, y]字节 (即, Byte) 范围内的报文个数; 数据包速率的检测模块, 设置为检测当前流的数据包交互速率 (即速率); 例如, 设置指定速率 T每秒包数(packet per second, 简称为 pps), 通过统计单位时间内收到 的数据包个数来判断是否达到了指定速率;其中,数据包速率 T pps表示 1秒大约有 T 个数据包交互。 报文精确识别结果处理模块, 设置为根据包长统计结果和数据包速率检测结果, 结合构造的 VOIP各业务数据模型判断当前流属于哪种业务, 并将结果输出, 便于后 续流量的精确控制。 下面对优选实施例进行进一步说明。 上述优选实施例中的方法与系统可以对各种软件的业务流量进行精确识别。 在本 优选实施例的下列部分中,针对 VOIP软件中的 Skype,对各业务流量的精确细分识别 的实现进行说明。 图 7是根据本发明优选实施例的流量精确细分识别系统的结构框图, 本优选实施 例基于图 7的系统, 应用于网络设备与后台分析服务, 其中的网络设备可以是核心网 网关、 无线控制器, 外设深度包分析 (Deep Packet Inspection, 简称为 DPI) 等设备。 本优选实施例的系统包括如下的结构:
VOIP各业务数据模型构造模块 72, 设置为通过数据采样分析 VOIP各业务对应 的报文长度、数据包速率等特性, 构造对应的数据模型。例如, VOIP各业务数据模型 构造模块 72针对 Skype文字聊天、 文件 /图片传输、 语音 /视频通话业务的报文进行采 用分析。 通过数据分析, 可以得到如下特征: A、 文件 /图片传输: 多数通过 UDP传输, 也可以通过 TCP传输, UDP传输时会 有连续的大包长 (包长大于 1300Bytes)报文; TCP报文包长一般在 500~520Bytes范围 内;
B、 语音 /视频通话: 语音通话包长一般都在 200Bytes以下, 视频通话包长一般都 在 500Bytes以下, 偶尔会有 lOOOBytes以上的大报文, 但个数比较少; 数据包速率一 般在 50 pps以上。
C、 文字聊天: 包长一般比较小, 在 200Bytes以下, 数据包速率一般在 50 pps以 下。 通过以上统计分析, 可以根据数据包大小和数据包速率来构造对应业务的数据模 型。 报文长度统计模块 74, 设置为统计报文长度满足一定条件的报文个数; 例如, 报 文长度统计模块 74接收 Skype的数据流。同时由于 Skype业务开始建立时一般会交互 一些信息, 所以为了统计的准确性, 可以统计数据流的第 200个包到第 500个包, 共 统计 300个报文的长度信息; 针对 Skype的业务模型,可以统计结果包括 UDP报文长 度大于 1300bytes的报文个数、 TCP报文长度在 500~520bytes的报文长度个数; 报文速率检测模块 76, 设置为检测当前流的数据包交互速率; 例如, 报文速率检 测模块 76接收 Skype的数据流, 检测 Skype业务流的速率是否到达指定速率。 报文精确识别结果处理模块 78, 设置为根据报文长度统计结果和速率检测结果, 比较对应业务的数据模型, 以确定数据流属于哪种业务。 图 8是根据本发明优选实施例的业务数据模型构造方法的流程示意图, 如图 8所 示, 包括如下步骤: 步骤 S802, 针对 Skype文字聊天、 文件 /图片传输、 语音 /视频通话业务进行分别 采样; 步骤 S804, 分析 Skype各业务在数据包大小和数据包速率方面的差异和特性;
步骤 S806,根据 Skype各业务在数据包大小和数据包速率方面特性构造对应的特 征模型; 例如, 经数据采样分析, 可以得到的 Skype各业务对应的特征模型如下:
A、 Skype文字聊天: 包速率小于 50 pps; B、 Skype文件 /图片传输: 在第 200 500个包中, UDP报文包长大于 1300Bytes 的报文数大于 60; TCP报文长度在 500~520Bytes的报文数大于 50;
C、 Skype语音 /视频通话业务: 包速率大于 50 pps, UDP报文包长大于 1300Bytes 的报文数小于 60; TCP报文长度在大于 500Bytes的报文数小于 50; 本优选实施例中的数据模型为 Skype的采样模型。然而,在本优选实施例中, Skype 版本的更新可能会导致数据模型变化, 其它一些针对其他的 VOIP软件的数据模型也 可能与此不同, 需要针对不同的软件以及软件的版本分别进行采样统计分析。 图 9是根据本发明优选实施例的数据包长度统计方法的流程示意图,如图 9所示, 包括如下步骤: 步骤 S902, 当收到报文时, 判断是否在要进行应用层载荷包长统计; 如果不需要 则直接返回; 其中, 收到的报文, 是指 Skype的业务流量报文。 步骤 S904, 判断报文长度.对于 Skype报文, 若 UDP报文长度大于 1300Bytes、 TCP报文长度在 500~520Bytes之间, 则对应的报文统计计数加 1; 图 10是根据本发明优选实施例的数据包速率检测方法的流程示意图,包括如下步 骤: 步骤 S1002, 针对报文长度统计模块 74处理后的报文, 判断是否是首次测速; 如 果是首次测速则执行步骤 S1004, 否则执行步骤 S1006; 步骤 S1004, 初始化包速率相关信息, 记录测试速率和令牌桶对应的令牌数; 其 中, 在上述的优选实施例中, 测试速率可以为 50 pps, 对应的令牌数即为对应的速率 值 50; 并且测试速率可以动态调整; 步骤 S1006, 检查当前报文时间戳与上次测速时间间隔是否大于 1秒; 如果大于 则执行步骤 S1010, 否则执行步骤 S1008;
步骤 S1008, 将令牌数减 1, 然后执行步骤 S1012; 步骤 S1010, 将令牌数增加 (间隔的秒数 *测试速率); 步骤 S1012,判断令牌数是否为 0; 为 0则执行步骤 S1014, 否则执行步骤 S1016; 步骤 S1014, 速率检测成功; 步骤 S1016, 速率检测失败, 继续检测后续报文; 图 11是根据本发明优选实施例的报文细分识别结果处理方法的流程示意图,如图 11所示, 包括如下步骤: 步骤 S1102, 将报文速率检测模块 76输出的结果传入, 判断 VOIP各业务模型数 据;其中的业务模型数据为 VOIP各业务数据模型构造模块 72中得到的 Skype各业务 数据模型; 步骤 S1104, 判断包长统计信息是否满足本业务模型的包长限制; 其中的业务模 型的包长限制为 VOIP各业务数据模型构造模块 72中 Skype各业务模型中的包长特征; 步骤 S1106, 判断数据包速率统计是否满足本业务模型的速率要求; 其中的业务 模型的速率要求为 VOIP各业务数据模型构造模块 72中 Skype各业务模型中的数据包 速率特征; 步骤 S1108,将符合数据模型特征的对应业务信息输出;其中的业务信息是 Skype 数据报文对应的业务类型, 例如: 文字聊天或文件 /图片传输或语音 /视频通话。 综上所述, 通过上述实施例、 优选实施例和实施方式, 可以通过采集这类软件文 字聊天、文件 /图片传输、语音 /视频通话业务的报文进行分析, 就能统计出这些业务在 报文长度、 数据包速率上存在差异, 例如, 其中文件 /图片传输报文都比较大, 语音 / 视频通话的报文比较小但数据包速率较大,文字聊天的报文比较小且数据包速率较小, 可以根据这些差异来细分识别具体的业务。 所以, 可以针对这些业务流量进行细分识 另 |J, 就可以针对这些业务进行精确控制, 从而保障网络中关键业务的正常进行。可见, 本发明的上述实施例解决了根据整体流量划分软件类型而无法对软件的业务进行精确 控制的问题, 提出了一种业务类型确定的方案, 从而提供了对业务进行精确控制的支 持。 显然, 本领域的技术人员应该明白, 上述的本发明的各模块或各步骤可以用通用 的计算装置来实现, 它们可以集中在单个的计算装置上, 或者分布在多个计算装置所
组成的网络上, 可选地, 它们可以用计算装置可执行的程序代码来实现, 从而, 可以 将它们存储在存储装置中由计算装置来执行, 并且在某些情况下, 可以以不同于此处 的顺序执行所示出或描述的步骤, 或者将它们分别制作成各个集成电路模块, 或者将 它们中的多个模块或步骤制作成单个集成电路模块来实现。 这样, 本发明不限制于任 何特定的硬件和软件结合。 以上该仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本领域的技术 人员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和原则之内, 所作的任 何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。 工业实用性 本发明实施例提供的技术方案可以应用于通信领域, 解决了根据整体流量划分软 件类型而无法对软件的业务进行精确控制的问题, 提出了一种业务类型确定的方案, 从而提供了对业务进行精确控制的支持。
Claims
1. 一种业务类型确定方法, 包括:
对应用的数据流进行采样, 得到数据包;
根据所述数据包的属性, 确定所述数据流对应的业务类型, 其中, 所述属 性包括以下至少之一: 长度、 速率。
2. 根据权利要求 1所述的方法, 其中, 根据所述数据包的属性确定所述数据流对 应的业务类型包括:
确定所述数据包的速率与一个或多个阈值之间的关系;
根据所述关系, 确定所述数据流对应的业务类型。
3. 根据权利要求 1或 2所述的方法, 其中, 根据所述数据包的属性确定所述数据 流对应的业务类型包括:
统计预定数量的数据包中长度落入到一个或多个预定范围内的数据包的个 数;
根据所述统计的结果确定所述数据流对应的业务类型。
4. 根据权利要求 3所述的方法, 其中, 统计预定数量的数据包中长度落入到一个 或多个预定范围内的数据包的个数包括:
根据所述数据包的协议类型, 分别统计预定数量的数据包中长度落入到一 个或多个预定范围内的数据包的个数。
5. 根据权利要求 4所述的方法,其中,所述数据包的协议类型为传输控制协议 TCP 或者用户数据包协议 UDP。
6. 根据权利要求 1所述的方法, 其中, 所述对应用的数据流进行采样得到数据包 之前, 所述方法还包括:
统计多个业务类型的数据流中数据包的所述属性的分布情况, 其中, 采样 得到的所述数据包的属性通过参考所述分布情况, 以确定所述数据包所在的数 据流对应的业务类型。
7. —种业务类型确定装置, 包括:
采样模块, 设置为对应用的数据流进行采样得到数据包; 确定模块,设置为根据所述数据包的属性确定所述数据流对应的业务类型, 其中, 所述属性包括以下至少之一: 长度、 速率。
8. 根据权利要求 7所述的装置, 其中, 所述确定模块包括: 第一确定单元, 设置为确定所述数据包的速率与一个或多个阈值之间的关 系;
第二确定单元, 设置为根据所述关系确定所述数据流对应的业务类型。
9. 根据权利要求 7或 8所述的装置, 其中, 所述确定模块包括:
统计单元, 设置为统计预定数量的数据包中长度落入到一个或多个预定范 围内的数据包的个数;
第三确定单元, 设置为根据所述统计单元统计的结果确定所述数据流对应 的业务类型。
10. 根据权利要求 9所述的装置, 其中, 所述统计单元还设置为根据所述数据包的 协议类型, 分别统计预定数量的数据包中长度落入到一个或多个预定范围内的 数据包的个数。
11. 根据权利要求 7所述的装置, 其中, 所述装置还包括:
统计模块, 设置为统计多个业务类型的数据流中数据包的所述属性的分布 情况, 其中, 采样得到的所述数据包的属性通过参考所述分布情况, 以确定所 述数据包所在的数据流对应的业务类型。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310275094.9A CN104283699A (zh) | 2013-07-01 | 2013-07-01 | 业务类型确定方法和装置 |
CN201310275094.9 | 2013-07-01 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014177023A1 true WO2014177023A1 (zh) | 2014-11-06 |
Family
ID=51843135
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2014/076256 WO2014177023A1 (zh) | 2013-07-01 | 2014-04-25 | 业务类型确定方法和装置 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN104283699A (zh) |
WO (1) | WO2014177023A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110096421A (zh) * | 2019-04-30 | 2019-08-06 | 中国人民解放军海军大连舰艇学院 | 一种通信数据的采集与管理系统 |
CN112532466A (zh) * | 2019-09-17 | 2021-03-19 | 华为技术有限公司 | 流量识别方法、装置及存储介质 |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105992093B (zh) * | 2015-03-05 | 2019-04-02 | 炬新(珠海)微电子有限公司 | 一种蓝牙音箱通话音质的调试方法和装置 |
CN105681389B (zh) * | 2015-12-18 | 2019-03-26 | 北京神州绿盟信息安全科技股份有限公司 | 一种基于Skype不同功能通信流的识别方法及装置 |
CN106878104B (zh) * | 2017-01-13 | 2019-05-24 | 浙江大学 | 一种基于网络流量的无线摄像头检测方法 |
KR102260271B1 (ko) * | 2018-05-23 | 2021-06-02 | 저지앙 대학 | 네트워크 트래픽을 기반으로 한 무선 카메라 감지 및 위치 결정 방법 |
CN109039775A (zh) * | 2018-09-12 | 2018-12-18 | 网宿科技股份有限公司 | 业务质量监控方法、装置及系统 |
CN112953749A (zh) * | 2019-12-11 | 2021-06-11 | 华为技术有限公司 | 一种传输速率配置方法及装置 |
CN114205254B (zh) * | 2020-08-26 | 2023-12-15 | 华为技术有限公司 | 流量监控方法、装置、集成电路、网络设备及网络系统 |
WO2022041695A1 (zh) * | 2020-08-26 | 2022-03-03 | 华为技术有限公司 | 流量监控方法、装置、集成电路、网络设备及网络系统 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1946074A (zh) * | 2006-09-30 | 2007-04-11 | 华为技术有限公司 | 一种实现业务类型自适应的方法及装置 |
JP4855157B2 (ja) * | 2006-07-05 | 2012-01-18 | 三菱電機株式会社 | ビット速度判定装置 |
CN102413071A (zh) * | 2011-11-25 | 2012-04-11 | 中兴通讯股份有限公司 | 一种扩展邮箱服务器、系统,以及扩展邮箱业务实现方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101426137B (zh) * | 2008-11-25 | 2011-08-03 | 上海华为技术有限公司 | 一种视频帧类型的识别方法和装置 |
CN101854366B (zh) * | 2010-06-10 | 2015-04-01 | 中兴通讯股份有限公司 | 一种对等网络流量识别的方法及装置 |
-
2013
- 2013-07-01 CN CN201310275094.9A patent/CN104283699A/zh active Pending
-
2014
- 2014-04-25 WO PCT/CN2014/076256 patent/WO2014177023A1/zh active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4855157B2 (ja) * | 2006-07-05 | 2012-01-18 | 三菱電機株式会社 | ビット速度判定装置 |
CN1946074A (zh) * | 2006-09-30 | 2007-04-11 | 华为技术有限公司 | 一种实现业务类型自适应的方法及装置 |
CN102413071A (zh) * | 2011-11-25 | 2012-04-11 | 中兴通讯股份有限公司 | 一种扩展邮箱服务器、系统,以及扩展邮箱业务实现方法 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110096421A (zh) * | 2019-04-30 | 2019-08-06 | 中国人民解放军海军大连舰艇学院 | 一种通信数据的采集与管理系统 |
CN110096421B (zh) * | 2019-04-30 | 2022-11-29 | 中国人民解放军海军大连舰艇学院 | 一种通信数据的采集与管理系统 |
CN112532466A (zh) * | 2019-09-17 | 2021-03-19 | 华为技术有限公司 | 流量识别方法、装置及存储介质 |
Also Published As
Publication number | Publication date |
---|---|
CN104283699A (zh) | 2015-01-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2014177023A1 (zh) | 业务类型确定方法和装置 | |
CN108156056B (zh) | 网络质量测量方法及其装置 | |
CN106921637A (zh) | 网络流量中的应用信息的识别方法和装置 | |
CN114039918B (zh) | 一种信息年龄优化方法、装置、计算机设备及存储介质 | |
CN108900374B (zh) | 一种应用于dpi设备的数据处理方法和装置 | |
WO2014194641A1 (en) | Audio playback method, apparatus and system | |
KR102461022B1 (ko) | 로그 데이터 분석 방법 및 장치 | |
CN112202595A (zh) | 基于时间敏感网络系统的抽象模型构建方法 | |
CN101127690A (zh) | 一种下一代网络业务流量识别方法 | |
CN114039926B (zh) | 传输控制协议确定方法、装置、可读介质及电子设备 | |
CN109144837B (zh) | 一种支持精准服务推送的用户行为模式识别方法 | |
WO2019233284A1 (zh) | 链路检测方法及相关装置 | |
CN111147323A (zh) | 测速方法及装置 | |
JP5152110B2 (ja) | パケット解析方法、プログラム及び装置 | |
CN115884213A (zh) | 一种资源调度方法、装置及电子设备 | |
Jelassi et al. | A perception-oriented Markov model of loss incidents observed over VoIP networks | |
US11003513B2 (en) | Adaptive event aggregation | |
CN112202596A (zh) | 基于时间敏感网络系统的抽象模型构建装置 | |
CN109327404B (zh) | 基于朴素贝叶斯分类算法的p2p预测方法及系统、服务器及介质 | |
CN110138682A (zh) | 一种流量识别方法及装置 | |
CN115801639B (zh) | 一种带宽探测方法、装置、电子设备及存储介质 | |
CN114189480B (zh) | 一种流量采样方法、装置、电子设备及介质 | |
CN113452714B (zh) | 主机聚类方法及装置 | |
EP4280561A1 (en) | Information flow identification method, network chip, and network device | |
CN113765692B (zh) | 限流方法、装置、电子设备和计算机可读介质 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14791501 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14791501 Country of ref document: EP Kind code of ref document: A1 |