WO2014176857A1 - 无线电能传输系统接收端电路 - Google Patents

无线电能传输系统接收端电路 Download PDF

Info

Publication number
WO2014176857A1
WO2014176857A1 PCT/CN2013/083323 CN2013083323W WO2014176857A1 WO 2014176857 A1 WO2014176857 A1 WO 2014176857A1 CN 2013083323 W CN2013083323 W CN 2013083323W WO 2014176857 A1 WO2014176857 A1 WO 2014176857A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
receiving end
transmission system
compensation capacitor
alternating current
Prior art date
Application number
PCT/CN2013/083323
Other languages
English (en)
French (fr)
Inventor
李聃
张衍昌
赵金华
龙海岸
Original Assignee
海尔集团技术研发中心
海尔集团公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海尔集团技术研发中心, 海尔集团公司 filed Critical 海尔集团技术研发中心
Publication of WO2014176857A1 publication Critical patent/WO2014176857A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type

Definitions

  • the present invention relates to the field of radio energy transmission technologies, and in particular, to a circuit of a receiving end of a radio energy transmission system.
  • Small household electrical appliances can be divided into resistive load small household appliances and inductive load small household appliances.
  • Resistive load small appliances such as rice cookers, mainly use their internal resistive load components to work.
  • Inductively loaded small household appliances that is, home appliances that operate using the principle of electromagnetic induction, such as mixers, compressors, and electric motors.
  • the power is generally not too large.
  • a mixer usually has a power of no more than 600W.
  • the radio energy receiving end circuit in the prior art comprises: a receiving coil circuit, a compensation capacitor circuit, a rectifying and filtering circuit and an inverter circuit.
  • 101 is a receiving coil circuit
  • 102 is a compensation capacitor circuit
  • 103 is a rectifying and filtering circuit
  • 104 is an inverter circuit
  • the receiving coil circuit 101 and the compensating capacitor circuit 102 constitute a resonant coupling circuit 106.
  • the high-frequency alternating current is converted into direct current in the rectifying and filtering circuit, and then the direct current is converted into mains (220V/50HZ alternating current) by the inverter circuit 104 and supplied to the small household appliance load 105 to supply power thereto.
  • the rectifier bridge in the rectifier circuit of the receiving end needs to be configured with a large heat sink for heat dissipation.
  • the inverter circuit whether it is a half-bridge inverter or a full-bridge inverter, it is necessary to configure a large heat sink for its switching transistor (such as IGBT). Heat dissipation, which causes the receiving circuit to become too bulky, which is not conducive to the assembly of the circuit inside small appliances. Therefore, this technical solution is very economical and modular in assembly performance for high-power radio energy transmission.
  • the receiving end rectifying circuit module of the radio energy has a large heat sink, and the receiving end is too bulky, which is disadvantageous for the internal device of the small household appliance.
  • the present invention provides a A radio transmission system receiving circuit design.
  • the present invention adopts the following technical solutions:
  • a receiving end circuit of a wireless power transmission system comprising a receiving coil circuit, a compensation capacitor circuit and a resistive load;
  • the receiving coil circuit receives the high frequency electromagnetic field emitted by the transmitting coil
  • the compensation capacitor circuit is connected to the receiving coil circuit
  • the receiving coil circuit and the compensation capacitor circuit form a resonant coupling circuit, and the high frequency electromagnetic field forms a high frequency alternating current through the resonant coupling circuit;
  • the resonant coupling circuit is directly connected to the resistive load, and the high frequency alternating current generated by the resonant coupling circuit directly supplies power to the resistive load.
  • radio energy transmission system receiving end circuit is further connected to a rectifying and filtering circuit for generating a sinusoidal unidirectional pulse voltage.
  • the radio energy transmission system receiving end circuit further includes a control circuit, the control circuit is connected to the rectifying and filtering circuit, and the sinusoidal unidirectional pulse generated by the rectifying and filtering circuit The voltage supplies power to the control circuit. Further, the radio energy transmission system receiving end circuit is configured to control a switch and an operating state of the resistive load.
  • the load is resistive when there is no phase difference between the load current and load voltages compared to the power supply. Because it operates mainly through resistor-type components, high-frequency alternating current has no effect on its performance. In this way, the resistive load is supplied with power, and the rectifying and filtering circuit is no longer needed to convert the high-frequency alternating current into direct current, and the direct current is converted into the mains (220V/50HZ alternating current) through the inverter circuit. In this way, the technical solution eliminates the rectification and filtering circuit in the prior art, so that it is not necessary to match the heat sink to the circuit, the volume of the receiving end module is reduced, and the thinning design of the receiving end is realized.
  • the invention also discloses a receiving end circuit of a wireless energy transmission system, comprising a receiving coil circuit, a compensation capacitor circuit, a rectifying and filtering circuit and an inductive load;
  • the receiving coil circuit receives the high frequency electromagnetic field emitted by the transmitting coil
  • the compensation capacitor circuit is connected to the receiving coil circuit
  • the receiving coil circuit and the compensation capacitor circuit form a resonant coupling circuit, and the high frequency electromagnetic field forms a high frequency alternating current through the resonant coupling circuit;
  • the rectifying and filtering circuit is connected to the compensation capacitor circuit, and the high frequency alternating current is rectified and filtered to generate a sinusoidal unidirectional pulse voltage;
  • the rectifying and filtering circuit is coupled to the inductive load to supply the inductive load with the sinusoidal unidirectional pulse voltage.
  • the radio energy transmission system receiving end circuit has a voltage effective value of 220V and a frequency of 100 Hz.
  • the inductive load power is small, the inductive load is powered by the circuit, and the heating pad is not required to be arranged on the rectifier bridge, which greatly reduces the volume of the receiving end circuit.
  • FIG. 1 is a schematic diagram of a receiving end circuit in the prior art.
  • FIG. 2 is a schematic diagram of a receiving end circuit according to Embodiment 1 of the present invention.
  • FIG. 3 is a schematic diagram of a receiving end circuit according to Embodiment 2 of the present invention.
  • FIG. 4 is a schematic diagram of a receiving end circuit according to Embodiment 3 of the present invention.
  • Figure 5 is a schematic diagram of a sinusoidal unidirectional pulse voltage waveform.
  • the present invention is mainly applied to small appliances, but is not limited thereto.
  • two embodiments are provided for the resistive load small household appliance, and an embodiment of the inductive load small electric power is provided to explain the present invention.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • the schematic diagram is mainly a schematic diagram of a power supply circuit module for a resistive load small household appliance.
  • the receiving coil circuit 201 senses and receives the high frequency electromagnetic field emitted by the nearby transmitting coil by utilizing the magnetic induction principle of the inductor.
  • the capacitance compensation circuit 202 is connected to the reception coil circuit 201, and the reception coil circuit 201 and the capacitance compensation circuit 202 constitute a resonance coupling circuit 204.
  • the high frequency electromagnetic field generates high frequency alternating current through the resonant coupling circuit 204, and the generated high frequency alternating current directly acts on the resistive load 203. Thereby powering the resistive load is achieved.
  • Power supply in this way does not require a rectification and filtering circuit, and an inverter circuit that converts DC to 220V/50HZ AC.
  • the resistive load is supplied directly by the resonant coupling circuit 204 composed of the receiving coil circuit 201 and the compensation capacitor 202. Since the rectifier circuit is omitted, There is no need to add a heat sink, which greatly reduces the size of the receiving end circuit, and then enters a small and lightweight resistive load small household electrical appliance.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • This embodiment is a specific embodiment for supplying power to a control circuit of a partially resistive load small household appliance.
  • the receiving coil circuit 301 senses and receives the high frequency electromagnetic field emitted by the nearby transmitting coil by utilizing the magnetic induction principle of the inductor.
  • the capacitance compensation circuit 302 is connected to the reception coil circuit 301, and the reception coil circuit 301 and the capacitance compensation circuit 302 constitute a resonance coupling circuit 306.
  • the high-frequency electromagnetic field generates high-frequency alternating current through the resonant coupling circuit 306, and the generated high-frequency alternating current directly acts on the resistive load small household appliance 303, thereby realizing power supply to the resistive load.
  • the embodiment further includes a control circuit 305 for controlling the resistive load, and a rectifying and filtering circuit 304 for supplying power to the control circuit 305.
  • a rectifying and filtering circuit 304 is connected after the resonant coupling circuit 306 of the receiving coil circuit 301 and the capacitor compensating circuit 302.
  • the rectifying and filtering circuit 304 rectifies and filters the high-frequency alternating current generated by the resonant coupling circuit 306 to generate a sinusoidal unidirectional pulse voltage, whereby the sinusoidal unidirectional pulse voltage supplies power to the control circuit 305.
  • FIG. 5 A schematic diagram of the sinusoidal unidirectional pulse voltage waveform is shown in Fig. 5, which is a voltage waveform that changes in the same direction.
  • the voltage parameters of the sinusoidal unidirectional pulse voltage and the frequency parameters can be adjusted according to the needs of the actual control circuit.
  • Embodiment 3 For the power supply of the control circuit, since the power required by this part of the circuit is small, the rectification and filtering circuit does not need to add a heat sink, which also reduces the volume of the small load-resisting load.
  • this schematic diagram is mainly a schematic diagram of a circuit module for supplying power to an inductively loaded small household appliance.
  • the receiving coil circuit 401 senses and receives the high frequency electromagnetic field emitted by the nearby transmitting coil by utilizing the magnetic induction principle of the inductor.
  • the capacitance compensation circuit 402 is connected to the reception coil circuit 401, and the reception coil circuit 401 and the capacitance compensation circuit 402 constitute a resonance coupling circuit 406.
  • the high frequency electromagnetic field generates high frequency alternating current via the resonant coupling circuit 406.
  • a rectifying and filtering circuit 403 is connected after the coupled resonant circuit 405.
  • the high-frequency alternating current generated by the electromagnetic field via the resonant coupling circuit 405 generates a sinusoidal unidirectional pulse voltage through the rectifying and filtering circuit 403, whereby the sinusoidal unidirectional pulse voltage supplies power to the inductive load small household appliance 404 connected to the rectifying and filtering circuit 403.
  • Figure 5 shows a sinusoidal unidirectional pulse voltage waveform, which is a voltage waveform that changes in the same direction.
  • the single-cycle ripple voltage has an effective value of 220V and a frequency of 100 Hz.
  • variable voltage power supply is basically the same as that of the mains power supply, and has no effect on the electrical performance of inductively loaded small appliances.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

一种无线电能传输系统接收端电路,包括接收线圏电路(201,401)、补偿电容电路(202,402)和阻性负载(203),接收线圏电路和补偿电容电路组成谐振耦合电路,高频电磁场经谐振耦合电路形成高频交流电,由所产生的高频交流电直接对阻性负载进行供电。此外,对于感性负载(404),高频交流电经整流滤波电路(403)后对感性负载供电。

Description

无线电能传输系统接收端电路
技术领域
本发明涉及无线电能传输技术领域,具体涉及一种无线电能传输系统接收端 的电路。
背景技术
目前,现有技术中已经存在一些涉及无线电能传输的技术, 尤其是针对小功 率的无线电能传输的解决方案, 例如市面上已有的无线手机充电器等产品。 但 是对于小家电产品, 目前市面上还没有应用无线电能传输技术的产品, 其中原 因之一就是因为小家电产品本身功率很高, 导致模块体积过于庞大, 根本无法 装配到小家电产品中。 另外在小家电内部封闭的空间, 电路模块本身的散热也 存在很大的问题。
小家电产品可分为阻性负载小家电和感性负载小家电。阻性负载小家电, 例 如电饭煲等主要是利用其内部的阻性负载元件进行工作。 感性负载小家电产品, 也即是利用电磁感应原理进行工作的家电, 例如搅拌机、 压缩机、 电动机等。 对于这类产品其功率一般不是太大。 例如搅拌机, 其功率一般不超过 600W。
现有技术中无线电能接收端电路包括: 接收线圈电路、补偿电容电路、 整流 滤波电路以及逆变电路四部分。 如图 1所示, 101为接收线圈电路, 102为补偿电 容电路, 103为整流滤波电路, 104为逆变电路, 其中接收线圈电路 101和补偿电 容电路 102组成谐振耦合电路 106。 在整流滤波电路中将高频交流电转化为直流 电, 然后利用逆变电路 104将直流电转化为市电(220V/50HZ交流电)提供给小家 电产品负载 105对其进行供电。 由于传输的功率太高, 接收端整流电路中的整流 桥需要配置一个很大的散热片来进行散热。 而对于逆变电路而言, 无论是半桥 逆变还是全桥逆变也需要配置一个很大的散热片对其开关管 (如: IGBT) 进行 散热, 这样一来导致接收端电路变得过于庞大, 不利于电路在小家电内部装配。 因此这种技术方案对于高功率的无线电能传输来说其经济性以及可模块化的装 配性能非常差。
以上可见,现有技术中无线电能的接收端整流电路模块中, 由于匹配了很大 的散热片, 造成接收端体积过于庞大, 不利于在小家电内部装置。
发明内容
为了精简整流桥电路的设计, 减少接收端因散热所匹配的散热片, 优化接 收端的电路设计方案, 减小了接收端电路模块的体积, 实现接收端电路模块的 轻薄化设计, 本发明提供一种无线电能传输系统接收端电路设计方案。
为实现上述目的, 本发明采用以下技术方案:
一种无线电能传输系统接收端电路, 包括接收线圈电路、 补偿电容电路和 阻性负载;
接收线圈电路接收发射线圈发射的高频电磁场;
补偿电容电路和接收线圈电路相连接;
接收线圈电路和补偿电容电路组成谐振耦合电路, 高频电磁场经谐振耦合 电路形成高频交流电;
所述谐振耦合电路与阻性负载直接相连接, 由谐振耦合电路所产生的高频 交流电直接对阻性负载进行供电。
进一歩, 所述的无线电能传输系统接收端电路, 谐振耦合电路还连接用于 产生正弦单向脉冲电压的整流滤波电路。
进一歩, 所述的无线电能传输系统接收端电路, 所述无线电能传输系统接 收端电路还包括控制电路, 所述控制电路与所述整流滤波电路连接, 由整流滤 波电路产生的正弦单向脉冲电压对所述控制电路进行供电。 进一歩, 所述的无线电能传输系统接收端电路, 所述控制电路用于控制所 述阻性负载的开关和工作状态。
对于阻性负载, 即和电源相比当负载电流负载电压没有相位差时负载为阻 性, 因其主要是通过电阻类元件进行工作, 采用高频交流电对其性能没有任何 影响。 以此方法对阻性负载进行供电, 不再需要整流滤波电路将高频交流电转 化为直流电, 并进一歩通过逆变电路将此直流电转化为市电 (220V/50HZ交流 电) 。 这样一来, 本技术方案就省去了现有技术中的整流滤波电路, 因此也就 不需要向电路匹配散热片, 减小了接收端模块体积, 实现了接收端的轻薄化设 计。
本发明还公开了一种无线电能传输系统接收端电路, 包括接收线圈电路、 补偿电容电路、 整流滤波电路和感性负载;
接收线圈电路接收发射线圈发射的高频电磁场;
补偿电容电路和接收线圈电路相连接;
接收线圈电路和补偿电容电路组成谐振耦合电路, 高频电磁场经所述谐振 耦合电路形成高频交流电;
整流滤波电路与补偿电容电路相连接, 对所述高频交流电进行整流滤波产 生正弦单向脉冲电压;
整流滤波电路和感性负载相连接, 以所述正弦单向脉冲电压向感性负载供 电。
进一歩, 所述的无线电能传输系统接收端电路, 所述正弦单向脉冲电压的 电压有效值为 220V, 频率为 100Hz。
因感性负载功率较小, 利用此种电路对感性负载进行供电, 整流桥上并不 需要配置加热片, 这样也就大大减小了接收端电路的体积。 附图说明
图 1是现有技术中接收端电路示意图。
图 2是本发明实施例一的接收端电路示意图。
图 3是本发明实施例二的接收端电路示意图。
图 4是本发明实施例三的接收端电路示意图。
图 5是正弦单向脉冲电压波形示意图。
具体实施方式
为使对本发明的目的、 技术方案和优点的阐述更加清楚与完整, 下面结合 附图对本发明的实施方式作进一歩的描述。
本发明主要用于小家电, 但不限于此。 为使本发明的目的、 技术方案的呈 现更加清楚、 完整在此特对阻性负载小家电提供两种实施例, 对感性负载小家 电提供一种实施例进一歩对本发明进行说明。
实施例一:
如图 2所示, 本示意图主要是对阻性负载小家电进行供电电路模块示意图。 在阻性负载小家电接收端, 接收线圈电路 201利用电感的磁感应原理, 感应 并接收附近发射线圈发射的高频电磁场。
电容补偿电路 202与接收线圈电路 201相连接, 接收线圈电路 201和电容补偿 电路 202组成谐振耦合电路 204。 高频电磁场经谐振耦合电路 204产生高频交流 电, 所产生的高频交流电, 直接作用于阻性负载 203上。 从而实现对阻性负载的 供电。
采用这种方式进行供电, 不需要经过整流滤波电路, 以及直流转市电 ( 220V/50HZ交流) 的逆变电路。 直接利用利用接收线圈电路 201和补偿电容 202 所组成的谐振耦合电路 204对阻性负载进行供电。 由于省去了整流电路, 因此就 不需要加上散热片, 大大的减少了接收端电路的体积, 进而进一歩轻巧了阻性 负载小家电产品。
实施例二:
对于部分阻性负载小家电在其工作过程中, 需对其进行控制。控制电路的正 常工作需对其进行供电。 本实施例即是对部分阻性负载小家电的控制电路进行 供电的具体实施例。
如图 3所示, 在阻性负载小家电接收端, 接收线圈电路 301利用电感的磁感应 原理, 感应并接收附近发射线圈发射的高频电磁场。
电容补偿电路 302与接收线圈电路 301相连接, 接收线圈电路 301和电容补偿 电路 302组成谐振耦合电路 306。 高频电磁场经谐振耦合电路 306产生高频交流 电, 所产生的的高频交流电直接作用于阻性负载小家电 303上, 从而实现对阻性 负载的供电。
在此基础上,本实施例还包括为了实现对阻性负载进行控制的控制电路 305, 以及对控制电路 305进行供电的整流滤波电路 304。
为了实现对控制电路 305进行供电, 在接收线圈电路 301和电容补偿电路 302 所组成的谐振耦合电路 306后连接一整流滤波电路 304。 整流滤波电路 304对谐振 耦合电路 306所产生的高频交流电进行整流滤波产生正弦单向脉冲电压, 由此正 弦单向脉冲电压对控制电路 305进行供电。
正弦单向脉冲电压波形示意图如图 5所示, 为在相同方向变化的电压波形。 其中正弦单向脉冲电压的电压参数, 频率参数根据实际控制电路的需要可 以做出相应的调整。
对控制电路的供电, 由于这部分电路所需要的功率很小, 所以整流滤波电 路并不需要另外加散热片, 也就精简了阻性负载小家电的体积。 实施例三:
如图 4所示, 本示意图主要是对感性负载小家电进行供电的电路模块示意 图。
在感性负载小家电的接收端, 接收线圈电路 401利用电感的磁感应原理, 感 应并接收附近发射线圈发射的高频电磁场。
电容补偿电路 402与接收线圈电路 401相连接, 接收线圈电路 401和电容补偿 电路 402组成谐振耦合电路 406。
高频电磁场经谐振耦合电路 406产生高频交流电。
为了使其对感性负载小家电进行供电, 需对高频交流电进行整流滤波。 为 了对高频交流电进行整流滤波, 在耦合谐振电路 405后连接一整流滤波电路 403。 电磁场经谐振耦合电路 405后产生的高频交流电经过整流滤波电路 403产生正弦 单向脉冲电压, 由此正弦单向脉冲电压对连接在整流滤波电路 403上的感性负载 小家电 404进行供电。
图 5所示为正弦单向脉冲电压波形图, 为在相同方向变化的电压波形。
优选的, 单项脉动电压有效值为 220V, 频率为 100Hz。
这种方案, 由于传输的功率不大, 整流滤波电路上并不需要匹配散热片, 减小了接收端电路的体积, 进而轻巧了感性负载小家电。 而采用变动电压供电 与采用市电供电效果基本相同, 对于感性负载小家电的电气性能并没有影响。
以上所述仅为本发明的较佳实施例, 并不用以限制本发明, 凡在本发明的 精神和原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的 保护范围之内。

Claims

权 利 要 求 书
1、 一种无线电能传输系统接收端电路, 包括接收线圈电路、 补偿电容电路 和阻性负载;
接收线圈电路接收发射线圈发射的高频电磁场;
补偿电容电路和接收线圈电路相连接;
接收线圈电路和补偿电容电路组成谐振耦合电路, 高频电磁场经谐振耦合 电路形成高频交流电;
其特征在于:
所述谐振耦合电路与阻性负载直接相连接, 由谐振耦合电路所产生的高频 交流电直接对阻性负载进行供电。
2、 如权利要求 1所述的无线电能传输系统接收端电路, 其特征在于, 谐振 耦合电路还连接用于产生正弦单向脉冲电压的整流滤波电路。
3、 如权利要求 2所述的无线电能传输系统接收端电路, 其特征在于, 所述 无线电能传输系统接收端电路还包括控制电路, 所述控制电路与所述整流滤波 电路连接, 由整流滤波电路产生的正弦单向脉冲电压对所述控制电路进行供电。
4、 如权利要求 3所述的无线电能传输系统接收端电路, 其特征在于, 所述 控制电路用于控制所述阻性负载的开关和工作状态。
5、 一种无线电能传输系统接收端电路, 包括接收线圈电路、 补偿电容电路、 整流滤波电路和感性负载;
接收线圏电路接收发射线圈发射的高频电磁场;
补偿电容电路和接收线圈电路相连接; 接收线圈电路和补偿电容电路组成谐振耦合电路, 高频电磁场经所述谐振 耦合电路形成高频交流电;
其特征在于: 整流滤波电路与补偿电容电路相连接, 对所述高频交流电进行整流滤波产 生正弦单向脉冲电压;
整流滤波电路和感性负载相连接, 以所述正弦单向脉冲电压向感性负载供 电。
6、 如权利要求 5所述的无线电能传输系统接收端电路, 其特征在于, 所述 正弦单向脉冲电压的电压有效值为 220V, 频率为 100Hz。
PCT/CN2013/083323 2013-04-28 2013-09-11 无线电能传输系统接收端电路 WO2014176857A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310157637.7A CN104124778A (zh) 2013-04-28 2013-04-28 无线电能传输系统接收端电路
CN201310157637.7 2013-04-28

Publications (1)

Publication Number Publication Date
WO2014176857A1 true WO2014176857A1 (zh) 2014-11-06

Family

ID=51770089

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/083323 WO2014176857A1 (zh) 2013-04-28 2013-09-11 无线电能传输系统接收端电路

Country Status (2)

Country Link
CN (1) CN104124778A (zh)
WO (1) WO2014176857A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL424438A1 (pl) * 2018-01-31 2019-08-12 Krzysztof Jan Szorc Sposób dostarczania energii elektrycznej do pojazdu z napędem elektrycznym podczas jego jazdy na potrzeby z tym związane oraz ładowania akumulatora elektrycznego pojazdu w trakcie jego jazdy

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110285211A1 (en) * 2010-05-20 2011-11-24 Advantest Corporation Wireless power supply system
WO2012091209A1 (ko) * 2010-12-30 2012-07-05 전자부품연구원 자기공진유도 방식을 이용한 멀티노드 무선 전력 전송 시스템 및 무선 충전기기
CN102790417A (zh) * 2012-08-08 2012-11-21 清华大学 一种路车交互式电动汽车无线充电系统
CN102916498A (zh) * 2012-10-16 2013-02-06 河北凯翔电气科技股份有限公司 能量接收器和包含其的变频能量转换装置
CN203071662U (zh) * 2012-10-16 2013-07-17 河北凯翔电气科技股份有限公司 能量接收器和包含其的变频能量转换装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110285211A1 (en) * 2010-05-20 2011-11-24 Advantest Corporation Wireless power supply system
WO2012091209A1 (ko) * 2010-12-30 2012-07-05 전자부품연구원 자기공진유도 방식을 이용한 멀티노드 무선 전력 전송 시스템 및 무선 충전기기
CN102790417A (zh) * 2012-08-08 2012-11-21 清华大学 一种路车交互式电动汽车无线充电系统
CN102916498A (zh) * 2012-10-16 2013-02-06 河北凯翔电气科技股份有限公司 能量接收器和包含其的变频能量转换装置
CN203071662U (zh) * 2012-10-16 2013-07-17 河北凯翔电气科技股份有限公司 能量接收器和包含其的变频能量转换装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL424438A1 (pl) * 2018-01-31 2019-08-12 Krzysztof Jan Szorc Sposób dostarczania energii elektrycznej do pojazdu z napędem elektrycznym podczas jego jazdy na potrzeby z tym związane oraz ładowania akumulatora elektrycznego pojazdu w trakcie jego jazdy

Also Published As

Publication number Publication date
CN104124778A (zh) 2014-10-29

Similar Documents

Publication Publication Date Title
CN102647030B (zh) 无线电能发射装置及无线电能供电系统
US11395378B2 (en) Induction heating device having improved interference noise removal function and power control function
US20200014245A1 (en) Single-stage transmitter for wireless power transfer
KR20130044647A (ko) 공진 방식 무선 충전 시스템용 수신 전력 변환 장치
TWI474761B (zh) Induction heating conditioner
JP6493526B2 (ja) ワイヤレス給電システムおよびワイヤレス給電方法
US20210257866A1 (en) Wireless power transfer apparatus, wireless power reception apparatus, and system including the same
WO2013140666A1 (ja) 誘導加熱調理器
US20230284346A1 (en) Induction heating device with improved interference noise elimination and output control functions
EP2753145B1 (en) Induction heat cooking apparatus
Jiang et al. A single stage AC/RF converter for wireless power transfer applications
TW201406021A (zh) 非接觸式轉換系統
KR20160150512A (ko) 전자 유도 가열 조리기
WO2014176857A1 (zh) 无线电能传输系统接收端电路
EP3257137B1 (en) Wireless power transmission device
KR102628673B1 (ko) 전력전송 효율이 증대된 무선 전력 전송 장치
US11949246B2 (en) Wireless power transmission apparatus and method of operating the same
TWI506941B (zh) 可分配輸入功率的換流器及其操作方法
CN211531341U (zh) 加热电路
CN209844624U (zh) 一种无线供电装置及厨电设备
KR102091215B1 (ko) 무선 전력 송신 장치 및 무선 전력 수신 장치
TW201737592A (zh) 無線充電系統
JP2953172B2 (ja) 高周波加熱装置
CN105932781B (zh) 一种电磁波发射设备
Muthu et al. SEPIC Converter for Power Factor Correction in Free Biomass Induction Heating System

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13883732

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13883732

Country of ref document: EP

Kind code of ref document: A1