WO2014174678A1 - Heat pump hot-water supply device and hot-water storage system equipped with heat pump hot-water supply device - Google Patents

Heat pump hot-water supply device and hot-water storage system equipped with heat pump hot-water supply device Download PDF

Info

Publication number
WO2014174678A1
WO2014174678A1 PCT/JP2013/062452 JP2013062452W WO2014174678A1 WO 2014174678 A1 WO2014174678 A1 WO 2014174678A1 JP 2013062452 W JP2013062452 W JP 2013062452W WO 2014174678 A1 WO2014174678 A1 WO 2014174678A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
refrigerant
heat pump
hot water
flow rate
Prior art date
Application number
PCT/JP2013/062452
Other languages
French (fr)
Japanese (ja)
Inventor
亮宜 倉地
大林 誠善
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2013/062452 priority Critical patent/WO2014174678A1/en
Priority to EP13883242.3A priority patent/EP2990736B1/en
Priority to JP2015513470A priority patent/JP5972456B2/en
Publication of WO2014174678A1 publication Critical patent/WO2014174678A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D17/00Domestic hot-water supply systems
    • F24D17/02Domestic hot-water supply systems using heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1006Arrangement or mounting of control or safety devices for water heating systems
    • F24D19/1051Arrangement or mounting of control or safety devices for water heating systems for domestic hot water
    • F24D19/1054Arrangement or mounting of control or safety devices for water heating systems for domestic hot water the system uses a heat pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/212Temperature of the water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/238Flow rate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/305Control of valves
    • F24H15/31Control of valves of valves having only one inlet port and one outlet port, e.g. flow rate regulating valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/335Control of pumps, e.g. on-off control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/375Control of heat pumps
    • F24H15/38Control of compressors of heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/395Information to users, e.g. alarms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/40Control of fluid heaters characterised by the type of controllers
    • F24H15/414Control of fluid heaters characterised by the type of controllers using electronic processing, e.g. computer-based
    • F24H15/421Control of fluid heaters characterised by the type of controllers using electronic processing, e.g. computer-based using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2220/00Components of central heating installations excluding heat sources
    • F24D2220/04Sensors
    • F24D2220/044Flow sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2220/00Components of central heating installations excluding heat sources
    • F24D2220/08Storage tanks

Definitions

  • the present invention relates to a heat pump water heater and a hot water storage system including the heat pump water heater.
  • the high-pressure side CO 2 discharged from the compressor has a characteristic of being in a supercritical state, unlike a fluorocarbon refrigerant. That is, the CO 2 in the supercritical state does not condense and remains in the supercritical state when heat is applied to another fluid (for example, water, air, refrigerant, etc.) by heat exchange. CO 2 having such characteristics has little loss due to state transition, and is suitable for heat pump devices that require high temperatures. Therefore, various heat pump water heaters have been proposed that use CO 2 as a refrigerant and take advantage of CO 2 to boil water to a high temperature of 90 [° C.] or higher.
  • a hot water supply heating means a hot water storage tank for storing hot water heated by the hot water supply heating means, a plurality of heat radiation means for circulating the hot water stored in the hot water storage tank as a heat source, Selection means for selecting whether or not to use the heat dissipating means, and control means for controlling the hot water heating operation for heating the hot water heating means and storing the hot water in the hot water storage tank according to the selection status of the selection means.
  • a hot water heater has been disclosed (see, for example, Patent Document 1). In this heat pump water heater, the flow rate of hot water is controlled by a circulation pump.
  • the hot water heated by the hot water heater is supplied to the hot water tank, or the hot water stored in the hot water tank is circulated to the heat pump water heater.
  • a pump is used to warm. This pump is provided in the water heater or connected to the water heater.
  • the pump fails, even if the heat pump operation is restarted after the water is shut off, the hot water heated by the hot water heating means cannot be sent to the hot water tank and cannot be stored, or the hot water stored in the hot water tank cannot be stored. The problem arises that it cannot be circulated through the machine.
  • FIG. 8 is a diagram for explaining a problem of the prior art.
  • 8A and 8B show a hot water storage system in which the hot water tank 1 and the hot water heater 130 are connected by a water inflow pipe 131 having a valve body 134 and a water outflow pipe 132 having a valve body 135. An example is shown.
  • the water cutoff detection means which consists of a pressure switch of patent document 2 may detect this accidentally as water cutoff.
  • a temporary decrease in the flow rate that returns after a few seconds is not treated as a water outage.
  • FIG. 8 (c) and 8 (d) are diagrams showing an example of a connection pipe (including a water outflow pipe and a water inflow pipe) to the water heater 130 and a valve provided in the connection pipe.
  • a connection pipe including a water outflow pipe and a water inflow pipe
  • FIG. 8C When the three-way valve 182 is connected to the connection pipe of the water heater 130 as shown in FIG. 8C, or two or more two-way valves are connected to the connection pipe of the water heater 130 as shown in FIG.
  • FIG. 9 is a graph showing an example of the relationship between the valve opening and the flow rate when the flow path is switched using the two-way valves 183a and 183b shown in FIG. As shown in FIG.
  • the present invention has been made against the background of the above problems, and even when a temporary flow rate drop occurs, a heat pump water heater that can be operated without hindrance thereafter, and a hot water storage provided with the heat pump water heater A system is provided.
  • the heat pump water heater includes a compressor, a refrigerant-water heat exchanger, a decompression device, and an evaporator at least connected to a pipe, and the refrigerant-water heat exchanger performs heat exchange between the refrigerant and water. And a flow rate detection means for detecting the flow rate of water flowing through the refrigerant-water heat exchanger, and a control means for controlling the operation of the heat pump cycle device, wherein the flow rate of water detected by the flow rate detection means is When the state lower than the threshold value continues for a set time or longer, the control means determines that the water supply is abnormal and stops the operation of the heat pump cycle device.
  • the present invention when the state in which the flow rate of water flowing through the refrigerant-water heat exchanger is lower than the threshold value continues for a set time or longer, it is determined that the water supply is abnormal and the operation of the heat pump cycle device is stopped. For this reason, it is possible to suppress erroneous detection of the water-stopping state due to, for example, malfunction of the flow rate detection means due to noise or the like, or temporary decrease in flow rate. In addition, even if a temporary flow rate drop occurs, the pump can be operated without any trouble after the temporary flow rate drop as long as the pump that circulates water through the refrigerant-water heat exchanger does not fail. can get.
  • FIG. 1 It is a piping circuit diagram which shows the hot water storage system 100 which concerns on Embodiment 2 of this invention. It is a flowchart explaining operation
  • FIG. 1 is a piping circuit diagram showing a hot water storage system 100 according to Embodiment 1 of the present invention.
  • a hot water storage system 100 includes a hot water storage tank 1 and a heat pump water heater 30 (hereinafter simply referred to as a hot water heater 30) that is means for heating water in the hot water tank 1.
  • Hot water heated by the hot water heater 30 is stored in the hot water tank 1, and hot water is supplied from the hot water tank 1 to a water tap of a facility (for example, a bathroom or a kitchen) that uses the hot water.
  • the lower part of the hot water tank 1 is connected to the water heater 30 via a water inflow pipe 31 through which the water in the hot water tank 1 flows into the water heater 30.
  • a temperature detector 2 is provided below the hot water tank 1, for detecting the water temperature at substantially the same height as the part to which the water inflow pipe 31 is connected.
  • the specific structure of the temperature detector 2 is not limited as long as it can detect the water temperature.
  • the upper part of the hot water tank 1, specifically the upper part than the part where the water inflow pipe 31 is connected is connected to the hot water heater 30 via a water outflow pipe 32 through which water flowing out of the hot water heater 30 flows.
  • the water inflow pipe 31 is branched between the hot water storage tank 1 and the water heater 30, and this branched pipe is referred to as a water inflow pipe 31a.
  • the water inflow pipe 31 a is connected to the water receiving tank 3 through the water supply pipe 4.
  • the water receiving tank 3 is a tank that stores water to be supplied to the hot water storage system 100.
  • the water supply pipe 4 is provided with a water supply valve 5 that controls the amount of water supplied from the water receiving tank 3 to the water heater 30.
  • Each of the water inflow pipe 31 and the water outflow pipe 32 is, for example, a valve that is a manual valve in order to shut off the water piping path between the water heater 30 and the hot water tank 1 during maintenance or replacement of the water heater 30.
  • the body is provided.
  • the water inflow pipe 31 is provided with a valve body 33 and a valve body 34 in series, and the water inflow pipe 31 a is branched from between the valve body 33 and the valve body 34.
  • the water outflow pipe 32 is provided with a valve body 35.
  • a hot water supply pipe 6 connected to a water tap (not shown) is connected to the upper part of the hot water tank 1.
  • the hot water supply pipe 6 is provided with a hot water supply pump 7 for sending hot water stored in the hot water tank 1 to the water tap.
  • one end of the return pipe 8 is connected to the lower part of the hot water tank 1, more specifically below the part to which the hot water supply pipe 6 is connected.
  • the hot water supply pump 7 may be provided in the return pipe 8.
  • FIG. 2 is a piping circuit diagram illustrating the water heater 30 according to Embodiment 1 of the present invention.
  • the water heater 30 according to the present embodiment includes a heat pump cycle device (same as the refrigeration cycle device) 50 as a heat source.
  • the heat pump cycle device 50 uses a CO 2 refrigerant.
  • the high-pressure CO 2 refrigerant has a characteristic of being in a supercritical state.
  • the CO 2 refrigerant in the supercritical state does not condense when heat is applied to another fluid (here, water) by heat exchange, and remains in the supercritical state. For this reason, there is little loss by a state transition and it is suitable for heating water to high temperature.
  • a compressor 51 In this heat pump cycle device 50, a compressor 51, a refrigerant-water heat exchanger 52 as a radiator, a decompression device 53, and an evaporator 54 are sequentially connected to form a refrigerant circuit.
  • the compressor 51 is connected to a refrigerant-water heat exchanger 52 via a refrigerant inflow pipe 55.
  • the refrigerant-water heat exchanger 52 is connected to the decompression device 53 via a refrigerant outflow pipe 56.
  • the decompression device 53 is connected to the evaporator 54 by piping, and the evaporator 54 is connected to the compressor 51 by piping.
  • the refrigerant used in the heat pump cycle device 50 is not limited to CO 2 , for example, HFC (hydrofluorocarbon) refrigerants such as R410A, R407C, R404A, and R32, HCFC (hydrochlorofluorocarbon) refrigerants such as R22 and R134a, or carbonization
  • HFC hydrofluorocarbon
  • HCFC hydroochlorofluorocarbon
  • R22 and R134a HCFC (hydrochlorofluorocarbon) refrigerants
  • carbonization Various refrigerants such as natural refrigerants such as hydrogen and helium can be used.
  • the refrigerant-water heat exchanger 52 functions as a condenser.
  • the high-temperature and high-pressure refrigerant discharged from the compressor 51 flows into the refrigerant-water heat exchanger 52 and flows through the refrigerant-water heat exchanger 52 (in this embodiment, water). Heat is exchanged between the refrigerant and the water to dissipate the heat and flows out of the refrigerant-water heat exchanger 52.
  • the refrigerant that has flowed out of the refrigerant-water heat exchanger 52 is decompressed by the decompression device 53, flows into the evaporator 54, rises in temperature, and is sucked into the compressor 51.
  • the number of refrigerant-water heat exchangers 52 is not limited, and one or a plurality of refrigerant-water heat exchangers 52 can be provided in accordance with the required heating amount of water.
  • a water inflow pipe 31 and a water outflow pipe 32 are connected to the refrigerant-water heat exchanger 52.
  • the water flowing into the refrigerant-water heat exchanger 52 through the water inflow pipe 31 exchanges heat with the refrigerant flowing through the refrigerant-water heat exchanger 52, and passes through the water outflow pipe 32 to pass through the hot water tank 1 ( 1).
  • the water inflow pipe 31 is provided with a water supply pump 36 for sending water to the refrigerant-water heat exchanger 52.
  • the feed water pump 36 may be capable of adjusting the flow rate by making the rotation speed variable, or may be a constant flow rate (rotation speed).
  • the water supply pump 36 may be provided in the water outflow pipe 32.
  • the water supply pump 36 may be incorporated in the water heater 30 as shown in FIG. 2, or may be provided in a portion of the water inflow pipe 31 or the water outflow pipe 32 exposed from the outline of the water heater 30. Good.
  • the water inflow pipe 31 is provided with a flow rate detection means 40 for detecting the flow rate of water flowing through the refrigerant-water heat exchanger 52.
  • the flow rate detection means 40 can be configured by an arbitrary flow rate sensor such as an electric type, a mechanical type, an ultrasonic type, or a thermal type.
  • the refrigerant may generate bubbles before passing through the water supply pump 36 where cavitation may occur.
  • -A flow rate detection means 40 is provided between the water supply pump 36 of the water inflow pipe 31 and the refrigerant-water heat exchanger 52 as a position where the pressure becomes highest, avoiding the position after passing through the water heat exchanger 52. Yes.
  • Information detected by the flow rate detection means 40 and the temperature detector 2 is input into the housing of the hot water heater 30 and at least control means for controlling the operation of the hot water supply pump 7, the valve bodies 34 and 35, and the compressor 51. 60.
  • the decompression device 53 is configured by an expansion valve whose valve opening degree can be adjusted, the operation of the decompression device 53 can be controlled by the control means 60, and the valve body 34 and the valve body 35 are opened.
  • the control means 60 can also control these valves as long as they are adjustable.
  • the control means 60 is provided in the housing of the water heater 30, but the installation position of the control means 60 is arbitrary.
  • the control means 60 may be realized by a CPU and a program that is analyzed and executed by the CPU, or may be realized as hardware by wired logic. It should be noted that the functions realized by the control means 60 can also be realized by devices physically distributed in arbitrary units. Further, the control means 60 has a rewritable storage means 61 and can record the flow rate detected by the flow rate detection means 40 in the storage means 61 as will be described later.
  • the water heater 30 is provided with a notification means 62 for notifying the operating state of the water heater 30 and information to be notified to the user.
  • the notification means 62 is, for example, a display device such as a liquid crystal monitor that visually displays information, or a sound output device such as a speaker or buzzer that notifies information audibly. Note that both a display device and an audio output device may be provided as the notification means 62, or either one may be provided.
  • the hot water storage system 100 of the present embodiment heats the water stored in the hot water storage tank 1 or the water stored in the water receiving tank 3 with the hot water heater 30 (refrigerant-water heat exchanger 52), and hot water storage tank Send to 1. Then, the control means 60 of the present embodiment sets the operation mode of the water heater 30 as a circulation mode in which water is circulated and heated between the water heater 30 (refrigerant-water heat exchanger 52) and the hot water tank 1. In addition, at least two operation modes of hot water storage mode in which hot water heated by the water heater 30 is stored in the hot water storage tank 1 are provided.
  • the hot water storage mode is different from the circulation mode in that the water supplied from the water receiving tank 3 is heated by the water heater 30 to store the hot water in the hot water tank 1 and no water is sent from the hot water tank 1 to the water heater 30.
  • FIG. 1 FIG. 2, the operation
  • the water heated by the water heater 30 (refrigerant-water heat exchanger 52) is water stored in the hot water tank 1.
  • the water temperature in the hot water tank 1 is higher at the upper part, and the water temperature is lower toward the lower part.
  • the control means 60 is stored in the hot water tank 1 when the detected water temperature of the temperature detector 2 provided in the lower part of the hot water tank 1 becomes a predetermined heating start temperature or lower.
  • the water heater 30 is operated to start heating the water.
  • the control means 60 opens the valve body 33, the valve body 34, and the valve body 35 and operates the water supply pump 36.
  • the water stored in the lower part of the hot water tank 1 is sent to the hot water heater 30 (refrigerant-water heat exchanger 52) via the water inflow pipe 31. This water is heated by the hot water heater 30 (refrigerant-water heat exchanger 52) to become hot water.
  • the warm water flows into the hot water tank 1 through the water outflow pipe 32.
  • the temperature detected by the temperature detector 2 reaches a predetermined heating end temperature, the heating of the water stored in the hot water tank 1 is completed.
  • the hot water stored in the hot water tank 1 is supplied to a water tap (not shown) through the hot water supply pipe 6 when the hot water supply pump 7 is operated.
  • the control means 60 starts operation in the hot water storage mode.
  • the valve element 33 is closed and the water supply valve 5 is opened.
  • the water supply valve 5 is opened, the water stored in the water receiving tank 3 is sent to the water heater 30 (refrigerant-water heat exchanger 52) through the water inflow pipe 31a. This water is heated by the hot water heater 30 (refrigerant-water heat exchanger 52) to become hot water.
  • This hot water flows into the hot water tank 1 through the water outflow pipe 32 and is supplied to a water tap (not shown) through the hot water supply pipe 6.
  • the operation related to the determination of the abnormality of water interruption is the same regardless of whether the operation mode is the circulation mode or the hot water storage mode, and here, the water stored in the hot water tank 1 is used as the hot water heater 30 (refrigerant-water).
  • the operation of the hot water storage system 100 and the hot water heater 30 will be described taking the circulation mode of heating by the heat exchanger 52) as an example.
  • FIG. 3 is a flowchart showing determination processing for detecting water breakage in the water heater 30 according to Embodiment 1 of the present invention.
  • FIG. 4 is a graph showing an example of the relationship between the flow rate of water flowing through the refrigerant-water heat exchanger 52 and the elapsed time according to the embodiment of the present invention.
  • Control means 60 starts operation of water heater 30 (step S1).
  • the flow rate detection means 40 periodically detects the flow rate of water flowing through the refrigerant-water heat exchanger 52 (for example, every 30 seconds). Further, the flow rate periodically detected by the flow rate detection unit 40 is stored in the storage unit 61 in a ring buffer format, for example. Therefore, the storage means 61 stores the flow rate of water flowing through the refrigerant-water heat exchanger 52 for a predetermined period going back from the present time.
  • the state in which the flow rate of the water flowing through the refrigerant-water heat exchanger 52 detected by the flow rate detection means 40 is lower than the threshold value (hereinafter sometimes simply referred to as a flow rate reduction state) is set time T1 ( In this embodiment, it is determined whether or not to continue for 180 seconds (step S2). As shown in FIG. 4 (a), when the duration of the flow rate reduction state is less than the set time T1 (180 seconds) (step S2 in FIG. 3; Yes), the control means 60 determines that there is a water cutoff abnormality. Without returning to step S1, the operation of the water heater 30 is continued. On the other hand, as shown in FIG. 4B, when the duration time of the flow rate reduction state is equal to or longer than the set time T1 (180 seconds) (step S2 in FIG. 3; No), the control means 60 It is determined that an abnormality has occurred, and the process proceeds to step S3.
  • the set time T1 set in step S2 is a variable value according to the local connection piping path of the hot water storage system 100 and the pump used in the hot water storage system 100.
  • the set time T1 is set within a range of 60 seconds to 180 seconds.
  • the grounds for setting the set time T1 will be described.
  • the lower limit (60 seconds) of the range of the set time T1 is based on the following two grounds.
  • the first ground is that a three-way valve is connected to the connection pipe of the heat pump water heater as shown in FIG. 8C, or a connection pipe of the heat pump water heater as shown in FIG. 8D.
  • a temporary flow rate drop occurs as shown in FIG. 9 during valve operation such as flow path switching, and the flow rate detection means 40 may detect water breakage, It can be mentioned that the detection time of the flow rate drop at that time is less than 60 seconds.
  • the lower limit of the range of the set time T1 is set to 60 seconds, it is possible to suppress erroneous determination that the temporary flow rate decrease during the valve operation of the three-way valve or the two-way valve is in a water-stopped state.
  • the second reason is that the flow rate detection means 40 may malfunction due to the influence of noise or the like, temporarily fail to detect the flow rate, and may detect a decrease in the flow rate.
  • the detection time is less than 60 seconds. Based on these two grounds, the lower limit of the range of the set time T1 is 60 seconds.
  • the upper limit (180 seconds) of the range of the set time T1 is based on the following grounds.
  • a pump for example, a hot water supply pump 7 or a water supply pump 36
  • the cooling effect of the pump by the fluid is obtained. It can no longer be obtained.
  • FIG. 5 is a graph showing an example of the relationship between the temperature of the pump and the operation elapsed time, and shows a graph when the pump is operated in a state where the flow rate is lower than the threshold value. As shown in FIG.
  • the maximum time for which a margin (for example, twice) can be ensured with respect to the time (for example, 360 seconds in FIG. 5) until the component built in the pump reaches the operation guarantee temperature is within the range of the set time T1.
  • the upper limit is 180 seconds.
  • the range of the set time T1 is set to 60 seconds or more and 180 seconds or less.
  • the set time T1 is set for the control means 60 by a maintenance person or the like in the range of 60 seconds to 180 seconds.
  • the setting of the setting time T1 in the control means 60 is realized by an arbitrary configuration such as rewriting a program executed by the CPU of the control means 60 or switching a signal to the control means 60 using an operation switch (not shown). .
  • step S3 of FIG. 3 the control unit 60 causes the notification unit 62 to notify that a water-stop abnormality has been detected. Moreover, in order to protect apparatuses, such as the feed pump 36 and the compressor 51, the control means 60 stops these apparatuses. As a stopping method, a command may be directly output from the control means 60 to each device, or may be stopped via another device.
  • the compressor 51 can be provided with a high-pressure shut-off device, and the compressor 51 can be stopped via the high-pressure shut-off device.
  • the flow rate of the water flowing through the refrigerant-water heat exchanger 52 is periodically stored in the storage unit 61 (for example, every 30 seconds).
  • the controller 60 determines that the flow rate reduction state has continued for a set time T1 (180 seconds) or more and that the water heater 30 has stopped operating, the operation stop stored in the storage unit 61 is stopped.
  • the previous detected flow rate for 10 times is separately recorded in the storage means 61 as abnormal data (step S4). That is, in the first embodiment, the control means 60 and the storage means 61 function as the recording means of the present invention.
  • the control unit 60 determines whether or not the water flow is stopped according to the duration of the flow rate decrease state. It is possible to suppress erroneous detection of water stoppage by determining that the lowered state is water stoppage. If the flow rate is temporarily reduced, it is not determined that the water supply has stopped. Therefore, even if a temporary flow rate drop occurs within a range where the pump used in the hot water storage system 100 does not fail, the water heater 30 is operated without any trouble thereafter. it can. In addition, when the flow rate detection unit 40 detects the flow rate drop, the control unit 60 appropriately detects whether or not there is a water breakage abnormality according to the duration for which the flow rate drop is detected. It is possible to detect a water outage abnormality.
  • the flow rate detected by the flow rate detection means 40 before the stop is recorded as abnormal data. For this reason, the person in charge of maintenance can confirm later whether the cause of the abnormal stop of the heat pump water heater is water stop, and the cause analysis of the abnormal stop becomes easy.
  • Embodiment 2 the operation example in which the operation of the water heater 30 is stopped when the water break abnormality is detected has been described.
  • the configuration related to the conveyance of water to the water heater 30 may be a cause of the water failure. If the operation of the water heater 30 is stopped in such a case, the operation of storing hot water in the hot water tank 1 is stopped, so that hot water runs out and the user may feel inconvenience.
  • the cause of the water cutoff abnormality is that the water level in the hot water storage tank 1 is lower than the connection part of the water inflow pipe 31 or the valve element 33 is broken, the operation of the water heater 30 itself is There is no problem, and if the water supplied from the water receiving tank 3 is supplied to the water heater 30, the water heater 30 may operate without any problem.
  • FIG. 6 is a piping circuit diagram showing hot water storage system 100 according to Embodiment 2 of the present invention.
  • the water level 70 in the hot water tank 1 is illustrated for the sake of explanation, but the configuration of the hot water storage system 100 shown in FIG. 6 is the same as that in FIG. A detector 2 is also provided.
  • FIG. 7 is a flowchart for explaining the operation of the water heater 30 according to Embodiment 2 of the present invention.
  • the control means 60 of the second embodiment circulates water between the hot water heater 30 (refrigerant-water heat exchanger 52) and the hot water tank 1 as the operation mode of the hot water heater 30 as in the first embodiment. At least two operation modes: a circulation mode in which the water is heated and a hot water storage mode in which the hot water heated by the water heater 30 is stored in the hot water tank 1.
  • a circulation mode in which the water is heated a hot water storage mode in which the hot water heated by the water heater 30 is stored in the hot water tank 1.
  • step S10 the control means 60 determines whether the operation mode is the circulation mode, in other words, whether the operation mode is the hot water storage mode (step S11). If the water heater 30 is in the circulation mode (S11; Yes), the process proceeds to step S15. If the water heater 30 is in the hot water storage mode (S11; No), the process proceeds to step S12.
  • step S12 when the flow rate detection unit 40 detects the flow rate drop, the control unit 60 determines whether or not the flow rate drop state continues for a set time T1 (180 seconds in the present embodiment) or more.
  • the control means 60 does not determine that the water supply is abnormal and returns to step S10 and continues the operation as it is.
  • the flow rate reduction state continues for the set time T1 (180 seconds) or longer (S12; No)
  • step S13 the control means 60 informs the notification means 62 that a water stop abnormality has been detected. Moreover, in order to protect apparatuses, such as the feed pump 36 and the compressor 51, the control means 60 stops these apparatuses. As a stopping method, a command may be directly output from the control means 60 to each device, or may be stopped via another device.
  • the compressor 51 can be provided with a high-pressure shut-off device, and the compressor 51 can be stopped via the high-pressure shut-off device.
  • the operation of the water heater 30 is stopped as in the first embodiment.
  • the storage unit 61 periodically stores the flow rate of water flowing through the refrigerant-water heat exchanger 52 (for example, every 30 seconds). For example, the detected water flow rate for 10 times before stopping the operation of the water heater 30 stored in the storage unit 61 is separately recorded in the storage unit 61 as abnormal data (step S14). That is, in the second embodiment, the control means 60 and the storage means 61 function as the recording means of the present invention.
  • step S15 when the flow rate detection unit 40 detects the flow rate drop, the control unit 60 determines whether or not the flow rate drop state continues for the set time T1 (180 seconds). When the duration of the flow rate reduction state is less than the set time T1 (180 seconds) (S15; Yes), the control means 60 returns to step S10 and continues the operation as it is without determining that the water supply is abnormal. On the other hand, when the flow rate reduction state continues for the set time T1 (180 seconds) or longer (S15; No), the process proceeds to step S16.
  • step S16 the control means 60 informs the notification means 62 that a water stop abnormality has been detected during operation in the circulation mode. Moreover, in order to protect equipment, such as the feed pump 36 and the compressor 51, the control means 60 stops operation
  • a command may be directly output from the control means 60 to each device, or may be stopped via another device.
  • the compressor 51 can be provided with a high-pressure shut-off device, and the compressor 51 can be stopped via the high-pressure shut-off device.
  • the storage unit 61 periodically stores the flow rate of water flowing through the refrigerant-water heat exchanger 52 (for example, every 30 seconds). For example, the detected water flow rate for 10 times before stopping the operation of the water heater 30 stored in the storage unit 61 is separately recorded in the storage unit 61 as abnormal data (step S17).
  • step S17 the control means 60 stands by until a standby time T2 (for example, 200 seconds) elapses, and thereafter, the operation is not permitted for the circulation mode, but the operation is permitted and started for the hot water storage mode ( The process proceeds to step S18) and step S19.
  • a standby time T2 for example, 200 seconds
  • movement in circulation mode is maintained.
  • the value of the waiting time T2 in step S18 (200 seconds) is an example, and the equipment (for example, the water supply pump 36 and the compressor 51) heated due to the occurrence of a water shutoff is cooled to a temperature at which there is no operational problem. Set the time to be played.
  • step S19 while executing the operation in the hot water storage mode, the control unit 60 determines whether or not the flow rate reduction state continues for 180 seconds when the flow rate detection unit 40 detects the flow rate reduction. If the detection time of the flow rate reduction state is less than the set time T1 (180 seconds) (S19; Yes), the control means 60 does not determine that the water supply is abnormal and continues the operation in the hot water storage mode in step S19. On the other hand, when the flow rate reduction state continues for the set time T1 (180 seconds) or longer (S19; Yes), the control means 60 determines that a water-breaking abnormality has occurred, and proceeds to step S13.
  • the control unit 60 determines whether or not the water is shut off according to the duration of the flow rate decrease state. Therefore, the same effect as in the first embodiment can be obtained.
  • the hot water storage operation mode in which hot water heated by the hot water heater 30 is stored in the hot water storage tank 1 can be executed. For this reason, for example, when there is a shortage of water in the hot water tank 1 or when there is a defect in the water transfer path from the hot water tank 1 to the hot water heater 30, the hot water tank 1 is heated without stopping the operation of the hot water heater 30.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fluid Mechanics (AREA)
  • Computer Hardware Design (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

A heat pump hot-water supply device is equipped with: a heat pump cycle device (50), wherein at least a compressor (51), a refrigerant-water heat exchanger (52), a decompression device (53), and an evaporator (54) are connected by piping, with heat being exchanged between the refrigerant and the water in the refrigerant-water heat exchanger (52); a flow volume detection means (40) that detects the flow volume of the water flowing through the refrigerant-water heat exchanger (52); and a control means (60) that controls the operation of the heat pump cycle device (50). When a state in which the flow volume of the water as detected by the flow volume detection means (40) is less than a threshold value continues for an amount of time equal to or greater than a set time (T1), the control means (60) determines that a water outage error has occurred, and stops the operation of the heat pump cycle device (50).

Description

ヒートポンプ給湯機及びヒートポンプ給湯機を備えた貯湯システムHeat pump water heater and hot water storage system equipped with heat pump water heater
 本発明は、ヒートポンプ給湯機及びこのヒートポンプ給湯機を備えた貯湯システムに関する。 The present invention relates to a heat pump water heater and a hot water storage system including the heat pump water heater.
 近年、脱フロン化の流れを受けて自然冷媒を用いたヒートポンプ装置の開発が盛んに進められている。中でも、二酸化炭素(CO )を冷媒としたヒートポンプ装置の普及は年々増加傾向にある。このCO は、オゾン破壊係数が0、地球温暖化係数が1と いう特性を有しているため、環境への負荷を小さくできるという利点がある。また、CO は、毒性が無く、可燃性も無いという点で安全性に優れており、入手が容易であり、比較的安価であるという利点も有している。 In recent years, development of a heat pump device using a natural refrigerant has been actively promoted in response to the flow of defluorination. Among them, the spread of heat pump devices using carbon dioxide (CO 2 ) as a refrigerant is increasing year by year. Since CO 2 has the characteristics that the ozone depletion coefficient is 0 and the global warming coefficient is 1, there is an advantage that the burden on the environment can be reduced. In addition, CO 2 is excellent in safety in that it has no toxicity and is not flammable, and has the advantages of being easily available and relatively inexpensive.
 さらに、圧縮機から吐出された高圧側のCO は、フロン系の冷媒とは異なり、超臨界状態となるという特性を有している。すなわち、この超臨界状態のCO は、熱交換によって他の流体(例えば、水や空気、冷媒等)に熱を与えるときに、凝縮せず、超臨界状態のままなのである。このような特性を有するCO は、状態遷移による損失が少なく、ヒートポンプ装置の中でも高温が要求されるものに適している。そこで、CO を冷媒として使用し、CO の利点を活用し、水を90[℃]以上の高温にまで沸き上げるようにしたヒートポンプ給湯機が種々提案されている。 Further, the high-pressure side CO 2 discharged from the compressor has a characteristic of being in a supercritical state, unlike a fluorocarbon refrigerant. That is, the CO 2 in the supercritical state does not condense and remains in the supercritical state when heat is applied to another fluid (for example, water, air, refrigerant, etc.) by heat exchange. CO 2 having such characteristics has little loss due to state transition, and is suitable for heat pump devices that require high temperatures. Therefore, various heat pump water heaters have been proposed that use CO 2 as a refrigerant and take advantage of CO 2 to boil water to a high temperature of 90 [° C.] or higher.
 そのようなものとして、「給湯加熱手段と、前記給湯加熱手段で加熱した温水を貯湯する貯湯槽と、前記貯湯槽に貯湯された温水を循環させて熱源とする複数の放熱手段と、前記複数の放熱手段を使用するか否かを選択する選択手段と、前記選択手段での選択状況に応じて前記給湯加熱手段で加熱し前記貯湯槽に貯湯する給湯加熱運転を制御する制御手段とを具備した」給湯機が開示されている(例えば、特許文献1参照)。このヒートポンプ給湯機では、循環ポンプで給湯の流量制御を行っている。 As such, “a hot water supply heating means, a hot water storage tank for storing hot water heated by the hot water supply heating means, a plurality of heat radiation means for circulating the hot water stored in the hot water storage tank as a heat source, Selection means for selecting whether or not to use the heat dissipating means, and control means for controlling the hot water heating operation for heating the hot water heating means and storing the hot water in the hot water storage tank according to the selection status of the selection means. A hot water heater has been disclosed (see, for example, Patent Document 1). In this heat pump water heater, the flow rate of hot water is controlled by a circulation pump.
 一般的にヒートポンプ給湯機では、上記特許文献1に記載のように給湯加熱手段で加熱した温水を貯湯槽に送水するために、あるいは貯湯槽に貯湯された温水をヒートポンプ給湯機に循環させて昇温させるために、ポンプが使用される。このポンプは、給湯機に内蔵され、あるいは給湯機に接続される等して設けられる。 In general, in a heat pump water heater, as described in Patent Document 1, the hot water heated by the hot water heater is supplied to the hot water tank, or the hot water stored in the hot water tank is circulated to the heat pump water heater. A pump is used to warm. This pump is provided in the water heater or connected to the water heater.
 また、このような給湯機においては、ヒートポンプ給湯機に供給される水の断水や水圧の低下が生じた場合に対する備えも必要とされる。このため、従来、断水時に圧縮機等を保護するために、圧縮機の吐出側圧力を検出する断水検出手段を備え、断水検出手段の出力に基づいて圧縮機の運転を制御する水冷式冷却装置が提案されている(例えば、特許文献2参照)。 Also, in such a water heater, it is necessary to prepare for the case where the water supplied to the heat pump water heater is cut off or the water pressure is lowered. For this reason, conventionally, in order to protect the compressor and the like at the time of water shutoff, a water cooling type cooling device provided with a water shutoff detecting means for detecting the discharge side pressure of the compressor and controlling the operation of the compressor based on the output of the water shutoff detecting means. Has been proposed (see, for example, Patent Document 2).
特開2004-333051号公報(第4頁、図1)Japanese Unexamined Patent Publication No. 2004-333051 (page 4, FIG. 1) 特開平7-229653号公報(第3頁、図1)JP-A-7-229653 (page 3, FIG. 1)
 しかしながら、特許文献2に記載の断水検出手段及びこれに基づく圧縮機の制御運転に係る構成を、特許文献1に記載のポンプで給湯の流量制御を行うヒートポンプ給湯機に適用すると、断水時にポンプが故障するおそれがある。前記構成にてポンプが故障するケースとしては、例えば、圧力が上昇しない運転(ポンプ運転モードなど)において断水を検知できずにポンプが故障する場合や、周波数低下抑制制御などにより圧力上昇に時間が掛かり、断水を検出する前にポンプが故障する場合などがある。ポンプが故障すると、断水後にヒートポンプの運転が再開された場合においても、給湯加熱手段で加熱された温水を貯湯槽に送水することができず貯湯できない、あるいは貯湯槽に貯湯された温水をヒートポンプ給湯機に循環させることができないという課題が生じる。 However, when the configuration relating to the water break detection means described in Patent Document 2 and the control operation of the compressor based on this is applied to a heat pump water heater that controls the flow rate of hot water using the pump described in Patent Document 1, the pump is turned off when water is shut down. There is a risk of failure. Examples of cases where the pump fails in the above-described configuration include, for example, a case where the pump fails due to a lack of water detection in an operation where the pressure does not increase (such as a pump operation mode), or a time until the pressure increases due to frequency reduction suppression control. There is a case where the pump breaks down before it is detected. If the pump fails, even if the heat pump operation is restarted after the water is shut off, the hot water heated by the hot water heating means cannot be sent to the hot water tank and cannot be stored, or the hot water stored in the hot water tank cannot be stored. The problem arises that it cannot be circulated through the machine.
 また、特許文献2には、断水検知方法として圧力スイッチが記載されているが、圧力スイッチのような断水検知方法では、断水を誤検知したり、ポンプを故障させてしまったりする可能性がある。以下、図面を参照して具体例を説明する。図8は、従来技術の課題を説明する図である。図8(a)及び図8(b)は、貯湯槽1と給湯機130とが、弁体134を有する水流入配管131、及び弁体135を有する水流出配管132で接続された貯湯システムの例を示している。図8(a)に示すように、貯湯槽101と給湯機130とが鳥居形状(上方向に向けて曲げられた符号180で示す形状)の水流出配管132で接続されている場合や、図8(b)に示すように貯湯槽101と給湯機130とが逆鳥居形状(下方向に向けて曲げられた符号181で示す形状)の水流入配管131で接続されている場合には、配管内の空気が抜けずに、ポンプがエア噛みして水又は湯を吸引できなくなり、一時的に流量低下が生じるおそれがある。そうなると、特許文献2に記載の圧力スイッチからなる断水検知手段は、数秒後には復帰する一時的な流量低下であるにもかかわらず、これを誤って断水であると検知する可能性がある。なお、本発明において、水の流量が低下した場合であっても数秒後に復帰するような一時的な流量低下は、断水として扱わないものとする。 Moreover, although the pressure switch is described in patent document 2 as a water stop detection method, in the water stop detection method like a pressure switch, water stop may be misdetected or a pump may be broken. . Specific examples will be described below with reference to the drawings. FIG. 8 is a diagram for explaining a problem of the prior art. 8A and 8B show a hot water storage system in which the hot water tank 1 and the hot water heater 130 are connected by a water inflow pipe 131 having a valve body 134 and a water outflow pipe 132 having a valve body 135. An example is shown. As shown to Fig.8 (a), when the hot water storage tank 101 and the water heater 130 are connected by the water outflow piping 132 of the torii shape (shape shown by the code | symbol 180 bent upward), When the hot water storage tank 101 and the water heater 130 are connected by a water inflow pipe 131 having a reverse torii shape (a shape indicated by a reference numeral 181 bent downward) as shown in FIG. There is a possibility that the air will not escape and the pump will bite into the air and will not be able to suck in water or hot water, causing a temporary decrease in flow rate. If it becomes so, even if it is the temporary flow rate fall which returns after several seconds, the water cutoff detection means which consists of a pressure switch of patent document 2 may detect this accidentally as water cutoff. In the present invention, even if the flow rate of water decreases, a temporary decrease in the flow rate that returns after a few seconds is not treated as a water outage.
 また、図8(c)及び図8(d)は、給湯機130への接続配管(水流出配管及び水流入配管を含む)及び接続配管に設けられる弁の一例を示す図である。図8(c)に示すように給湯機130の接続配管に三方弁182が接続されている場合や、図8(d)に示すように給湯機130の接続配管に二つ以上の二方弁(二方弁183a、183b)が接続されている場合には、流路切り替えなどの弁動作時に、一時的な流量低下が生じる。図9は、図8(d)に示す二方弁183a、183bを用いて流路切り替えを行うときの弁開度と流量との関係の一例を示すグラフである。図9に示すように、流路を切り替えるために二方弁183a、183bを動作させると、一時的な流量低下が生じる。また、図示しないが、三方弁182においても図9と同様に一時的な流量低下が生じる。この場合、特許文献2に記載の圧力スイッチからなる断水検知手段は、この一時的な流量低下を、誤って断水であると検知する可能性がある。 8 (c) and 8 (d) are diagrams showing an example of a connection pipe (including a water outflow pipe and a water inflow pipe) to the water heater 130 and a valve provided in the connection pipe. When the three-way valve 182 is connected to the connection pipe of the water heater 130 as shown in FIG. 8C, or two or more two-way valves are connected to the connection pipe of the water heater 130 as shown in FIG. When the (two- way valves 183a and 183b) are connected, a temporary flow rate drop occurs during valve operation such as channel switching. FIG. 9 is a graph showing an example of the relationship between the valve opening and the flow rate when the flow path is switched using the two- way valves 183a and 183b shown in FIG. As shown in FIG. 9, when the two- way valves 183a and 183b are operated in order to switch the flow path, a temporary flow rate drop occurs. Although not shown, the three-way valve 182 also has a temporary flow rate drop as in FIG. In this case, there is a possibility that the water breakage detection means including the pressure switch described in Patent Document 2 will detect this temporary flow rate drop as waterfall by mistake.
 さらに、前記のような一時的な流量低下が発生した場合に、機器保護のために圧縮機等の運転を停止させたとしても、異常停止の原因を追及する際に、再現性が無く原因の解明が困難という課題が生じる。 Furthermore, even if the operation of the compressor or the like is stopped to protect the equipment when a temporary flow rate drop occurs as described above, there is no reproducibility when pursuing the cause of the abnormal stop. There arises a problem that it is difficult to clarify.
 本発明は、上記のような課題を背景としてなされたものであり、一時的な流量低下が生じた場合でも、その後支障無く運転を行うことのできるヒートポンプ給湯機及びこのヒートポンプ給湯機を備えた貯湯システムを提供するものである。 The present invention has been made against the background of the above problems, and even when a temporary flow rate drop occurs, a heat pump water heater that can be operated without hindrance thereafter, and a hot water storage provided with the heat pump water heater A system is provided.
 本発明に係るヒートポンプ給湯機は、圧縮機、冷媒-水熱交換器、減圧装置、及び蒸発器が少なくとも配管接続され、前記冷媒-水熱交換器において冷媒と水とが熱交換するヒートポンプサイクル装置と、前記冷媒-水熱交換器を流通する水の流量を検知する流量検知手段と、前記ヒートポンプサイクル装置の運転を制御する制御手段とを備え、前記流量検知手段により検知された水の流量が閾値よりも低い状態が、設定時間以上継続すると、前記制御手段は、断水異常と判定し、前記ヒートポンプサイクル装置の運転を停止させるものである。 The heat pump water heater according to the present invention includes a compressor, a refrigerant-water heat exchanger, a decompression device, and an evaporator at least connected to a pipe, and the refrigerant-water heat exchanger performs heat exchange between the refrigerant and water. And a flow rate detection means for detecting the flow rate of water flowing through the refrigerant-water heat exchanger, and a control means for controlling the operation of the heat pump cycle device, wherein the flow rate of water detected by the flow rate detection means is When the state lower than the threshold value continues for a set time or longer, the control means determines that the water supply is abnormal and stops the operation of the heat pump cycle device.
 本発明によれば、冷媒-水熱交換器を流れる水の流量が閾値よりも低い状態が、設定時間以上継続すると、断水異常と判定し、ヒートポンプサイクル装置の運転を停止するように構成した。このため、例えばノイズなどによる流量検知手段の誤動作や一時的な流量低下等による、断水状態の誤検知を抑制できる。また、一時的な流量低下が生じた場合でも、冷媒-水熱交換器に水を循環させるポンプが故障しない範囲で、一時的な流量低下の後も支障無く運転を行うことができるという効果が得られる。 According to the present invention, when the state in which the flow rate of water flowing through the refrigerant-water heat exchanger is lower than the threshold value continues for a set time or longer, it is determined that the water supply is abnormal and the operation of the heat pump cycle device is stopped. For this reason, it is possible to suppress erroneous detection of the water-stopping state due to, for example, malfunction of the flow rate detection means due to noise or the like, or temporary decrease in flow rate. In addition, even if a temporary flow rate drop occurs, the pump can be operated without any trouble after the temporary flow rate drop as long as the pump that circulates water through the refrigerant-water heat exchanger does not fail. can get.
本発明の実施の形態1に係る貯湯システム100を示す配管回路図である。It is a piping circuit diagram which shows the hot water storage system 100 which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る給湯機30を示す配管回路図である。It is a piping circuit diagram which shows the water heater 30 which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る給湯機30の断水検知の判定処理を示すフローチャートである。It is a flowchart which shows the determination process of the water break detection of the water heater 30 which concerns on Embodiment 1 of this invention. 本発明の実施の形態に係る冷媒-水熱交換器52を流れる水の流量と経過時間の関係の一例を示すグラフである。It is a graph which shows an example of the relationship between the flow volume of the water which flows through the refrigerant | coolant-water heat exchanger 52 which concerns on embodiment of this invention, and elapsed time. ポンプ内蔵部品の温度と動作経過時間との関係の一例を示すグラフである。It is a graph which shows an example of the relationship between the temperature of pump built-in components, and operation elapsed time. 本発明の実施の形態2に係る貯湯システム100を示す配管回路図である。It is a piping circuit diagram which shows the hot water storage system 100 which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係る給湯機30の動作を説明するフローチャートである。It is a flowchart explaining operation | movement of the water heater 30 which concerns on Embodiment 2 of this invention. 給湯機130と貯湯槽101との配管接続形態の一例を示す図である。It is a figure which shows an example of the piping connection form of the water heater 130 and the hot water storage tank 101. FIG. 給湯機130に対して二方弁が二つ接続されている場合において、流路切り替え動作をさせたときの弁開度と流量の関係の一例を示すグラフである。It is a graph which shows an example of the relationship between the valve opening degree and the flow rate when the flow path switching operation is performed when two two-way valves are connected to the hot water heater.
 以下、本発明に係るヒートポンプ給湯機を、貯湯槽を備えた貯湯システムに適用した場合の実施の形態について、図面を参照して説明する。なお、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。また、以下の図面において、同一の符号を付したものは、同一又はこれに相当するものであり、このことは明細書の全文において共通している。さらに、明細書全文に表わされている構成要素の形態は、あくまでも例示であって、これらの記載に限定されるものではない。 Hereinafter, an embodiment in which the heat pump water heater according to the present invention is applied to a hot water storage system including a hot water tank will be described with reference to the drawings. In the following drawings, the size relationship of each component may be different from the actual one. Moreover, in the following drawings, what attached | subjected the same code | symbol is the same or it corresponds, This is common in the whole text of a specification. Furthermore, the forms of the constituent elements shown in the entire specification are merely examples, and are not limited to these descriptions.
実施の形態1.
 図1は、本発明の実施の形態1に係る貯湯システム100を示す配管回路図である。なお、図1には、破線の矢印で水の流れ方向も示している。本実施の形態に係る貯湯システム100は、貯湯槽1と、貯湯槽1の水を加熱する手段であるヒートポンプ給湯機30(以下、単に給湯機30と称する)とを備える。貯湯槽1には、給湯機30で加熱された温水が貯留され、この貯湯槽1から温水を使用する設備(例えば浴室や台所等)の給水栓へと温水が供給される。
Embodiment 1 FIG.
FIG. 1 is a piping circuit diagram showing a hot water storage system 100 according to Embodiment 1 of the present invention. In addition, in FIG. 1, the flow direction of water is also shown by the broken-line arrow. A hot water storage system 100 according to the present embodiment includes a hot water storage tank 1 and a heat pump water heater 30 (hereinafter simply referred to as a hot water heater 30) that is means for heating water in the hot water tank 1. Hot water heated by the hot water heater 30 is stored in the hot water tank 1, and hot water is supplied from the hot water tank 1 to a water tap of a facility (for example, a bathroom or a kitchen) that uses the hot water.
 貯湯槽1の下部は、貯湯槽1内の水を給湯機30へ流入させる水流入配管31を介して給湯機30と接続されている。貯湯槽1の下部には、水流入配管31が接続された部位と概ね同じ高さ位置の水温を検出する温度検出器2が設けられている。温度検出器2は、水温を検出可能なものであれば具体的構成は限定されない。また、貯湯槽1の上部、詳しくは水流入配管31が接続された部位よりも上部は、給湯機30から流出する水が流れる水流出配管32を介して、給湯機30と接続されている。水流入配管31は、貯湯槽1と給湯機30との間で分岐しており、この分岐した配管を水流入配管31aと称する。水流入配管31aは、給水配管4を介して受水槽3と接続されている。受水槽3は、貯湯システム100に供給する水を貯めるタンクである。給水配管4には、受水槽3から給湯機30への給水量を制御する給水弁5が設けられている。 The lower part of the hot water tank 1 is connected to the water heater 30 via a water inflow pipe 31 through which the water in the hot water tank 1 flows into the water heater 30. Below the hot water tank 1, a temperature detector 2 is provided for detecting the water temperature at substantially the same height as the part to which the water inflow pipe 31 is connected. The specific structure of the temperature detector 2 is not limited as long as it can detect the water temperature. In addition, the upper part of the hot water tank 1, specifically the upper part than the part where the water inflow pipe 31 is connected, is connected to the hot water heater 30 via a water outflow pipe 32 through which water flowing out of the hot water heater 30 flows. The water inflow pipe 31 is branched between the hot water storage tank 1 and the water heater 30, and this branched pipe is referred to as a water inflow pipe 31a. The water inflow pipe 31 a is connected to the water receiving tank 3 through the water supply pipe 4. The water receiving tank 3 is a tank that stores water to be supplied to the hot water storage system 100. The water supply pipe 4 is provided with a water supply valve 5 that controls the amount of water supplied from the water receiving tank 3 to the water heater 30.
 水流入配管31及び水流出配管32のそれぞれには、給湯機30のメンテナンスや交換の際に給湯機30と貯湯槽1との間の水の配管経路を遮断するため、例えば手動弁である弁体が設けられている。具体的には、水流入配管31には、弁体33と弁体34とが直列に設けられており、弁体33と弁体34との間から水流入配管31aが分岐している。また、水流出配管32には、弁体35が設けられている。 Each of the water inflow pipe 31 and the water outflow pipe 32 is, for example, a valve that is a manual valve in order to shut off the water piping path between the water heater 30 and the hot water tank 1 during maintenance or replacement of the water heater 30. The body is provided. Specifically, the water inflow pipe 31 is provided with a valve body 33 and a valve body 34 in series, and the water inflow pipe 31 a is branched from between the valve body 33 and the valve body 34. The water outflow pipe 32 is provided with a valve body 35.
 貯湯槽1の上部には、図示しない給水栓と接続される給湯配管6の一端が接続されている。この給湯配管6には、貯湯槽1に貯留されている温水を給水栓へ送るための給湯ポンプ7が設けられている。また、貯湯槽1の下部、詳しくは給湯配管6が接続された部位よりも下側には、戻り配管8の一端が接続されている。なお、給湯ポンプ7は、戻り配管8に設けられていてもよい。 One end of a hot water supply pipe 6 connected to a water tap (not shown) is connected to the upper part of the hot water tank 1. The hot water supply pipe 6 is provided with a hot water supply pump 7 for sending hot water stored in the hot water tank 1 to the water tap. In addition, one end of the return pipe 8 is connected to the lower part of the hot water tank 1, more specifically below the part to which the hot water supply pipe 6 is connected. The hot water supply pump 7 may be provided in the return pipe 8.
 次に、給湯機30の構成を説明する。
 図2は、本発明の実施の形態1に係る給湯機30を示す配管回路図である。なお、図2には、破線の矢印で水の流れ方向を示し、実線の矢印で冷媒の流れ方向を示している。本実施の形態に係る給湯機30は、熱源としてヒートポンプサイクル装置(冷凍サイクル装置と同じ)50を備えている。本実施の形態では、ヒートポンプサイクル装置50には、CO 冷媒が用いられている。高圧のCO 冷媒は、超臨界状態になるという特性を有している。つまり、この超臨界状態のCO 冷媒は、熱交換によって他の流体(ここでは、水)に熱を与えるときに凝縮せず、超臨界状態のままである。このため、状態遷移による損失が少なく、水を高温に加熱するのに適している。
Next, the configuration of the water heater 30 will be described.
FIG. 2 is a piping circuit diagram illustrating the water heater 30 according to Embodiment 1 of the present invention. In FIG. 2, the direction of water flow is indicated by a broken-line arrow, and the direction of refrigerant flow is indicated by a solid-line arrow. The water heater 30 according to the present embodiment includes a heat pump cycle device (same as the refrigeration cycle device) 50 as a heat source. In the present embodiment, the heat pump cycle device 50 uses a CO 2 refrigerant. The high-pressure CO 2 refrigerant has a characteristic of being in a supercritical state. That is, the CO 2 refrigerant in the supercritical state does not condense when heat is applied to another fluid (here, water) by heat exchange, and remains in the supercritical state. For this reason, there is little loss by a state transition and it is suitable for heating water to high temperature.
 このヒートポンプサイクル装置50は、圧縮機51、放熱器である冷媒-水熱交換器52、減圧装置53及び蒸発器54が、順次配管接続されて冷媒回路が形成されている。圧縮機51は、冷媒流入配管55を介して冷媒-水熱交換器52と接続されている。冷媒-水熱交換器52は、冷媒流出配管56を介して減圧装置53と接続されている。また、減圧装置53は蒸発器54と配管接続され、この蒸発器54は圧縮機51と配管接続されている。なお、ヒートポンプサイクル装置50で用いる冷媒はCOに限定されず、例えば、R410A、R407C、R404A、R32などのHFC(ハイドロフルオロカーボン)冷媒、R22、R134aなどのHCFC(ハイドロクロロフルオロカーボン)冷媒、もしくは炭化水素やヘリウムのような自然冷媒等の種々の冷媒が使用可能である。この場合、冷媒-水熱交換器52は凝縮器として機能する。 In this heat pump cycle device 50, a compressor 51, a refrigerant-water heat exchanger 52 as a radiator, a decompression device 53, and an evaporator 54 are sequentially connected to form a refrigerant circuit. The compressor 51 is connected to a refrigerant-water heat exchanger 52 via a refrigerant inflow pipe 55. The refrigerant-water heat exchanger 52 is connected to the decompression device 53 via a refrigerant outflow pipe 56. Further, the decompression device 53 is connected to the evaporator 54 by piping, and the evaporator 54 is connected to the compressor 51 by piping. Note that the refrigerant used in the heat pump cycle device 50 is not limited to CO 2 , for example, HFC (hydrofluorocarbon) refrigerants such as R410A, R407C, R404A, and R32, HCFC (hydrochlorofluorocarbon) refrigerants such as R22 and R134a, or carbonization Various refrigerants such as natural refrigerants such as hydrogen and helium can be used. In this case, the refrigerant-water heat exchanger 52 functions as a condenser.
 このヒートポンプサイクル装置50において、圧縮機51から吐出された高温で高圧の冷媒は、冷媒-水熱交換器52に流入し、冷媒-水熱交換器52を流れる流体(本実施の形態では水)との間で熱交換して放熱し、冷媒-水熱交換器52から流出する。冷媒-水熱交換器52から流出した冷媒は、減圧装置53において減圧され、蒸発器54に流入して昇温し、圧縮機51に吸入される。冷媒-水熱交換器52の数は限定されず、要求される水の加熱量に合わせて一又は複数の冷媒-水熱交換器52を設けることができる。 In this heat pump cycle device 50, the high-temperature and high-pressure refrigerant discharged from the compressor 51 flows into the refrigerant-water heat exchanger 52 and flows through the refrigerant-water heat exchanger 52 (in this embodiment, water). Heat is exchanged between the refrigerant and the water to dissipate the heat and flows out of the refrigerant-water heat exchanger 52. The refrigerant that has flowed out of the refrigerant-water heat exchanger 52 is decompressed by the decompression device 53, flows into the evaporator 54, rises in temperature, and is sucked into the compressor 51. The number of refrigerant-water heat exchangers 52 is not limited, and one or a plurality of refrigerant-water heat exchangers 52 can be provided in accordance with the required heating amount of water.
 冷媒-水熱交換器52には、水流入配管31及び水流出配管32が接続されている。水流入配管31を通って冷媒-水熱交換器52に流入した水は、冷媒-水熱交換器52を流れる冷媒との間で熱交換を行い、水流出配管32を通って貯湯槽1(図1参照)に送られる。また、水流入配管31には、冷媒-水熱交換器52に水を送る給水ポンプ36が設けられている。給水ポンプ36は、回転数を可変とすることにより流量を調節できるものであってもよいし、流量(回転数)が一定のものであってもよい。また、給水ポンプ36は、水流出配管32に設けられていてもよい。また、給水ポンプ36は、図2に示すように給湯機30に内蔵されていてもよいし、水流入配管31又は水流出配管32の給湯機30の外郭から露出した部位に設けられていてもよい。 A water inflow pipe 31 and a water outflow pipe 32 are connected to the refrigerant-water heat exchanger 52. The water flowing into the refrigerant-water heat exchanger 52 through the water inflow pipe 31 exchanges heat with the refrigerant flowing through the refrigerant-water heat exchanger 52, and passes through the water outflow pipe 32 to pass through the hot water tank 1 ( 1). The water inflow pipe 31 is provided with a water supply pump 36 for sending water to the refrigerant-water heat exchanger 52. The feed water pump 36 may be capable of adjusting the flow rate by making the rotation speed variable, or may be a constant flow rate (rotation speed). Further, the water supply pump 36 may be provided in the water outflow pipe 32. Moreover, the water supply pump 36 may be incorporated in the water heater 30 as shown in FIG. 2, or may be provided in a portion of the water inflow pipe 31 or the water outflow pipe 32 exposed from the outline of the water heater 30. Good.
 水流入配管31には、冷媒-水熱交換器52を流通する水の流量を検知する流量検知手段40が設けられている。流量検知手段40は、例えば電気式、機械式、超音波式、あるいは熱式等の任意の流量センサで構成することができる。なお、図2の例では、流量検知手段40は、体積形流量検出装置を使っているため、キャビテーションが発生する可能性がある給水ポンプ36の通過前や、気泡が発生する可能性がある冷媒-水熱交換器52の通過後の位置を避け、圧力が最も高くなる位置として、水流入配管31の給水ポンプ36と冷媒-水熱交換器52との間に、流量検知手段40を設けている。 The water inflow pipe 31 is provided with a flow rate detection means 40 for detecting the flow rate of water flowing through the refrigerant-water heat exchanger 52. The flow rate detection means 40 can be configured by an arbitrary flow rate sensor such as an electric type, a mechanical type, an ultrasonic type, or a thermal type. In the example of FIG. 2, since the flow rate detection unit 40 uses a volumetric flow rate detection device, the refrigerant may generate bubbles before passing through the water supply pump 36 where cavitation may occur. -A flow rate detection means 40 is provided between the water supply pump 36 of the water inflow pipe 31 and the refrigerant-water heat exchanger 52 as a position where the pressure becomes highest, avoiding the position after passing through the water heat exchanger 52. Yes.
 給湯機30の筐体内には、流量検知手段40及び温度検出器2が検知した情報が入力されるとともに、少なくとも給湯ポンプ7、弁体34、35、及び圧縮機51の運転を制御する制御手段60を備えている。減圧装置53が、弁開度を調整可能な膨張弁で構成されている場合には、この減圧装置53の動作を制御手段60が制御することもできるし、弁体34や弁体35が開度調整可能な弁であれば、これらを制御手段60が制御することもできる。本実施の形態では、図2に示すように制御手段60が給湯機30の筐体内に設けられているが、制御手段60の設置位置は任意である。制御手段60は、CPU及びこのCPUにて解析実行されるプログラムにて実現され、あるいは、ワイヤードロジックによるハードウェアとして実現され得る。なお、制御手段60が実現する機能を、任意の単位で物理的に分散された装置にて実現することもできる。また、この制御手段60は、書き換え可能な記憶手段61を有しており、後述するように流量検知手段40が検知した流量を記憶手段61に記録することができる。 Information detected by the flow rate detection means 40 and the temperature detector 2 is input into the housing of the hot water heater 30 and at least control means for controlling the operation of the hot water supply pump 7, the valve bodies 34 and 35, and the compressor 51. 60. When the decompression device 53 is configured by an expansion valve whose valve opening degree can be adjusted, the operation of the decompression device 53 can be controlled by the control means 60, and the valve body 34 and the valve body 35 are opened. The control means 60 can also control these valves as long as they are adjustable. In the present embodiment, as shown in FIG. 2, the control means 60 is provided in the housing of the water heater 30, but the installation position of the control means 60 is arbitrary. The control means 60 may be realized by a CPU and a program that is analyzed and executed by the CPU, or may be realized as hardware by wired logic. It should be noted that the functions realized by the control means 60 can also be realized by devices physically distributed in arbitrary units. Further, the control means 60 has a rewritable storage means 61 and can record the flow rate detected by the flow rate detection means 40 in the storage means 61 as will be described later.
 また、給湯機30には、給湯機30の運転状態や使用者に対して報知すべき情報を報知する報知手段62が設けられている。報知手段62は、例えば、情報を視覚的に表示する液晶モニター等の表示装置、又は情報を聴覚的に報知するスピーカやブザー等の音声出力装置である。なお、報知手段62として表示装置と音声出力装置の両方を設けてもよいし、いずれか一方を設けてもよい。 Further, the water heater 30 is provided with a notification means 62 for notifying the operating state of the water heater 30 and information to be notified to the user. The notification means 62 is, for example, a display device such as a liquid crystal monitor that visually displays information, or a sound output device such as a speaker or buzzer that notifies information audibly. Note that both a display device and an audio output device may be provided as the notification means 62, or either one may be provided.
 次に動作について説明する。
 本実施の形態の貯湯システム100は、貯湯槽1に貯留されている水、もしくは受水槽3に貯留されている水を、給湯機30(冷媒-水熱交換器52)で加熱し、貯湯槽1へ送る。そして、本実施の形態の制御手段60は、給湯機30の運転モードとして、給湯機30(冷媒-水熱交換器52)と貯湯槽1との間で水を循環させて加熱する循環モードと、給湯機30で加熱した温水を貯湯槽1に貯湯する貯湯モードという少なくとも二つの運転モードを有する。貯湯モードは、受水槽3から供給される水を給湯機30で加熱して貯湯槽1へ貯湯し、貯湯槽1から給湯機30へは水を送らない点において循環モードと異なる。以下、図1、図2を参照して、循環モードと貯湯モードの動作概要を説明する。
Next, the operation will be described.
The hot water storage system 100 of the present embodiment heats the water stored in the hot water storage tank 1 or the water stored in the water receiving tank 3 with the hot water heater 30 (refrigerant-water heat exchanger 52), and hot water storage tank Send to 1. Then, the control means 60 of the present embodiment sets the operation mode of the water heater 30 as a circulation mode in which water is circulated and heated between the water heater 30 (refrigerant-water heat exchanger 52) and the hot water tank 1. In addition, at least two operation modes of hot water storage mode in which hot water heated by the water heater 30 is stored in the hot water storage tank 1 are provided. The hot water storage mode is different from the circulation mode in that the water supplied from the water receiving tank 3 is heated by the water heater 30 to store the hot water in the hot water tank 1 and no water is sent from the hot water tank 1 to the water heater 30. Hereinafter, with reference to FIG. 1, FIG. 2, the operation | movement outline | summary of the circulation mode and the hot water storage mode is demonstrated.
 循環モードの場合、給湯機30(冷媒-水熱交換器52)で加熱される水は、貯湯槽1に貯留されている水である。貯湯槽1内の水は、上部ほど水温が高く、下部に向かうにしたがって水温が低くなっている。本実施の形態では、貯湯槽1内の下部に設けられた温度検出器2の検出水温が、所定の加熱開始温度以下となったときに、制御手段60は、貯湯槽1に貯留されている水の加熱を開始すべく給湯機30を運転する。貯湯槽1に貯留されている水の加熱を開始する際、制御手段60は、弁体33、弁体34、及び弁体35を開くとともに、給水ポンプ36を動作させる。貯湯槽1の下部に貯留されている水は、水流入配管31を介して給湯機30(冷媒-水熱交換器52)へ送られる。そして、この水は、給湯機30(冷媒-水熱交換器52)で加熱され、温水となる。この温水は、水流出配管32を介して貯湯槽1に流入する。そして、温度検出器2の検出温度が所定の加熱終了温度に達すると、貯湯槽1に貯留されている水の加熱が終了する。貯湯槽1に貯留されている温水は、給湯ポンプ7が動作すると、給湯配管6を介して図示しない給水栓へと供給される。 In the circulation mode, the water heated by the water heater 30 (refrigerant-water heat exchanger 52) is water stored in the hot water tank 1. The water temperature in the hot water tank 1 is higher at the upper part, and the water temperature is lower toward the lower part. In the present embodiment, the control means 60 is stored in the hot water tank 1 when the detected water temperature of the temperature detector 2 provided in the lower part of the hot water tank 1 becomes a predetermined heating start temperature or lower. The water heater 30 is operated to start heating the water. When starting the heating of the water stored in the hot water tank 1, the control means 60 opens the valve body 33, the valve body 34, and the valve body 35 and operates the water supply pump 36. The water stored in the lower part of the hot water tank 1 is sent to the hot water heater 30 (refrigerant-water heat exchanger 52) via the water inflow pipe 31. This water is heated by the hot water heater 30 (refrigerant-water heat exchanger 52) to become hot water. The warm water flows into the hot water tank 1 through the water outflow pipe 32. When the temperature detected by the temperature detector 2 reaches a predetermined heating end temperature, the heating of the water stored in the hot water tank 1 is completed. The hot water stored in the hot water tank 1 is supplied to a water tap (not shown) through the hot water supply pipe 6 when the hot water supply pump 7 is operated.
 貯湯槽1に貯留されている温水が、給湯配管6を介して図示しない給水栓に供給されると、貯湯槽1内の水の量が減少する。そうすると、制御手段60は、貯湯モードで動作を開始する。貯湯槽1内の水の量が所定量まで減少して貯湯モードでの動作を開始すると、弁体33が閉じられ、給水弁5が開かれる。給水弁5が開かれると、受水槽3に貯留されていた水が水流入配管31aを介して給湯機30(冷媒-水熱交換器52)へ送られる。そして、この水は、給湯機30(冷媒-水熱交換器52)で加熱され、温水となる。この温水は、水流出配管32を介して貯湯槽1に流入し、給湯配管6を介して図示しない給水栓へと供給される。 When the hot water stored in the hot water tank 1 is supplied to a water tap (not shown) via the hot water supply pipe 6, the amount of water in the hot water tank 1 decreases. Then, the control means 60 starts operation in the hot water storage mode. When the amount of water in the hot water tank 1 is reduced to a predetermined amount and the operation in the hot water storage mode is started, the valve element 33 is closed and the water supply valve 5 is opened. When the water supply valve 5 is opened, the water stored in the water receiving tank 3 is sent to the water heater 30 (refrigerant-water heat exchanger 52) through the water inflow pipe 31a. This water is heated by the hot water heater 30 (refrigerant-water heat exchanger 52) to become hot water. This hot water flows into the hot water tank 1 through the water outflow pipe 32 and is supplied to a water tap (not shown) through the hot water supply pipe 6.
 続いて、給湯機30の断水検知の判別動作について説明する。
 なお、断水異常の判定に係る動作は、循環モードと貯湯モードのいずれの運転モードであっても同じであるので、ここでは、貯湯槽1に貯留されている水を給湯機30(冷媒-水熱交換器52)で加熱する循環モードを例に、貯湯システム100及び給湯機30の動作を説明する。
Next, a determination operation for detecting a water break in the water heater 30 will be described.
Note that the operation related to the determination of the abnormality of water interruption is the same regardless of whether the operation mode is the circulation mode or the hot water storage mode, and here, the water stored in the hot water tank 1 is used as the hot water heater 30 (refrigerant-water). The operation of the hot water storage system 100 and the hot water heater 30 will be described taking the circulation mode of heating by the heat exchanger 52) as an example.
 図3は、本発明の実施の形態1に係る給湯機30の断水検知の判定処理を示すフローチャートである。図4は、本発明の実施の形態に係る冷媒-水熱交換器52を流れる水の流量と経過時間の関係の一例を示すグラフである。 FIG. 3 is a flowchart showing determination processing for detecting water breakage in the water heater 30 according to Embodiment 1 of the present invention. FIG. 4 is a graph showing an example of the relationship between the flow rate of water flowing through the refrigerant-water heat exchanger 52 and the elapsed time according to the embodiment of the present invention.
 制御手段60は、給湯機30の運転を開始する(ステップS1)。給湯機30の運転を開始すると、流量検知手段40は、冷媒-水熱交換器52を流れる水の流量を周期的(例えば30秒毎)に検知する。また、流量検知手段40によって周期的に検知された流量は、例えばリングバッファ形式で記憶手段61に記憶される。したがって、記憶手段61には、現時点から遡った所定期間分の冷媒-水熱交換器52を流れる水の流量が、記憶されている。 Control means 60 starts operation of water heater 30 (step S1). When the operation of the water heater 30 is started, the flow rate detection means 40 periodically detects the flow rate of water flowing through the refrigerant-water heat exchanger 52 (for example, every 30 seconds). Further, the flow rate periodically detected by the flow rate detection unit 40 is stored in the storage unit 61 in a ring buffer format, for example. Therefore, the storage means 61 stores the flow rate of water flowing through the refrigerant-water heat exchanger 52 for a predetermined period going back from the present time.
 制御手段60は、流量検知手段40が検知した冷媒-水熱交換器52を流れる水の流量が閾値よりも低下した状態(以下、単に流量低下状態と称する場合がある)が、設定時間T1(本実施の形態では180秒)以上継続するか否かを判定する(ステップS2)。図4(a)に示すように、流量低下状態の継続時間が、設定時間T1(180秒)未満の場合には(図3のステップS2;Yes)、制御手段60は、断水異常とは判定を下さず、ステップS1に戻って給湯機30の運転を継続させる。一方、図4(b)に示すように、流量低下状態の継続時間が、設定時間T1(180秒)以上となった場合には(図3のステップS2;No)、制御手段60は、断水異常が発生したと判定し、ステップS3に進む。 In the control means 60, the state in which the flow rate of the water flowing through the refrigerant-water heat exchanger 52 detected by the flow rate detection means 40 is lower than the threshold value (hereinafter sometimes simply referred to as a flow rate reduction state) is set time T1 ( In this embodiment, it is determined whether or not to continue for 180 seconds (step S2). As shown in FIG. 4 (a), when the duration of the flow rate reduction state is less than the set time T1 (180 seconds) (step S2 in FIG. 3; Yes), the control means 60 determines that there is a water cutoff abnormality. Without returning to step S1, the operation of the water heater 30 is continued. On the other hand, as shown in FIG. 4B, when the duration time of the flow rate reduction state is equal to or longer than the set time T1 (180 seconds) (step S2 in FIG. 3; No), the control means 60 It is determined that an abnormality has occurred, and the process proceeds to step S3.
 なお、ステップS2で設定している設定時間T1は貯湯システム100の現地の接続配管経路や、貯湯システム100に使用されるポンプにあわせて可変の値であり、本実施の形態1では、設定時間T1を、60秒以上180秒以下の範囲で設定する。ここで、設定時間T1の設定根拠について説明する。 The set time T1 set in step S2 is a variable value according to the local connection piping path of the hot water storage system 100 and the pump used in the hot water storage system 100. In the first embodiment, the set time T1 is set within a range of 60 seconds to 180 seconds. Here, the grounds for setting the set time T1 will be described.
 まず、設定時間T1の範囲の下限(60秒)については、次の二つの根拠による。
 第一の根拠としては、図8(c)に示すようにヒートポンプ給湯機の接続配管に三方弁が接続されている場合や、図8(d)に示すようにヒートポンプ給湯機の接続配管に二方弁が二つ以上接続されている場合に、流路切り替えなどの弁動作時に図9に示すように一時的な流量低下が生じ、流量検知手段40が断水を検知する可能性があるが、その際の流量低下の検知時間は60秒未満となることが挙げられる。このため、設定時間T1の範囲の下限を60秒としておけば、三方弁や二方弁の弁動作時の一時的な流量低下を、断水状態であると誤判定することを抑制できる。
 また、第二の根拠としては、流量検知手段40がノイズ等の影響を受けて誤作動し、一時的に流量を検出できず、流量低下を検知する可能性があるが、その際の流量低下検知時間は60秒未満となることが挙げられる。
 これら二つの根拠より、設定時間T1の範囲の下限を60秒としている。
First, the lower limit (60 seconds) of the range of the set time T1 is based on the following two grounds.
The first ground is that a three-way valve is connected to the connection pipe of the heat pump water heater as shown in FIG. 8C, or a connection pipe of the heat pump water heater as shown in FIG. 8D. When two or more way valves are connected, there is a possibility that a temporary flow rate drop occurs as shown in FIG. 9 during valve operation such as flow path switching, and the flow rate detection means 40 may detect water breakage, It can be mentioned that the detection time of the flow rate drop at that time is less than 60 seconds. For this reason, if the lower limit of the range of the set time T1 is set to 60 seconds, it is possible to suppress erroneous determination that the temporary flow rate decrease during the valve operation of the three-way valve or the two-way valve is in a water-stopped state.
The second reason is that the flow rate detection means 40 may malfunction due to the influence of noise or the like, temporarily fail to detect the flow rate, and may detect a decrease in the flow rate. For example, the detection time is less than 60 seconds.
Based on these two grounds, the lower limit of the range of the set time T1 is 60 seconds.
 続いて、設定時間T1の範囲の上限(180秒)については、次の根拠による。
 給湯機30に内蔵又は給湯機30を用いた貯湯システム100に使用されるポンプ(例えば、給湯ポンプ7や給水ポンプ36など)が、断水状態で運転を継続した場合、流体によるポンプの冷却効果が得られなくなる。ここで、図5は、ポンプの温度と動作経過時間との関係の一例を示すグラフであり、流量が閾値よりも低下している状態でポンプを動作させた場合のグラフを示している。図5に示すように、流量が低下した状態でのポンプの動作時間の経過に伴い、ポンプに内蔵されている部品(例えば軸や基板など)の温度が上昇していき、動作保証温度以上に過熱して故障するおそれがある。よって、ポンプに内蔵されている部品が動作保証温度に至るまでの時間(図5では例えば360秒)に対し、裕度(例えば2倍)を確保し得る最大時間として、設定時間T1の範囲の上限を180秒とする。
Subsequently, the upper limit (180 seconds) of the range of the set time T1 is based on the following grounds.
When a pump (for example, a hot water supply pump 7 or a water supply pump 36) built in the hot water supply device 30 or used in the hot water storage system 100 using the hot water supply device 30 is continuously operated in a water-off state, the cooling effect of the pump by the fluid is obtained. It can no longer be obtained. Here, FIG. 5 is a graph showing an example of the relationship between the temperature of the pump and the operation elapsed time, and shows a graph when the pump is operated in a state where the flow rate is lower than the threshold value. As shown in FIG. 5, as the operation time of the pump with the flow rate decreased, the temperature of the components (for example, shaft and board) built in the pump rises and exceeds the guaranteed operating temperature. There is a risk of overheating and failure. Therefore, the maximum time for which a margin (for example, twice) can be ensured with respect to the time (for example, 360 seconds in FIG. 5) until the component built in the pump reaches the operation guarantee temperature is within the range of the set time T1. The upper limit is 180 seconds.
 以上のような理由から、設定時間T1の範囲を、60秒以上180秒以下としている。設定時間T1は、60秒以上180秒以下の範囲で、メンテナンス担当者等によって制御手段60に対して設定される。設定時間T1の制御手段60への設定は、制御手段60のCPUが実行するプログラムを書き換える、あるいは図示しない操作スイッチを用いて制御手段60への信号を切り替える、等の任意の構成によって実現される。 For the above reasons, the range of the set time T1 is set to 60 seconds or more and 180 seconds or less. The set time T1 is set for the control means 60 by a maintenance person or the like in the range of 60 seconds to 180 seconds. The setting of the setting time T1 in the control means 60 is realized by an arbitrary configuration such as rewriting a program executed by the CPU of the control means 60 or switching a signal to the control means 60 using an operation switch (not shown). .
 図3の説明を続ける。
 図3のステップS3では、制御手段60は、断水異常を検知したことを、報知手段62に報知させる。また、給水ポンプ36や圧縮機51などの機器を保護するため、制御手段60はこれら機器を停止させる。停止方法は、制御手段60から各機器に対して指令を直接出力してもよいし、その他の装置を介して停止させてもよい。例えば、圧縮機51に高圧遮断装置を設け、この高圧遮断装置を介して圧縮機51を停止させることができる。
The description of FIG. 3 is continued.
In step S3 of FIG. 3, the control unit 60 causes the notification unit 62 to notify that a water-stop abnormality has been detected. Moreover, in order to protect apparatuses, such as the feed pump 36 and the compressor 51, the control means 60 stops these apparatuses. As a stopping method, a command may be directly output from the control means 60 to each device, or may be stopped via another device. For example, the compressor 51 can be provided with a high-pressure shut-off device, and the compressor 51 can be stopped via the high-pressure shut-off device.
 また、前述のように記憶手段61には、冷媒-水熱交換器52を流れる水の流量が周期的に(例えば30秒毎に)記憶されている。制御手段60は、流量低下状態が設定時間T1(180秒間)以上継続し、断水異常であると判定して給湯機30の運転を停止した場合には、記憶手段61に記憶されている運転停止前の例えば10回分の検知流量を、異常データとして記憶手段61に別途記録する(ステップS4)。すなわち、本実施の形態1では、制御手段60及び記憶手段61が、本発明の記録手段として機能する。 Further, as described above, the flow rate of the water flowing through the refrigerant-water heat exchanger 52 is periodically stored in the storage unit 61 (for example, every 30 seconds). When the controller 60 determines that the flow rate reduction state has continued for a set time T1 (180 seconds) or more and that the water heater 30 has stopped operating, the operation stop stored in the storage unit 61 is stopped. For example, the previous detected flow rate for 10 times is separately recorded in the storage means 61 as abnormal data (step S4). That is, in the first embodiment, the control means 60 and the storage means 61 function as the recording means of the present invention.
 以上のように、制御手段60は、流量検知手段40が流量低下を検知した際、流量低下状態の継続時間に応じて、断水であるか否かを判定するようにしたので、一時的な流量低下状態を断水と判定してしまうことによる断水の誤検知を抑制できる。一時的な流量低下であれば断水と判定しないので、貯湯システム100に使用されるポンプが故障しない範囲で、一時的な流量低下が生じた場合でも、それ以後支障無く給湯機30の運転を実行できる。また、制御手段60は、流量検知手段40が流量低下を検知した際、流量低下が検知される継続時間に応じて断水異常であるか否かを適正に検知するため、再現性がある状況にて断水異常を検知することができる。 As described above, when the flow rate detection unit 40 detects the flow rate decrease, the control unit 60 determines whether or not the water flow is stopped according to the duration of the flow rate decrease state. It is possible to suppress erroneous detection of water stoppage by determining that the lowered state is water stoppage. If the flow rate is temporarily reduced, it is not determined that the water supply has stopped. Therefore, even if a temporary flow rate drop occurs within a range where the pump used in the hot water storage system 100 does not fail, the water heater 30 is operated without any trouble thereafter. it can. In addition, when the flow rate detection unit 40 detects the flow rate drop, the control unit 60 appropriately detects whether or not there is a water breakage abnormality according to the duration for which the flow rate drop is detected. It is possible to detect a water outage abnormality.
 また、本実施の形態1では、断水異常と判定されて給湯機30の動作が停止した場合、停止前に流量検知手段40が検知した流量を、異常データとして記録に残す。このため、ヒートポンプ給湯機の異常停止の原因が断水であるかを、メンテナンス担当者が後から確認することができ、異常停止の原因解析が容易になる。 Further, in the first embodiment, when it is determined that the water supply is abnormal and the operation of the water heater 30 is stopped, the flow rate detected by the flow rate detection means 40 before the stop is recorded as abnormal data. For this reason, the person in charge of maintenance can confirm later whether the cause of the abnormal stop of the heat pump water heater is water stop, and the cause analysis of the abnormal stop becomes easy.
実施の形態2.
 実施の形態1では、断水異常が検知されると、給湯機30の動作を停止する動作例を説明した。
 ここで、例えば、図6に示すように貯湯槽1内の水位70が水流入配管31の接続部位よりも低くなっている場合や、弁体33が故障している場合など、貯湯槽1から給湯機30への水の搬送に係る構成が断水異常の原因であることがある。そのような場合に給湯機30の動作を停止すると、貯湯槽1に温水を貯める動作が停止することになるので、湯切れが生じて使用者に不便を感じさせる可能性がある。また、断水異常の原因が、貯湯槽1内の水位が水流入配管31の接続部位よりも低くなっていることや、弁体33の故障である場合には、給湯機30自体の動作には支障が無く、受水槽3から供給される水を給湯機30に供給すれば問題無く給湯機30が動作できる可能性がある。
Embodiment 2. FIG.
In the first embodiment, the operation example in which the operation of the water heater 30 is stopped when the water break abnormality is detected has been described.
Here, for example, as shown in FIG. 6, when the water level 70 in the hot water tank 1 is lower than the connection portion of the water inflow pipe 31, or when the valve body 33 is out of order, The configuration related to the conveyance of water to the water heater 30 may be a cause of the water failure. If the operation of the water heater 30 is stopped in such a case, the operation of storing hot water in the hot water tank 1 is stopped, so that hot water runs out and the user may feel inconvenience. In addition, when the cause of the water cutoff abnormality is that the water level in the hot water storage tank 1 is lower than the connection part of the water inflow pipe 31 or the valve element 33 is broken, the operation of the water heater 30 itself is There is no problem, and if the water supplied from the water receiving tank 3 is supplied to the water heater 30, the water heater 30 may operate without any problem.
 そこで、本実施の形態2では、このような課題を解決する給湯機30の動作を説明する。本実施の形態2では、実施の形態1との相違点を中心に説明する。
 図6は、本発明の実施の形態2に係る貯湯システム100を示す配管回路図である。図6では、説明のために貯湯槽1内の水位70を図示しているが、図6に示す貯湯システム100の構成は図1と同じであり、図示されていないが図1と同様に温度検出器2も設けられている。
Therefore, in the second embodiment, the operation of the water heater 30 that solves such a problem will be described. In the second embodiment, the difference from the first embodiment will be mainly described.
FIG. 6 is a piping circuit diagram showing hot water storage system 100 according to Embodiment 2 of the present invention. In FIG. 6, the water level 70 in the hot water tank 1 is illustrated for the sake of explanation, but the configuration of the hot water storage system 100 shown in FIG. 6 is the same as that in FIG. A detector 2 is also provided.
 図7は、本発明の実施の形態2に係る給湯機30の動作を説明するフローチャートである。本実施の形態2の制御手段60は、実施の形態1と同様に給湯機30の運転モードとして、給湯機30(冷媒-水熱交換器52)と貯湯槽1との間で水を循環させて加熱する循環モードと、給湯機30で加熱した温水を貯湯槽1に貯湯する貯湯モードという少なくとも二つの運転モードを有する。以下、図7を参照して説明する。 FIG. 7 is a flowchart for explaining the operation of the water heater 30 according to Embodiment 2 of the present invention. The control means 60 of the second embodiment circulates water between the hot water heater 30 (refrigerant-water heat exchanger 52) and the hot water tank 1 as the operation mode of the hot water heater 30 as in the first embodiment. At least two operation modes: a circulation mode in which the water is heated and a hot water storage mode in which the hot water heated by the water heater 30 is stored in the hot water tank 1. Hereinafter, a description will be given with reference to FIG.
 制御手段60は、給湯機30の運転を開始すると(ステップS10)、運転モードが循環モードか否か、言い替えると貯湯モードか否かを判定する(ステップS11)。給湯機30が循環モードであれば(S11;Yes)、ステップS15へ、給湯機30が貯湯モードであれば(S11;No)、ステップS12へ進む。 When the operation of the water heater 30 is started (step S10), the control means 60 determines whether the operation mode is the circulation mode, in other words, whether the operation mode is the hot water storage mode (step S11). If the water heater 30 is in the circulation mode (S11; Yes), the process proceeds to step S15. If the water heater 30 is in the hot water storage mode (S11; No), the process proceeds to step S12.
 ステップS12では、制御手段60は、流量検知手段40が流量低下を検知した際、流量低下状態が設定時間T1(本実施の形態では180秒)以上継続するか否かを判定する。流量低下状態の継続時間が、設定時間T1(180秒)未満の場合には(S12;Yes)、制御手段60は、断水異常と判定を下さず、ステップS10に戻りそのまま運転を継続させる。一方、流量低下状態が設定時間T1(180秒)以上継続した場合には(S12;No)、断水異常が発生したと判定し、ステップS13に進む。 In step S12, when the flow rate detection unit 40 detects the flow rate drop, the control unit 60 determines whether or not the flow rate drop state continues for a set time T1 (180 seconds in the present embodiment) or more. When the duration time of the flow rate reduction state is less than the set time T1 (180 seconds) (S12; Yes), the control means 60 does not determine that the water supply is abnormal and returns to step S10 and continues the operation as it is. On the other hand, when the flow rate reduction state continues for the set time T1 (180 seconds) or longer (S12; No), it is determined that a water-stop abnormality has occurred, and the process proceeds to step S13.
 ステップS13では、制御手段60は、断水異常を検知したことを、報知手段62に報知させる。また、給水ポンプ36や圧縮機51などの機器を保護するため、制御手段60はこれら機器を停止させる。停止方法は、制御手段60から各機器に対して指令を直接出力してもよいし、その他の装置を介して停止させてもよい。例えば、圧縮機51に高圧遮断装置を設け、この高圧遮断装置を介して圧縮機51を停止させることができる。このように本実施の形態2において、貯湯モードでの動作中に断水を検知した場合には、実施の形態1と同様に給湯機30の運転を停止するようにしている。 In step S13, the control means 60 informs the notification means 62 that a water stop abnormality has been detected. Moreover, in order to protect apparatuses, such as the feed pump 36 and the compressor 51, the control means 60 stops these apparatuses. As a stopping method, a command may be directly output from the control means 60 to each device, or may be stopped via another device. For example, the compressor 51 can be provided with a high-pressure shut-off device, and the compressor 51 can be stopped via the high-pressure shut-off device. As described above, in the second embodiment, when water cut is detected during the operation in the hot water storage mode, the operation of the water heater 30 is stopped as in the first embodiment.
 また、実施の形態1で述べたように記憶手段61には、冷媒-水熱交換器52を流れる水の流量が周期的に(例えば30秒毎に)記憶されており、制御手段60は、記憶手段61に記憶された給湯機30の運転停止前の例えば10回分の検知水流量を、異常データとして記憶手段61に別途記録する(ステップS14)。すなわち、本実施の形態2では、制御手段60及び記憶手段61が、本発明の記録手段として機能する。 Further, as described in the first embodiment, the storage unit 61 periodically stores the flow rate of water flowing through the refrigerant-water heat exchanger 52 (for example, every 30 seconds). For example, the detected water flow rate for 10 times before stopping the operation of the water heater 30 stored in the storage unit 61 is separately recorded in the storage unit 61 as abnormal data (step S14). That is, in the second embodiment, the control means 60 and the storage means 61 function as the recording means of the present invention.
 ステップS15では、制御手段60は、流量検知手段40が流量低下を検知した際、流量低下状態が設定時間T1(180秒)継続するか否か、を判定する。流量低下状態の継続時間が設定時間T1(180秒)未満の場合は(S15;Yes)、制御手段60は、断水異常と判定を下さず、ステップS10に戻りそのまま運転を継続させる。一方、流量低下状態が設定時間T1(180秒)以上継続した場合は(S15;No)、ステップS16に進む。 In step S15, when the flow rate detection unit 40 detects the flow rate drop, the control unit 60 determines whether or not the flow rate drop state continues for the set time T1 (180 seconds). When the duration of the flow rate reduction state is less than the set time T1 (180 seconds) (S15; Yes), the control means 60 returns to step S10 and continues the operation as it is without determining that the water supply is abnormal. On the other hand, when the flow rate reduction state continues for the set time T1 (180 seconds) or longer (S15; No), the process proceeds to step S16.
 ステップS16では、制御手段60は、循環モードで動作中に断水異常を検知したことを、報知手段62に報知させる。また、給水ポンプ36や圧縮機51などの機器を保護するため、制御手段60はこれら機器の動作を停止させる。停止方法は、制御手段60から各機器に対して指令を直接出力してもよいし、その他の装置を介して停止させてもよい。例えば、圧縮機51に高圧遮断装置を設け、この高圧遮断装置を介して圧縮機51を停止させることができる。 In step S16, the control means 60 informs the notification means 62 that a water stop abnormality has been detected during operation in the circulation mode. Moreover, in order to protect equipment, such as the feed pump 36 and the compressor 51, the control means 60 stops operation | movement of these equipment. As a stopping method, a command may be directly output from the control means 60 to each device, or may be stopped via another device. For example, the compressor 51 can be provided with a high-pressure shut-off device, and the compressor 51 can be stopped via the high-pressure shut-off device.
 また、実施の形態1で述べたように記憶手段61には、冷媒-水熱交換器52を流れる水の流量が周期的に(例えば30秒毎に)記憶されており、制御手段60は、記憶手段61に記憶された給湯機30の運転停止前の例えば10回分の検知水流量を、異常データとして記憶手段61に別途記録する(ステップS17)。 Further, as described in the first embodiment, the storage unit 61 periodically stores the flow rate of water flowing through the refrigerant-water heat exchanger 52 (for example, every 30 seconds). For example, the detected water flow rate for 10 times before stopping the operation of the water heater 30 stored in the storage unit 61 is separately recorded in the storage unit 61 as abnormal data (step S17).
 ステップS17の後、制御手段60は、待機時間T2(例えば200秒間)経過するまで待機し、その後、循環モードについては運転を許可しないが、貯湯モードについては運転を許可してこれを開始し(ステップS18)、ステップS19へ進む。その際、循環モードでの動作中に断水状態を検知したことを、報知手段62で報知した状態を維持する。なお、ステップS18の待機時間T2の値(200秒間)は一例であり、断水状態が発生したために加熱された機器(例えば給水ポンプ36や圧縮機51など)が、運転上支障の無い温度まで冷却される時間を設定する。 After step S17, the control means 60 stands by until a standby time T2 (for example, 200 seconds) elapses, and thereafter, the operation is not permitted for the circulation mode, but the operation is permitted and started for the hot water storage mode ( The process proceeds to step S18) and step S19. In that case, the state which alert | reported by the alerting | reporting means 62 that the water stop state was detected during the operation | movement in circulation mode is maintained. Note that the value of the waiting time T2 in step S18 (200 seconds) is an example, and the equipment (for example, the water supply pump 36 and the compressor 51) heated due to the occurrence of a water shutoff is cooled to a temperature at which there is no operational problem. Set the time to be played.
 ステップS19では、貯湯モードでの運転を実行しつつ、制御手段60は、流量検知手段40が流量低下を検知した際、流量低下状態が180秒間継続するか否か、を判定する。流量低下状態の検知時間が設定時間T1(180秒)未満の場合は(S19;Yes)、制御手段60は、断水異常と判定を下さず、ステップS19において貯湯モードでの運転を継続させる。一方、流量低下状態が設定時間T1(180秒)以上継続した場合は(S19;Yes)、制御手段60は断水異常であると判定して、ステップS13に進む。 In step S19, while executing the operation in the hot water storage mode, the control unit 60 determines whether or not the flow rate reduction state continues for 180 seconds when the flow rate detection unit 40 detects the flow rate reduction. If the detection time of the flow rate reduction state is less than the set time T1 (180 seconds) (S19; Yes), the control means 60 does not determine that the water supply is abnormal and continues the operation in the hot water storage mode in step S19. On the other hand, when the flow rate reduction state continues for the set time T1 (180 seconds) or longer (S19; Yes), the control means 60 determines that a water-breaking abnormality has occurred, and proceeds to step S13.
 以上のように本実施の形態2では、制御手段60は、流量検知手段40が流量低下を検知した際、流量低下状態の継続時間に応じて、断水であるか否かを判定するようにしたので、実施の形態1と同様の効果を得ることができる。 As described above, in the second embodiment, when the flow rate detection unit 40 detects a decrease in the flow rate, the control unit 60 determines whether or not the water is shut off according to the duration of the flow rate decrease state. Therefore, the same effect as in the first embodiment can be obtained.
 さらに本実施の形態2では、貯湯槽1に貯湯された温水を給湯機30で循環させて加熱する循環モードでの動作中に断水を検知し、給湯機30の運転を停止した場合においても、給湯機30で加熱した温水を貯湯槽1に貯湯する貯湯動作モードでの運転を実行することができる。このため、例えば貯湯槽1内の水不足や貯湯槽1から給湯機30への水の搬送経路に不具合がある場合等には、給湯機30の運転を停止させることなく貯湯槽1に温  Furthermore, in the second embodiment, even when hot water stored in the hot water storage tank 1 is circulated in the hot water heater 30 to detect water breakage during operation in the circulation mode and the operation of the hot water heater 30 is stopped, The operation in the hot water storage operation mode in which hot water heated by the hot water heater 30 is stored in the hot water storage tank 1 can be executed. For this reason, for example, when there is a shortage of water in the hot water tank 1 or when there is a defect in the water transfer path from the hot water tank 1 to the hot water heater 30, the hot water tank 1 is heated without stopping the operation of the hot water heater 30.
 なお、上記実施の形態1、2では、給湯機30を、貯湯槽1を有する貯湯システム100に適用した例を説明したが、貯湯槽1を介さず、給湯機30から給水栓に直接給湯するようにしてもよい。また、実施の形態1、2で説明に使用した各数値は、例示であり、本発明を限定するものではない。 In the first and second embodiments, the example in which the water heater 30 is applied to the hot water storage system 100 having the hot water tank 1 has been described. However, the hot water is directly supplied from the water heater 30 to the water tap without using the hot water tank 1. You may do it. Moreover, each numerical value used for description in Embodiment 1, 2 is an illustration, and does not limit this invention.
 1 貯湯槽、2 温度検出器、3 受水槽、4 給水配管、5 給水弁、6 給湯配管、7 給湯ポンプ、8 戻り配管、30 ヒートポンプ給湯機、31 水流入配管、31a 水流入配管、32 水流出配管、33 弁体、34 弁体、35 弁体、36 給水ポンプ、40 流量検知手段、50 ヒートポンプサイクル装置、51 圧縮機、52 冷媒-水熱交換器、53 減圧装置、54 蒸発器、55 冷媒流入配管、56 冷媒流出配管、60 制御手段、61 記憶手段、62 報知手段、100 貯湯システム。 1 hot water tank, 2 temperature detector, 3 water receiving tank, 4 water supply pipe, 5 water supply valve, 6 hot water supply pipe, 7 hot water supply pump, 8 return pipe, 30 heat pump water heater, 31 water inflow pipe, 31a water inflow pipe, 32 water Outflow piping, 33 valve body, 34 valve body, 35 valve body, 36 water supply pump, 40 flow rate detection means, 50 heat pump cycle device, 51 compressor, 52 refrigerant-water heat exchanger, 53 decompression device, 54 evaporator, 55 Refrigerant inflow piping, 56 refrigerant outflow piping, 60 control means, 61 storage means, 62 notification means, 100 hot water storage system.

Claims (8)

  1.  圧縮機、冷媒-水熱交換器、減圧装置、及び蒸発器が少なくとも配管接続され、前記冷媒-水熱交換器において冷媒と水とが熱交換するヒートポンプサイクル装置と、
     前記冷媒-水熱交換器を流通する水の流量を検知する流量検知手段と、
     前記ヒートポンプサイクル装置の運転を制御する制御手段とを備え、
     前記流量検知手段により検知された水の流量が閾値よりも低い状態が、設定時間以上継続すると、前記制御手段は、断水異常と判定し、前記ヒートポンプサイクル装置の運転を停止させるヒートポンプ給湯機。
    A heat pump cycle device in which a compressor, a refrigerant-water heat exchanger, a decompression device, and an evaporator are connected at least by piping, and heat is exchanged between the refrigerant and water in the refrigerant-water heat exchanger;
    Flow rate detecting means for detecting the flow rate of water flowing through the refrigerant-water heat exchanger;
    Control means for controlling the operation of the heat pump cycle device,
    When the state where the flow rate of water detected by the flow rate detection unit is lower than a threshold value continues for a set time or longer, the control unit determines that the water supply is abnormal and stops the operation of the heat pump cycle device.
  2.  前記流量検知手段により検知された水の流量が閾値よりも低い状態が、設定時間以上継続して、前記ヒートポンプサイクル装置の運転が停止した際に、前記ヒートポンプサイクル装置の運転が停止する前に前記流量検知手段により検知された前記冷媒-水熱交換器を流通する水の流量を、異常データとして記録する記録手段を備えた請求項1記載のヒートポンプ給湯機。 The state in which the flow rate of water detected by the flow rate detection unit is lower than a threshold value continues for a set time or longer, and when the operation of the heat pump cycle device is stopped, before the operation of the heat pump cycle device is stopped, 2. The heat pump water heater according to claim 1, further comprising recording means for recording the flow rate of water flowing through the refrigerant-water heat exchanger detected by the flow rate detection means as abnormal data.
  3.  前記設定時間は可変の値である、請求項1又は請求項2に記載のヒートポンプ給湯機。 The heat pump water heater according to claim 1 or 2, wherein the set time is a variable value.
  4.  前記制御手段は、前記ヒートポンプサイクル装置の運転モードとして、前記冷媒-水熱交換器で冷媒と熱交換する水を貯める貯湯槽と前記冷媒-水熱交換器との間で水を循環させる循環モード、及び前記冷媒-水熱交換器で冷媒と熱交換した水を前記貯湯槽に貯める貯湯モードを有し、
     前記制御手段は、前記循環モードで前記ヒートポンプサイクル装置を運転しているときに前記断水異常と判定すると、前記貯湯モードに切り替える請求項1~請求項3のいずれか一項に記載のヒートポンプ給湯機。
    The control means, as an operation mode of the heat pump cycle device, is a circulation mode in which water is circulated between a hot water storage tank for storing water to exchange heat with the refrigerant in the refrigerant-water heat exchanger and the refrigerant-water heat exchanger. And a hot water storage mode for storing in the hot water tank the water heat-exchanged with the refrigerant in the refrigerant-water heat exchanger,
    The heat pump water heater according to any one of claims 1 to 3, wherein the control means switches to the hot water storage mode when it is determined that the water shutoff abnormality occurs while operating the heat pump cycle device in the circulation mode. .
  5.  前記制御手段が前記断水異常と判定したときに、前記断水異常である旨を報知するとともに、前記循環モードから前記貯湯モードに切り替わった後も、前記断水異常である旨の報知を継続する報知手段を備えた請求項4記載のヒートポンプ給湯機。 When the control means determines that the water cutoff is abnormal, it notifies that the water cutoff is abnormal, and also notifies the fact that the water cutoff is abnormal after switching from the circulation mode to the hot water storage mode. The heat pump water heater of Claim 4 provided with these.
  6.  前記制御手段が前記断水異常と判定したときに、前記断水異常である旨を報知する報知手段を備えた請求項1~請求項4のいずれか一項に記載のヒートポンプ給湯機。 The heat pump water heater according to any one of claims 1 to 4, further comprising a notifying means for notifying that the water shutoff abnormality has occurred when the control means determines that the water shutoff abnormality has occurred.
  7.  前記設定時間は、60秒以上180秒以下の範囲である請求項1~請求項6のいずれか一項に記載のヒートポンプ給湯機。 The heat pump water heater according to any one of claims 1 to 6, wherein the set time ranges from 60 seconds to 180 seconds.
  8.  請求項1~7のいずれか一項に記載のヒートポンプ給湯機と、
     前記ヒートポンプ給湯機に設けられた前記冷媒-水熱交換器において冷媒と熱交換する水を貯める貯湯槽とを備えた貯湯システム。
    A heat pump water heater according to any one of claims 1 to 7,
    A hot water storage system comprising a hot water storage tank for storing water to exchange heat with refrigerant in the refrigerant-water heat exchanger provided in the heat pump water heater.
PCT/JP2013/062452 2013-04-26 2013-04-26 Heat pump hot-water supply device and hot-water storage system equipped with heat pump hot-water supply device WO2014174678A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2013/062452 WO2014174678A1 (en) 2013-04-26 2013-04-26 Heat pump hot-water supply device and hot-water storage system equipped with heat pump hot-water supply device
EP13883242.3A EP2990736B1 (en) 2013-04-26 2013-04-26 Hot-water storage system equipped with heat pump hot-water supply device
JP2015513470A JP5972456B2 (en) 2013-04-26 2013-04-26 Heat pump water heater and hot water storage system equipped with heat pump water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/062452 WO2014174678A1 (en) 2013-04-26 2013-04-26 Heat pump hot-water supply device and hot-water storage system equipped with heat pump hot-water supply device

Publications (1)

Publication Number Publication Date
WO2014174678A1 true WO2014174678A1 (en) 2014-10-30

Family

ID=51791282

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/062452 WO2014174678A1 (en) 2013-04-26 2013-04-26 Heat pump hot-water supply device and hot-water storage system equipped with heat pump hot-water supply device

Country Status (3)

Country Link
EP (1) EP2990736B1 (en)
JP (1) JP5972456B2 (en)
WO (1) WO2014174678A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108113451A (en) * 2016-11-30 2018-06-05 佛山市顺德区美的电热电器制造有限公司 Cooking equipment and its control method and its control device
JP2023022399A (en) * 2021-08-03 2023-02-15 有限会社アクアテック Auxiliary cooling device of condenser

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018096654A (en) * 2016-12-16 2018-06-21 パナソニックIpマネジメント株式会社 Hot water heating device
ES2735648B2 (en) * 2018-06-19 2020-05-20 Sedal S L U LIQUID MIXING DEVICE WITH ELECTRONIC CONTROL OF HIGH DYNAMICS OF REGULATION AND METHOD OF OPERATION OF THE SAME

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07229653A (en) 1994-02-17 1995-08-29 Sanyo Electric Co Ltd Water-cooled cooler
JP2004333051A (en) 2003-05-09 2004-11-25 Matsushita Electric Ind Co Ltd Water heater
JP2006274873A (en) * 2005-03-29 2006-10-12 Noritz Corp Heat recovery device and cogeneration system
JP2009257707A (en) * 2008-04-18 2009-11-05 Mitsubishi Electric Corp Storage type water heater
JP2011220676A (en) * 2011-07-06 2011-11-04 Mitsubishi Electric Corp Heat pump water heater
WO2012049820A1 (en) * 2010-10-14 2012-04-19 三菱電機株式会社 Refrigeration cycle apparatus

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4876762B2 (en) * 2006-06-20 2012-02-15 株式会社デンソー Heat pump type water heater
JP2008045841A (en) * 2006-08-18 2008-02-28 Rinnai Corp Hot water storage type hot water supply system and cogeneration system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07229653A (en) 1994-02-17 1995-08-29 Sanyo Electric Co Ltd Water-cooled cooler
JP2004333051A (en) 2003-05-09 2004-11-25 Matsushita Electric Ind Co Ltd Water heater
JP2006274873A (en) * 2005-03-29 2006-10-12 Noritz Corp Heat recovery device and cogeneration system
JP2009257707A (en) * 2008-04-18 2009-11-05 Mitsubishi Electric Corp Storage type water heater
WO2012049820A1 (en) * 2010-10-14 2012-04-19 三菱電機株式会社 Refrigeration cycle apparatus
JP2011220676A (en) * 2011-07-06 2011-11-04 Mitsubishi Electric Corp Heat pump water heater

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2990736A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108113451A (en) * 2016-11-30 2018-06-05 佛山市顺德区美的电热电器制造有限公司 Cooking equipment and its control method and its control device
JP2023022399A (en) * 2021-08-03 2023-02-15 有限会社アクアテック Auxiliary cooling device of condenser

Also Published As

Publication number Publication date
EP2990736B1 (en) 2020-01-22
EP2990736A4 (en) 2016-11-30
JPWO2014174678A1 (en) 2017-02-23
EP2990736A1 (en) 2016-03-02
JP5972456B2 (en) 2016-08-17

Similar Documents

Publication Publication Date Title
JP5939828B2 (en) Heat pump cycle equipment
WO2018131467A1 (en) Refrigerating device having shutoff valve
JP5780977B2 (en) Heat pump cycle equipment
JP6370136B2 (en) Hot water apparatus and abnormality notification method in hot water apparatus
JP2016095130A (en) Heat pump cycle device
JP5972456B2 (en) Heat pump water heater and hot water storage system equipped with heat pump water heater
US10156396B2 (en) System for operating an HVAC system having tandem compressors
JP6177218B2 (en) Air conditioner
JP5226384B2 (en) Hot water storage type hot water supply device and hot water storage type hot water supply and heating device
JP2013185803A (en) Heat pump hydronic heater
JP2010255979A (en) Heat pump type water heater
JP2009243774A (en) Heat pump type water heater
JP6168958B2 (en) Hot water apparatus and abnormality notification method in hot water apparatus
JP2010266093A (en) Hot-water supply system
JP2008267621A (en) Air conditioner
JP3876721B2 (en) Water heater
JP7148484B2 (en) heat pump water heater
JP5824609B2 (en) Heat pump water heater
JP2009264714A (en) Heat pump hot water system
JP2018115780A (en) Refrigerator with refrigerant release section
CA2885449C (en) System for controlling operation of an hvac system having tandem compressors
JP6832747B2 (en) Heat pump type water heater
JP2013024458A (en) Heat pump type hot water heating device
JP6425803B2 (en) Heat transfer device monitoring apparatus and method
JP5694905B2 (en) Heat pump type water heater

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13883242

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015513470

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013883242

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE