WO2014174808A1 - Power supply system - Google Patents

Power supply system Download PDF

Info

Publication number
WO2014174808A1
WO2014174808A1 PCT/JP2014/002177 JP2014002177W WO2014174808A1 WO 2014174808 A1 WO2014174808 A1 WO 2014174808A1 JP 2014002177 W JP2014002177 W JP 2014002177W WO 2014174808 A1 WO2014174808 A1 WO 2014174808A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
conversion circuit
connection port
power conversion
electric
Prior art date
Application number
PCT/JP2014/002177
Other languages
French (fr)
Japanese (ja)
Inventor
敏行 里見
小林 晋
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2014174808A1 publication Critical patent/WO2014174808A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/51Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/63Monitoring or controlling charging stations in response to network capacity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/65Monitoring or controlling charging stations involving identification of vehicles or their battery types
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L55/00Arrangements for supplying energy stored within a vehicle to a power network, i.e. vehicle-to-grid [V2G] arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • H02J3/322Arrangements for balancing of the load in a network by storage of energy using batteries with converting means the battery being on-board an electric or hybrid vehicle, e.g. vehicle to grid arrangements [V2G], power aggregation, use of the battery for network load balancing, coordinated or cooperative battery charging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/342The other DC source being a battery actively interacting with the first one, i.e. battery to battery charging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/80Time limits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/40Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries adapted for charging from various sources, e.g. AC, DC or multivoltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • Y02T90/167Systems integrating technologies related to power network operation and communication or information technologies for supporting the interoperability of electric or hybrid vehicles, i.e. smartgrids as interface for battery charging of electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • Y04S10/126Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving electric vehicles [EV] or hybrid vehicles [HEV], i.e. power aggregation of EV or HEV, vehicle to grid arrangements [V2G]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S30/00Systems supporting specific end-user applications in the sector of transportation
    • Y04S30/10Systems supporting the interoperability of electric or hybrid vehicles
    • Y04S30/12Remote or cooperative charging
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S30/00Systems supporting specific end-user applications in the sector of transportation
    • Y04S30/10Systems supporting the interoperability of electric or hybrid vehicles
    • Y04S30/14Details associated with the interoperability, e.g. vehicle recognition, authentication, identification or billing

Definitions

  • the present invention relates generally to a power supply system, and more particularly to a power supply system that performs charging and discharging with an electric vehicle.
  • a power supply system for charging and discharging storage batteries of electrically powered vehicles has been proposed.
  • an electric vehicle for example, there are an electric vehicle (EV: Electric Vehicle), a plug-in hybrid vehicle (PHEV: Plug-in Hybrid Electric Vehicle), and the like.
  • the power supply system is provided between the electric vehicle and the load in the facility to supply charging electric power to the electric vehicle and supply discharge power supplied from the electric vehicle to the load in the customer. Do.
  • the DC charging / discharging means supplies DC charging power to the electric vehicle, and supplies DC discharging electric power supplied from the electric vehicle to the load.
  • the AC charging / discharging means supplies AC charging power to the electric vehicle, and supplies AC discharge power supplied from the electric vehicle to the load.
  • one power supply system includes alternating current charge and discharge means and direct current discharge means (see, for example, Patent Document 1).
  • the target of charging and discharging is one electric vehicle, charging is performed using an alternating current charging method, and discharging is selected from either an alternating current discharging method or a direct current discharging method.
  • the present invention has been made in view of the above, and an object thereof is to provide a power supply system capable of individually charging and discharging a plurality of electric vehicles.
  • the power supply system comprises a plurality of connection ports for exchanging charging power and discharging power of the storage battery with each of a plurality of electric vehicles mounted with storage batteries, a power path connected with a load, a switch, And a power converter.
  • the switch conducts / cuts off the commercial power supplied from the commercial power supply to the electric path.
  • the power conversion unit uses at least the commercial power supplied to the electric path, and for each of the plurality of connection ports, the electric vehicle connected to the connection port among the plurality of electric vehicles via the connection port.
  • the charging power is supplied, and for each of the plurality of connection ports, the discharge power supplied from the electric vehicle connected to the connection port among the plurality of electric vehicles via the connection port is used.
  • AC power is supplied to the electric circuit.
  • the plurality of connection ports may be constituted by a DC connection port for exchanging the charging power of direct current and the discharging power, and an AC connection port for exchanging the charging power of alternating current and the discharge power. preferable.
  • the power conversion unit is configured by a series circuit of a first power conversion circuit and a second power conversion circuit, and a series circuit of an electric path switching unit and a third power conversion circuit.
  • the first power conversion circuit and the second power conversion circuit are electrically connected between the electric path and the DC connection port.
  • the circuit switching unit and the third power conversion circuit are electrically connected between the AC connection port and the second power conversion circuit.
  • the circuit switching unit electrically connects the AC connection port to the third power conversion circuit or the circuit so as to be switchable.
  • the power supply system preferably has a DC charging mode, an AC charging mode, a DC discharging mode, and an AC discharging mode as operation modes.
  • the first power conversion circuit converts the commercial power supplied to the electric path through the switch into a first direct current power controlled to a first direct current voltage, and Output to the power conversion circuit of 2.
  • the second power conversion circuit converts the first DC power into DC charging power and outputs it to the DC connection port.
  • the circuit switching unit electrically connects the AC connection port to the circuit, and outputs the commercial power supplied to the circuit via the switch to the AC connection port.
  • the second power conversion circuit converts the direct current discharge power supplied via the direct current connection port into a second direct current power controlled to a second direct current voltage, and Output to the power conversion circuit of 1.
  • the first power conversion circuit converts the second direct current power into the alternating current power and outputs the alternating current power to the electric path.
  • the circuit switching unit electrically connects the alternating current connection port to the third power conversion circuit.
  • the third power conversion circuit converts the discharge power of alternating current supplied via the alternating current connection port into third direct current power controlled to a third direct current voltage, and Output to the power conversion circuit of 2.
  • the second power conversion circuit converts the third DC power into the second DC power and outputs the second DC power to the first power conversion circuit, and the first power conversion circuit And converting the second DC power into the AC power and outputting the AC power to the electric path.
  • the power supply system preferably has a batch charge mode and a batch discharge mode as operation modes.
  • the first power conversion circuit converts the commercial power supplied to the electric path through the switch into the first DC power and outputs the first DC power to the second power conversion circuit.
  • the second power conversion circuit converts the first DC power into DC charging power and outputs the charging power to the DC connection port.
  • the circuit switching unit electrically connects the AC connection port to the circuit, and outputs the commercial power supplied to the circuit via the switch to the AC connection port.
  • the circuit switching unit electrically connects the AC connection port to the third power conversion circuit, and the third power conversion circuit is an AC power supplied via the AC connection port.
  • the discharge power is converted into the third DC power and is output to the second power conversion circuit.
  • the second power conversion circuit converts a sum of the discharge power of direct current supplied via the direct current connection port and the third direct current power into the second direct current power It outputs to the said 1st power inverter circuit.
  • the first power conversion circuit converts the second DC power into the AC power and outputs the AC power to the electric path.
  • the power supply system preferably has a first inter-vehicle charge mode and a second inter-vehicle charge mode as operation modes.
  • the first power conversion circuit converts the commercial power supplied to the electric path through the switch into the first DC power to convert the second power. Supply to the circuit.
  • the electric path switching unit electrically connects the AC connection port to the third power conversion circuit.
  • the third power conversion circuit converts the discharge power of alternating current supplied via the alternating current connection port into the third direct current power to convert the second power. Output to the circuit.
  • the second power conversion circuit converts the sum of the first DC power and the third DC power into the DC charging power and outputs the charging power to the DC connection port.
  • the commercial power is output from the commercial power source to the electric path through the switch, and the electric path switching unit electrically connects the AC connection port to the electric path.
  • the second power conversion circuit converts the discharge power of direct current supplied via the direct current connection port into the second direct current power to convert the first power. Output to the circuit.
  • the first power conversion circuit converts the second DC power into the AC power and outputs the AC power to the electric path.
  • the remaining capacity of the storage battery being discharged becomes equal to or less than a threshold. It is preferable to switch to the other operation mode and operate.
  • FIG. 1 shows the configuration of the power supply system of the present embodiment.
  • the power supply system of the present embodiment has a DC connection port 6 and an AC connection port 7 that exchange charging power and discharging power of the storage battery with the electric vehicle equipped with the storage battery.
  • the power supply system of the present embodiment includes a power conversion unit A1.
  • Power conversion unit A1 supplies charging power to each of the electric vehicles via DC connection port 6 and AC connection port 7, and discharge supplied from the electric vehicle via DC connection port 6 and AC connection port 7 respectively.
  • the power is used to supply AC power to the electric path L2 connected to the load 30.
  • the power supply system of the present embodiment includes a system relay B1 (switch) that conducts and cuts off the commercial power supplied from the commercial power supply 20 to the electric path L2.
  • Storage batteries are mounted on electric vehicles such as electric vehicles (EVs) and plug-in hybrid vehicles (PHEVs). Then, the power supply system controls the power exchanged between the storage battery of the electric vehicle, the commercial power supply 20, and the load 30 in the customer. In the case of distinguishing between a plurality of electric vehicles, the electric vehicles C1, C2,. . . Electric vehicles C1, C2,. . . When distinguishing each storage battery mounted in, storage batteries 11, 12,. . . It is called.
  • EVs electric vehicles
  • PHEVs plug-in hybrid vehicles
  • the power conversion unit A1 includes a power conversion circuit 1 (first power conversion circuit), a power conversion circuit 2 (second power conversion circuit), a power conversion circuit 3 (third power conversion circuit), an electric path switching unit 4, It comprises a controller 5.
  • the commercial power system L1 supplies commercial power from the commercial power supply 20 to the consumer.
  • the load 30 of the customer is connected to the electric path L2.
  • the grid relay B1 is provided between the commercial power grid L1 and the electric path L2.
  • the grid relay B1 conducts / cuts off the commercial power supplied from the commercial power source 20 to the electric path L2 by turning on / off a contact provided between the commercial power system L1 and the electric path L2.
  • a series circuit of the power conversion circuit 1 and the power conversion circuit 2 is electrically connected between the electric path L 2 and the DC connection port 6.
  • a series circuit of the circuit switching unit 4 and the power conversion circuit 3 is electrically connected between the AC connection port 7 and the power conversion circuit 2.
  • the electrical path switching unit 4 has a switch function of electrically connecting the AC connection port 7 to the power conversion circuit 3 or the electrical path L2 in a switchable manner.
  • the DC connection port 6 is connected to one end of a cable 41, and the other end of the cable 41 is connected to an inlet (not shown) of the electric vehicle C1. Then, electrically powered vehicle C1 has a charger / discharger (not shown) that charges storage battery 11 with direct current power and outputs the discharge power of storage battery 11 with direct current. The DC connection port 6 exchanges DC charging power and discharging power with the electric vehicle C1 via the cable 41.
  • the AC connection port 7 is connected to one end of a cable 42, and the other end of the cable 42 is connected to an inlet (not shown) of the electric vehicle C2. Then, electrically powered vehicle C2 has a charger / discharger (not shown) that charges storage battery 12 with AC power and outputs the discharge power of storage battery 12 as AC.
  • the AC connection port 7 exchanges AC charging power and discharging power with the electric vehicle C2 via the cable 42.
  • the power conversion circuit 1 is provided between the electric circuit L 2 and the power conversion circuit 2.
  • the power conversion circuit 1 converts the commercial power of the electric path L2 into a first DC power and outputs the first DC power to the power conversion circuit 2.
  • the first DC power is DC power controlled to a first DC voltage predetermined by the power conversion circuit 1.
  • the power conversion circuit 1 converts the second DC power output from the power conversion circuit 2 into AC power of commercial frequency and outputs the converted power to the electric circuit L2. That is, the power conversion circuit 1 has a bidirectional power conversion function (AC / DC conversion function, DC / AC conversion function) between the electric path L 2 and the power conversion circuit 2.
  • the power conversion circuit 2 is connected to the power conversion circuit 1, the power conversion circuit 3, and the DC connection port 6.
  • the power conversion circuit 2 converts the first DC power output from the power conversion circuit 1 into DC charging power and outputs the charging power to the DC connection port 6.
  • the direct current charging power is controlled by the power conversion circuit 2 to the charging voltage of the storage battery 11.
  • the power conversion circuit 2 converts DC discharge power supplied via the DC connection port 6 into second DC power and outputs the second DC power to the power conversion circuit 1.
  • the power conversion circuit 2 converts the third DC power output from the power conversion circuit 3 into second DC power, and outputs the second DC power to the power conversion circuit 1.
  • the second DC power is DC power controlled to a second DC voltage predetermined by the power conversion circuit 2.
  • the power conversion circuit 2 has a bidirectional power conversion function (DC / DC conversion function) between the power conversion circuit 1 and the DC connection port 6, and further, from the power conversion circuit 3 to the power conversion circuit 1. It also has a unidirectional power conversion function (DC / DC conversion function).
  • the power conversion circuit 3 is provided between the power conversion circuit 2 and the circuit switching unit 4.
  • the power conversion circuit 3 converts AC discharge power supplied via the AC connection port 7 and the circuit switching unit 4 into third DC power, and outputs the third DC power to the power conversion circuit 2.
  • the third DC power is DC power controlled to a third DC voltage predetermined by the power conversion circuit 3. That is, the power conversion circuit 3 has a unidirectional power conversion function (AC / DC conversion function) from the AC connection port 7 to the power conversion circuit 2.
  • the controller 5 controls the operations of the power conversion circuit 1, the power conversion circuit 2, the power conversion circuit 3, the circuit switching unit 4, and the system relay B 1.
  • control lines for controlling operations of the power conversion circuit 1, the power conversion circuit 2, the power conversion circuit 3, the path switching unit 4 and the system relay B1 are shown by broken lines.
  • the controller 5 selects the operation mode of the power supply system by automatic control according to user operations and outputs of timers and sensors.
  • the controller 5 controls the operations of the power conversion circuit 1, the power conversion circuit 2, the power conversion circuit 3, the circuit switching unit 4, and the system relay B 1 according to the selected operation mode.
  • the controller 5 can select each operation mode of DC charge mode, AC charge mode, DC discharge mode, AC discharge mode, batch charge mode, batch discharge mode, first inter-vehicle charge mode, and second inter-vehicle charge mode I assume.
  • the DC charging mode is selected, for example, in the late-night time zone or the like where the unit price of the commercial power source 20 is low.
  • the system relay B1 is turned on, and the commercial power Ps is supplied to the electric circuit L2.
  • the power conversion circuit 1 converts the commercial power Ps supplied to the electric path L2 via the system relay B1 into a first DC power P1 and outputs the first DC power P1 to the power conversion circuit 2.
  • the power conversion circuit 2 converts the first DC power P1 into DC charging power Pa and outputs it to the DC connection port 6.
  • the DC charging power Pa is supplied from the DC connection port 6 to the electrically powered vehicle C1 via the cable 41, and the storage battery 11 of the electrically powered vehicle C1 is charged.
  • the circuit switching unit 4 connects the AC connection port 7 to the power conversion circuit 3.
  • the AC charging mode is selected, for example, in a late-night time zone or the like where the unit price of the commercial power source 20 is low.
  • the system relay B1 is turned on, and the commercial power Ps is supplied to the electric circuit L2.
  • the electrical path switching unit 4 connects the AC connection port 7 to the electrical path L2.
  • the commercial power Ps is supplied from the power path L2 to the AC connection port 7 via the power path switching unit 4, and the commercial power Ps becomes the AC charging power.
  • the AC charging power (commercial power Ps) is supplied from the AC connection port 7 to the electrically powered vehicle C2 via the cable 42, and the storage battery 12 of the electrically powered vehicle C2 is charged.
  • the DC discharge mode is selected, for example, during daytime hours when the power unit price of the commercial power supply 20 is high, when the commercial power supply 20 fails, or the like.
  • the power conversion circuit 1 has a grid-connected operation function of coordinating the AC power Pc to be output with the commercial power Ps. Moreover, at the time of grid connection operation, as shown in FIG. 4, the controller 5 turns on the grid relay B1 to connect the electric path L2 to the commercial power grid L1. Then, in the DC discharge mode at the time of grid-connected operation, electrically powered vehicle C1 outputs DC discharge power Pb via cable 41.
  • the power conversion circuit 2 converts the DC discharge power Pb supplied via the DC connection port 6 into a second DC power P 2 and outputs the second DC power P 2 to the power conversion circuit 1.
  • the power conversion circuit 1 converts the second DC power P2 into AC power Pc coordinated with the commercial power Ps, and outputs the AC power Pc to the power path L2. Therefore, load 30 is operable by the discharged power of storage battery 11 of electric powered vehicle C1 and the commercial power supply 20.
  • the circuit switching unit 4 connects the AC connection port 7 to the power conversion circuit 3.
  • the controller 5 turns off system relay B1 and isolate
  • electrically powered vehicle C 1 outputs discharge power Pb of direct current via cable 41.
  • the power conversion circuit 2 converts the DC discharge power Pb supplied via the DC connection port 6 into a second DC power P 2 and outputs the second DC power P 2 to the power conversion circuit 1.
  • the power conversion circuit 1 converts the second DC power P2 into AC power Pc and outputs the AC power Pc to the power path L2. Therefore, load 30 is operable by the discharged power of storage battery 11 of electrically powered vehicle C1.
  • the circuit switching unit 4 connects the AC connection port 7 to the power conversion circuit 3.
  • the AC discharge mode is selected, for example, during daytime hours when the power unit price of the commercial power source 20 is high, when the commercial power source 20 fails, or the like.
  • the power conversion circuit 1 has a grid-connected operation function of coordinating the AC power Pc to be output with the commercial power Ps. Moreover, at the time of grid connection operation, as shown in FIG. 6, the controller 5 turns on the grid relay B1 to connect the electric path L2 to the commercial power grid L1. Then, in the AC discharge mode at the time of grid interconnection operation, electrically powered vehicle C 2 outputs discharge power Pd of AC via cable 42.
  • the circuit switching unit 4 connects the AC connection port 7 to the power conversion circuit 3.
  • the power conversion circuit 3 converts the AC discharge power Pd supplied via the AC connection port 7 into a third DC power P 3 and outputs the third DC power P 3 to the power conversion circuit 2.
  • the power conversion circuit 2 converts the third DC power P3 into a second DC power P2 and outputs the second DC power P2 to the power conversion circuit 1.
  • the power conversion circuit 1 converts the second DC power P2 into AC power Pc coordinated with the commercial power Ps, and outputs the AC power Pc to the power path L2. Therefore, load 30 is operable by the discharged power of storage battery 12 of electric powered vehicle C2 and the commercial power supply 20.
  • the controller 5 turns off system relay B1 and isolate
  • electrically powered vehicle C2 outputs AC discharge power Pd via cable 42.
  • the circuit switching unit 4 connects the AC connection port 7 to the power conversion circuit 3.
  • the power conversion circuit 3 converts the AC discharge power Pd supplied via the AC connection port 7 into a third DC power P 3 and outputs the third DC power P 3 to the power conversion circuit 2.
  • the power conversion circuit 2 converts the third DC power P3 into a second DC power P2 and outputs the second DC power P2 to the power conversion circuit 1.
  • the power conversion circuit 1 converts the second DC power P2 into AC power Pc and outputs the AC power Pc to the power path L2. Therefore, load 30 is operable by the discharged power of storage battery 12 of electrically powered vehicle C2.
  • the batch charging mode is selected, for example, in a late-night time zone or the like where the unit price of the commercial power source 20 is low.
  • the system relay B1 is turned on, and the commercial power Ps is supplied to the electric circuit L2.
  • the power conversion circuit 1 converts the commercial power Ps supplied to the electric path L2 via the system relay B1 into a first DC power P1 and outputs the first DC power P1 to the power conversion circuit 2.
  • the power conversion circuit 2 converts the first DC power P1 into DC charging power Pa and outputs it to the DC connection port 6.
  • the DC charging power Pa is supplied from the DC connection port 6 to the electrically powered vehicle C1 via the cable 41, and the storage battery 11 of the electrically powered vehicle C1 is charged.
  • the circuit switching unit 4 connects the AC connection port 7 to the circuit L2.
  • the commercial power Ps is supplied from the power path L2 to the AC connection port 7 via the power path switching unit 4, and the commercial power Ps becomes the AC charging power.
  • the AC charging power (commercial power Ps) is supplied from the AC connection port 7 to the electrically powered vehicle C2 via the cable 42, and the storage battery 12 of the electrically powered vehicle C2 is charged.
  • the storage battery 11 of the electrically powered vehicle C1 and the storage battery 12 of the electrically powered vehicle C2 can be charged simultaneously. That is, the plurality of storage batteries 11, 12,. . . The time required to charge the battery can be shortened.
  • the batch discharge mode is selected, for example, during daytime hours when the power unit price of the commercial power source 20 is high, when the commercial power source 20 fails, or the like.
  • the controller 5 turns off the system relay B1 to separate the electric path L2 from the commercial power system L1.
  • electric powered vehicle C1 outputs DC discharge power Pb via cable 41.
  • electric powered vehicle C 2 outputs AC discharge power Pd via cable 42.
  • the circuit switching unit 4 connects the AC connection port 7 to the power conversion circuit 3.
  • the power conversion circuit 3 converts the AC discharge power Pd supplied via the AC connection port 7 into a third DC power P 3 and outputs the third DC power P 3 to the power conversion circuit 2.
  • Power conversion circuit 2 converts the sum of DC discharge power Pb supplied via DC connection port 6 and third DC power P 3 into second DC power P 2 and outputs the second DC power P 2 to power conversion circuit 1.
  • the power conversion circuit 1 converts the second DC power P2 into AC power Pc and outputs the AC power Pc to the power path L2.
  • the power conversion circuit 1 converts both DC discharge power Pb and AC discharge power Pd into AC power Pc, and supplies the AC power Pc to the electric path L2. Therefore, load 30 is operable by both the discharge power of storage battery 11 of electrically powered vehicle C1 and the discharge power of storage battery 12 of electrically powered vehicle C2. That is, the plurality of storage batteries 11, 12,. . . Can be used for driving power of the load 30, so that the usable power supply capacity increases at the time of the power failure of the commercial power supply 20.
  • the first inter-vehicle charge mode is preferably selected, for example, in a late-night time zone or the like where the unit price of the commercial power source 20 is low.
  • the system relay B1 In the first inter-vehicle charge mode, the system relay B1 is turned on, and the commercial power Ps is supplied to the electric path L2.
  • the power conversion circuit 1 converts the commercial power Ps supplied to the electric path L2 via the system relay B1 into a first DC power P1 and outputs the first DC power P1 to the power conversion circuit 2.
  • electric powered vehicle C 2 outputs AC discharge power Pd via cable 42.
  • the circuit switching unit 4 connects the AC connection port 7 to the power conversion circuit 3.
  • the power conversion circuit 3 converts the AC discharge power Pd supplied via the AC connection port 7 into a third DC power P 3 and outputs the third DC power P 3 to the power conversion circuit 2.
  • the power conversion circuit 2 converts the sum of the first DC power P1 and the third DC power P3 into DC charging power Pa and outputs the charging power Pa to the DC connection port 6.
  • the DC charging power Pa is supplied from the DC connection port 6 to the electrically powered vehicle C1 via the cable 41, and the storage battery 11 of the electrically powered vehicle C1 is charged.
  • the first inter-vehicle charge mode it is possible to adapt the power from the storage battery 12 to the storage battery 11. Therefore, in the first inter-vehicle charge mode, since storage battery 11 can be charged using commercial power supply 20 and storage battery 12, storage battery 11 can be charged with a charging capacity larger than the power supply capacity of commercial power supply 20.
  • the second inter-vehicle charging mode be selected, for example, in a late-night time zone or the like where the unit price of the commercial power source 20 is low.
  • the system relay B1 In the second inter-vehicle charging mode, the system relay B1 is turned on, and the commercial power Ps is supplied to the electric path L2.
  • electrically powered vehicle C 1 outputs DC discharge power Pb via cable 41.
  • the power conversion circuit 2 converts the DC discharge power Pb supplied via the DC connection port 6 into a second DC power P 2 and outputs the second DC power P 2 to the power conversion circuit 1.
  • the power conversion circuit 1 converts the second DC power P2 into AC power Pc and outputs the AC power Pc to the power path L2.
  • the power conversion circuit 1 has a grid-connected operation function of coordinating the AC power Pc with the commercial power Ps.
  • the circuit switching unit 4 connects the AC connection port 7 to the circuit L2.
  • the sum (Ps + Pc) of the commercial power Ps and the AC power Pc is supplied from the power path L2 to the AC connection port 7 via the power path switching unit 4, and the sum of the commercial power Ps and the AC power Pc is AC power Charging power.
  • the AC charging power (commercial power Ps + AC power Pc) is supplied from the AC connection port 7 to the electrically powered vehicle C2 via the cable 42, and the storage battery 12 of the electrically powered vehicle C2 is charged.
  • the storage battery 12 can be charged using the commercial power supply 20 and the storage battery 11 in the second inter-vehicle charging mode, the storage battery 12 can be charged with a charging capacity larger than the power supply capacity of the commercial power supply 20.
  • the electric vehicle C ⁇ b> 1 is connected to the DC connection port 6, and the electric vehicle C ⁇ b> 2 is connected to the AC connection port 7.
  • controller 5 can communicate with electric powered vehicles C1 and C2 using communication lines (not shown) provided on cables 41 and 42, and can acquire remaining capacity data of storage batteries 11 and 12.
  • the controller 5 operates the power supply system in the DC discharge mode (see FIG. 4 or FIG. 5) and uses the storage battery 11 of the electrically powered vehicle C1 for driving power of the load 30. Then, when the remaining capacity of storage battery 11 is reduced to a predetermined threshold value or less, the power supply system is operated in the AC discharge mode (see FIG. 6 or FIG. 7) to drive storage battery 12 of electrically powered vehicle C2 to load 30. Used for power. Then, while the storage battery 12 is used for driving power of the load 30, the electric vehicle connected to the DC connection port 6 is replaced with the electric vehicle C1 from the electric vehicle C3.
  • the power supply system is operated again in the direct current discharge mode, and storage battery 13 of electrically powered vehicle C3 is used for driving power of load 30. Thereafter, this operation is repeated.
  • the remaining capacity of the storage battery being discharged falls below the threshold while the power supply system is operating in one of the DC discharge mode and the AC discharge mode, the other operation mode It is preferable to switch to and operate.
  • the plurality of electric powered vehicles C1, C2,. . . To connect a plurality of electric vehicles C1, C2,. . . Can be charged and discharged individually. Therefore, the storage battery capacity in the entire system can be expanded, and the operability of energy management using the storage battery is improved. For example, the output capacity of the storage battery and the system output capacity of the commercial power source 20 can be effectively used.
  • any of the electric vehicle C1 that performs DC charge and discharge and the electric vehicle C2 that performs AC charge and discharge can be connected, the system has high versatility. Generally, since electric powered vehicle C1 that performs DC charge and discharge has a larger storage battery capacity than electric powered vehicle C2 that performs AC charge and discharge, electric powered vehicle C2 can also be used as an auxiliary role of electric powered vehicle C1.
  • a plurality of direct current connection ports 6 and a plurality of alternating current connection ports 7 can be provided, and the same energy management can be performed on three or more electric vehicles.
  • the power supply system is characterized by including a plurality of connection ports, an electric path L2 to which a load is connected, a system relay B1 (switch), and a power conversion unit A1.
  • the plurality of connection ports exchange charged power and discharged power of the storage batteries 11 and 12 with the electric vehicles C1 and C2 on which the storage batteries 11 and 12 are mounted.
  • the grid relay B1 conducts / cuts off the commercial power Ps supplied from the commercial power supply 20 to the electric path L2.
  • the electric power conversion unit A1 uses the commercial power Ps supplied to the electric path L2 at least for each of the plurality of connection ports to the electric vehicle connected to the connection port of the electric vehicles C1 and C2 via the connection port.
  • the power conversion unit A1 uses the discharge power supplied from the electrically powered vehicle of the electrically powered vehicles C1 and C2 connected to the connection port via the connection port for each of the plurality of connection ports, and generates an alternating current in the electric path L2. Supply power.
  • the plurality of connection ports be constituted by a DC connection port for exchanging the charging power of direct current and the discharging power, and an AC connection port for exchanging the charging power of alternating current and the discharge power. .
  • power conversion unit A1 is a series circuit of power conversion circuit 1 (first power conversion circuit) and power conversion circuit 2 (second power conversion circuit), electric path switching unit 4 and power conversion circuit 3 ( And a series circuit with the third power conversion circuit).
  • the power conversion circuit 1 and the power conversion circuit 2 are electrically connected between the electric path L 2 and the DC connection port 6.
  • the circuit switching unit 4 and the power conversion circuit 3 are electrically connected between the AC connection port 7 and the power conversion circuit 2.
  • the electrical path switching unit 4 electrically connects the AC connection port 7 to the power conversion circuit 3 or the electrical path L2 in a switchable manner.
  • the power supply system preferably has a DC charging mode, an AC charging mode, a DC discharging mode, and an AC discharging mode as operation modes.
  • power conversion circuit 1 converts commercial power Ps supplied to electric path L2 via grid relay B1 into first DC power P1 controlled to the first DC voltage, and converts power conversion circuit 2 Output to In the DC charging mode, power conversion circuit 2 converts first DC power P1 into DC charging power Pa and outputs it to DC connection port 6.
  • the electric path switching unit 4 electrically connects the AC connection port 7 to the electric path L2, and outputs commercial power Ps supplied to the electric path L2 to the AC connection port 7 via the system relay B1.
  • the power conversion circuit 2 converts the DC discharge power Pb supplied via the DC connection port 6 into the second DC power P2 controlled to the second DC voltage to convert the power conversion circuit 1 Output to In the DC discharge mode, the power conversion circuit 1 converts the second DC power P2 into AC power Pc and outputs the AC power Pc to the power path L2. In the AC discharge mode, the circuit switching unit 4 electrically connects the AC connection port 7 to the power conversion circuit 3.
  • the power conversion circuit 3 converts the AC discharge power Pd supplied via the AC connection port 7 into the third DC power P3 controlled to the third DC voltage to convert the power conversion circuit 2 Output to In the AC discharge mode, power conversion circuit 2 converts third DC power P3 into second DC power P2 and outputs it to power conversion circuit 1, and power conversion circuit 1 AC converts second DC power P2 It converts into electric power Pc and outputs it to the electric circuit L2.
  • the power supply system of the present embodiment has a batch charge mode and a batch discharge mode as operation modes.
  • the power conversion circuit 1 converts the commercial power Ps supplied to the electric path L2 via the system relay B1 into the first DC power P1 and outputs it to the power conversion circuit 2.
  • the power conversion circuit 2 converts the first DC power P1 into DC charging power Pa and outputs it to the DC connection port 6.
  • the electric path switching unit 4 electrically connects the AC connection port 7 to the electric path L2, and outputs commercial power Ps supplied to the electric path L2 to the AC connection port 7 via the system relay B1.
  • the circuit switching unit 4 electrically connects the AC connection port 7 to the power conversion circuit 3, and the power conversion circuit 3 generates the AC discharge power Pd supplied via the AC connection port 7. It converts into 3 DC power P 3 and outputs it to the power conversion circuit 2.
  • the power conversion circuit 2 converts the sum of the DC discharge power Pb supplied via the DC connection port 6 and the third DC power P3 into the second DC power P2 to convert the power conversion circuit. Output to 1.
  • the power conversion circuit 1 converts the second DC power P2 into AC power Pc and outputs it to the electric circuit L2.
  • the power supply system of the present embodiment has a first inter-vehicle charge mode and a second inter-vehicle charge mode as operation modes.
  • the power conversion circuit 1 converts the commercial power Ps supplied to the electric path L2 via the system relay B1 into the first direct current power P1 and supplies it to the power conversion circuit 2.
  • the electric path switching unit 4 electrically connects the AC connection port 7 to the power conversion circuit 3.
  • power conversion circuit 3 converts AC discharge power Pd supplied via AC connection port 7 into third DC power P 3 and outputs the third DC power P 3 to power conversion circuit 2.
  • power conversion circuit 2 converts the sum of first DC power P1 and third DC power P3 into DC charging power Pa, and outputs it to DC connection port 6.
  • the commercial power Ps is output from the commercial power supply 20 to the electric path L2 via the system relay B1, and the electric path switching unit 4 electrically connects the AC connection port 7 to the electric path L2.
  • power conversion circuit 2 converts DC discharge power Pb supplied via DC connection port 6 into second DC power P 2 and outputs it to power conversion circuit 1.
  • the power conversion circuit 1 converts the second DC power P2 into AC power Pc and outputs the AC power Pc to the electric circuit L2.
  • the power supply system of the present embodiment operates in one of the DC discharge mode and the AC discharge mode. At this time, when the remaining capacity of the storage battery (storage battery 11 or storage battery 12) being discharged becomes equal to or less than the threshold, the power supply system of the present embodiment preferably switches to the other operation mode and operates.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

This power supply system has a DC connection port (6) and an AC connection port (7) for delivering and receiving charging power and discharged power to and from rechargeable batteries (11, 12) in electric vehicles (C1, C2). Said power supply system also has a power conversion unit (A1) that: supplies charging power to the electric vehicles (C1, C2) via the DC connection port (6) and the AC connection port (7); and uses discharged power supplied from the electric vehicles (C1, C2) via the DC connection port (6) and the AC connection port (7) to supply AC power to an electrical pathway (L2) to which a load (30) is connected. This power supply system further has a system relay (B1) for connecting and disconnecting said electrical pathway (L2) to utility power supplied by a utility power supply (20).

Description

電力供給システムPower supply system
 本発明は、一般に電力供給システム、より詳細には電動車両との間で充放電を行う電力供給システムに関する発明である。 The present invention relates generally to a power supply system, and more particularly to a power supply system that performs charging and discharging with an electric vehicle.
 近年、有害排気物質が少なく、環境にやさしい電動車両が市場に導入され、電動車両の蓄電池の充放電を行う電力供給システムが提案されている。電動車両として、例えば電気自動車(EV:Electric Vehicle)やプラグインハイブリッド車(PHEV:Plug-in Hybrid Electric Vehicle)などがある。電力供給システムは、電動車両と需要家(facility)内の負荷との間に設けられて、電動車両に対して充電電力を供給し、電動車両から供給される放電電力を需要家内の負荷に供給する。 BACKGROUND ART In recent years, electrically powered vehicles having less harmful exhaust emissions and being environmentally friendly have been introduced into the market, and a power supply system for charging and discharging storage batteries of electrically powered vehicles has been proposed. As an electric vehicle, for example, there are an electric vehicle (EV: Electric Vehicle), a plug-in hybrid vehicle (PHEV: Plug-in Hybrid Electric Vehicle), and the like. The power supply system is provided between the electric vehicle and the load in the facility to supply charging electric power to the electric vehicle and supply discharge power supplied from the electric vehicle to the load in the customer. Do.
 電動車両の充電方式には直流充電方式と交流充電方式とがあり、直流充電方式と交流充電方式とのいずれか一方のみに対応した電力供給システムがある。この電力供給システムは、電動車両と需要家内の負荷との間に、直流充放電手段と交流充放電手段とのいずれか一方のみを設けている。直流充放電手段は、電動車両に対して直流の充電電力を供給し、電動車両から供給される直流の放電電力を負荷に供給する。交流充放電手段は、電動車両に対して交流の充電電力を供給し、電動車両から供給される交流の放電電力を負荷に供給する。 There are a DC charging system and an AC charging system as a charging system of the electric vehicle, and there is a power supply system corresponding to only one of the DC charging system and the AC charging system. In this power supply system, only one of the DC charge / discharge means and the AC charge / discharge means is provided between the electrically powered vehicle and the load in the customer. The DC charging / discharging means supplies DC charging power to the electric vehicle, and supplies DC discharging electric power supplied from the electric vehicle to the load. The AC charging / discharging means supplies AC charging power to the electric vehicle, and supplies AC discharge power supplied from the electric vehicle to the load.
 また、1つの電力供給システムが、交流充放電手段と直流放電手段とを備える構成も提案されている(例えば、特許文献1参照)。この場合、充放電の対象は1台の電動車両であり、充電は交流充電方式を用い、放電は交流放電方式または直流放電方式のいずれか一方が選択される。 In addition, a configuration is also proposed in which one power supply system includes alternating current charge and discharge means and direct current discharge means (see, for example, Patent Document 1). In this case, the target of charging and discharging is one electric vehicle, charging is performed using an alternating current charging method, and discharging is selected from either an alternating current discharging method or a direct current discharging method.
特開2012-170259号公報JP 2012-170259 A
 従来の電力供給システムでは、複数台の電動車両を接続して、電動車両のそれぞれを個別に充放電することはできなかった。したがって、利用可能な蓄電池の容量は、1台の電動車両に搭載されている蓄電池の容量に制限されるので、エネルギーマネージメントの効果が低かった。また、商用電力の停電時においては、電動車両の放電電力を用いた電力供給の継続時間も短時間になり、運用性が低かった。 In the conventional power supply system, it was not possible to connect a plurality of electric vehicles and charge / discharge each of the electric vehicles individually. Therefore, since the capacity of the usable storage battery is limited to the capacity of the storage battery mounted on one electric vehicle, the effect of energy management is low. Moreover, at the time of a power failure of commercial power, the duration time of the power supply using the discharge power of the electric vehicle also becomes short, and the operability is low.
 本発明は、上記事由に鑑みてなされており、その目的は、複数台の電動車両を個別に充放電することができる電力供給システムを提供することにある。 The present invention has been made in view of the above, and an object thereof is to provide a power supply system capable of individually charging and discharging a plurality of electric vehicles.
 本発明の電力供給システムは、蓄電池を搭載した複数の電動車両のそれぞれとの間で前記蓄電池の充電電力および放電電力を授受する複数の接続口と、負荷が接続した電路と、開閉器と、電力変換部とを備えることを特徴とする。開閉器は、商用電源から前記電路に供給される商用電力を導通・遮断する。電力変換部は、少なくとも前記電路に供給された前記商用電力を用いて、前記複数の接続口のそれぞれについて、前記複数の電動車両のうち当該接続口と接続された電動車両に当該接続口を介して前記充電電力を供給し、前記複数の接続口のそれぞれについて、前記複数の電動車両のうち当該接続口と接続された電動車両から当該接続口を介して供給された前記放電電力を用いて、前記電路に交流電力を供給する。 The power supply system according to the present invention comprises a plurality of connection ports for exchanging charging power and discharging power of the storage battery with each of a plurality of electric vehicles mounted with storage batteries, a power path connected with a load, a switch, And a power converter. The switch conducts / cuts off the commercial power supplied from the commercial power supply to the electric path. The power conversion unit uses at least the commercial power supplied to the electric path, and for each of the plurality of connection ports, the electric vehicle connected to the connection port among the plurality of electric vehicles via the connection port. The charging power is supplied, and for each of the plurality of connection ports, the discharge power supplied from the electric vehicle connected to the connection port among the plurality of electric vehicles via the connection port is used. AC power is supplied to the electric circuit.
 この発明において、複数の前記接続口は、直流の前記充電電力および前記放電電力を授受する直流接続口と、交流の前記充電電力および前記放電電力を授受する交流接続口とから構成されることが好ましい。 In the present invention, the plurality of connection ports may be constituted by a DC connection port for exchanging the charging power of direct current and the discharging power, and an AC connection port for exchanging the charging power of alternating current and the discharge power. preferable.
 この発明において、前記電力変換部は、第1の電力変換回路と第2の電力変換回路との直列回路と、電路切替部と第3の電力変換回路との直列回路とで構成される。第1の電力変換回路と第2の電力変換回路とは、前記電路と前記直流接続口との間に電気的に接続している。電路切替部と第3の電力変換回路とは、前記交流接続口と前記第2の電力変換回路との間に電気的に接続している。前記電路切替部は、前記交流接続口を前記第3の電力変換回路または前記電路に切替可能に電気的に接続している。電力供給システムは、直流充電モードと、交流充電モードと、直流放電モードと、交流放電モードとを動作モードとして有することが好ましい。直流充電モードでは、前記第1の電力変換回路が、前記開閉器を介して前記電路に供給される前記商用電力を第1の直流電圧に制御された第1の直流電力に変換して前記第2の電力変換回路へ出力する。直流充電モードでは、前記第2の電力変換回路が、前記第1の直流電力を直流の充電電力に変換して前記直流接続口へ出力する。交流充電モードでは、前記電路切替部が、前記交流接続口を前記電路に電気的に接続して、前記開閉器を介して前記電路に供給される前記商用電力を前記交流接続口へ出力する。直流放電モードでは、前記第2の電力変換回路が、前記直流接続口を介して供給される直流の前記放電電力を第2の直流電圧に制御された第2の直流電力に変換して前記第1の電力変換回路へ出力する。直流放電モードでは、前記第1の電力変換回路が、前記第2の直流電力を前記交流電力に変換して前記電路へ出力する。交流放電モードでは、前記電路切替部が、前記交流接続口を前記第3の電力変換回路に電気的に接続する。交流放電モードでは、前記第3の電力変換回路が、前記交流接続口を介して供給される交流の前記放電電力を第3の直流電圧に制御された第3の直流電力に変換して前記第2の電力変換回路へ出力する。交流放電モードでは、前記第2の電力変換回路が、前記第3の直流電力を前記第2の直流電力に変換して前記第1の電力変換回路へ出力し、前記第1の電力変換回路が、前記第2の直流電力を前記交流電力に変換して前記電路へ出力する。 In the present invention, the power conversion unit is configured by a series circuit of a first power conversion circuit and a second power conversion circuit, and a series circuit of an electric path switching unit and a third power conversion circuit. The first power conversion circuit and the second power conversion circuit are electrically connected between the electric path and the DC connection port. The circuit switching unit and the third power conversion circuit are electrically connected between the AC connection port and the second power conversion circuit. The circuit switching unit electrically connects the AC connection port to the third power conversion circuit or the circuit so as to be switchable. The power supply system preferably has a DC charging mode, an AC charging mode, a DC discharging mode, and an AC discharging mode as operation modes. In the direct current charging mode, the first power conversion circuit converts the commercial power supplied to the electric path through the switch into a first direct current power controlled to a first direct current voltage, and Output to the power conversion circuit of 2. In the DC charging mode, the second power conversion circuit converts the first DC power into DC charging power and outputs it to the DC connection port. In the AC charging mode, the circuit switching unit electrically connects the AC connection port to the circuit, and outputs the commercial power supplied to the circuit via the switch to the AC connection port. In the direct current discharge mode, the second power conversion circuit converts the direct current discharge power supplied via the direct current connection port into a second direct current power controlled to a second direct current voltage, and Output to the power conversion circuit of 1. In the direct current discharge mode, the first power conversion circuit converts the second direct current power into the alternating current power and outputs the alternating current power to the electric path. In the alternating current discharge mode, the circuit switching unit electrically connects the alternating current connection port to the third power conversion circuit. In the alternating current discharge mode, the third power conversion circuit converts the discharge power of alternating current supplied via the alternating current connection port into third direct current power controlled to a third direct current voltage, and Output to the power conversion circuit of 2. In the AC discharge mode, the second power conversion circuit converts the third DC power into the second DC power and outputs the second DC power to the first power conversion circuit, and the first power conversion circuit And converting the second DC power into the AC power and outputting the AC power to the electric path.
 この発明において、電力供給システムは、一括充電モードと、一括放電モードとを動作モードとして有することが好ましい。一括充電モードでは、前記第1の電力変換回路が、前記開閉器を介して前記電路に供給される前記商用電力を前記第1の直流電力に変換して前記第2の電力変換回路へ出力する。一括充電モードでは、前記第2の電力変換回路が、前記第1の直流電力を直流の前記充電電力に変換して前記直流接続口へ出力する。一括充電モードでは、前記電路切替部が、前記交流接続口を前記電路に電気的に接続して、前記開閉器を介して前記電路に供給される前記商用電力を前記交流接続口へ出力する。一括放電モードでは、前記電路切替部が、前記交流接続口を前記第3の電力変換回路に電気的に接続し、前記第3の電力変換回路が、前記交流接続口を介して供給される交流の前記放電電力を前記第3の直流電力に変換して前記第2の電力変換回路へ出力する。一括放電モードでは、前記第2の電力変換回路が、前記直流接続口を介して供給される直流の前記放電電力と前記第3の直流電力との和を前記第2の直流電力に変換して前記第1の電力変換回路へ出力する。一括放電モードでは、前記第1の電力変換回路が、前記第2の直流電力を前記交流電力に変換して前記電路へ出力する。 In the present invention, the power supply system preferably has a batch charge mode and a batch discharge mode as operation modes. In the batch charging mode, the first power conversion circuit converts the commercial power supplied to the electric path through the switch into the first DC power and outputs the first DC power to the second power conversion circuit. . In the batch charging mode, the second power conversion circuit converts the first DC power into DC charging power and outputs the charging power to the DC connection port. In the batch charging mode, the circuit switching unit electrically connects the AC connection port to the circuit, and outputs the commercial power supplied to the circuit via the switch to the AC connection port. In the collective discharge mode, the circuit switching unit electrically connects the AC connection port to the third power conversion circuit, and the third power conversion circuit is an AC power supplied via the AC connection port. The discharge power is converted into the third DC power and is output to the second power conversion circuit. In the collective discharge mode, the second power conversion circuit converts a sum of the discharge power of direct current supplied via the direct current connection port and the third direct current power into the second direct current power It outputs to the said 1st power inverter circuit. In the batch discharge mode, the first power conversion circuit converts the second DC power into the AC power and outputs the AC power to the electric path.
 この発明において、電力供給システムは、第1の車両間充電モードと、第2の車両間充電モードとを動作モードとして有することが好ましい。第1の車両間充電モードでは、前記第1の電力変換回路が、前記開閉器を介して前記電路に供給される前記商用電力を前記第1の直流電力に変換して前記第2の電力変換回路へ供給する。第1の車両間充電モードでは、前記電路切替部が、前記交流接続口を前記第3の電力変換回路に電気的に接続している。第1の車両間充電モードでは、前記第3の電力変換回路が、前記交流接続口を介して供給される交流の前記放電電力を前記第3の直流電力に変換して前記第2の電力変換回路へ出力する。第1の車両間充電モードでは、前記第2の電力変換回路が、前記第1の直流電力と前記第3の直流電力との和を直流の前記充電電力に変換して前記直流接続口へ出力する。第2の車両間充電モードでは、前記開閉器を介して前記電路に前記商用電力が前記商用電源から出力され、前記電路切替部が、前記交流接続口を前記電路に電気的に接続する。第2の車両間充電モードでは、前記第2の電力変換回路が、前記直流接続口を介して供給される直流の前記放電電力を前記第2の直流電力に変換して前記第1の電力変換回路へ出力する。第2の車両間充電モードでは、前記第1の電力変換回路が、前記第2の直流電力を前記交流電力に変換して前記電路へ出力する。 In the present invention, the power supply system preferably has a first inter-vehicle charge mode and a second inter-vehicle charge mode as operation modes. In the first inter-vehicle charging mode, the first power conversion circuit converts the commercial power supplied to the electric path through the switch into the first DC power to convert the second power. Supply to the circuit. In the first inter-vehicle charging mode, the electric path switching unit electrically connects the AC connection port to the third power conversion circuit. In the first inter-vehicle charge mode, the third power conversion circuit converts the discharge power of alternating current supplied via the alternating current connection port into the third direct current power to convert the second power. Output to the circuit. In the first inter-vehicle charging mode, the second power conversion circuit converts the sum of the first DC power and the third DC power into the DC charging power and outputs the charging power to the DC connection port. Do. In the second inter-vehicle charging mode, the commercial power is output from the commercial power source to the electric path through the switch, and the electric path switching unit electrically connects the AC connection port to the electric path. In the second inter-vehicle charging mode, the second power conversion circuit converts the discharge power of direct current supplied via the direct current connection port into the second direct current power to convert the first power. Output to the circuit. In the second inter-vehicle charging mode, the first power conversion circuit converts the second DC power into the AC power and outputs the AC power to the electric path.
 この発明において、電力供給システムは、前記直流放電モードと前記交流放電モードとのいずれか一方の動作モードで動作しているときに、放電中の前記蓄電池の残容量が閾値以下になった場合、他方の動作モードに切り替えて動作することが好ましい。 In the present invention, when the power supply system is operating in one of the DC discharge mode and the AC discharge mode, the remaining capacity of the storage battery being discharged becomes equal to or less than a threshold. It is preferable to switch to the other operation mode and operate.
 以上説明したように、本発明では、蓄電池を搭載した複数台の電動車両を接続して、複数台の電動車両を個別に充放電することができるという効果がある。 As described above, according to the present invention, there is an effect that it is possible to charge and discharge a plurality of electric vehicles individually by connecting a plurality of electric vehicles carrying a storage battery.
実施形態の電力供給システムの構成を示すブロック図である。It is a block diagram showing composition of an electric power supply system of an embodiment. 実施形態の電力供給システムにおける直流充電モードの動作を示すブロック図である。It is a block diagram showing operation of direct-current charge mode in a power supply system of an embodiment. 実施形態の電力供給システムにおける交流充電モードの動作を示すブロック図である。It is a block diagram which shows operation | movement of the alternating current charge mode in the electric power supply system of embodiment. 実施形態の電力供給システムにおける系統連系運転時の直流放電モードの動作を示すブロック図である。It is a block diagram which shows operation | movement of DC discharge mode at the time of grid connection operation in the electric power supply system of embodiment. 実施形態の電力供給システムにおける自立運転時の直流放電モードの動作を示すブロック図である。It is a block diagram which shows operation | movement of DC discharge mode at the time of the self sustaining in the electric power supply system of embodiment. 実施形態の電力供給システムにおける系統連系運転時の交流放電モードの動作を示すブロック図である。It is a block diagram which shows operation | movement of alternating current discharge mode at the time of grid connection operation in the electric power supply system of embodiment. 実施形態の電力供給システムにおける自立運転時の交流放電モードの動作を示すブロック図である。It is a block diagram which shows operation | movement of the alternating current discharge mode at the time of the self sustaining in the electric power supply system of embodiment. 実施形態の電力供給システムにおける一括充電モードの動作を示すブロック図である。It is a block diagram which shows operation | movement of the package charge mode in the electric power supply system of embodiment. 実施形態の電力供給システムにおける一括放電モードの動作を示すブロック図である。It is a block diagram which shows operation | movement in the package discharge mode in the electric power supply system of embodiment. 実施形態の電力供給システムにおける第1の車両間充電モードの動作を示すブロック図である。It is a block diagram showing operation of the 1st charge mode between vehicles in a power supply system of an embodiment. 実施形態の電力供給システムにおける第2の車両間充電モードの動作を示すブロック図である。It is a block diagram showing operation of the 2nd charge mode between vehicles in a power supply system of an embodiment. 実施形態の電力供給システムにおける車両交換の動作を示すブロック図である。It is a block diagram showing operation of vehicles exchange in a power supply system of an embodiment.
 以下、本発明の実施の形態を図面に基づいて説明する。 Hereinafter, embodiments of the present invention will be described based on the drawings.
  (実施形態)
 図1は、本実施形態の電力供給システムの構成を示す。本実施形態の電力供給システムは、蓄電池を搭載した電動車両との間で蓄電池の充電電力および放電電力を授受する直流接続口6および交流接続口7を有する。さらに、本実施形態の電力供給システムは、電力変換部A1を有する。電力変換部A1は、直流接続口6および交流接続口7を介して電動車両のそれぞれに充電電力を供給し、直流接続口6および交流接続口7のそれぞれを介して電動車両から供給された放電電力を用いて、負荷30が接続した電路L2に交流電力を供給する。さらに、本実施形態の電力供給システムは、電路L2に商用電源20から供給される商用電力を導通・遮断する系統リレーB1(開閉器)を有する。
(Embodiment)
FIG. 1 shows the configuration of the power supply system of the present embodiment. The power supply system of the present embodiment has a DC connection port 6 and an AC connection port 7 that exchange charging power and discharging power of the storage battery with the electric vehicle equipped with the storage battery. Furthermore, the power supply system of the present embodiment includes a power conversion unit A1. Power conversion unit A1 supplies charging power to each of the electric vehicles via DC connection port 6 and AC connection port 7, and discharge supplied from the electric vehicle via DC connection port 6 and AC connection port 7 respectively. The power is used to supply AC power to the electric path L2 connected to the load 30. Furthermore, the power supply system of the present embodiment includes a system relay B1 (switch) that conducts and cuts off the commercial power supplied from the commercial power supply 20 to the electric path L2.
 電気自動車(EV)やプラグインハイブリッド車(PHEV)などの電動車両には、蓄電池が搭載されている。そして、電力供給システムは、電動車両の蓄電池、商用電源20、需要家内の負荷30との間で授受される電力を制御する。なお、複数の電動車両を区別する場合、電動車両C1,C2,...と称し、電動車両C1,C2,...に搭載した各蓄電池を区別する場合、蓄電池11,12,...と称す。 Storage batteries are mounted on electric vehicles such as electric vehicles (EVs) and plug-in hybrid vehicles (PHEVs). Then, the power supply system controls the power exchanged between the storage battery of the electric vehicle, the commercial power supply 20, and the load 30 in the customer. In the case of distinguishing between a plurality of electric vehicles, the electric vehicles C1, C2,. . . Electric vehicles C1, C2,. . . When distinguishing each storage battery mounted in, storage batteries 11, 12,. . . It is called.
 電力変換部A1は、電力変換回路1(第1の電力変換回路)、電力変換回路2(第2の電力変換回路)、電力変換回路3(第3の電力変換回路)、電路切替部4、コントローラ5で構成される。 The power conversion unit A1 includes a power conversion circuit 1 (first power conversion circuit), a power conversion circuit 2 (second power conversion circuit), a power conversion circuit 3 (third power conversion circuit), an electric path switching unit 4, It comprises a controller 5.
 商用電力系統L1は、商用電源20から需要家へ商用電力を供給する。電路L2は、需要家の負荷30が接続されている。そして、系統リレーB1は、商用電力系統L1と電路L2との間に設けられている。系統リレーB1は、商用電力系統L1と電路L2との間に設けた接点をオン・オフすることによって、商用電源20から電路L2に供給される商用電力を導通・遮断する。 The commercial power system L1 supplies commercial power from the commercial power supply 20 to the consumer. The load 30 of the customer is connected to the electric path L2. The grid relay B1 is provided between the commercial power grid L1 and the electric path L2. The grid relay B1 conducts / cuts off the commercial power supplied from the commercial power source 20 to the electric path L2 by turning on / off a contact provided between the commercial power system L1 and the electric path L2.
 電力変換回路1と電力変換回路2との直列回路は、電路L2と直流接続口6との間に電気的に接続している。電路切替部4と電力変換回路3との直列回路は、交流接続口7と電力変換回路2との間に電気的に接続している。電路切替部4は、交流接続口7を電力変換回路3または電路L2に切替可能に電気的に接続させるスイッチ機能を有する。 A series circuit of the power conversion circuit 1 and the power conversion circuit 2 is electrically connected between the electric path L 2 and the DC connection port 6. A series circuit of the circuit switching unit 4 and the power conversion circuit 3 is electrically connected between the AC connection port 7 and the power conversion circuit 2. The electrical path switching unit 4 has a switch function of electrically connecting the AC connection port 7 to the power conversion circuit 3 or the electrical path L2 in a switchable manner.
 直流接続口6は、ケーブル41の一端が接続しており、ケーブル41の他端は電動車両C1の図示しないインレットに接続している。そして、電動車両C1は、蓄電池11を直流電力で充電し、蓄電池11の放電電力を直流で出力する図示しない充放電器を有する。直流接続口6は、電動車両C1との間でケーブル41を介して、直流の充電電力および放電電力を授受する。 The DC connection port 6 is connected to one end of a cable 41, and the other end of the cable 41 is connected to an inlet (not shown) of the electric vehicle C1. Then, electrically powered vehicle C1 has a charger / discharger (not shown) that charges storage battery 11 with direct current power and outputs the discharge power of storage battery 11 with direct current. The DC connection port 6 exchanges DC charging power and discharging power with the electric vehicle C1 via the cable 41.
 交流接続口7は、ケーブル42の一端が接続しており、ケーブル42の他端は電動車両C2の図示しないインレットに接続している。そして、電動車両C2は、蓄電池12を交流電力で充電し、蓄電池12の放電電力を交流で出力する図示しない充放電器を有する。交流接続口7は、電動車両C2との間でケーブル42を介して、交流の充電電力および放電電力を授受する。 The AC connection port 7 is connected to one end of a cable 42, and the other end of the cable 42 is connected to an inlet (not shown) of the electric vehicle C2. Then, electrically powered vehicle C2 has a charger / discharger (not shown) that charges storage battery 12 with AC power and outputs the discharge power of storage battery 12 as AC. The AC connection port 7 exchanges AC charging power and discharging power with the electric vehicle C2 via the cable 42.
 電力変換回路1は、電路L2と電力変換回路2との間に設けられている。電力変換回路1は、電路L2の商用電力を第1の直流電力に変換して電力変換回路2へ出力する。第1の直流電力とは、電力変換回路1によって予め決められた第1の直流電圧に制御された直流電力である。また、電力変換回路1は、電力変換回路2が出力する第2の直流電力を商用周波数の交流電力に変換して電路L2へ出力する。すなわち、電力変換回路1は、電路L2と電力変換回路2との間で、双方向の電力変換機能(AC/DC変換機能、DC/AC変換機能)を有する。 The power conversion circuit 1 is provided between the electric circuit L 2 and the power conversion circuit 2. The power conversion circuit 1 converts the commercial power of the electric path L2 into a first DC power and outputs the first DC power to the power conversion circuit 2. The first DC power is DC power controlled to a first DC voltage predetermined by the power conversion circuit 1. Further, the power conversion circuit 1 converts the second DC power output from the power conversion circuit 2 into AC power of commercial frequency and outputs the converted power to the electric circuit L2. That is, the power conversion circuit 1 has a bidirectional power conversion function (AC / DC conversion function, DC / AC conversion function) between the electric path L 2 and the power conversion circuit 2.
 電力変換回路2は、電力変換回路1と電力変換回路3と直流接続口6とに接続している。電力変換回路2は、電力変換回路1が出力する第1の直流電力を直流の充電電力に変換して、直流接続口6へ出力する。直流の充電電力は、電力変換回路2によって蓄電池11の充電電圧に制御されている。また、電力変換回路2は、直流接続口6を介して供給される直流の放電電力を第2の直流電力に変換して、電力変換回路1へ出力する。また、電力変換回路2は、電力変換回路3が出力する第3の直流電力を第2の直流電力に変換して、電力変換回路1へ出力する。第2の直流電力とは、電力変換回路2によって予め決められた第2の直流電圧に制御された直流電力である。すなわち、電力変換回路2は、電力変換回路1と直流接続口6との間で双方向の電力変換機能(DC/DC変換機能)を有し、さらに電力変換回路3から電力変換回路1への片方向の電力変換機能(DC/DC変換機能)も有する。 The power conversion circuit 2 is connected to the power conversion circuit 1, the power conversion circuit 3, and the DC connection port 6. The power conversion circuit 2 converts the first DC power output from the power conversion circuit 1 into DC charging power and outputs the charging power to the DC connection port 6. The direct current charging power is controlled by the power conversion circuit 2 to the charging voltage of the storage battery 11. Further, the power conversion circuit 2 converts DC discharge power supplied via the DC connection port 6 into second DC power and outputs the second DC power to the power conversion circuit 1. Further, the power conversion circuit 2 converts the third DC power output from the power conversion circuit 3 into second DC power, and outputs the second DC power to the power conversion circuit 1. The second DC power is DC power controlled to a second DC voltage predetermined by the power conversion circuit 2. That is, the power conversion circuit 2 has a bidirectional power conversion function (DC / DC conversion function) between the power conversion circuit 1 and the DC connection port 6, and further, from the power conversion circuit 3 to the power conversion circuit 1. It also has a unidirectional power conversion function (DC / DC conversion function).
 電力変換回路3は、電力変換回路2と電路切替部4との間に設けられている。電力変換回路3は、交流接続口7および電路切替部4を介して供給される交流の放電電力を第3の直流電力に変換して、電力変換回路2へ出力する。第3の直流電力とは、電力変換回路3によって予め決められた第3の直流電圧に制御された直流電力である。すなわち、電力変換回路3は、交流接続口7から電力変換回路2への片方向の電力変換機能(AC/DC変換機能)を有する。 The power conversion circuit 3 is provided between the power conversion circuit 2 and the circuit switching unit 4. The power conversion circuit 3 converts AC discharge power supplied via the AC connection port 7 and the circuit switching unit 4 into third DC power, and outputs the third DC power to the power conversion circuit 2. The third DC power is DC power controlled to a third DC voltage predetermined by the power conversion circuit 3. That is, the power conversion circuit 3 has a unidirectional power conversion function (AC / DC conversion function) from the AC connection port 7 to the power conversion circuit 2.
 コントローラ5は、電力変換回路1、電力変換回路2、電力変換回路3、電路切替部4、および系統リレーB1の各動作を制御する。なお、図中においては、コントローラ5が、電力変換回路1、電力変換回路2、電力変換回路3、電路切替部4、および系統リレーB1の各動作を制御するための制御線を破線で示す。 The controller 5 controls the operations of the power conversion circuit 1, the power conversion circuit 2, the power conversion circuit 3, the circuit switching unit 4, and the system relay B 1. In the drawing, control lines for controlling operations of the power conversion circuit 1, the power conversion circuit 2, the power conversion circuit 3, the path switching unit 4 and the system relay B1 are shown by broken lines.
 以下、本実施形態の電力供給システムの動作について説明する。 Hereinafter, the operation of the power supply system of the present embodiment will be described.
 まず、コントローラ5は、ユーザ操作や、タイマおよびセンサ等の出力に応じた自動制御によって、電力供給システムの動作モードを選択する。コントローラ5は、選択した動作モードに応じて、電力変換回路1、電力変換回路2、電力変換回路3、電路切替部4、および系統リレーB1の各動作を制御する。 First, the controller 5 selects the operation mode of the power supply system by automatic control according to user operations and outputs of timers and sensors. The controller 5 controls the operations of the power conversion circuit 1, the power conversion circuit 2, the power conversion circuit 3, the circuit switching unit 4, and the system relay B 1 according to the selected operation mode.
 コントローラ5は、直流充電モード、交流充電モード、直流放電モード、交流放電モード、一括充電モード、一括放電モード、第1の車両間充電モード、第2の車両間充電モードの各動作モードを選択可能とする。 The controller 5 can select each operation mode of DC charge mode, AC charge mode, DC discharge mode, AC discharge mode, batch charge mode, batch discharge mode, first inter-vehicle charge mode, and second inter-vehicle charge mode I assume.
 まず、直流充電モードの動作について、図2を用いて説明する。 First, the operation of the direct current charge mode will be described with reference to FIG.
 直流充電モードは、例えば、商用電源20の電力単価が低い深夜時間帯等に選択される。この直流充電モードにおいて、系統リレーB1はオンして、商用電力Psが電路L2に供給される。電力変換回路1は、系統リレーB1を介して電路L2に供給される商用電力Psを第1の直流電力P1に変換して電力変換回路2へ出力する。電力変換回路2は、第1の直流電力P1を直流の充電電力Paに変換して直流接続口6へ出力する。直流の充電電力Paは、直流接続口6からケーブル41を介して電動車両C1へ供給されて、電動車両C1の蓄電池11が充電される。なお、電路切替部4は、交流接続口7を電力変換回路3に接続している。 The DC charging mode is selected, for example, in the late-night time zone or the like where the unit price of the commercial power source 20 is low. In this DC charging mode, the system relay B1 is turned on, and the commercial power Ps is supplied to the electric circuit L2. The power conversion circuit 1 converts the commercial power Ps supplied to the electric path L2 via the system relay B1 into a first DC power P1 and outputs the first DC power P1 to the power conversion circuit 2. The power conversion circuit 2 converts the first DC power P1 into DC charging power Pa and outputs it to the DC connection port 6. The DC charging power Pa is supplied from the DC connection port 6 to the electrically powered vehicle C1 via the cable 41, and the storage battery 11 of the electrically powered vehicle C1 is charged. The circuit switching unit 4 connects the AC connection port 7 to the power conversion circuit 3.
 次に、交流充電モードの動作について、図3を用いて説明する。 Next, the operation of the alternating current charging mode will be described with reference to FIG.
 交流充電モードは、例えば、商用電源20の電力単価が低い深夜時間帯等に選択される。交流充電モードにおいて、系統リレーB1はオンして、商用電力Psが電路L2に供給される。電路切替部4は、交流接続口7を電路L2に接続している。而して、商用電力Psは、電路L2から電路切替部4を介して交流接続口7に供給され、この商用電力Psが交流の充電電力となる。交流の充電電力(商用電力Ps)は、交流接続口7からケーブル42を介して電動車両C2へ供給されて、電動車両C2の蓄電池12が充電される。 The AC charging mode is selected, for example, in a late-night time zone or the like where the unit price of the commercial power source 20 is low. In the AC charging mode, the system relay B1 is turned on, and the commercial power Ps is supplied to the electric circuit L2. The electrical path switching unit 4 connects the AC connection port 7 to the electrical path L2. Thus, the commercial power Ps is supplied from the power path L2 to the AC connection port 7 via the power path switching unit 4, and the commercial power Ps becomes the AC charging power. The AC charging power (commercial power Ps) is supplied from the AC connection port 7 to the electrically powered vehicle C2 via the cable 42, and the storage battery 12 of the electrically powered vehicle C2 is charged.
 次に、直流放電モードの動作について、図4、図5を用いて説明する。 Next, the operation of the direct current discharge mode will be described with reference to FIGS. 4 and 5.
 直流放電モードは、例えば、商用電源20の電力単価が高い昼間時間帯、商用電源20の停電時等に選択される。 The DC discharge mode is selected, for example, during daytime hours when the power unit price of the commercial power supply 20 is high, when the commercial power supply 20 fails, or the like.
 まず、電力変換回路1は、出力する交流電力Pcを商用電力Psに協調させる系統連系運転機能を有している。また、系統連系運転時には、図4に示すように、コントローラ5は、系統リレーB1をオンして、電路L2を商用電力系統L1に接続しておく。そして、系統連系運転時の直流放電モードにおいて、電動車両C1は、直流の放電電力Pbをケーブル41を介して出力する。電力変換回路2は、直流接続口6を介して供給される直流の放電電力Pbを第2の直流電力P2に変換して電力変換回路1へ出力する。電力変換回路1は、第2の直流電力P2を商用電力Psに協調させた交流電力Pcに変換して電路L2へ出力する。したがって、負荷30は、電動車両C1の蓄電池11の放電電力および商用電源20によって動作可能になる。なお、電路切替部4は、交流接続口7を電力変換回路3に接続している。 First, the power conversion circuit 1 has a grid-connected operation function of coordinating the AC power Pc to be output with the commercial power Ps. Moreover, at the time of grid connection operation, as shown in FIG. 4, the controller 5 turns on the grid relay B1 to connect the electric path L2 to the commercial power grid L1. Then, in the DC discharge mode at the time of grid-connected operation, electrically powered vehicle C1 outputs DC discharge power Pb via cable 41. The power conversion circuit 2 converts the DC discharge power Pb supplied via the DC connection port 6 into a second DC power P 2 and outputs the second DC power P 2 to the power conversion circuit 1. The power conversion circuit 1 converts the second DC power P2 into AC power Pc coordinated with the commercial power Ps, and outputs the AC power Pc to the power path L2. Therefore, load 30 is operable by the discharged power of storage battery 11 of electric powered vehicle C1 and the commercial power supply 20. The circuit switching unit 4 connects the AC connection port 7 to the power conversion circuit 3.
 また、商用電源20の停電等による自立運転時には、図5に示すように、コントローラ5は、系統リレーB1をオフして、電路L2を商用電力系統L1から分離しておく。そして、自立運転時の直流放電モードにおいて、電動車両C1は、直流の放電電力Pbをケーブル41を介して出力する。電力変換回路2は、直流接続口6を介して供給される直流の放電電力Pbを第2の直流電力P2に変換して電力変換回路1へ出力する。電力変換回路1は、第2の直流電力P2を交流電力Pcに変換して電路L2へ出力する。したがって、負荷30は、電動車両C1の蓄電池11の放電電力によって動作可能になる。なお、電路切替部4は、交流接続口7を電力変換回路3に接続している。 Moreover, at the time of the self sustaining by the blackout etc. of the commercial power supply 20, as shown in FIG. 5, the controller 5 turns off system relay B1 and isolate | separates the electric circuit L2 from the commercial power system L1. Then, in the DC discharge mode at the time of the self-sustaining operation, electrically powered vehicle C 1 outputs discharge power Pb of direct current via cable 41. The power conversion circuit 2 converts the DC discharge power Pb supplied via the DC connection port 6 into a second DC power P 2 and outputs the second DC power P 2 to the power conversion circuit 1. The power conversion circuit 1 converts the second DC power P2 into AC power Pc and outputs the AC power Pc to the power path L2. Therefore, load 30 is operable by the discharged power of storage battery 11 of electrically powered vehicle C1. The circuit switching unit 4 connects the AC connection port 7 to the power conversion circuit 3.
 次に、交流放電モードの動作について、図6、図7を用いて説明する。 Next, the operation of the alternating current discharge mode will be described with reference to FIGS. 6 and 7.
 交流放電モードは、例えば、商用電源20の電力単価が高い昼間時間帯、商用電源20の停電時等に選択される。 The AC discharge mode is selected, for example, during daytime hours when the power unit price of the commercial power source 20 is high, when the commercial power source 20 fails, or the like.
 まず、電力変換回路1は、出力する交流電力Pcを商用電力Psに協調させる系統連系運転機能を有している。また、系統連系運転時には、図6に示すように、コントローラ5は、系統リレーB1をオンして、電路L2を商用電力系統L1に接続しておく。そして、系統連系運転時の交流放電モードにおいて、電動車両C2は、交流の放電電力Pdをケーブル42を介して出力する。電路切替部4は、交流接続口7を電力変換回路3に接続している。電力変換回路3は、交流接続口7を介して供給される交流の放電電力Pdを第3の直流電力P3に変換して電力変換回路2へ出力する。電力変換回路2は、第3の直流電力P3を第2の直流電力P2に変換して電力変換回路1へ出力する。電力変換回路1は、第2の直流電力P2を商用電力Psに協調させた交流電力Pcに変換して電路L2へ出力する。したがって、負荷30は、電動車両C2の蓄電池12の放電電力および商用電源20によって動作可能になる。 First, the power conversion circuit 1 has a grid-connected operation function of coordinating the AC power Pc to be output with the commercial power Ps. Moreover, at the time of grid connection operation, as shown in FIG. 6, the controller 5 turns on the grid relay B1 to connect the electric path L2 to the commercial power grid L1. Then, in the AC discharge mode at the time of grid interconnection operation, electrically powered vehicle C 2 outputs discharge power Pd of AC via cable 42. The circuit switching unit 4 connects the AC connection port 7 to the power conversion circuit 3. The power conversion circuit 3 converts the AC discharge power Pd supplied via the AC connection port 7 into a third DC power P 3 and outputs the third DC power P 3 to the power conversion circuit 2. The power conversion circuit 2 converts the third DC power P3 into a second DC power P2 and outputs the second DC power P2 to the power conversion circuit 1. The power conversion circuit 1 converts the second DC power P2 into AC power Pc coordinated with the commercial power Ps, and outputs the AC power Pc to the power path L2. Therefore, load 30 is operable by the discharged power of storage battery 12 of electric powered vehicle C2 and the commercial power supply 20.
 また、商用電源20の停電等による自立運転時には、図7に示すように、コントローラ5は、系統リレーB1をオフして、電路L2を商用電力系統L1から分離しておく。そして、自立運転時の交流放電モードにおいて、電動車両C2は、交流の放電電力Pdをケーブル42を介して出力する。電路切替部4は、交流接続口7を電力変換回路3に接続している。電力変換回路3は、交流接続口7を介して供給される交流の放電電力Pdを第3の直流電力P3に変換して電力変換回路2へ出力する。電力変換回路2は、第3の直流電力P3を第2の直流電力P2に変換して電力変換回路1へ出力する。電力変換回路1は、第2の直流電力P2を交流電力Pcに変換して電路L2へ出力する。したがって、負荷30は、電動車両C2の蓄電池12の放電電力によって動作可能になる。 Moreover, at the time of the self sustaining by the blackout etc. of the commercial power supply 20, as shown in FIG. 7, the controller 5 turns off system relay B1 and isolate | separates the electric circuit L2 from the commercial power system L1. Then, in the AC discharge mode at the time of the self-sustaining operation, electrically powered vehicle C2 outputs AC discharge power Pd via cable 42. The circuit switching unit 4 connects the AC connection port 7 to the power conversion circuit 3. The power conversion circuit 3 converts the AC discharge power Pd supplied via the AC connection port 7 into a third DC power P 3 and outputs the third DC power P 3 to the power conversion circuit 2. The power conversion circuit 2 converts the third DC power P3 into a second DC power P2 and outputs the second DC power P2 to the power conversion circuit 1. The power conversion circuit 1 converts the second DC power P2 into AC power Pc and outputs the AC power Pc to the power path L2. Therefore, load 30 is operable by the discharged power of storage battery 12 of electrically powered vehicle C2.
 次に、一括充電モードの動作について、図8を用いて説明する。 Next, the operation of the batch charging mode will be described with reference to FIG.
 一括充電モードは、例えば、商用電源20の電力単価が低い深夜時間帯等に選択される。この一括充電モードにおいて、系統リレーB1はオンして、商用電力Psが電路L2に供給される。電力変換回路1は、系統リレーB1を介して電路L2に供給される商用電力Psを第1の直流電力P1に変換して電力変換回路2へ出力する。電力変換回路2は、第1の直流電力P1を直流の充電電力Paに変換して直流接続口6へ出力する。直流の充電電力Paは、直流接続口6からケーブル41を介して電動車両C1へ供給されて、電動車両C1の蓄電池11が充電される。 The batch charging mode is selected, for example, in a late-night time zone or the like where the unit price of the commercial power source 20 is low. In the batch charging mode, the system relay B1 is turned on, and the commercial power Ps is supplied to the electric circuit L2. The power conversion circuit 1 converts the commercial power Ps supplied to the electric path L2 via the system relay B1 into a first DC power P1 and outputs the first DC power P1 to the power conversion circuit 2. The power conversion circuit 2 converts the first DC power P1 into DC charging power Pa and outputs it to the DC connection port 6. The DC charging power Pa is supplied from the DC connection port 6 to the electrically powered vehicle C1 via the cable 41, and the storage battery 11 of the electrically powered vehicle C1 is charged.
 また、一括充電モードにおいて、電路切替部4は、交流接続口7を電路L2に接続している。而して、商用電力Psは、電路L2から電路切替部4を介して交流接続口7に供給され、この商用電力Psが交流の充電電力となる。交流の充電電力(商用電力Ps)は、交流接続口7からケーブル42を介して電動車両C2へ供給されて、電動車両C2の蓄電池12が充電される。 Further, in the batch charging mode, the circuit switching unit 4 connects the AC connection port 7 to the circuit L2. Thus, the commercial power Ps is supplied from the power path L2 to the AC connection port 7 via the power path switching unit 4, and the commercial power Ps becomes the AC charging power. The AC charging power (commercial power Ps) is supplied from the AC connection port 7 to the electrically powered vehicle C2 via the cable 42, and the storage battery 12 of the electrically powered vehicle C2 is charged.
 したがって、一括充電モードでは、電動車両C1の蓄電池11、電動車両C2の蓄電池12を同時に充電できる。すなわち、複数の蓄電池11,12,...の充電に要する時間を短縮することができる。 Therefore, in the batch charging mode, the storage battery 11 of the electrically powered vehicle C1 and the storage battery 12 of the electrically powered vehicle C2 can be charged simultaneously. That is, the plurality of storage batteries 11, 12,. . . The time required to charge the battery can be shortened.
 次に、一括放電モードの動作について、図9を用いて説明する。 Next, the operation in the batch discharge mode will be described with reference to FIG.
 一括放電モードは、例えば、商用電源20の電力単価が高い昼間時間帯、商用電源20の停電時等に選択される。この一括放電モードにおいて、コントローラ5は、系統リレーB1をオフして、電路L2を商用電力系統L1から分離する。そして、電動車両C1は、直流の放電電力Pbをケーブル41を介して出力する。また、電動車両C2は、交流の放電電力Pdをケーブル42を介して出力する。電路切替部4は、交流接続口7を電力変換回路3に接続している。電力変換回路3は、交流接続口7を介して供給される交流の放電電力Pdを第3の直流電力P3に変換して電力変換回路2へ出力する。電力変換回路2は、直流接続口6を介して供給される直流の放電電力Pbと第3の直流電力P3との和を第2の直流電力P2に変換して電力変換回路1へ出力する。電力変換回路1は、第2の直流電力P2を交流電力Pcに変換して電路L2へ出力する。 The batch discharge mode is selected, for example, during daytime hours when the power unit price of the commercial power source 20 is high, when the commercial power source 20 fails, or the like. In the batch discharge mode, the controller 5 turns off the system relay B1 to separate the electric path L2 from the commercial power system L1. Then, electric powered vehicle C1 outputs DC discharge power Pb via cable 41. In addition, electric powered vehicle C 2 outputs AC discharge power Pd via cable 42. The circuit switching unit 4 connects the AC connection port 7 to the power conversion circuit 3. The power conversion circuit 3 converts the AC discharge power Pd supplied via the AC connection port 7 into a third DC power P 3 and outputs the third DC power P 3 to the power conversion circuit 2. Power conversion circuit 2 converts the sum of DC discharge power Pb supplied via DC connection port 6 and third DC power P 3 into second DC power P 2 and outputs the second DC power P 2 to power conversion circuit 1. The power conversion circuit 1 converts the second DC power P2 into AC power Pc and outputs the AC power Pc to the power path L2.
 一括放電モードにおいて、電力変換回路1は、直流の放電電力Pbと交流の放電電力Pdとの両方を交流電力Pcに変換して電路L2へ供給する。したがって、負荷30は、電動車両C1の蓄電池11の放電電力および電動車両C2の蓄電池12の放電電力の両方によって動作可能になる。すなわち、複数の蓄電池11,12,...を負荷30の駆動電力に用いることができるので、商用電源20の停電時に使用可能な電源容量が増大する。 In the batch discharge mode, the power conversion circuit 1 converts both DC discharge power Pb and AC discharge power Pd into AC power Pc, and supplies the AC power Pc to the electric path L2. Therefore, load 30 is operable by both the discharge power of storage battery 11 of electrically powered vehicle C1 and the discharge power of storage battery 12 of electrically powered vehicle C2. That is, the plurality of storage batteries 11, 12,. . . Can be used for driving power of the load 30, so that the usable power supply capacity increases at the time of the power failure of the commercial power supply 20.
 次に、第1の車両間充電モードの動作について、図10を用いて説明する。 Next, the operation of the first inter-vehicle charge mode will be described with reference to FIG.
 第1の車両間充電モードは、例えば、商用電源20の電力単価が低い深夜時間帯等に選択されることが望ましい。 The first inter-vehicle charge mode is preferably selected, for example, in a late-night time zone or the like where the unit price of the commercial power source 20 is low.
 第1の車両間充電モードにおいて、系統リレーB1はオンして、商用電力Psが電路L2に供給される。電力変換回路1は、系統リレーB1を介して電路L2に供給される商用電力Psを第1の直流電力P1に変換して電力変換回路2へ出力する。 In the first inter-vehicle charge mode, the system relay B1 is turned on, and the commercial power Ps is supplied to the electric path L2. The power conversion circuit 1 converts the commercial power Ps supplied to the electric path L2 via the system relay B1 into a first DC power P1 and outputs the first DC power P1 to the power conversion circuit 2.
 また、電動車両C2は、交流の放電電力Pdをケーブル42を介して出力する。電路切替部4は、交流接続口7を電力変換回路3に接続している。電力変換回路3は、交流接続口7を介して供給される交流の放電電力Pdを第3の直流電力P3に変換して電力変換回路2へ出力する。 In addition, electric powered vehicle C 2 outputs AC discharge power Pd via cable 42. The circuit switching unit 4 connects the AC connection port 7 to the power conversion circuit 3. The power conversion circuit 3 converts the AC discharge power Pd supplied via the AC connection port 7 into a third DC power P 3 and outputs the third DC power P 3 to the power conversion circuit 2.
 そして、電力変換回路2は、第1の直流電力P1と第3の直流電力P3との和を直流の充電電力Paに変換して直流接続口6へ出力する。直流の充電電力Paは、直流接続口6からケーブル41を介して電動車両C1へ供給されて、電動車両C1の蓄電池11が充電される。 Then, the power conversion circuit 2 converts the sum of the first DC power P1 and the third DC power P3 into DC charging power Pa and outputs the charging power Pa to the DC connection port 6. The DC charging power Pa is supplied from the DC connection port 6 to the electrically powered vehicle C1 via the cable 41, and the storage battery 11 of the electrically powered vehicle C1 is charged.
 すなわち、第1の車両間充電モードでは、蓄電池12から蓄電池11への電力の融通が可能になる。したがって、第1の車両間充電モードでは、商用電源20と蓄電池12とを用いて、蓄電池11を充電できるので、商用電源20の電源容量より大きい充電容量で蓄電池11を充電できる。 That is, in the first inter-vehicle charge mode, it is possible to adapt the power from the storage battery 12 to the storage battery 11. Therefore, in the first inter-vehicle charge mode, since storage battery 11 can be charged using commercial power supply 20 and storage battery 12, storage battery 11 can be charged with a charging capacity larger than the power supply capacity of commercial power supply 20.
 次に、第2の車両間充電モードの動作について、図11を用いて説明する。 Next, the operation of the second inter-vehicle charge mode will be described with reference to FIG.
 第2の車両間充電モードは、例えば、商用電源20の電力単価が低い深夜時間帯等に選択されることが望ましい。 It is desirable that the second inter-vehicle charging mode be selected, for example, in a late-night time zone or the like where the unit price of the commercial power source 20 is low.
 第2の車両間充電モードにおいて、系統リレーB1はオンして、商用電力Psが電路L2に供給される。 In the second inter-vehicle charging mode, the system relay B1 is turned on, and the commercial power Ps is supplied to the electric path L2.
 また、電動車両C1は、直流の放電電力Pbをケーブル41を介して出力する。電力変換回路2は、直流接続口6を介して供給される直流の放電電力Pbを第2の直流電力P2に変換して電力変換回路1へ出力する。電力変換回路1は、第2の直流電力P2を交流電力Pcに変換して電路L2へ出力する。なお、電力変換回路1は、交流電力Pcを商用電力Psに協調させる系統連系運転機能を有している。 In addition, electrically powered vehicle C 1 outputs DC discharge power Pb via cable 41. The power conversion circuit 2 converts the DC discharge power Pb supplied via the DC connection port 6 into a second DC power P 2 and outputs the second DC power P 2 to the power conversion circuit 1. The power conversion circuit 1 converts the second DC power P2 into AC power Pc and outputs the AC power Pc to the power path L2. The power conversion circuit 1 has a grid-connected operation function of coordinating the AC power Pc with the commercial power Ps.
 そして、電路切替部4は、交流接続口7を電路L2に接続している。而して、商用電力Psと交流電力Pcとの和(Ps+Pc)は、電路L2から電路切替部4を介して交流接続口7に供給され、この商用電力Psと交流電力Pcとの和が交流の充電電力となる。交流の充電電力(商用電力Ps+交流電力Pc)は、交流接続口7からケーブル42を介して電動車両C2へ供給されて、電動車両C2の蓄電池12が充電される。 Then, the circuit switching unit 4 connects the AC connection port 7 to the circuit L2. Thus, the sum (Ps + Pc) of the commercial power Ps and the AC power Pc is supplied from the power path L2 to the AC connection port 7 via the power path switching unit 4, and the sum of the commercial power Ps and the AC power Pc is AC power Charging power. The AC charging power (commercial power Ps + AC power Pc) is supplied from the AC connection port 7 to the electrically powered vehicle C2 via the cable 42, and the storage battery 12 of the electrically powered vehicle C2 is charged.
 すなわち、第2の車両間充電モードでは、蓄電池11から蓄電池12への電力の融通が可能になる。したがって、第2の車両間充電モードでは、商用電源20と蓄電池11とを用いて、蓄電池12を充電できるので、商用電源20の電源容量より大きい充電容量で蓄電池12を充電できる。 That is, in the second inter-vehicle charge mode, it is possible to adapt the power from the storage battery 11 to the storage battery 12. Therefore, since the storage battery 12 can be charged using the commercial power supply 20 and the storage battery 11 in the second inter-vehicle charging mode, the storage battery 12 can be charged with a charging capacity larger than the power supply capacity of the commercial power supply 20.
 次に、図12に示すように、直流接続口6に電動車両C1が接続し、交流接続口7に電動車両C2が接続している。そして、コントローラ5は、ケーブル41,42に設けた図示しない通信線を用いて電動車両C1,C2との間で通信を行い、蓄電池11,12の残容量データを取得することができる。 Next, as shown in FIG. 12, the electric vehicle C <b> 1 is connected to the DC connection port 6, and the electric vehicle C <b> 2 is connected to the AC connection port 7. Then, controller 5 can communicate with electric powered vehicles C1 and C2 using communication lines (not shown) provided on cables 41 and 42, and can acquire remaining capacity data of storage batteries 11 and 12.
 まず、コントローラ5は、電力供給システムを直流放電モード(図4または図5参照)で動作させて、電動車両C1の蓄電池11を負荷30の駆動電力に用いている。そして、蓄電池11の残容量が予め決められた閾値以下に低減した場合、電力供給システムを交流放電モード(図6または図7参照)で動作させて、電動車両C2の蓄電池12を負荷30の駆動電力に用いる。そして、蓄電池12を負荷30の駆動電力に用いている間、直流接続口6に接続する電動車両を電動車両C1から電動車両C3に交換する。そして、蓄電池12の残容量が予め決められた閾値以下に低減した場合、電力供給システムを直流放電モードで再び動作させて、電動車両C3の蓄電池13を負荷30の駆動電力に用いる。以降、この動作を繰り返す。このように、電力供給システムが直流放電モードと交流放電モードとのいずれか一方の動作モードで動作しているときに、放電中の蓄電池の残容量が閾値以下になった場合、他方の動作モードに切り替えて動作することが好ましい。 First, the controller 5 operates the power supply system in the DC discharge mode (see FIG. 4 or FIG. 5) and uses the storage battery 11 of the electrically powered vehicle C1 for driving power of the load 30. Then, when the remaining capacity of storage battery 11 is reduced to a predetermined threshold value or less, the power supply system is operated in the AC discharge mode (see FIG. 6 or FIG. 7) to drive storage battery 12 of electrically powered vehicle C2 to load 30. Used for power. Then, while the storage battery 12 is used for driving power of the load 30, the electric vehicle connected to the DC connection port 6 is replaced with the electric vehicle C1 from the electric vehicle C3. Then, when the remaining capacity of storage battery 12 is reduced to a predetermined threshold value or less, the power supply system is operated again in the direct current discharge mode, and storage battery 13 of electrically powered vehicle C3 is used for driving power of load 30. Thereafter, this operation is repeated. Thus, when the remaining capacity of the storage battery being discharged falls below the threshold while the power supply system is operating in one of the DC discharge mode and the AC discharge mode, the other operation mode It is preferable to switch to and operate.
 したがって、商用電源20の停電時に、負荷30への電力供給を維持しながら、非常用電源となる蓄電池11,12,...を搭載した電動車両C1,C2,...の交換が可能になる。すなわち、商用電源20の停電時に商用電力系統L1を切り離して、負荷30へ電力を供給する場合、負荷30への電力供給が途切れることなく、停電時に用いる非常用電源の容量を増やすことができる。 Therefore, at the time of the power failure of the commercial power supply 20, while maintaining the power supply to the load 30, the storage batteries 11, 12,. . . , Electrically powered vehicles C1, C2,. . . Exchange of That is, when the commercial power system L1 is disconnected at the time of the power failure of the commercial power supply 20 and power is supplied to the load 30, the capacity of the emergency power supply used at the time of the power failure can be increased without interruption of the power supply to the load 30.
 上述のように、本実施形態の電力供給システムは、蓄電池を搭載した複数台の電動車両C1,C2,...を接続して、複数台の電動車両C1,C2,...を個別に充放電することができる。したがって、システム全体での蓄電池容量の拡大が可能で、蓄電池を利用したエネルギーマネージメントの運用性が向上する。例えば、蓄電池の出力容量、商用電源20の系統出力容量を有効に活用することができる。 As described above, in the power supply system of the present embodiment, the plurality of electric powered vehicles C1, C2,. . . To connect a plurality of electric vehicles C1, C2,. . . Can be charged and discharged individually. Therefore, the storage battery capacity in the entire system can be expanded, and the operability of energy management using the storage battery is improved. For example, the output capacity of the storage battery and the system output capacity of the commercial power source 20 can be effectively used.
 また、直流充放電を行う電動車両C1、交流充放電を行う電動車両C2のいずれも接続できるので、汎用性が高いシステムとなる。一般に、直流充放電を行う電動車両C1は、交流充放電を行う電動車両C2に比べて蓄電池容量が大きいので、電動車両C2を電動車両C1の補助的な役割で用いることも可能である。 Further, since any of the electric vehicle C1 that performs DC charge and discharge and the electric vehicle C2 that performs AC charge and discharge can be connected, the system has high versatility. Generally, since electric powered vehicle C1 that performs DC charge and discharge has a larger storage battery capacity than electric powered vehicle C2 that performs AC charge and discharge, electric powered vehicle C2 can also be used as an auxiliary role of electric powered vehicle C1.
 なお、本実施形態の電力供給システムは、直流接続口6および交流接続口7をそれぞれ複数設けて、3台以上の電動車両を対象として上記同様のエネルギーマネージメントを行うことができる。 In the power supply system of the present embodiment, a plurality of direct current connection ports 6 and a plurality of alternating current connection ports 7 can be provided, and the same energy management can be performed on three or more electric vehicles.
  (まとめ)
 以上説明したように、本実施形態の電力供給システムは、複数の接続口と、負荷が接続した電路L2と、系統リレーB1(開閉器)と、電力変換部A1とを備えることを特徴とする。複数の接続口は、蓄電池11,12を搭載した電動車両C1,C2との間で蓄電池11,12の充電電力および放電電力を授受する。系統リレーB1は、商用電源20から電路L2に供給される商用電力Psを導通・遮断する。電力変換部A1は、少なくとも電路L2に供給された商用電力Psを用いて、複数の接続口のそれぞれについて、電動車両C1,C2のうち当該接続口と接続された電動車両に当該接続口を介して充電電力を供給する。電力変換部A1は、複数の接続口のそれぞれについて、電動車両C1,C2のうち当該接続口と接続された電動車両から当該接続口を介して供給された放電電力を用いて、電路L2に交流電力を供給する。
(Summary)
As described above, the power supply system according to the present embodiment is characterized by including a plurality of connection ports, an electric path L2 to which a load is connected, a system relay B1 (switch), and a power conversion unit A1. . The plurality of connection ports exchange charged power and discharged power of the storage batteries 11 and 12 with the electric vehicles C1 and C2 on which the storage batteries 11 and 12 are mounted. The grid relay B1 conducts / cuts off the commercial power Ps supplied from the commercial power supply 20 to the electric path L2. The electric power conversion unit A1 uses the commercial power Ps supplied to the electric path L2 at least for each of the plurality of connection ports to the electric vehicle connected to the connection port of the electric vehicles C1 and C2 via the connection port. Supply charging power. The power conversion unit A1 uses the discharge power supplied from the electrically powered vehicle of the electrically powered vehicles C1 and C2 connected to the connection port via the connection port for each of the plurality of connection ports, and generates an alternating current in the electric path L2. Supply power.
 ここで、複数の前記接続口は、直流の前記充電電力および前記放電電力を授受する直流接続口と、交流の前記充電電力および前記放電電力を授受する交流接続口とから構成されることが好ましい。 Here, it is preferable that the plurality of connection ports be constituted by a DC connection port for exchanging the charging power of direct current and the discharging power, and an AC connection port for exchanging the charging power of alternating current and the discharge power. .
 ここで、電力変換部A1は、電力変換回路1(第1の電力変換回路)と電力変換回路2(第2の電力変換回路)との直列回路と、電路切替部4と電力変換回路3(第3の電力変換回路)との直列回路とで構成される。電力変換回路1と電力変換回路2とは、電路L2と直流接続口6との間に電気的に接続している。電路切替部4と電力変換回路3とは、交流接続口7と電力変換回路2との間に電気的に接続している。電路切替部4は、交流接続口7を電力変換回路3または電路L2に切替可能に電気的に接続している。電力供給システムは、直流充電モードと、交流充電モードと、直流放電モードと、交流放電モードとを動作モードとして有することが好ましい。直流充電モードでは、電力変換回路1が、系統リレーB1を介して電路L2に供給される商用電力Psを第1の直流電圧に制御された第1の直流電力P1に変換して電力変換回路2へ出力する。直流充電モードでは、電力変換回路2が、第1の直流電力P1を直流の充電電力Paに変換して直流接続口6へ出力する。交流充電モードでは、電路切替部4が、交流接続口7を電路L2に電気的に接続して、系統リレーB1を介して電路L2に供給される商用電力Psを交流接続口7へ出力する。直流放電モードでは、電力変換回路2が、直流接続口6を介して供給される直流の放電電力Pbを第2の直流電圧に制御された第2の直流電力P2に変換して電力変換回路1へ出力する。直流放電モードでは、電力変換回路1が、第2の直流電力P2を交流電力Pcに変換して電路L2へ出力する。交流放電モードでは、電路切替部4が、交流接続口7を電力変換回路3に電気的に接続する。交流放電モードでは、電力変換回路3が、交流接続口7を介して供給される交流の放電電力Pdを第3の直流電圧に制御された第3の直流電力P3に変換して電力変換回路2へ出力する。交流放電モードでは、電力変換回路2が、第3の直流電力P3を第2の直流電力P2に変換して電力変換回路1へ出力し、電力変換回路1が、第2の直流電力P2を交流電力Pcに変換して電路L2へ出力する。 Here, power conversion unit A1 is a series circuit of power conversion circuit 1 (first power conversion circuit) and power conversion circuit 2 (second power conversion circuit), electric path switching unit 4 and power conversion circuit 3 ( And a series circuit with the third power conversion circuit). The power conversion circuit 1 and the power conversion circuit 2 are electrically connected between the electric path L 2 and the DC connection port 6. The circuit switching unit 4 and the power conversion circuit 3 are electrically connected between the AC connection port 7 and the power conversion circuit 2. The electrical path switching unit 4 electrically connects the AC connection port 7 to the power conversion circuit 3 or the electrical path L2 in a switchable manner. The power supply system preferably has a DC charging mode, an AC charging mode, a DC discharging mode, and an AC discharging mode as operation modes. In the DC charging mode, power conversion circuit 1 converts commercial power Ps supplied to electric path L2 via grid relay B1 into first DC power P1 controlled to the first DC voltage, and converts power conversion circuit 2 Output to In the DC charging mode, power conversion circuit 2 converts first DC power P1 into DC charging power Pa and outputs it to DC connection port 6. In the AC charging mode, the electric path switching unit 4 electrically connects the AC connection port 7 to the electric path L2, and outputs commercial power Ps supplied to the electric path L2 to the AC connection port 7 via the system relay B1. In the DC discharge mode, the power conversion circuit 2 converts the DC discharge power Pb supplied via the DC connection port 6 into the second DC power P2 controlled to the second DC voltage to convert the power conversion circuit 1 Output to In the DC discharge mode, the power conversion circuit 1 converts the second DC power P2 into AC power Pc and outputs the AC power Pc to the power path L2. In the AC discharge mode, the circuit switching unit 4 electrically connects the AC connection port 7 to the power conversion circuit 3. In the AC discharge mode, the power conversion circuit 3 converts the AC discharge power Pd supplied via the AC connection port 7 into the third DC power P3 controlled to the third DC voltage to convert the power conversion circuit 2 Output to In the AC discharge mode, power conversion circuit 2 converts third DC power P3 into second DC power P2 and outputs it to power conversion circuit 1, and power conversion circuit 1 AC converts second DC power P2 It converts into electric power Pc and outputs it to the electric circuit L2.
 ここで、本実施形態の電力供給システムは、一括充電モードと、一括放電モードとを動作モードとして有することが好ましい。一括充電モードでは、電力変換回路1が、系統リレーB1を介して電路L2に供給される商用電力Psを第1の直流電力P1に変換して電力変換回路2へ出力する。一括充電モードでは、電力変換回路2が、第1の直流電力P1を直流の充電電力Paに変換して直流接続口6へ出力する。一括充電モードでは、電路切替部4が、交流接続口7を電路L2に電気的に接続して、系統リレーB1を介して電路L2に供給される商用電力Psを交流接続口7へ出力する。一括放電モードでは、電路切替部4が、交流接続口7を電力変換回路3に電気的に接続し、電力変換回路3が、交流接続口7を介して供給される交流の放電電力Pdを第3の直流電力P3に変換して電力変換回路2へ出力する。一括放電モードでは、電力変換回路2が、直流接続口6を介して供給される直流の放電電力Pbと第3の直流電力P3との和を第2の直流電力P2に変換して電力変換回路1へ出力する。一括放電モードでは、電力変換回路1が、第2の直流電力P2を交流電力Pcに変換して電路L2へ出力する。 Here, it is preferable that the power supply system of the present embodiment has a batch charge mode and a batch discharge mode as operation modes. In the batch charging mode, the power conversion circuit 1 converts the commercial power Ps supplied to the electric path L2 via the system relay B1 into the first DC power P1 and outputs it to the power conversion circuit 2. In the batch charging mode, the power conversion circuit 2 converts the first DC power P1 into DC charging power Pa and outputs it to the DC connection port 6. In the batch charging mode, the electric path switching unit 4 electrically connects the AC connection port 7 to the electric path L2, and outputs commercial power Ps supplied to the electric path L2 to the AC connection port 7 via the system relay B1. In the batch discharge mode, the circuit switching unit 4 electrically connects the AC connection port 7 to the power conversion circuit 3, and the power conversion circuit 3 generates the AC discharge power Pd supplied via the AC connection port 7. It converts into 3 DC power P 3 and outputs it to the power conversion circuit 2. In the batch discharge mode, the power conversion circuit 2 converts the sum of the DC discharge power Pb supplied via the DC connection port 6 and the third DC power P3 into the second DC power P2 to convert the power conversion circuit. Output to 1. In the batch discharge mode, the power conversion circuit 1 converts the second DC power P2 into AC power Pc and outputs it to the electric circuit L2.
 ここで、本実施形態の電力供給システムは、第1の車両間充電モードと、第2の車両間充電モードとを動作モードとして有することが好ましい。第1の車両間充電モードでは、電力変換回路1が、系統リレーB1を介して電路L2に供給される商用電力Psを第1の直流電力P1に変換して電力変換回路2へ供給する。第1の車両間充電モードでは、電路切替部4が、交流接続口7を電力変換回路3に電気的に接続している。第1の車両間充電モードでは、電力変換回路3が、交流接続口7を介して供給される交流の放電電力Pdを第3の直流電力P3に変換して電力変換回路2へ出力する。第1の車両間充電モードでは、電力変換回路2が、第1の直流電力P1と第3の直流電力P3との和を直流の充電電力Paに変換して直流接続口6へ出力する。第2の車両間充電モードでは、系統リレーB1を介して電路L2に商用電力Psが商用電源20から出力され、電路切替部4が、交流接続口7を電路L2に電気的に接続する。第2の車両間充電モードでは、電力変換回路2が、直流接続口6を介して供給される直流の放電電力Pbを第2の直流電力P2に変換して電力変換回路1へ出力する。第2の車両間充電モードでは、電力変換回路1が、第2の直流電力P2を交流電力Pcに変換して電路L2へ出力する。 Here, it is preferable that the power supply system of the present embodiment has a first inter-vehicle charge mode and a second inter-vehicle charge mode as operation modes. In the first inter-vehicle charging mode, the power conversion circuit 1 converts the commercial power Ps supplied to the electric path L2 via the system relay B1 into the first direct current power P1 and supplies it to the power conversion circuit 2. In the first inter-vehicle charging mode, the electric path switching unit 4 electrically connects the AC connection port 7 to the power conversion circuit 3. In the first inter-vehicle charge mode, power conversion circuit 3 converts AC discharge power Pd supplied via AC connection port 7 into third DC power P 3 and outputs the third DC power P 3 to power conversion circuit 2. In the first inter-vehicle charging mode, power conversion circuit 2 converts the sum of first DC power P1 and third DC power P3 into DC charging power Pa, and outputs it to DC connection port 6. In the second inter-vehicle charging mode, the commercial power Ps is output from the commercial power supply 20 to the electric path L2 via the system relay B1, and the electric path switching unit 4 electrically connects the AC connection port 7 to the electric path L2. In the second inter-vehicle charge mode, power conversion circuit 2 converts DC discharge power Pb supplied via DC connection port 6 into second DC power P 2 and outputs it to power conversion circuit 1. In the second inter-vehicle charge mode, the power conversion circuit 1 converts the second DC power P2 into AC power Pc and outputs the AC power Pc to the electric circuit L2.
 ここで、本実施形態の電力供給システムは、直流放電モードと交流放電モードとのいずれか一方の動作モードで動作している。このとき、本実施形態の電力供給システムは、放電中の蓄電池(蓄電池11または蓄電池12)の残容量が閾値以下になった場合、他方の動作モードに切り替えて動作することが好ましい。 Here, the power supply system of the present embodiment operates in one of the DC discharge mode and the AC discharge mode. At this time, when the remaining capacity of the storage battery (storage battery 11 or storage battery 12) being discharged becomes equal to or less than the threshold, the power supply system of the present embodiment preferably switches to the other operation mode and operates.

Claims (6)

  1.  蓄電池を搭載した複数の電動車両のそれぞれとの間で前記蓄電池の充電電力および放電電力を授受する複数の接続口と、
     負荷が接続した電路と、
     商用電源から前記電路に供給される商用電力を導通・遮断する開閉器と、
     少なくとも前記電路に供給された前記商用電力を用いて、前記複数の接続口のそれぞれについて、前記複数の電動車両のうち当該接続口と接続された電動車両に当該接続口を介して前記充電電力を供給し、前記複数の接続口のそれぞれについて、前記複数の電動車両のうち当該接続口と接続された電動車両から当該接続口を介して供給された前記放電電力を用いて、前記電路に交流電力を供給する電力変換部と
     を備えることを特徴とする電力供給システム。
    A plurality of connection ports for exchanging charging power and discharging power of the storage battery with each of a plurality of electric vehicles mounted with the storage battery;
    A load path connected to the
    A switch for conducting and interrupting commercial power supplied from the commercial power source to the electric path;
    At least using the commercial power supplied to the electric path, for each of the plurality of connection ports, the charging power is supplied to the electric vehicle connected to the connection port among the plurality of electric vehicles via the connection port. For each of the plurality of connection ports, AC power is supplied to the electric path using the discharge power supplied from the electric vehicle connected to the connection port of the plurality of connection ports through the connection port. And a power conversion unit for supplying the power supply system.
  2.  複数の前記接続口は、直流の前記充電電力および前記放電電力を授受する直流接続口と、交流の前記充電電力および前記放電電力を授受する交流接続口とから構成されることを特徴とする請求項1記載の電力供給システム。 The plurality of connection ports are constituted by a DC connection port for transferring the charging power and the discharging power of direct current, and an AC connection port for transferring the charging power of alternating current and the discharge power. The power supply system according to Item 1.
  3.  前記電力変換部は、前記電路と前記直流接続口との間に電気的に接続した第1の電力変換回路と第2の電力変換回路との直列回路と、前記交流接続口と前記第2の電力変換回路との間に電気的に接続した電路切替部と第3の電力変換回路との直列回路とで構成され、前記電路切替部は、前記交流接続口を前記第3の電力変換回路または前記電路に切替可能に電気的に接続しており、
     前記第1の電力変換回路が、前記開閉器を介して前記電路に供給される前記商用電力を第1の直流電圧に制御された第1の直流電力に変換して前記第2の電力変換回路へ出力し、前記第2の電力変換回路が、前記第1の直流電力を直流の充電電力に変換して前記直流接続口へ出力する直流充電モードと、
     前記電路切替部が、前記交流接続口を前記電路に電気的に接続して、前記開閉器を介して前記電路に供給される前記商用電力を前記交流接続口へ出力する交流充電モードと、
     前記第2の電力変換回路が、前記直流接続口を介して供給される直流の前記放電電力を第2の直流電圧に制御された第2の直流電力に変換して前記第1の電力変換回路へ出力し、前記第1の電力変換回路が、前記第2の直流電力を前記交流電力に変換して前記電路へ出力する直流放電モードと、
     前記電路切替部が、前記交流接続口を前記第3の電力変換回路に電気的に接続し、前記第3の電力変換回路が、前記交流接続口を介して供給される交流の前記放電電力を第3の直流電圧に制御された第3の直流電力に変換して前記第2の電力変換回路へ出力し、前記第2の電力変換回路が、前記第3の直流電力を前記第2の直流電力に変換して前記第1の電力変換回路へ出力し、前記第1の電力変換回路が、前記第2の直流電力を前記交流電力に変換して前記電路へ出力する交流放電モードと
     を動作モードとして有する
     ことを特徴とする請求項2記載の電力供給システム。
    The power conversion unit includes a series circuit of a first power conversion circuit and a second power conversion circuit electrically connected between the electric path and the DC connection port, the AC connection port, and the second power conversion circuit. It is comprised by the series circuit of the electric path switching part electrically connected between power conversion circuits, and the 3rd power conversion circuit, and the said electric path switching part is the said 3rd power conversion circuit or said AC connection port. The switch is electrically connected switchably,
    The first power conversion circuit converts the commercial power supplied to the electric path through the switch into a first direct current power controlled to a first direct current voltage, and the second power conversion circuit DC charging mode in which the second power conversion circuit converts the first DC power into DC charging power and outputs the DC power to the DC connection port;
    An AC charging mode in which the circuit switching unit electrically connects the AC connection port to the circuit and outputs the commercial power supplied to the circuit via the switch to the AC connection port;
    The second power conversion circuit converts the discharge power of direct current supplied via the direct current connection port into second direct current power controlled to a second direct current voltage, and the first power conversion circuit A DC discharge mode in which the first power conversion circuit converts the second DC power into the AC power and outputs the AC power to the electric path;
    The circuit switching unit electrically connects the AC connection port to the third power conversion circuit, and the third power conversion circuit converts the discharge power of AC supplied via the AC connection port. A third DC power controlled to a third DC voltage is converted and output to the second power conversion circuit, and the second power conversion circuit converts the third DC power to the second DC power. Operating in an alternating current discharge mode in which the electric power is converted and output to the first power conversion circuit, and the first power conversion circuit converts the second DC power to the AC power and outputs the electric power to the electric path The power supply system according to claim 2, characterized in that it has a mode.
  4.  前記第1の電力変換回路が、前記開閉器を介して前記電路に供給される前記商用電力を前記第1の直流電力に変換して前記第2の電力変換回路へ出力し、前記第2の電力変換回路が、前記第1の直流電力を直流の前記充電電力に変換して前記直流接続口へ出力し、且つ前記電路切替部が、前記交流接続口を前記電路に電気的に接続して、前記開閉器を介して前記電路に供給される前記商用電力を前記交流接続口へ出力する一括充電モードと、
     前記電路切替部が、前記交流接続口を前記第3の電力変換回路に電気的に接続し、前記第3の電力変換回路が、前記交流接続口を介して供給される交流の前記放電電力を前記第3の直流電力に変換して前記第2の電力変換回路へ出力し、前記第2の電力変換回路が、前記直流接続口を介して供給される直流の前記放電電力と前記第3の直流電力との和を前記第2の直流電力に変換して前記第1の電力変換回路へ出力し、前記第1の電力変換回路が、前記第2の直流電力を前記交流電力に変換して前記電路へ出力する一括放電モードと
     を動作モードとして有する
     ことを特徴とする請求項3記載の電力供給システム。
    The first power conversion circuit converts the commercial power supplied to the electric path through the switch into the first direct current power and outputs the DC power to the second power conversion circuit. The power conversion circuit converts the first DC power into the DC charging power and outputs the charging power to the DC connection port, and the circuit switching unit electrically connects the AC connection port to the circuit. A batch charging mode for outputting the commercial power supplied to the electric path through the switch to the AC connection port;
    The circuit switching unit electrically connects the AC connection port to the third power conversion circuit, and the third power conversion circuit converts the discharge power of AC supplied via the AC connection port. The third DC power is converted to the third DC power and output to the second power converter circuit, and the second power converter circuit is configured to output the third DC power and the third DC power supplied via the DC connection port. The sum with DC power is converted to the second DC power and output to the first power conversion circuit, and the first power conversion circuit converts the second DC power to the AC power The electric power supply system according to claim 3, further comprising: a batch discharge mode for outputting to the electric path as an operation mode.
  5.  前記第1の電力変換回路が、前記開閉器を介して前記電路に供給される前記商用電力を前記第1の直流電力に変換して前記第2の電力変換回路へ供給し、且つ前記電路切替部が、前記交流接続口を前記第3の電力変換回路に電気的に接続し、前記第3の電力変換回路が、前記交流接続口を介して供給される交流の前記放電電力を前記第3の直流電力に変換して前記第2の電力変換回路へ出力し、前記第2の電力変換回路が、前記第1の直流電力と前記第3の直流電力との和を直流の前記充電電力に変換して前記直流接続口へ出力する第1の車両間充電モードと、
     前記開閉器を介して前記電路に前記商用電力が前記商用電源から出力され、前記電路切替部が、前記交流接続口を前記電路に電気的に接続し、且つ前記第2の電力変換回路が、前記直流接続口を介して供給される直流の前記放電電力を前記第2の直流電力に変換して前記第1の電力変換回路へ出力し、前記第1の電力変換回路が、前記第2の直流電力を前記交流電力に変換して前記電路へ出力する第2の車両間充電モードと
     を動作モードとして有する
     ことを特徴とする請求項3または4記載の電力供給システム。
    The first power conversion circuit converts the commercial power supplied to the electric path through the switch into the first DC power and supplies the first power to the second power conversion circuit, and the electric path switching The unit electrically connects the AC connection port to the third power conversion circuit, and the third power conversion circuit converts the discharge power of alternating current supplied via the AC connection port to the third power conversion circuit. Converted to DC power and output to the second power conversion circuit, the second power conversion circuit converting the sum of the first DC power and the third DC power into the DC charging power A first inter-vehicle charge mode for converting and outputting to the DC connection port;
    The commercial power is output from the commercial power source to the circuit via the switch, the circuit switching unit electrically connects the AC connection port to the circuit, and the second power conversion circuit includes: The discharge power of direct current supplied via the direct current connection port is converted into the second direct current power and is output to the first power conversion circuit, and the first power conversion circuit is configured to output the second power conversion circuit. The power supply system according to claim 3 or 4, further comprising: a second inter-vehicle charging mode that converts DC power to the AC power and outputs the DC power to the electric path as an operation mode.
  6.  前記直流放電モードと前記交流放電モードとのいずれか一方の動作モードで動作しているときに、放電中の前記蓄電池の残容量が閾値以下になった場合、他方の動作モードに切り替えて動作することを特徴とする請求項3乃至5の何れか一項に記載の電力供給システム。
     
     
     
    When operating in one of the DC discharge mode and the AC discharge mode and the remaining capacity of the storage battery being discharged falls below a threshold, switching to the other operation mode is performed. The power supply system according to any one of claims 3 to 5, characterized in that.


PCT/JP2014/002177 2013-04-26 2014-04-17 Power supply system WO2014174808A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013093990A JP6198109B2 (en) 2013-04-26 2013-04-26 Power supply system
JP2013-093990 2013-04-26

Publications (1)

Publication Number Publication Date
WO2014174808A1 true WO2014174808A1 (en) 2014-10-30

Family

ID=51791397

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/002177 WO2014174808A1 (en) 2013-04-26 2014-04-17 Power supply system

Country Status (2)

Country Link
JP (1) JP6198109B2 (en)
WO (1) WO2014174808A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107867186A (en) * 2016-09-27 2018-04-03 华为技术有限公司 The method to be charged between electric automobile and electric automobile
CN110217131A (en) * 2019-06-26 2019-09-10 广州小鹏汽车科技有限公司 A kind of charging pile distribution method, system, control centre and storage medium
WO2021251024A1 (en) * 2020-06-10 2021-12-16 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ Management method and management device for shared electric vehicle, and program
WO2023077080A1 (en) * 2021-10-28 2023-05-04 Atieva, Inc. Cord set for v2v, v2l, or g2v charging or power supply
US11820243B2 (en) 2020-09-18 2023-11-21 Toyota Jidosha Kabushiki Kaisha Charger and vehicle

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6045450B2 (en) * 2013-07-02 2016-12-14 株式会社椿本チエイン Power control device
JP6473040B2 (en) * 2015-04-28 2019-02-20 トヨタホーム株式会社 Power supply control system
JP6570063B2 (en) * 2015-09-04 2019-09-04 ニチコン株式会社 Power supply device
KR102039703B1 (en) * 2017-12-26 2019-11-01 김성두 Charging apparatus for vehicles
JP2020162252A (en) * 2019-03-26 2020-10-01 トヨタ自動車株式会社 Charge/discharge management system
JP2021170860A (en) * 2020-04-14 2021-10-28 株式会社豊田自動織機 Power system and power supply device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008236902A (en) * 2007-03-20 2008-10-02 Toyota Motor Corp Power system, electric vehicle, and power supply method
WO2011108925A2 (en) * 2010-03-05 2011-09-09 Epyon B.V. System, devices and method for charging a battery of an electric vehicle
JP2012170259A (en) * 2011-02-15 2012-09-06 Denso Corp Power supply system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008236902A (en) * 2007-03-20 2008-10-02 Toyota Motor Corp Power system, electric vehicle, and power supply method
WO2011108925A2 (en) * 2010-03-05 2011-09-09 Epyon B.V. System, devices and method for charging a battery of an electric vehicle
JP2012170259A (en) * 2011-02-15 2012-09-06 Denso Corp Power supply system

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107867186A (en) * 2016-09-27 2018-04-03 华为技术有限公司 The method to be charged between electric automobile and electric automobile
EP3511193A4 (en) * 2016-09-27 2020-01-08 Huawei Technologies Co., Ltd. Electric car, and method of providing power charging between electric cars
CN107867186B (en) * 2016-09-27 2021-02-23 华为技术有限公司 Electric automobile and method for charging among electric automobiles
US11260759B2 (en) 2016-09-27 2022-03-01 Huawei Technologies Co., Ltd. Electric vehicle and method for charging between electric vehicles
CN110217131A (en) * 2019-06-26 2019-09-10 广州小鹏汽车科技有限公司 A kind of charging pile distribution method, system, control centre and storage medium
WO2021251024A1 (en) * 2020-06-10 2021-12-16 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ Management method and management device for shared electric vehicle, and program
US11820243B2 (en) 2020-09-18 2023-11-21 Toyota Jidosha Kabushiki Kaisha Charger and vehicle
EP3971010B1 (en) * 2020-09-18 2024-07-10 Toyota Jidosha Kabushiki Kaisha Charger and vehicle
WO2023077080A1 (en) * 2021-10-28 2023-05-04 Atieva, Inc. Cord set for v2v, v2l, or g2v charging or power supply

Also Published As

Publication number Publication date
JP2014217220A (en) 2014-11-17
JP6198109B2 (en) 2017-09-20

Similar Documents

Publication Publication Date Title
WO2014174808A1 (en) Power supply system
JP4954335B2 (en) Quick charger
US20130127418A1 (en) Electric vehicle and charging control method for battery thereof
US20140320083A1 (en) Power converter
EP2784900B1 (en) Power supply system
US9960612B2 (en) Charging and discharging system for a vehicle including a first fuse in the vehicle and a second fuse in a cable connected to the vehicle
CN108377009A (en) Power supply system
JP2010273427A (en) Power supply device for electric vehicles and battery pack
CN103795104A (en) Power storage system and power source system
CN102574470A (en) Vehicle charging system and electric vehicle equipped with same
CN103051019A (en) Battery pack series-parallel switching control system and charge and discharge control method thereof
JP2011259572A (en) Battery charger and charging system
TWM554864U (en) Modular charging car
JP2013081289A (en) Power controller
CN104025414A (en) Power storage apparatus
WO2015071712A1 (en) Charging and discharging system with connector lock
JP2015122866A (en) Charging and discharging system for electric vehicle
IT201900001099A1 (en) GROUP AND METHOD OF CHARGING AND POWER SUPPLY FOR AN ELECTRIC VEHICLE, AND ELECTRIC VEHICLE INCLUDING THE CHARGING AND POWER UNIT
KR101330349B1 (en) Apparatus and method for power conversion
JP6062162B2 (en) Charge / discharge device
WO2015071722A1 (en) Vehicle and charging and discharging system using vehicle
JP5936359B2 (en) Electric vehicle charging equipment
KR102366121B1 (en) Electric vehicle charging apparatus
CN110550137A (en) Extended range electric vehicle, power supply system and power supply charging and discharging control method
CN203607897U (en) Charging system and charging station for electric automobile

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14788104

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14788104

Country of ref document: EP

Kind code of ref document: A1