WO2014175474A1 - 3중 트로코이달 로터를 갖는 2단 터빈 유니트 - Google Patents

3중 트로코이달 로터를 갖는 2단 터빈 유니트 Download PDF

Info

Publication number
WO2014175474A1
WO2014175474A1 PCT/KR2013/003448 KR2013003448W WO2014175474A1 WO 2014175474 A1 WO2014175474 A1 WO 2014175474A1 KR 2013003448 W KR2013003448 W KR 2013003448W WO 2014175474 A1 WO2014175474 A1 WO 2014175474A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
fluid
gear
trocoidal
stage
Prior art date
Application number
PCT/KR2013/003448
Other languages
English (en)
French (fr)
Inventor
김우균
김유비
김고비
Original Assignee
Kim Woo Kyun
Kim Yu Bee
Kim Go Bee
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kim Woo Kyun, Kim Yu Bee, Kim Go Bee filed Critical Kim Woo Kyun
Priority to PCT/KR2013/003448 priority Critical patent/WO2014175474A1/ko
Priority to KR20130051369A priority patent/KR20140126645A/ko
Publication of WO2014175474A1 publication Critical patent/WO2014175474A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D1/00Non-positive-displacement machines or engines, e.g. steam turbines
    • F01D1/34Non-positive-displacement machines or engines, e.g. steam turbines characterised by non-bladed rotor, e.g. with drilled holes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C1/00Rotary-piston machines or engines
    • F01C1/08Rotary-piston machines or engines of intermeshing engagement type, i.e. with engagement of co- operating members similar to that of toothed gearing
    • F01C1/10Rotary-piston machines or engines of intermeshing engagement type, i.e. with engagement of co- operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member
    • F01C1/103Rotary-piston machines or engines of intermeshing engagement type, i.e. with engagement of co- operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member the two members rotating simultaneously around their respective axes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C11/00Combinations of two or more machines or engines, each being of rotary-piston or oscillating-piston type
    • F01C11/002Combinations of two or more machines or engines, each being of rotary-piston or oscillating-piston type of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C20/00Control of, monitoring of, or safety arrangements for, machines or engines
    • F01C20/02Control of, monitoring of, or safety arrangements for, machines or engines specially adapted for several machines or engines connected in series or in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/10Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member

Definitions

  • the present invention relates to a two-stage turbine unit having a triple trocoidal rotor. More particularly, the present invention relates to a two-stage turbine unit having a triple trocoidal rotor capable of high expansion of the working fluid and high speed rotation of the gear rotor. A two stage turbine unit.
  • a turbine unit having a trochoidal rotor rotates in a state where they are assembled with each other, and there between two gear rotors for rotating the rotor with the expansion force of the working fluid through the working fluid therebetween, and receiving the gear rotor. It consists of a casing.
  • Such a conventional turbine unit has been frequently used as a fluid turbine and hydraulic pump for decades because of its relatively simple structure and compact size.
  • the conventional turbine unit has a limitation in the expansion ratio of expanding the working fluid using only two rotors. That is, even if the fluid is expanded as much as possible between the first rotor and the second rotor, the working fluid is expanded and discharged each time the first rotor and the second rotor rotates one turn, so the expansion ratio of the working fluid discharged to the outlet is greater than or equal to a certain level. could not be increased.
  • an object of the present invention has been invented to solve the above-mentioned problems, and by configuring the turbine unit as a triple trocoidal rotor, two stages of expansion of the working fluid is possible, so that the working fluid rotates at high speed and expands at high pressure. It is to provide a two-stage turbine unit having a triple trocoidal rotor.
  • Another object of the present invention is to provide a two-stage turbine unit that can be used as a two-stage turbine and an internal one-stage turbine by configuring the turbine unit as a triple trocoidal rotor.
  • At least one first trocoidal gear is formed on an outer circumferential surface thereof, and a fixed shaft is formed at the center of rotation thereof.
  • the first rotor is accommodated eccentrically therein, a second trocoidal gear is formed on the inner circumferential surface of the first rotor is meshed with the gears of the first rotor and the line contact, the second trocoidal gear is the first A second rotor having one or more gear teeth than the number of gear teeth of the rotor, and the outer circumferential surface having the same number of trocoidal gear teeth as the inner circumferential surface;
  • the second rotor is accommodated eccentrically therein, the inner circumferential surface is formed with a third trocoidal gear meshing with the gears of the outer circumferential surface of the second rotor and in line contact, the third trocoidal gear is the second A third rotor having one more gear teeth than the number of rotor gears;
  • a casing for sealingly accommodating the first, second, and third rotors, the fixing shaft of the first rotor is fixed to an outer cover, and the drive shaft of the third rotor
  • the first discharge is provided on the side of the drive shaft and connects the inside and the outside of the casing, the first gear is formed so that the gears of the first rotor and the inner gear of the second rotor as possible when the first, second, third rotor is rotated A port; A second discharge port formed with the outer gear of the second rotor and the gear of the third rotor as wide as possible; A first suction port provided at a portion where the gear of the first rotor and the inner gear of the second rotor are narrowed when the first, second, and third rotors rotate; And a second suction port positioned at a portion where the outer gear of the second rotor and the gear of the third rotor are narrowed.
  • the working fluid has a high expansion ratio and can use the force of the fluid while rotating the drive shaft at high speed.
  • the two-stage expansion of the working fluid is possible to high expand the working fluid, converting the energy of the working fluid to the rotational force can be configured a turbine of high efficiency.
  • FIG. 1 is a view for explaining the operation of the trocoidal rotor provided in a two-stage turbine unit having a triple trocoidal rotor according to an embodiment of the present invention
  • Figure 2a is a view showing a rotor and a front cover provided in a two-stage turbine unit having a triple trocoidal rotor according to an embodiment of the present invention
  • 2B is a view showing a front cover of a turbine unit provided in a two-stage turbine unit having a triple trocoidal rotor according to an embodiment of the present invention.
  • FIG. 3 is a block diagram showing the side of a two-stage turbine unit having a triple trocoidal rotor according to an embodiment of the present invention.
  • FIG. 4 is a view showing an assembled state of a two-stage turbine unit having a triple trocoidal rotor according to an embodiment of the present invention.
  • 5A to 5G are views for explaining an expansion turbine mechanism of a turbine system having a two-stage turbine unit having a triple trocoidal rotor according to an embodiment of the present invention.
  • 6A is a view showing a turbine pump and a front cover of a turbine pump provided in a turbine system having a two-stage turbine unit having a triple trocoidal rotor according to an embodiment of the present invention.
  • FIG. 7B is a view showing a front cover of a two-stage fluid pump provided in a two-stage turbine unit having a triple trocoidal rotor according to an embodiment of the present invention.
  • FIG. 8A is a view showing the front cover of the compressor (compressor and turbine) and the compressor (compressor and turbine) provided in a two-stage turbine unit having a triple trocoidal rotor according to an embodiment of the present invention.
  • FIG. 8B is a view illustrating a front cover of a compressor (compressor and turbine) provided in a two-stage turbine unit having a triple trocoidal rotor according to an embodiment of the present invention.
  • 9B is a view illustrating a front cover of a two stage vacuum pump provided in a two stage turbine unit having a triple trocoidal rotor according to an exemplary embodiment of the present invention.
  • FIG. 1 is a view for explaining the operation of the trocoidal rotor provided in the two-stage turbine unit having a triple trocoidal rotor according to an embodiment of the present invention
  • Figure 2a according to an embodiment of the present invention
  • the rotor and the front cover are shown in a two-stage turbine unit having a triple trocoidal rotor
  • Figure 2b is provided in a two-stage turbine unit having a triple trocoidal rotor according to an embodiment of the present invention
  • FIG. 3 is a block diagram showing the side surface of a two-stage turbine unit having a triple trocoidal rotor according to an embodiment of the present invention
  • FIG. 2 is a view showing an assembled state of a two-stage turbine unit having a triple trocoidal rotor according to one embodiment.
  • the trocoidal rotor assembly includes a first rotor (1), a second rotor (2) for receiving the first rotor (1) in an eccentric position therein, and a second rotor (2) in its eccentric position It consists of a third rotor (3) accommodated in.
  • the first rotor 1 and the second rotor 2 are engaged with each other and are in line contact with each other, and the third rotor 3 with respect to the second rotor 2 is Line contact is engaged.
  • the fixed shaft is fixed to the outer cover 15 by the shaft center 17 at the central axis of rotation of the first rotor 1.
  • the drive shaft 16 extends in the longitudinal direction in a state of being engaged with the third rotor 3 and penetrates the casing 18 to protrude outward to a predetermined length.
  • the drive shaft 16 rotates the generator 13 located outside.
  • the high pressure fluid is injected into the narrowly formed first inlet 4 between the first rotor 1 and the second rotor 2, and the fluid is inlet fluid guide groove formed to be connected to the first inlet 4. 8), wherein the pressure of the fluid is expanded to widen the gear pocket by pushing the gear rotor, and is discharged through the outlet (5) to generate a rotational force.
  • the fluid that did not escape to the outlet 5 is collected in the fluid resistance prevention groove 9 and discharged to prevent the resistance of the rotor rotation.
  • the high pressure fluid is sucked and expanded in one stage between the first rotor 1 and the second rotor 2 to obtain rotational force, and thereafter, a second suction port narrowly formed between the second rotor 2 and the third rotor 3.
  • the fluid is sucked through (6), and is expanded secondly along the fluid guide groove (10) to expand the fluid toward the wide outlet. That is, the fluid is discharged through the outlet 7 while giving a rotational force to the second and third rotors 2 and 3 while expanding between the second rotor 2 and the third rotor 3. At this time, the remaining amount of the non-discharged fluid gathers in the fluid resistance preventing groove 11 connected to the outlet 7 to smooth the rotor rotation.
  • FIG 5 is a view for explaining the expansion turbine mechanism of the two-stage turbine unit having a triple trocoidal rotor according to an embodiment of the present invention
  • Figure 6 is a triple trocoidal according to an embodiment of the present invention The figure shows a turbine pump and a front cover of a turbine pump provided in a two-stage turbine unit having a rotor.
  • Figure 5a is a two-stage turbine unit having a triple trocoidal rotor according to an embodiment of the present invention
  • the first stage is a state of suction
  • Figure 5b is a state in which the sucked gas is expanded
  • Figure 5c shows a state of maximum expansion and discharge of the first stage expansion
  • Figure 5d shows a state in which two stages of gas inhalation to expand the second stage after the first stage expansion
  • Figure 5e shows a state in which the two-stage expansion is expanded.
  • 5f shows a more expanded state of two-stage expansion
  • FIG. 5g shows a state in which gas is expanded and discharged as much as possible.
  • Figure 6a is a view showing a turbine pump and a front cover of the turbine pump provided in the turbine system having a two-stage turbine unit having a triple trocoidal rotor according to an embodiment of the present invention
  • Figure 6b is a view of the present invention A front cover of a turbine pump provided in a turbine system having a two-stage turbine unit having a triple trocoidal rotor according to one embodiment.
  • residual fluid gathers in the fluid resistance preventing groove 113 connected to the outlet 109 to prevent rotational resistance of the second and third rotors 2 and 3 and to rotate the second and third rotors 2 and 3. To make it smooth.
  • the liquid is injected into the suction port 110 formed between the first rotor 1 and the second rotor 2, the liquid is also supplied to the suction fluid supply groove 114 connected to the suction port 110, the second and the second Rotation of the three rotors 2 and 3 enlarges the narrow gear pockets, thereby making the interior of the gear pockets vacuum.
  • the suction port 110 sucks the liquid and discharges it through the discharge port 111.
  • the residual liquid collected in the fluid resistance preventing groove 115 connected to the discharge port 111 may be the second and third rotors 2 and 3. It smoothly rotates and acts as a turbine pump.
  • Figure 7a is a view showing the front cover of the two-stage fluid pump and the fluid pump provided in the two-stage turbine unit having a triple trocoidal rotor according to an embodiment of the present invention
  • Figure 7b is an embodiment of the present invention
  • the front cover of the two stage fluid pump provided in the two stage turbine unit which has a triple trocoidal rotor by an example is shown.
  • the suction fluid supply groove 120 is a groove for supplying the suction fluid without resistance
  • the fluid resistance preventing groove 121 prevents the resistance of the remaining fluid to prevent the second rotor 2 and the third rotor 3 from being supplied.
  • the suction fluid supply groove 122 is a groove for supplying the suction fluid without resistance, and the fluid resistance prevention groove 123 prevents the resistance of the remaining fluid to rotate the first rotor 1 and the second rotor 2. To make it smooth.
  • FIG. 8A is a view showing the front cover of the compressor (compressor and turbine) and the compressor (compressor and turbine) provided in a two-stage turbine unit having a triple trocoidal rotor according to an embodiment of the present invention.
  • FIG. 8B is a view illustrating a front cover of a compensator (compressor and turbine) provided in a two-stage turbine unit having a triple trocoidal rotor according to an embodiment of the present invention.
  • the suction fluid when the compressed fluid is injected into the suction port 124 that is formed narrowest between the third rotor 3 and the second rotor 2, the suction fluid is supplied without resistance along the suction fluid guide groove 128.
  • the gear pocket As the compressed fluid expands between the narrow teeth of the third rotor 3 and the second rotor 2, the gear pocket is expanded and discharged through the outlet 125 to generate rotational force.
  • the fluid collected in the residual fluid resistance preventing groove 129 connected to the outlet 125 does not resist rotation of the third rotor 3 and the second rotor 2, and the fluid is discharged from the outlet 125 in the residual fluid resistance preventing groove 129. Is discharged through).
  • the fluid is sucked through the inlet 126 which is formed most widely between the first rotor 1 and the second rotor 2, and the outlet formed the narrowest between the first rotor 1 and the second rotor 2. Compressed through 127 is discharged.
  • the first rotor 1 and the second rotor 2 may serve as a turbine, and the second rotor 2 and the third rotor 3 may serve as compressors.
  • FIG. 9A is a view showing a two stage vacuum pump and a front cover of a vacuum pump provided in a two stage turbine unit having a triple trocoidal rotor according to an embodiment of the present invention
  • FIG. 9B illustrates an embodiment of the present invention.
  • a front cover of a two stage vacuum pump provided in a two stage turbine unit having a triple trocoidal rotor according to an example is shown.
  • the third rotor 3 may be rotated.
  • the inlet 132 formed as wide as possible between the and the second rotor 2 and the inlet 134 formed as wide as possible of the first rotor 1 and the second rotor 2 are connected to a place to be vacuumed to establish a vacuum state.
  • first, second, and third rotors 1, 2, and 3 are rotated, a vacuum is generated while the first, second, and third rotors 1, 2, and 3 are expanded.
  • the second and third rotors 1, 2, and 3 are rotated, they are discharged through the first stage exhaust port 133 and the second stage exhaust port 135, which are most widely formed, and are provided to the first stage exhaust port 133 and the second stage exhaust port 135. It exhausts through the connected anti-resistance groove and smoothes the rotation of the rotor.
  • the first rotor 1 and the second rotor 2 are not connected to the suction port of the first rotor 1 and the second rotor 2 and the suction port of the second rotor 2 and the third rotor 3.
  • the exhaust ports of the third rotor 3 and the second rotor 2 may be connected to the inlets of the first rotor 1 and the second rotor 2 in two stages.
  • the two-stage turbine having a triple trocoidal rotor may be applied to a two-stage fluid pump, a two-stage vacuum pump, a compander (compressor, expander) expander pump (outer expander, inner pump). It is.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)

Abstract

본 발명은 3중 트로코이달 로터를 갖는 2단 터빈 유니트에 관한 것으로서, 본 발명의 3중 트로코이달 로터를 갖는 2단 터빈 유니트는 제1 로터와, 제2 로터와, 제3 로터와, 케이싱과 제1흡입포트 및 제2흡입포트와, 제1 토출 포트 및 제2 토출 포트를 포함하여 구성되는 3중 트로이달 로터를 갖는 터빈 유니트와; 상기 제1, 제2, 제3 로터를 유체의 힘으로 회전 시켜서 제3 로터에 연결된 구동축을 회전시켜 축에 연결되어, 발전기 또는 회전체를 회전 시키는 터빈으로 구성된다. 이와 같이 이루어지는 본 발명은 터빈 유니트를 3중 트로코이달 로터로 구성하므로 작동유체의 2단 팽창이 가능하여 작동유체를 고팽창할 수 있고, 작동유체의 에너지를 회전력으로 변환 하므로 고효율의 터빈을 구성할 수 있다.

Description

3중 트로코이달 로터를 갖는 2단 터빈 유니트
본 발명은 3중 트로코이달 로터를 갖는 2단 터빈 유니트에 관한 것으로서, 더욱 상세하게는 작동유체를 고 팽창시킬 수 있으면서 기어로터의 회전을 고속으로 회전시킬 수 있는 3중 트로코이달 로터를 갖는 2단 터빈 유니트에 관한 것이다.
일반적으로 트로코이달 로터(trochoidal rotor)를 갖는 터빈 유니트는 상호 취합한 상태로 회전하되, 그 사이로 작동유체를 통과시켜 작동유체의 팽창력으로 로터를 회전시키는 2개의 기어로터와, 기어로터를 수용하는 케이싱으로 구성된다.
이와 같은 종래의 터빈 유니트는 구조가 비교적 간단하고 소형화할 수 있기 때문에 수십 년간 유체 터빈 및 유압펌프로 많이 사용되었다.
하지만 종래의 터빈 유니트는 두 개의 로터만을 이용하여 작동 유체를 팽창시키는 팽창비에 한계가 있었다. 즉, 제1 로터와 제2 로터 사이에서 최대한 유체를 팽창시켜도 작동 유체는 제1 로터와 제2 터가 한 바퀴 회전할 때마다 팽창 및 배출되기 때문에 배출구로 배출되는 작동 유체의 팽창비를 일정 레벨 이상으로 높일 수는 없었다.
그러므로 작동 유체의 2단 팽창이 가능하여 작동 유체의 팽창비를 높일 수 있고, 기어 로터의 회전력을 고속으로 회전시킬 수 있으며, 외부에는 2단 터빈으로 사용하며 내부에는 1단 터빈으로 사용할 수 있는 2단 터빈 유니트의 개발이 동일 업계에서 절실히 요구되고 있는 실정이다.
이에 본 발명의 목적은 상기 종래의 문제점들을 해결하기 위하여 발명된 것으로서, 터빈 유니트를 3중 트로코이달 로터로 구성함으로써, 작동 유체의 2단 팽창이 가능하여 작동유체가 고속으로 회전하면서 고압으로 팽창할 수 있는 3중 트로코이달 로터를 갖는 2단 터빈 유니트를 제공하기 위한 것이다.
본 발명의 다른 목적은 터빈 유니트를 3중 트로코이달 로터로 구성함으로써, 외부에는 2단 터빈으로 사용하며 내부에는 1단 터빈으로 사용할 수 있는 2단 터빈 유니트를 제공하기 위한 것이다.
상기 목적을 달성하기 위한 본 발명의 바람직한 실시 예 에 따른 3중 트로코이달 로터를 갖는 2단 터빈 유니트는, 외주면에 적어도 하나 이상의 제1 트로코이달 기어가 형성되고, 그 회전중심에 고정 샤프트가 고정되는 제1 로터와; 상기 제1 로터가 내부에 편심 되게 수용되며, 그 내 주면에는 상기 제1 로터의 기어에 대해 치합되며 선접촉하는 제2 트로코이달 기어가 형성되되, 상기 제2 트로코이달 기어는 상기 제1 로터의 기어이의 개수보다 하나 더 많은 기어이를 가지며, 상기 외주면에도 내주면과 동일한 개수의 트로코이달 기어이가 형성되는 제2 로터와; 상기 제2 로터가 내부에 편심되게 수용되며 그 내주면에는 상기 제2 로터의 외주면의 기어에 대해 치합되며 선접촉하는 제3 트로코이달 기어가 형성되되, 상기 제3 트로코이달 기어는 상기 제2 로터 기어이의 개수보다 하나 더 많은 기어이를 가지는 제3 로터와; 상기 제1, 제2, 제3 로터를 밀폐 수용하며, 상기 제1 로터의 고정샤프트는 바깥커버에 고정되며, 상기 제3 로터의 구동 샤프트는 외부로 연장 돌출시킨 상태로 회전 가능하게 지지하는 케이싱과; 상기 구동 샤프트 측부에 마련되어 케이싱의 내부와 외부를 연결하며, 상기 제1, 제2, 제3 로터의 회전시 상기 제1 로터의 기어와 상기 제2 로터의 내측기어가 최대한 벌어지게 형성된 제1 배출포트와; 상기 제2 로터의 외측기어와 상기 제3 로터의 기어가 최대한 벌어지게 형성된 제2 배출포트와; 상기 제1, 제2, 제3 로터의 회전시 상기 제1 로터의 기어와 상기 제2 로터의 내측기어가 좁아지는 부위에 마련된 제1 흡입포트와; 상기 제2 로터의 외측기어와 상기 제3 로터의 기어가 좁아지는 부위에 위치되는 제2 흡입포트를 포함하는 것을 특징으로 한다.
본 발명의 3중 트로코이달 로터를 갖는 2단 터빈 유니트의 특징에 따르면 다음과 같은 효과를 나타낸다.
첫째, 터빈 유니트에 구비되는 로터를 3중 트로코이달 로터로 구성함으로써, 작동 유체가 높은 팽창비를 가지며 고속으로 구동 샤프트를 회전하면서 유체의 힘을 사용할 수 있다.
둘째, 터빈 유니트의 외부에는 2단 터빈으로 사용하며, 내부에는 1단 터빈으로 사용할 수 있다.
따라서, 작동유체의 2단 팽창이 가능하여 작동유체를 고팽창할 수 있고, 작동유체의 에너지를 회전력으로 변환 하므로 고효율의 터빈을 구성할 수 있다.
도 1은 본 발명의 일실시예에 따른 3중 트로코이달 로터를 갖는 2단 터빈 유니트에 구비된 트로코이달 로터의 동작을 설명하기 위한 도면이며,
도 2a는 본 발명의 일실시예에 따른 3중 트로코이달 로터를 갖는 2단 터빈 유니트에 구비된 로터와 앞 커버가 도시된 도면이며,
도 2b는 본 발명의 일실시예에 따른 3중 트로코이달 로터를 갖는 2단 터빈 유니트에 구비된 터빈 유니트의 앞 커버가 도시된 도면이며,
도 3은 본 발명의 일실시예에 따른 3중 트로코이달 로터를 갖는 2단 터빈 유니트의 측면을 나타낸 블록 구성도이며,
도 4는 본 발명의 일 실시예에 따른 3중 트로코이달 로터를 갖는 2단 터빈 유니트의 조립된 상태를 나타낸 도면이며,
도5a 내지 도 5g는 본 발명의 일 실시 예에 따른 3중 트로코이달 로터를 갖는 2단 터빈 유니트를 갖는 터빈 시스템의 팽창 터빈 메카니즘을 설명하기 위한 도면이며,
도 6a는 본 발명의 일 실시 예에 따른 3중 트로코이달 로터를 갖는 2단 터빈 유니트를 갖는 터빈 시스템에 구비된 터빈 펌프와 터빈 펌프의 앞 커버를 도시한 도면이며,
도 6b는 본 발명의 일 실시 예에 따른 3중 트로코이달 로터를 갖는 2단 터빈 유니트를 갖는 터빈 시스템에 구비된 터빈 펌프의 앞 커버를 도시한 도면이며,
도 7a는 본 발명의 일 실시 예에 따른 3중 트로코이달 로터를 갖는 2단 터빈 유니트에 구비된 2단 유체 펌프와 유체펌프의 앞 커버를 도시한 도면이며,
도 7b는 본 발명의 일 실시 예에 따른 3중 트로코이달 로터를 갖는 2단 터빈 유니트에 구비된 2단 유체 펌프의 앞 커버를 도시한 도면이며,
도 8a는 본 발명의 일 실시 예에 따른 3중 트로코이달 로터를 갖는 2단 터빈 유니트에 구비된 콤펜더(압축기와 터빈)와 콤펜더(압축기와 터빈)의 앞 커버가 도시된 도면이며,
도 8b는 본 발명의 일 실시 예에 따른 3중 트로코이달 로터를 갖는 2단 터빈 유니트에 구비된 콤펜더(압축기와 터빈)의 앞 커버가 도시된 도면이며,
도 9a는 본 발명의 일 실시 예에 따른 3중 트로코이달 로터를 갖는 2단 터빈 유니트에 구비된 2단 진공펌프와 진공 펌프의 앞 커버가 도시된 도면이다.
도 9b는 본 발명의 일 실시 예에 따른 3중 트로코이달 로터를 갖는 2단 터빈 유니트에 구비된 2단 진공펌프의 앞 커버가 도시된 도면이다.
이하 첨부된 도면과 함께 본 발명의 바람직한 실시 예를 살펴보면 다음과 같은데, 본 발명을 설명함에 있어서 관련된 공지기술 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략할 것이며, 후술되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례 등에 따라 달라질 수 있으므로, 그 정의는 본 발명인 3중 트로코이달 로터를 갖는 2단 터빈 유니트를 설명하는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.
이하, 본 발명에 따른 실시 예를 첨부된 도면을 참조하여 보다 상세히 설명하기로 한다.
도 1은 본 발명의 일실시예에 따른 3중 트로코이달 로터를 갖는 2단 터빈 유니트에 구비된 트로코이달 로터의 동작을 설명하기 위한 도면이며, 도 2a는 본 발명의 일실시예에 따른 3중 트로코이달 로터를 갖는 2단 터빈 유니트에 구비된 로터와 앞 커버가 도시된 도면이며, 도 2b는 본 발명의 일실시예에 따른 3중 트로코이달 로터를 갖는 2단 터빈 유니트에 구비된 터빈 유니트의 앞 커버가 도시된 도면이며, 도 3은 본 발명의 일실시예에 따른 3중 트로코이달 로터를 갖는 2단 터빈 유니트의 측면을 나타낸 블록 구성도이며, 도 4는 본 발명의 일 실시예에 따른 3중 트로코이달 로터를 갖는 2단 터빈 유니트의 조립된 상태를 나타낸 도면이다.
도 1 내지 도 5를 참조하면, 본 발명의 일실시예에 따른 2단 터빈 유니트 3개의 트로코이달 로터(1,2,3,)가 상호 치합된 트로코이달 로터 조립체와, 조립체를 그 내부에 밀폐 수용하는 케이싱(18)을 포함한다. 케이싱(18)은 소정의 직경을 갖는 원통 형태로 제작되는 것이 바람직하다.
트로코이달 로터 조립체는 제1 로터(1)와, 제1 로터(1)를 그 내부의 편심된 위치에 수용하는 제2 로터(2)와, 제2 로터(2)를 그 내부 편심된 위치에 수용하는 제3 로터(3)로 이루어진다.
아울러 통상적인 트로코이달 기어펌프에서와 마찬가지로 제1 로터(1)와 제2 로터(2)가 서로에 대해 치합되는 동시에 선접촉되고, 제2 로터(2)에 대해 제3 로터(3)가 치합된 상태로 선접촉된다. 상기 제1 로터(1)의 회전 중심축에서 축심(17)에 의해 고정 샤프트가 외부커버(15)에 고정된다.
또한, 구동 샤프트(16)는 도 4에 도시한 바와 같이, 제3 로터(3)와 결합된 상태로 길이 방향으로 연장되어, 케이싱(18)을 관통하여 외부로 소정의 길이로 돌출된다. 구동 샤프트(16)는 외부에 위치한 발전기(13)를 회전시킨다. 처음에 고압의 유체는 제1 로터(1)와 제2 로터(2) 사이의 좁게 형성된 제1 흡입구(4)로 주입되며, 유체는 제1 흡입구(4)에 연결되도록 형성된 흡입 유체 안내홈(8)을 따라 이동하며, 이때 유체의 압력은 기어 로터를 밀어 기어포켓을 넓게 확대시키도록 팽창되며, 배출구(5)를 통해 배출되면서 회전력을 발생시킨다. 이때, 배출구(5)로 빠져 나가지 못한 유체는 유체 저항 방지홈(9)에 모여 배출되며 로터 회전의 저항을 방지한다.
고압의 유체는 제1 로터(1)와 제2 로터(2) 사이에서 1단 흡입 및 팽창되어 회전력을 얻은 후, 제2 로터(2)와 제3 로터(3) 사이에 좁게 형성된 제2 흡입구(6)를 통하여 유체를 흡입 시키며, 유체 안내홈(10)을 따라 2차 팽창되어 넓은 배출구 쪽 으로 유체가 빠져 나가게 팽창된다. 즉, 유체는 제2 로터(2)와 제3 로터(3) 사이를 확대시키면서 제2 및 제3 로터(2,3)에 회전력을 주면서 배출구(7)를 통하여 배출된다. 이때, 배출되지 않은 유체의 잔량은 배출구(7)에 연결된 유체 저항 방지홈(11)에 모여 로터회전을 원활하게 한다. 이때 배출구(5)와 흡입구(6)를 외부 배관 또는 앞 커버 내부로나 연결된다. 유체의 1단 팽창과 2단 팽창으로 로터가 회전되면, 로터(2,3)에 연결된 구동 샤프트(16) 에 연결된 발전기나 회전기기를 구동시킨다.
도 5는 본 발명의 일 실시 예에 따른 3중 트로코이달 로터를 갖는 2단 터빈 유니트의 팽창 터빈 메카니즘을 설명하기 위한 도면이며, 도 6은 본 발명의 일 실시 예에 따른 3중 트로코이달 로터를 갖는 2단 터빈 유니트에 구비된 터빈 펌프 및 터빈 펌프의 앞 커버를 도시한 도면이다. 여기서, 도 5a는 본 발명의 일 실시 예에 따른 3중 트로코이달 로터를 갖는 2단 터빈 유니트에서, 1단 흡입 된 상태 를 보인 것이며, 도 5b는 흡입된 기체가 팽창되는 상태를 보인것이며, 도 5c는 1단 팽창의 최대 팽창 배출 상태를 보인 것이며, 도 5d는 1단 팽창 후 2단 팽창하기 위하여 기체를 2단 흡입한 상태를 보인것이며, 도 5e는 2단 팽창이 확대되는 상태를 보인것이며, 도 5f는 2단 팽창의 더욱 팽창된 상태를 보인것이며, 도 5g는 기체가 최대한 확대 팽창되어 배출되는 상태를 보인것이다.
도 6a는 본 발명의 일 실시 예에 따른 3중 트로코이달 로터를 갖는 2단 터빈 유니트를 갖는 터빈 시스템에 구비된 터빈 펌프와 터빈 펌프의 앞 커버를 도시한 도면이며, 도 6b는 본 발명의 일 실시 예에 따른 3중 트로코이달 로터를 갖는 2단 터빈 유니트를 갖는 터빈 시스템에 구비된 터빈 펌프의 앞 커버를 도시한 도면이다.
도 6을 참조하면, 제2 로터(2)와 제3 로터(3)의 흡입구(108)에 압력을 가진 유체가 흡입되면, 압력을 가진 유체는 흡입구(108)에 연결된 유체 안내홈(112)을 따라 좁은 기어 이빨 사이로 들어가면서 기어이 사이의 체적을 확대시키는 동시에 기체를 팽창 시키며 넓은 배출구(109)를 통하여 배출되며 이에 따라 기어 로터를 회전 시킨다.
이때, 배출구(109)에 연결된 유체 저항 방지홈(113)에 잔류 유체가 모여 제2 및 제3 로터(2,3)의 회전저항을 방지하며 제2 및 제3 로터(2,3)의 회전을 원활하게 한다. 또한, 제1 로터(1)와 제2 로터(2) 사이에 형성된 흡입구(110)로 액체가 주입되면, 액체는 흡입구(110)에 연결된 흡입유체 공급홈(114)에도 공급되어 제2 및 제3 로터(2,3)의 회전으로 좁은 기어 포켓을 확대시키고, 이에 따라 기어 포켓의 내부가 진공상태가 된다. 이어, 흡입구(110)는 액체를 흡입하여 배출포트(111)를 통하여 배출시키며, 배출포트(111)에 연결된 유체 저항 방지홈(115)에 모인 잔류 액체는 제2 및 제3 로터(2,3)의 회전을 원활하게 하며 터빈 펌프의 역할을 한다.
도 7a는 본 발명의 일 실시 예에 따른 3중 트로코이달 로터를 갖는 2단 터빈 유니트에 구비된 2단 유체 펌프와 유체펌프의 앞 커버를 도시한 도면이며, 도 7b는 본 발명의 일 실시 예에 따른 3중 트로코이달 로터를 갖는 2단 터빈 유니트에 구비된 2단 유체 펌프의 앞 커버를 도시한 도면이다.
도 7을 참조하면, 도 4의 구동 샤프트에 모터를 이용하여 회전 토오크를 인가하여 제1, 제2, 제3 로터(1,2,3)를 회전시켜서 흡입포트(116)로 외부 액체를 흡입시키는 동시에 토출포트(117)를 통하여 흡입포트(116)로 흡입되었던 작동 유체를 압축된 상태로 배출시킨다. 여기서, 흡입유체 공급 홈(120)은 흡입 유체가 저항 없이 공급하기 위한 홈이며, 유체 저항 방지홈(121)은 잔류된 유체의 저항을 방지하여 제2 로터(2)와 제3 로터(3)의 회전을 원활하게 한다.
이때, 배출된 액체를 다시 제1 로터(1)와 제2 로터(2) 사이에 형성된 흡입구(118)로 흡입시켜 제1 로터(1)와 제2 로터(2) 사이에 형성된 배출구(119)를 통하여 배출되면서 액체에 높은 압력을 줄 수 있다. 흡입 유체 공급홈(122)은 흡입 유체가 저항 없이 공급하기 위한 홈이며, 유체 저항 방지홈(123)은 잔류된 유체의 저항을 방지하여 제1 로터(1)와 제2 로터(2)의 회전을 원활하게 한다.
도 8a는 본 발명의 일 실시 예에 따른 3중 트로코이달 로터를 갖는 2단 터빈 유니트에 구비된 콤펜더(압축기와 터빈)와 콤펜더(압축기와 터빈)의 앞 커버가 도시된 도면이며, 도 8b는 본 발명의 일 실시 예에 따른 3중 트로코이달 로터를 갖는 2단 터빈 유니트에 구비된 콤펜더(압축기와 터빈)의 앞 커버가 도시된 도면이다.
도 8을 참조하면, 제3 로터(3)와 제2 로터(2) 사이에 제일 좁게 형성된 흡입구(124)에 압축 유체가 주입되면, 흡입유체안내 홈(128)을 따라 흡입유체가 저항 없이 공급되며, 제3 로터(3)와 제2 로터(2)의 좁은 이 사이로 압축 유체가 팽창하면서 기어 포켓을 확대시키며 배출구(125)를 통하여 배출되면서 회전력을 발생시킨다. 배출구(125)에 연결된 잔류 유체 저항 방지용 홈(129)에 모인 유체는 제3 로터(3)와 제2 로터(2)의 회전에 저항을 주지 않고 잔류 유체 저항 방지용 홈(129)에서 배출구(125)를 통하여 배출 된다. 이때, 제1 로터(1)와 제2 로터(2) 사이에 최고 넓게 형성된 흡입구(126)를 통하여 유체가 흡입되고, 제1 로터(1)와 제2 로터(2) 사이에서 제일 좁게 형성된 배출구(127)를 통하여 압축되면서 배출된다. 용도에 따라 제1 로터(1)와 제2 로터(2)가 터빈의 역할을 하고, 제2 로터(2)와 제3 로터(3) 사이가 압축기의 역할을 할 수 있을 것이다.
도 9a는 본 발명의 일 실시 예에 따른 3중 트로코이달 로터를 갖는 2단 터빈 유니트에 구비된 2단 진공펌프와 진공 펌프의 앞 커버가 도시된 도면이며, 도 9b는 본 발명의 일 실시 예에 따른 3중 트로코이달 로터를 갖는 2단 터빈 유니트에 구비된 2단 진공펌프의 앞 커버가 도시된 도면이다.
도 9를 참조하면, 도 4의 구동 샤프트(116)에 모터를 이용하여 회전 토오크를 인가하여 제1, 제2, 제3 로터(1,2,3)이 회전되면, 제3 로터(3)와 제2 로터(2) 사이에 최대한 넓게 형성된 흡입구(132)와 제1 로터(1)와 제2 로터(2)의 최대한 넓게 형성된 흡입구(134)가 연결된 후, 진공할 곳에 연결되어 진공상태를 만든다.
이때, 제1, 제2, 제3 로터(1,2,3)가 회전되면, 제1, 제2, 제3 로터(1,2,3)가 확장되면서 진공이 발생하며, 제1, 제2, 제3 로터(1,2,3)가 회전되면 제일 넓게 형성된 1단 배기구(133) 및 2단 배기구(135)를 통하여 배출되며, 1단 배기구(133) 및 2단 배기구(135)에 연결된 배기 저항 방지 홈을 통하여 배기되며 로터의 회전을 원활 하게 한다.
이때, 제1 로터(1)와 제2 로터(2)의 흡입구 및 제2 로터(2)와 제3 로터(3)의 흡입구를 연결 하지 않고, 제1 로터(1)와 제2 로터(2)의 배기구를 제3 로터(3)와 제2 로터(2)의 흡입구에 연결하여 2단으로 사용할 수 있다.
또한, 연결 순서를 바꾸어 제3 로터(3)와 제2 로터(2)의 배기구를 제1 로터(1)와 제2 로터(2)의 흡입구에 연결하여 2단으로 구성 할 수 있을 것이다.
본 발명의 일 실시예 에 따른 3중 트로코이달 로터를 갖는 2단 터빈은 2단 유체펌프, 2단 진공펌프, 콤펜더(압축기. 팽창기) 팽창기 펌프(외측 팽창기. 내측펌프)에 적용할 수 있는 것이다.
도면과 명세서에서 최적의 실시예가 개시되었으며, 여기서 사용된 용어들은 단지 본 발명을 설명하기 위한 목적에서 사용된 것이며, 의미한정이나 특허청구범위에 기재된 본 발명의 범위를 제한하기 위하여 사용된 것은 아니다. 그러므로 본 기술 분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능할 것이며, 따라서, 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의해 정해져야 할 것이다.

Claims (7)

  1. 외주면에 적어도 하나 이상의 제1 트로코이달 기어가 형성되고, 그 회전중심에 고정 샤프트가 고정되는 제1 로터와;
    상기 제1 로터가 내부에 편심 되게 수용되며, 그 내 주면에는 상기 제1 로터의 기어에 대해 치합되며 선접촉하는 제2 트로코이달 기어가 형성되되, 상기 제2 트로코이달 기어는 상기 제1 로터의 기어이의 개수보다 하나 더 많은 기어이를 가지며, 상기 외주면에도 내주면과 동일한 개수의 트로코이달 기어이가 형성되는 제2 로터와;
    상기 제2 로터가 내부에 편심되게 수용되며 그 내주면에는 상기 제2 로터의 외주면의 기어에 대해 치합되며 선접촉하는 제3 트로코이달 기어가 형성되되, 상기 제3 트로코이달 기어는 상기 제2 로터 기어이의 개수보다 하나 더 많은 기어이를 가지는 제3 로터와;
    상기 제1, 제2, 제3 로터를 밀폐 수용하며, 상기 제1 로터의 고정샤프트는 바깥커버에 고정되며, 상기 제3 로터의 구동 샤프트는 외부로 연장 돌출시킨 상태로 회전 가능하게 지지하는 케이싱과;
    상기 구동 샤프트 측부에 마련되어 케이싱의 내부와 외부를 연결하며, 상기 제1, 제2, 제3 로터의 회전시 상기 제1 로터의 기어와 상기 제2 로터의 내측기어가 최대한 벌어지게 형성된 제1 배출포트와;
    상기 제2 로터의 외측기어와 상기 제3 로터의 기어가 최대한 벌어지게 형성된 제2 배출포트와;
    상기 제1, 제2, 제3 로터의 회전시 상기 제1 로터의 기어와 상기 제2 로터의 내측기어가 좁아지는 부위에 마련된 제1 흡입포트와;
    상기 제2 로터의 외측기어와 상기 제3 로터의 기어가 좁아지는 부위에 위치되는 제2 흡입포트를 포함함을 특징으로 하는 3중 트로코이달 로터를 갖는 2단 터빈 유니트.
  2. 제 1항에 있어서,
    상기 제1, 제2, 제3 로터의 회전 시 상기 제1 로터의 중심 회전축을 바깥 커버에 고정시킨 터빈 커버와;
    상기 터빈 커버의 내측에 상기 제 1 및 제2 흡입포트 구멍에 연장하여 홈을 형성한 흡입 유체 안내 홈과;
    제 1 및 제2 배출포트 구멍에 연장하여 홈을 형성한 잔류유체 회전저항방지 홈을 더 포함함을 특징으로 하는 3중 트로코이달 로터를 갖는 2단 터빈 유니트.
  3. 제 1항에 있어서,
    상기 고압의 유체는 상기 제1 로터와 상기 제2 로터 사이에서 흡입 배출된 후 1단 팽창되어 회전력을 얻은 후, 상기 제2 로터와 상기 제3 로터 사이에 좁게 형성된 제2 흡입구를 통하여 유체를 흡입 시키며 이때 제1배출포트와 제2흡입포트를 배관 또는 로터 앞 커버 내부로 연결하며 , 유체 안내 홈을 따라 2단 팽창되어 넓은 배출구 쪽 으로 빠져 나가도록 팽창되는 것을 특징으로 하는 3중 트로코이달 로터를 갖는 2단 터빈 유니트.
  4. 제 1항에 있어서,
    상기 제2 로터와 제3 로터의 흡입구에 압력을 가진 유체가 흡입되면, 상기 압력을 가진 유체는 상기 유체 안내 홈을 따라 좁은 기어 이빨 사이로 들어가면서 기어이 사이의 체적을 확대시키는 동시에 기체를 팽창 시키며 배출구를 통하여 배출되며, 상기 유체의 체적 팽창으로 상기 제1로터, 상기 제2로터, 상기 제3로터의 회전력이 발생되며 외부는 터빈으로 사용되며, 이때 상기 액체는 내부에 위치한 상기 제1 로터와 상기 제2 로터 사이의 상기 흡입구로 흡입되어 상기 액체를 상기 배출구로 배출시킴에 따라 상기 복수개의 기어 로터를 회전시키는 터빈 펌프로 사용되는 것을 특징으로 하는 3중 트로코이달 로터를 갖는 2단 터빈 유니트.
  5. 제 1항에 있어서,
    상기 구동 샤프트에 모터를 이용하여 회전 토오크를 인가하여 상기 제1, 제2, 제3 로터를 회전시켜서 상기 제2로터 와 제3로터 사이에 형성된 상기 흡입포트로 외부 액체를 흡입시키는 동시에 상기 토출 포트로 배출되는 상기 외부 액체가 상기 제1 로터와 상기 제2 로터 사이에 위치하는 상기 흡입포트로 흡입된 후 다시 가압 배출되는 2단 유체 펌프로 사용되며, 상기 제3 로터와 상기 제2 로터의 사이에 위치한 상기 배출포트와 상기 제1 로터와 상기 제2 로터 사이에 위치한 상기 흡입포트를 배관 또는 로터 앞 커버의 내부로 연결된 2단 펌프로 사용되는 것을 특징으로 하는 3중 트로코이달 로터를 갖는 2단 터빈 유니트.
  6. 제 1항에 있어서,
    상기 제3 로터와 상기 제2 로터 사이에 제일 좁게 형성된 흡입구에 압축 유체가 주입되면, 상기 유체는 상기 제3 로터와 상기 제2 로터의 좁은 이 사이로 압축 유체가 팽창되면서 기어 포켓를 확대시키며 상기 배출구를 통하여 배출되면서 회전력을 발생시켜 터빈으로 사용되며, 상기 제1로터와 상기 제2로터 사이에 제일 넓게 형성된 흡입포트로 흡입 유체가 흡입되면, 제일 좁게 형성된 상기 배출포트로 압축되어 나가므로 콤펜더(압축기 터빈)로 사용되며, 필요에 따라 상기 제1 로터와 상기 제2 로터가 터빈의 역할을 하거나, 상기 제2 로터와 상기 제3 로터가 압축기 역할을 하는 것을 특징으로 하는 3중 트로코이달 로터를 갖는 2단 터빈 유니트.
  7. 제 1항에 있어서,
    상기 구동 샤프트에 모터를 이용하여 회전 토오크를 인가하여 상기 제1, 제2, 제3 로터가 회전되면, 상기 유체는 상기 제3 로터와 상기 제2 로터 사이에 최대한 넓게 형성된 상기 흡입구와 상기 제1 로터와 상기 제2 로터의 최대한 넓게 형성된 흡입구가 연결되어 흡입되고, 상기 유체는 상기 제1 로터와 상기 제2 로터의 제일 넓게 형성된 상기 배출구와 상기 제2 로터와 제3 로터의 제일 넓게 형성된 상기 배출구가 연결되어 배출되며, 상기 유체는 상기 제2 로터와 상기 제3 로터 사이에 위치한 상기 흡입포트로 흡입되어 상기 제2 로터와 상기 제3 로터에 위치한 상기 배출포트로 배출되고, 상기 유체는 상기 제1 로터와 상기 제2 로터 사이에 형성된 상기 흡입 포트에 흡입되어 상기 제1 로터와 상기 제2 로터 사이에 형성된 상기 배출포트로 배출되고, 상기 제2 로터와 상기 제3 로터의 배출포트와 상기 제1 로터와 상기 제2 로터 사이에 형성된 상기 흡입포트가 배관 또는 로터 앞 커버의 내부로 연결되는 2단 진공 펌프로 사용되는 것을 특징으로 하는 3중 트로코이달 로터를 갖는 2단 터빈 유니트.
PCT/KR2013/003448 2013-04-23 2013-04-23 3중 트로코이달 로터를 갖는 2단 터빈 유니트 WO2014175474A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/KR2013/003448 WO2014175474A1 (ko) 2013-04-23 2013-04-23 3중 트로코이달 로터를 갖는 2단 터빈 유니트
KR20130051369A KR20140126645A (ko) 2013-04-23 2013-05-06 3중 트로코이달 로터를 갖는 2단 터빈 유니트

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2013/003448 WO2014175474A1 (ko) 2013-04-23 2013-04-23 3중 트로코이달 로터를 갖는 2단 터빈 유니트

Publications (1)

Publication Number Publication Date
WO2014175474A1 true WO2014175474A1 (ko) 2014-10-30

Family

ID=51792031

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/003448 WO2014175474A1 (ko) 2013-04-23 2013-04-23 3중 트로코이달 로터를 갖는 2단 터빈 유니트

Country Status (2)

Country Link
KR (1) KR20140126645A (ko)
WO (1) WO2014175474A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104895617A (zh) * 2015-05-19 2015-09-09 集美大学 无扇叶涡轮发动机

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101573662B1 (ko) * 2015-06-30 2015-12-01 김고비 회전식 유체 기계 및 이를 구비한 유체 시스템

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5518095A (en) * 1993-08-19 1996-05-21 Gkn Automotive Ag Coupling for transmitting torque
KR20030084839A (ko) * 2003-10-06 2003-11-01 김우균 3중트로코이달 로터를 갖는 압축기유니트 및 이를 갖는 콤프레셔
KR20030084843A (ko) * 2003-10-06 2003-11-01 김우균 3중트로코이달 로터를 갖는 콤팬더와 이를 이용한 토오크발생장치
JP2004060545A (ja) * 2002-07-29 2004-02-26 Yamada Seisakusho Co Ltd トロコイドポンプ
KR100741411B1 (ko) * 2005-02-22 2007-07-25 김우균 열매가스를 이용한 동력 발생장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5518095A (en) * 1993-08-19 1996-05-21 Gkn Automotive Ag Coupling for transmitting torque
JP2004060545A (ja) * 2002-07-29 2004-02-26 Yamada Seisakusho Co Ltd トロコイドポンプ
KR20030084839A (ko) * 2003-10-06 2003-11-01 김우균 3중트로코이달 로터를 갖는 압축기유니트 및 이를 갖는 콤프레셔
KR20030084843A (ko) * 2003-10-06 2003-11-01 김우균 3중트로코이달 로터를 갖는 콤팬더와 이를 이용한 토오크발생장치
KR100741411B1 (ko) * 2005-02-22 2007-07-25 김우균 열매가스를 이용한 동력 발생장치

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104895617A (zh) * 2015-05-19 2015-09-09 集美大学 无扇叶涡轮发动机

Also Published As

Publication number Publication date
KR20140126645A (ko) 2014-10-31

Similar Documents

Publication Publication Date Title
JP5370298B2 (ja) ルーツ式流体機械
KR0151320B1 (ko) 복합 드라이 진공 펌프
WO2013165157A1 (ko) 스크롤 압축기
WO2014189240A1 (en) Scroll compressor
WO2013051804A1 (ko) 라이너가 구성된 에어베인모터
JP2008196390A (ja) 容積変動型流体機械
KR20080076122A (ko) 회전압축기
WO2014175474A1 (ko) 3중 트로코이달 로터를 갖는 2단 터빈 유니트
US10006459B2 (en) Claw pump
US4756675A (en) Scroll type fluid transferring machine with separate motor driving each scroll
WO2013005906A1 (en) Scroll compressor
CH708632B1 (it) Pompa volumetrica a ingranaggi.
KR100221674B1 (ko) 스크루 진공펌프
US7722345B2 (en) Screw compressor
GB2110759A (en) Rotary positive-displacement fluid-machines
KR102178373B1 (ko) 과 압축 발생을 방지하는 진공펌프 하우징 및 이를 포함한 진공펌프
KR100530447B1 (ko) 3중트로코이달 로터를 갖는 압축기유니트 및 이를 갖는 콤프레셔
JPH01216092A (ja) 真空ポンプ装置
WO2017003207A1 (ko) 회전식 유체 기계 및 이를 구비한 유체 시스템
CA2550411A1 (en) Improvements in intersecting vane machines
KR0152174B1 (ko) 연속 압축식 다단형 스크류 진공펌프
KR200343568Y1 (ko) 트로코이드 기어펌프
KR100264036B1 (ko) 고압용 트로코이드 펌프
KR100277078B1 (ko) 스크류 진공펌프의 배기장치
KR100221673B1 (ko) 스크루 진공펌프

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13883028

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13883028

Country of ref document: EP

Kind code of ref document: A1