WO2014174800A1 - Acousto-optical imaging device - Google Patents

Acousto-optical imaging device Download PDF

Info

Publication number
WO2014174800A1
WO2014174800A1 PCT/JP2014/002134 JP2014002134W WO2014174800A1 WO 2014174800 A1 WO2014174800 A1 WO 2014174800A1 JP 2014002134 W JP2014002134 W JP 2014002134W WO 2014174800 A1 WO2014174800 A1 WO 2014174800A1
Authority
WO
WIPO (PCT)
Prior art keywords
acousto
light beam
wedge
ultrasonic wave
scattered
Prior art date
Application number
PCT/JP2014/002134
Other languages
French (fr)
Japanese (ja)
Inventor
卓也 岩本
橋本 雅彦
寒川 潮
金子 由利子
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2014174800A1 publication Critical patent/WO2014174800A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0093Detecting, measuring or recording by applying one single type of energy and measuring its conversion into another type of energy
    • A61B5/0097Detecting, measuring or recording by applying one single type of energy and measuring its conversion into another type of energy by applying acoustic waves and detecting light, i.e. acoustooptic measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H9/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means
    • G01H9/008Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means by using ultrasonic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/1702Systems in which incident light is modified in accordance with the properties of the material investigated with opto-acoustic detection, e.g. for gases or analysing solids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes
    • G01N29/2418Probes using optoacoustic interaction with the material, e.g. laser radiation, photoacoustics

Definitions

  • the present application relates to an acoustooptic imaging device, and more particularly to an acoustooptic imaging device that acquires an ultrasonic echo obtained from a subject as an optical image.
  • an ultrasonic diagnostic apparatus as disclosed in Patent Document 1 is known.
  • an object is transmitted and received using a plurality of ultrasonic transmitting / receiving elements, and the received signals output from each element are delayed and synthesized. Obtain an ultrasonic image.
  • Such an ultrasonic diagnostic apparatus requires multiple signal processing (delay and synthesis) in order to capture one ultrasonic image.
  • the number of necessary signal processing corresponds to at least the number of pixels of the image. Therefore, in order to photograph an object at high speed using ultrasonic waves, a signal processing circuit having a high-speed and large-scale arithmetic circuit is required. Further, in order to acquire an image with a large number of pixels and high spatial resolution, a large number of ultrasonic transducers having the same transmission / reception characteristics are required. However, it is extremely difficult to construct such a group of transducers.
  • the non-limiting exemplary acousto-optic imaging device provides an acousto-optic imaging device capable of imaging the inside of an object without using a signal processing circuit with high calculation processing capability.
  • An acoustooptic imaging device includes an ultrasonic source that outputs ultrasonic waves and an acoustic aperture, and scattered ultrasonic waves generated by scattering of the ultrasonic waves inside an object are generated from the acoustic aperture.
  • An acousto-optic medium part that enters and propagates inside, a wedge light source that emits a monochromatic wedge light beam incident on the acousto-optic medium part non-parallel to the propagation direction of the scattered ultrasonic wave, and the scattered ultrasonic wave
  • An imaging optical system in which the generated diffracted light is incident due to a change in refractive index generated in the acousto-optic medium part by propagating and an image of the diffracted light formed by the imaging optical system
  • An imaging unit that outputs a signal, and the wedge light beam is in a first cross section parallel to a propagation direction of the wedge light beam and a propagation direction of the scattered ultrasonic wave in the acoustooptic medium unit.
  • a point is formed and propagates in parallel in the second cross section perpendicular to the cross section without forming a focal point, and the focal point in the first cross section of the wedge light flux is the acoustooptic medium unit, the imaging optical system, and
  • the light intensity of the wedge luminous flux in the direction in which the scattered ultrasonic wave propagates in the acoustooptic medium portion monotonously increases according to the distance from the acoustic aperture.
  • the acoustooptic imaging device According to the acoustooptic imaging device according to one aspect of the present invention, it is possible to obtain an image with relatively small luminance unevenness even when an object is imaged using an acoustooptic medium having a large ultrasonic wave propagation attenuation. It becomes.
  • FIG. 1 is a diagram schematically illustrating a configuration of an acoustooptic imaging device according to a first embodiment.
  • (A) And (b) is xy sectional drawing and zx sectional drawing which show an example of a structure of the wedge light source of 1st Embodiment.
  • (A) And (b) is xy sectional drawing and zx sectional drawing which show an example of the other structure of the wedge light source of 1st Embodiment. It is a figure which shows a mode that a diffraction image arises by the effect
  • (A)-(d) is a figure which shows the calculation result of the diffraction image in case an acoustic attenuation exists, respectively, and incident light distribution is a 1st, 2nd, 3rd, and 2.5th order function. It is a figure which shows the calculation result of the diffraction image in case there exists acoustic attenuation
  • damping and incident light distribution is an exponential function.
  • the inventor of the present application examined a method of acquiring an image two-dimensionally or three-dimensionally, instead of obtaining an image by scanning an ultrasonic wave through a tissue inside a subject like a conventional ultrasonic diagnostic apparatus. .
  • the inventors have conceived that an image of a tissue inside a subject is acquired using an acoustooptic effect that is an interaction between ultrasonic waves and light.
  • Non-Patent Document 1 an acoustic wave is radiated on an object, and an ultrasonic wave transmitted through the object or an ultrasonic wave scattered from the object is propagated in the acoustooptic medium. If the refractive index distribution is formed in the medium and the intensity / phase distribution of transmitted or scattered ultrasonic waves is transferred to the intensity / phase distribution of monochromatic light using the Bragg diffraction generated thereby, the image inside the object is taken as an optical image. It is considered possible.
  • Non-Patent Document 1 only discloses the acoustooptic effect by Bragg diffraction, and there is no suggestion on how to realize imaging of a tissue in a living body by the acoustooptic effect.
  • Non-Patent Document 1 The inventor of the present application has examined the technology disclosed in Non-Patent Document 1 in detail, and according to the configuration disclosed in Non-Patent Document 1, the frequency of ultrasonic waves used is as high as 15 MHz or higher. This is because the acousto-optic cell is composed of an aqueous medium, and the conditions under which Bragg diffraction occurs are limited by the relationship between the acoustic velocity of water (about 1500 m / s) and the wavelength of ultrasonic waves. . In a living body, absorption attenuation increases substantially in proportion to the frequency. Therefore, it is preferable to use an ultrasonic wave having a frequency of 10 MHz or less in order to image a deep interior of a subject. Therefore, even if the configuration disclosed in Non-Patent Document 1 is used as it is, it is difficult to obtain an image of the tissue in the body of the subject.
  • the acoustooptic cell is composed of an acoustooptic medium having a low sound velocity.
  • the attenuation of the ultrasonic wave propagating through the acousto-optic cell increases, and the luminance unevenness in the image inside the obtained object increases.
  • the inventor of the present application has studied such a problem in detail and has come up with a novel acousto-optic imaging device.
  • the outline of one aspect of the acousto-optic imaging device of the present invention is as follows.
  • An acoustooptic imaging device includes an ultrasonic source that outputs ultrasonic waves and an acoustic aperture, and scattered ultrasonic waves generated by scattering of the ultrasonic waves inside an object are generated from the acoustic aperture.
  • An acousto-optic medium part that enters and propagates inside, a wedge light source that emits a monochromatic wedge light beam incident on the acousto-optic medium part non-parallel to the propagation direction of the scattered ultrasonic wave, and the scattered ultrasonic wave
  • An imaging optical system in which the generated diffracted light is incident due to a change in refractive index generated in the acousto-optic medium part by propagating and an image of the diffracted light formed by the imaging optical system
  • An imaging unit that outputs a signal, and the wedge light beam is in a first cross section parallel to a propagation direction of the wedge light beam and a propagation direction of the scattered ultrasonic wave in the acoustooptic medium unit.
  • a point is formed and propagates in parallel in the second cross section perpendicular to the cross section without forming a focal point, and the focal point in the first cross section of the wedge light flux is the acoustooptic medium unit, the imaging optical system, and
  • the light intensity of the wedge luminous flux in the direction in which the scattered ultrasonic wave propagates in the acoustooptic medium portion monotonously increases according to the distance from the acoustic aperture.
  • the light intensity distribution in the direction of propagation of the scattered ultrasonic waves of the wedge light beam may be defined by an exponential function.
  • the light intensity distribution in the direction of propagation of the scattered ultrasound of the wedge light beam may be defined by a linear function with respect to the distance from the acoustic aperture.
  • the light intensity distribution in the direction of propagation of the scattered ultrasonic waves of the wedge light beam may be defined by a quadratic function with respect to the distance from the acoustic aperture.
  • the light intensity distribution in the direction in which the scattered ultrasound propagates of the wedge light beam may be defined by a cubic function with respect to the distance from the acoustic aperture.
  • the distribution of light intensity in the direction of propagation of the scattered ultrasonic wave of the wedge luminous flux is defined by a power function of the distance from the acoustic aperture or a sum of power functions, and a power exponent of the power function is an arbitrary real number. Also good.
  • the wedge light source includes a laser light source that emits a monochromatic light wave, a magnifying optical system that emits a monochromatic light wave from the laser light source and emits an enlarged plane wave light beam, and a plane wave light beam that emerges from the magnifying optical system.
  • Light transmittance that is disposed between the cylindrical lens, the laser light source, and the magnifying optical system, or between the magnifying optical system and the acoustooptic medium unit, and has a distribution in the direction in which the scattered ultrasound propagates
  • the cylindrical lens has a refractive power that focuses on the first direction on a plane perpendicular to the propagation direction of the incident plane wave light beam, and a second direction perpendicular to the first direction.
  • the first lens lens may have no refractive power, and the first direction of the cylindrical lens may be parallel to the direction in which the scattered ultrasound propagates.
  • the optical element may be a neutral density filter.
  • the optical element may be a liquid crystal element capable of controlling transmittance in a direction in which the scattered ultrasonic wave propagates.
  • the wedge light source is a laser light source that emits a monochromatic light wave, and an enlarged optical system that emits an expanded plane wave light beam by receiving the monochromatic light wave from the laser light source, and is distributed in a direction in which the scattered ultrasonic wave propagates
  • a magnifying optical system including a lens configured to obtain an intensity having a cylindrical lens, and a cylindrical lens on which a plane wave light beam emitted from the magnifying optical system is incident.
  • the cylindrical lens propagates the incident plane wave light beam.
  • the first direction On the surface perpendicular to the direction, the first direction has a refractive power for focusing, the second direction perpendicular to the first direction has no refractive power, and the first direction of the cylindrical lens It may be parallel to the direction in which the sound wave propagates.
  • the acousto-optic imaging device may further include an optical aperture disposed between the magnifying optical system and the cylindrical lens.
  • the ultrasonic source and the acousto-optic medium part are directed to the object so that the generated scattered ultrasonic wave enters the acousto-optic medium part from the acoustic aperture when the ultrasonic wave passes through the object. It may be arranged.
  • the ultrasonic source and the acousto-optic medium part are directed to the object so that the generated scattered ultrasound is incident on the acousto-optic medium part from the acoustic aperture by reflecting the ultrasonic wave on the object. It may be arranged.
  • the acousto-optic imaging device includes an incident-side mirror that reflects a wedge light beam emitted from the wedge light source and enters the acousto-optic medium unit, and reflects diffracted light generated in the acousto-optic medium unit to reflect the imaging optics.
  • An exit-side mirror that enters the system may be further included.
  • the acousto-optic imaging device receives the electrical signal from the imaging unit, and performs signal processing for adjusting the image so that luminance unevenness in the direction in which the scattered ultrasound propagates on the image of the captured image is reduced. A part may be further provided.
  • FIG. 1 is a schematic diagram illustrating a configuration of an acousto-optic imaging device 100 according to the first embodiment.
  • the acousto-optic imaging device 100 includes a wedge light source 1, an acousto-optic medium unit 2, an imaging optical system 3, an imaging unit 4, and an ultrasonic source 5.
  • the propagation direction (optical axis) of the wedge light beam 8 is the z axis
  • the direction perpendicular to the acoustic aperture 203 that is the surface where the object 6 and the acoustooptic medium unit 2 are in contact is the y axis.
  • the direction perpendicular to the paper plane which is the direction perpendicular to the y-axis and the z-axis, is defined as the x-axis.
  • the ultrasonic source 5 is arranged so as to be in contact with the object 6 at the time of imaging, and outputs the ultrasonic wave 7 inside the object 6.
  • the ultrasonic wave 7 propagates inside the object 6, and when the part 6 a having different acoustic characteristics (impedance) exists in the object 6, the scattered ultrasonic wave 7 a is generated in the part 6 a.
  • the acoustooptic medium unit 2 is disposed so as to be in contact with the object 6 through the acoustic aperture 203 at the time of imaging, and takes in the scattered ultrasonic waves 7 a generated in the object 6.
  • Scattered ultrasonic waves 7 a generated in the object 6 are taken into the acoustooptic medium unit 2, and scattered ultrasonic waves 7 b having information on the object 6 in intensity and phase distribution propagate through the acoustooptic medium 201.
  • the wedge light source 1 emits a wedge light beam 8 toward the acousto-optic medium unit 2.
  • the wedge light beam 8 converges in the y direction in FIG. 1 to have a focal point, and propagates in parallel without converging in the x direction. Further, the focal point of the wedge light beam 8 is located on the opposite side of the wedge light source 1 across the acoustooptic medium unit 2, that is, between the acoustooptic medium unit 2 and the imaging optical system 3. Further, the light intensity of the wedge light beam 8 in the y direction monotonously increases according to the distance from the acoustic aperture 203.
  • the scattered ultrasonic wave 7b When the scattered ultrasonic wave 7b propagates through the acousto-optic medium unit 2, the scattered ultrasonic wave 7b is a dense wave, so that a coarse-dense distribution is generated in the acousto-optic medium unit 2.
  • This density distribution functions as a diffraction grating for the wedge light beam 8, and a ⁇ 1st order diffracted light beam 8a, a 0th order diffracted light beam 8b, and a + 1st order diffracted light beam 8c are generated.
  • the ⁇ 1st order diffracted light beam 8 a and the + 1st order diffracted light beam 8 c are focused on the focal plane 9 to form an image of the object 6.
  • the focal plane 9 refers to a plane (xy plane) that passes through the focal point of the wedge beam 8 and is perpendicular to the propagation direction of the wedge beam 8.
  • the image formed on the focal plane 9 is incomplete and forms an image in the direction in which the wedge beam 8 is converged (y direction), but in the direction in which the wedge beam 8 is propagated in parallel (x direction).
  • the image is not formed.
  • the imaging optical system 3 is disposed at a position facing the wedge light source 1 with the acousto-optic medium unit 2 interposed therebetween.
  • the ⁇ 1st order diffracted light beam 8a and the + 1st order diffracted light beam 8c transmitted through the acoustooptic medium unit 2 enter the imaging optical system 3, and are also converged in the x direction by the imaging optical system 3 to form an image.
  • an incomplete image of the object 6 formed by the ⁇ 1st order diffracted light beam 8 a and the + 1st order diffracted light beam 8 c is formed as a complete image on the image forming surface 91 by the image forming optical system 3.
  • the imaging unit 4 captures an image of the ⁇ 1st order diffracted light beam 8a or + 1st order diffracted light beam 8c formed by the imaging optical system 3, and converts the image into an electrical signal.
  • each component will be described in detail.
  • the wedge light source 1 emits a wedge light beam 8 of monochromatic light.
  • the wedge light beam 8 is focused on the focal plane 9 in the yz plane (first cross section) parallel to the z direction in which the wedge light beam 8 propagates and the y direction in which the scattered ultrasonic waves propagate.
  • the xz plane in the xz plane (second cross section), the light propagates in parallel and does not focus. Since the wedge light beam 8 propagates in the z direction, it can be said that it converges in the y direction and does not converge in the x direction.
  • the position of the focal plane 9 of the wedge light beam 8 is located opposite to the wedge light source 1 with the acoustooptic medium unit 2 interposed therebetween, that is, between the acoustooptic medium unit 2 and the imaging optical system 3. Further, the light intensity distribution in the xy section of the wedge light beam 8 is not uniform in the y direction in the acoustooptic medium unit 2 but has a distribution. Specifically, the light intensity increases as the distance from the y-axis acoustic aperture 203 increases. In other words, the light intensity in the y direction increases monotonously according to the distance from the acoustic aperture 203.
  • the light intensity distribution in the y direction of the wedge light beam 8 may be defined by a linear function, or may be defined by an n-order function such as a quadratic function or a cubic function. Further, it may be defined by an exponential function.
  • the wedge light source 1 includes, for example, a laser light source 10, a magnifying optical system 11, an optical aperture 12, a first cylindrical lens 13, and a neutral density filter 14, as shown in FIGS. 2 (a) and 2 (b).
  • the laser light source 10 emits a monochromatic light wave 81 and enters the magnifying optical system 11.
  • the magnifying optical system 11 enlarges the diameter of the monochromatic light wave emitted from the laser light source 10 and emits a plane wave light beam 82 having the enlarged diameter.
  • the plane wave light beam 82 passes through the optical aperture 12 and enters the first cylindrical lens 13 via the neutral density filter 14.
  • the plane wave light beam 82 has a light intensity distribution in the y direction by passing through the neutral density filter 14 having a transmittance distribution in the y direction.
  • the neutral density filter 14 whose transmittance increases monotonously in accordance with the distance from the acoustic aperture 203 in the y direction
  • the plane wave light beam 83 transmitted through the neutral density filter 14 is transmitted from the acoustic aperture 203 in the y axis direction.
  • the light intensity can be monotonously increased according to the distance.
  • the cylindrical lens 13 is set so that the plane wave light beam 83 is focused on the focal plane 9 after passing through the acoustooptic medium unit 2 in the y direction.
  • the plane wave light beam 83 having no refractive power in the x direction and passing through the magnifying optical system 11 passes through the acoustooptic medium unit 2 while being parallel, and does not form an image on the focal plane 9.
  • the wedge light flux 8 whose light intensity in the y direction monotonously increases according to the distance from the acoustic aperture 203 is obtained.
  • the wedge light source 1 is not necessarily configured as shown in FIG. 2, and the position of the neutral density filter 14 is not limited to between the magnifying optical system 11 and the cylindrical lens 13.
  • the neutral density filter 14 may be between the cylindrical lens 13 and the acoustooptic medium unit 2.
  • the wedge light beam 8 has a characteristic that the light intensity in the y direction monotonously increases according to the distance from the acoustic aperture 203, such a light intensity distribution is realized by an optical element other than the neutral density filter 14.
  • an optical element other than the neutral density filter 14. May be.
  • a liquid crystal element capable of controlling the transmittance in the y direction may be used instead of the neutral density filter 14.
  • the monochromatic light wave emitted from the laser light source 10 may have a desired light intensity distribution in the y-axis direction in advance.
  • a monochromatic light wave emitted from the laser light source 10 is transmitted through an optical element such as an aspheric lens so that light in the y direction can be obtained.
  • An intensity distribution may be realized.
  • the ultrasonic source 5 is disposed in contact with the object 6 during imaging.
  • the ultrasonic source 5 receives a signal from the ultrasonic signal source 51 and makes the object 6 enter the object 6 with continuous waves or pulsed ultrasonic waves 7 having the same sine waveform.
  • the ultrasonic wave 7 composed of a plurality of waves having the same sine waveform means an ultrasonic wave having a time waveform in which a sine waveform having a constant amplitude and frequency is continuously or continuously for a fixed time.
  • the ultrasonic wave 7 irradiates the area of the object 6 to be imaged with a substantially uniform illuminance. Note that the ultrasonic wave 7 incident from the ultrasonic wave source 5 to the object 6 may not be a plane wave.
  • the duration of the time waveform is preferably set to be equal to or greater than the reciprocal (cycle) of the carrier frequency.
  • the ultrasonic wave 7 incident on the object 6 by the ultrasonic wave source 5 is not limited to an acoustic signal having a sine wave as a carrier wave, but is an ultrasonic signal composed of a repetitive signal having a waveform other than a sine wave such as a square wave or a sawtooth wave. Also good. Note that the adhesion between the ultrasonic source 5 and the object 6 may be improved by using an alignment material such as an ultrasonic gel so that the ultrasonic wave 7 output from the ultrasonic source 5 is efficiently incident into the object 6. .
  • the object 6 is made of a material whose ultrasonic wave propagation attenuation is not extremely large.
  • An example of the object 6 is a living body.
  • the portion 6a may be a tissue or an organ in the object 6.
  • the object 6 may be a liquid such as water, and the portion 6a may be another object arranged in the liquid.
  • the ultrasonic wave 7 incident on the object 6 propagates through the object 6.
  • a scattered ultrasonic wave 7a having the same frequency is generated.
  • the scattered ultrasonic wave 7 a is incident on the acoustooptic medium unit 2 through the acoustic aperture 203 and propagates inside the acoustooptic medium unit 2.
  • the scattered ultrasonic wave 7 b propagating through the acousto-optic medium unit 2 has intensity and phase distribution reflecting the information of the object 6.
  • the acoustooptic medium unit 2 includes an acoustooptic medium 201 and a cell 202, and the acoustooptic medium 201 is included in the cell 202.
  • the acoustooptic medium unit 2 is disposed so as to be in contact with the object 6 at the acoustic aperture 203 when the object 6 is photographed. By arranging the acoustic aperture 203 in contact with the object 6, the scattered ultrasonic wave 7 a from the object 6 is taken into the acoustooptic medium unit 2.
  • a matching material such as an ultrasonic gel or an acoustic matching layer is arranged between the object 6 and the acoustooptic medium unit 2. Also good.
  • the scattered ultrasound 7b propagates in the y-axis direction in FIG. This direction is perpendicular to the surface constituting the acoustic aperture 203 and is the normal direction of the acoustic aperture 203 when the scattered ultrasonic wave 7 a is incident on the acoustic aperture 203 perpendicularly.
  • the scattered ultrasound 7b is a longitudinal wave
  • the sound pressure distribution of the acoustooptic medium 201 that is, the refractive index distribution that matches the wavefront of the scattered ultrasound 7b is acoustooptic. It is generated in the medium 201.
  • the refractive index distribution generated in the acousto-optic medium 201 becomes a sinusoidal diffraction grating that is repeated at the wavelength of the ultrasonic wave.
  • the wedge light beam 8 When the wedge light beam 8 is incident non-parallel to the propagation direction of the scattered ultrasonic wave 7b, the wedge light beam 8 is diffracted by the diffraction grating formed by the refractive index distribution in the acoustooptic medium 201, and a diffracted light beam is generated.
  • diffracted light includes Bragg diffracted light and Raman-Nath diffracted light. In the Bragg region where Klein Cook's parameter Q satisfies Q >> 1, Bragg diffracted light is the main diffracted light.
  • the diffracted light to be generated is only the ⁇ 1st order diffracted light beam 8a, the 0th order diffracted light beam 8b, and the + 1st order diffracted light beam 8c, and light energy loss is small because no high order diffracted light is generated.
  • the acousto-optic imaging device of the present embodiment can observe the inside of the object with high sensitivity.
  • the brightness of the diffracted light is proportional to the amount of change in the refractive index of the diffraction grating, that is, the sound pressure of the ultrasonic waves.
  • the Klein Cook parameter Q can be expressed by the following equation.
  • L represents the interaction length between the ultrasonic wave and the light wave
  • represents the wavelength of the light wave
  • f represents the frequency of the ultrasonic wave
  • n represents the refractive index
  • V represents the speed of sound.
  • the acousto-optic imaging device of the present embodiment may be operated under a diffraction condition mainly including Raman-Nath diffracted light.
  • the scattered ultrasonic wave 7 b continues to propagate through the acousto-optic medium unit 2 even after contacting the wedge light beam 8.
  • a sound wave absorption end 204 may be provided at the end of the acousto-optic medium unit 2 opposite to the acoustic opening 203 to suppress reflection of the scattered ultrasonic waves 7b.
  • the cell 202 and the acousto-optic medium 201 are made of a material that is transparent with respect to the wavelength of the light wave output from the laser light source 10 so that the wedge light beam 8 can enter.
  • a glass cell can be used as the cell 202.
  • the acousto-optic medium 201 water transparent to the wavelength of the light wave output from the laser light source 10, a fluorine-based liquid material, a silica nanoporous material, or the like can be used.
  • a medium with the lowest possible sound velocity it is preferable to use a medium with the lowest possible sound velocity as the acousto-optic medium 201.
  • an ultrasonic wave having a frequency of 10 MHz or less in order to suppress attenuation due to absorption of the ultrasonic wave propagating through the object.
  • the speed of sound of water is 1500 m / sec
  • the speed of sound of NovecTM 7200 (hydrofluoroether) manufactured by Sumitomo 3M Limited is 630 m / sec.
  • Fluorine-based liquid materials such as Novec TM 7000, Novec TM 7100, Novec TM 7200, Novec TM 7300, Fluorinert TMFC-72 and FC-3283 are also materials having a low sound velocity.
  • the sound speed of the silica nanoporous material is as low as 50 to 250 m / sec, which is a preferable material for use as the acoustooptic medium 201.
  • the ⁇ 1st order diffracted light beam 8 a and the + 1st order diffracted light beam 8 c generated by the action of the scattered ultrasonic wave 7 b having information inside the object 6 and the wedge light beam 8 in the acoustooptic medium 201 are located at the focal point of the wedge light beam 8.
  • the focal plane 9 perpendicular to the propagation direction of the wedge beam the light converges in the y direction and forms an optical image of the object 6.
  • the optical image of the object 6 generated at this time does not form an image in the x direction.
  • an optical image of the object 6 on the xz plane is generated on the focal plane 9 without forming an image in the x direction.
  • Imaging optical system 3 The ⁇ 1st order diffracted light beam 8 a and the + 1st order diffracted light beam 8 c that have passed through the acoustooptic medium unit 2 enter the imaging optical system 3.
  • the ⁇ 1st-order diffracted light beam 8a and the + 1st-order diffracted light beam 8c pass through the imaging optical system 3, thereby forming an image in the x direction and on the imaging surface 91 in both the x direction and the y direction. A complete optical image forming the image is produced.
  • the imaging optical system 3 includes, for example, a cylindrical lens 3a and a cylindrical lens 3b as shown in FIG.
  • the cylindrical lens 3a is arranged so as to have a refractive power in the y direction and no refractive power in the x direction.
  • the cylindrical lens 3b is arranged so as to have a refractive power in the x direction and no refractive power in the y direction.
  • the 0th-order diffracted light beam 8 b that has passed through the focal plane 9 is converged in the y direction by the cylindrical lens 3 a of the imaging optical system 3 and focused in the y direction on the imaging plane 91. Further, the light is converged in the x direction by the cylindrical lens 3 b and focused on the image plane 91.
  • Imaging unit 4 takes an optical image of the ⁇ 1st order diffracted light beam 8a or the + 1st order diffracted light beam 8c on the imaging surface 91 and converts it into an electrical signal. Thereby, the information inside the object 6 can be detected by ultrasonic waves and acquired as an optical image. As will be described below, the imaging unit 4 captures an optical image of the xz plane in an arbitrary y direction inside the object 6. Optical images on the xz plane at different y-direction positions can be obtained by shifting the time.
  • a three-dimensional optical image inside the object 6 can be displayed on a display device or the like. Is possible.
  • the light-shielding unit 15 may block the 0th-order diffracted light beam 8b or the other diffracted light beam that is not received so that only the ⁇ 1st-order diffracted light beam 8a or the + 1st-order diffracted light beam 8c is incident on the imaging unit 4.
  • the imaging unit 4 is a solid-state imaging element such as a CCD element or a CMOS element, for example, and detects the light intensity distribution of the diffraction image by the ⁇ 1st order diffracted light beam 8a or the + 1st order diffracted light beam 8c as an optical image and converts it into an electrical signal. Convert.
  • the object 6 is a living body, and the ultrasonic source 5 emits a 2.5 MHz continuous ultrasonic wave.
  • a rectangular parallelepiped cell made of Tempax glass is used as the cell 202 of the acoustooptic medium unit 2, and the thickness of the glass constituting the cell is 1.1 mm.
  • the cell 202 is filled with a silica nanoporous material having an acoustic velocity of 100 m / s as the acoustooptic medium 201. Since the silica nanoporous material has a relatively low sound velocity, the wavelength of the ultrasonic wave in the acoustooptic medium 201 is shortened, and the diffraction angle can be increased.
  • Tempax glass and silica nanoporous material are transparent to He—Ne laser light having a wavelength of 633 nm, which will be described later.
  • the laser light source 10 a He—Ne laser having a wavelength of 633 nm is used.
  • first-order Bragg diffracted light is generated at a diffraction angle of 0.45 ° by a diffraction grating in a silica nanoporous material generated by 2.5 MHz ultrasonic waves.
  • the scattered ultrasonic wave 7b having information on the object in the object 6 in amplitude and phase acts on the wedge light beam 8 and diffracts, whereby an optical image of the object 6 is obtained in the + 1st order diffracted light beam 8c.
  • FIG. 4 shows a state where a plane wave ultrasonic wave 7 a having a uniform intensity is incident on the acoustooptic medium unit 2.
  • the incidence of a plane wave ultrasonic wave 7 a having a uniform intensity corresponds to the presence of a uniform object within the viewing angle of the object 6 and the ultrasonic wave 7 being uniformly scattered.
  • the light intensity of the obtained diffraction image is preferably uniform.
  • the light intensity distribution of the diffracted light beam 1b generated when the wedge light beam 8 contacts the scattered ultrasonic wave 7b is obtained by calculation.
  • the wedge light beam 8 is treated as a collection of n light beams that pass through the focal point on the focal plane 9 as shown in FIG.
  • the diffraction image generated when the scattered ultrasonic wave 7b and the wedge light beam 8 contact each other in the acousto-optic medium 201 is a sum of diffracted light beams generated by diffracting each light beam by the scattered ultrasonic wave 7b.
  • z coordinate z 0, z m the light beams diffracted by the scattered ultrasonic 7b are perpendicular plane leave the z-axis is z e are each point on z 'axis on the focal plane 9 It shows how an image is formed by z 0 ′, z m ′, and z e ′.
  • the z ′ axis is parallel to and opposite to the y axis.
  • the image formed on the focal plane 9 is an incomplete image that forms an image in the y direction but does not form an image in the x direction. This image is converged in the x direction by the imaging optical system 3 to form an image of the object 6 on the imaging surface 91. As described above, the optical image of the xz plane of the object 6 is generated on the focal plane 9 without forming an image in the x direction.
  • the time at which the scattered ultrasonic wave 7b obtained from the object 6 reaches the acousto-optic medium part 2 varies depending on the position of each part of the object 6 in the y-axis direction.
  • the scattered ultrasonic wave 7 a ′ from the portion of the object 6 that is far from the acoustic aperture 203 of the acoustooptic medium unit 2 in the y-axis direction is delayed from the scattered ultrasonic wave 7 a by the acoustic of the acoustooptic medium unit 2.
  • the opening 203 is reached.
  • the scattered ultrasonic wave 7a ′ propagates as the scattered ultrasonic wave 7b ′ in the acousto-optic medium part 2 with a delay from the scattered ultrasonic wave 7b, thereby generating a + 1st order diffracted light beam 8c ′ later than the + 1st order diffracted light beam 8c.
  • optical images of the object 6 in the xz plane at an arbitrary depth in the y-axis direction are formed at different times. That is, information in the y-axis direction of the object 6 is included in the optical image formed on the focal plane 9 after being converted on the time axis.
  • the light intensity distribution in the y direction of the image on the imaging plane 91 is determined by the light intensity distribution in the y direction of the image of the ⁇ 1st order diffracted light beam 8a or the + 1st order diffracted light beam 8c on the focal plane 9. Therefore, in order to examine the uniformity of the light intensity distribution on the imaging plane 91, the light intensity distribution of the image on the focal plane 9 may be examined.
  • the sound pressure P of the scattered ultrasonic wave 7b at the position (y, z) in the acousto-optic medium 201 is expressed as shown in Expression (2).
  • indicates the propagation attenuation rate of the ultrasonic wave in the acoustooptic medium 201
  • P 0 is the scattered light ray I 1 closest to the acoustic aperture 203 at the position (z 0 ) where the wedge light beam 8 is incident on the acoustooptic medium 201.
  • the sound pressure of the ultrasonic wave at the position in contact with the ultrasonic wave 7b is shown.
  • the light intensity distribution I image (z ′) of the diffracted image at the focal plane 9 is expressed by the following equation (3).
  • J 1 represents the first-order Bessel function
  • ⁇ n represents the amount of change in the refractive index caused by the sound pressure of 1 Pa
  • represents the wavelength of the wedge light beam 8.
  • the sound pressure P 0 can be changed by changing the intensity of the ultrasonic wave 7 incident from the ultrasonic source 5.
  • the diffracted light intensity distribution is expressed by the equation (4) by adjusting the sound pressure P 0. Uses equation (4).
  • the light intensity distribution on the vertical axis in FIG. 5 is normalized so that the light intensity at Z 0 ′ is 1, but from this calculation result, it can be seen that the diffraction image intensity is uniformly distributed. It can be confirmed that a good image can be obtained when the ultrasonic wave propagation attenuation rate ⁇ is very small.
  • the ultrasonic wave propagation attenuation rate ⁇ is large.
  • a silica dry gel or a fluorinated liquid material is used as the material of the acousto-optic medium 201
  • the propagation attenuation factor ⁇ was measured at a frequency of 2.5 MHz in the silica dry gel used as the acoustooptic medium 201 in this example, it was about ⁇ 1.24 Np / mm.
  • the calculation result of the light intensity distribution of the diffraction image in this case is shown in FIG.
  • the minimum value of the light intensity of the diffracted image is about 8% of the maximum value, and it can be confirmed that the intensity distribution of the diffracted light is not uniform and uneven.
  • the propagation attenuation rate ⁇ of the ultrasonic wave is large, even if the object 6 is a uniform object, the intensity distribution of the diffraction image is not uniform, and the image of the object 6 is not included in the obtained image. This suggests that irrelevant luminance unevenness occurs.
  • the y-direction of the wedge beam 8 is reduced in order to reduce the luminance unevenness of the image that is generated regardless of the actual state of the object 6 when the ultrasonic wave propagation attenuation in the acousto-optic medium 201 is large.
  • a distribution is provided for the light intensity at.
  • the intensity of each light beam I k constituting the wedge light beam 8 is set to a constant value as shown in the equation (1), but in the y direction, the equations (6), (7), (8), As shown in the equation (9), a one-light intensity distribution of the diffraction image is calculated in the case where the function is expressed by an N-order function (N is an arbitrary real number) and the exponential function shown in the equation (10).
  • FIGS. 7 (a), (b), (c), (d) and FIG. Expressions (6) to (10) are all simple increase functions, and light rays that are farther away from the acoustic aperture 203 have a higher light intensity distribution.
  • 7 (a), (b), (c), and (d) the maximum and minimum values of the diffracted light intensity are obtained when any of the distributions of the equations (6) to (9) is adopted as compared with FIG. It can be seen that the difference between the values is small, and the unevenness of the light intensity distribution of the diffraction image is reduced.
  • FIG. 8 it can be confirmed from the calculation result of FIG. 8 that the unevenness of the light intensity is reduced in the diffraction image of the wedge light beam even when the light intensity distribution in the form of exponential function is adopted.
  • the electrical signal of the optical image of the object 6 obtained by the imaging unit 4 may be corrected.
  • the acoustooptic imaging device 100 may further include a signal processing unit 21 that receives an electrical signal from the imaging unit 4 and corrects luminance unevenness in the y direction in the optical image of the object 6 represented by the electrical signal.
  • the signal processing unit 21 is represented by a function that monotonously increases the luminance from Z 0 to Z e so that the light intensity distribution shown in FIG. The luminance information of the electric signal may be multiplied by the coefficient.
  • the light intensity distribution does not cause uneven brightness.
  • the light intensity distribution is provided in the wedge light beam 8 as in the formulas (6) to (10)
  • a diffraction image in the case where a material with small propagation attenuation of ultrasonic waves such as water is used as the acoustooptic medium 201.
  • the light intensity distribution was calculated.
  • FIG. 9 shows the calculation result when the light intensity distribution of the wedge light beam 8 is expressed by the equation (8).
  • the acousto-optic medium 201 is not only a material having a large ultrasonic propagation attenuation, such as a silica nanoporous material or a fluorine-based liquid material, but also a water having a small ultrasonic propagation attenuation. It can be said that it is also possible to use.
  • the acousto-optic imaging device of the present embodiment it is possible to obtain an optical image with reduced luminance unevenness even when the ultrasonic wave propagation attenuation rate ⁇ in the acousto-optic medium 201 is large.
  • the inside of the object can be photographed without using a signal processing circuit with high calculation processing capability. .
  • FIG. 10 is a schematic diagram showing the configuration of the acousto-optic imaging device 101 of the present embodiment.
  • the acoustooptic imaging device 101 includes a wedge light source 1, an acoustooptic medium unit 2, an imaging optical system 3, an imaging unit 4, and an ultrasonic source 5.
  • the wedge light source 1 emits a wedge light beam 8, and the wedge light beam 8 enters the acousto-optic medium unit 2.
  • the wedge light beam 8 has a strong light intensity distribution in the direction away from the acoustic aperture 203 in the y direction.
  • the imaging optical system 3 is disposed on the opposite side of the wedge light source 1 with the acoustooptic medium unit 2 interposed therebetween, and the ⁇ 1 diffracted beam 8a, the 0 diffracted beam 8b, and the +1 diffracted beam 8c transmitted through the acoustooptic medium unit 2. Enters the imaging optical system 3.
  • the imaging unit 4 detects a ⁇ 1 diffracted light beam 8 a or a +1 diffracted light beam 8 c that has passed through the imaging optical system 3.
  • the ultrasonic source 5 is disposed so as to be in contact with the object 6 and outputs the ultrasonic wave 7 inside the object 6.
  • the acoustooptic medium unit 2 is disposed on the opposite side of the ultrasonic wave 7 with the object 6 interposed therebetween, and the scattered ultrasonic wave 7 a ′′ transmitted through the object 6 enters the acoustooptic medium unit 2 from the acoustic aperture 203.
  • the wedge light beam 8 incident from the wedge light source 1 acts on the scattered ultrasonic wave 7b taken into the acousto-optic medium unit 2, thereby -1st order diffraction.
  • a light beam 8a, a 0th-order diffracted light beam 8b, and a + 1st-order diffracted light beam 8c are generated.
  • the diffracted light beams 8a, 8b, and 8c that have passed through the acousto-optic medium unit 2 are incident on the imaging optical system 3, and only the ⁇ 1st order diffracted light beam 8a or the + 1st order diffracted light beam 8c are incident on the imaging unit 4 to form an image. .
  • the ultrasonic source 5 and the acousto-optic medium unit 2 are arranged at positions facing each other with the object 6 interposed therebetween, thereby imaging using the transmitted ultrasound of the object 6. Can be done.
  • FIG. 11 is a schematic diagram illustrating the configuration of the acousto-optic imaging device 102 of the present embodiment.
  • the acoustooptic imaging device 102 includes a wedge light source 1, an acoustooptic medium unit 2, an imaging optical system 3, an imaging unit 4, an ultrasonic source 5, an incident side mirror 16a, and an output side mirror 16b.
  • the wedge light beam 8 emitted from the wedge light source 1 is reflected by the incident side mirror 16a and enters the acoustooptic medium unit 2.
  • the wedge light beam 8 has a light intensity that increases in a direction away from the acoustic aperture 203 on the incident surface that is incident on the acoustooptic medium unit 2.
  • the exit side mirror 16b is disposed on the opposite side of the entrance side mirror 16a with the acoustooptic medium unit 2 interposed therebetween, and the -1 diffracted beam 8a, the 0 diffracted beam 8b, and the +1 diffracted beam 8c transmitted through the acoustooptic medium unit 2. Is incident on the imaging optical system 3 after being reflected by the exit side mirror 16b.
  • the imaging unit 4 detects the diffracted light that has passed through the imaging optical system 3.
  • the ultrasonic source 5 is arranged so as to be in contact with the object 6 and outputs the ultrasonic wave 7 to the inside of the object 6.
  • the acoustooptic medium unit 2 is disposed so as to be in contact with the object 6 at the time of imaging, and takes in the scattered ultrasonic waves 7 a generated in the object 6.
  • the wedge light beam 8 incident from the wedge light source 1 acts on the scattered ultrasonic wave 7b taken into the acousto-optic medium part 2, whereby the ⁇ 1st order diffracted light beam 8a and the 0th order diffracted light beam 8b. + 1st order diffracted light beam 8c is generated.
  • the ⁇ 1st order diffracted light beam 8a, the 0th order diffracted light beam 8b, and the + 1st order diffracted light beam 8c transmitted through the acoustooptic medium unit 2 enter the imaging optical system 3, and only the ⁇ 1st order diffracted light beam 8a or the + 1st order diffracted light beam 8c. Enters the imaging unit 4.
  • the wedge light beam 8 enters and exits the acousto-optic medium unit 2 via the incident-side mirror 16a and the exit-side mirror 16b.
  • the system 3 and the imaging unit 4 can be arranged at a position other than a straight line across the acoustooptic medium unit 2. Therefore, the degree of freedom in optical design is increased, and a smaller image pickup apparatus can be provided.
  • the optical element that gives the light intensity distribution to the wedge light beam 8 may be the neutral density filter 14 or the magnifying optical system 11 having the attenuation factor distribution shown in FIGS.
  • a distribution may be given to the reflectance of the incident side mirror 16a to give a light intensity distribution in the y direction of the wedge light beam 8 in the acoustooptic medium unit 2.
  • the acousto-optic imaging device disclosed in the present application is useful as a probe for an ultrasonic diagnostic apparatus because it can acquire an ultrasonic image as an optical image. Moreover, since the ultrasonic wave radiated from the vibrating object can be observed as an optical image, it can be applied to uses such as a nondestructive vibration measuring apparatus.
  • wedge light source 2 acousto-optic medium unit 3: coupled lens system 4: imaging unit 5: ultrasonic source 6: object 7: ultrasonic wave 8: wedge beam 9: focal plane 10: laser light source 11: magnifying optical system 12: Optical aperture 13: first cylindrical lens 14: neutral density filter 15 having attenuation factor distribution: light shielding part 16a: incident side mirror 16b: emission side mirror 3a: second cylindrical lens 3b: third cylindrical lens 51: super Acoustic wave signal source 6a: object 7a: scattered ultrasonic wave 7a ': transmitted ultrasonic wave 7b: ultrasonic wave 8a: -1st order diffracted light beam 8b: 0th order diffracted light beam 8c: + 1st order diffracted light beam 81: monochromatic light beam 82, 83: plane wave Luminous flux

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Molecular Biology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Optics & Photonics (AREA)
  • Surgery (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Acoustics & Sound (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

An acousto-optical imaging device according to the present invention comprises: an ultrasonic source (1) which outputs ultrasonic waves; an acousto-optical medium unit (2) which has an acoustic opening and into which dispersed ultrasonic waves generated by ultrasonic waves being dispersed inside an object enter inside from the acoustic opening and are propagated; a wedge light source which emits a single color wedge beam that enters the acousto-optical medium unit in non-parallel with respect to the direction of propagation of the dispersed ultrasonic waves; an imaging optical system (3) into which diffracted light enters that is generated by refractive index variation caused in the acousto-optical medium unit by the propagation of the dispersed ultrasonic waves; and a imaging unit (4) which takes an image generated by the diffracted light formed by the imaging optical system and outputs an electrical signal. The wedge beam forms a focal point on a first cross section that is parallel to the propagation direction of the wedge beam and the direction in which the dispersed ultrasonic waves are propagated in the acousto-optical medium unit, and propagates in parallel without forming a focal point on a second cross section which is perpendicular to the cross section, wherein the focal point of the wedge beam on the first cross section is positioned between the acousto-optical medium unit (2) and the imaging optical system (3), and the light intensity of the wedge beam in the direction in which the dispersed ultrasonic waves are propagated in the acousto-optical medium unit increases monotonously according to the distance from the acoustic opening.

Description

音響光学撮像装置Acousto-optic imaging device
 本願は、音響光学撮像装置に関し、特に、被写体から得られる超音波エコーを光学画像として取得する音響光学撮像装置に関する。 The present application relates to an acoustooptic imaging device, and more particularly to an acoustooptic imaging device that acquires an ultrasonic echo obtained from a subject as an optical image.
 超音波を物体に照射し、物体からの散乱波によって光学画像を生成する装置として、特許文献1のような超音波診断装置が知られている。超音波診断装置では、物体に対して複数の超音波送受波素子を用いて超音波の送波と受波を行い、各々の素子から出力される受波信号を遅延させて合成することにより物体の超音波による画像を得る。 2. Description of the Related Art As an apparatus that irradiates an object with ultrasonic waves and generates an optical image using scattered waves from the object, an ultrasonic diagnostic apparatus as disclosed in Patent Document 1 is known. In an ultrasonic diagnostic apparatus, an object is transmitted and received using a plurality of ultrasonic transmitting / receiving elements, and the received signals output from each element are delayed and synthesized. Obtain an ultrasonic image.
 このような超音波診断装置では、1枚の超音波画像を撮像するために、多数回の信号処理(遅延および合成)が必要となる。必要な信号処理の回数は、少なくとも画像の画素数に相当する。したがって、超音波を用いて、高速で物体を撮影するためには、高速かつ大規模な演算回路をもつ信号処理回路が必要となる。また、画素数が多く空間分解能の高い画像を取得するためには、互いに送波・受波特性の揃った多数の超音波振動子が必要である。しかし、そのような振動子群を構築するのは極めて困難である。 Such an ultrasonic diagnostic apparatus requires multiple signal processing (delay and synthesis) in order to capture one ultrasonic image. The number of necessary signal processing corresponds to at least the number of pixels of the image. Therefore, in order to photograph an object at high speed using ultrasonic waves, a signal processing circuit having a high-speed and large-scale arithmetic circuit is required. Further, in order to acquire an image with a large number of pixels and high spatial resolution, a large number of ultrasonic transducers having the same transmission / reception characteristics are required. However, it is extremely difficult to construct such a group of transducers.
特開昭54-34580号公報JP 54-34580 A
 本発明による限定的ではない例示的な音響光学撮像装置は、演算処理の能力の高い信号処理回路を用いることなく、物体の内部を撮影することのできる音響光学撮像装置を提供する。 The non-limiting exemplary acousto-optic imaging device according to the present invention provides an acousto-optic imaging device capable of imaging the inside of an object without using a signal processing circuit with high calculation processing capability.
 本願の一態様に係る音響光学撮像装置は、超音波を出力する超音波源と、音響開口を有し、前記超音波が物体の内部において散乱することによって発生した散乱超音波が前記音響開口から内部に入射し、伝搬する音響光学媒質部と、前記散乱超音波の伝搬する方向に対して非平行に前記音響光学媒質部へ入射する単色のウェッジ光束を出射するウェッジ光源と、前記散乱超音波が伝搬することにより前記音響光学媒質部に生じた屈折率変化によって、生じた回折光が入射する結像光学系と、前記結像光学系によって形成された前記回折光による像を撮影し、電気信号を出力する撮像部とを備え、前記ウェッジ光束は、前記ウェッジ光束の伝搬方向および前記音響光学媒質部における前記散乱超音波の伝搬する方向に平行な第1断面において焦点を形成し、前記断面に対して垂直な第2断面において、焦点を結ばず平行伝搬し、前記ウェッジ光束の前記第1断面における前記焦点は、前記音響光学媒質部と前記結像光学系との間に位置し、前記ウェッジ光束の、前記音響光学媒質部内での前記散乱超音波の伝搬する方向における光強度は、前記音響開口からの距離に応じて単調に増加する。 An acoustooptic imaging device according to an aspect of the present application includes an ultrasonic source that outputs ultrasonic waves and an acoustic aperture, and scattered ultrasonic waves generated by scattering of the ultrasonic waves inside an object are generated from the acoustic aperture. An acousto-optic medium part that enters and propagates inside, a wedge light source that emits a monochromatic wedge light beam incident on the acousto-optic medium part non-parallel to the propagation direction of the scattered ultrasonic wave, and the scattered ultrasonic wave An imaging optical system in which the generated diffracted light is incident due to a change in refractive index generated in the acousto-optic medium part by propagating and an image of the diffracted light formed by the imaging optical system An imaging unit that outputs a signal, and the wedge light beam is in a first cross section parallel to a propagation direction of the wedge light beam and a propagation direction of the scattered ultrasonic wave in the acoustooptic medium unit. A point is formed and propagates in parallel in the second cross section perpendicular to the cross section without forming a focal point, and the focal point in the first cross section of the wedge light flux is the acoustooptic medium unit, the imaging optical system, and The light intensity of the wedge luminous flux in the direction in which the scattered ultrasonic wave propagates in the acoustooptic medium portion monotonously increases according to the distance from the acoustic aperture.
 本発明の一態様に係る音響光学撮像装置によれば、超音波の伝搬減衰が大きい音響光学媒質を用いて物体の撮像を行った場合においても、比較的輝度のむらが小さい画像を得ることが可能となる。 According to the acoustooptic imaging device according to one aspect of the present invention, it is possible to obtain an image with relatively small luminance unevenness even when an object is imaged using an acoustooptic medium having a large ultrasonic wave propagation attenuation. It becomes.
第1の実施形態による音響光学撮像装置の構成を概略的に示す図である。1 is a diagram schematically illustrating a configuration of an acoustooptic imaging device according to a first embodiment. (a)および(b)は、第1の実施形態のウェッジ光源の構成の一例を示すxy断面図およびzx断面図である。(A) And (b) is xy sectional drawing and zx sectional drawing which show an example of a structure of the wedge light source of 1st Embodiment. (a)および(b)は、第1の実施形態のウェッジ光源の他の構成の一例を示すxy断面図およびzx断面図である。(A) And (b) is xy sectional drawing and zx sectional drawing which show an example of the other structure of the wedge light source of 1st Embodiment. ウェッジ光束と超音波の作用により回折像が生じる様子を示す図である。It is a figure which shows a mode that a diffraction image arises by the effect | action of a wedge light beam and an ultrasonic wave. 音響減衰がなく入射光分布が一様な場合の回折像の計算結果を示す図である。It is a figure which shows the calculation result of the diffraction image in case there is no acoustic attenuation | damping and incident light distribution is uniform. 音響減衰があり入射光分布が一様な場合の回折像の計算結果を示す図である。It is a figure which shows the calculation result of a diffraction image in case there exists acoustic attenuation | damping and incident light distribution is uniform. (a)から(d)は、それぞれ、音響減衰があり入射光分布が1次、2次、3次および2.5次関数の場合の回折像の計算結果を示す図である。(A)-(d) is a figure which shows the calculation result of the diffraction image in case an acoustic attenuation exists, respectively, and incident light distribution is a 1st, 2nd, 3rd, and 2.5th order function. 音響減衰があり入射光分布が指数関数の場合の回折像の計算結果を示す図である。It is a figure which shows the calculation result of the diffraction image in case there exists acoustic attenuation | damping and incident light distribution is an exponential function. 音響減衰なしで入射光分布が一様でない場合の回折像の計算結果の一例を示す図である。It is a figure which shows an example of the calculation result of a diffraction image when incident light distribution is not uniform without acoustic attenuation. 第2の実施形態による音響光学撮像装置の構成を示す図である。It is a figure which shows the structure of the acousto-optic imaging device by 2nd Embodiment. 第3の実施形態による音響光学撮像装置の構成を示す図である。It is a figure which shows the structure of the acousto-optic imaging device by 3rd Embodiment.
 本願発明者は、被検体内部の組織を従来の超音波診断装置のように超音波を走査することによって画像を得るのではなく、2次元的あるいは3次元的に画像を取得する方法を検討した。その結果、超音波と光の相互作用である音響光学効果を利用し、被検体内部の組織の画像を取得することを想到した。 The inventor of the present application examined a method of acquiring an image two-dimensionally or three-dimensionally, instead of obtaining an image by scanning an ultrasonic wave through a tissue inside a subject like a conventional ultrasonic diagnostic apparatus. . As a result, the inventors have conceived that an image of a tissue inside a subject is acquired using an acoustooptic effect that is an interaction between ultrasonic waves and light.
 具体的には、非特許文献1に開示されるように、超音波を物体に照射し、物体を透過する超音波あるいは物体より散乱される超音波を音響光学媒質内に伝搬させることによって音響光学媒質中に屈折率分布を形成し、それにより生じるBragg回折を用いて透過あるいは散乱超音波の強度・位相分布を単色光の強度・位相分布に転写すれば、物体内部の画像を光学画像として撮影できると考えられる。 Specifically, as disclosed in Non-Patent Document 1, an acoustic wave is radiated on an object, and an ultrasonic wave transmitted through the object or an ultrasonic wave scattered from the object is propagated in the acoustooptic medium. If the refractive index distribution is formed in the medium and the intensity / phase distribution of transmitted or scattered ultrasonic waves is transferred to the intensity / phase distribution of monochromatic light using the Bragg diffraction generated thereby, the image inside the object is taken as an optical image. It is considered possible.
 ただし、非特許文献1は、Bragg回折による音響光学効果を開示するのみであり、生体内の組織の画像化を音響光学効果によりどのように実現するかについて何ら示唆がない。 However, Non-Patent Document 1 only discloses the acoustooptic effect by Bragg diffraction, and there is no suggestion on how to realize imaging of a tissue in a living body by the acoustooptic effect.
 本願発明者が非特許文献1に開示された技術を詳細に検討したところ、非特許文献1に開示された構成によれば、使用する超音波の周波数が15MHz以上と高い。これは音響光学セルを水媒体で構成していることが原因であり、水の音速(約1500m/s)と超音波の波長の関係から、Bragg回折が発生する条件が制限されるためである。生体中では、周波数にほぼ比例して吸収減衰が増大するため、被検体の深い内部を画像化するためには10MHz以下の周波数の超音波を用いることが好ましい。したがって、非特許文献1に開示された構成をそのまま用いても、被検体の体内の組織の画像を得ることは困難である。 The inventor of the present application has examined the technology disclosed in Non-Patent Document 1 in detail, and according to the configuration disclosed in Non-Patent Document 1, the frequency of ultrasonic waves used is as high as 15 MHz or higher. This is because the acousto-optic cell is composed of an aqueous medium, and the conditions under which Bragg diffraction occurs are limited by the relationship between the acoustic velocity of water (about 1500 m / s) and the wavelength of ultrasonic waves. . In a living body, absorption attenuation increases substantially in proportion to the frequency. Therefore, it is preferable to use an ultrasonic wave having a frequency of 10 MHz or less in order to image a deep interior of a subject. Therefore, even if the configuration disclosed in Non-Patent Document 1 is used as it is, it is difficult to obtain an image of the tissue in the body of the subject.
 使用する超音波の周波数を低くするためには、音響光学セルを、音速の小さい音響光学媒質で構成することが考えられる。しかし、この場合、音響光学セルを伝搬する超音波の減衰が大きくなり、得られる物体の内部の画像における輝度むらが大きくなることが分かった。 In order to lower the frequency of the ultrasonic wave to be used, it is conceivable that the acoustooptic cell is composed of an acoustooptic medium having a low sound velocity. However, in this case, it has been found that the attenuation of the ultrasonic wave propagating through the acousto-optic cell increases, and the luminance unevenness in the image inside the obtained object increases.
 本願発明者はこのような課題を詳細に検討し、新規な音響光学撮像装置を想到した。本発明の音響光学撮像装置の一態様の概要は以下の通りである。 The inventor of the present application has studied such a problem in detail and has come up with a novel acousto-optic imaging device. The outline of one aspect of the acousto-optic imaging device of the present invention is as follows.
 本願の一態様に係る音響光学撮像装置は、超音波を出力する超音波源と、音響開口を有し、前記超音波が物体の内部において散乱することによって発生した散乱超音波が前記音響開口から内部に入射し、伝搬する音響光学媒質部と、前記散乱超音波の伝搬する方向に対して非平行に前記音響光学媒質部へ入射する単色のウェッジ光束を出射するウェッジ光源と、前記散乱超音波が伝搬することにより前記音響光学媒質部に生じた屈折率変化によって、生じた回折光が入射する結像光学系と、前記結像光学系によって形成された前記回折光による像を撮影し、電気信号を出力する撮像部とを備え、前記ウェッジ光束は、前記ウェッジ光束の伝搬方向および前記音響光学媒質部における前記散乱超音波の伝搬する方向に平行な第1断面において焦点を形成し、前記断面に対して垂直な第2断面において、焦点を結ばず平行伝搬し、前記ウェッジ光束の前記第1断面における前記焦点は、前記音響光学媒質部と前記結像光学系との間に位置し、前記ウェッジ光束の、前記音響光学媒質部内での前記散乱超音波の伝搬する方向における光強度は、前記音響開口からの距離に応じて単調に増加する。 An acoustooptic imaging device according to an aspect of the present application includes an ultrasonic source that outputs ultrasonic waves and an acoustic aperture, and scattered ultrasonic waves generated by scattering of the ultrasonic waves inside an object are generated from the acoustic aperture. An acousto-optic medium part that enters and propagates inside, a wedge light source that emits a monochromatic wedge light beam incident on the acousto-optic medium part non-parallel to the propagation direction of the scattered ultrasonic wave, and the scattered ultrasonic wave An imaging optical system in which the generated diffracted light is incident due to a change in refractive index generated in the acousto-optic medium part by propagating and an image of the diffracted light formed by the imaging optical system An imaging unit that outputs a signal, and the wedge light beam is in a first cross section parallel to a propagation direction of the wedge light beam and a propagation direction of the scattered ultrasonic wave in the acoustooptic medium unit. A point is formed and propagates in parallel in the second cross section perpendicular to the cross section without forming a focal point, and the focal point in the first cross section of the wedge light flux is the acoustooptic medium unit, the imaging optical system, and The light intensity of the wedge luminous flux in the direction in which the scattered ultrasonic wave propagates in the acoustooptic medium portion monotonously increases according to the distance from the acoustic aperture.
 前記ウェッジ光束の前記散乱超音波の伝搬する方向における光強度の分布は指数関数で規定されてもよい。 The light intensity distribution in the direction of propagation of the scattered ultrasonic waves of the wedge light beam may be defined by an exponential function.
 前記ウェッジ光束の前記散乱超音波の伝搬する方向における光強度の分布は、前記音響開口からの距離に対する線形関数で規定されてもよい。 The light intensity distribution in the direction of propagation of the scattered ultrasound of the wedge light beam may be defined by a linear function with respect to the distance from the acoustic aperture.
 前記ウェッジ光束の前記散乱超音波の伝搬する方向における光強度の分布は、前記音響開口からの距離に対する2次関数で規定されてもよい。 The light intensity distribution in the direction of propagation of the scattered ultrasonic waves of the wedge light beam may be defined by a quadratic function with respect to the distance from the acoustic aperture.
 前記ウェッジ光束の前記散乱超音波の伝搬する方向における光強度の分布は、前記音響開口からの距離に対する3次関数で規定されてもよい。 The light intensity distribution in the direction in which the scattered ultrasound propagates of the wedge light beam may be defined by a cubic function with respect to the distance from the acoustic aperture.
 前記ウェッジ光束の前記散乱超音波の伝搬する方向における光強度の分布は、前記音響開口からの距離の累乗関数あるいは累乗関数の和で規定され、前記累乗関数の累乗指数は任意の実数であってもよい。 The distribution of light intensity in the direction of propagation of the scattered ultrasonic wave of the wedge luminous flux is defined by a power function of the distance from the acoustic aperture or a sum of power functions, and a power exponent of the power function is an arbitrary real number. Also good.
 前記ウェッジ光源は、単色光波を出射するレーザー光源と、前記レーザー光源からの単色光波が入射され、拡大された平面波光束を出射する拡大光学系と、前記拡大光学系から出射した平面波光束が入射するシリンドリカルレンズと、前記レーザー光源と前記拡大光学系との間、または、前記拡大光学系と前記音響光学媒質部との間に配置され、前記散乱超音波の伝搬する方向に分布を有する光透過率を備えた光学素子とを含み、前記シリンドリカルレンズは、前記入射する平面波光束の伝搬方向に垂直な面において、第1方向に焦点を結ぶ屈折力を持ち、前記第1方向に垂直な第2方向においては屈折力を持たず、前記シリンドリカルレンズの第1方向は前記散乱超音波の伝搬する方向と平行であってもよい。 The wedge light source includes a laser light source that emits a monochromatic light wave, a magnifying optical system that emits a monochromatic light wave from the laser light source and emits an enlarged plane wave light beam, and a plane wave light beam that emerges from the magnifying optical system. Light transmittance that is disposed between the cylindrical lens, the laser light source, and the magnifying optical system, or between the magnifying optical system and the acoustooptic medium unit, and has a distribution in the direction in which the scattered ultrasound propagates The cylindrical lens has a refractive power that focuses on the first direction on a plane perpendicular to the propagation direction of the incident plane wave light beam, and a second direction perpendicular to the first direction. The first lens lens may have no refractive power, and the first direction of the cylindrical lens may be parallel to the direction in which the scattered ultrasound propagates.
 前記光学素子は、減光フィルターであってもよい。 The optical element may be a neutral density filter.
 前記光学素子は、前記散乱超音波の伝搬する方向において透過率を制御することが可能な液晶素子であってもよい。 The optical element may be a liquid crystal element capable of controlling transmittance in a direction in which the scattered ultrasonic wave propagates.
 前記ウェッジ光源は、単色光波を出射するレーザー光源と、前記レーザー光源からの単色光波が入射され、拡大された平面波光束を出射する拡大光学系であって、前記散乱超音波の伝搬する方向に分布を有する強度が得られるように構成されたレンズを含む拡大光学系と、前記拡大光学系から出射した平面波光束が入射されるシリンドリカルレンズとを含み、前記シリンドリカルレンズは、前記入射する平面波光束の伝搬方向に垂直な面において、第1方向においては焦点を結ぶ屈折力を持ち、前記第1方向に垂直な第2方向においては屈折力を持たず、前記シリンドリカルレンズの第1方向は、前記散乱超音波の伝搬する方向と平行であってもよい。 The wedge light source is a laser light source that emits a monochromatic light wave, and an enlarged optical system that emits an expanded plane wave light beam by receiving the monochromatic light wave from the laser light source, and is distributed in a direction in which the scattered ultrasonic wave propagates A magnifying optical system including a lens configured to obtain an intensity having a cylindrical lens, and a cylindrical lens on which a plane wave light beam emitted from the magnifying optical system is incident. The cylindrical lens propagates the incident plane wave light beam. On the surface perpendicular to the direction, the first direction has a refractive power for focusing, the second direction perpendicular to the first direction has no refractive power, and the first direction of the cylindrical lens It may be parallel to the direction in which the sound wave propagates.
 前記音響光学撮像装置は、拡大光学系とシリンドリカルレンズの間に配置される光学開口をさらに含んでいてもよい。 The acousto-optic imaging device may further include an optical aperture disposed between the magnifying optical system and the cylindrical lens.
 前記超音波が前記物体を透過することによって、前記発生した散乱超音波が前記音響開口から前記音響光学媒質部に入射するように、前記超音波源および前記音響光学媒質部が前記物体に対して配置されてもよい。 The ultrasonic source and the acousto-optic medium part are directed to the object so that the generated scattered ultrasonic wave enters the acousto-optic medium part from the acoustic aperture when the ultrasonic wave passes through the object. It may be arranged.
 前記物体で前記超音波が反射することによって、前記発生した散乱超音波が前記音響開口から前記音響光学媒質部に入射するように、前記超音波源および前記音響光学媒質部が前記物体に対して配置されてもよい。 The ultrasonic source and the acousto-optic medium part are directed to the object so that the generated scattered ultrasound is incident on the acousto-optic medium part from the acoustic aperture by reflecting the ultrasonic wave on the object. It may be arranged.
 前記音響光学撮像装置は、前記ウェッジ光源から出射するウェッジ光束を反射させて前記音響光学媒質部に入射させる入射側ミラーと、前記音響光学媒質部で生じた回折光を反射させて前記結像光学系に入射させる出射側ミラーとをさらに備えていてもよい。 The acousto-optic imaging device includes an incident-side mirror that reflects a wedge light beam emitted from the wedge light source and enters the acousto-optic medium unit, and reflects diffracted light generated in the acousto-optic medium unit to reflect the imaging optics. An exit-side mirror that enters the system may be further included.
 前記音響光学撮像装置は、前記撮像部から前記電気信号を受け取り、前記撮影された像の画像上の、前記散乱超音波の伝搬する方向における輝度むらが低減するように前記画像を調整する信号処理部をさらに備えていてもよい。 The acousto-optic imaging device receives the electrical signal from the imaging unit, and performs signal processing for adjusting the image so that luminance unevenness in the direction in which the scattered ultrasound propagates on the image of the captured image is reduced. A part may be further provided.
 (第1の実施形態)
 以下、本発明の音響光学撮像装置100の第1の実施形態を説明する。図1は、第1の実施形態による音響光学撮像装置100の構成を示す概略図である。
(First embodiment)
Hereinafter, a first embodiment of the acoustooptic imaging device 100 of the present invention will be described. FIG. 1 is a schematic diagram illustrating a configuration of an acousto-optic imaging device 100 according to the first embodiment.
 (音響光学撮像装置100の構成)
 音響光学撮像装置100は、ウェッジ光源1と、音響光学媒質部2と、結像光学系3と、撮像部4と、超音波源5とを備える。なお、以後、図1に示すように、ウェッジ光束8の伝搬方向(光軸)をz軸とし、物体6と音響光学媒質部2の接する面である音響開口203に垂直な方向をy軸とし、y軸とz軸に垂直な方向である紙面に垂直な方向をx軸として説明する。
(Configuration of acousto-optic imaging device 100)
The acousto-optic imaging device 100 includes a wedge light source 1, an acousto-optic medium unit 2, an imaging optical system 3, an imaging unit 4, and an ultrasonic source 5. Hereinafter, as shown in FIG. 1, the propagation direction (optical axis) of the wedge light beam 8 is the z axis, and the direction perpendicular to the acoustic aperture 203 that is the surface where the object 6 and the acoustooptic medium unit 2 are in contact is the y axis. In the following description, the direction perpendicular to the paper plane, which is the direction perpendicular to the y-axis and the z-axis, is defined as the x-axis.
 超音波源5は、撮像時において物体6に対して接するように配置され、物体6の内部に超音波7を出力する。超音波7は物体6内部を伝搬し、物体6中に音響特性(インピーダンス)が異なる部分6aが存在すると、部分6aにおいて散乱超音波7aが生じる。音響光学媒質部2は、撮像時において音響開口203を介して物体6に対して接するように配置され、物体6中で生じた散乱超音波7aを内部に取り込む。物体6中で生じた散乱超音波7aは音響光学媒質部2の内部に取り込まれ、物体6の情報を強度や位相分布に持つ散乱超音波7bが音響光学媒質201中を伝搬する。 The ultrasonic source 5 is arranged so as to be in contact with the object 6 at the time of imaging, and outputs the ultrasonic wave 7 inside the object 6. The ultrasonic wave 7 propagates inside the object 6, and when the part 6 a having different acoustic characteristics (impedance) exists in the object 6, the scattered ultrasonic wave 7 a is generated in the part 6 a. The acoustooptic medium unit 2 is disposed so as to be in contact with the object 6 through the acoustic aperture 203 at the time of imaging, and takes in the scattered ultrasonic waves 7 a generated in the object 6. Scattered ultrasonic waves 7 a generated in the object 6 are taken into the acoustooptic medium unit 2, and scattered ultrasonic waves 7 b having information on the object 6 in intensity and phase distribution propagate through the acoustooptic medium 201.
 ウェッジ光源1は、音響光学媒質部2に向けてウェッジ光束8を出射する。ウェッジ光束8は、図1のy方向に収束して焦点を持ち、かつ、x方向には収束せずに平行伝搬する。また、ウェッジ光束8の焦点は、音響光学媒質部2を挟んでウェッジ光源1の反対側つまり、音響光学媒質部2と結像光学系3との間に位置する。また、ウェッジ光束8の、y方向における光強度は、音響開口203から距離に応じて単調に増加する。 The wedge light source 1 emits a wedge light beam 8 toward the acousto-optic medium unit 2. The wedge light beam 8 converges in the y direction in FIG. 1 to have a focal point, and propagates in parallel without converging in the x direction. Further, the focal point of the wedge light beam 8 is located on the opposite side of the wedge light source 1 across the acoustooptic medium unit 2, that is, between the acoustooptic medium unit 2 and the imaging optical system 3. Further, the light intensity of the wedge light beam 8 in the y direction monotonously increases according to the distance from the acoustic aperture 203.
 音響光学媒質部2を散乱超音波7bが伝搬すると、散乱超音波7bが粗密波であることによって音響光学媒質部2に粗密分布が生じる。この粗密分布は、ウェッジ光束8に対して回折格子として機能し、-1次回折光束8a、0次回折光束8bおよび+1次回折光束8cが生成する。-1次回折光束8aおよび+1次回折光束8cは、焦点面9において集束し、物体6の像を形成する。ここで、焦点面9とは、ウェッジ光束8の焦点を通り、ウェッジ光束8の伝搬方向に対して垂直な面(xy平面)のことをいう。 When the scattered ultrasonic wave 7b propagates through the acousto-optic medium unit 2, the scattered ultrasonic wave 7b is a dense wave, so that a coarse-dense distribution is generated in the acousto-optic medium unit 2. This density distribution functions as a diffraction grating for the wedge light beam 8, and a −1st order diffracted light beam 8a, a 0th order diffracted light beam 8b, and a + 1st order diffracted light beam 8c are generated. The −1st order diffracted light beam 8 a and the + 1st order diffracted light beam 8 c are focused on the focal plane 9 to form an image of the object 6. Here, the focal plane 9 refers to a plane (xy plane) that passes through the focal point of the wedge beam 8 and is perpendicular to the propagation direction of the wedge beam 8.
 焦点面9で結像される像は不完全であり、ウェッジ光束8が集束する方向(y方向)においては像を形成しているが、ウェッジ光束8が平行伝搬する方向(x方向)においては像を形成していない。結像光学系3は、音響光学媒質部2を挟んでウェッジ光源1と対向する位置に配置されている。音響光学媒質部2を透過した-1次回折光束8aおよび+1次回折光束8cは、結像光学系3に入射し、結像光学系3によって、x方向においても集束し、像を形成する。つまり、-1次回折光束8aおよび+1次回折光束8cで形成される物体6の不完全な像は、結像光学系3により結像面91において完全な像として形成される。撮像部4は、結像光学系3により形成された-1次回折光束8aあるいは+1次回折光束8cによる像を撮影し、電気信号に変換する。以下、各構成要素を詳細に説明する。 The image formed on the focal plane 9 is incomplete and forms an image in the direction in which the wedge beam 8 is converged (y direction), but in the direction in which the wedge beam 8 is propagated in parallel (x direction). The image is not formed. The imaging optical system 3 is disposed at a position facing the wedge light source 1 with the acousto-optic medium unit 2 interposed therebetween. The −1st order diffracted light beam 8a and the + 1st order diffracted light beam 8c transmitted through the acoustooptic medium unit 2 enter the imaging optical system 3, and are also converged in the x direction by the imaging optical system 3 to form an image. That is, an incomplete image of the object 6 formed by the −1st order diffracted light beam 8 a and the + 1st order diffracted light beam 8 c is formed as a complete image on the image forming surface 91 by the image forming optical system 3. The imaging unit 4 captures an image of the −1st order diffracted light beam 8a or + 1st order diffracted light beam 8c formed by the imaging optical system 3, and converts the image into an electrical signal. Hereinafter, each component will be described in detail.
 (ウェッジ光源1)
 ウェッジ光源1は、単色光によるウェッジ光束8を出射する。ウェッジ光束8は、図2(a)に示すように、ウェッジ光束8が伝搬するz方向および散乱超音波が伝搬するy方向に平行なyz平面(第1断面)においては焦点面9で焦点を結び、図2(b)に示すようにxz平面(第2断面)においては平行に伝搬して焦点を結ばない。ウェッジ光束8はz方向に伝搬するのでy方向に集束し、x方向には集束しないといえる。ウェッジ光束8の焦点面9の位置は、ウェッジ光源1に対して、音響光学媒質部2を挟んだ反対側、つまり音響光学媒質部2と結像光学系3との間に位置する。また、ウェッジ光束8のx-y断面内における光強度分布は、音響光学媒質部2内のy方向において一様ではなく分布を持っている。具体的には、y軸の音響開口203からの距離が大きくなるほど光強度が大きくなる。言い換えれば、y方向における光強度は、音響開口203からの距離に応じて単調に増加する。ウェッジ光束8のy方向における光強度の分布は線形関数で規定されてもよいし、2次関数、3次関数などのn次関数で規定されてもよい。また指数関数で規定されてもよい。
(Wedge light source 1)
The wedge light source 1 emits a wedge light beam 8 of monochromatic light. As shown in FIG. 2A, the wedge light beam 8 is focused on the focal plane 9 in the yz plane (first cross section) parallel to the z direction in which the wedge light beam 8 propagates and the y direction in which the scattered ultrasonic waves propagate. Finally, as shown in FIG. 2B, in the xz plane (second cross section), the light propagates in parallel and does not focus. Since the wedge light beam 8 propagates in the z direction, it can be said that it converges in the y direction and does not converge in the x direction. The position of the focal plane 9 of the wedge light beam 8 is located opposite to the wedge light source 1 with the acoustooptic medium unit 2 interposed therebetween, that is, between the acoustooptic medium unit 2 and the imaging optical system 3. Further, the light intensity distribution in the xy section of the wedge light beam 8 is not uniform in the y direction in the acoustooptic medium unit 2 but has a distribution. Specifically, the light intensity increases as the distance from the y-axis acoustic aperture 203 increases. In other words, the light intensity in the y direction increases monotonously according to the distance from the acoustic aperture 203. The light intensity distribution in the y direction of the wedge light beam 8 may be defined by a linear function, or may be defined by an n-order function such as a quadratic function or a cubic function. Further, it may be defined by an exponential function.
 ウェッジ光源1は、たとえば、図2(a)および(b)に示すように、レーザー光源10、拡大光学系11、光学開口12、第1のシリンドリカルレンズ13、および減光フィルター14を含む。レーザー光源10は単色光波81を出射し、拡大光学系11に入射する。拡大光学系11は、レーザー光源10から出射した単色光波の口径を拡大し、拡大された口径を有する平面波光束82を出射する。平面波光束82は光学開口12を通り、減光フィルター14を介して第1のシリンドリカルレンズ13に入射される。この際、平面波光束82は、y方向に透過率の分布を持つ減光フィルター14を透過することにより、y方向において光強度の分布を持つ。y方向において、音響開口203からの距離に応じて単調に透過率が大きくなる減光フィルター14を用いることによって、減光フィルター14を透過した平面波光束83は、y軸方向において、音響開口203からの距離に応じて単調に光強度が増加する特性を有することができる。 The wedge light source 1 includes, for example, a laser light source 10, a magnifying optical system 11, an optical aperture 12, a first cylindrical lens 13, and a neutral density filter 14, as shown in FIGS. 2 (a) and 2 (b). The laser light source 10 emits a monochromatic light wave 81 and enters the magnifying optical system 11. The magnifying optical system 11 enlarges the diameter of the monochromatic light wave emitted from the laser light source 10 and emits a plane wave light beam 82 having the enlarged diameter. The plane wave light beam 82 passes through the optical aperture 12 and enters the first cylindrical lens 13 via the neutral density filter 14. At this time, the plane wave light beam 82 has a light intensity distribution in the y direction by passing through the neutral density filter 14 having a transmittance distribution in the y direction. By using the neutral density filter 14 whose transmittance increases monotonously in accordance with the distance from the acoustic aperture 203 in the y direction, the plane wave light beam 83 transmitted through the neutral density filter 14 is transmitted from the acoustic aperture 203 in the y axis direction. The light intensity can be monotonously increased according to the distance.
 シリンドリカルレンズ13は、平面波光束83がy方向において音響光学媒質部2を透過後、焦点面9上で焦点を結ぶよう設定されている。x方向においては屈折力を持たず、拡大光学系11通過後の平面波光束83は平行のまま音響光学媒質部2を透過し、焦点面9においても像を形成しない。これにより、y方向における光強度が音響開口203からの距離に応じて単調に増加するウェッジ光束8を得る。 The cylindrical lens 13 is set so that the plane wave light beam 83 is focused on the focal plane 9 after passing through the acoustooptic medium unit 2 in the y direction. The plane wave light beam 83 having no refractive power in the x direction and passing through the magnifying optical system 11 passes through the acoustooptic medium unit 2 while being parallel, and does not form an image on the focal plane 9. Thereby, the wedge light flux 8 whose light intensity in the y direction monotonously increases according to the distance from the acoustic aperture 203 is obtained.
 なお、ウェッジ光源1は、必ずしも図2の構成である必要はなく、減光フィルター14の位置は、拡大光学系11とシリンドリカルレンズ13との間に限られない。たとえば、図3(a)に示すように、減光フィルター14はシリンドリカルレンズ13と音響光学媒質部2との間であってもよい。 Note that the wedge light source 1 is not necessarily configured as shown in FIG. 2, and the position of the neutral density filter 14 is not limited to between the magnifying optical system 11 and the cylindrical lens 13. For example, as shown in FIG. 3A, the neutral density filter 14 may be between the cylindrical lens 13 and the acoustooptic medium unit 2.
 また、ウェッジ光束8がy方向における光強度が音響開口203からの距離に応じて単調に増加する特性を備えていれば、このような光強度分布は減光フィルター14以外の光学素子によって実現してもよい。たとえば、減光フィルター14の代わりにy方向において透過率を制御することが可能な液晶素子を用いてもよい。また、レーザー光源10から出射した単色光波が予めy軸方向に所望の光強度分布を有していてもよい。たとえば、特開2012-168328号公報および特開2012-022252号公報に開示されるように、レーザー光源10から出射した単色光波を非球面レンズなどの光学素子を透過させることによって、y方向における光強度の分布を実現してもよい。 In addition, if the wedge light beam 8 has a characteristic that the light intensity in the y direction monotonously increases according to the distance from the acoustic aperture 203, such a light intensity distribution is realized by an optical element other than the neutral density filter 14. May be. For example, a liquid crystal element capable of controlling the transmittance in the y direction may be used instead of the neutral density filter 14. Further, the monochromatic light wave emitted from the laser light source 10 may have a desired light intensity distribution in the y-axis direction in advance. For example, as disclosed in Japanese Patent Application Laid-Open Nos. 2012-168328 and 2012-022252, a monochromatic light wave emitted from the laser light source 10 is transmitted through an optical element such as an aspheric lens so that light in the y direction can be obtained. An intensity distribution may be realized.
 (超音波源5)
 超音波源5は、撮像時には物体6に接して配置される。超音波源5は、超音波信号源51からの信号を受けて、物体6に対して複数波の同一正弦波形からなる連続波あるいはパルス状の超音波7を物体6に入射する。複数波の同一正弦波形からなる超音波7とは、振幅および周波数が一定の正弦波形が常時あるいは一定時間連続する時間波形をもつ超音波を意味する。また、超音波7は、物体6の撮像したい領域を、概ね均一な照度で照射する。なお、超音波源5が物体6に入射する超音波7は平面波でなくてもよい。
(Ultrasonic source 5)
The ultrasonic source 5 is disposed in contact with the object 6 during imaging. The ultrasonic source 5 receives a signal from the ultrasonic signal source 51 and makes the object 6 enter the object 6 with continuous waves or pulsed ultrasonic waves 7 having the same sine waveform. The ultrasonic wave 7 composed of a plurality of waves having the same sine waveform means an ultrasonic wave having a time waveform in which a sine waveform having a constant amplitude and frequency is continuously or continuously for a fixed time. Moreover, the ultrasonic wave 7 irradiates the area of the object 6 to be imaged with a substantially uniform illuminance. Note that the ultrasonic wave 7 incident from the ultrasonic wave source 5 to the object 6 may not be a plane wave.
 パルス状の超音波7を用いる場合、時間波形の継続時間は、搬送周波数の逆数(周期)以上に設定されることが好ましい。 When using pulsed ultrasonic waves 7, the duration of the time waveform is preferably set to be equal to or greater than the reciprocal (cycle) of the carrier frequency.
 超音波源5が物体6に入射する超音波7は、正弦波を搬送波とする音響信号に限らず、方形波やノコギリ波などの正弦波ではない波形の繰り返し信号からなる超音波信号であっても良い。なお、超音波源5から出力される超音波7が効率よく物体6内へ入射するように超音波ゲルなどの整合材を用いて超音波源5と物体6との密着性を高めても良い。 The ultrasonic wave 7 incident on the object 6 by the ultrasonic wave source 5 is not limited to an acoustic signal having a sine wave as a carrier wave, but is an ultrasonic signal composed of a repetitive signal having a waveform other than a sine wave such as a square wave or a sawtooth wave. Also good. Note that the adhesion between the ultrasonic source 5 and the object 6 may be improved by using an alignment material such as an ultrasonic gel so that the ultrasonic wave 7 output from the ultrasonic source 5 is efficiently incident into the object 6. .
 (物体6)
 物体6は、超音波の伝搬減衰が極端に大きくない材料で構成される。物体6の一例は生体であり、この場合、部分6aは物体6内の組織や臓器であってよい。また物体6は、水などの液体であり、部分6aは液体内に配置された他の物体であってよい。
(Object 6)
The object 6 is made of a material whose ultrasonic wave propagation attenuation is not extremely large. An example of the object 6 is a living body. In this case, the portion 6a may be a tissue or an organ in the object 6. The object 6 may be a liquid such as water, and the portion 6a may be another object arranged in the liquid.
 (超音波7)
 物体6に入射した超音波7は、物体6中を伝搬する。物体6内に物体6を構成する物質と音響特性が異なる部分6aが存在する場合、部分6aにおいて、超音波7が反射、または、透過する際、同一周波数を持つ散乱超音波7aが生成する。散乱超音波7aは、音響開口203から音響光学媒質部2に入射し、音響光学媒質部2の内部を伝搬する。音響光学媒質部2の内部を伝搬する散乱超音波7bは、物体6の情報を反映した強度や位相分布を持つ。
(Ultrasonic 7)
The ultrasonic wave 7 incident on the object 6 propagates through the object 6. When there is a portion 6a having different acoustic characteristics from the substance constituting the object 6 in the object 6, when the ultrasonic wave 7 is reflected or transmitted through the portion 6a, a scattered ultrasonic wave 7a having the same frequency is generated. The scattered ultrasonic wave 7 a is incident on the acoustooptic medium unit 2 through the acoustic aperture 203 and propagates inside the acoustooptic medium unit 2. The scattered ultrasonic wave 7 b propagating through the acousto-optic medium unit 2 has intensity and phase distribution reflecting the information of the object 6.
 (音響光学媒質部2)
 音響光学媒質部2は、音響光学媒質201と、セル202とを含み、音響光学媒質201はセル202に内包されている。音響光学媒質部2は、物体6を撮影する際には、音響開口203において物体6と接するように配置される。音響開口203が物体6に接して配置されることにより、物体6からの散乱超音波7aが音響光学媒質部2の内部に取り込まれる。散乱超音波7aを効率よく音響光学媒質部2内に伝搬させるため、物体6と音響光学媒質部2との間に、超音波ゲルなどの整合材を配置したり、音響整合層を配置してもよい。
(Acousto-optic medium part 2)
The acoustooptic medium unit 2 includes an acoustooptic medium 201 and a cell 202, and the acoustooptic medium 201 is included in the cell 202. The acoustooptic medium unit 2 is disposed so as to be in contact with the object 6 at the acoustic aperture 203 when the object 6 is photographed. By arranging the acoustic aperture 203 in contact with the object 6, the scattered ultrasonic wave 7 a from the object 6 is taken into the acoustooptic medium unit 2. In order to efficiently propagate the scattered ultrasonic wave 7 a into the acoustooptic medium unit 2, a matching material such as an ultrasonic gel or an acoustic matching layer is arranged between the object 6 and the acoustooptic medium unit 2. Also good.
 散乱超音波7bは、図1において、y軸方向に伝搬する。この方向は、散乱超音波7aが音響開口203に垂直に入射する場合、音響開口203を構成する面に垂直であり、音響開口203の法線方向である。 The scattered ultrasound 7b propagates in the y-axis direction in FIG. This direction is perpendicular to the surface constituting the acoustic aperture 203 and is the normal direction of the acoustic aperture 203 when the scattered ultrasonic wave 7 a is incident on the acoustic aperture 203 perpendicularly.
 散乱超音波7bは縦波であるため、音響光学媒質201を散乱超音波7bが伝搬すると、音響光学媒質201の音圧分布、すなわち、散乱超音波7bの波面に一致した屈折率分布が音響光学媒質201に生成される。ある瞬間においては、音響光学媒質201中に生成される屈折率分布は超音波の波長で繰り返される正弦波状の回折格子となる。 Since the scattered ultrasound 7b is a longitudinal wave, when the scattered ultrasound 7b propagates through the acoustooptic medium 201, the sound pressure distribution of the acoustooptic medium 201, that is, the refractive index distribution that matches the wavefront of the scattered ultrasound 7b is acoustooptic. It is generated in the medium 201. At a certain moment, the refractive index distribution generated in the acousto-optic medium 201 becomes a sinusoidal diffraction grating that is repeated at the wavelength of the ultrasonic wave.
 ウェッジ光束8が散乱超音波7bの伝搬方向に対して非平行に入射すると、ウェッジ光束8は、音響光学媒質201中の屈折率分布が形成する回折格子により回折し、回折光束が発生する。図1では簡単のため、-1次回折光束8a、0次回折光束8b、+1次回折光束8cのみを図示している。一般に、回折光はBragg回折光とRaman-Nath回折光を含むが、クライン・クックのパラメータQがQ>>1を満たすBragg領域においては、Bragg回折光が主要な回折光となる。その場合、生成する回折光は-1次回折光束8a、0次回折光束8b、および+1次回折光束8cのみとなり、高次回折光が発生しないことにより光のエネルギーロスが少ない。このため、Bragg領域で動作させれば、本実施形態の音響光学撮像装置は、高い感度で物体の内部を観察できる。この時、回折光の輝度は、回折格子の屈折率の変化量、すなわち、超音波の音圧に比例する。なお、クライン・クックのパラメータQは次式で表せる。
Figure JPOXMLDOC01-appb-M000001

ここで、Lは超音波と光波の相互作用長を表し、λは光波の波長を、fは超音波の周波数を、nは屈折率を、Vは音速を示している。ただし、本実施形態の音響光学撮像装置は、Raman-Nath回折光を主として含むような回折条件で動作させてもよい。
When the wedge light beam 8 is incident non-parallel to the propagation direction of the scattered ultrasonic wave 7b, the wedge light beam 8 is diffracted by the diffraction grating formed by the refractive index distribution in the acoustooptic medium 201, and a diffracted light beam is generated. In FIG. 1, only the −1st order diffracted light beam 8a, the 0th order diffracted light beam 8b, and the + 1st order diffracted light beam 8c are shown for simplicity. In general, diffracted light includes Bragg diffracted light and Raman-Nath diffracted light. In the Bragg region where Klein Cook's parameter Q satisfies Q >> 1, Bragg diffracted light is the main diffracted light. In this case, the diffracted light to be generated is only the −1st order diffracted light beam 8a, the 0th order diffracted light beam 8b, and the + 1st order diffracted light beam 8c, and light energy loss is small because no high order diffracted light is generated. For this reason, if it is operated in the Bragg region, the acousto-optic imaging device of the present embodiment can observe the inside of the object with high sensitivity. At this time, the brightness of the diffracted light is proportional to the amount of change in the refractive index of the diffraction grating, that is, the sound pressure of the ultrasonic waves. The Klein Cook parameter Q can be expressed by the following equation.
Figure JPOXMLDOC01-appb-M000001

Here, L represents the interaction length between the ultrasonic wave and the light wave, λ represents the wavelength of the light wave, f represents the frequency of the ultrasonic wave, n represents the refractive index, and V represents the speed of sound. However, the acousto-optic imaging device of the present embodiment may be operated under a diffraction condition mainly including Raman-Nath diffracted light.
 散乱超音波7bは、ウェッジ光束8と接触した後も音響光学媒質部2内を伝搬し続ける。しかし、音響光学媒質部2の端で反射して再度ウェッジ光束8に接触すると、像の取得を妨げる可能性がある。そのため、音響光学媒質部2の音響開口203と反対側の端部に音波吸収端204を設け、散乱超音波7bが反射するのを抑制してもよい。 The scattered ultrasonic wave 7 b continues to propagate through the acousto-optic medium unit 2 even after contacting the wedge light beam 8. However, if the light is reflected at the end of the acousto-optic medium portion 2 and again comes into contact with the wedge light beam 8, there is a possibility that the acquisition of the image is hindered. For this reason, a sound wave absorption end 204 may be provided at the end of the acousto-optic medium unit 2 opposite to the acoustic opening 203 to suppress reflection of the scattered ultrasonic waves 7b.
 セル202および音響光学媒質201は、ウェッジ光束8を入射できるようにレーザー光源10が出力する光波の波長に対して透明な材料で構成されている。たとえば、セル202としてはガラスセルを用いることが可能である。 The cell 202 and the acousto-optic medium 201 are made of a material that is transparent with respect to the wavelength of the light wave output from the laser light source 10 so that the wedge light beam 8 can enter. For example, a glass cell can be used as the cell 202.
 音響光学媒質201としては、レーザー光源10が出力する光波の波長に対して透明な水、フッ素系液体材料、シリカナノ多孔体などを用いることができる。音響光学撮像装置100によって高解像度の画像を取得する場合、音響光学媒質201として、できる限り低音速な媒質を用いることが好ましい。特に、物体が生体である場合、物体を伝搬する超音波の吸収による減衰を抑制するため、10MHz以下の周波数の超音波を用いることが好ましい。この場合、Bragg回折が発生するために、水よりも低音速な媒質を用いることが好ましい。より具体的には、フッ素系液体材料を用いることが好ましい。たとえば、水の音速は1500m/secであるのに対して、住友スリーエム株式会社製NovecTM7200(ハイドロフルオロエーテル)の音速は630m/secである。また、NovecTM7000、NovecTM7100、NovecTM7200、NovecTM7300、フロリナートTMFC-72およびFC-3283などのフッ素系液体材料も同様に音速の遅い材料である。また、シリカナノ多孔体の音速も50~250m/secと遅く、音響光学媒質201として用いるのに好ましい材料である。 As the acousto-optic medium 201, water transparent to the wavelength of the light wave output from the laser light source 10, a fluorine-based liquid material, a silica nanoporous material, or the like can be used. When a high-resolution image is acquired by the acousto-optic imaging device 100, it is preferable to use a medium with the lowest possible sound velocity as the acousto-optic medium 201. In particular, when the object is a living body, it is preferable to use an ultrasonic wave having a frequency of 10 MHz or less in order to suppress attenuation due to absorption of the ultrasonic wave propagating through the object. In this case, since Bragg diffraction occurs, it is preferable to use a medium having a lower sound velocity than water. More specifically, it is preferable to use a fluorinated liquid material. For example, the speed of sound of water is 1500 m / sec, whereas the speed of sound of NovecTM 7200 (hydrofluoroether) manufactured by Sumitomo 3M Limited is 630 m / sec. Fluorine-based liquid materials such as Novec ™ 7000, Novec ™ 7100, Novec ™ 7200, Novec ™ 7300, Fluorinert TMFC-72 and FC-3283 are also materials having a low sound velocity. Further, the sound speed of the silica nanoporous material is as low as 50 to 250 m / sec, which is a preferable material for use as the acoustooptic medium 201.
(回折光束8a、8c)
 物体6内部の情報を持つ散乱超音波7bとウェッジ光束8が音響光学媒質201中で作用することにより生じた-1次回折光束8aおよび+1次回折光束8cは、ウェッジ光束8の焦点に位置し、ウェッジ光束の伝搬方向に対して垂直な焦点面9において、y方向に収束し、物体6の光学像を形成する。ただし、この際生じる物体6の光学像はx方向においては像を形成していない。また、以下において詳細に説明するように、焦点面9には、物体6のx-z平面における光学像がx方向において像を形成しない状態で生成する。
( Diffraction beam 8a, 8c)
The −1st order diffracted light beam 8 a and the + 1st order diffracted light beam 8 c generated by the action of the scattered ultrasonic wave 7 b having information inside the object 6 and the wedge light beam 8 in the acoustooptic medium 201 are located at the focal point of the wedge light beam 8. In the focal plane 9 perpendicular to the propagation direction of the wedge beam, the light converges in the y direction and forms an optical image of the object 6. However, the optical image of the object 6 generated at this time does not form an image in the x direction. As will be described in detail below, an optical image of the object 6 on the xz plane is generated on the focal plane 9 without forming an image in the x direction.
 (結像光学系3)
 音響光学媒質部2を透過した-1次回折光束8aおよび+1次回折光束8cは結像光学系3に入射する。-1次回折光束8aおよび+1次回折光束8cが結像光学系3を透過することにより、x方向においても像を形成し、結像面91上においてx方向およびy方向のいずれの方向にも像を形成している完全な光学像が生成する。
(Imaging optical system 3)
The −1st order diffracted light beam 8 a and the + 1st order diffracted light beam 8 c that have passed through the acoustooptic medium unit 2 enter the imaging optical system 3. The −1st-order diffracted light beam 8a and the + 1st-order diffracted light beam 8c pass through the imaging optical system 3, thereby forming an image in the x direction and on the imaging surface 91 in both the x direction and the y direction. A complete optical image forming the image is produced.
 結像光学系3は、たとえば図1に示すようにシリンドリカルレンズ3aおよびシリンドリカルレンズ3bを含む。シリンドリカルレンズ3aは、y方向に屈折力を持ちx方向に屈折力を持たないように配置される。シリンドリカルレンズ3bは、x方向に屈折力を持ち、y方向に屈折力を持たないように配置される。 The imaging optical system 3 includes, for example, a cylindrical lens 3a and a cylindrical lens 3b as shown in FIG. The cylindrical lens 3a is arranged so as to have a refractive power in the y direction and no refractive power in the x direction. The cylindrical lens 3b is arranged so as to have a refractive power in the x direction and no refractive power in the y direction.
 焦点面9を通過した0次回折光束8bも同様に、結像光学系3のシリンドリカルレンズ3aによってy方向に収束され、結像面91上のy方向において焦点を結ぶ。また、シリンドリカルレンズ3bによってx方向に収束され結像面91で焦点を結ぶ。 Similarly, the 0th-order diffracted light beam 8 b that has passed through the focal plane 9 is converged in the y direction by the cylindrical lens 3 a of the imaging optical system 3 and focused in the y direction on the imaging plane 91. Further, the light is converged in the x direction by the cylindrical lens 3 b and focused on the image plane 91.
(撮像部4)
 撮像部4は、結像面91において-1次回折光束8aまたは+1次回折光束8cによる光学像を撮影し、電気信号に変換する。これにより、物体6内部の情報を超音波で検出し、光学像として取得することができる。以下において説明するように、撮像部4は、物体6の内部の、任意のy方向におけるxz平面の光学像を撮影する。異なるy方向の位置におけるxz平面の光学像は時刻をずらして得ることができる。このため、たとえば、異なるy方向の位置におけるxz平面の光学像を示す撮像部4からの電気信号を記憶しておけば、物体6内部の3次元の光学画像を表示装置等に表示させることも可能である。
(Imaging unit 4)
The imaging unit 4 takes an optical image of the −1st order diffracted light beam 8a or the + 1st order diffracted light beam 8c on the imaging surface 91 and converts it into an electrical signal. Thereby, the information inside the object 6 can be detected by ultrasonic waves and acquired as an optical image. As will be described below, the imaging unit 4 captures an optical image of the xz plane in an arbitrary y direction inside the object 6. Optical images on the xz plane at different y-direction positions can be obtained by shifting the time. Therefore, for example, if an electrical signal from the imaging unit 4 indicating an optical image of the xz plane at different y-direction positions is stored, a three-dimensional optical image inside the object 6 can be displayed on a display device or the like. Is possible.
 撮像部4に-1次回折光束8aまたは+1次回折光束8cのいずれかだけが入射するように、0次回折光束8bや受像しないもう一方の回折光束を遮光部15で遮断してもよい。 The light-shielding unit 15 may block the 0th-order diffracted light beam 8b or the other diffracted light beam that is not received so that only the −1st-order diffracted light beam 8a or the + 1st-order diffracted light beam 8c is incident on the imaging unit 4.
 撮像部4は、たとえばCCD素子やCMOS素子等の固体撮像素子であり、-1次回折光束8aまたは+1次回折光束8cによる回折像の光強度分布を、光学的画像として検出し、電気信号に変換する。 The imaging unit 4 is a solid-state imaging element such as a CCD element or a CMOS element, for example, and detects the light intensity distribution of the diffraction image by the −1st order diffracted light beam 8a or the + 1st order diffracted light beam 8c as an optical image and converts it into an electrical signal. Convert.
 (光学像の輝度むらについて)
 次に、本実施形態による音響光学撮像装置100の撮像部4において得られる光学像の輝度むらを、具体的な実施例を参照しながら説明する。
(About uneven brightness of optical image)
Next, the luminance unevenness of the optical image obtained in the imaging unit 4 of the acoustooptic imaging device 100 according to the present embodiment will be described with reference to specific examples.
 以下の実施例において、物体6は生体であり、超音波源5は2.5MHzの連続超音波を出射する。音響光学媒質部2のセル202としてテンパックス硝子による直方体セルを用い、セルを構成する硝子の厚さは1.1mmである。セル202の内部には音響光学媒質201として、音速100m/sのシリカナノ多孔体を充填する。シリカナノ多孔体は音速が比較的小さいため、音響光学媒質201中における超音波の波長は短くなり、回折角を大きくすることができる。また、テンパックスガラスならびにシリカナノ多孔体は、後述する波長633nmのHe-Neレーザー光に対して透明である。レーザー光源10として、波長633nmのHe-Neレーザーを用いる。波長633nmのHe-Neレーザーを用いた場合、2.5MHzの超音波により生じるシリカナノ多孔体中の回折格子で、回折角0.45°の位置に1次のBragg回折光が生じる。 In the following embodiments, the object 6 is a living body, and the ultrasonic source 5 emits a 2.5 MHz continuous ultrasonic wave. A rectangular parallelepiped cell made of Tempax glass is used as the cell 202 of the acoustooptic medium unit 2, and the thickness of the glass constituting the cell is 1.1 mm. The cell 202 is filled with a silica nanoporous material having an acoustic velocity of 100 m / s as the acoustooptic medium 201. Since the silica nanoporous material has a relatively low sound velocity, the wavelength of the ultrasonic wave in the acoustooptic medium 201 is shortened, and the diffraction angle can be increased. Tempax glass and silica nanoporous material are transparent to He—Ne laser light having a wavelength of 633 nm, which will be described later. As the laser light source 10, a He—Ne laser having a wavelength of 633 nm is used. When a He—Ne laser having a wavelength of 633 nm is used, first-order Bragg diffracted light is generated at a diffraction angle of 0.45 ° by a diffraction grating in a silica nanoporous material generated by 2.5 MHz ultrasonic waves.
 図4は、平面波の散乱超音波7aが音響光学媒質部2の内部に入射し、入射した散乱超音波7bがウェッジ光束8と接触することにより、回折角θB=0.45°の位置に+1次回折光束8cが発生する様子を示している。振幅や位相などに物体6中の物体の情報を持つ散乱超音波7bがウェッジ光束8と作用して回折することにより、+1次回折光束8cにおいて物体6の光学像が得られる。図4では、一様な強度の平面波の超音波7aが音響光学媒質部2に入射する様子を示している。一様な強度の平面波の超音波7aが入射することは、物体6の視野角内に一様な物体が存在して超音波7が一様に散乱されていることに相当する。この場合、得られる回折像の光強度は一様であることが好ましい。 FIG. 4 shows that a plane wave scattered ultrasonic wave 7 a is incident on the acoustooptic medium unit 2, and the incident scattered ultrasonic wave 7 b comes into contact with the wedge light beam 8, resulting in a diffraction angle θ B = 0.45 °. It shows how the + 1st order diffracted light beam 8c is generated. The scattered ultrasonic wave 7b having information on the object in the object 6 in amplitude and phase acts on the wedge light beam 8 and diffracts, whereby an optical image of the object 6 is obtained in the + 1st order diffracted light beam 8c. FIG. 4 shows a state where a plane wave ultrasonic wave 7 a having a uniform intensity is incident on the acoustooptic medium unit 2. The incidence of a plane wave ultrasonic wave 7 a having a uniform intensity corresponds to the presence of a uniform object within the viewing angle of the object 6 and the ultrasonic wave 7 being uniformly scattered. In this case, the light intensity of the obtained diffraction image is preferably uniform.
 以下、ウェッジ光束8が散乱超音波7bと接触して生じる回折光束1bの光強度分布を計算により求める。計算上、簡単のため、図4に示すようにウェッジ光束8を、焦点面9上で焦点を通る等間隔のn本の光線の集まりとして扱う。 Hereinafter, the light intensity distribution of the diffracted light beam 1b generated when the wedge light beam 8 contacts the scattered ultrasonic wave 7b is obtained by calculation. For simplicity in calculation, the wedge light beam 8 is treated as a collection of n light beams that pass through the focal point on the focal plane 9 as shown in FIG.
 音響光学媒質201において散乱超音波7bとウェッジ光束8が接触することにより生じる回折像は、各光線が散乱超音波7bで回折されて生じる回折光線を足し合わせたものである。図4は、z座標がz0,zm,zeであるz軸に垂直な面内おいて散乱超音波7bにより回折された各光線が、それぞれ焦点面9上のz’軸上の点z0’,zm’,ze’で像を形成する様子を示している。このz’軸はy軸と平行かつ反対向きである。焦点面9で形成された像は、y方向において像を形成しているが、x方向においては像を形成していない不完全な像である。この像は結像光学系3によってx方向に収束させることにより、結像面91上において物体6の像を形成する。このように、焦点面9には、物体6のx-z平面の光学像がx方向においては像を形成しない状態で生成する。 The diffraction image generated when the scattered ultrasonic wave 7b and the wedge light beam 8 contact each other in the acousto-optic medium 201 is a sum of diffracted light beams generated by diffracting each light beam by the scattered ultrasonic wave 7b. 4, z coordinate z 0, z m, the light beams diffracted by the scattered ultrasonic 7b are perpendicular plane leave the z-axis is z e are each point on z 'axis on the focal plane 9 It shows how an image is formed by z 0 ′, z m ′, and z e ′. The z ′ axis is parallel to and opposite to the y axis. The image formed on the focal plane 9 is an incomplete image that forms an image in the y direction but does not form an image in the x direction. This image is converged in the x direction by the imaging optical system 3 to form an image of the object 6 on the imaging surface 91. As described above, the optical image of the xz plane of the object 6 is generated on the focal plane 9 without forming an image in the x direction.
 なお、物体6から得られる散乱超音波7bの音響光学媒質部2へ到達する時刻は、物体6の各部のy軸方向の位置により異なる。たとえば、物体6の、y軸方向において、音響光学媒質部2の音響開口203から遠い位置にある部分からの散乱超音波7a’は、散乱超音波7aよりも遅れて音響光学媒質部2の音響開口203に到達する。散乱超音波7a’は、散乱超音波7b’として散乱超音波7bよりも遅れて音響光学媒質部2内を伝搬し、これにより、+1次回折光束8cより遅れて+1次回折光束8c’が生成する。このように、物体6の任意のy軸方向の深さにおける物体6のx-z平面の光学像は、異なる時刻において形成される。つまり、物体6のy軸方向の情報は、時間軸上に変換され焦点面9で形成される光学像に含まれる。 Note that the time at which the scattered ultrasonic wave 7b obtained from the object 6 reaches the acousto-optic medium part 2 varies depending on the position of each part of the object 6 in the y-axis direction. For example, the scattered ultrasonic wave 7 a ′ from the portion of the object 6 that is far from the acoustic aperture 203 of the acoustooptic medium unit 2 in the y-axis direction is delayed from the scattered ultrasonic wave 7 a by the acoustic of the acoustooptic medium unit 2. The opening 203 is reached. The scattered ultrasonic wave 7a ′ propagates as the scattered ultrasonic wave 7b ′ in the acousto-optic medium part 2 with a delay from the scattered ultrasonic wave 7b, thereby generating a + 1st order diffracted light beam 8c ′ later than the + 1st order diffracted light beam 8c. To do. In this way, optical images of the object 6 in the xz plane at an arbitrary depth in the y-axis direction are formed at different times. That is, information in the y-axis direction of the object 6 is included in the optical image formed on the focal plane 9 after being converted on the time axis.
 結像面91での像のy方向の光強度分布は、焦点面9上の-1次回折光束8aまたは+1次回折光束8cの像のy方向の光強度分布によって決まる。したがって、結像面91の光強度分布の均一性を検討するためには焦点面9での像の光強度分布を検討すればよい。 The light intensity distribution in the y direction of the image on the imaging plane 91 is determined by the light intensity distribution in the y direction of the image of the −1st order diffracted light beam 8a or the + 1st order diffracted light beam 8c on the focal plane 9. Therefore, in order to examine the uniformity of the light intensity distribution on the imaging plane 91, the light intensity distribution of the image on the focal plane 9 may be examined.
 まず、ウェッジ光束8がy方向において一様な強度を持つ場合について考える。各回折光強度Ikを式(1)に示す。
Figure JPOXMLDOC01-appb-M000002
First, consider the case where the wedge beam 8 has a uniform intensity in the y direction. Each diffracted light intensity I k is shown in Formula (1).
Figure JPOXMLDOC01-appb-M000002
 音響光学媒質201中の位置(y,z)における散乱超音波7bの音圧Pは式(2)のようにあらわせる。
Figure JPOXMLDOC01-appb-M000003

ここで、αは音響光学媒質201における超音波の伝搬減衰率を示し、P0はウェッジ光束8が音響光学媒質201に入射する位置(z0)で最も音響開口203に近い光線I1が散乱超音波7bと接触した位置における超音波の音圧を示している。
The sound pressure P of the scattered ultrasonic wave 7b at the position (y, z) in the acousto-optic medium 201 is expressed as shown in Expression (2).
Figure JPOXMLDOC01-appb-M000003

Here, α indicates the propagation attenuation rate of the ultrasonic wave in the acoustooptic medium 201, and P 0 is the scattered light ray I 1 closest to the acoustic aperture 203 at the position (z 0 ) where the wedge light beam 8 is incident on the acoustooptic medium 201. The sound pressure of the ultrasonic wave at the position in contact with the ultrasonic wave 7b is shown.
 焦点面9での回折像の光強度分布Iimage(z’)は、式(3)であらわせる。
Figure JPOXMLDOC01-appb-M000004

ここで、J1は1次のベッセル関数をあらわし、Δnは1Paの音圧により生じる屈折率の変化量を、λはウェッジ光束8の波長をあらわしている。
The light intensity distribution I image (z ′) of the diffracted image at the focal plane 9 is expressed by the following equation (3).
Figure JPOXMLDOC01-appb-M000004

Here, J 1 represents the first-order Bessel function, Δn represents the amount of change in the refractive index caused by the sound pressure of 1 Pa, and λ represents the wavelength of the wedge light beam 8.
 なお、音圧P0は、超音波源5から入射する超音波7の強度を変化させることで変化させることができる。たとえば、レーザー光源10の波長λ=633nmで、音響光学媒質201に屈折率変化Δn=1.0×10-7のシリカナノ多孔体を用いる場合では、音圧P0を10070Paとすれば、式(3)は、式(4)のようになる。
Figure JPOXMLDOC01-appb-M000005
The sound pressure P 0 can be changed by changing the intensity of the ultrasonic wave 7 incident from the ultrasonic source 5. For example, in the case of using a silica nanoporous material with a wavelength λ = 633 nm of the laser light source 10 and a refractive index change Δn = 1.0 × 10 −7 for the acoustooptic medium 201, if the sound pressure P 0 is 10070 Pa, the formula ( 3) becomes as shown in Equation (4).
Figure JPOXMLDOC01-appb-M000005
 なお、音響光学媒質201が水やフッ素系液体材料など他のものであっても、音圧P0を調整することで回折光強度分布は式(4)のようになるので、以後の検討には式(4)を用いる。 Even if the acousto-optic medium 201 is another material such as water or a fluorinated liquid material, the diffracted light intensity distribution is expressed by the equation (4) by adjusting the sound pressure P 0. Uses equation (4).
 音響光学媒質201に入射した位置(z0)でのウェッジ光束8の高さHを5mm、音響光学媒質201の幅Lを10mm、音響光学媒質201からウェッジ光束8が出射する位置(ze)から焦点面9までの距離をδL=1mmとすると、光線Ikのz座標とy座標は式(5)の関係で表せる。
Figure JPOXMLDOC01-appb-M000006
Position incident on the acousto-optic medium 201 (z 0) position 5mm height H of the wedge beam 8, 10 mm width L of the acousto-optic medium 201, the wedge beam 8 from the acousto-optic medium 201 emits at (z e) If the distance from the focal plane 9 to δL = 1 mm, the z-coordinate and y-coordinate of the light ray I k can be expressed by the relationship of the equation (5).
Figure JPOXMLDOC01-appb-M000006
 まず、超音波の伝搬減衰率αが非常に小さく無視しうる場合について考える。たとえば、音響光学媒質201の材料として水を用いて、超音波の周波数を10MHz以下程度とした場合などはこのケースに相当する。なお、計算時にはウェッジ光束8の光線数n=100本とした。α=0とした場合の回折像の光強度分布の計算結果を図5に示す。図5の縦軸の光強度分布はZ0’での光強度が1となるように規格化したものであるが、この計算結果からは、回折像強度が一様に分布していることが確認でき、超音波の伝搬減衰率αが非常に小さい場合には良好な像が得られることが分かる。 First, consider the case where the ultrasonic wave propagation attenuation rate α is very small and can be ignored. For example, this is the case when water is used as the material of the acousto-optic medium 201 and the ultrasonic frequency is about 10 MHz or less. In the calculation, the number of rays n of the wedge beam 8 was set to 100. FIG. 5 shows the calculation result of the light intensity distribution of the diffraction image when α = 0. The light intensity distribution on the vertical axis in FIG. 5 is normalized so that the light intensity at Z 0 ′ is 1, but from this calculation result, it can be seen that the diffraction image intensity is uniformly distributed. It can be confirmed that a good image can be obtained when the ultrasonic wave propagation attenuation rate α is very small.
 次に、超音波の伝搬減衰率αが大きい場合を考える。たとえば、音響光学媒質201の材料としてシリカ乾燥ゲルやフッ素系液体材料を用いる場合には、水を用いる場合に比較して大きな伝搬減衰が存在する。本実施例で音響光学媒質201として用いるシリカ乾燥ゲルにおいて周波数2.5MHzで伝搬減衰率αを計測したところ、およそ-1.24Np/mmであった。この場合の回折像の光強度分布の計算結果を図6に示す。この計算結果においては、回折像の光強度の最小値は最大値のおよそ8%程度であり、回折光の強度分布が一様でなく、むらがあることが確認できる。この結果は、超音波の伝搬減衰率αが大きい場合においては物体6が一様な物体であっても、回折像の強度分布が一様にならず、得られる像に物体6の像には無関係な輝度むらが生じることを示唆している。 Next, let us consider a case where the ultrasonic wave propagation attenuation rate α is large. For example, when a silica dry gel or a fluorinated liquid material is used as the material of the acousto-optic medium 201, there is a large propagation attenuation compared to the case where water is used. When the propagation attenuation factor α was measured at a frequency of 2.5 MHz in the silica dry gel used as the acoustooptic medium 201 in this example, it was about −1.24 Np / mm. The calculation result of the light intensity distribution of the diffraction image in this case is shown in FIG. In this calculation result, the minimum value of the light intensity of the diffracted image is about 8% of the maximum value, and it can be confirmed that the intensity distribution of the diffracted light is not uniform and uneven. As a result, when the propagation attenuation rate α of the ultrasonic wave is large, even if the object 6 is a uniform object, the intensity distribution of the diffraction image is not uniform, and the image of the object 6 is not included in the obtained image. This suggests that irrelevant luminance unevenness occurs.
 本実施形態の音響光学撮像装置100では、音響光学媒質201における超音波の伝搬減衰が大きい場合において物体6の実態とは無関係に生じる像の輝度むらを低減するために、ウェッジ光束8のy方向における光強度に分布を設ける。 In the acousto-optic imaging device 100 of the present embodiment, the y-direction of the wedge beam 8 is reduced in order to reduce the luminance unevenness of the image that is generated regardless of the actual state of the object 6 when the ultrasonic wave propagation attenuation in the acousto-optic medium 201 is large. A distribution is provided for the light intensity at.
 上述の計算では、ウェッジ光束8を構成する各光線Ikの強度を式(1)に示すように一定値としたが、y方向において式(6)、式(7)、式(8)、式(9)に示すようにN次関数(Nは任意の実数)で表せる関数および式(10)に示す指数関で分布している場合における回折像の1光強度分布を計算する。
Figure JPOXMLDOC01-appb-M000007
In the above calculation, the intensity of each light beam I k constituting the wedge light beam 8 is set to a constant value as shown in the equation (1), but in the y direction, the equations (6), (7), (8), As shown in the equation (9), a one-light intensity distribution of the diffraction image is calculated in the case where the function is expressed by an N-order function (N is an arbitrary real number) and the exponential function shown in the equation (10).
Figure JPOXMLDOC01-appb-M000007
 それぞれの光強度分布の計算結果を図7(a)、(b)、(c)、(d)および図8に示す。式(6)~(10)はいずれも単純増加関数であり、音響開口203から遠い距離にある光線ほど光強度が強い分布である。図7(a)、(b)、(c)、(d)から、式(6)~(9)のいずれの分布を採用した場合においても図6と比べ、回折光強度の最大値と最小値の差は小さくなり、回折像の光強度分布のむらが低減していることが分かる。また、図8の計算結果から、指数関数状の光強度分布を採用した場合においてもウェッジ光束の回折像において光強度のむらが低減されることが確認できる。 The calculation results of the respective light intensity distributions are shown in FIGS. 7 (a), (b), (c), (d) and FIG. Expressions (6) to (10) are all simple increase functions, and light rays that are farther away from the acoustic aperture 203 have a higher light intensity distribution. 7 (a), (b), (c), and (d), the maximum and minimum values of the diffracted light intensity are obtained when any of the distributions of the equations (6) to (9) is adopted as compared with FIG. It can be seen that the difference between the values is small, and the unevenness of the light intensity distribution of the diffraction image is reduced. Moreover, it can be confirmed from the calculation result of FIG. 8 that the unevenness of the light intensity is reduced in the diffraction image of the wedge light beam even when the light intensity distribution in the form of exponential function is adopted.
 なお、図7においては、ウェッジ光束8の光強度分布として式(9)を採用した場合において最も回折像の光強度分布むらが低減されているが、超音波の伝搬減衰率αの異なる音響光学媒質201を想定した場合においては必ずしも式(9)が好適であるわけではない。超音波の伝搬減衰率αが異なる音響光学媒質201を用いる場合には、同様の計算を行って好適な光強度分布を設計することが好ましい。 In FIG. 7, the light intensity distribution unevenness of the diffraction image is most reduced when Expression (9) is adopted as the light intensity distribution of the wedge luminous flux 8, but the acoustooptics having different ultrasonic propagation attenuation rates α are used. When the medium 201 is assumed, the formula (9) is not necessarily preferable. When the acousto-optic medium 201 having a different ultrasonic propagation attenuation rate α is used, it is preferable to perform a similar calculation to design a suitable light intensity distribution.
 また、光強度分布むらをさらに低減するために、撮像部4で得られた物体6の光学画像の電気信号を補正してもよい。たとえば、音響光学撮像装置100は、撮像部4の電気信号を受け取り、電気信号によって表される物体6の光学画像におけるy方向の輝度むらを補正する信号処理部21をさらに備えていてもよい。具体的には、たとえば、信号処理部21は、図7(a)で示される光強度分布がより均一になるように、Z0からZeに掛けて単調に輝度を増大する関数で表される係数を電気信号の輝度情報に乗じてもよい。 In order to further reduce the unevenness of the light intensity distribution, the electrical signal of the optical image of the object 6 obtained by the imaging unit 4 may be corrected. For example, the acoustooptic imaging device 100 may further include a signal processing unit 21 that receives an electrical signal from the imaging unit 4 and corrects luminance unevenness in the y direction in the optical image of the object 6 represented by the electrical signal. Specifically, for example, the signal processing unit 21 is represented by a function that monotonously increases the luminance from Z 0 to Z e so that the light intensity distribution shown in FIG. The luminance information of the electric signal may be multiplied by the coefficient.
 なお、音響光学媒質201における超音波の伝搬減衰が小さい場合、ウェッジ光束8が光強度分布を有していても、光強度分布が逆に輝度むらを生じさせることはない。式(6)~式(10)のようにウェッジ光束8に光強度分布を設けた場合において、音響光学媒質201として水のように超音波の伝搬減衰が小さい材料を用いた場合の、回折像の光強度分布について計算を行った。計算結果の一例として、ウェッジ光束8の光強度分布が式(8)の場合の計算結果を図9に示す。超音波の伝搬減衰が小さい場合においてウェッジ光束8に光強度分布を持たせた場合においても、回折像においては光強度分布にむらが生じないことがこの計算から分かる。これは、他のどの光強度分布を採用した場合でも同様である。 When the propagation attenuation of the ultrasonic wave in the acousto-optic medium 201 is small, even if the wedge light beam 8 has a light intensity distribution, the light intensity distribution does not cause uneven brightness. In the case where the light intensity distribution is provided in the wedge light beam 8 as in the formulas (6) to (10), a diffraction image in the case where a material with small propagation attenuation of ultrasonic waves such as water is used as the acoustooptic medium 201. The light intensity distribution was calculated. As an example of the calculation result, FIG. 9 shows the calculation result when the light intensity distribution of the wedge light beam 8 is expressed by the equation (8). It can be seen from this calculation that even if the wedge light beam 8 has a light intensity distribution when the propagation attenuation of the ultrasonic wave is small, the light intensity distribution is not uneven in the diffraction image. This is the same when any other light intensity distribution is adopted.
 このことから、本実施形態の音響光学撮像装置において、音響光学媒質201としては、シリカナノ多孔体やフッ素系液体材料などの超音波の伝搬減衰が大きい材料だけでなく超音波の伝搬減衰の小さい水などを用いることも可能であるといえる。 Therefore, in the acousto-optic imaging device of the present embodiment, the acousto-optic medium 201 is not only a material having a large ultrasonic propagation attenuation, such as a silica nanoporous material or a fluorine-based liquid material, but also a water having a small ultrasonic propagation attenuation. It can be said that it is also possible to use.
 このように、本実形態の音響光学撮像装置によれば、音響光学媒質201における超音波の伝搬減衰率αが大きい場合においても輝度むらを低減した光学像を取得することが可能となる。また、超音波を用いて、物体の内部の情報を2次元または3次元の光学像として撮影するため、演算処理の能力の高い信号処理回路を用いることなく、物体の内部を撮影することができる。 Thus, according to the acousto-optic imaging device of the present embodiment, it is possible to obtain an optical image with reduced luminance unevenness even when the ultrasonic wave propagation attenuation rate α in the acousto-optic medium 201 is large. In addition, since information inside the object is photographed as a two-dimensional or three-dimensional optical image using ultrasonic waves, the inside of the object can be photographed without using a signal processing circuit with high calculation processing capability. .
 (第2の実施形態)
 以下、本発明の音響光学撮像装置の第2の実施形態を説明する。図10は、本実施形態の音響光学撮像装置101の構成を示す概略図である。
(Second Embodiment)
Hereinafter, a second embodiment of the acousto-optic imaging device of the present invention will be described. FIG. 10 is a schematic diagram showing the configuration of the acousto-optic imaging device 101 of the present embodiment.
 (音響光学撮像装置101の構成)
 音響光学撮像装置101は、ウェッジ光源1と、音響光学媒質部2と、結像光学系3と、撮像部4と、超音波源5とを備える。
(Configuration of acousto-optic imaging device 101)
The acoustooptic imaging device 101 includes a wedge light source 1, an acoustooptic medium unit 2, an imaging optical system 3, an imaging unit 4, and an ultrasonic source 5.
 ウェッジ光源1は、ウェッジ光束8を出射し、ウェッジ光束8は、音響光学媒質部2に入射する。第1の実施形態と同様、ウェッジ光束8は、y方向において、音響開口203から遠ざかる方向に、強い光強度分布を有する。 The wedge light source 1 emits a wedge light beam 8, and the wedge light beam 8 enters the acousto-optic medium unit 2. As in the first embodiment, the wedge light beam 8 has a strong light intensity distribution in the direction away from the acoustic aperture 203 in the y direction.
 結像光学系3は、音響光学媒質部2を挟んでウェッジ光源1の反対側に配置されており、音響光学媒質部2を透過した-1回折光束8a、0回折光束8b、+1回折光束8cが結像光学系3に入射する。撮像部4は、結像光学系3を透過した-1回折光束8a、または+1回折光束8cを検出する。 The imaging optical system 3 is disposed on the opposite side of the wedge light source 1 with the acoustooptic medium unit 2 interposed therebetween, and the −1 diffracted beam 8a, the 0 diffracted beam 8b, and the +1 diffracted beam 8c transmitted through the acoustooptic medium unit 2. Enters the imaging optical system 3. The imaging unit 4 detects a −1 diffracted light beam 8 a or a +1 diffracted light beam 8 c that has passed through the imaging optical system 3.
 本実施形態では、撮像時において、超音波源5は物体6に対して接するように配置され、物体6の内部に超音波7を出力する。音響光学媒質部2は物体6を挟んで超音波7と反対側に配置され、物体6中を透過した散乱超音波7a’’が音響開口203から音響光学媒質部2内へ入射する。 In the present embodiment, at the time of imaging, the ultrasonic source 5 is disposed so as to be in contact with the object 6 and outputs the ultrasonic wave 7 inside the object 6. The acoustooptic medium unit 2 is disposed on the opposite side of the ultrasonic wave 7 with the object 6 interposed therebetween, and the scattered ultrasonic wave 7 a ″ transmitted through the object 6 enters the acoustooptic medium unit 2 from the acoustic aperture 203.
 第1の実施形態と同様、音響光学媒質部2において、ウェッジ光源1より入射されたウェッジ光束8が、音響光学媒質部2に取り込まれた散乱超音波7bと作用することにより、-1次回折光束8a、0次回折光束8b、+1次回折光束8cが発生する。音響光学媒質部2を透過した回折光束8a、8b、8cは結像光学系3に入射されて、-1次回折光束8aあるいは+1次回折光束8cのみが撮像部4に入射されて結像する。 As in the first embodiment, in the acousto-optic medium unit 2, the wedge light beam 8 incident from the wedge light source 1 acts on the scattered ultrasonic wave 7b taken into the acousto-optic medium unit 2, thereby -1st order diffraction. A light beam 8a, a 0th-order diffracted light beam 8b, and a + 1st-order diffracted light beam 8c are generated. The diffracted light beams 8a, 8b, and 8c that have passed through the acousto-optic medium unit 2 are incident on the imaging optical system 3, and only the −1st order diffracted light beam 8a or the + 1st order diffracted light beam 8c are incident on the imaging unit 4 to form an image. .
 本実施形態の音響光学撮像装置101によれば、超音波源5と音響光学媒質部2とを物体6を挟んで対向する位置に配置することにより、物体6の透過超音波を用いて撮像を行うことが可能となる。 According to the acousto-optic imaging device 101 of the present embodiment, the ultrasonic source 5 and the acousto-optic medium unit 2 are arranged at positions facing each other with the object 6 interposed therebetween, thereby imaging using the transmitted ultrasound of the object 6. Can be done.
 (第3の実施形態)
 以下、本発明の音響光学撮像装置の第3の実施形態を説明する。図11は、本実施形態の音響光学撮像装置102の構成を示す概略図である。
(Third embodiment)
Hereinafter, a third embodiment of the acousto-optic imaging device of the present invention will be described. FIG. 11 is a schematic diagram illustrating the configuration of the acousto-optic imaging device 102 of the present embodiment.
 (音響光学撮像装置102の構成)
 音響光学撮像装置102は、ウェッジ光源1と、音響光学媒質部2と、結像光学系3と、撮像部4と、超音波源5と入射側ミラー16aと出射側ミラー16bとを備える。
(Configuration of acousto-optic imaging device 102)
The acoustooptic imaging device 102 includes a wedge light source 1, an acoustooptic medium unit 2, an imaging optical system 3, an imaging unit 4, an ultrasonic source 5, an incident side mirror 16a, and an output side mirror 16b.
 ウェッジ光源1から出射したウェッジ光束8は、入射側ミラー16aで反射し音響光学媒質部2に入射する。ウェッジ光束8は、音響光学媒質部2へ入射する入射面において、音響開口203から遠ざかる方向に光強度が大きくなっている。出射側ミラー16bは、音響光学媒質部2を挟んで入射側ミラー16aと反対側に配置されており、音響光学媒質部2を透過した-1回折光束8a、0回折光束8b、+1回折光束8cは、出射側ミラー16bで反射したのち、結像光学系3に入射する。撮像部4は、結像光学系3を透過した回折光を検出する。 The wedge light beam 8 emitted from the wedge light source 1 is reflected by the incident side mirror 16a and enters the acoustooptic medium unit 2. The wedge light beam 8 has a light intensity that increases in a direction away from the acoustic aperture 203 on the incident surface that is incident on the acoustooptic medium unit 2. The exit side mirror 16b is disposed on the opposite side of the entrance side mirror 16a with the acoustooptic medium unit 2 interposed therebetween, and the -1 diffracted beam 8a, the 0 diffracted beam 8b, and the +1 diffracted beam 8c transmitted through the acoustooptic medium unit 2. Is incident on the imaging optical system 3 after being reflected by the exit side mirror 16b. The imaging unit 4 detects the diffracted light that has passed through the imaging optical system 3.
 撮像時には、超音波源5は物体6に対して接するように配置され、物体6の内部に超音波7を出力する。音響光学媒質部2は、撮像時において物体6に対して接するように配置され、物体6中で生じた散乱超音波7aを内部に取り込む。 At the time of imaging, the ultrasonic source 5 is arranged so as to be in contact with the object 6 and outputs the ultrasonic wave 7 to the inside of the object 6. The acoustooptic medium unit 2 is disposed so as to be in contact with the object 6 at the time of imaging, and takes in the scattered ultrasonic waves 7 a generated in the object 6.
 音響光学媒質部2において、ウェッジ光源1より入射されたウェッジ光束8が、音響光学媒質部2に取り込まれた散乱超音波7bと作用することにより、-1次回折光束8a、0次回折光束8b、+1次回折光束8cが発生する。音響光学媒質部2を透過した-1次回折光束8a、0次回折光束8b、+1次回折光束8cは、結像光学系3に入射し、-1次回折光束8aまたは+1次回折光束8cのみが撮像部4に入射する。 In the acousto-optic medium part 2, the wedge light beam 8 incident from the wedge light source 1 acts on the scattered ultrasonic wave 7b taken into the acousto-optic medium part 2, whereby the −1st order diffracted light beam 8a and the 0th order diffracted light beam 8b. + 1st order diffracted light beam 8c is generated. The −1st order diffracted light beam 8a, the 0th order diffracted light beam 8b, and the + 1st order diffracted light beam 8c transmitted through the acoustooptic medium unit 2 enter the imaging optical system 3, and only the −1st order diffracted light beam 8a or the + 1st order diffracted light beam 8c. Enters the imaging unit 4.
 本実施形態による音響光学撮像装置102によれば、音響光学媒質部2へのウェッジ光束8の入出射を入射側ミラー16aおよび出射側ミラー16bを介して行うことにより、ウェッジ光源1と結像光学系3および撮像部4とを音響光学媒質部2を挟む直線上以外の位置に配置することができる。よって光学設計の自由度が高くなり、より小型の撮像装置を提供することが可能となる。 According to the acousto-optic imaging device 102 according to the present embodiment, the wedge light beam 8 enters and exits the acousto-optic medium unit 2 via the incident-side mirror 16a and the exit-side mirror 16b. The system 3 and the imaging unit 4 can be arranged at a position other than a straight line across the acoustooptic medium unit 2. Therefore, the degree of freedom in optical design is increased, and a smaller image pickup apparatus can be provided.
 また、本実施形態では、ウェッジ光束8に光強度分布を与える光学要素として、図2、図3に示した減衰率の分布を持つ減光フィルター14や拡大光学系11を用いてもよいし、入射側ミラー16aの反射率に分布を持たせて、音響光学媒質部2におけるウェッジ光束8のy方向に光強度分布を与えてもよい。 In the present embodiment, the optical element that gives the light intensity distribution to the wedge light beam 8 may be the neutral density filter 14 or the magnifying optical system 11 having the attenuation factor distribution shown in FIGS. A distribution may be given to the reflectance of the incident side mirror 16a to give a light intensity distribution in the y direction of the wedge light beam 8 in the acoustooptic medium unit 2.
 本願に開示された音響光学撮像装置は、超音波画像を光学画像として取得することができるため、超音波診断装置用のプローブ等として有用である。また、振動物体から放射される超音波を光学画像として観察できるので非破壊振動測定装置等の用途にも応用できる。 The acousto-optic imaging device disclosed in the present application is useful as a probe for an ultrasonic diagnostic apparatus because it can acquire an ultrasonic image as an optical image. Moreover, since the ultrasonic wave radiated from the vibrating object can be observed as an optical image, it can be applied to uses such as a nondestructive vibration measuring apparatus.
1:ウェッジ光源
2:音響光学媒質部
3:結合レンズ系
4:撮像部
5:超音波源
6:物体
7:超音波
8:ウェッジ光束
9:焦点面
10:レーザー光源
11:拡大光学系
12:光学開口
13:第1のシリンドリカルレンズ
14:減衰率分布をもつ減光フィルター
15:遮光部
16a:入射側ミラー
16b:出射側ミラー
3a:第2のシリンドリカルレンズ
3b:第3のシリンドリカルレンズ
51:超音波信号源
6a:物体
7a:散乱超音波
7a’:透過超音波
7b:超音波
8a:-1次回折光束
8b:0次回折光束
8c:+1次回折光束
81:単色光光束
82、83:平面波光束
1: wedge light source 2: acousto-optic medium unit 3: coupled lens system 4: imaging unit 5: ultrasonic source 6: object 7: ultrasonic wave 8: wedge beam 9: focal plane 10: laser light source 11: magnifying optical system 12: Optical aperture 13: first cylindrical lens 14: neutral density filter 15 having attenuation factor distribution: light shielding part 16a: incident side mirror 16b: emission side mirror 3a: second cylindrical lens 3b: third cylindrical lens 51: super Acoustic wave signal source 6a: object 7a: scattered ultrasonic wave 7a ': transmitted ultrasonic wave 7b: ultrasonic wave 8a: -1st order diffracted light beam 8b: 0th order diffracted light beam 8c: + 1st order diffracted light beam 81: monochromatic light beam 82, 83: plane wave Luminous flux

Claims (15)

  1.  超音波を出力する超音波源と、
     音響開口を有し、前記超音波が物体の内部において散乱することによって発生した散乱超音波が前記音響開口から内部に入射し、伝搬する音響光学媒質部と、
     前記散乱超音波の伝搬する方向に対して非平行に前記音響光学媒質部へ入射する単色のウェッジ光束を出射するウェッジ光源と、
     前記散乱超音波が伝搬することにより前記音響光学媒質部に生じた屈折率変化によって、生じた回折光が入射する結像光学系と、
     前記結像光学系によって形成された前記回折光による像を撮影し、電気信号を出力する撮像部と、
    を備え、
     前記ウェッジ光束は、前記ウェッジ光束の伝搬方向および前記音響光学媒質部における前記散乱超音波の伝搬する方向に平行な第1断面において焦点を形成し、前記第1断面に対して垂直な第2断面において、焦点を結ばず平行伝搬し、
     前記ウェッジ光束の前記第1断面における前記焦点は、前記音響光学媒質部と前記結像光学系との間に位置し、
     前記ウェッジ光束の、前記音響光学媒質部内での前記散乱超音波の伝搬する方向における光強度は、前記音響開口からの距離に応じて単調に増加する、音響光学撮像装置。
    An ultrasonic source that outputs ultrasonic waves;
    An acousto-optic medium unit that has an acoustic aperture, and the scattered ultrasound generated by scattering of the ultrasonic wave inside the object enters and propagates from the acoustic aperture;
    A wedge light source that emits a monochromatic wedge light beam incident on the acoustooptic medium portion non-parallel to the direction in which the scattered ultrasound propagates;
    An imaging optical system on which the diffracted light generated by the change in refractive index generated in the acousto-optic medium unit due to propagation of the scattered ultrasonic wave is incident;
    An imaging unit that takes an image of the diffracted light formed by the imaging optical system and outputs an electrical signal;
    With
    The wedge light beam forms a focal point in a first cross section parallel to the propagation direction of the wedge light beam and the propagation direction of the scattered ultrasonic wave in the acoustooptic medium portion, and is a second cross section perpendicular to the first cross section. In parallel propagation without focusing,
    The focal point of the wedge light beam in the first cross section is located between the acoustooptic medium part and the imaging optical system,
    The acousto-optic imaging device, wherein the light intensity of the wedge luminous flux in the direction in which the scattered ultrasonic wave propagates in the acousto-optic medium section monotonously increases according to the distance from the acoustic aperture.
  2.  前記ウェッジ光束の前記散乱超音波の伝搬する方向における光強度の分布は指数関数で規定される、請求項1に記載の音響光学撮像装置。 The acousto-optic imaging device according to claim 1, wherein a distribution of light intensity in a direction in which the scattered ultrasonic wave propagates of the wedge light beam is defined by an exponential function.
  3.  前記ウェッジ光束の前記散乱超音波の伝搬する方向における光強度の分布は、前記音響開口からの距離に対する線形関数で規定される、請求項1に記載の音響光学撮像装置。 The acousto-optic imaging device according to claim 1, wherein a distribution of light intensity in a direction in which the scattered ultrasonic wave propagates of the wedge light beam is defined by a linear function with respect to a distance from the acoustic aperture.
  4.  前記ウェッジ光束の前記散乱超音波の伝搬する方向における光強度の分布は、前記音響開口からの距離に対する2次関数で規定される、請求項1に記載の音響光学撮像装置。 2. The acousto-optic imaging device according to claim 1, wherein a distribution of light intensity in a direction in which the scattered ultrasonic wave propagates of the wedge light beam is defined by a quadratic function with respect to a distance from the acoustic aperture.
  5.  前記ウェッジ光束の前記散乱超音波の伝搬する方向における光強度の分布は、前記音響開口からの距離に対する3次関数で規定される、請求項1に記載の音響光学撮像装置。 2. The acousto-optic imaging device according to claim 1, wherein a distribution of light intensity in a direction in which the scattered ultrasonic wave propagates of the wedge light beam is defined by a cubic function with respect to a distance from the acoustic aperture.
  6.  前記ウェッジ光束の前記散乱超音波の伝搬する方向における光強度の分布は、前記音響開口からの距離の累乗関数あるいは累乗関数の和で規定され、
    前記累乗関数の累乗指数は任意の実数である、
    請求項1に記載の音響光学撮像装置。
    The distribution of the light intensity in the direction of propagation of the scattered ultrasound of the wedge luminous flux is defined by the power function of the distance from the acoustic aperture or the sum of the power function,
    The exponent of the power function is an arbitrary real number.
    The acousto-optic imaging device according to claim 1.
  7.  前記ウェッジ光源は、
     単色光波を出射するレーザー光源と、
     前記レーザー光源からの単色光波が入射され、拡大された平面波光束を出射する拡大光学系と、
     前記拡大光学系から出射した平面波光束が入射するシリンドリカルレンズと、
     前記レーザー光源と前記拡大光学系との間、または、前記拡大光学系と前記音響光学媒質部との間に配置され、前記散乱超音波の伝搬する方向に分布を有する光透過率を備えた光学素子と、
    を含み、
     前記シリンドリカルレンズは、前記入射する平面波光束の伝搬方向に垂直な面において、第1方向に焦点を結ぶ屈折力を持ち、前記第1方向に垂直な第2方向においては屈折力を持たず、
     前記シリンドリカルレンズの前記第1方向は前記散乱超音波の伝搬する方向と平行である、

    請求項1から6のいずれかに記載の音響光学撮像装置。
    The wedge light source is
    A laser light source that emits a monochromatic light wave;
    A magnifying optical system that receives a monochromatic light wave from the laser light source and emits an enlarged plane wave light beam; and
    A cylindrical lens on which a plane wave light beam emitted from the magnification optical system is incident;
    An optical element disposed between the laser light source and the magnifying optical system, or between the magnifying optical system and the acoustooptic medium unit, and having a light transmittance having a distribution in a direction in which the scattered ultrasonic wave propagates. Elements,
    Including
    The cylindrical lens has a refractive power for focusing in the first direction on a plane perpendicular to the propagation direction of the incident plane wave light beam, and has no refractive power in the second direction perpendicular to the first direction.
    The first direction of the cylindrical lens is parallel to a direction in which the scattered ultrasound propagates;

    The acousto-optic imaging device according to claim 1.
  8.  前記光学素子は、減光フィルターである請求項7に記載の音響光学撮像装置。 The acousto-optic imaging device according to claim 7, wherein the optical element is a neutral density filter.
  9.  前記光学素子は、前記散乱超音波の伝搬する方向において透過率を制御することが可能な液晶素子である請求項7に記載の音響光学撮像装置。 The acoustooptic imaging apparatus according to claim 7, wherein the optical element is a liquid crystal element capable of controlling transmittance in a direction in which the scattered ultrasonic wave propagates.
  10.  前記ウェッジ光源は、
     単色光波を出射するレーザー光源と、
     前記レーザー光源からの単色光波が入射され、拡大された平面波光束を出射する拡大光学系であって、前記散乱超音波の伝搬する方向に分布を有する強度が得られるように構成されたレンズを含む拡大光学系と、
     前記拡大光学系から出射した平面波光束が入射されるシリンドリカルレンズと
    を含み、
     前記シリンドリカルレンズは、前記入射する平面波光束の伝搬方向に垂直な面において、第1方向においては焦点を結ぶ屈折力を持ち、前記第1方向に垂直な第2方向においては屈折力を持たず、
    前記シリンドリカルレンズの第1方向は、前記散乱超音波の伝搬する方向と平行である、請求項1から6のいずれかに記載の音響光学撮像装置。
    The wedge light source is
    A laser light source that emits a monochromatic light wave;
    A magnifying optical system that receives a monochromatic light wave from the laser light source and emits an enlarged plane wave light beam, and includes a lens configured to obtain an intensity having a distribution in a direction in which the scattered ultrasonic wave propagates Magnifying optics,
    Including a cylindrical lens on which a plane wave light beam emitted from the magnification optical system is incident,
    The cylindrical lens has a refractive power for focusing in the first direction on a plane perpendicular to the propagation direction of the incident plane wave light beam, and has no refractive power in the second direction perpendicular to the first direction.
    The acousto-optic imaging device according to claim 1, wherein a first direction of the cylindrical lens is parallel to a direction in which the scattered ultrasonic wave propagates.
  11.  前記拡大光学系と前記シリンドリカルレンズの間に配置される光学開口をさらに含む請求項7から10のいずれかに記載の音響光学撮像装置。 The acoustooptic imaging apparatus according to any one of claims 7 to 10, further comprising an optical aperture disposed between the magnifying optical system and the cylindrical lens.
  12.  前記超音波が前記物体を透過することによって、前記発生した散乱超音波が前記音響開口から前記音響光学媒質部に入射するように、前記超音波源および前記音響光学媒質部が前記物体に対して配置される、請求項1から11のいずれかに記載の音響光学撮像装置。 The ultrasonic source and the acousto-optic medium part are directed to the object so that the generated scattered ultrasound is incident on the acousto-optic medium part from the acoustic aperture by the ultrasonic wave passing through the object. The acousto-optic imaging device according to claim 1, which is arranged.
  13.  前記物体で前記超音波が反射することによって、前記発生した散乱超音波が前記音響開口から前記音響光学媒質部に入射するように、前記超音波源および前記音響光学媒質部が前記物体に対して配置される、請求項1から11のいずれかに記載の音響光学撮像装置。 The ultrasonic source and the acousto-optic medium part are directed to the object so that the generated scattered ultrasound enters the acousto-optic medium part from the acoustic aperture by reflecting the ultrasonic wave on the object. The acousto-optic imaging device according to claim 1, which is arranged.
  14.  前記ウェッジ光源から出射するウェッジ光束を反射させて前記音響光学媒質部に入射させる入射側ミラーと、
     前記音響光学媒質部で生じた回折光を反射させて前記結像光学系に入射させる出射側ミラーと
    をさらに備える請求項1から13のいずれかに記載の音響光学撮像装置。
    An incident side mirror that reflects a wedge light beam emitted from the wedge light source and enters the acoustooptic medium unit;
    The acoustooptic imaging apparatus according to any one of claims 1 to 13, further comprising: an exit-side mirror that reflects the diffracted light generated in the acoustooptic medium unit and enters the imaging optical system.
  15.  前記撮像部から前記電気信号を受け取り、前記撮影された像の画像上の、前記散乱超音波の伝搬する方向における輝度むらが低減するように前記画像を調整する信号処理部をさらに備える請求項1から14のいずれかに記載の音響光学撮像装置。 The signal processing part which receives the said electrical signal from the said imaging part, and adjusts the said image so that the brightness nonuniformity in the direction which the said scattered ultrasound wave propagates on the image of the image | photographed image is further provided. The acousto-optic imaging device according to any one of 1 to 14.
PCT/JP2014/002134 2013-04-22 2014-04-15 Acousto-optical imaging device WO2014174800A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-089425 2013-04-22
JP2013089425 2013-04-22

Publications (1)

Publication Number Publication Date
WO2014174800A1 true WO2014174800A1 (en) 2014-10-30

Family

ID=51791389

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/002134 WO2014174800A1 (en) 2013-04-22 2014-04-15 Acousto-optical imaging device

Country Status (1)

Country Link
WO (1) WO2014174800A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115950518A (en) * 2023-03-15 2023-04-11 天津大学 Sound velocity measuring device, sound velocity measuring device detection method and storage medium

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010506496A (en) * 2006-10-05 2010-02-25 デラウェア ステイト ユニバーシティ ファウンデーション,インコーポレイティド Fiber optic acoustic detector
JP2010071692A (en) * 2008-09-16 2010-04-02 Canon Inc Measurement apparatus and measurement method
WO2012172764A1 (en) * 2011-06-17 2012-12-20 パナソニック株式会社 Optoacoustic image pick-up system and optoacoustic image pick-up device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010506496A (en) * 2006-10-05 2010-02-25 デラウェア ステイト ユニバーシティ ファウンデーション,インコーポレイティド Fiber optic acoustic detector
JP2010071692A (en) * 2008-09-16 2010-04-02 Canon Inc Measurement apparatus and measurement method
WO2012172764A1 (en) * 2011-06-17 2012-12-20 パナソニック株式会社 Optoacoustic image pick-up system and optoacoustic image pick-up device

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
A.KORPEL: "Visualization of the cross section of a sound beam by bragg diffraction of light", APPLIDE PHYSICS LETTERS, vol. 9, 1966, pages 425 - 427 *
L.SCHLUSSLER: "Experimental results with acoustic lenses in a Braggdiffraction imaging system", APPLIED PHYSICS LETTERS, vol. 28, 1976, pages 695 - 697 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115950518A (en) * 2023-03-15 2023-04-11 天津大学 Sound velocity measuring device, sound velocity measuring device detection method and storage medium
CN115950518B (en) * 2023-03-15 2023-05-26 天津大学 Sound velocity measuring device, sound velocity measuring device detection method and storage medium

Similar Documents

Publication Publication Date Title
JP5669756B2 (en) Speckle removal apparatus and method for laser scanning projector
JP5144842B1 (en) Photoacoustic imaging system and photoacoustic imaging apparatus
JP5879285B2 (en) Acoustic wave detection probe and photoacoustic measurement device
JP5855994B2 (en) Probe for acoustic wave detection and photoacoustic measurement apparatus having the probe
EP3488221A1 (en) An integrated lens free imaging device
JP2011200414A (en) Photoacoustic imaging apparatus, photoacoustic imaging method, and program
Pulkkinen et al. Ultrasound field characterization using synthetic schlieren tomography
US20140114188A1 (en) Acousto-optic vibrometer
WO2015129293A1 (en) Photoacoustic microscope device
US20140066743A1 (en) Object information acquiring apparatus
CN106092901A (en) A kind of acoustical signal detector based on surface wave and reflecting light sonomicroscope
WO2013183247A1 (en) Acoustooptic imaging device
RU172340U1 (en) Scanning Acoustic Microscope
WO2014174800A1 (en) Acousto-optical imaging device
JP2017207531A (en) Microscope system
WO2014196150A1 (en) Acousto-optic image pickup device
Unverzagt et al. A new method of spatial filtering for Schlieren visualization of ultrasound wave fields
TW201501696A (en) Photoacoustic transducer with optical feedback
RU2658585C1 (en) Device for visualizing acoustic fields of microobjects
JP2018100915A (en) Phase distribution measurement device, phase distribution measurement method and phase distribution measurement program
Nowak et al. Reflection-mode acousto-optic imaging using plane wave ultrasound pulses
Chen et al. Quantitative reconstruction of a disturbed ultrasound pressure field in a conventional hydrophone measurement
US20160003777A1 (en) Recording device and recording method
Bost et al. High frequency optoacoustic microscopy
JP6143390B2 (en) Photoacoustic measuring device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14788642

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14788642

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP