WO2014176963A1 - 滤波器 - Google Patents

滤波器 Download PDF

Info

Publication number
WO2014176963A1
WO2014176963A1 PCT/CN2014/075110 CN2014075110W WO2014176963A1 WO 2014176963 A1 WO2014176963 A1 WO 2014176963A1 CN 2014075110 W CN2014075110 W CN 2014075110W WO 2014176963 A1 WO2014176963 A1 WO 2014176963A1
Authority
WO
WIPO (PCT)
Prior art keywords
open
endless belt
loop
filter
loop resonator
Prior art date
Application number
PCT/CN2014/075110
Other languages
English (en)
French (fr)
Inventor
蔡凌云
刘洋
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2014176963A1 publication Critical patent/WO2014176963A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/201Filters for transverse electromagnetic waves
    • H01P1/203Strip line filters
    • H01P1/20327Electromagnetic interstage coupling
    • H01P1/20354Non-comb or non-interdigital filters
    • H01P1/20381Special shape resonators

Definitions

  • the present invention relates to the field of communications, and in particular to a filter.
  • filters are ubiquitous between the input and output stages of an active circuit, and each filter has its own different function.
  • the filter is an indispensable device for the wireless communication system, and its performance is directly related to the communication quality of the entire system.
  • the functions of the filter include: avoiding saturation of the receiver front end due to leakage of the output signal of the transmitting end; removing interference signals such as image frequency; reducing power leakage of the local oscillator from the antenna end; and weakening the simultaneous existence of different communications Interference between systems, etc. Therefore, it must have steep rise, falling edge attenuation, good group delay and so on.
  • the current common method of implementing a stop-band filter is to add a band-stop unit to the original filter.
  • the embedded band-resistance unit method includes the following aspects: 1. Applying a frequency conversion to generate a stop band characteristic on the basis of a low-pass prototype filter; 2.
  • Embodiments of the present invention provide a filter to address at least one of the problems of the prior art filters.
  • a filter comprising: a passband; a first open loop resonator disposed above the passband, the first open loop resonator including a ring band and a second ring band, wherein the first ring band and the second ring band are respectively provided with an opening; the second open ring resonator is disposed under the pass band, the second open ring
  • the resonator includes a third endless belt and a fourth endless belt, and the third endless belt and the fourth endless belt are each provided with an opening; the first endless belt and the third endless belt constitute a complementary open loop resonance
  • the second endless belt and the fourth endless belt form a complementary open loop resonator.
  • the passband comprises: a first shorting post, a first high impedance shorting stub, a low impedance open stub, a second high impedance short stub and a second shorting
  • the filter further comprising an input microstrip And an output microstrip, wherein the input microstrip is connected to the first high impedance shorting stub through the first shorting post for conducting electromagnetic waves through the first shorting post to the first high impedance short circuit
  • the output microstrip is connected to the second high-impedance short-circuit stub by the second short-circuit post for outputting the electromagnetic wave passing through the passband by the second short-circuit post.
  • the input microstrip is connected to the first loop
  • the output microstrip is connected to the second loop.
  • the input microstrip and the output microstrip are located in a first layer
  • the passband is located in a second layer
  • the second open loop resonator is located in a third layer.
  • the first endless belt, the second endless belt, the third endless belt and the fourth endless belt are square or circular.
  • the distance between the first open loop resonator and the second open loop resonator can be adjusted to produce different coupling effects.
  • the first open-loop resonator is a metal ring tape attached to a dielectric plate
  • the second open-loop resonator is a slot on a metal floor.
  • the filter used includes: a passband; a first open loop resonator disposed above the passband, the first open loop resonator comprising a first loop and a second loop, the first loop And the second loop band is provided with an opening; the second open loop resonator is disposed under the pass band, and the second open loop resonator includes a third loop and a fourth loop, a third loop and a fourth loop
  • the belt is provided with an opening; the first loop and the third loop form a complementary open loop resonator, The bicyclic strip and the fourth endless belt form a complementary open loop resonator.
  • FIG. 1 is a block diagram showing the structure of a filter according to an embodiment of the present invention
  • FIG. 2 is a side view of a miniaturized adjustable band stop filter according to an embodiment of the present invention
  • FIG. 4 is a middle layer diagram of a miniaturized adjustable band stop filter according to an embodiment of the present invention
  • FIG. 5 is a miniaturized adjustable band stop according to an embodiment of the present invention
  • FIG. 6 is a differential diagram of a miniaturized adjustable band stop filter according to an embodiment of the present invention
  • FIG. 7 is a group delay of a miniaturized adjustable band rejection filter according to an embodiment of the present invention
  • FIG. 1 is a structural block diagram of a filter according to an embodiment of the present invention. As shown in FIG. 1, the structure includes: a passband 12, a first open loop resonator 14 and The second open loop resonator 16.
  • the pass band 12 is located between the first open loop resonator 14 and the second open loop resonator 16; the first open loop resonator 14 is disposed above the pass band 12, and the first open loop resonator 14 includes the first ring a belt and a second endless belt, the first endless belt and the second endless belt are each provided with an opening; the second open loop resonator 16 is disposed below the pass belt 12, and the second open loop resonator 16 includes a third endless belt And the fourth endless belt, the third endless belt and the fourth endless belt are respectively provided with openings; the first annular belt and the third annular belt constitute a complementary open-loop resonator, and the second annular belt and the fourth annular belt constitute a complementary open-loop Resonator.
  • the first loop of the first open-loop resonator 14 and the third loop of the second open-loop resonator 16 constitute a complementary open-loop resonator
  • the fourth endless belt of the two open-loop resonators 16 constitutes a complementary open-loop resonator, and a part of the first open-loop resonator 14 and a part of the second open-loop resonator 16 are combined with the pass-band 12 to form a novel complementary crack.
  • a ring resonator is used in the filter.
  • a new type of filter is provided.
  • the passband can have multiple implementations. In this embodiment, a preferred implementation is provided.
  • the passband 12 of the filter can pass through a low impedance open stub, a high impedance shorting stub, and a short circuit.
  • Column implementation it is not limited thereto, and may be implemented by other means.
  • the passband 12 may include sequentially connected: a first shorting stub, a first high impedance shorting stub, a low impedance open stub, a second high impedance short stub, and a second shorting stub, and the filter further includes an input microstrip and an output micro
  • the input microstrip is connected to the first high-impedance short-circuiting branch through the first short-circuiting column, and is configured to conduct electromagnetic waves through the first short-circuiting column to the first high-impedance short-circuiting branch, and the output microstrip passes through the second short-circuited column and the second a high-impedance short-circuit branch connection for outputting the second short-circuited column through the electromagnetic wave of the passband
  • the input microstrip is connected to the first loop
  • the output microstrip is connected to the second loop, generally less than a quarter
  • the low-impedance open-circuit branch of the wavelength is equivalent to a shunt capacitor, while
  • the above filter may be an input microstrip and an output microstrip and a copper strip layered, that is, the input microstrip and the output microstrip are located in the first layer, the passband is located in the second layer, and the second open loop resonator is located in the first layer Three floors.
  • the feeding mode of the filter may be directly connected to the metal ring by the feeding line, or may be fed by the coupling mode, and the electromagnetic wave passes through the first layer to the second layer (middle layer) through the microstrip feeding.
  • the left and right completely symmetrical structures propagate, and such a structure forms a band-pass filter.
  • the band pass filter filters out interference between different communication systems that exist at the same time, and a part of open-loop resonators (SRRs) and a part of complementary open-loop resonators (CSRRs) are associated with short-circuited branches and open-circuit branches.
  • SRRs open-loop resonators
  • CSRRs complementary open-loop resonators
  • a new type of complementary split ring resonator is formed for use in the filter.
  • the SRR structure is excited by a magnetic field.
  • the SRR exhibits a negative effective magnetic permeability near the resonant frequency
  • CSRR is a complementary structure of the SRR, which is an electric field.
  • CSRR exhibits a negative effective permeability near the resonant frequency.
  • the realization of this negative magnetic permeability is derived from the resonance generated by the inductance and capacitance inside the structure, and the transmission zero occurs at a frequency point where the parallel impedance is zero.
  • the first open-loop resonator is a metal ring tape attached to the dielectric plate
  • the second open-loop resonator is a groove on the metal floor. The distance between the first open loop resonator and the second open loop resonator can be adjusted to produce different coupling effects.
  • the spacing between the slot on the metal ground of the miniaturized complementary split ring resonator and the metal ring on the dielectric plate can be adjusted to produce different coupling effects such that the slot on the radiating patch (SRR) and attached to the dielectric plate
  • the coupling between the metal ring zones (CSRR) produces a third transmission zero, and the bandwidth and out-of-band rejection of the resonant band can be adjusted depending on the strength of the coupling.
  • the coupling capacitance of the two rings is the same as the inductance of the SRR, the complementary cancellation forms two transmission poles.
  • a single SRR and CSRR can only produce one resonant frequency, and this new complementary split-ring resonator can be adjusted to produce three resonant frequencies at the same size, thus enabling specific implementations at smaller physical lengths.
  • the electrical length, filtering out unwanted frequency bands, this miniaturized adjustable band-stop filter can effectively reduce the filter size and solve the interference problems caused by other data services in adjacent frequency bands.
  • the band stop filter can be well integrated with the PCB, and is directly applied to the PCB of the terminal, and is adjusted according to the layout requirements.
  • the dielectric material of the PCB of the filter region may not be double-layered.
  • Media which can be graded media and mixed media.
  • the shape of the miniaturized complementary split ring resonator that is, the shape of the groove on the metal ground and the shape of the metal ring on the dielectric plate may be various, such as a circular ring, a square, etc.; preferably, the first ring band
  • the second loop, the third loop and the fourth loop are square or circular.
  • the preferred embodiment is a wireless terminal product using a novel miniaturized complementary split ring tunable band rejection filter, which is required to satisfy the data transmission services of LTE band 40 (2300-2400 MHz) and LTE band 7 (2500-2690 MHz).
  • the frequency band for WIFI data service work is 2484-2496MHz, and only 4MHz between LTE band7, which is easy to generate interference.
  • the interference of WIFI to LTE band7 is minimized, and the out-of-band suppression is achieved. Better ability to achieve better isolation technology.
  • 2 is a side view of a miniaturized adjustable band stop filter according to an embodiment of the present invention. As shown in FIG.
  • the filter includes: a top layer additional metal ring band 1, an input microstrip (which may be referred to as a Top layer micro With feeder) 2, shorting column 3, Bottom layer annular groove 4, floor 5, high impedance shorting branch 6, low impedance open branch 7, output microstrip 8.
  • 3 is a top layer diagram of a miniaturized adjustable band rejection filter according to an embodiment of the present invention
  • FIG. 4 is a middle layer diagram of a miniaturized adjustable band rejection filter according to an embodiment of the present invention, which is superior to the preferred embodiment
  • the characteristic is that the electromagnetic wave is transmitted from the input microstrip 2 of the top layer shown in FIG. 3 through the short-circuited column 3 to the middle layer shown in FIG.
  • FIG. 5 is a bottom layer diagram of a miniaturized adjustable band stop filter according to an embodiment of the present invention.
  • the metal ring band shown in FIG. 3 and the ring groove in the bottom layer shown in FIG. 5 form a miniaturized complementary split ring resonator.
  • the trapping unit the coupling between the miniaturized complementary split ring resonator trapping units, can generate transmission zeros at not less than one frequency point, making the filter design more flexible. By adjusting the coupling strength, a stop band for filtering out WIFI is generated.
  • 6 is a differential loss diagram of a miniaturized adjustable band rejection filter according to an embodiment of the present invention. The return loss S11 and the transmission loss S21 are shown in FIG. 6.
  • the filter operates in LTE band 40 and LTE band 7
  • the frequency band filtering out WIFI signal interference, has strong out-of-band rejection capability, reaching -30dBm or more, and does not cause energy loss after cascading multiple units, and the out-of-band rejection capability is stronger;
  • the return loss in the passband is less than -20dBm, It has low insertion loss, less than 0.5dBm, large power capacity, and suppression of higher harmonics.
  • 7 is a group delay diagram of a miniaturized adjustable band stop filter according to an embodiment of the present invention. As shown in FIG. 7, the group delay in the pass band is less than 0.2 ns, and the group delay in the stop band is reached. 4ns, strong resistance to the stop band.
  • the design is small in size and can be reduced in size by about 30% compared with the conventional filter.
  • the embodiment of the present invention can be used for microwave transmission.
  • the preferred embodiment provides a tunable band rejection filter based on a novel miniaturized complementary split ring resonator, which can effectively solve the interference problem caused by other data services in adjacent frequency bands.
  • the band-stop filter with the novel structure has strong out-of-band rejection capability, simple structure, small size, convenient integration with mobile phone circuit boards and CPEs, low cost, convenient mass production, and the like, and can be applied to various terminal systems.
  • the new small-sized band-stop filter based on the structure design of the miniaturized complementary split-ring resonator further reduces the filter area, and the position of the stop band can be further adjusted by appropriately adjusting the length of the groove, the additional metal ring band, and the spacing thereof.
  • the impedance bandwidth and its out-of-band rejection capability can improve the passband frequency selectivity of the filter, and can also design a multi-passband filter with adjacent frequencies.
  • the embodiment of the present invention can be used not only for the conventional planar ordinary metal microstrip.
  • the filter is more suitable for manufacturing high temperature superconducting filters.
  • modules or steps of the embodiments of the present invention can be implemented by a general computing device, which can be concentrated on a single computing device or distributed in multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device, such that they may be stored in the storage device by the computing device, or they may be separately fabricated into individual integrated circuit modules, or Multiple of these modules or steps are fabricated as a single integrated circuit module.
  • the invention is not limited to any specific combination of hardware and software.
  • the above are only the preferred embodiments of the present invention, and are not intended to limit the present invention, and various modifications and changes can be made to the present invention. Any modifications, equivalent substitutions, improvements, etc.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

本发明公布了一种滤波器,其中,该滤波器包括:通带;第一开环谐振器,设置在通带的上方,第一开环谐振器包括第一环带和第二环带,第一环带和第二环带上均设置有开口;第二开环谐振器,设置在通带的下方,第二开环谐振器包括第三环带和第四环带,第三环带和第四环带上均设置有开口;第一环带和第三环带构成互补开环谐振器,第二环带和第四环带构成互补开环谐振器。通过本发明解决了现有技术中的滤波器所存在问题的至少之一,提供了相对较优的一种滤波器。

Description

滤波器 技术领域 本发明涉及通信领域, 具体而言, 涉及一种滤波器。 背景技术 在一个通信系统中, 在有源电路的输入输出端各级之间滤波器普遍存在, 各滤波 器有各自不同的功能。 滤波器为无线通信系统一个不可缺少的器件, 它的性能好坏直 接关系整个系统的通信质量。 滤波器的功能包括: 避免由于发射端输出信号泄漏而使 接收器前端饱和; 除去如镜频一类的干扰信号; 减小来自天线端的本机振荡器的功率 泄漏; 以及削弱同时存在的不同通信系统间的干扰等。 因此它必须有陡峭的上升、 下 降沿衰减、 好的群时延等特性。 随着无线通信的发展, 滤波器研究不断地取得新进展。 在所有现代无线通信设备 的射频前端中, 微型封装、 性能好、 低成本、 易于安装使用的滤波器, 一直是相关器 件小型化、 微型化的重点。 现代蜂窝移动通信、 无线局域网为代表的无线通信技术的 发展, 就会对部分相邻频段的频率选择产生干扰。 一方面, 需要对这些干扰进行抑制 以提高系统的性能。 另一方面, 在某些场合也需要对上述无线干扰进行削弱以保护其 它系统正常工作, 例如当飞机导航系统工作时, 就要求对飞机上用于无线接入目的的 上述信号进行削弱。 因此, 如何设计性能优越的带阻滤波器就显得非常必要。 相关技术中, 滤波器的带外抑制没有做好, 有时候可能会导致系统受到寄生响应 和互调失真或谐波而造成多种干扰问题。 因此, 滤波器对带外噪声的抑制成为通信系 统噪声性能好坏的关键。 目前实现阻带滤波器的常用方法就是在原有滤波器基础上加 入带阻单元。 内嵌带阻单元方法包括以下几种方面: 一、 在低通原型滤波器的基础上 应用频率变换产生阻带特性;二、使用复合左 /右手材料传输线代替传统的微带传输线, 以此来产生阻带特性; 三、使用两阶或三阶的阶梯阻抗谐振器来设计带阻滤波器; 四、 级联的单阻带滤波器; 五、 分别在顶层使用分裂环谐振环和在底层使用互补分裂环谐 振环产生两个阻带; 六、 使用特性阻抗可控的两条传输线依据相位差的不同实现双频 带阻滤波器; 七、 同时使用包括嵌线, 马剌线和常规微带线三种平面结构获得双阻带 响应。 上述各种方法主要缺陷包括阻带带宽较窄且不可控, 加工较为复杂, 尺寸大, 不便于扩展以实现多阻带特性, 因此需要一种新型陷波结构以至少解决上述问题中的 至少之一。 发明内容 本发明实施例提供了一种滤波器, 以至少解决现有技术中的滤波器所存在问题中 的至少之一。 根据本发明实施例的一个方面, 提供了一种滤波器, 该滤波器包括: 通带; 第一 开环谐振器, 设置在所述通带的上方,所述第一开环谐振器包括第一环带和第二环带, 所述第一环带和所述第二环带上均设置有开口; 第二开环谐振器, 设置在所述通带的 下方, 所述第二开环谐振器包括第三环带和第四环带, 所述第三环带和所述第四环带 上均设置有开口; 所述第一环带和所述第三环带构成互补开环谐振器, 所述第二环带 和所述第四环带构成互补开环谐振器。 优选地, 所述通带包括依次连接的: 第一短路柱、 第一高阻抗短路枝节、 低阻抗 开路枝节、 第二高阻抗短路枝节和第二短路柱, 所述滤波器还包括输入微带和输出微 带, 其中, 所述输入微带通过所述第一短路柱与所述第一高阻抗短路枝节连接, 用于 将电磁波通过所述第一短路柱传导到所述第一高阻抗短路枝节; 所述输出微带通过所 述第二短路柱与所述第二高阻抗短路枝节连接, 用于将所述第二短路柱将通过所述通 带的电磁波输出。 优选地,所述输入微带与所述第一环带连接,所述输出微带与所述第二环带连接。 优选地, 所述输入微带和所述输出微带位于第一层, 所述通带位于第二层, 所述 第二开环谐振器位于第三层。 优选地, 所述第一环带、 所述第二环带、 所述第三环带和所述第四环带为方形或 者圆形。 优选地, 所述第一开环谐振器和所述第二开环谐振器之间的距离能够调节, 以产 生不同的耦合效果。 优选地, 所述第一开环谐振器为附在介质板上的金属环带, 所述第二开环谐振器 为金属地板上的开槽。 通过本发明实施例, 采用的滤波器包括: 通带; 第一开环谐振器, 设置在通带的 上方, 第一开环谐振器包括第一环带和第二环带, 第一环带和第二环带上均设置有开 口; 第二开环谐振器, 设置在通带的下方, 第二开环谐振器包括第三环带和第四环带, 第三环带和第四环带上均设置有开口; 第一环带和第三环带构成互补开环谐振器, 第 二环带和第四环带构成互补开环谐振器。 通过本发明实施例解决了现有技术中的滤波 器所存在问题中的至少之一, 提供了相对较优的一种滤波器。 附图说明 此处所说明的附图用来提供对本发明实施例的进一步理解,构成本申请的一部分, 本发明的示意性实施例及其说明用于解释本发明, 并不构成对本发明的不当限定。 在 附图中: 图 1是根据本发明实施例的滤波器的结构框图; 图 2是根据本发明实施例的小型化可调带阻滤波器的侧视图; 图 3是根据本发明实施例的小型化可调带阻滤波器的 top层图; 图 4是根据本发明实施例的小型化可调带阻滤波器的 middle层图; 图 5是根据本发明实施例的小型化可调带阻滤波器的 bottom层图; 图 6是根据本发明实施例的小型化可调带阻滤波器的差损图; 图 7是根据本发明实施例的小型化可调带阻滤波器的群时延图。 具体实施方式 需要说明的是, 在不冲突的情况下, 本申请中的实施例及实施例中的特征可以相 互组合。 下面将参考附图并结合实施例来详细说明本发明。 在本实施例中, 提供了一种滤波器, 图 1是根据本发明实施例的滤波器的结构框 图, 如图 1所示, 该结构包括: 通带 12、 第一开环谐振器 14和第二开环谐振器 16。 通带 12, 位于第一开环谐振器 14和第二开环谐振器 16之间; 第一开环谐振器 14, 设置在通带 12的上方, 第一开环谐振器 14包括第一环带和 第二环带, 第一环带和第二环带上均设置有开口; 第二开环谐振器 16, 设置在通带 12的下方, 第二开环谐振器 16包括第三环带和 第四环带, 第三环带和第四环带上均设置有开口; 第一环带和第三环带构成互补开环 谐振器, 第二环带和第四环带构成互补开环谐振器。 通过上述结构, 第一开环谐振器 14的第一环带与第二开环谐振器 16的第三环带 构成互补开环谐振器, 第一开环谐振器 14的第二环带与第二开环谐振器 16的第四环 带构成互补开环谐振器, 将第一开环谐振器 14的一部分, 第二开环谐振器 16的一部 分与通带 12相结合, 形成新型的互补裂环谐振器用于滤波器中。提供了一种新型的滤 波器。 通带可以有多种实现方式, 在本实施例中提供了一种优选的实现方式, 在该优选 的实现方式中, 滤波器的通带 12可以通过低阻抗开路枝节、高阻抗短路枝节和短路柱 实现。 但是并不限于此, 也可以通过其他方式实现。 例如, 通带 12可以包括依次连接 的: 第一短路柱、 第一高阻抗短路枝节、 低阻抗开路枝节、 第二高阻抗短路枝节和第 二短路柱, 滤波器还包括输入微带和输出微带, 其中, 输入微带通过第一短路柱与第 一高阻抗短路枝节连接, 用于将电磁波通过第一短路柱传导到第一高阻抗短路枝节, 输出微带通过第二短路柱与第二高阻抗短路枝节连接, 用于将第二短路柱将通过通带 的电磁波输出, 输入微带与第一环带连接, 输出微带与第二环带连接, 一般来说, 小 于四分之一波长的低阻抗开路枝节相当于并联电容, 而小段的高阻抗短路枝节表现为 感性, 可等效为串联电感。 优选的, 上述滤波器可以是输入微带和输出微带与铜带分层的, 即输入微带和输 出微带位于第一层, 通带位于第二层, 第二开环谐振器位于第三层。 优选的, 滤波器的馈电方式可以采用馈线与金属环带直接连接, 也可以采用耦合 方式进行馈电, 通过微带馈电, 电磁波经过第一层 (top) 层到第二 (middle层) 的短 路柱后, 经过高阻抗短路枝节, 再经过低阻抗开路枝节, 左右完全对称的结构进行传 播, 这样的结构就形成了一个带通滤波器。 本实施例中, 上述带通滤波器滤除了同时存在的不同通信系统间的干扰, 将开环 谐振器 (SRRs) 的一部分和互补开环谐振器 (CSRRs) 的一部分与短路枝节和开路枝 节相结合, 形成了新型的互补裂环谐振器用于滤波器中。 作为构成左手材料的基本单 元, SRR结构是由磁场激发的, 在合适的磁场激发模式下, SRR会在谐振频率附近呈 现出负的有效磁导率, 而 CSRR是 SRR的互补结构, 是由电场激发的, 在合适的电场 激励模式下, CSRR会在谐振频率附近呈现出负的有效磁导率。 利用这种改进的互补 裂环谐振器单元, 当 SRR和 CSRR分别为不同的电长度时, 就会产生谐振, 形成两个 传输零点, 这两个频率点上电磁波禁止传输, 这种类型谐振器的相关特性在于它们的 电长度,由于这些环带(可以称为通信圆环)产生的强电容,刚好等于频率的二分之一波 长时, 就产生要求的截止频率。 而这种负磁导率的实现来源于结构内部的电感和电容 所产生的谐振, 传输零点发生在并联阻抗为零的频率点上。 在本实施例中, 优选的, 第一开环谐振器为附在介质板上的金属环带, 第二开环 谐振器为金属地板上的开槽。第一开环谐振器和第二开环谐振器之间的距离能够调节, 以产生不同的耦合效果。 小型化互补裂环谐振器金属地上的开槽和介质板上的金属环 带之间的间距可以调节, 产生不同的耦合效果, 这样辐射贴片上的开槽 (SRR) 和附 在介质板上的金属环带 (CSRR)之间的耦合会产生第三个传输零点, 并且根据耦合的强 度可以调节谐振频段的带宽和带外抑制能力。当两个环的耦合电容和 SRR的电感大小 一样时, 互补抵消后就形成两个传输极点。单一的 SRR和 CSRR都只能产生一个谐振 频率, 而这种新型的互补裂环谐振器在相同的尺寸下可以根据需要调节产生三个谐振 频率, 因此能够在较小的物理长度上实现特定的电长度, 滤除不需要的频段, 这种小 型化可调带阻滤波器, 可以有效的降低滤波器尺寸, 并且解决相邻频段其他数据业务 发射时带来的干扰问题。 在本实施例中, 带阻滤波器可以很好的和 PCB集成, 直接应用到终端的 PCB板 上, 根据布局的需要, 进行调整, 优选的, 滤波器区域的 PCB的介质材料可以不是双 层介质, 可以是渐变型介质以及混合介质。 在本实施例中, 小型化互补裂环谐振器的形状, 即金属地上的开槽形状和介质板 上的金属环带形状可以多样, 比如圆环形、 方形等; 优选的, 第一环带、 第二环带、 第三环带和第四环带为方形或者圆形。 通过上述实施例及优选的实施方式, 解决了阻带带宽较窄且不可控, 加工较为复 杂, 尺寸大, 不便于扩展以实现多阻带特性的问题, 提供了满足小型, 宽带、 带外抑 制好, 阻带可控特性好的滤波器。 下面结合优选实施例和实施方式对本发明进行说明。 本优选实施例为一款采用新型小型化互补裂环的可调带阻滤波器的无线终端产 品, 要求满足 LTE band40 (2300-2400MHz) 和 LTE band7 (2500-2690MHz) 的数据 传输业务。 但是 WIFI数据业务工作的频段为 2484-2496MHz, 和 LTE band7之间只有 4MHz,容易产生干扰,通过调节新型小型化互补裂环之间的耦合,让 WIFI对 LTE band7 的干扰达到最小, 带外抑制能力更强, 从而实现更好的隔离技术。 图 2是根据本发明实施例的小型化可调带阻滤波器的侧视图, 如图 2所示, 该滤 波器包括: Top层附加金属环带 1, 输入微带 (可以称为 Top层微带馈线) 2, 短路柱 3, Bottom层环形槽 4, 地板 5, 高阻抗短路枝节 6, 低阻抗开路枝节 7, 输出微带 8。 图 3是根据本发明实施例的小型化可调带阻滤波器的 top层图, 图 4是根据本发 明实施例的小型化可调带阻滤波器的 middle层图, 本优选实施例的优越性在于从图 3 所示的 top层的输入微带 2通过短路柱 3将电磁波传导到图 4所示 middle层,再通过 等效为两个串联电感的两侧的高阻抗短路枝节 6, 中间等效为并联电容的低阻抗开路 枝节 7, 然后经过相对称的短路枝 3节回到 top层后, 经过输出微带 8输出, 实现了带 通滤波器功能。 图 5是根据本发明实施例的小型化可调带阻滤波器的 bottom层图, 图 3所示的金 属环带和图 5所示的 bottom层中环形槽形成了小型化互补裂环谐振器陷波单元,小型 化互补裂环谐振器陷波单元之间的耦合作用, 可以在不少于一个频率点上产生传输零 点, 使滤波器的设计更加灵活。 通过调节其耦合强度, 产生一个滤除 WIFI的阻带。 图 6是根据本发明实施例的小型化可调带阻滤波器的差损图, 所图 6所示, 回波 损耗 S11和传输损耗 S21曲线如图, 该滤波器工作在 LTE band40和 LTE band7频段, 滤除了 WIFI信号干扰, 其带外抑制能力强, 达到 -30dBm以上, 并且多个单元级联后 不会造成能量损耗,带外抑制能力更强;通带内回波损耗小于 -20dBm,其插入损耗低, 小于 0.5dBm, 功率容量大, 以及对高次谐波有抑制作用。 图 7是根据本发明实施例的小型化可调带阻滤波器的群时延图, 图 7所示, 在通 带内的群时延小于 0.2ns, 而在阻带内的群时延达到 4ns, 对阻带的抑制能力强。 该设 计体积小, 与传统滤波器相比, 尺寸可以减少 30%左右, 本发明实施例可用于微波传 输。 本优选实施例中, 互补裂环的形状、 互补裂环间的间距、 介质基板的层数、 以及 互补裂环的层叠个数、 级联个数、 通带滤波器实现形式等方面所作的任何修改、 等同 替换、 改进等。 本优选实施例提供了一种基于新型的小型化互补裂环谐振器的可调带阻滤波器, 可以有效解决相邻频段其他数据业务发射时带来的干扰问题。 具有该新型结构的带阻 滤波器带外抑制能力强, 结构简单, 体积小巧, 便于与手机电路板、 CPE集成的特性, 并且具有低成本, 便于批量生产等, 能够适用于多种终端系统。 基于小型化互补裂环谐振器的结构设计的新型的小型带阻滤波器进一步减小了滤 波器面积, 通过适当调节槽、 附加金属环带的长度, 及其间距, 可以进一步调整阻带 的位置、 阻抗带宽及其带外抑制能力, 可以提高滤波器的通带频率选择性, 也可以设 计出临近频率的多通带滤波器; 本发明实施例不仅可以用于传统的平面型普通金属微 带滤波器, 更适用于制造高温超导滤波器。 显然, 本领域的技术人员应该明白, 上述的本发明实施例的各模块或各步骤可以 用通用的计算装置来实现, 它们可以集中在单个的计算装置上, 或者分布在多个计算 装置所组成的网络上, 可选地, 它们可以用计算装置可执行的程序代码来实现, 从而, 可以将它们存储在存储装置中由计算装置来执行, 或者将它们分别制作成各个集成电 路模块, 或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。 这样, 本 发明不限制于任何特定的硬件和软件结合。 以上仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本领域的技术人 员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和原则之内, 所作的任何 修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。 工业实用性 本发明实施例提供的技术方案可以应用于通信领域, 解决了现有技术中的滤波器 所存在问题的至少之一, 提供了相对较优的一种滤波器。

Claims

权 利 要 求 书
1. 一种滤波器, 包括:
通带;
第一开环谐振器, 设置在所述通带的上方, 所述第一开环谐振器包括第一 环带和第二环带, 所述第一环带和所述第二环带上均设置有开口;
第二开环谐振器, 设置在所述通带的下方, 所述第二开环谐振器包括第三 环带和第四环带, 所述第三环带和所述第四环带上均设置有开口; 所述第一环 带和所述第三环带构成互补开环谐振器, 所述第二环带和所述第四环带构成互 补开环谐振器。
2. 根据权利要求 1所述的滤波器, 其中, 所述通带包括依次连接的: 第一短路柱、 第一高阻抗短路枝节、 低阻抗开路枝节、 第二高阻抗短路枝节和第二短路柱; 所述滤波器还包括输入微带和输出微带, 其中, 所述输入微带通过所述第 一短路柱与所述第一高阻抗短路枝节连接, 用于将电磁波通过所述第一短路柱 传导到所述第一高阻抗短路枝节;
所述输出微带通过所述第二短路柱与所述第二高阻抗短路枝节连接, 用于 将所述第二短路柱将通过所述通带的电磁波输出。
3. 根据权利要求 2所述的滤波器, 其中, 所述输入微带与所述第一环带连接, 所 述输出微带与所述第二环带连接。
4. 根据权利要求 2或 3所述的滤波器, 其中, 所述输入微带和所述输出微带位于 第一层, 所述通带位于第二层, 所述第二开环谐振器位于第三层。
5. 根据权利要求 1至 4中任一项所述的滤波器, 其中, 所述第一环带、 所述第二 环带、 所述第三环带和所述第四环带为方形或者圆形。
6. 根据权利要求 1至 4中任一项所述的滤波器, 其中, 所述第一开环谐振器和所 述第二开环谐振器之间的距离能够调节, 以产生不同的耦合效果。
7. 根据权利要求 1至 4中任一项所述的滤波器, 其中, 所述第一开环谐振器为附 在介质板上的金属环带, 所述第二开环谐振器为金属地板上的开槽。
PCT/CN2014/075110 2013-09-10 2014-04-10 滤波器 WO2014176963A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310408285.8 2013-09-10
CN201310408285.8A CN104425858B (zh) 2013-09-10 2013-09-10 滤波器

Publications (1)

Publication Number Publication Date
WO2014176963A1 true WO2014176963A1 (zh) 2014-11-06

Family

ID=51843103

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/075110 WO2014176963A1 (zh) 2013-09-10 2014-04-10 滤波器

Country Status (2)

Country Link
CN (1) CN104425858B (zh)
WO (1) WO2014176963A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016161795A1 (zh) * 2015-04-08 2016-10-13 中兴通讯股份有限公司 一种滤波器

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107342461A (zh) * 2017-07-04 2017-11-10 北京邮电大学 一种uhf频段rfid窄带陷波掩膜
US11843159B2 (en) * 2019-04-17 2023-12-12 Japan Aviation Electronics Industry, Limited Split ring resonator and communication device
CN110764191A (zh) * 2019-11-01 2020-02-07 灵芯光电(天津)有限公司 一种基于微环的矩形光滤波器及其设计方法
CN111147074A (zh) * 2020-01-08 2020-05-12 重庆邮电大学 一种基于相位可调开环谐振器结构的5g通信频率源
CN112838375B (zh) * 2021-01-04 2022-06-24 北京环境特性研究所 一种X、Ku双频段透波的频率选择结构

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101068050A (zh) * 2007-06-01 2007-11-07 中国科学院物理研究所 一种混合结构的平面高温超导滤波器

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5164690A (en) * 1991-06-24 1992-11-17 Motorola, Inc. Multi-pole split ring resonator bandpass filter
CN102412432A (zh) * 2010-09-21 2012-04-11 电子科技大学 基于开口谐振环结构的波导带阻滤波器

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101068050A (zh) * 2007-06-01 2007-11-07 中国科学院物理研究所 一种混合结构的平面高温超导滤波器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MENG, LINGQIN ET AL.: "Substrate Integrated Waveguide Filters Based on Novel Complementary Split Ring Resonators", RESEARCH & PROGRESS OF SSE SOLID STATE ELECTRONICS, vol. 32, no. 1, 29 February 2012 (2012-02-29), pages 26 - 29 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016161795A1 (zh) * 2015-04-08 2016-10-13 中兴通讯股份有限公司 一种滤波器

Also Published As

Publication number Publication date
CN104425858B (zh) 2019-06-25
CN104425858A (zh) 2015-03-18

Similar Documents

Publication Publication Date Title
Sun et al. Novel dual-mode balun bandpass filters using single cross-slotted patch resonator
WO2014176963A1 (zh) 滤波器
JP5920868B2 (ja) 伝送線路共振器、帯域通過フィルタ及び分波器
Chen et al. Design of microstrip lowpass-bandpass triplexer with high isolation
WO2020168958A1 (zh) 一种带通滤波器及双工器
US20120256703A1 (en) Bandpass filter and electronic device
WO2016161795A1 (zh) 一种滤波器
Jeng et al. A high stopband-rejection LTCC filter with multiple transmission zeros
KR20100042299A (ko) 이중 대역통과 여파기
US8729980B2 (en) Band-pass filter based on CRLH resonator and duplexer using the same
Yin et al. A tri-band filter using tri-mode stub-loaded resonators (SLRs)
JP4842245B2 (ja) トリプレクサ回路
Borah et al. Ultra-compact balanced multiband fully reconfigurable bandstop filter
Deng et al. Microstrip bandpass filters with dissimilar resonators for suppression of spurious responses
Chen et al. A miniaturized net-type microstrip bandpass filter using/spl lambda//8 resonators
Lo et al. Design of dual-band bandpass filter using stub-loaded resonator with source-load coupling and spur-line at 2.45/5.5 GHz for WLAN applications
Liu et al. A Compact Quint-Band Bandpass Filter with High Selectivity Using Uniform Impedance Resonators (UIRs)
Shen et al. Compact microstrip tri-section bandpass filters with mixed couplings
Qian Design of a dual-band balanced SIW bandpass filter with high common-mode suppression
Simpson et al. Hybridly-integrated quasi-elliptic-type bandpass filters with symmetrical quasi-reflectionless characteristics
Hsu et al. Compact parallel-coupled sext-band bandpass filter using semi-lumped resonators
Sánchez-Renedo et al. Multi-coupled-resonator dual-band bandpass microstrip filters with non-resonating nodes
JP2004023335A (ja) バンドパスフィルタ
Abu Safia et al. Compact dual‐band bandpass filters with stub resonating lines
Gómez-García et al. Dual-band lowpass/bandpass periodic-type microstrip filter with Long-Term-Evolution (LTE) service mitigation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14792085

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14792085

Country of ref document: EP

Kind code of ref document: A1