WO2014173147A1 - 一种显示装置及其充电方法 - Google Patents

一种显示装置及其充电方法 Download PDF

Info

Publication number
WO2014173147A1
WO2014173147A1 PCT/CN2013/089447 CN2013089447W WO2014173147A1 WO 2014173147 A1 WO2014173147 A1 WO 2014173147A1 CN 2013089447 W CN2013089447 W CN 2013089447W WO 2014173147 A1 WO2014173147 A1 WO 2014173147A1
Authority
WO
WIPO (PCT)
Prior art keywords
display device
photosensitive coating
light
signal processing
processing unit
Prior art date
Application number
PCT/CN2013/089447
Other languages
English (en)
French (fr)
Inventor
白冰
杨久霞
白峰
Original Assignee
京东方科技集团股份有限公司
北京京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US14/387,961 priority Critical patent/US10191311B2/en
Publication of WO2014173147A1 publication Critical patent/WO2014173147A1/zh

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3648Control of matrices with row and column drivers using an active matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/13306Circuit arrangements or driving methods for the control of single liquid crystal cells
    • G02F1/13318Circuits comprising a photodetector
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/13306Circuit arrangements or driving methods for the control of single liquid crystal cells
    • G02F1/13312Circuits comprising photodetectors for purposes other than feedback
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/13306Circuit arrangements or driving methods for the control of single liquid crystal cells
    • G02F1/13324Circuits comprising solar cells
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/02Details of power systems and of start or stop of display operation
    • G09G2330/021Power management, e.g. power saving
    • G09G2330/022Power management, e.g. power saving in absence of operation, e.g. no data being entered during a predetermined time
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2360/00Aspects of the architecture of display systems
    • G09G2360/14Detecting light within display terminals, e.g. using a single or a plurality of photosensors
    • G09G2360/145Detecting light within display terminals, e.g. using a single or a plurality of photosensors the light originating from the display screen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Definitions

  • Embodiments of the present invention relate to a display device and a charging method thereof. Background technique
  • the display device is a high energy consuming device among the components of the electronic device. Especially for smartphones, when using them for surfing the Internet, interactive games, etc., the power consumption is large. Since these electronic devices cannot be charged anytime and anywhere, the use time of these electronic devices is limited.
  • a display device capable of instantaneously charging a battery of a display device without interfering with display, thereby effectively extending the use time of the display device.
  • a display device includes a display panel, a backlight, and a rechargeable battery; the display panel includes an upper substrate and a lower substrate disposed opposite to the upper substrate, and the backlight is located on a lower substrate side of the display panel,
  • the rechargeable battery is used to supply power to the display device
  • the display device further includes: a transparent solar cell disposed at the upper substrate for charging the rechargeable battery of the display device, and being non-transparently disposed on the display panel a photosensitive coating for sensing light emitted by the backlight, and a signal processing unit coupled to the photosensitive coating and the transparent solar panel, the signal processing unit is based on a signal from the photosensitive coating
  • the change of the display device determines the operating state of the display device, and controls whether the solar cell is charged or not charged according to the operating state of the display device.
  • the photosensitive coating is a photoresist coating having an area equal to or smaller than an area of the non-transparent area corresponding to the photosensitive coating.
  • the photosensitive coating layer is disposed on a light incident side of a black matrix of the upper substrate.
  • the photosensitive coating layer is disposed on a light incident side of the substrate substrate next to the lower substrate or on a light exit side of the substrate substrate of the lower substrate.
  • the transparent solar cell is disposed on a light incident side of the substrate substrate immediately adjacent to the upper substrate or on a light exit side of the substrate substrate of the upper substrate.
  • the lower substrate further includes a pixel electrode and a common electrode.
  • the transparent solar cell includes a switching device that is further coupled to the signal processing unit and controlled by the signal processing unit to effect charging or uncharging of the rechargeable battery by the transparent solar cell.
  • the switching device may be a switching diode or a switching transistor, and the switching device may also be any other switching device capable of switching the switching of the circuit.
  • a charging method of the above display device comprising: a photosensitive coating sensing light of a backlight; and a signal processing unit determining whether the light is detected by the photosensitive coating according to whether the photosensitive coating senses light of the backlight Whether the display device is in an active state; if the display device is in an inoperative state, the signal processing unit controls the transparent solar cell to perform charging.
  • the signal processing unit determines, by the photosensitive coating layer, whether the display device is in an operating state, including: determining that the display device is in an operating state; and the signal processing unit is in the photoresistor coating layer Determining that the display device is in a non-operating state when the resistance value is not changed from the initial resistance value; wherein the initial resistance value is a resistance value when the photosensitive coating layer does not sense light of the backlight source .
  • the embodiment of the present invention provides a display device and a charging method thereof, the display device includes a display panel, a backlight, a transparent solar cell disposed at the display panel, and is disposed in the non-transparent area of the display panel and used for a photosensitive coating that senses light of the backlight, and a signal processing unit coupled to the photosensitive coating and the transparent solar panel; the display device further includes a rechargeable battery for powering the display device, The transparent solar cell is connected to the rechargeable battery through a switching device, and the signal processing unit determines an operating state of the display device by detecting a change in a signal from the photosensitive coating layer, when the display device is in an image display state, The signal processing unit controls the switching device to be in an off state, so that the transparent solar cell is The rechargeable battery is not charged.
  • the signal processing unit controls the switching device to be in a closed state, so that the transparent solar battery charges the rechargeable battery, so that It does not interfere with the display device, realizes instant charging without increasing its computing load, prolongs standby time, and improves endurance.
  • FIG. 1 is a schematic structural view of a liquid crystal display device according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram 2 of a liquid crystal display device according to an embodiment of the present invention
  • FIG. FIG. 4 is a schematic structural view of a liquid crystal display device according to an embodiment of the present invention
  • FIG. 5 is a schematic structural view of a liquid crystal display device according to an embodiment of the present invention
  • FIG. 7 is a schematic structural diagram of a liquid crystal display device according to an embodiment of the present invention
  • FIG. 8 is a schematic structural diagram of a liquid crystal display device according to an embodiment of the present invention
  • FIG. 9 is a schematic structural diagram of a liquid crystal display device according to an embodiment of the present invention
  • FIG. 10 is a schematic structural diagram of a liquid crystal display device according to Embodiment 2 of the present invention
  • FIG. 12 is another schematic diagram of a charging method of a display device according to an embodiment of the present invention
  • FIG. Schematic diagram of law detailed description
  • An embodiment of the present invention provides a display device, including: a display panel and a backlight located under the display panel; the display panel includes an upper substrate and is disposed opposite to the upper substrate a lower substrate, the backlight is located on a lower substrate side of the display panel, the display device further includes: a transparent solar cell, a photosensitive coating, and a signal processing unit, wherein the transparent solar cell is disposed at the upper substrate for display
  • the rechargeable battery of the device is charged, and the photosensitive coating is disposed in the non-transparent area of the display panel for sensing light emitted by the backlight, and the signal processing unit is connected to the photosensitive coating and the transparent solar panel.
  • the signal processing unit determines an operating state of the display device according to a change of a signal from the photosensitive coating, and controls the transparent solar cell to perform charging when the display device operates, and controls the solar battery not when the display device is inoperative Charge it.
  • the display device also includes a rechargeable battery for powering the display device, the transparent solar cell being coupled to the rechargeable battery by a switching device.
  • the light-opening device is coupled to the signal processing unit and switches between switching states under the control of the signal processing unit.
  • the signal processing unit determines the operating state of the display device by detecting the state of the photosensitive coating.
  • the signal processing unit controls the switching device to be in an off state, so that the transparent solar cell does not charge the rechargeable battery when the display device is in a standby state.
  • the signal processing unit controls the switching device to be in a closed state to cause the transparent solar cell to charge the rechargeable battery.
  • the transparent solar cell may be a device that directly converts light energy into electrical energy by a photoelectric effect or a photochemical effect.
  • the transparent solar cell may be a transparent thin film solar cell.
  • the working principle of the display device of the embodiment of the invention is as follows: When the photosensitive coating receives the light of the backlight, the signal processing unit determines that the display device (such as the display screen of the mobile phone) is in accordance with the detected change of the photosensitive coating Working state, at this time, the signal processing unit controls the transparent solar cell to not charge the rechargeable battery; when the photosensitive coating does not receive the light of the backlight, the signal processing unit determines that the display device (such as the display screen of the mobile phone) is in the standby state At this time, the signal processing unit controls the transparent solar cell to charge the rechargeable battery.
  • the photosensitive coating for sensing the light of the backlight refers to when the photosensitive coating receives the light of the backlight, or receives the light of the backlight.
  • the photosensitive coating changes due to changes in the received light, and the change of the photosensitive coating may be any change that can be recognized by the signal processing unit, for example, voltage, The change in current or resistance can also be a change in color or the like.
  • the material of the photosensitive coating is not limited herein as long as the signal processing unit can recognize the change of the photosensitive coating and judge the state of the display device accordingly.
  • the photosensitive coating changes its color upon receipt of light from the backlight.
  • the photosensitive coating does not receive the light of the backlight, and the color of the photosensitive coating is the initial color when not illuminated by the light, and the photosensitive coating can receive the back when the display device is in the working state.
  • the second color is the initial color when not illuminated by the light
  • the photosensitive coating changes its resistance when it receives light from a backlight.
  • the photosensitive coating becomes smaller or larger than the initial resistance value, and the photosensitive coating maintains the initial resistance when the photosensitive coating does not receive the light of the backlight.
  • the initial resistance is a resistance value when the photosensitive coating is not irradiated with light.
  • the photosensitive coating is disposed in the non-transmissive region, which means that the pattern of the photosensitive coating is completely located in the non-transparent region of the display device, that is, the non-transparent display device is viewed in the direction of the display panel of the vertical display device.
  • the zone and the photosensitive coating coincide.
  • the shape and thickness of the photosensitive coating are not limited herein as long as the photosensitive coating is only capable of sensing light from the backlight.
  • the size of the transparent solar cell and its setting position are not limited herein as long as the transparent solar cell can receive sunlight.
  • the signal processing unit may be a separate unit, or may be a part of the circuit disposed in the peripheral circuit of the display device, which is not limited herein.
  • the signal processing unit determines the operational state of the display device by detecting changes from the photosensitive coating. For example, when the photosensitive coating senses the light of the backlight and changes from the initial color state to the second color state, the signal processing unit can determine that the display device is in an active state according to the second color state, and output a signal "1" to the switching device.
  • the light-opening device is in an off state after receiving the signal "1", and the solar battery does not charge the rechargeable battery; when the photosensitive coating returns from the second color state to the initial color state, the signal processing unit can according to the initial color state It is determined that the display device is in the standby state, and the signal "0" is output to the light-opening device, and the light-opening device is in the closed state after receiving the signal "0", and the solar battery charges the rechargeable battery.
  • the initial color state is a color state when the photosensitive coating does not sense light to the backlight.
  • the signal processing unit can determine that the display device is in the working state according to the second resistance value, and output the signal "1" to the opening device.
  • the light-receiving device receives the signal "1", it is in an off state, the solar battery does not charge the rechargeable battery;
  • the signal processing list The element may determine that the display device is in a standby state according to the initial resistance value, and output a signal to the light-opening device.
  • the light-opening device is closed after receiving the signal "0", and the solar battery charges the rechargeable battery.
  • the initial resistance is the resistance value when the photosensitive coating does not sense the light of the backlight.
  • the light-opening device may be a diode light-emitting device or a triode switch device, or any other device that can implement a switching function.
  • the display device may be any product or component having a display function, such as a liquid crystal display device, a liquid crystal display, a liquid crystal television, a digital photo frame, a mobile phone, a tablet computer, or the like.
  • a liquid crystal display device such as a liquid crystal display device, a liquid crystal display, a liquid crystal television, a digital photo frame, a mobile phone, a tablet computer, or the like.
  • a display device includes a display panel, a backlight, and a rechargeable battery.
  • the display panel includes an upper substrate and a lower substrate disposed opposite to the upper substrate, and the backlight is located on a lower substrate side of the display panel, a rechargeable battery for supplying power to the display device, the display device further comprising: a transparent solar cell disposed at the upper substrate for charging a rechargeable battery of the display device; a photosensitive coating disposed on The display panel is non-transparent and used to sense light from the backlight; a signal processing unit is coupled to the photosensitive coating and the transparent solar cell, and the signal processing unit detects the photosensitive coating The change of the signal determines the working state of the display device, and according to the working state of the display device, causes the transparent solar cell to charge or not charge the rechargeable battery. Therefore, it is possible to realize instant charging, increase standby time, and improve endurance without interfering with the display device without increasing its calculation load.
  • the photosensitive coating can be a photoresistor coating.
  • the material of the photoresistor coating may be a material such as cadmium sulfide or lead sulfide which can greatly change the resistance under backlight illumination. Larger here can be understood as the range that the signal processing unit can recognize.
  • the area of the photosensitive coating is equal to or less than the area of the non-transmissive region opposite the photosensitive coating.
  • the signal processing unit makes a correct judgment on the working state of the display device, on the one hand, it is necessary to prevent the photosensitive coating from inducing light emitted by the non-backlight source to cause a change in color state, and on the other hand, the photosensitive coating is required.
  • the area is as large as possible to be sensitive to the light of the backlight.
  • the display panel includes an upper substrate.
  • the upper substrate 10 includes a black matrix 104
  • the photosensitive coating layer 103 is disposed on the light incident side of the black matrix 104 of the upper substrate 10
  • the pattern of the photosensitive coating layer 103 corresponds to the pattern of the black matrix 104. That is, it means that the photosensitive coating layer 103 and the black matrix 104 coincide in the direction of the incident light.
  • incident light refers to light emitted by the backlight 30, which is specifically described. Except for.
  • the photosensitive coating layer 103 may be disposed on the side of the color layer 105 away from the black matrix 104.
  • the photosensitive coating 103 can be placed next to the black matrix 104.
  • the black matrix 104 located on the upper substrate 10 divides the display device into a light transmitting region and a non-light transmitting region, and the area of the photosensitive coating layer 103 is equal to the area of the non-light transmitting region opposite to the photosensitive coating layer. That is, the area of the photosensitive coating layer 103 can be set equal to the area of the black matrix 104.
  • the transparent solar cell 102 is disposed on the light-emitting side of the first base substrate 101 of the upper substrate 10; or as shown in FIG. 2 or 4, the transparent solar cell 102 is disposed next to the first The light incident side of a base substrate 101. In this way, the transparent solar cell 102 can completely receive external light such as sunlight, thereby maximizing the conversion of solar energy into electrical energy.
  • a first embodiment of the present invention provides a liquid crystal display device.
  • the liquid crystal display device 01 includes: an upper substrate 10, a lower substrate 20 disposed opposite the upper substrate, and disposed between the upper substrate and the lower substrate.
  • the upper substrate 10 includes a base substrate 101, a black matrix 104 disposed under the base substrate 101, a photoresistor coating 103 disposed under the black matrix, and a color layer 105 disposed under the photoresist layer 103, and a setting A transparent solar cell 102 above the base substrate 101.
  • the liquid crystal display device further includes a rechargeable battery for supplying power to the liquid crystal display device.
  • the transparent solar battery is connected to the rechargeable battery through a switching device.
  • a black matrix 104 is formed on the base substrate 101, and a photoresist layer 103 is formed under the black matrix 104, and then a color layer 105 is formed.
  • the area of the photosensitive coating 103 is equal to the area of the black matrix 104.
  • the color layer 105 may include a red photoresist, a green photoresist, a blue photoresist, and may also include photoresists of other colors.
  • the lower substrate 20 includes: a base substrate 201, a gate electrode 202 on the base substrate 201, a gate insulating layer 203 disposed over the gate electrode and the base substrate, an active layer 204 disposed over the gate insulating layer, and a source electrode 205a and drain electrode 205b, and pixel electrode 206 and protective layer 207 electrically connected to the drain electrode.
  • the lower substrate 20 is described by taking the bottom gate type as an example. However, the embodiment of the present invention is not limited thereto, and the lower substrate 20 may also be a top gate type. Furthermore, the invention is implemented The example is not limited to the lower substrate 20 including the pixel electrode 206, and may also include a common electrode, which is not limited herein. In addition, in the embodiment of the present invention, only the photosensitive coating layer 103 is disposed under the black matrix 104, and the transparent solar cell is disposed on the light emitting side of the first base substrate 101 as an example, but the embodiment of the present invention is not limited thereto.
  • An embodiment of the present invention provides a liquid crystal display device including an upper substrate 10, a lower substrate 20, a liquid crystal layer 40 disposed between the two substrates, a backlight 30 disposed on the lower substrate side, and a signal processing unit, wherein the upper substrate 10
  • the transparent solar cell 102 disposed on the light exiting side of the first substrate is disposed, and the photoresistor coating 103 disposed on the light incident side of the black matrix 104.
  • the liquid crystal display device further includes a rechargeable battery for supplying power to the liquid crystal display device.
  • the transparent solar cell is connected to the rechargeable battery of the liquid crystal display device through a switching device.
  • the photoresistor coating 103 senses the light of the backlight, the resistance value thereof becomes larger or smaller than the initial resistance value, and the initial resistance value is maintained or restored when the light of the backlight is not sensed, so that the signal processing unit can It is judged whether the display device is in an operating state by a change in resistance of the photoresistor coating.
  • the signal processing unit controls the light-opening device to turn off, so that the transparent solar battery 102 does not charge the rechargeable battery, and when the display device is in the standby state, the signal processing unit controls the switch device to close, The transparent solar cell 102 is charged to the rechargeable battery. In this way, instant charging can be realized without disturbing the display device, and the operating load is not increased, the standby time is extended, and the endurance is improved.
  • the photosensitive coating layer 103 is disposed on the light-emitting side of the second base substrate 201 next to the lower substrate 20; or as shown in FIG. 8 or FIG. 9, the photosensitive coating layer 103 is disposed tightly.
  • the light incident side of the second base substrate 201 of the lower substrate 20 is formed.
  • the photosensitive coating layer 103 is disposed on the light incident side or the light exiting side of the second base substrate 201, both of which are for the non-transparent area of the second base substrate 201.
  • the photosensitive coating layer 103 is disposed on the light incident side or the light exiting side of the second base substrate 201, and the photosensitive coating layer 103 is blocked because there is no other non-transparent pattern.
  • the light of the backlight 30 can be more sensitively sensed.
  • the photosensitive coating layer 103 can be disposed on the second substrate substrate 201 here.
  • the position corresponds to the black matrix of the upper substrate 10, and the area of the photosensitive coating layer 103 may be set equal to the area of the black matrix 104.
  • the photosensitive coating 103 can be prevented from inducing light emitted from the non-backlight source 30.
  • the change of the color state does not cause the signal processing unit to make an erroneous judgment on the working state of the display device, affecting the operation of the transparent solar cell 102.
  • the area of the photosensitive coating 103 is more sensitive to the light of the backlight. .
  • the transparent solar cell 102 may be disposed on the light-emitting side of the first base substrate 101; or, for example, as shown in FIG. 7 or 9, the transparent solar cell 102 may be disposed on the light incident side of the first base substrate 101.
  • the lower substrate may further include a common electrode 208.
  • a second embodiment of the present invention provides a liquid crystal display device.
  • the liquid crystal display device 01 includes: an upper substrate 10, a lower substrate 20 disposed opposite the upper substrate 10, and upper substrate and lower substrate.
  • the upper substrate 10 includes: a first substrate 101, a black matrix 104 disposed under the first substrate 101, a color layer 105 disposed under the black matrix 104, and a first substrate 101 disposed on the first substrate 101 A transparent solar cell 102 on one side of the black matrix.
  • a black matrix 104 is formed on the first substrate 101, and a color layer 105 under the black matrix 104 is formed.
  • the color layer 105 may include a red photoresist, a green photoresist, or a blue photoresist, and may also include other color resists.
  • the lower substrate 20 includes: a gate electrode 202 disposed on the second substrate 201, a gate insulating layer 203 disposed over the gate electrode 202 and the second substrate 201, and an active layer 204 disposed over the gate insulating layer 203
  • the source electrode 205a and the drain electrode 205b, and the pixel electrode 206 electrically connected to the drain electrode 205b, the protective layer 207, and the common electrode 208 disposed above the protective layer 207.
  • the lower substrate 20 may further include: a photoresist layer 103 disposed on the light incident side of the second substrate 201, and a protective layer (not shown) disposed under the photoresist layer 103; wherein the photoresistor
  • the position of the coating layer 103 on the lower substrate corresponds to the position of the black matrix 104 on the upper substrate, and the area of the photoresist layer 103 is equal to the area of the black matrix 104.
  • the lower substrate 20 is described by taking the bottom gate type as an example. However, the embodiment of the present invention is not limited thereto, and the lower substrate 20 may be of a top gate type.
  • the photosensitive coating layer 103 is disposed on the light incident side of the second base substrate 201, and the transparent solar cell 102 is disposed on the light exiting side of the first base substrate 101 as an example, but the embodiment of the present invention is Not limited to this.
  • An embodiment of the present invention provides a liquid crystal display device including an upper substrate 10, a lower substrate 20 disposed opposite the upper substrate, a liquid crystal layer 40 disposed between the upper substrate and the lower substrate, and a backlight 30 disposed under the lower substrate.
  • a signal processing unit wherein the upper substrate 10 includes a transparent solar cell 102 disposed on a light exiting side of the first substrate, and a black matrix 104; the lower substrate 20 includes a photoresistor coating 103, and the photoresistive coating 103 is disposed The second substrate is incident on the light side and corresponds to the black matrix 104; the display device further includes a rechargeable battery for supplying power to the display device, and the transparent solar cell 102 is connected to the rechargeable battery through a switching device.
  • the signal processing unit Since the photoresistor coating 103 senses the light of the backlight, its resistance value becomes larger or smaller than the initial resistance value, and maintains or restores the initial resistance value when the light of the backlight source is not sensed, the signal processing unit The display device can be judged to be in an operating state according to the magnitude of the current of the photoresistor coating. When the display device is in the working state, the signal processing unit controls the switching device to turn off, and the transparent solar cell 102 does not charge the rechargeable battery. When the display device is in the standby state, the signal processing unit controls the switching device to close, and the transparent solar cell 102 charges the rechargeable battery. This enables instant charging without delaying the display device and increasing its computational load, extending standby time and improving battery life.
  • Embodiments of the present invention provide a charging method for a display device, the method comprising: a photosensitive coating sensing light of a backlight; and a signal processing unit determining whether the display device is in an operating state according to whether the photosensitive coating senses light; When the display device is in a non-operating state, the signal processing unit controls the transparent solar cell to perform charging.
  • the display device is any display device including the above-described photosensitive coating layer and the transparent solar cell.
  • the charging method of the display device is: when the photosensitive coating layer 103 senses the light of the backlight 30 and changes from the initial color state to the second color state, the signal processing unit can be based on the second color state. Determining that the display device is in an operating state, and outputting a signal "1" to the light-opening device to turn off the light-opening device, the solar battery 102 does not charge the rechargeable battery; and the photosensitive coating 103 returns to the initial color state from the second color state Or always maintain the initial color state, According to the initial color state, the signal processing unit determines that the display device is in a standby state, and outputs a signal "0" to the switching device to close the switching device, and the solar battery 102 charges the rechargeable battery.
  • the signal processing unit determines whether the display device is in an operating state by means of the photosensitive coating layer, and includes: when the resistance value of the photoresistor coating changes relative to the initial resistance value, the output signal value changes from the initial signal value to the second signal value.
  • the signal processing unit determines, according to the second signal value, that the display device is in the output signal value as an initial signal value, and the signal processing unit determines that the display device is in an inoperative state; wherein, the initial resistance value is that the photosensitive coating does not sense the backlight source.
  • the resistance value of the time correspondingly, the initial signal value is the value of the output signal when the photosensitive coating does not sense the light of the backlight, and the second output signal value is the value of the output signal when the photosensitive coating senses the light of the backlight.
  • the charging method of the display device is: when the photoresistor coating 103 does not sense the light of the backlight 30, its resistance is an initial resistance value, and the output signal value is an initial signal value, and the output signal is It may be a voltage signal or a current signal; when the photoresistor coating 103 senses the light of the backlight 30 and its resistance value decreases from the initial resistance value to the second resistance value, the value of the output signal changes from the initial signal value.
  • the second signal value, the second signal value is different from the initial signal value, the signal processing unit determines that the display device is in an active state according to the second signal value, and outputs a signal "1" to the transparent solar cell to make the solar cell 102 rechargeable.
  • the battery is not charged; when the photosensitive coating 103 no longer senses the light of the backlight 30, its resistance value is restored to the initial resistance value by the second resistance value, and the value of the output signal is restored from the second signal value to the initial signal value.
  • the signal processing unit determines, according to the initial signal value, that the display device is in a standby state, and outputs a signal "0" to the transparent solar cell to enable the transparent solar cell 102 charges the rechargeable battery.
  • the transparent solar cell includes a switching device that receives a signal output by the signal processing unit. When the signal "1" is received, the switching device is turned off, and the transparent solar cell does not charge the rechargeable battery when receiving When the signal "0" is reached, the switching device is closed, and the transparent solar cell charges the rechargeable battery.
  • Embodiments of the present invention provide a charging method of a display device, the method comprising: sensing a light from a backlight by a photosensitive coating, and determining whether the display device is in operation according to whether a signal of the photosensitive coating changes according to an output signal of the photosensitive coating
  • the state when the display device is in a non-operating state, closes the switching device so that the transparent solar cell can charge the rechargeable battery. This can be no Instantly charge the display device without disturbing its computing load, extend standby time, and improve endurance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Nonlinear Science (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Optics & Photonics (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Liquid Crystal (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Photovoltaic Devices (AREA)

Abstract

一种显示装置,包括:显示面板和背光源(30)、所述显示面板包括上基板(10)以及与上基板相对设置的下基板(20),所述显示装置还包括设置于所述上基板(10)处的透明太阳能电池(102)、设置于所述显示面板非透光区的用于感应所述背光源的光的光敏涂层(103)、以及所述光敏涂层(103)和所述透明太阳能电池(102)连接的信号处理单元,所述信号处理单元根据所述光敏涂层(103)的电阻值变化来判断显示装置的工作状态,进而使透明太阳能电池(102)对所述显示面板的可充电电池充电或不充电。

Description

一种显示装置及其充电方法 技术领域
本发明的实施例涉及一种显示装置及其充电方法。 背景技术
随着手机、 平板电脑等电子设备的日渐普及和应用领域的不断扩大, 移 动手持设备的续航能力成了一个很大的问题。 而显示装置是电子设备的部件 中的一个高耗能装置。 特别是对于智能手机, 在使用其进行上网、 互动游戏 等时, 电量消耗大。 由于不能随时随地对这些电子设备进行充电, 使得这些 电子设备的使用时间受到一定的限制。
因此, 电子设备的续航能力已经成为用户更加关注的问题之一, 也是电 子设备制造商和研究人员急需解决的问题之一。 发明内容
根据本发明的实施例的一个方面, 提供了一种显示装置, 能够在不干扰 显示的情况下对显示装置的电池进行即时充电, 从而有效地延长显示装置的 使用时间。
本发明的实施例通过如下技术方案实现了上述目的:
一种显示装置, 包括显示面板、 背光源和可充电池; 所述显示面板包括 上基板以及与上基板相对设置的下基板, 所述背光源位于所述显示面板的下 基板侧, 所述可充电池用于对所述显示装置供电, 所述显示装置还包括: 设 置于所述上基板处用于对显示装置的可充电池进行充电的透明太阳能电池、 设置于所述显示面板的非透光区的用于感应所述背光源发出的光的光敏涂 层、 以及与所述光敏涂层和所述透明太阳能电池板连接的信号处理单元, 所 述信号处理单元根据来自光敏涂层的信号的变化, 确定该显示装置的工作状 态, 并 ^据显示装置的工作状态控制所述太阳能电池充电或不充电。
所述光敏涂层为光敏电阻涂层, 所述光敏涂层的面积等于或小于与所述 光敏涂层相对应的非透光区的面积。 所述光敏涂层设置于所述上基板的黑矩阵的入光侧。
所述光敏涂层设置于紧挨所述下基板的村底基板的入光侧, 或紧挨所述 下基板的村底基板的出光侧。
所述透明太阳能电池设置于紧挨所述上基板的村底基板的入光侧, 或紧 挨所述上基板的村底基板的出光侧。
所述下基板还包括像素电极和公共电极。
所述透明太阳能电池包括开关装置, 开关装置还连接至信号处理单元并 由信号处理单元控制, 实现所述透明太阳能电池对所述可充电池充电或不充 电。
所述开关装置可以是开关二极管或开关三极管, 所述开关装置还可以是 任何其他能够实现电路开关转换的开关装置。
根据本发明的一个实施例,提供了一种上述显示装置的充电方法, 包括: 光敏涂层感应背光源的光; 信号处理单元根据所述光敏涂层是否感应到背光 源的光, 判断所述显示装置是否处于工作状态; 如果所述显示装置处于非工 作状态, 信号处理单元控制透明太阳能电池进行充电。
进一步地, 所述信号处理单元通过所述光敏涂层, 判断所述显示装置是 否处于工作状态包括: 情况下, 判断所述显示装置处于工作状态; 所述信号处理单元在所述光敏电 阻涂层的阻值相对初始阻值未发生变化的情况下, 判断所述显示装置处于非 工作状态; 其中, 所述初始阻值为所述光敏涂层未感应到所述背光源的光时 的阻值。
本发明实施例提供了一种显示装置及其充电方法, 该显示装置包括显示 面板、 背光源, 设置于所述显示面板处的透明太阳能电池、 设置于所述显示 面板非透光区且用于感应所述背光源的光的光敏涂层、 以及与所述光敏涂层 和所述透明太阳能电池板连接的信号处理单元; 所述显示装置还包括用于对 显示装置进行供电的可充电池, 所述透明太阳能电池通过开关装置连接至该 可充电池, 所述信号处理单元通过检测来自光敏涂层的信号的变化以判断该 显示装置的工作状态, 当所述显示装置处于图像显示状态时, 所述信号处理 单元控制所述开关装置使之处于关断状态, 使所述透明太阳能电池对所述可 充电池不进行充电, 当所述显示装置处于待机状态时, 所述信号处理单元控 制所述开关装置使之处于闭合状态, 使所述透明太阳能电池对所述可充电池 进行充电, 从而可以在不干扰显示装置, 不增加其运算负载的情况下实现即 时充电, 延长待机时间, 提高续航能力。 附图说明
为了更清楚地说明本发明实施例的技术方案, 下面将对实施例的附图作 筒单地介绍,显而易见地,下面描述中的附图仅仅涉及本发明的一些实施例, 而非对本发明的限制。
图 1为本发明实施例提供的一种液晶显示装置的结构示意图一; 图 2为本发明实施例提供的一种液晶显示装置的结构示意图二; 图 3为本发明实施例提供的一种液晶显示装置的结构示意图三; 图 4为本发明实施例提供的一种液晶显示装置的结构示意图四; 图 5为本发明实施例一提供的一种液晶显示装置的结构示意图; 图 6为本发明实施例提供的一种液晶显示装置的结构示意图五; 图 7为本发明实施例提供的一种液晶显示装置的结构示意图六; 图 8为本发明实施例提供的一种液晶显示装置的结构示意图七; 图 9为本发明实施例提供的一种液晶显示装置的结构示意图八; 图 10为本发明实施例二提供的一种液晶显示装置的结构示意图; 图 11为本发明实施例提供的一种显示装置的充电方法的示意图; 图 12为本发明实施例提供的一种显示装置的另一种充电方法的示意图。 具体实施方式
为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本发 明实施例的附图,对本发明实施例的技术方案进行清楚、 完整地描述。显然, 所描述的实施例是本发明的一部分实施例, 而不是全部的实施例。 基于所描 述的本发明的实施例, 本领域普通技术人员在无需创造性劳动的前提下所获 得的所有其他实施例, 都属于本发明保护的范围。
本发明实施例提供了一种显示装置, 该显示装置包括: 显示面板以及位 于显示面板下方的背光源; 所述显示面板包括上基板以及与上基板相对设置 的下基板, 所述背光源位于所述显示面板的下基板侧, 该显示装置还包括: 透明太阳能电池、 光敏涂层以及信号处理单元, 透明太阳能电池设置所述上 基板处, 用于对显示装置的可充电池进行充电, 光敏涂层设置于显示面板的 非透光区, 用于感应背光源发出的光、 信号处理单元与所述光敏涂层和所述 透明太阳能电池板连接,所述信号处理单元根据来自光敏涂层的信号的变化, 确定该显示装置的工作状态, 并在该显示装置工作时控制所述透明太阳能电 池进行充电, 在该显示装置不工作时控制所述太阳能电池不进行充电。
显示装置还包括用于对显示装置供电的可充电池, 所述透明太阳能电池 通过开关装置与所述可充电池连接。所述开光装置连接至所述信号处理单元, 在所述信号处理单元的控制下在开关状态之间进行切换。
信号处理单元通过检测光敏涂层的状态来判断该显示装置的工作状态。 当所述显示装置处于显示状态时, 所述信号处理单元控制所述开关装置使之 处于关断状态, 使所述透明太阳能电池对可充电池不进行充电, 当所述显示 装置处于待机状态时, 所述信号处理单元控制所述开关装置使之处于闭合状 态, 使所述透明太阳能电池对可充电池进行充电。
所述透明太阳能电池可以是通过光电效应或者光化学效应直接把光能转 化成电能的装置,例如,所述透明太阳能电池可以为透明薄膜式太阳能电池。
本发明实施例的显示装置的工作原理如下: 当光敏涂层接收到背光源的 光时, 信号处理单元 ^据检测到的光敏涂层的变化, 判断该显示装置(例如 手机的显示屏)处于工作状态, 此时, 信号处理单元控制透明太阳能电池对 可充电池不进行充电; 当光敏涂层接收不到背光源的光时, 信号处理单元判 断显示装置(例如手机的显示屏)处于待机状态, 此时, 信号处理单元控制 所述透明太阳能电池对可充电池进行充电。
需要说明的是, 第一, 在本发明实施例中, 用于感应背光源的光的光敏 涂层是指, 当光敏涂层接收到背光源的光时, 或由接收到背光源的光到接收 不到背光源的光时, 所述光敏涂层由于接收到的光的变化而发生变化, 所述 光敏涂层的变化可以是任何可被所述信号处理单元识别的变化,例如, 电压、 电流或者电阻的变化, 还可以是颜色的变化等。 在本文中不对光敏涂层的材 料进行限定, 只要信号处理单元能够识别光敏涂层的变化并据此判断出所述 显示装置的状态。 例如, 光敏涂层在接收到背光源发出的光时其颜色发生变化。 当显示装 置处于待机状态时, 光敏涂层接收不到背光源的光, 光敏涂层的颜色为不被 光照射时的初始颜色, 当显示装置处于工作状态时, 光敏涂层能够接收到背 的第二颜色。
例如, 光敏涂层在接收到背光源发出的光时其阻值发生变化。 当光敏涂 层接收到背光源的光时, 光敏涂层由初始阻值变小或变大为第二阻值, 当光 敏涂层接收不到背光源的光时, 光敏涂层保持初始阻值或由第二阻值变为初 始阻值。 其中, 初始阻值是所述光敏涂层不被光照射时的阻值。
第二, 光敏涂层设置在非透光区, 是指光敏涂层的图案完全位于显示装 置的非透光区, 即, 沿垂直显示装置的显示面板的方向看过去, 显示装置的 非透光区和光敏涂层重合。 光敏涂层的形状和厚度在本文中不做限定, 只要 光敏涂层只能够感应来自背光源的光。
第三, 透明太阳能电池尺寸及其设置位置在本文中不做限定, 只要透明 太阳能电池能够接收到太阳光。
第四, 信号处理单元可以是一个独立的单元, 也可以是设置在显示装置 周边电路中的一部分电路, 在此不做限定。
信号处理单元通过检测来自光敏涂层的变化来判断该显示装置的工作状 态。 例如, 在光敏涂层感应到背光源的光后由初始颜色状态变为第二颜色状 态时, 信号处理单元可以根据第二颜色状态判断显示装置处于工作状态, 输 出信号 "1" 至开关装置, 开光装置接收到该信号 "1" 后处于断开状态, 太 阳能电池不对可充电池进行充电; 在光敏涂层由第二颜色状态恢复为初始颜 色状态时, 信号处理单元可以 ^据该初始颜色状态确定显示装置处于待机状 态, 向开光装置输出信号 "0" , 开光装置接收到该信号 "0" 后处于闭合状 态, 太阳能电池对可充电池进行充电。 其中, 初始颜色状态为光敏涂层未感 应到背光源的光时的颜色状态。
例如, 在光敏涂层在感应到背光源的光后由初始阻值变为第二阻值时, 信号处理单元可以根据第二阻值判断显示装置处于工作状态, 输出信号 "1" 至开光装置, 开光装置接收到该信号 "1"后处于断开状态, 太阳能电池不向 可充电池进行充电; 在光敏涂层由第二阻值恢复为初始阻值时, 信号处理单 元可以根据该初始阻值判断显示装置处于待机状态, 并向开光装置输出信号
"0" , 开光装置接收到该信号 "0" 后处于闭合状态, 太阳能电池向可充电 池进行充电。 其中, 初始阻值为光敏涂层未感应到背光源的光时的阻值。
所述开光装置可以是二极管开光装置或者三极管开关装置, 还可以是其 他任何可以实现开关功能的装置。
第五, 显示装置可以是具有显示功能的任何产品或者部件, 例如, 液晶 显示装置、 液晶显示器、 液晶电视、 数码相框、 手机、 平板电脑等。
一种显示装置, 包括显示面板、 背光源和可充电池, 所述显示面板包括 上基板以及与上基板相对设置的下基板, 所述背光源位于所述显示面板的下 基板侧, 所述可充电池用于对所述显示装置供电, 所述显示装置还包括: 透 明太阳能电池, 设置于所述上基板处, 用于对所述显示装置的可充电池进行 充电; 光敏涂层, 设置于所述显示面板非透光区且用于感应来自所述背光源 的光; 信号处理单元, 与所述光敏涂层以及所述透明太阳能电池连接, 所述 信号处理单元侦测来自光敏涂层的信号的变化,确定该显示装置的工作状态, 并 ^据所述显示装置的工作状态, 使所述透明太阳能电池对所述可充电池充 电或不充电。 从而可以在不干扰显示装置, 不增加其运算负载的情况下实现 即时充电, 延长待机时间, 提高续航能力。
例如, 光敏涂层可以是光敏电阻涂层。
光敏电阻涂层的材料可以为硫化镉、 硫化铅等能够在背光源照射下阻值 发生较大变化的材料。此处较大可以理解为,信号处理单元能够识别的范围。
例如, 光敏涂层的面积等于或小于与光敏涂层相对的非透光区的面积。 为了使信号处理单元对显示装置的工作状态做出正确判断, 一方面, 需 要避免光敏涂层感应到非背光源发出的光而产生颜色状态的变化,另一方面, 需要所述光敏涂层的面积尽可能大以能灵敏的感应所述背光源的光。
例如, 如图 1至 10所示, 对于液晶显示装置 01 , 显示面板包括上基板
10以及与上基板 10相对布置的下基板 20、以及设置在两基板间的液晶层 40。
例如, 如图 1至 4所示, 上基板 10包括黑矩阵 104, 光敏涂层 103设置 于上基板 10的黑矩阵 104的入光侧,光敏涂层 103的图案对应于黑矩阵 104 的图案。 即, 是指沿入射光方向看, 光敏涂层 103和黑矩阵 104重合。
在本发明所有实施例中,入射光均指背光源 30发出的光,有特别说明的 除外。
例如, 如图 1或 2所示, 光敏涂层 103可以设置在色层 105远离黑矩阵 104的一侧。
例如, 如图 3或 4所示, 光敏涂层 103可以紧挨黑矩阵 104设置。
对于液晶显示装置 01来说, 位于上基板 10的黑矩阵 104将该显示装置 分为透光区和非透光区, 光敏涂层 103的面积等于与光敏涂层相对的非透光 区的面积, 即, 可以将光敏涂层 103的面积设置为等于黑矩阵 104的面积。
例如,如图 1或 3所示,透明太阳能电池 102设置于紧挨上基板 10的第 一衬底基板 101的出光侧; 或如图 2或 4所示, 透明太阳能电池 102设置于 紧挨第一衬底基板 101的入光侧。 这样, 透明太阳能电池 102便可完全接收 到外界的光例如太阳光, 从而可最大程度地将太阳能转化为电能。
实施例一
本发明的实施例一提供了一种液晶显示装置, 如图 5所示, 该液晶显示 装置 01包括: 上基板 10、 与上基板相对设置的下基板 20、 设置于上基板和 下基板之间的液晶层 40、 背光源 30、 以及信号处理单元(图中未示出) 。
上基板 10包括:衬底基板 101、设置在衬底基板 101下方的黑矩阵 104、 设置在黑矩阵下方的光敏电阻涂层 103 , 以及设置在光敏电阻涂层 103下方 的色层 105、 以及设置在衬底基板 101上方的透明太阳能电池 102。
该液晶显示装置还包括可充电池, 用于对液晶显示装置供电。 透明太阳 能电池通过开关装置连接至可充电池。
在该实施例中, 在衬底基板 101上先形成黑矩阵 104、 再形成位于黑矩 阵 104下方的光敏电阻涂层 103 , 然后形成色层 105。
光敏涂层 103的面积等于黑矩阵 104的面积。 例如, 色层 105可以包括 红色光阻、 绿色光阻、 蓝色光阻, 也可以包括其他颜色的光阻。
下基板 20包括: 衬底基板 201 , 位于衬底基板 201上的栅电极 202、 设 置在栅电极和衬底基板上方的栅绝缘层 203、 设置在栅绝缘层上方的有源层 204、 源电极 205a和漏电极 205b、 以及与漏电极电连接的像素电极 206和保 护层 207。
需要说明的是,在本发明实施例中,以底栅型为例对下基板 20进行说明, 但本发明实施例并不限于此, 下基板 20也可以是顶栅型。 此外, 本发明实施 例中并不限于下基板 20包括像素电极 206, 也可以包括公共电极, 在此不做 限定。 此外, 本发明实施例仅以光敏涂层 103设置于所述黑矩阵 104下方, 透明太阳能电池设置于第一衬底基板 101的出光侧为例进行说明, 但本发明 实施例并不限于此。
本发明实施例提供了一种液晶显示装置, 包括上基板 10、 下基板 20、设 置在两基板之间的液晶层 40、设置在下基板侧的背光源 30、 以及信号处理单 元, 其中上基板 10包括设置在第一衬底基板出光侧的透明太阳能电池 102, 以及设置在所述黑矩阵 104入光侧的光敏电阻涂层 103。 该液晶显示装置还 包括可充电池, 用于对液晶显示装置供电。 透明太阳能电池通过开关装置连 接至所述液晶显示装置的可充电池。 由于光敏电阻涂层 103在感应到背光源 的光时其电阻值相对初始阻值会变大或变小, 在感应不到背光源的光时保持 或恢复为初始阻值, 从而信号处理单元可以通过光敏电阻涂层的阻值变化来 判断显示装置是否处于工作状态。 当显示装置处于工作状态时, 信号处理单 元控制开光装置使之关断, 使透明太阳能电池 102对可充电池不进行充电, 当显示装置处于待机状态时, 信号处理单元控制开关装置使之闭合, 使透明 太阳能电池 102对可充电池进行充电。 这样可以在不干扰显示装置, 不增加 其运算负载的情况下实现即时充电, 延长待机时间, 提高续航能力。
例如,如图 6或图 7所示,光敏涂层 103设置于紧挨下基板 20的第二衬 底基板 201的出光侧; 或如图 8或图 9所示, 光敏涂层 103设置于紧挨下基 板 20的第二衬底基板 201的入光侧。
需要说明的是, 这里将光敏涂层 103设置于第二衬底基板 201的入光侧 或出光侧, 均在针对第二衬底基板 201的非透光区而言的。
由于下基板 20的第二衬底基板 201靠近背光源 30, 将光敏涂层 103设 置于第二衬底基板 201的入光侧或出光侧,由于没有其他非透明图案的阻挡, 光敏涂层 103可以更加灵敏的感应背光源 30的光。
由于对于液晶显示装置 01来说, 位于上基板 10的黑矩阵 104将显示装 置分为透光区和非透光区, 因此, 这里可以使光敏涂层 103设置于第二衬底 基板 201上的位置对应于上基板 10的黑矩阵, 并且可以设置光敏涂层 103 的面积等于黑矩阵 104的面积。
这样,一方面,可以避免光敏涂层 103感应到非背光源 30发出的光而产 生颜色状态的变化, 不会使信号处理单元对显示装置的工作状态产生错误判 断, 影响透明太阳能电池 102的工作, 另一方面, 光敏涂层 103的面积大更 能灵敏的感应背光源的光。
对于所述透明太阳能电池 102, 例如, 如图 6或 8所示, 透明太阳能电 池 102可以设置于第一衬底基板 101的出光侧; 或者, 例如, 如图 7或 9所 示, 透明太阳能电池 102可以设置于第一衬底基板 101的入光侧。
考虑到 ADS ( Advanced-Super Dimension Switch, 高级超维场转换技术) 薄膜晶体管液晶显示器(Thin Film Transistor- Liquid Crystal Display, 筒称 TFT-LCD )具有高分辨率、 高透过率、 低功耗、 宽视角、 高开口率、 低色差、 无挤压水波纹( push Mura )等优点, 例如, 下基板还可以包括公共电极 208。
实施例二
本发明的实施例二提供了一种液晶显示装置,如图 10所示,该液晶显示 装置 01包括: 上基板 10、 与上基板 10相对设置的下基板 20、设置于上基板 和下基板之间的液晶层 40、 设置于下基板 20下方的背光源 30、 以及信号处 理单元(图中未示出 ) 。
上基板 10包括: 第一衬底基板 101、设置在所述第一衬底基板 101下的 黑矩阵 104、设置在所述黑矩阵 104下方的色层 105、 以及设置在第一衬底基 板 101上相对所述黑矩阵的一侧的透明太阳能电池 102。
在该实施例中, 在第一衬底基板 101上先形成黑矩阵 104、 再形成位于 黑矩阵 104下方的色层 105。
例如, 色层 105可以包括红色光阻、 绿色光阻或蓝色光阻, 也可以包括 其他颜色色阻。
下基板 20包括: 设置在第二衬底基板 201上的栅电极 202、设置在栅电 极 202和第二衬底基板 201上方的栅绝缘层 203、 设置在栅绝缘层 203上方 的有源层 204、 源电极 205a和漏电极 205b、 以及与漏电极 205b电连接的像 素电极 206、 保护层 207、 以及设置于保护层 207上方的公共电极 208。
下基板 20还可以包括:设置于第二衬底基板 201的入光侧的光敏电阻涂 层 103、 以及设置于光敏电阻涂层 103下方的保护层(图中未示出); 其中, 光敏电阻涂层 103在下基板上的位置与黑矩阵 104在上基板上的的位置对应, 且光敏电阻涂层 103的面积等于黑矩阵 104的面积。 需要说明的是, 在该实施例中, 下基板 20以底栅型为例进行说明,但本 发明实施例并不限于此, 下基板 20也可以是顶栅型。 此外, 该实施例仅以光 敏涂层 103设置于第二衬底基板 201的入光侧, 透明太阳能电池 102设置于 第一衬底基板 101的出光侧为例进行说明, 但本发明实施例并不限于此。
本发明实施例提供了一种液晶显示装置, 包括上基板 10、 与上基板相对 设置的下基板 20、设置在上基板和下基板之间的液晶层 40、设置在下基板下 方的背光源 30、 以及信号处理单元, 其中上基板 10包括设置在第一衬底基 板出光侧的透明太阳能电池 102 , 以及黑矩阵 104; 下基板 20包括光敏电阻 涂层 103 , 该光敏电阻涂层 103设置在所述第二衬底基板入光侧且对应于所 述黑矩阵 104; 该显示装置还包括用于对显示装置进行供电的可充电池, 所 述透明太阳能电池 102通过开关装置连接至该可充电池。 由于光敏电阻涂层 103 在感应到背光源的光时其阻值相对初始阻值会变大或变小, 在感应不到 所述背光源的光时保持或恢复为初始阻值, 信号处理单元可以根据光敏电阻 涂层的电流的大小来判断显示装置是否处于工作状态, 当显示装置处于工作 状态时, 信号处理单元控制开关装置使之关断, 透明太阳能电池 102对可充 电池不进行充电, 当显示装置处于待机状态时, 信号处理单元控制开关装置 使之闭合, 透明太阳能电池 102对可充电池进行充电。 这样可以在不干扰显 示装置, 不增加其运算负载的情况下实现即时充电, 延长待机时间, 提高续 航能力。
本发明实施例提供了一种用于显示装置的充电方法, 该方法包括: 光敏 涂层感应背光源的光; 信号处理单元根据光敏涂层是否感应到光来判断显示 装置是否处于工作状态; 在显示装置处于非工作状态时, 所述信号处理单元 控制透明太阳能电池进行充电。
此处, 所述显示装置为包括上述光敏涂层和所述透明太阳能电池的任一 种显示装置。
例如, 如图 11所示,显示装置的充电方法为: 在光敏涂层 103感应到背 光源 30的光后由初始颜色状态变为第二颜色状态时,信号处理单元可以根据 该第二颜色状态,判断显示装置处于工作状态,并向开光装置输出信号 "1" , 使开光装置关断, 太阳能电池 102对可充电池不进行充电; 在光敏涂层 103 由第二颜色状态恢复为初始颜色状态或一直保持初始颜色状态的情况下, 所 述信号处理单元 ^据该初始颜色状态, 判断所述显示装置处于待机状态, 并 向开关装置输出信号 "0" , 使开关装置闭合, 太阳能电池 102对可充电池进 行充电。
例如,信号处理单元借助光敏涂层判断显示装置是否处于工作状态包括: 在光敏电阻涂层的阻值相对初始阻值发生变化的情况下, 其输出信号值由初 始信号值变为第二信号值, 信号处理单元根据第二信号值判断显示装置处于 出信号值为初始信号值, 信号处理单元判断所述显示装置处于非工作状态; 其中, 初始阻值为光敏涂层未感应到背光源的光时的阻值, 相应地, 初始信 号值为光敏涂层未感应到背光源的光时输出信号的值, 第二输出信号值为光 敏涂层感应到背光源的光时输出信号的值。
例如, 如图 12所示,显示装置的充电方法为: 在光敏电阻涂层 103未感 应到背光源 30的光时, 其电阻为初始阻值, 其输出信号的值为初始信号值, 输出信号可以是电压信号或电流信号;在光敏电阻涂层 103感应到背光源 30 的光后由其阻值由初始阻值变小为第二阻值时, 其输出信号的值由初始信号 值变为第二信号值, 第二信号值与初始信号值不同, 信号处理单元根据第二 信号值判断显示装置处于工作状态,并向所述透明太阳能电池输出信号 "1" , 使太阳能电池 102对可充电池不进行充电; 在光敏涂层 103不再感应到背光 源 30的光时,其阻值由第二阻值恢复为初始阻值,其输出信号的值由第二信 号值恢复为初始信号值, 信号处理单元 ^据该该初始信号值, 判断显示装置 处于待机状态, 并向所述透明太阳能电池输出信号 "0" , 使所述透明太阳能 电池 102对可充电池进行充电。
所述透明太阳能电池包括开关装置, 该开关装置接收信号处理单元输出 的信号, 当接收到信号 "1" 时, 该开关装置关断, 所述透明太阳能电池对可 充电池不进行充电, 当接收到信号 "0" 时, 该开关装置闭合, 所述透明太阳 能电池对可充电池进行充电。
本发明实施例提供了一种显示装置的充电方法, 该方法包括: 光敏涂层 感应来自背光源的光,信号处理单元根据光敏涂层的输出信号是否发生变化, 判断所述显示装置是否处于工作状态, 在显示装置处于非工作状态时, 使开 关装置闭合, 使得透明太阳能电池能够对可充电池进行充电。 这样可以在不 干扰显示装置工作、 不增加其运算负载的情况下实现即时充电, 延长待机时 间, 提高续航能力。
以上所述仅是本发明的示范性实施方式, 而非用于限制本发明的保护范 围, 本发明的保护范围由所附的权利要求确定。

Claims

权利要求书
1. 一种显示装置, 包括显示面板、 背光源和可充电池, 所述显示面板包 括上基板以及与上基板相对设置的下基板, 所述背光源位于所述显示面板的 下基板侧, 所述可充电池用于对所述显示装置供电, 所述显示装置还包括: 透明太阳能电池, 设置于所述上基板处, 用于对所述显示装置的可充电 池进行充电;
光敏涂层, 设置于所述显示面板非透光区且用于感应来自所述背光源的 光;
信号处理单元, 与所述光敏涂层以及所述透明太阳能电池连接, 所述信 号处理单元侦测来自光敏涂层的信号的变化, 确定该显示装置的工作状态, 并才 据所述显示装置的工作状态, 使所述透明太阳能电池对所述可充电池充 电或不充电。
2. 根据权利要求 1所述的显示装置, 其中, 所述光敏涂层为光敏电阻涂 层。
3. 根据权利要求 1或 2所述的显示装置, 其中, 所述光敏涂层的面积等 于或小于与所述光敏涂层相对的所述非透光区的面积。
4. 根据权利要求 1至 3中的任何一项所述的显示装置, 其中, 所述光敏 涂层设置于所述上基板的黑矩阵的入光侧。
5. 根据权利要求 1至 3中的任何一项所述的显示装置, 其中, 所述光敏 涂层设置于所述下基板的衬底基板的入光侧或所述下基板的衬底基板的出光 侧。
6. 根据权利要求 1至 5中的任何一项所述的显示装置, 其中, 所述透明 太阳能电池设置于所述上基板的衬底基板的入光侧或所述上基板的衬底基板 的出光侧。
7. 根据权利要求 1所述的显示装置, 其中, 所述透明太阳能电池包括开 光装置, 所述开关装置为开关二极管或开关三极管。
8. 根据权利要求 7所述的显示装置, 其中, 所述开光装置连接到所述信 号处理装置, 在所述信号处理装置控制下在开光状态之间转换。
9. 根据权利要求 1所述的显示装置, 其中, 所述下基板还包括像素电极 和公共电极。
10. 一种用于权利要求 1至 9中任一项所述的显示装置的充电方法, 所 述方法包括:
光敏涂层感应背光源的光, 在光敏涂层感应到光时, 其输出信号发生变 化;
信号处理单元根据所述光敏涂层的输出信号变化确定所述显示装置的状 态;
在所述显示装置处于非工作状态的情况下, 所述信号处理单元控制透明 太阳能电池对显示装置的可充电池进行充电。
11. 根据权利要求 10所述的充电方法, 其中, 所述信号处理单元通过所 述光敏涂层的输出信号变化确定所述显示装置的状态包括:
在所述光敏电阻涂层的输出信号相对初始信号发生变化的情况下, 所述 信号处理单元确定所述显示装置处于工作状态; 所述信号处理单元在所述光 敏电阻涂层的输出信号相对初始信号未发生变化的情况下, 所述信号处理单 元确定所述显示装置处于非工作状态;
其中,所述初始阻值为所述光敏涂层未感应到所述背光源的光时的阻值。
12. 根据权利要求 10所述的充电方法, 其中, 在所述显示装置处于非工 作状态的情况下, 所述信号处理单元控制所述太阳能电池的开关装置, 使之 闭合, 所述太阳能电池对所述可充电池进行充电。
13. 根据权利要求 10所述的充电方法, 其中, 所述光敏涂层输出信号的 变化是电压、 电流或电阻的变化。
PCT/CN2013/089447 2013-04-26 2013-12-14 一种显示装置及其充电方法 WO2014173147A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/387,961 US10191311B2 (en) 2013-04-26 2013-12-14 Display device and charging method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310150730.5A CN103246098B (zh) 2013-04-26 2013-04-26 一种显示装置及其充电方法
CN201310150730.5 2013-04-26

Publications (1)

Publication Number Publication Date
WO2014173147A1 true WO2014173147A1 (zh) 2014-10-30

Family

ID=48925717

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/089447 WO2014173147A1 (zh) 2013-04-26 2013-12-14 一种显示装置及其充电方法

Country Status (3)

Country Link
US (1) US10191311B2 (zh)
CN (1) CN103246098B (zh)
WO (1) WO2014173147A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3309661A4 (en) * 2015-06-10 2018-12-19 Boe Technology Group Co. Ltd. Touch screen and touch display device

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103246098B (zh) 2013-04-26 2015-06-10 北京京东方光电科技有限公司 一种显示装置及其充电方法
CN103414383B (zh) * 2013-08-30 2016-06-08 惠州Tcl移动通信有限公司 充电模组和电子设备
CN103701186B (zh) 2013-12-19 2015-08-12 北京京东方光电科技有限公司 移动通信终端
CN103706115A (zh) 2013-12-31 2014-04-09 成都有尔科技有限公司 基于智能穿戴设备的互动游戏系统
CN103728753A (zh) * 2013-12-31 2014-04-16 京东方科技集团股份有限公司 显示基板和显示装置
CN104332152B (zh) * 2014-11-27 2017-06-27 合肥鑫晟光电科技有限公司 显示屏亮度调节电路及方法、自适应显示面板及装置
CN107508368A (zh) * 2017-08-31 2017-12-22 努比亚技术有限公司 一种发电装置及带该发电装置的移动终端
CN115390311B (zh) * 2022-08-25 2024-02-27 深圳市优奕视界有限公司 一种太阳能嵌入式的lcd屏幕及控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050117096A1 (en) * 2003-12-02 2005-06-02 Motorola, Inc. Color Display and Solar Cell Device
CN101276790A (zh) * 2008-05-21 2008-10-01 友达光电股份有限公司 薄膜晶体管阵列基板与液晶显示面板的制作方法
CN101877734A (zh) * 2009-04-30 2010-11-03 Lg电子株式会社 移动终端及其控制方法
CN102237051A (zh) * 2010-04-23 2011-11-09 北京京东方光电科技有限公司 驱动电路及其驱动方法和液晶显示器
JP2011257472A (ja) * 2010-06-07 2011-12-22 Sanyo Electric Co Ltd 屋外表示システム、及び表示装置
CN103246098A (zh) * 2013-04-26 2013-08-14 北京京东方光电科技有限公司 一种显示装置及其充电方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5686979A (en) * 1995-06-26 1997-11-11 Minnesota Mining And Manufacturing Company Optical panel capable of switching between reflective and transmissive states
JP4520545B2 (ja) * 1998-04-17 2010-08-04 セイコーインスツル株式会社 反射型液晶表示装置及びその製造方法
WO2000028513A1 (en) * 1998-11-10 2000-05-18 Citizen Watch Co., Ltd. Electronic device with solar cell
US20060101685A1 (en) * 2004-09-10 2006-05-18 Smith Carl Iii Substrate with light display
US20070080925A1 (en) * 2005-10-11 2007-04-12 Nokia Corporation Power generating display device
TWI428642B (zh) * 2005-12-21 2014-03-01 Fujifilm Corp 配備黑矩陣之濾光片及液晶顯示器
TWI337668B (en) * 2006-04-21 2011-02-21 Au Optronics Corp Transflective display and fabrication thereof, a method for forming a display
JP2008305198A (ja) * 2007-06-07 2008-12-18 Fujitsu Component Ltd 入力システム及び入力装置
JP2009128686A (ja) * 2007-11-26 2009-06-11 Sony Corp 表示装置および電子機器
KR101526970B1 (ko) * 2008-05-29 2015-06-16 엘지전자 주식회사 단말기 및 그 제어 방법
CN202126552U (zh) * 2011-05-30 2012-01-25 袁贵彬 背后设有太阳能电池层的彩色液晶面板

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050117096A1 (en) * 2003-12-02 2005-06-02 Motorola, Inc. Color Display and Solar Cell Device
CN101276790A (zh) * 2008-05-21 2008-10-01 友达光电股份有限公司 薄膜晶体管阵列基板与液晶显示面板的制作方法
CN101877734A (zh) * 2009-04-30 2010-11-03 Lg电子株式会社 移动终端及其控制方法
CN102237051A (zh) * 2010-04-23 2011-11-09 北京京东方光电科技有限公司 驱动电路及其驱动方法和液晶显示器
JP2011257472A (ja) * 2010-06-07 2011-12-22 Sanyo Electric Co Ltd 屋外表示システム、及び表示装置
CN103246098A (zh) * 2013-04-26 2013-08-14 北京京东方光电科技有限公司 一种显示装置及其充电方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3309661A4 (en) * 2015-06-10 2018-12-19 Boe Technology Group Co. Ltd. Touch screen and touch display device

Also Published As

Publication number Publication date
CN103246098A (zh) 2013-08-14
US20160282651A1 (en) 2016-09-29
CN103246098B (zh) 2015-06-10
US10191311B2 (en) 2019-01-29

Similar Documents

Publication Publication Date Title
WO2014173147A1 (zh) 一种显示装置及其充电方法
US10431164B2 (en) Display device, display module, and electronic device
US8451241B2 (en) Liquid crystal display device
WO2019041991A1 (zh) 感测基板及感测板、显示面板和显示装置
TWI441125B (zh) Display devices and electronic machines
TWI419090B (zh) 顯示裝置
TWI398691B (zh) 液晶顯示裝置、電子機器及控制前述液晶顯示裝置之照光手段之明亮度之方法
WO2014153864A1 (zh) 阵列基板及其制造方法和显示装置
US20140152632A1 (en) Solar Cell Ambient Light Sensors For Electronic Devices
TWI424558B (zh) 顯示器
JP2007065243A (ja) 表示装置
JP2011018053A (ja) 光感知部を有する電子ディスプレイ装置
CN109950235B (zh) 一种集成指纹识别功能及太阳能电池模块的显示装置
US7999259B2 (en) Display device having a photodiode whose p region has an edge width different than that of the n region
TW200945311A (en) Optical detection device, electro-optical device, electronic apparatus, and optical degradation correction method
JP2010122567A (ja) 表示装置
KR20070002280A (ko) 박막트랜지스터형 광 센서 및 이를 포함한 액정 표시 장치및 제조 방법
JP2007279100A (ja) 表示装置
JP4940733B2 (ja) 表示装置
JP2008064828A (ja) 液晶装置および電子機器
US11081067B2 (en) Display substrate of electronic ink screen and display device thereof
JP4208015B2 (ja) 受光装置、液晶装置、および電子機器
WO2022110331A1 (zh) 感光器件及显示面板
JP2011034026A (ja) 表示装置、表示装置の輝度調整回路および電子機器
JP2009212964A (ja) 光センサ内蔵型の携帯端末機及び光センサ内蔵型の携帯端末機の測光制御方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14387961

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13882728

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 07.03.2016)

122 Ep: pct application non-entry in european phase

Ref document number: 13882728

Country of ref document: EP

Kind code of ref document: A1