WO2014175538A1 - Puf 기반 하드웨어 otp 제공 장치 및 이를 이용한 2-factor 인증 방법 - Google Patents

Puf 기반 하드웨어 otp 제공 장치 및 이를 이용한 2-factor 인증 방법 Download PDF

Info

Publication number
WO2014175538A1
WO2014175538A1 PCT/KR2014/000454 KR2014000454W WO2014175538A1 WO 2014175538 A1 WO2014175538 A1 WO 2014175538A1 KR 2014000454 W KR2014000454 W KR 2014000454W WO 2014175538 A1 WO2014175538 A1 WO 2014175538A1
Authority
WO
WIPO (PCT)
Prior art keywords
otp
authentication
puf
pin
hardware
Prior art date
Application number
PCT/KR2014/000454
Other languages
English (en)
French (fr)
Inventor
김동규
최병덕
김동현
지광현
Original Assignee
(주) 아이씨티케이
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주) 아이씨티케이 filed Critical (주) 아이씨티케이
Priority to EP19196588.8A priority Critical patent/EP3598696A1/en
Priority to EP14789085.9A priority patent/EP2991267B1/en
Priority to US14/786,079 priority patent/US9876647B2/en
Publication of WO2014175538A1 publication Critical patent/WO2014175538A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/30Public key, i.e. encryption algorithm being computationally infeasible to invert or user's encryption keys not requiring secrecy
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09CCIPHERING OR DECIPHERING APPARATUS FOR CRYPTOGRAPHIC OR OTHER PURPOSES INVOLVING THE NEED FOR SECRECY
    • G09C1/00Apparatus or methods whereby a given sequence of signs, e.g. an intelligible text, is transformed into an unintelligible sequence of signs by transposing the signs or groups of signs or by replacing them by others according to a predetermined system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/32Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials
    • H04L9/3271Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials using challenge-response
    • H04L9/3278Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials using challenge-response using physically unclonable functions [PUF]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/60Protecting data
    • G06F21/602Providing cryptographic facilities or services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/08Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
    • H04L9/0861Generation of secret information including derivation or calculation of cryptographic keys or passwords
    • H04L9/0863Generation of secret information including derivation or calculation of cryptographic keys or passwords involving passwords or one-time passwords
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/08Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
    • H04L9/0861Generation of secret information including derivation or calculation of cryptographic keys or passwords
    • H04L9/0866Generation of secret information including derivation or calculation of cryptographic keys or passwords involving user or device identifiers, e.g. serial number, physical or biometrical information, DNA, hand-signature or measurable physical characteristics
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/08Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
    • H04L9/0861Generation of secret information including derivation or calculation of cryptographic keys or passwords
    • H04L9/0869Generation of secret information including derivation or calculation of cryptographic keys or passwords involving random numbers or seeds
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/32Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/32Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials
    • H04L9/3226Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials using a predetermined code, e.g. password, passphrase or PIN
    • H04L9/3228One-time or temporary data, i.e. information which is sent for every authentication or authorization, e.g. one-time-password, one-time-token or one-time-key
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L2209/00Additional information or applications relating to cryptographic mechanisms or cryptographic arrangements for secret or secure communication H04L9/00
    • H04L2209/12Details relating to cryptographic hardware or logic circuitry
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L2209/00Additional information or applications relating to cryptographic mechanisms or cryptographic arrangements for secret or secure communication H04L9/00
    • H04L2209/24Key scheduling, i.e. generating round keys or sub-keys for block encryption

Definitions

  • the present invention relates to an apparatus for providing an One Time Password (OTP) and an authentication method using an OTP, and more particularly, to an OTP providing apparatus and an authentication method capable of preventing a security attack.
  • OTP One Time Password
  • 'SE' Secure Digital Card
  • USIM Universal Subscriber Identity Module
  • SD Card Secure Digital Card
  • the normal SE can manage the authentication means, for example, the public certificate in the form of a file can not exclude the risk of security incidents by copying the public certificate and leakage of personal information.
  • OTP authentication may be performed through conventional OTP providing devices owned by the user separately from the SE.
  • the conventional OTP providing apparatus is provided in the form of an OTP terminal in the form of a token or a card, or a software-based OTP providing application based on a USIM.
  • Such a conventional OTP providing apparatus may be a target of a security attack such as a debugging port and an internal memory attack, and may also be vulnerable to software hacking for an operating system (OS) or an OTP application of a terminal.
  • OS operating system
  • PUF Physical Unclonable Function
  • Individual PUFs are given the correct manufacturing process, and even if manufactured in the same process, the digital values provided by the individual PUFs are different.
  • PUF may be referred to as Physical One-Way Function practically impossible to be duplicated (POWF).
  • This non-replicable characteristic of the PUF may be used as an identifier of a device for security and / or authentication.
  • PUF may be used to provide a unique key to distinguish devices from one another.
  • Korean Patent Registration No. 10-1139630 (hereinafter '630 patent) has been presented a method for implementing the PUF.
  • the '630 patent proposes a method in which a process variation of a semiconductor is used to probabilistically determine whether an inter-layer contact or a via is formed between conductive layers of the semiconductor. It became.
  • a 2-factor authentication device comprises a secure element (SE) for performing a first authentication procedure; And a PUF, and may include a hardware-based OPT generation element (hereinafter, referred to as 'HW OTP Element' or 'HW OTP') that generates an OTP and performs a second authentication procedure.
  • SE secure element
  • PUF PUF
  • 'HW OTP Element' or 'HW OTP' hardware-based OPT generation element
  • the hardware-based OTP generating element is implemented on a single chip with the secure element has a die-chip wiring between the secure element and the input and output interface of the secure element Through the OTP can be delivered to the outside.
  • the hardware-based OTP generating element is encrypted random number 'R' encrypted using a public key of the hardware-based OTP generating element from a Certificate Authority (CA). 'using the public key of the OTP element).
  • CA Certificate Authority
  • the hardware-based OTP generating element may decrypt the random number R using a private key corresponding to the public key and generated using the PUF.
  • the OTP may be generated using the decoded random number R.
  • the hardware-based OTP generating element may encrypt and transmit the public key using a separate PUF-PIN different from the PUF.
  • the hardware-based OTP generating element is used to extract the PUF-PIN before the authentication apparatus performs the second authentication procedure, and after the extraction, the PUF-PIN is no longer physically blocked. It may include a block to prevent the.
  • the authentication device may be implemented in at least one of a subscriber identity module (SIM), a storage medium, and an embedded SE of a terminal.
  • SIM subscriber identity module
  • the secure element SE may provide secure storage for storing at least one security information associated with the first authentication.
  • the security information may include, for example, at least one of a public certificate, a password, and subscriber identification information.
  • the second authentication is requested by at least one of a service management authority (TSM), a mobile network operator (MNO), a contents provider, and a service provider.
  • TSM service management authority
  • MNO mobile network operator
  • contents provider a contents provider
  • service provider Associated with the submission of the OTP.
  • At least one of the first authentication and the second authentication may include, for example, payment using a mobile credit card, payment using an electronic wallet, mobile banking, purchase payment on an app store, content purchase payment, It may be associated with at least one of a login of a website and a login of a cloud computing service.
  • a hardware-based OTP generating apparatus using a PUF includes: a first PUF for providing a private key; A public key generator for generating a public key using the private key; A second PUF providing a PIN identifying the device; An encryption unit for encrypting and providing the public key using the PIN; A decryption unit for decrypting a random number received encrypted by using the public key using the private key; And an OTP generator configured to generate an OTP corresponding to the random number by using the decoded random number.
  • the PIN is used to decrypt the public key.
  • the hardware-based OTP generating device may further include a blocking unit which is used to extract the PIN for the first time and is physically blocked after the PIN is first extracted so that the PIN no longer leaks to the outside. .
  • a hardware-based OTP generating device using a PUF comprising: a PUF for providing a PIN identifying the device; A storage unit for storing time information synchronized with the outside; And an OTP generating unit for generating an OTP corresponding to the time information by using the time information and the PIN when an OPT provision request is provided.
  • the secure element when a request for providing a one-time password (OTP) is received for a second authentication procedure distinct from the first authentication procedure performed by the secure element, the secure element generates the hardware-based OPT. Delivering to an element, wherein the OTP generating element is implemented including a PUF and included on one chip via a die chip connection with the secure element; Generating, by the hardware-based OTP generating element, the OTP using the PUF, and delivering the OTP to the secure element; And providing, by the secure element, the OTP to the outside through an input / output interface of the secure element.
  • OTP one-time password
  • an authentication method for providing an OTP by a hardware-based OTP generating apparatus using a PUF comprising: generating a public key using a private key generated by a first PUF; Providing a PIN identifying a device by a second PUF; Encrypting and providing the public key using the PIN; Decrypting, by the decryption unit, the random number received encrypted by using the public key using the private key; And generating, by an OTP generator, an OTP corresponding to the random number using the decrypted random number.
  • an authentication method for providing an OTP by a hardware-based OTP generating device using a physically unclonable function comprising: generating a PIN by the PUF to identify the device; And generating an OTP corresponding to the time information by using the PIN and the OTP generation unit, when the OPT provision request is requested, using the time information synchronized with the outside and the PIN.
  • PUF physically unclonable function
  • FIG. 1 is a block diagram illustrating a 2-factor authentication device including a conventional SE and a hardware-based OTP providing device according to an embodiment.
  • FIG. 2 illustrates an exemplary form in which a chip corresponding to the SE of FIG. 1 and a chip corresponding to a hardware-based OTP element are implemented in one package according to an embodiment.
  • FIG. 3 is a conceptual diagram illustrating various examples to which the authentication apparatus of FIG. 1 may be applied, according to an embodiment.
  • FIG 4 illustrates an HW OTP providing apparatus according to an embodiment.
  • FIG. 5 is a flowchart illustrating a process of extracting a PIN for the first time in the HW OTP providing apparatus according to an embodiment.
  • FIG. 6 is a flowchart illustrating a process of exchanging a public key with a CA by the HW OTP providing apparatus according to an exemplary embodiment.
  • FIG. 7 is a flowchart illustrating a process of generating an OTP by a HW OTP providing apparatus or a process of authenticating a generated OTP by a CA according to an embodiment.
  • FIG 8 is an exemplary conceptual view for explaining the conventional authentication process of the 2-factor authentication device according to an embodiment.
  • FIG. 9 is a conceptual diagram illustrating a HW OTP authentication process according to an embodiment.
  • FIG. 10 is an exemplary conceptual diagram illustrating the safety of HW OTP authentication according to an embodiment.
  • FIG. 11 is another exemplary conceptual diagram illustrating the safety of HW OTP authentication according to an embodiment.
  • FIG. 12 is a conceptual diagram illustrating an exemplary method in which HW OTP authentication is utilized for digital rights management (DRM) according to an embodiment.
  • FIG. 13 illustrates an HW OTP providing apparatus according to another embodiment.
  • FIG. 14 is a flowchart illustrating a process of first extracting a PIN from the HW OTP according to the embodiment of FIG. 13.
  • FIG. 15 is a flowchart illustrating a process in which an HW OTP providing apparatus according to the embodiment of FIG. 13 generates an OTP or a process in which a CA authenticates the generated OTP.
  • FIG. 1 is a block diagram illustrating a 2-factor authentication device 100 including a conventional SE and a hardware-based OTP providing apparatus, according to an embodiment.
  • the 2-factor authentication device 100 may be implemented by at least some of a smart card, a SIM chip, a storage medium, and an embedded SE of a hardware terminal. More details will be described later with reference to FIGS. 2 and 3. do.
  • the 2-factor authentication apparatus 100 includes a security element (SE) 110 that performs a first authentication procedure, which is a commonly used authentication method.
  • SE security element
  • the first authentication procedure is, for example, an authentication process using a public certificate, a user ID, a subscriber identifier, a password, and the like stored in the SE 100.
  • the first authentication procedure using the SE 110 is performed for authentication of a user and / or a device, and if necessary, an authentication certificate password and / or separately provided for a digital signature. OTP value identification by the OTP device is also performed.
  • the 2-factor authentication apparatus 100 further includes a hardware-based OTP element 120.
  • a hardware-based OTP element 120 an OTP authentication process performed separately from and / or in connection with the first authentication procedure may be referred to as a second authentication procedure.
  • the second authentication may be required by at least one of a service management authority (TSM), a mobile network operator (MNO), a contents provider, and a service provider. It is related to the submission process of OTP.
  • TSM service management authority
  • MNO mobile network operator
  • At least one of the first authentication and the second authentication may be, for example, payment using a mobile credit card, payment using an electronic wallet, mobile banking, purchase payment on an app store, content purchase payment, or web. It may be associated with at least one of a login of a site and a login of a cloud computing service.
  • the HW OTP element 120 may be configured as a single chip with the SE (110).
  • each of the SE 110 and the HW OTP element 120 is implemented as a separate single chip, but may be configured as a single package.
  • the SE 110 and the HW OTP element 120 may be connected to each other through die-chip wiring included in the chip.
  • an interface for directly accessing the HW OTP element 120 from the outside may be omitted, and thus the attack path may be blocked because the HW OTP element 120 is accessible only through the SE 110. have.
  • the HW OTP element 120 unlike conventional OTP providing devices, does not store key values that are used directly or indirectly to generate OTP values in a non-volatile storage medium. It can be implemented only in hardware.
  • the HW OTP element 120 includes at least one PUF and uses at least some of the at least one PUF to generate an OTP value.
  • the PUF included in the HW OTP element 120 may be a process variation of a semiconductor according to the embodiments of the '630 patent.
  • the HW OTP element 120 is implemented using a PUF, which is robust to physical attacks and impossible to replicate. Thus, a secure authentication process can be provided against security attacks.
  • HW OTP 120 is implemented only by hardware circuits without a processing module for processing software such as a CPU or MCU, the system cannot be changed as in the case of software.
  • An authentication process can be provided.
  • Embodiments in which the PUF is included in the HW OTP 120 and specific embodiments regarding the generation of the OTP will be described below in more detail with reference to FIGS. 4 to 7, 14, and 15.
  • FIG. 2 illustrates an exemplary form in which a chip corresponding to the SE 110 of FIG. 1 and a chip corresponding to the hardware-based OTP element 120 are separately implemented and constituted as one package 200 according to an embodiment. .
  • SE 210 as an authentication element included in package 200 is used to perform a first authentication procedure in a conventional manner.
  • an HW OTP element 220 having a die-chip connection within this SE 120 and package 200 is included.
  • the configuration according to this embodiment may ensure full compatibility with the authentication procedure according to the prior art, in which the package 200 includes only the SE 210 and not according to the embodiments.
  • the package 200 according to the embodiments further includes the HW OTP element 220 in addition to the conventional SE 210, but does not require the second authentication by the HW OTP element 220 in the authentication process. It may serve as a chip for performing only the first authentication by the SW 210 as in a normal process.
  • the manufacturing process of the package 200 is also substantially the same as the existing chip manufacturing process, and since the way to package the HW OTP element 200 together in the chip can minimize the increase in complexity of the manufacturing process.
  • the HW OTP 220 does not directly display the generated OTP to the user in the manner that the conventional OTP providing apparatuses do, but instead delivers the OTP to the SE 210 to perform the second authentication seamlessly. You can do that.
  • the SE 210 may also encrypt and transmit the OTP received from the HW OTP element 220 in a secure manner to the outside.
  • FIG. 3 is a conceptual diagram illustrating various examples to which the authentication apparatus of FIG. 1 may be applied, according to an embodiment.
  • the 2-factor authentication device 100 of FIG. 1 or the package 200 of FIG. 2 may be included in various types of products.
  • the device 100 or the package 200 may be mounted on the USIM 310 or the SD card 320 as the security element SE is conventionally mounted on the USIM or the SD card.
  • the device 100 or the package 200 may be included in the form of an embedded secure element (SE) 330 included in the terminal 300 at the time of manufacturing the information communication terminal 300, for example, a smartphone. .
  • SE embedded secure element
  • FIG 4 illustrates an HW OTP providing apparatus 400 according to an embodiment.
  • the HW OTP providing apparatus 400 may correspond to the HW OTP element 120 or 220 described above. Meanwhile, according to another exemplary embodiment, the HW OTP providing apparatus 400 may be an OTP providing apparatus implemented in hardware regardless of 2-factor authentication.
  • the HW OTP providing apparatus assuming either of the case that the HW OTP providing device 400 is an OTP element included in the 2-Factor authentication device or a separate OTP providing device
  • the configuration and operation of the 400 can be described, it is obvious that the other side is not excluded.
  • the HW OTP providing apparatus 400 may include a first PUF 430 for generating a private key to enable public key-private key-based encryption and decryption with an external CA. .
  • the HW OTP providing apparatus 400 may include a second PUF 410 for generating a unique PIN identifying the apparatus 400.
  • the first PUF 430 may be referred to as a 'PUF (Private Key)'
  • the second PUF 410 may be referred to as a 'PUF (PIN)'.
  • the HW OTP providing apparatus 400 may include a blocking unit 420.
  • the blocking unit 420 is a path for safely extracting a unique PIN identifying the device 400 before the device 400 is distributed / used.
  • the blocking unit 420 is configured to completely block the PIN extraction path PIN_out after the PIN is first extracted in a secure state.
  • the blocking unit 420 may be implemented by a fuse as illustrated.
  • the public key generation unit 440 may generate a public key symmetrical to the private key by using the private key generated by the PUF (private key). If the public key is to be delivered to an external CA, the symmetric key-based encryption module 450 uses the PIN generated by the PUF (PIN) 410 as a key value to encrypt P with the public key. And this P can be passed to an external CA. Of course, in the embodiment of the 2-factor authentication device described with reference to Figure 1, such a P can be delivered via the SE (110).
  • the external certification authority When an external certification authority requires an OTP authentication procedure in a challenge-response manner, the external certification authority sends a Q, which encrypts the random number R corresponding to the challenge with the public key, to the device 400.
  • Q which is R encrypted with the unique public key of the device 400, can only be decrypted using the private key, so the decryption module 460 decrypts Q using the private key to restore R corresponding to the challenge. do.
  • the OTP generator 470 may generate an OTP using this R.
  • the external certification authority performs the OTP authentication procedure by checking whether or not the OTP matches with the OTP generated using the R.
  • FIG. 5 is a flowchart illustrating a process of extracting a PIN for the first time in the HW OTP providing apparatus according to an embodiment.
  • step 510 in the factory 502 that manufactures the device 501, the serial number SN of the device 501 is assigned to the device 501.
  • the device 501 includes a PUF (PIN), and the PIN generated by the PUF (PIN) is first extracted to the factory 502 together with the SN in step 520.
  • PIN PUF
  • step 540 the factory 502 can provide the SN of the device 501 to the CA 503 with the extracted PIN in a secure process, CA 503 can be managed by matching the SN and PIN. have.
  • the CA 503 may directly perform the procedure performed at the factory 502.
  • the factory 502 and the CA 503 may perform at least some of the roles on the other side, unless otherwise described.
  • FIG. 6 is a flowchart illustrating a process of exchanging a public key with a CA by the HW OTP providing apparatus according to an exemplary embodiment.
  • This public key exchange process may be performed between the device 601 and the CA 602 prior to the OTP authentication according to the embodiments.
  • the device 601 uses the PIN and public key PUB_KEY D in a symmetric key encryption scheme using its PIN in step 620. Generate P by encrypting
  • CA 602 decrypts P using the PIN of the device 601 already having step 540 of FIG. 5 (step 640). .
  • step 650 If there is no abnormality after verifying the SN in step 650, the public key PUB_KEY D is registered in step 660 to be used for the OTP authentication process later. Even in this process, the private key of the device 601 is never extracted to the CA 602. In addition, since the private key of the device 601 is not extracted to the outside in any case, only the device 601 can decrypt data encrypted using the public key PUB_KEY D.
  • the CA 602 is responsible for the payment transaction that successfully decrypted the data encrypted using the public key PUB_KEY D of the device 601. There is grounds for not losing ground.
  • FIG. 7 is a flowchart illustrating a process of generating an OTP by a HW OTP providing apparatus or a process of authenticating a generated OTP by a CA according to an embodiment.
  • the CA 702 When the CA 702 wants to authenticate the device 701, the CA 702 generates a random number R that becomes a challenge in the challenge-response scheme and, in step 710, the public key PUB_KEY D of the device 701. Q is generated by encrypting this R.
  • step 720 the CA 702 sends this challenge Q to the device 701, and in step 730 the device 701 decrypts this Q with its private key PRIV_KEY D to restore Q.
  • This R is then provided to an OTP generation module, such as a module using hash type OTP generation algorithm processing, to generate an OTP K in a predetermined manner (step 740).
  • an OTP generation module such as a module using hash type OTP generation algorithm processing
  • the generated OTP, K is provided to CA 702.
  • the generated OTP K may be provided encrypted in a secure manner.
  • K may be provided in the form of encrypting the OTP using the public key PUB_KEY CA.
  • the SE 110 may securely provide the CA 702 with the K generated by the HW OTP element 120 in its own encryption method.
  • the CA 702 may generate the OTP value S using the R in the same manner as the device 701, and the S generated by itself in step 770 is the device 701.
  • the OTP authentication procedure can be performed by verifying whether or not it is equal to K provided from.
  • the above-described challenge-response OTP authentication process is only an exemplary embodiment, depending on how the HW OTP providing apparatus is implemented, such OTP authentication can be performed by any other procedure.
  • OTP authentication can be performed by any other procedure.
  • a time synchronization type OTP which will be described with reference to FIGS. 14 and 15, is also possible, which will be described later.
  • FIG 8 is an exemplary conceptual view for explaining the conventional authentication process of the 2-factor authentication device according to an embodiment.
  • terminal and / or user authentication is performed only by the SE 810 (1-Factor authentication), so that various security threats such as leakage of a certificate file or unauthorized reissue of a certificate, password leak, screen or keyboard hacking, etc. are completely excluded.
  • various security threats such as leakage of a certificate file or unauthorized reissue of a certificate, password leak, screen or keyboard hacking, etc. are completely excluded.
  • the TSM 830 and various commercial / financial entities that manage future electronic and financial transactions can be guaranteed with a very high level of reliability.
  • FIG. 9 is a conceptual diagram illustrating a HW OTP authentication process according to an embodiment.
  • HW OTP 910 does not necessarily presuppose the authentication success of the conventional technique by the SE 810 of FIG. 8.
  • the authentication procedure may be performed at a very high level only by OTP authentication by the HW OTP 910 included in the external organization and the terminal 900.
  • the TSM when the TSM or the subject of the electronic commerce / financial transaction requires only authentication by the HW OTP 910, authentication may be performed only by the HW OTP 910.
  • FIG. When the HW OTP 910 transmits the PUF-based OTP to the TSM, the TSM authenticates the terminal 900 only by verifying the OTP.
  • FIG. 10 is an exemplary conceptual diagram illustrating the safety of HW OTP authentication according to an embodiment.
  • the authentication number e.g., a one-time authentication number consisting of 4 or 6 digits
  • the authentication number there is a possibility of hacking the authentication number provided to the terminal 1000. Existed.
  • a hacking tool or a malicious code may be installed in the terminal 1000 to intercept such authentication number by screen hacking or key input hacking, and may also complete authentication in another terminal 1001.
  • the security level is high. Very high.
  • the OTP value itself generated by the HW OTP 1010 is not output by the display of the terminal 1000, but is securely encrypted and seamlessly transmitted to the certification authority. Therefore, screen hacking or keystroke hacking may not be a threat at all.
  • the HW OTP 1010 authentication proceeds together with the authentication using the conventional authentication number as described above, so that the user recognizes only the method using the authentication number even though 2-Factor authentication actually proceeds.
  • the OTP authentication process is not recognized, user convenience is high and there is no heterogeneity compared to the conventional method.
  • FIG. 11 is another exemplary conceptual diagram illustrating the safety of HW OTP authentication according to an embodiment.
  • the authentication process of the HW OTP 1110 may be used not only for transactions such as financial transactions or electronic payment, but also for account login processes such as websites or cloud services.
  • HW OTP 1110 In the example cloud service shown, for example, in addition to conventional account information authentication, such as e-mail or account ID and password entry, and / or instead, authentication is performed at terminal 1100 using HW OTP 1110.
  • HW OTP 1110 Even when an attempt to steal an account due to leakage / takeover of the account information occurs in another terminal 1111, the terminal 1111 may make the account inaccessible. This is because the HW OTP 1110 necessary for OTP authentication cannot be duplicated and thus the OTP authentication cannot be performed at the attacker's terminal 1111.
  • FIG. 12 is a conceptual diagram illustrating an exemplary method in which HW OTP authentication is utilized for digital rights management (DRM) according to an embodiment.
  • HW OTP authentication according to the embodiments is used for content copyright management such as DRM in online content transactions.
  • the apparatus 1201 of a trusted certification authority such as the TSM when the content transmission is required between the digital content provider 1202 and the terminal 1203, the HW held by the terminal 1203 according to the embodiments described above.
  • the public key of the OTP may be provided to the digital content provider 1202 (step 1210). There is no problem in providing such a public key to the digital content provider 1202, as described above with reference to FIGS. 6 to 7, only the public key can encrypt data or information, and a private key required for decryption is provided. This is because there is no possibility of impersonating the terminal 1203 if it does not hold.
  • the purchased digital content requires a decryption process of content related to the DRM.
  • a secret key method may be preferable.
  • the digital content provider 1202 encrypts the content itself using the random number R, and encrypts and transmits the random number R, which can decrypt the encrypted content, using the public key of the terminal 1203 (step 1220).
  • the digital content provider 1202 encrypts the content itself using the random number R, and encrypts and transmits the random number R, which can decrypt the encrypted content, using the public key of the terminal 1203 (step 1220).
  • FIG. 13 illustrates an HW OTP providing apparatus according to another embodiment.
  • the hardware-based OTP generating apparatus 1300 using the PUF may generate an OTP while receiving and updating an initial time value according to a time synchronization method.
  • the time information updater 1310 may provide the OTP generator 1340 with an initial time value updated at a predetermined time interval, for example, in 1 minute increments.
  • the OTP generation unit 1340 may generate and provide an OTP using the unique PIN of the device 1300 provided by the PUF (PIN) together with the time information.
  • the PIN may be completely physically blocked from the outside by the blocking unit 1330.
  • FIG. 14 is a flowchart illustrating a process of first extracting a PIN from the HW OTP 1300 according to the embodiment of FIG. 13.
  • step 1410 the factory 1402, which manufactures the device 1401, is given the device 1401 a serial number SN and time synchronization information (such as an initial time value) of the device 1401.
  • step 1420 device 1401 provides a unique PIN provided by PUF (PIN) with process SN to process 1402, and after this initial extraction, completely blocks PIN_out at step 1430. do.
  • PUF PUF
  • the factory 1402 may provide the SN of the device 1401 to the CA 1403 together with the extracted PIN in a secure process, and the CA 1403 manages matching the SN and the PIN. It is used later to perform time synchronization OTP authentication for the device 1401.
  • the procedure performed at the factory 1402 may be performed directly at the CA 140303.
  • FIG. 15 is a flowchart illustrating a process in which an HW OTP providing apparatus according to the embodiment of FIG. 13 generates an OTP or a process in which a CA authenticates the generated OTP.
  • Each of the apparatus 1501 and the CA 1502 updates the synchronized time information through steps 1510 and 1511. If OTP authentication is required, the device 1501 generates an OTP K using the PIN of the device 1501 and the updated time information in step 1520. K may be securely encrypted with Q and transmitted to CA 1502 and then decrypted with K again.
  • the CA 1502 performs the OTP-type device 1501 authentication by comparing and verifying the self-generated S with the K using the PIN and the time information of the device 1501 in step 1521 (step 1530). Can be.
  • FIGS. 13 to 15 are also only some of the embodiments related to the implementation or operation of the HW OTP, and thus other applications may be possible without further describing other examples.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Software Systems (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioethics (AREA)
  • Computing Systems (AREA)
  • Storage Device Security (AREA)
  • Financial Or Insurance-Related Operations Such As Payment And Settlement (AREA)

Abstract

복제가 불가능한 하드웨어 기반 OTP 생성 장치가 제시된다. 상기 OTP 생성 장치는 고유의 PIN을 생성하는 PUF를 포함할 수 있다. 또한 이러한 OTP 생성 장치가 기존의 보안 요소와 함께 2-Factor 인증에 사용되는 방법이 제시된다.

Description

PUF 기반 하드웨어 OTP 제공 장치 및 이를 이용한 2-FACTOR 인증 방법
OTP(One Time Password)를 제공하는 장치 및 OTP를 이용하는 인증 방법에 연관되며, 보다 특정하게는 보안 공격을 방지할 수 있는 OTP 제공 장치 및 인증 방법에 연관된다.
모바일 기기와 정보통신 기술의 발달로, USIM(Universal Subscriber Identity Module)이나 SD 카드(Secure Digital Card) 등의 보안 요소(Secure Element, 이하에서는 'SE'라고 할 수 있음)를 통해 제공되는 통상적인 인증(authentication)이 전자 결제 등에서 사용되는 경우가 늘고 있다.
그러나, 통상의 SE들은 인증 수단, 이를테면 공인인증서 등을 파일 형태로 관리하여 공인 인증서의 복사와 개인정보 유출에 의한 보안 사고의 위험을 배제할 수 없다. 이러한 위험을 최소화 하기 위해서 SE와 별개로 사용자가 소지하는 종래의 OTP 제공 장치들을 통한 OTP 인증을 거치도록 하기도 한다.
종래의 OTP 제공 장치는, 토큰이나 카드 형태의 OTP 단말, 또는 USIM 기반의 소프트웨어 기반 OTP 제공 어플리케이션 형태로 제공되었다.
그러나, 이러한 종래의 OTP 제공 장치의 경우, 디버깅 포트, 내부 메모리 공격 등 보안 공격의 대상이 될 수 있고, 또한 단말의 OS(Operating System)나 OTP 어플리케이션에 대한 소프트웨어 해킹에 취약할 수 있다.
나아가, 보안 공격이 전자 결제나 모바일 뱅킹을 제공하는 사업자 또는 인증 기관에 대해 보안 사고가 발생하는 경우, 유출된 정보를 통한 부정한 트랜잭션에 대해 금융기관이 책임을 면할 수 없는 문제점도 지적된다.
한편, PUF (Physically Unclonable Function)는 예측 불가능한 (Unpredictable) 디지털 값을 제공할 수 있다. 개개의 PUF들은 정확한 제조 공정이 주어지고, 동일한 공정에서 제조되더라도, 상기 개개의 PUF들이 제공하는 디지털 값은 다르다.
PUF는 복제가 불가능한 POWF (Physical One-Way Function practically impossible to be duplicated)로 지칭될 수도 있다.
이러한 PUF의 복제 불가능한 특성은 보안 및/또는 인증을 위한 기기의 식별자로 이용될 수 있다. 이를테면, 디바이스를 다른 디바이스와 구별하기 위한 유니크 키(unique key to distinguish devices from one another)를 제공하기 위해 PUF가 이용될 수 있다.
한국 등록특허 10-1139630호(이하 '630 특허)에서 PUF를 구현하는 방법이 제시된 바 있다. '630 특허에서는 반도체의 공정 편차(process variation)를 이용하여 반도체의 전도성 레이어들 사이의 인터-레이어 콘택(inter-layer contact) 또는 비아(via)의 생성 여부가 확률적으로 결정되도록 한 방법이 제시되었다.
일측에 따르면, 2-Factor 인증 장치가 제공된다. 상기 인증 장치는, 제1 인증 절차를 수행하는 보안 요소(SE); 및 PUF를 포함하며, OTP를 생성하여 제2 인증 절차를 수행하는 하드웨어 기반 OPT 생성 요소(이하에서는, 'HW OTP Element' 또는 'HW OTP'라고 할 수 있음)를 포함할 수 있다.
일실시예에 따르면, 상기 하드웨어 기반 OTP 생성 요소는, 상기 보안 요소와 단일의 칩 상에서 구현되어 상기 보안 요소와의 사이에 다이 칩 연결(die-chip wiring)을 가지며, 상기 보안 요소의 입출력 인터페이스를 통하여 상기 OTP를 외부로 전달할 수 있다.
일실시예에 따르면, 상기 하드웨어 기반 OTP 생성 요소는, 인증 기관(Certificate Authority, 'CA')으로부터 상기 하드웨어 기반 OTP 생성 요소의 공개키를 이용하여 암호화 한 랜덤 넘버 'R'(encrypted random number 'R' using the public key of the OTP element)을 수신할 수 있다.
이 경우, 상기 하드웨어 기반 OTP 생성 요소는, 상기 공개키에 대응하며 상기 PUF를 이용하여 생성되는 개인키(private key)를 이용하여 상기 랜덤 넘버 R을 복호화 할 수 있다. 그리고, 상기 복호화되는 랜덤 넘버 R을 이용하여 상기 OTP를 생성할 수 있다.
이 실시예에서, 상기 하드웨어 기반 OTP 생성 요소는, 상기 공개키를 상기 인증 기관에 전송하는 경우 상기 PUF와 상이한 별도의 PUF-PIN을 이용하여 상기 공개키를 암호화하여 전송할 수 있다.
여기서 상기 하드웨어 기반 OTP 생성 요소는, 상기 인증 장치가 상기 제2 인증 절차를 수행하기 전에 상기 PUF-PIN이 추출되는 데에 이용되고, 상기 추출 이후에는 물리적으로 차단되어 더 이상 상기 PUF-PIN이 추출되지 않도록 하는 차단부를 포함할 수 있다.
한편, 일실시예에 따르면, 상기 인증 장치는, 가입자 식별 모듈(SIM), 저장 매체 및 단말의 임베디드 SE 중 적어도 하나에서 구현될 수 있다. 그리고, 상기 보안 요소(SE)는 상기 제1 인증에 연관되는 적어도 하나의 보안 정보를 저장하는 보안 스토리지를 제공할 수 있다.
이 경우, 상기 보안 정보는 예를 들어, 공인 인증서, 비밀번호, 가입자 식별 정보 중 적어도 하나를 포함할 수 있다.
일실시예에 따르면, 상기 제2 인증은 서비스 관리 기관(TSM, Trusted Service Manager), 통신사(MNO, Mobile Network Operator), 컨텐츠 제공자(Contents Provider), 서비스 제공자(Service Provider) 중 적어도 하나에 의해 요구되는 상기 OTP의 제출에 연관된다.
일실시예에 따르면, 상기 제1 인증 및 상기 제2 인증 중 적어도 하나는, 예를 들어, 모바일 신용카드를 이용한 결제, 전자 지갑을 이용한 결제, 모바일 뱅킹, 앱스토어 상의 구매 결제, 컨텐츠 구매 결제, 웹사이트의 로그인, 클라우드 컴퓨팅 서비스의 로그인 중 적어도 하나에 연관될 수 있다.
다른 일측에 따르면, PUF를 이용하는 하드웨어 기반 OTP 생성 장치가 제공된다. 상기 하드웨어 기반 OTP 생성 장치는, 개인키를 제공하는 제1 PUF; 상기 개인키를 이용하여 공개키를 생성하는 공개키 생성부; 상기 장치를 식별하는 PIN을 제공하는 제2 PUF; 상기 PIN을 이용하여 상기 공개키를 암호화하여 제공하는 암호화부; 상기 공개키를 이용하여 암호화되어 수신되는 랜덤 넘버를, 상기 개인키를 이용하여 복호화하는 복호화부; 및 상기 복호화되는 상기 랜덤 넘버를 이용하여 상기 랜덤 넘버에 대응하는 OTP를 생성하는 OTP 생성부를 포함할 수 있다.
일실시예에 따르면, 상기 PIN은 상기 공개키를 복호화하기 위해 사용되는 것이다. 또한, 상기 하드웨어 기반 OTP 생성 장치는, 상기 PIN이 최초로 추출되는 데에 이용되며 상기 PIN이 최초로 추출된 이후에 물리적으로 차단되어 더 이상 상기 PIN이 외부로 유출되지 않도록 하는 차단부를 더 포함할 수 있다.
또 다른 일측에 따르면, PUF를 이용하는 하드웨어 기반 OTP 생성 장치에 있어서, 상기 장치를 식별하는 PIN을 제공하는 PUF; 외부와 동기화되어 있는 시간 정보를 저장하는 저장부; 및 OPT 제공 요청이 있는 경우, 상기 시간 정보 및 상기 PIN을 이용하여 상기 시간 정보에 대응하는 OTP를 생성하는 OTP 생성부를 포함하는 하드웨어 기반 OTP 생성 장치가 제공된다.
또 다른 일측에 따르면, 보안 요소에 의해 수행되는 제1 인증 절차와 구분되는 제2 인증 절차를 위해 OTP (One-Time Password) 제공 요청이 수신되는 경우, 상기 보안 요소가 상기 요청을 하드웨어 기반 OPT 생성 요소에 전달하는 단계 - 상기 OTP 생성 요소는 PUF를 포함하여 구현되며, 상기 보안 요소와 다이 칩 연결을 통해 하나의 칩 상에 포함됨 -; 상기 하드웨어 기반 OTP 생성 요소가 상기 PUF를 이용하여 상기 OTP를 생성하여 상기 보안 요소에 전달하는 단계; 및 상기 보안 요소가 상기 보안 요소의 입출력 인터페이스를 통하여 상기 OTP를 외부에 제공하는 단계를 포함하는 인증 방법이 제공된다.
또 다른 일측에 따르면, PUF를 이용하는 하드웨어 기반 OTP 생성 장치가 OTP를 제공하는 인증 방법에 있어서, 제1 PUF가 생성한 개인키를 이용하여 공개키를 생성하는 단계; 제2 PUF가 상기 장치를 식별하는 PIN을 제공하는 단계; 암호화부가 상기 PIN을 이용하여 상기 공개키를 암호화하여 제공하는 단계; 복호화부가 상기 공개키를 이용하여 암호화되어 수신되는 랜덤 넘버를, 상기 개인키를 이용하여 복호화하는 단계; 및 OTP 생성부가 상기 복호화되는 상기 랜덤 넘버를 이용하여 상기 랜덤 넘버에 대응하는 OTP를 생성하는 단계를 포함하는 인증 방법이 제공된다.
또 다른 일측에 따르면, PUF(Physically Unclonable Function)를 이용하는 하드웨어 기반 OTP 생성 장치가 OTP를 제공하는 인증 방법에 있어서, PUF가 상기 장치를 식별하는 PIN을 생성하는 단계; 및 OPT 제공 요청이 있는 경우, OTP 생성부가 외부와 동기화되어 있는 시간 정보 및 상기 PIN을 이용하여 상기 시간 정보에 대응하는 OTP를 생성하는 단계를 포함하는 인증 방법이 제공된다.
도 1은 일실시예에 따라, 통상의 SE와 하드웨어 기반 OTP 제공장치를 포함하는 2-Factor 인증 장치를 도시하는 블록도이다.
도 2는 일실시예에 따른 도 1의 SE에 대응하는 칩과 하드웨어 기반 OTP 요소에 대응하는 칩이 하나의 패키지에 구현되는 예시적 형태를 도시한다.
도 3은 일실시예에 따라, 도 1의 인증 장치가 적용될 수 있는 다양한 예시들을 설명하기 위한 개념도이다.
도 4는 일실시예에 따른 HW OTP 제공 장치를 도시한다.
도 5는 일실시예에 따른 HW OTP 제공장치에서 최초로 PIN을 추출하는 과정을 도시하는 흐름도이다.
도 6은 일실시예에 따라 HW OTP 제공장치가 CA와 공개키를 교환하는 과정을 도시하는 흐름도이다.
도 7은 일실시예에 따라 HW OTP 제공장치가 OTP를 생성하는 과정 내지 생성된 OTP를 CA가 인증하는 과정을 도시하는 흐름도이다.
도 8은 일실시예에 따른 2-Factor 인증 장치의 인증 과정 종래의 인증 과정과 대비하여 설명하기 위한 예시적 개념도이다.
도 9는 일실시예에 따른 HW OTP 인증 과정을 설명하기 위한 개념도이다.
도 10은 일실시예에 따른 HW OTP 인증의 안전성을 설명하는 예시적 개념도이다.
도 11은 일실시예에 따른 HW OTP 인증의 안전성을 설명하는 다른 예시적 개념도이다.
도 12는 일실시예에 따른 HW OTP 인증이 DRM(Digital Rights Management)에 활용되는 예시적 방법을 설명하기 위한 개념도이다.
도 13은 다른 일실시예에 따른 시간 동기 방식 HW OTP 제공 장치를 도시한다.
도 14는 도 13의 실시예에 따른 HW OTP로부터 최초로 PIN을 추출하는 과정을 도시하는 흐름도이다.
도 15는 도 13의 실시예에 따른 HW OTP 제공장치가 OTP를 생성하는 과정 내지 생성된 OTP를 CA가 인증하는 과정을 도시하는 흐름도이다.
이하에서, 일부 실시예들을, 첨부된 도면을 참조하여 상세하게 설명한다. 그러나, 이러한 실시예들에 의해 제한되거나 한정되는 것은 아니다. 각 도면에 제시된 동일한 참조 부호는 동일한 부재를 나타낸다.
도 1은 일실시예에 따라, 통상의 SE와 하드웨어 기반 OTP 제공장치를 포함하는 2-Factor 인증 장치(100)를 도시하는 블록도이다.
예시적으로 이러한 2-Factor 인증 장치(100)는 스마트 카드, SIM 칩, 저장매체, 하드웨어 단말의 임베디드 SE 중 적어도 일부에 의해 구현될 수 있으며, 보다 상세한 내용은 도 2 및 도 3을 참조하여 후술한다.
한편, 일실시예에 따르면, 2-Factor 인증 장치(100)는, 통상적으로 사용되는 인증 방식인 제1 인증 절차를 수행하는 보안 요소(SE)(110)를 포함한다.
여기서 상기 제1 인증 절차는, 이를테면, SE(100)에 저장되는 공인인증서, 사용자 ID, 가입자 식별자(subscriber identifier), 패스워드 등을 이용하는 인증 과정이다.
종래의 전자 결제 또는 모바일 뱅킹 등에서는 사용자 및/또는 기기의 인증을 위해 SE(110)를 이용한 제1 인증 절차를 수행하였으며, 필요 시 전자 서명(digital signature)을 위해 공인인증서 암호 및/또는 별도로 제공되는 OTP 장치에 의한 OTP 값 식별 등의 과정을 수행하기도 하였다.
그러나, 실시예에 따른 2-Factor 인증 장치(100)는 하드웨어 기반의 OTP 요소(hardware-based OTP Element)(120)를 더 포함한다. 본 명세서 전반에 걸쳐, 상기 제1 인증 절차와 별개로 및/또는 제1 인증 절차와 연관하여 수행되는 OTP 인증 과정을 제2 인증 절차로 지칭할 수 있다.
예시적으로, 상기 제2 인증은 서비스 관리 기관(TSM, Trusted Service Manager), 통신사(MNO, Mobile Network Operator), 컨텐츠 제공자(Contents Provider), 서비스 제공자(Service Provider) 중 적어도 하나에 의해 요구되는 상기 OTP의 제출 절차에 연관된다.
또한, 예시적으로 상기 제1 인증 및 상기 제2 인증 중 적어도 하나는, 예를 들어, 모바일 신용카드를 이용한 결제, 전자 지갑을 이용한 결제, 모바일 뱅킹, 앱스토어 상의 구매 결제, 컨텐츠 구매 결제, 웹사이트의 로그인, 클라우드 컴퓨팅 서비스의 로그인 중 적어도 하나에 연관될 수 있다.
한편, 일실시예에 따르면, 이러한 HW OTP 요소(120)는 상기 SE(110)와 단일의 칩으로 구성될 수 있다.
또한, 도시된 바와 같이, 상기 SE(110)과 HW OTP 요소(120) 각각이 별도의 단일칩으로 구현되지만 하나의 패키지로 구성될 수도 있다. 그리고, SE(110)와 HW OTP 요소(120)은 칩에 포함되는 다이 칩 연결(die-chip wiring)을 통해 서로 연결될 수 있다.
이러한 실시예에서는, 외부에서 HW OTP 요소(120)에 직접 접근할 수 있는 인터페이스가 생략될 수 있으며, 따라서 HW OTP 요소(120)에는 SE(110)을 통해서만 접근이 가능하므로 공격 경로가 차단될 수 있다.
일실시예에 따르면, HW OTP 요소(120)는 종래의 OTP 제공 장치들과는 달리, OTP 값을 생성하기 위해 직접 또는 간접적으로 사용되는 키 값을 비휘발성 기록매체(non-volatile storage medium)에 저장하지 않고 하드웨어적으로만 구현될 수 있다.
일실시예에 따르면, HW OTP 요소(120)는 적어도 하나의 PUF를 포함하며 상기 적어도 하나의 PUF 중 적어도 일부를 OTP 값 생성에 이용한다.
예시적으로, HW OTP 요소(120)에 포함되는 PUF는 상기 '630 특허에서 제시되는 실시예들에 따른, 반도체의 공정 편차(process variation)를 이용한 것일 수 있다. 그러나, 이러한 내용은 어디까지나 예시적인 것에 불과하며, 당업자에게 PUF를 이용하여 하드웨어적으로 키 값(OTP 생성에 직접 또는 간접적으로 이용되는 여하 간의 디지털 값)을 생성하는 다른 하드웨어적 구성 역시 가능하다.
이렇게 하드웨어 기반에서, 특히 PUF를 이용하여 HW OTP 요소(120)가 구현됨으로써 물리적 공격에 강인하고, 복제가 불가능하다. 따라서, 보안 공격에 대해 안전한 인증 과정이 제공될 수 있다.
또한, CPU나 MCU 등과 같이 소프트웨어를 처리하는 프로세싱 모듈이 탑재가 되지 않고 오직 하드웨어 회로에 의해서만 HW OTP(120)이 구현될 경우, 소프트웨어의 경우와 같이 시스템의 변경이 불가능하므로 변조가 불가능한 고 신뢰성의 인증과정이 제공될 수 있다.
HW OTP(120)에 PUF가 포함되는 실시예들 및 OTP 생성에 관한 구체적인 실시예들은 도 4 내지 도 7, 도 14 및 도 15 등을 참조하여 보다 상세히 후술한다.
도 2는 일실시예에 따른 도 1의 SE(110)에 대응하는 칩과 하드웨어 기반 OTP 요소(120)에 대응하는 칩이 별도로 구현되어 하나의 패키지(200)로 구성되는 예시적 형태를 도시한다.
패키지(200)에 포함되는 인증 요소로서의 SE(210)는 종래의 방식에 따른 제1 인증 절차를 수행하는 데에 이용된다. 일실시예에 따르면, 이러한 SE(120)와 패키지(200) 내부에서 다이-칩 연결을 갖는 HW OTP 요소(220)가 포함된다.
이러한 실시예에 따른 구성은, 패키지(200)가 본 실시예들에 의하지 않고 SE(210)만을 포함하는 종래의 기술에 의한 인증 절차와의 완전한 호환성을 보장할 수 있다.
즉, 실시예들에 따른 패키지(200)는 종래의 SE(210) 외에 HW OTP 요소(220)가 더 포함되어 있지만, 인증 과정에서 이러한 HW OTP 요소(220)에 의한 제2 인증을 요구하지 않는다면 통상적인 과정과 같이 SW(210)에 의한 제1 인증만을 수행하는 칩으로서 역할을 할 수 있다.
또한, 패키지(200) 제조 공정 역시, 기존의 칩 제조 공정과 대부분 동일하며, 칩 내부에 HW OTP 요소(200)를 함께 패키지화 하는 방식이 되므로 제조 공정의 복잡도 증가를 최소화할 수 있다.
일실시예에 따른 HW OTP(220)는, 생성한 OTP를 종래의 OTP 제공 장치들이 했던 방식으로 사용자에게 직접 디스플레이 하는 것이 아니라, SE(210)에 전달하여 심리스(seamless)하게 제2 인증이 수행되도록 할 수 있다. 이러한 과정에서, SE(210) 또한 HW OTP 요소(220)로부터 전달받은 OTP를 안전한 방식으로 암호화하여 외부로 전달할 수 있다. 물론, 도 4를 참고하여 후술하겠지만, 실시예에 따라서는 상기 HW OTP 요소(220)가 생성한 OTP를 여하간의 방식으로 사용자에게 디스플레이 하는 것도 가능하다.
도 3은 일실시예에 따라, 도 1의 인증 장치가 적용될 수 있는 다양한 예시들을 설명하기 위한 개념도이다.
도 1의 2-Factor 인증 장치(100) 또는 도 2의 패키지(200)는 다양한 형태의 제품에 포함될 수 있다. 종래에 보안 요소(SE)를 USIM이나 SD 카드 등에 탑재하였던 것과 같이, 장치(100) 또는 패키지(200)가 USIM(310) 또는 SD 카드(320)에 탑재될 수 있음은 물론이다.
나아가, 장치(100) 또는 패키지(200)는, 정보통신 단말기(300), 이를테면 스마트폰의 제조 시에 단말(300) 내부에 포함되는 임베디드 SE(embedded Secure Element)(330) 형태로서 포함될 수도 있다.
도 4는 일실시예에 따른 HW OTP 제공 장치(400)를 도시한다.
일실시예에 따르면, HW OTP 제공 장치(400)는 위에서 설명된 HW OTP 요소(120 또는 220)에 대응할 수 있다. 한편, 다른 일실시예에 따르면, HW OTP 제공장치(400)는 2-Factor 인증과 관계 없이 하드웨어적으로 구현되는 OTP 제공 장치일 수도 있다.
따라서, 이하에서는, 설명의 편의를 위해, HW OTP 제공 장치(400)가 2-Factor 인증 장치에 포함되는 OTP 요소인 경우 또는 별도의 OTP 제공 장치인 경우 중 어느 한 쪽을 가정하여 HW OTP 제공 장치(400)의 구성 및 동작을 설명할 수 있으나, 다른 한 쪽을 배제하는 것이 아님은 명확하다.
일실시예에 따르면, HW OTP 제공 장치(400)는 외부의 인증 기관(CA)와 공개키-개인키 기반 암복호화가 가능하도록, 개인키를 생성하는 제1 PUF(430)을 포함할 수 있다.
또한, HW OTP 제공 장치(400)는 장치(400)를 식별하는 고유의 PIN을 생성하는 제2 PUF(410)을 포함할 수 있다. 명세서 전반에 걸쳐, 제1 PUF(430)를 'PUF(개인키)'로 지칭할 수 있으며, 제2 PUF(410)를 'PUF(PIN)'으로 지칭할 수 있다.
HW OTP 제공 장치(400)는 차단부(420)를 포함할 수 있다. 이 차단부(420)는 장치(400)가 배포/사용되기에 앞서서 장치(400)를 식별하는 고유의 PIN을 안전하게 추출하는 경로가 된다. 차단부(420)은 안전한 상태에서 최초로 PIN이 추출된 이후에는 물리적으로 PIN 추출 경로(PIN_out)을 완전히 차단하는 구성이며, 이를테면 도시된 바와 같이 퓨즈(Fuse)에 의해 구현될 수 있다.
공개키 생성부(440)는 PUF(개인키)가 생성한 개인키를 이용하여, 개인키에 대칭이 되는 공개키를 생성할 수 있다. 공개키가 외부의 인증 기관(CA)으로 전달되어야 하는 경우에는, 대칭키 기반 암호화 모듈(450)이 PUF(PIN)(410)이 생성한 PIN을 키 값으로 하여 상기 공개키를 암호화한 P를 생성하고, 이 P가 외부의 인증 기관(CA)으로 전달될 수 있다. 물론, 도 1을 참조하여 설명한 2-Factor 인증 장치의 실시예에서는, 이러한 P의 전달이 SE(110)을 거쳐 이루어질 수 있다.
외부의 인증 기관은 챌린지-리스폰스(Challenge - Response) 방식으로 OTP 인증 절차가 필요한 경우, 챌린지에 해당하는 랜덤 넘버 R을 상기 공개키로 암호화한 Q를 장치(400)에 보낸다.
장치(400)의 고유한 공개키로 암호화된 R인 Q는, 개인키를 이용해서만 복호화될 수 있고, 따라서 복호화 모듈(460)은 개인키를 이용하여 Q를 복호화하여 챌린지에 해당하는 R을 복원한다.
그리고 OTP 생성부(470)은 이 R을 이용하여 OTP를 생성할 수 있다.
이 OTP가 다시 외부의 인증 기관으로 제공되면, 외부의 인증 기관은 스스로 상기 R을 이용하여 생성한 OTP와의 일치 여부를 확인함으로써 OTP 인증 절차를 수행한다.
이러한 과정은 도 5 내지 도 7을 참조하여 보다 구체적으로 설명한다.
도 5는 일실시예에 따른 HW OTP 제공장치에서 최초로 PIN을 추출하는 과정을 도시하는 흐름도이다.
단계(510)에서는 장치(501)을 제조하는 공장(502)에서, 장치(501)의 시리얼 넘버 SN이 장치(501)에 부여된다. 장치(501)에는 PUF(PIN)이 포함되며, 이 PUF(PIN)이 생성하는 PIN은 단계(520)에서 SN과 함께 공장(502)으로 최초 추출된다.
그리고, 단계(530)에서는 도 4를 참조하여 설명한 차단부, 이를테면 퓨즈가 물리적으로 단락되어 PIN_out이 차단된다.
단계(540)에서 공장(502)은 안전한 과정으로 장치(501)의 SN을 상기 추출된 PIN과 함께 CA(503)로 제공할 수 있으며, CA(503)은 SN과 PIN을 매칭하여 관리할 수 있다.
물론, 이러한 과정은 예시적인 것으로, 보다 안전한 방식으로 SN||PIN을 CA(503)에게 전달하고자 할 경우, 공장(502)에서 수행하는 절차를 CA(503)가 직접 수행할 수도 있다. 이하에서는 별다른 설명이 없더라도 공장(502)과 CA(503)는 서로 다른 쪽의 역할의 적어도 일부를 수행하는 것이 가능하다.
도 6은 일실시예에 따라 HW OTP 제공장치가 CA와 공개키를 교환하는 과정을 도시하는 흐름도이다.
이러한 공개키 교환 과정은 실시예들에 따른 OTP 인증을 하기에 앞서서, 장치(601)과 CA(602) 간에 이루어질 수 있다.
단계(610)에서 CA(602)에 의해 장치(601)의 공개키 PUB_KEYD가 요청되면, 장치(601)은 단계(620)에서 자신의 PIN을 이용하여 대칭키 암호화 방식으로 SN과 공개키 PUB_KEYD를 암호화 하여 P를 생성한다.
그리고 단계(630)에서 P가 CA(602)로 전달되면, CA(602)는 도 5의 단계(540)을 통해 이미 가지고 있는 장치(601)의 PIN을 이용하여 P를 복호화 한다(단계 640).
그리고, 단계(650)에서 SN을 검증한 다음 이상이 없으면 단계(660)에서 공개키 PUB_KEYD를 등록하여, 차후에 OTP 인증 과정에 사용할 수 있도록 한다. 이러한 과정에서도, 장치(601)의 개인키는 절대로 CA(602)에 추출되지 않는다. 뿐만 아니라 장치(601)의 개인키는 어떠한 경우에도 외부로 추출되지 않기 때문에, 이 공개키 PUB_KEYD를 이용하여 암호화된 데이터를 복호화 할 수 있는 것은 장치(601)뿐이다.
따라서, PUF 기반의 장치(601) 스스로도 복제될 수 없고, CA(602)가 보유하고 있는 장치(601)의 공개키 PUB_KEYD이 보안 공격에 의해 유출되거나, 심지어는 PIN까지 유출되는 경우에도 공개키 PUB_KEYD를 이용하여 암호화된 데이터를 복호화 할 수 있는 장치(따라서, 장치(601)인 것으로 속일 수 있는 장치)는 없다.
그러므로, 실시예들에 따르면, CA(602) 단에서 보안 사고가 발생하더라도, 장치(601)의 공개키 PUB_KEYD를 이용하여 암호화된 데이터를 성공적으로 복호화한 결제 트랜잭션에 대해서는 CA(602)가 책임을 지지 않을 수 있는 근거가 마련된다.
도 7은 일실시예에 따라 HW OTP 제공장치가 OTP를 생성하는 과정 내지 생성된 OTP를 CA가 인증하는 과정을 도시하는 흐름도이다.
CA(702)가 장치(701)을 인증하고자 할 때, CA(702)는 챌린지-리스폰스 방식에서 챌린지가 되는 랜덤 넘버 R을 생성하고, 단계(710)에서 장치(701)의 공개키 PUB_KEYD를 이용하여 이 R을 암호화 함으로써 Q를 생성한다.
단계(720)에서는 CA(702)가 이 챌린지 Q를 장치(701)로 전송하며, 단계(730)에서는 장치(701)가 자신의 개인키 PRIV_KEYD로 이 Q를 복호화 하여 Q을 복원한다.
그리고, 이 R을, OTP 생성 모듈, 이를테면 해시(hash) 방식 OTP 생성 알고리즘 처리를 이용하는 모듈에 제공하여, 미리 지정된 방법으로 OTP K를 생성한다(단계 740).
단계(750)에서는 생성된 OTP인 K가 CA(702)로 제공된다. 이러한 과정에서도, 생성된 OTP인 K는 안전한 방식으로 암호화되어 제공될 수도 있다. 이를테면, CA(702)의 공개키 PUB_KEYCA를 장치(701)가 미리 가지고 있다면, 공개키 PUB_KEYCA를 이용하여 OTP를 암호화 한 형태로 K가 제공될 수도 있다.
또는, 도 1에서 설명된 2-Factor 인증 방식의 실시예에서는, HW OTP 요소(120)가 생성한 K를 SE(110)가 자신의 암호화 방식으로 안전하게 CA(702)에 제공하는 것도 가능하다.
한편, 단계(760)에서는 상기 장치(701)와 동일한 방식으로 CA(702)가 상기 R을 이용하여 OTP 값 S를 생성할 수 있으며, 단계(770)에서 자신이 생성한 S가 장치(701)로부터 제공된 K와 같은 지의 여부를 검증함으로써 OTP 인증 절차가 수행될 수 있다.
상기한 바와 같이, 챌린지 Q는 CA(702)가 보낸 R을 장치(701)의 공개키 PUB_KEYD로 암호화 한 것이기 때문에, 이 Q를 복호화하여 R을 복원할 수 있는 유일한 주체는, 외부로 유출되지 않는 장치(701)의 개인키 PRIV_KEYD를 보유한 장치(701)뿐이다. 따라서, CA(702)로부터 공개키 PUB_KEYD가 유출되는 경우에도, 개인키 PRIV_KEYD를 이용한 R의 복원 및 그로 인한 부정한 트랜잭션에 대해서는 CA(702)가 책임지지 않을 수 있다.
한편, 상기한 챌린지-리스폰스 방식의 OTP 인증 과정은, 예시적인 실시예에 불과하며, HW OTP 제공 장치가 어떠한 방식으로 구현되는 지에 따라, 이러한 OTP 인증은 얼마든지 다른 절차로 수행될 수 있다. 이를테면, 도 14 및 도 15를 참조하여 설명할 시간 동기화 방식의 OTP도 가능하며, 보다 상세한 설명은 후술한다.
도 8은 일실시예에 따른 2-Factor 인증 장치의 인증 과정 종래의 인증 과정과 대비하여 설명하기 위한 예시적 개념도이다.
종래에는 SE(810)에 의해서만 단말 및/또는 사용자 인증이 이루어져서(1-Factor 인증), 공인인증서 파일의 유출이나 공인인증서 부정 재발급, 패스워드 유출, 스크린이나 키보드 해킹 등의 다양한 보안 위협을 완전히 배제할 수 없었다.
또한, SE(810)와 별도로 OTP 인증이 수행되는 경우라도, OTP 장치 자체가 소프트웨어적으로 구현되어 해킹의 위험이 있거나, 및/또는 OTP 생성에 사용되는 데이터와 키가 저장 매체에 기록되어 있으므로 키 유출로 인하여 OTP 자체가 복제될 위험도 존재하였다.
그러나, 실시예들에 따르면, 도 1을 참조하여 설명한 바와 같이, SE(810)에 의한 제1 인증뿐만 아니라, SE(810)와 함께 구현되며 PUF 기반의 복제 불가능한 HW OTP(820)에 의한 제2 인증이 함께 수행되므로(2-Factor 인증), 보안 공격은 불가능하다.
따라서, 차후의 전자적 상거래나 금융 거래를 관리하는 TSM(830) 및 다양한 상거래/금융 주체들은 인증의 신뢰성을 매우 높은 수준으로 보장받을 수 있다.
도 9는 일실시예에 따른 HW OTP 인증 과정을 설명하기 위한 개념도이다.
한편, HW OTP(910)에 의한 사용자/단말 인증이 반드시 도 8의 SE(810)에 의한 종래 기법의 인증 성공을 전제로 할 필요는 없다.
이를테면, 경우에 따라서는 외부 기관과 단말(900)에 포함된 HW OTP(910)에 의한 OTP 인증만으로도 굉장히 높은 수준으로 인증 절차를 수행할 수 있다.
따라서, TSM이나 전자 상거래/금융 거래의 주체가 HW OTP(910)에 의한 인증만을 요구하는 경우에는 이러한 HW OTP(910)에 의해서만 인증이 수행되는 것도 가능하다. HW OTP(910)은 TSM으로 PUF-기반 OTP를 전송하면, TSM은 이 OTP를 검증하는 것만으로도 단말(900)을 인증하는 것이다.
이러한 의미에서, 실시예들이 2-Factor 인증으로만 국한되는 것이 아님은 명확히 이해될 수 있다.
도 10은 일실시예에 따른 HW OTP 인증의 안전성을 설명하는 예시적 개념도이다.
기존의 소액 결제에 자주 이용되는 인증 번호(이를 테면 4 자리나 6자리의 숫자로 구성되는 일회성 인증 번호)에 의한 인증 과정의 경우, 단말(1000)으로 제공되는 인증 번호를 해킹할 수 있는 가능성이 존재하였다.
이를테면, 단말(1000)에 해킹 툴이나 악성 코드를 설치하여, 스크린 해킹이나 키 입력 해킹 등으로 이러한 인증 번호를 가로채서, 다른 단말(1001)에서도 인증을 완료해버릴 수도 있는 것이다.
그러나, 실시예들에 따르면, HW OTP(1010)는 그 자체로 복제가 불가능하고, HW OTP(1010)를 보유한 정당한 단말(1000)이 아니면 정당한 OTP 값을 생성하는 것이 불가능하기 때문에, 보안 수준이 매우 높아진다.
또한, 상기한 바와 같이, 일실시예에 따르면 HW OTP(1010)에 의해 생성된 OTP 값 자체는 단말(1000)의 디스플레이 등에 의해 출력되지 않고, 안전하게 암호화되어 심리스(seamless)하게 인증 기관으로 전송되기 때문에(이러한 실시에서는 사람이 생성된 OTP를 인식하게 되는 과정 자체가 없음), 스크린 해킹이나 키 입력 해킹 등은 전혀 위협이 되지 않을 수 있다.
나아가, 이 경우, 상술한 바와 같이 종래의 인증 번호를 이용한 방식의 인증과 함께 HW OTP(1010) 인증이 함께 진행되어, 실제로는 2-Factor 인증이 진행되더라도, 사용자는 인증 번호를 이용한 방식만을 인식할 뿐 OTP 인증 과정은 인식하지 못하므로, 사용자 편의성이 높고 종래의 방법 대비 이질감이 없다는 것도 장점이다.
도 11은 일실시예에 따른 HW OTP 인증의 안전성을 설명하는 다른 예시적 개념도이다.
실시예들에 의한 HW OTP(1110)의 인증 과정은, 금융 거래나 전자 결제 등의 트랜잭션뿐만 아니라, 웹 사이트 또는 클라우드 서비스 등의 계정 로그인 과정에도 이용될 수 있다.
도시된 클라우드 서비스의 예에서, 이를테면 이메일이나 계정 ID와 패스워드 입력과 같은 종래의 계정 정보 인증에 더하여, 및/또는 이에 대신하여 HW OTP(1110)을 이용하여 단말(1100)에서 인증이 진행되도록 하면, 상기 계정 정보에 대한 유출/탈취에 의한 계정 도용 시도가 다른 단말(1111)에서 발생하는 경우라도 단말(1111)은 계정 접속이 불가능하도록 할 수 있다. OTP 인증에 필요한 HW OTP(1110)가 복제될 수 없어 공격자의 단말(1111)에서 이러한 OTP 인증을 수행할 수 없기 때문이다.
클라우드 서비스의 경우, 사용자는 자신의 프라이버시에 관계되는 사진을 동기화 해두는 경우도 많고, 업무상 중요한 문서나 일정, SNS 활동 기록 등까지 동기화가 되기도 하므로, 계정이 도용된다면 공격자는 동기화나 다운로드를 통해 이러한 정보를 탈취할 수도 있다.
따라서, 실시예들을 이용한 HW OTP 인증에 의해 계정 도용이 방지된다면, 서비스의 신뢰성이 크게 향상될 수 있다.
도 12는 일실시예에 따른 HW OTP 인증이 DRM(Digital Rights Management)에 활용되는 예시적 방법을 설명하기 위한 개념도이다.
또한, 실시예들에 의한 HW OTP 인증이 온라인 컨텐츠 거래에 있어서, DRM과 같은 컨텐츠 저작권 관리에 이용되는 응용도 가능하다.
상기한 TSM과 같은 신뢰할 수 있는 인증 기관의 장치(1201)은, 디지털 컨텐츠 공급자(1202)와 단말(1203) 사이에 컨텐츠 전송이 필요한 경우, 상기한 실시예들에 따라 단말(1203)이 보유한 HW OTP의 공개키를 디지털 컨텐츠 공급자(1202)에게 제공할 수 있다(단계1210). 디지털 컨텐츠 공급자(1202)에게 이러한 공개키가 제공되는 것에 문제가 없는 것은, 도 6 내지 도 7을 참조하여 상술한 바와 같이 공개키만으로는 데이터나 정보를 암호화 하는 것만 가능하고, 복호화에 필요한 개인키를 보유하지 못하면 단말(1203)인 것처럼 위장할 수 있는 가능성이 없기 때문이다.
구매된 디지털 컨텐츠는 DRM에 연관되는 컨텐츠의 암복호화 과정이 필요한데, 암복호화의 효율을 위해 비밀키 방식이 바람직할 수 있다.
그러면, 디지털 컨텐츠 공급자(1202)는 컨텐츠 자체는 랜덤 넘버 R을 이용하여 암호화하고, 이 암호화된 컨텐츠를 복호화 할 수 있는 상기 랜덤 넘버 R을 단말(1203)의 공개키로 암호화하여 전송(단계 1220)하는 것이다.
이 경우, 상기 디지털 컨텐츠 공급자(1220)가 컨텐츠 DRM에 사용한 랜덤 넘버 R를 복호화 할 수 있는 것은 단말(1203)이 보유한 개인키뿐이므로, 단말(1203)에서만 상기 비밀키를 복원하여 컨텐츠를 복호화 할 수 있다.
도 13은 다른 일실시예에 따른 시간 동기 방식 HW OTP 제공 장치를 도시한다.
한편, 이상의 설명에서는 HW OTP가 챌린지-리스폰스 방식의 OTP 인증을 수행하는 실시예들에 대해 설명하였으나, 상술한 바와 같이 이러한 일부 실시예는 어디까지나 예시적인 것에 불과하다.
따라서, 다른 일실시예에 따르면, PUF를 이용하는 하드웨어 기반 OTP 생성 장치(1300)는 시간 동기화 방식에 따라 초기 시간 값을 입력 받아 업데이트 하면서 OTP를 생성하는 것일 수도 있다.
이 실시예에서, 시간 정보 업데이트부(1310)는 초기 시간 값을 일정한 시간 간격, 이를테면 1분 단위로 업데이트 하면서 OTP 생성부(1340)에 제공할 수 있다.
OTP 생성부(1340)는 외부로부터 OTP 인증이 요구되는 경우에, 상기 시간 정보와 함께 PUF(PIN)이 제공하는 장치(1300)의 고유 PIN을 이용하여 OTP를 생성하여 제공할 수 있다.
물론, PIN은 최초 추출되어 안전하게 등록된 이후에는 차단부(1330)에 의해 외부와 물리적으로 완전히 차단될 수 있다.
도 14는 도 13의 실시예에 따른 HW OTP(1300)로부터 최초로 PIN을 추출하는 과정을 도시하는 흐름도이다.
단계(1410)에서는 장치(1401)을 제조하는 공장(1402)에서, 장치(1401)의 시리얼 넘버 SN 및 시간 동기화 정보(이를 테면 초기 시간 값)이 장치(1401)에 부여된다.
그리고, 단계(1420)에서, 장치(1401)는 PUF(PIN)이 제공하는 고유의 PIN을 상기 SN과 함께 공정(1402)로 제공하며, 이러한 최초 추출 이후에는 단계(1430)에서 PIN_out을 완전히 차단한다.
단계(1440)에서 공장(1402)은 안전한 과정으로 장치(1401)의 SN을 상기 추출된 PIN과 함께 CA(1403)로 제공할 수 있으며, CA(1403)은 SN과 PIN을 매칭하여 관리하였다가 추후에 장치(1401)에 대하여 시간 동기화 방식의 OTP 인증을 할 때 이용한다. 물론, 상기한 바와 같이, 보다 안전한 방식으로 SN||PIN을 CA(1403)에게 전달하고자 할 경우, 공장(1402)에서 수행하는 절차가 CA(140303)에서 직접 수행될 수도 있다.
도 15는 도 13의 실시예에 따른 HW OTP 제공장치가 OTP를 생성하는 과정 내지 생성된 OTP를 CA가 인증하는 과정을 도시하는 흐름도이다.
장치(1501)와 CA(1502) 각각은 단계(1510) 및 단계(1511)을 통하여 동기화된 시간 정보를 갱신한다. 그리고, OTP 인증이 필요한 경우, 장치(1501)는 단계(1520)에서, 장치(1501)의 PIN 및 갱신되던 시간 정보를 이용하여 OTP K를 생성한다. 그리고, K는 안전하게 Q로 암호화되어 CA(1502)에 전달되었다가 다시 K로 복호화될 수 있다.
그러면, CA(1502)는 단계(1521)에서 장치(1501)의 PIN 및 시간 정보를 이용하여 스스로 생성한 S를 상기 K와 비교 검증함으로써(단계 1530) OTP 방식의 장치(1501) 인증을 수행할 수 있다.
도 13 내지 도 15를 참조하여 설명한 실시예들 또한, HW OTP의 구현이나 동작에 관한 실시예들 중 일부에 불과하므로, 다른 예를 더 설명하지 않더라도 다른 응용이 얼마든지 가능함은 명확하다.
이상과 같이 실시예들이 비록 한정된 실시예와 도면에 의해 설명되었으나, 해당 기술분야에서 통상의 지식을 가진 자라면 상기의 기재로부터 다양한 수정 및 변형이 가능하다. 예를 들어, 설명된 기술들이 설명된 방법과 다른 순서로 수행되거나, 및/또는 설명된 시스템, 구조, 장치, 회로 등의 구성요소들이 설명된 방법과 다른 형태로 결합 또는 조합되거나, 다른 구성요소 또는 균등물에 의하여 대치되거나 치환되더라도 적절한 결과가 달성될 수 있다.
그러므로, 다른 구현들, 다른 실시예들 및 특허청구범위와 균등한 것들도 후술하는 특허청구범위의 범위에 속한다.

Claims (19)

  1. 제1 인증 절차를 수행하는 보안 요소; 및
    PUF(Physically Unclonable Function)을 포함하며, OTP(One-Time Password)를 생성하여 제2 인증 절차를 수행하는 하드웨어 기반 OPT 생성 요소
    를 포함하는 인증 장치.
  2. 제1항에 있어서,
    상기 하드웨어 기반 OTP 생성 요소는,
    상기 보안 요소와는 별도의 칩 상에서 구현되어 상기 보안 요소와의 사이에 다이 칩 연결을 가지며, 상기 보안 요소의 입출력 인터페이스를 통하여 상기 OTP를 외부로 전달하는 인증 장치.
  3. 제1항에 있어서,
    상기 하드웨어 기반 OTP 생성 요소는,
    인증 기관으로부터 상기 하드웨어 기반 OTP 생성 요소의 공개키를 이용하여 암호화 한 랜덤 넘버를 수신하는 경우, 상기 공개키에 대응하며 상기 PUF를 이용하여 생성되는 개인키를 이용하여 상기 랜덤 넘버를 복호화 하고, 상기 복호화되는 랜덤 넘버를 이용하여 상기 OTP를 생성하는 인증 장치.
  4. 제3항에 있어서,
    상기 하드웨어 기반 OTP 생성 요소는, 상기 공개키를 상기 인증 기관에 전송하는 경우 상기 PUF와 상이한 별도의 PUF-PIN을 이용하여 상기 공개키를 암호화하여 전송하는 인증 장치.
  5. 제4항에 있어서,
    상기 하드웨어 기반 OTP 생성 요소는,
    상기 인증 장치가 상기 제2 인증 절차를 수행하기 전에 상기 PUF-PIN이 추출되는 데에 이용되고, 상기 추출 이후에는 물리적으로 차단되어 더 이상 상기 PUF-PIN이 추출되지 않도록 하는 차단부
    를 포함하는 인증 장치.
  6. 제1항에 있어서,
    상기 인증 장치는,
    가입자 식별 모듈(SIM), 저장 매체 및 단말기의 내부 칩 중 적어도 하나에서 구현되며, 상기 보안 요소는 상기 제1 인증에 연관되는 적어도 하나의 보안 정보를 저장하는 보안 스토리지를 제공하는 인증 장치.
  7. 제6항에 있어서,
    상기 보안 정보는 공인 인증서, 비밀번호, 가입자 식별 정보 중 적어도 하나를 포함하는 인증 장치.
  8. 제1항에 있어서,
    상기 제2 인증은 서비스 관리 기관(TSM, Trusted Service Manager), 통신사(MNO, Mobile Network Operator), 컨텐츠 제공자(Contents Provider), 서비스 제공자(Service Provider) 중 적어도 하나에 의해 요구되는 상기 OTP의 제출에 연관되는 인증 장치.
  9. 제1항에 있어서,
    상기 제1 인증 및 상기 제2 인증 중 적어도 하나는,
    모바일 신용카드를 이용한 결제, 전자 지갑을 이용한 결제, 모바일 뱅킹, 앱스토어 상의 구매 결제, 컨텐츠 구매 결제, 웹사이트의 로그인, 클라우드 컴퓨팅 서비스의 로그인 중 적어도 하나에 연관되어 수행되는 인증 장치.
  10. PUF(Physically Unclonable Function)를 이용하는 하드웨어 기반 OTP 생성 장치에 있어서,
    개인키를 제공하는 제1 PUF;
    상기 개인키를 이용하여 공개키를 생성하는 공개키 생성부;
    상기 장치를 식별하는 PIN을 제공하는 제2 PUF;
    상기 PIN을 이용하여 상기 공개키를 암호화하여 제공하는 암호화부;
    상기 공개키를 이용하여 암호화되어 수신되는 랜덤 넘버를, 상기 개인키를 이용하여 복호화하는 복호화부; 및
    상기 복호화되는 상기 랜덤 넘버를 이용하여 상기 랜덤 넘버에 대응하는 OTP를 생성하는 OTP 생성부
    를 포함하는 하드웨어 기반 OTP 생성 장치.
  11. 제10항에 있어서,
    상기 PIN은 상기 공개키를 복호화하기 위해 사용되며,
    상기 하드웨어 기반 OTP 생성 장치는,
    상기 PIN이 최초로 추출되는 데에 이용되며 상기 PIN이 최초로 추출된 이후에 물리적으로 차단되어 더 이상 상기 PIN이 외부로 유출되지 않도록 하는 차단부
    를 더 포함하는 하드웨어 기반 OTP 생성 장치.
  12. PUF(Physically Unclonable Function)를 이용하는 하드웨어 기반 OTP 생성 장치에 있어서,
    상기 장치를 식별하는 PIN을 제공하는 PUF;
    외부와 동기화되어 있는 시간 정보를 저장하는 저장부; 및
    OPT 제공 요청이 있는 경우, 상기 시간 정보 및 상기 PIN을 이용하여 상기 시간 정보에 대응하는 OTP를 생성하는 OTP 생성부
    를 포함하는 하드웨어 기반 OTP 생성 장치.
  13. 제12항에 있어서,
    상기 PIN이 최초로 추출되는 데에 이용되며 상기 PIN이 최초로 추출된 이후에 물리적으로 차단되어 더 이상 상기 PIN이 외부로 유출되지 않도록 하는 차단부
    를 더 포함하는 하드웨어 기반 OTP 생성 장치.
  14. 보안 요소에 의해 수행되는 제1 인증 절차와 구분되는 제2 인증 절차를 위해 OTP (One-Time Password) 제공 요청이 수신되는 경우, 상기 보안 요소가 상기 요청을 하드웨어 기반 OPT 생성 요소에 전달하는 단계 - 상기 OTP 생성 요소는 PUF(Physically Unclonable Function)를 포함하여 구현되며, 상기 보안 요소와 다이 칩 연결을 통해 하나의 패키지로서 제공됨 -;
    상기 하드웨어 기반 OTP 생성 요소가 상기 PUF를 이용하여 상기 OTP를 생성하여 상기 보안 요소에 전달하는 단계; 및
    상기 보안 요소가 상기 보안 요소의 입출력 인터페이스를 통하여 상기 OTP를 외부에 제공하는 단계
    를 포함하는 인증 방법.
  15. 제14항에 있어서,
    상기 하드웨어 기반 OTP 생성 요소는,
    상기 요청에 연관되어 수신되며 상기 하드웨어 기반 OTP 생성 요소의 공개키를 이용하여 암호화되는 랜덤 넘버를, 상기 공개키에 대응하며 상기 PUF를 이용하여 생성되는 개인키를 이용하여 복호화 하고, 상기 복호화되는 랜덤 넘버를 이용하여 상기 OTP를 생성하는 인증 방법.
  16. 제14항에 있어서,
    상기 하드웨어 기반 OTP 생성 요소의 상기 공개키를 외부와 교환하는 경우, 상기 PUF와 상이한 별도의 PUF-PIN을 이용하여 상기 공개키를 암호화하여 전송하는 인증 방법.
  17. 제16항에 있어서,
    상기 인증 방법 수행에 앞서서, 상기 PUF-PIN이 외부로 추출되는 인터페이스를 물리적으로 차단하는 단계
    를 더 포함하는 인증 방법.
  18. PUF(Physically Unclonable Function)를 이용하는 하드웨어 기반 OTP 생성 장치가 OTP를 제공하는 인증 방법에 있어서,
    제1 PUF가 생성한 개인키를 이용하여 공개키를 생성하는 단계;
    제2 PUF가 상기 장치를 식별하는 PIN을 제공하는 단계;
    암호화부가 상기 PIN을 이용하여 상기 공개키를 암호화하여 제공하는 단계;
    복호화부가 상기 공개키를 이용하여 암호화되어 수신되는 랜덤 넘버를, 상기 개인키를 이용하여 복호화하는 단계; 및
    OTP 생성부가 상기 복호화되는 상기 랜덤 넘버를 이용하여 상기 랜덤 넘버에 대응하는 OTP를 생성하는 단계
    를 포함하는 인증 방법.
  19. PUF(Physically Unclonable Function)를 이용하는 하드웨어 기반 OTP 생성 장치가 OTP를 제공하는 인증 방법에 있어서,
    PUF가 상기 장치를 식별하는 PIN을 생성하는 단계; 및
    OTP 제공 요청이 있는 경우, OTP 생성부가 외부와 동기화되어 있는 시간 정보 및 상기 PIN을 이용하여 상기 시간 정보에 대응하는 OTP를 생성하는 단계
    를 포함하는 인증 방법.
PCT/KR2014/000454 2013-04-22 2014-01-16 Puf 기반 하드웨어 otp 제공 장치 및 이를 이용한 2-factor 인증 방법 WO2014175538A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP19196588.8A EP3598696A1 (en) 2013-04-22 2014-01-16 Apparatus for providing puf-based hardware otp and method for authenticating 2-factor using same
EP14789085.9A EP2991267B1 (en) 2013-04-22 2014-01-16 Apparatus for providing puf-based hardware otp and method for authenticating 2-factor using same
US14/786,079 US9876647B2 (en) 2013-04-22 2014-01-16 Apparatus for providing PUF-based hardware OTP and method for authenticating 2-factor using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20130043954A KR20140126787A (ko) 2013-04-22 2013-04-22 PUF 기반 하드웨어 OTP 제공 장치 및 이를 이용한 2-Factor 인증 방법
KR10-2013-0043954 2013-04-22

Publications (1)

Publication Number Publication Date
WO2014175538A1 true WO2014175538A1 (ko) 2014-10-30

Family

ID=51792070

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/000454 WO2014175538A1 (ko) 2013-04-22 2014-01-16 Puf 기반 하드웨어 otp 제공 장치 및 이를 이용한 2-factor 인증 방법

Country Status (4)

Country Link
US (1) US9876647B2 (ko)
EP (2) EP2991267B1 (ko)
KR (1) KR20140126787A (ko)
WO (1) WO2014175538A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108352984A (zh) * 2015-11-05 2018-07-31 三菱电机株式会社 安全装置和安全方法
KR20220000815A (ko) * 2020-06-26 2022-01-04 타이완 세미콘덕터 매뉴팩쳐링 컴퍼니 리미티드 Puf 방법 및 구조물

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10235261B2 (en) 2013-07-26 2019-03-19 Ictk Holdings Co., Ltd. Apparatus and method for testing randomness
JP2017514421A (ja) * 2014-04-09 2017-06-01 アイシーティーケー カンパニー リミテッド 認証装置及び方法
KR101637272B1 (ko) 2014-09-23 2016-07-07 현대자동차 주식회사 차량용 자동변속기의 유성기어트레인
US20200034835A1 (en) * 2015-06-08 2020-01-30 Ebay Korea Co., Ltd. Payment system for user non-repudiation using user terminal and method thereof
FR3038416B1 (fr) * 2015-06-30 2017-07-21 Maxim Integrated Products Dispositifs et procedes d'authentification bases sur des fonctions physiquement non clonables
US20170126414A1 (en) * 2015-10-28 2017-05-04 Texas Instruments Incorporated Database-less authentication with physically unclonable functions
US10630490B2 (en) * 2016-02-26 2020-04-21 Apple Inc. Obtaining and using time information on a secure element (SE)
US10680833B2 (en) 2016-02-26 2020-06-09 Apple Inc. Obtaining and using time information on a secure element (SE)
SE540649C2 (en) * 2016-04-08 2018-10-09 Authentico Tech Ab Method and system for secure password storage
US10541994B2 (en) * 2016-04-22 2020-01-21 Dell Products, L.P. Time based local authentication in an information handling system utilizing asymmetric cryptography
US10523443B1 (en) * 2016-08-24 2019-12-31 Bruce Kleinman Devices, methods, and systems for cryptographic authentication and provenance of physical assets
JP6471130B2 (ja) * 2016-09-20 2019-02-13 ウィンボンド エレクトロニクス コーポレーション 半導体装置およびセキュリティシステム
EP3535682A4 (en) * 2016-11-04 2020-06-24 Stc.Unm SYSTEM AND METHODS FOR STATISTICAL QUALITY ENTROPY AND METRIC
KR102665997B1 (ko) * 2016-12-20 2024-05-13 에스케이하이닉스 주식회사 패킷을 부호화하는 장치 및 이를 포함하는 메모리 네트워크에서의 라우팅 방법
US10880085B1 (en) * 2017-08-03 2020-12-29 The University Of Tulsa Device, system, and method to facilitate secure data transmission, storage and key management
KR101953223B1 (ko) 2017-09-01 2019-02-28 (주) 시큐어가드테크놀러지 생체정보를 활용하는 2-요소 인증 방식의 로그인 방법 및 이를 적용한 컴퓨터로 읽을 수 있는 저장매체
CN108092776B (zh) * 2017-12-04 2020-11-10 南京南瑞信息通信科技有限公司 一种基于身份认证服务器和身份认证令牌的系统
KR102172688B1 (ko) * 2018-06-04 2020-11-02 차보영 양자난수 및 의사난수를 결합한 다차원 행렬 해시함수 블럭체인 스마트 블럭 배전반 제어시스템
KR102172693B1 (ko) * 2018-06-04 2020-11-02 차보영 양자암호키 4차 행렬 해시함수 블럭체인 스마트 그리드 배전반 제어시스템 감시 cctv 방재 감시카메라
KR102350680B1 (ko) * 2018-06-04 2022-01-12 채령 양자난수 및 의사난수를 결합한 다차원 행렬 해시함수 블럭체인(스마트 블럭 배전반, TTS 동보 방송장치, 구내 영상음성 방송장치, 암호화 영상저장 CCTV 감시장치, NB-IoT 고장감시 블랙박스형 CCTV 감시장치, 블럭체인 미터링 태양광 발전장치, 디밍제어 LED 가로등, 태양광 발전판넬 및 LED 전광판 열화감시 CCTV 열화상 감시카메라 영상처리장치, 차량번호 암호화 주차관제장치) 제어시스템 및 제어시스템 조기화재 감시 CCTV 감시카메라
US11575517B2 (en) * 2019-05-02 2023-02-07 Ares Technologies, Inc. Methods and systems for utilizing hardware-secured receptacle devices
US11101990B2 (en) * 2019-08-19 2021-08-24 Lenovo (Singapore) Pte. Ltd. Default account authentication
US11456867B2 (en) * 2019-10-25 2022-09-27 International Business Machines Corporation Trust-anchoring of cryptographic objects
KR102501367B1 (ko) * 2019-11-30 2023-02-17 채령 양자난수 및 의사난수를 결합한 다차원 행렬 해시함수 블록체인 NB-IoT 고장감시 블랙박스형 CCTV 감시장치 제어시스템
KR102501379B1 (ko) * 2019-11-30 2023-02-21 채령 양자난수 및 의사난수를 결합한 다차원 행렬 해시함수 블록체인 디밍제어 led 가로등 제어시스템
KR102501385B1 (ko) * 2019-11-30 2023-02-21 채령 다차원 행렬 해시함수 블록체인 차량번호 암호화 주차관제장치
KR102501373B1 (ko) * 2019-11-30 2023-02-21 채령 양자난수 및 의사난수를 결합한 다차원 행렬 해시함수 블럭체인 미터링 태양광 발전장치 제어시스템
KR102501383B1 (ko) * 2019-11-30 2023-02-21 채령 양자난수 및 의사난수를 결합한 태양광 발전판넬 열화감시 제어시스템
EP4327504A1 (en) 2021-04-23 2024-02-28 Telefonaktiebolaget LM Ericsson (publ) Secure removable hardware with puf

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080009242A (ko) * 2008-01-15 2008-01-25 주식회사 싸이클롭스 이동통신 단말기를 이용하는 직불결제 서비스 시스템
KR101139630B1 (ko) 2010-12-09 2012-05-30 한양대학교 산학협력단 식별키 생성 장치 및 방법
KR20120112246A (ko) * 2011-03-31 2012-10-11 한양대학교 산학협력단 디지털 값 생성 장치 및 방법
KR20130019358A (ko) * 2011-08-16 2013-02-26 (주) 아이씨티케이 사물지능통신에서 puf에 기반한 장치간 보안 인증 장치 및 방법

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8478990B2 (en) * 2011-06-02 2013-07-02 Cryptite LLC Mobile transaction methods and devices with three-dimensional colorgram tokens
US10033814B2 (en) * 2013-10-08 2018-07-24 Ictk Holdings Co., Ltd. Vehicle security network device and design method therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080009242A (ko) * 2008-01-15 2008-01-25 주식회사 싸이클롭스 이동통신 단말기를 이용하는 직불결제 서비스 시스템
KR101139630B1 (ko) 2010-12-09 2012-05-30 한양대학교 산학협력단 식별키 생성 장치 및 방법
KR20120112246A (ko) * 2011-03-31 2012-10-11 한양대학교 산학협력단 디지털 값 생성 장치 및 방법
KR20130019358A (ko) * 2011-08-16 2013-02-26 (주) 아이씨티케이 사물지능통신에서 puf에 기반한 장치간 보안 인증 장치 및 방법

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108352984A (zh) * 2015-11-05 2018-07-31 三菱电机株式会社 安全装置和安全方法
KR20220000815A (ko) * 2020-06-26 2022-01-04 타이완 세미콘덕터 매뉴팩쳐링 컴퍼니 리미티드 Puf 방법 및 구조물
KR102614985B1 (ko) 2020-06-26 2023-12-15 타이완 세미콘덕터 매뉴팩쳐링 컴퍼니 리미티드 Puf 방법 및 구조물

Also Published As

Publication number Publication date
EP3598696A1 (en) 2020-01-22
EP2991267A1 (en) 2016-03-02
US9876647B2 (en) 2018-01-23
EP2991267B1 (en) 2019-10-23
KR20140126787A (ko) 2014-11-03
US20160065378A1 (en) 2016-03-03
EP2991267A4 (en) 2016-12-21

Similar Documents

Publication Publication Date Title
WO2014175538A1 (ko) Puf 기반 하드웨어 otp 제공 장치 및 이를 이용한 2-factor 인증 방법
CN109361668B (zh) 一种数据可信传输方法
WO2014139343A1 (zh) 密钥下载方法、管理方法、下载管理方法及装置和系统
WO2013025060A2 (ko) 사물지능통신에서 puf에 기반한 장치간 보안 인증 장치 및 방법
WO2018012747A1 (ko) 앱 위변조 탐지 가능한 2채널 인증 대행 시스템 및 그 방법
US8909932B2 (en) Method and apparatus for security over multiple interfaces
CN108418691A (zh) 基于sgx的动态网络身份认证方法
CN107896147B (zh) 一种基于国密算法协商临时会话密钥的方法及其系统
CN111740844A (zh) 基于硬件的国密算法的ssl通信方法及装置
WO2014139341A1 (zh) 密钥管理方法及系统
WO2019074326A1 (en) SECURE OFFLINE PAYMENT METHOD AND APPARATUS
CN105389500A (zh) 利用一个设备解锁另一个设备的方法
US10263782B2 (en) Soft-token authentication system
CN111295654B (zh) 安全地传递数据的方法和系统
CN113472793A (zh) 一种基于硬件密码设备的个人数据保护系统
CN111224784B (zh) 一种基于硬件可信根的角色分离的分布式认证授权方法
WO2016206530A1 (zh) 一种高级安全的移动支付方法、装置及系统
US20220045848A1 (en) Password security hardware module
US11431514B1 (en) Systems for determining authenticated transmissions of encrypted payloads
WO2020235933A1 (en) System and method for payment authentication
KR101947408B1 (ko) PUF 기반 하드웨어 OTP 제공 장치 및 이를 이용한 2-Factor 인증 방법
WO2022055301A1 (ko) 단체용 인증모듈의 온보딩 방법, 장치 및 프로그램
Han et al. Scalable and secure virtualization of HSM with ScaleTrust
KR101754519B1 (ko) 일회용 키를 이용하여 키보드를 통해 입력된 데이터를 보호하기 위한 키보드 보안 시스템 및 방법
WO2022107949A1 (ko) 디지털 id 보관 및 연계 서비스 모델

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14789085

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14786079

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014789085

Country of ref document: EP