WO2014173033A1 - 无线电力传输接收端、系统及接收方法 - Google Patents
无线电力传输接收端、系统及接收方法 Download PDFInfo
- Publication number
- WO2014173033A1 WO2014173033A1 PCT/CN2013/080760 CN2013080760W WO2014173033A1 WO 2014173033 A1 WO2014173033 A1 WO 2014173033A1 CN 2013080760 W CN2013080760 W CN 2013080760W WO 2014173033 A1 WO2014173033 A1 WO 2014173033A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- secondary coil
- circuit
- power transmission
- wireless power
- receiving end
- Prior art date
Links
- 230000005540 biological transmission Effects 0.000 title claims abstract description 67
- 238000000034 method Methods 0.000 title claims abstract description 16
- 230000005672 electromagnetic field Effects 0.000 claims abstract description 24
- 238000001914 filtration Methods 0.000 claims description 34
- 230000001939 inductive effect Effects 0.000 claims description 4
- 238000004519 manufacturing process Methods 0.000 abstract description 4
- 230000006698 induction Effects 0.000 abstract 1
- 238000004804 winding Methods 0.000 description 16
- 238000005516 engineering process Methods 0.000 description 8
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000005284 excitation Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000010892 electric spark Methods 0.000 description 1
- 230000005674 electromagnetic induction Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/40—Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
- H02J50/402—Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices the two or more transmitting or the two or more receiving devices being integrated in the same unit, e.g. power mats with several coils or antennas with several sub-antennas
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/10—Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
- H02J50/12—Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/20—Circuit arrangements or systems for wireless supply or distribution of electric power using microwaves or radio frequency waves
Definitions
- the present invention relates to the field of power transmission technologies, and in particular, to a wireless power transmission receiving end, a system, and a receiving method. Background technique
- Magnetically coupled resonant radio energy transmission technology utilizes magnetic coupling and resonance technology to achieve wireless transmission of electrical energy, with far transmission distance and high transmission efficiency, and has more performance than electromagnetic wave and electromagnetic induction radio energy transmission technology. The advantages are obtained in a relatively wide range of applications.
- the power wireless transmission technology has been applied to household appliances, which can realize wireless transmission of a certain power within a few meters, replacing the original "plug + socket" power supply mode, and has the characteristics of being clean, safe, and mobile.
- household appliances are becoming more and more functional and energy-saving.
- rice cookers need to provide power for electrical control circuits and power for heating circuits.
- a wireless power transmission device uses a single primary coil and a single secondary coil for power transmission.
- the receiving end is composed of a large number of circuits, resulting in high cost of the wireless power transmission device.
- the object of the present invention is to provide a wireless power transmission receiving end, method and power transmission system, which can solve the problem that the wireless power transmission efficiency is low; the receiving end is composed of a large number of circuits, which causes a high cost of the wireless power transmission device.
- a wireless power transmission receiving end comprising: a secondary side coil group, a rectifying and filtering circuit and a circuit module connected in sequence, wherein
- the secondary coil group includes at least two secondary coils
- Each of the secondary coils in the secondary coil group is resonantly coupled to the electromagnetic field generated by the primary coil to pick up the electromagnetic field energy of the primary side;
- the rectifying and filtering circuit rectifies and filters the induced current generated in each of the secondary coils in the secondary coil group, and supplies power to the corresponding circuit module.
- the circuit module includes an electrical control circuit and an electrical main circuit.
- the secondary coil group includes: a first secondary coil and a second secondary coil, wherein the first secondary coil corresponds to an electrical main circuit;
- the second secondary winding corresponds to the electrical control circuit.
- the rectifying and filtering circuit comprises: a first rectifying and filtering circuit and a second rectifying and filtering circuit; one end of the first rectifying and filtering circuit is connected to the first sub-side coil, and the other end of the first rectifying and filtering circuit is connected to the main circuit of the electric appliance;
- One end of the second rectifying and filtering circuit is connected to the second secondary side coil, and the other end of the second rectifying and filtering circuit is connected to the electrical control circuit;
- the number of turns of each secondary winding is proportional to the voltage and power of the corresponding circuit module.
- the electrical main circuit comprises: a resistive load and an inductive load.
- the method further includes: an LDO module that converts a voltage of the induced current generated in the second secondary coil into a voltage of the electrical control circuit, wherein
- One end of the LDO module is connected to the second rectifying and filtering circuit, and the other end is connected to the electrical control circuit.
- a wireless power transmission system comprising: a wireless power transmission transmitting end and a wireless power transmission receiving end according to any one of the above;
- a wireless power transmission receiving method includes:
- Each of the secondary coils in the secondary coil group is resonantly coupled with the electromagnetic field generated by the primary coil to pick up the electromagnetic energy of the primary side;
- the induced current generated in each of the secondary coils in the secondary coil group is rectified and filtered, and power is supplied to the corresponding circuit modules.
- the wireless power transmission receiving end comprises a secondary side coil group, a rectifying and filtering circuit and a circuit module connected in sequence; each of the secondary side coils in the secondary side coil group is resonantly coupled with an electromagnetic field generated by a primary side coil of the wireless power transmission transmitting end, and the original is picked up.
- the electromagnetic field energy of the side; the rectifying and filtering circuit rectifies and filters the induced current generated in each of the secondary coils in the secondary coil group, and supplies power to the corresponding circuit module.
- FIG. 1 is a schematic structural diagram of a wireless power transmission receiving end according to Embodiment 1 of the present invention
- FIG. 2 is a schematic structural diagram of a wireless power transmission receiving end according to Embodiment 2 of the present invention
- FIG. 4 is a schematic flowchart of a wireless power transmission receiving method according to Embodiment 4 of the present invention.
- the invention is based on a magnetically coupled resonant radio energy transmission technology that utilizes magnetic coupling and resonance techniques to achieve wireless transmission of electrical energy.
- a wireless power transmission receiving end includes: a secondary side coil group 1 connected in sequence, a rectifying and filtering circuit 2, and a circuit module 3, wherein
- the secondary coil group 1 includes at least two secondary coils,
- Each of the secondary coils in the secondary coil group 1 is resonantly coupled with an electromagnetic field generated by the primary coil of the wireless power transmission transmitting end, and picks up the electromagnetic energy of the primary side.
- the rectifying and filtering circuit 2 rectifies and filters the induced current generated in each of the secondary coils in the secondary coil group 1, and supplies power to the corresponding circuit module 3.
- the circuit module 3 includes: an electric appliance main circuit 31 and an electric appliance control circuit 32.
- the main circuit 31 of the electric appliance is: a power supply circuit of the power system, for example, a three-phase power supply of an actuator such as a motor belongs to the main circuit of the electric appliance.
- the electrical control circuit 32 is a control loop for controlling the main circuit of the electrical appliance. For example, there is a contactor in the main circuit of the electrical appliance, and the coil of the contactor belongs to the control loop.
- the rectifying and filtering circuit 2 includes: a first rectifying and filtering circuit 21 and a second rectifying and filtering circuit 22.
- one end of the first rectifying and filtering circuit 21 is connected to the first sub-side coil 11, and the other end of the first rectifying and filtering circuit 21 is connected to the main circuit 31 of the electric appliance;
- the second rectifying and filtering circuit 22 is connected to the second secondary winding 12, and the other end of the second rectifying and filtering circuit 22 is connected to the electrical control circuit 32;
- the secondary coil group 1 includes: a first secondary coil 11 and a second secondary coil 12, and the first secondary coil 11 and the second secondary coil 12 are coaxially wound.
- the first secondary winding 11 is resonantly coupled with the electromagnetic field generated by the primary coil to pick up the electromagnetic field energy of the primary side; the first rectifying and filtering circuit 21 rectifies and filters the induced current generated in the first secondary winding.
- the corresponding electric appliance main circuit 31 supplies power.
- the second secondary winding 12 is resonantly coupled with the electromagnetic field generated by the primary coil to pick up the electromagnetic field energy of the primary side; the second rectifying and filtering circuit 22 rectifies and filters the induced current generated in the second secondary winding, and controls the corresponding electrical device. Circuitry 32 provides power.
- the number of turns of each secondary winding is proportional to the voltage and power of the corresponding circuit module.
- the voltage of the main circuit 31 of the electric appliance is higher than the voltage of the electric control circuit 32, and correspondingly, the number of turns of the first secondary winding 11 is larger than the number of turns of the second secondary winding 12.
- the electrical main circuit 31 includes: a resistive load and an inductive load.
- a resistive load for example: a bulb; an inductor in the loop, and a load in which the capacitive component participates, called an inductive load; for example, a fluorescent lamp, an electric motor.
- the wireless power receiving device By setting the parameters of the second secondary winding, the voltage of the induced current generated in the second secondary winding is rectified and filtered to a voltage of 20 to 30 volts.
- the wireless power receiving device further includes: converting the voltage of the induced current generated in the second secondary coil into the voltage of the electrical control circuit.
- LDO low dropout regulator, low dropout linear regulator
- the LDO module 41 is connected to the second rectifying and filtering circuit 22 at one end and to the electrical control circuit at the other end.
- the LDO module 41 subtracts the excess voltage from the voltage of the second induced current to produce a regulated output voltage to the electrical control circuit.
- the voltage drop voltage means that the LDO maintains the output voltage within lOOmV of the voltage rating of the electrical control circuit.
- the requirement to convert the voltage of the second induced current into the voltage of the electrical control circuit can be satisfied, and the LDO has the advantages of low cost, low noise, and small quiescent current.
- Embodiment 3 A wireless power transmission system includes: a wireless power transmission transmitting end and any one of the above wireless power transmission receiving ends.
- the wireless power transmission transmitting end (ie, the primary side module), as shown in FIG. 3, includes a rectification and filtering regulator circuit 31, an auxiliary power supply 32, an inverter circuit 33, an inverter control circuit 34, a frequency tracking control circuit 35, and a primary side coil. 36, where:
- the rectifying and filtering voltage stabilizing circuit 31 is configured to rectify and filter the alternating current power, and output stable direct current power as an input of the inverter circuit 33;
- An auxiliary power supply 32 for supplying power to the inverter control circuit 34;
- the inverter circuit 33 is configured to convert the DC voltage into a high frequency AC voltage as an excitation of the primary coil 36;
- the inverter control circuit 34 is configured to output PWM (Pulse Width Modulation) control of the inverter circuit, and adjust the frequency and phase of the output waveform according to the feedback information of the frequency tracking control circuit 35;
- PWM Pulse Width Modulation
- the frequency tracking control circuit 35 is configured to follow the resonance coupling frequency change of the primary side coil 36, realize frequency tracking control of the primary side module loop and transmit to the inverter control circuit 34;
- the primary coil 36 is for generating a high frequency alternating current electromagnetic field under excitation of the primary side coil 36 by the high frequency alternating current.
- the wireless power transmission receiving end adopts a secondary coil group having a plurality of secondary coils, and the induced current generated in each secondary coil of the secondary coil group is rectified and filtered, and then is applied to the circuit module.
- the electromagnetic field energy is effectively utilized, the power transmission efficiency is improved, and the complexity of the circuit at the receiving end is reduced, and the manufacturing cost is reduced.
- the fourth embodiment of the present invention discloses a wireless power transmission receiving method, including:
- each secondary side coil in the secondary coil group is resonantly coupled with an electromagnetic field generated by a primary side coil of the wireless power transmission transmitting end, and picks up electromagnetic field energy of the primary side;
- Step S402 rectifying and filtering the induced current generated in each secondary coil in the secondary coil group, and supplying power to the corresponding circuit module.
- the secondary coil group includes: a first secondary coil and a second secondary coil.
- the circuit module includes: an electrical control circuit and an electrical main circuit.
- the first secondary winding is resonantly coupled with the electromagnetic field generated by the primary coil to pick up the electromagnetic energy of the primary side;
- the rectifying and filtering circuit rectifies and filters the first induced current generated in the first secondary winding, and supplies power to the electrical control circuit.
- the second secondary winding coil is resonantly coupled with the electromagnetic field generated by the primary side coil to pick up the electromagnetic energy of the primary side;
- the rectifying and filtering circuit rectifies and filters the second induced current generated in the second secondary winding, and the LDO module converts the voltage of the second induced current into the voltage of the main circuit of the electric appliance, and supplies power to the main circuit of the electric appliance.
- modules or steps of the present invention can be implemented by a general-purpose computing device, which can be concentrated on a single computing device or distributed over a network composed of multiple computing devices. Alternatively, they may be implemented by program code executable by the computer device, so that they may be stored in the storage device by the computing device, or they may be separately fabricated into individual integrated circuit modules, or many of them may be Modules or steps to make a single integrated circuit The road module is implemented. Thus, the invention is not limited to any specific combination of hardware and software.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Power Engineering (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Abstract
一种无线电力传输接收端、系统及接收方法。无线电力传输接收端包括:依次连接的副边线圏组(1)、整流滤波电路(2)和电路模块(3);副边线圏组包括至少两个副边线圏(11、12);副边线圏组中的各个副边线圏分别与原边线圏(36)产生的电磁场谐振耦合,拾取原边的电磁场能量;整流滤波电路对副边线圏组中的各个副边线圏中产生的感应电流进行整流、滤波,向相对应的电路模块进行供电。通过采用具有多个副边线圏的副边线圏组对电路模块进行供电,从而有效提高电磁场能量的利用率,提高电能传输效率,并且降低接收端电路的复杂程度,降低制作成本。
Description
无线电力传输接收端、 系统及接收方法
技术领域
本发明涉及电力传输技术领域, 尤其涉及一种无线电力传输接收端、 系统 及接收方法。 背景技术
传统的电能传输方式大多通过导线或插座将电能传输到终端产品, 这种传 输方式会带来摩擦, 易产生电火花等问题, 从而影响电气设备的安全可靠性, 无线电能传输技术能使我们摆脱传统的电能传输方式, 实现非接触式的新型电 能传输。 磁耦合谐振式无线电能传输技术利用磁耦合和谐振技术来实现电能的 无线传输, 具有较远的传输距离和较高的传输效率, 相对于电磁波式和电磁感 应式无线电能传输技术具有更多的优点, 获得了相对广泛的应用。
目前, 电能无线传输技术已经应用于家用电器, 能够实现数米范围内一定 功率的无线传输, 替代了原有的 "插头 +插座" 的供电方式, 具有整洁、 安 全、 可移动性强的特点, 但是随着家用电器技术的发展, 家用电器越来越趋于 功能细化和节能, 如电饭锅需要提供电器控制电路的电源以及给加热电路的电 源。
在现有技术中, 无线电力传输装置使用单一的原边线圈和单一的副边线圈 进行电力传输。
在实现本发明的过程中, 发明人发现现有技术至少存在以下问题:
( 1 ) 无线电力传输效率低;
(2 ) 接收端由大量电路组成, 造成无线电力传输装置成本高。
发明内容
本发明的目的在于提出一种无线电力传输接收端、 方法及电力传输系统, 能够解决无线电力传输效率低; 接收端由大量电路组成, 造成无线电力传输装 置成本高的问题。
为达此目的, 本发明采用以下技术方案:
一种无线电力传输接收端, 其特征在于, 包括: 依次连接的副边线圈组、 整流滤波电路和电路模块, 其中,
副边线圈组包括至少两个副边线圈;
副边线圈组中的各个副边线圈分别与原边线圈产生的电磁场谐振耦合, 拾 取原边的电磁场能量; 并且
整流滤波电路对副边线圈组中的各个副边线圈中产生的感应电流进行整 流、 滤波, 向相对应的电路模块进行供电。
优选地, 电路模块包括电器控制电路和电器主电路。
优选地, 副边线圈组包括: 第一副边线圈和第二副边线圈, 其中, 第一副边线圈与电器主电路相对应;
第二副边线圈与电器控制电路相对应。
优选地, 整流滤波电路包括: 第一整流滤波电路和第二整流滤波电路; 第一整流滤波电路的一端连接第一副边线圈, 第一整流滤波电路的另一端 连接电器主电路;
第二整流滤波电路的一端连接第二副边线圈, 第二整流滤波电路的另一端 连接电器控制电路;
优选地, 各个副边线圈的匝数与相对应的电路模块的电压和功率成正比。
优选地, 电器主电路包括: 阻性负载和感性负载。
优选地, 还包括: 将第二副边线圈中产生的感应电流的电压转换成电器控 制电路的电压的 LDO模块, 其中,
LDO模块一端连接第二整流滤波电路, 另一端连接电器控制电路。
一种无线电力传输系统, 包括, 无线电力传输发射端和如上述任意一项无 线电力传输接收端;
一种无线电力传输接收方法, 包括:
副边线圈组中的各个副边线圈分别与原边线圈产生的电磁场谐振耦合, 拾 取原边的电磁场能量;
对副边线圈组中的各个副边线圈中产生的感应电流进行整流、 滤波, 向相 对应的电路模块进行供电。
经由上述的技术方案可知, 与现有技术相比, 本发明公开的一种无线电力 传输接收端、 系统及接收方法。 无线电力传输接收端包括依次连接的副边线圈 组、 整流滤波电路和电路模块; 副边线圈组中的各个副边线圈分别与由无线电 力传输发射端的原边线圈产生的电磁场谐振耦合, 拾取原边的电磁场能量; 整 流滤波电路对副边线圈组中的各个副边线圈中产生的感应电流进行整流、 滤 波, 向相对应的电路模块进行供电。 通过采用具有多个副边线圈的副边线圈组 对电路模块进行供电, 从而有效的利用了发射线圈的电磁场能量, 提高了传输 效率, 同时, 降低了接收端电路的复杂程度, 降低了制作成本。 附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实施 例或现有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面描述
中的附图仅仅是本发明的实施例, 对于本领域普通技术人员来讲, 在不付出创 造性劳动的前提下, 还可以根据提供的附图获得其他的附图。
图 1是本发明实施例一提供的一种无线电力传输接收端结构示意图; 图 2为本发明实施例二提供的一种无线电力传输接收端结构示意图; 图 3为本发明实施例三提供的一种无线电力传输发射端结构示意图; 图 4为本发明实施例四提供的一种无线电力传输接收方法流程示意图。 具体实施方式
下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进行清 楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而不是 全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有做出创造 性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
本发明是基于磁耦合谐振式无线电能传输技术, 利用磁耦合和谐振技术来 实现电能的无线传输。
实施例一
如图 1所示, 一种无线电力传输接收端, 包括: 依次连接的副边线圈组 1、 整流滤波电路 2和电路模块 3, 其中,
副边线圈组 1至少包括两个副边线圈,
副边线圈组 1 中的各个副边线圈分别与由无线电力传输发射端的原边线圈 产生的电磁场谐振耦合, 拾取原边的电磁场能量,
整流滤波电路 2对副边线圈组 1 中的各个副边线圈中产生的感应电流进行 整流、 滤波, 向相对应的电路模块 3进行供电。
在本发明实施例一中, 电路模块 3 包括: 电器主电路 31 和电器控制电路
32。
需要说明的是, 电器主电路 31为: 动力系统的电源电路, 例如, 电动机等 执行机构的三相电源属于电器主电路。 电器控制电路 32为控制电器主电路的控 制回路, 例如, 电器主电路中有接触器, 接触器的线圈则属于控制回路部分。
在本发明实施例一中, 整流滤波电路 2包括: 第一整流滤波电路 21和第二 整流滤波电路 22。
具体的, 第一整流滤波电路 21的一端连接第一副边线圈 11, 第一整流滤波 电路 21的另一端连接电器主电路 31 ;
第二整流滤波电路 22的一端连接第二副边线圈 12, 第二整流滤波电路 22 的另一端连接电器控制电路 32;
在本发明实施例一中, 副边线圈组 1包括: 第一副边线圈 11和第二副边线 圈 12, 第一副边线圈 11和第二副边线圈 12同轴绕接。
具体的, 第一副边线圈 11与原边线圈产生的电磁场谐振耦合, 拾取原边的 电磁场能量; 第一整流滤波电路 21 对第一副边线圈中产生的感应电流进行整 流、 滤波, 向相对应的电器主电路 31进行供电。
第二副边线圈 12与原边线圈产生的电磁场谐振耦合, 拾取原边的电磁场能 量; 第二整流滤波电路 22对第二副边线圈中产生的感应电流进行整流、 滤波, 向相对应电器控制电路 32进行供电。
在本发明实施例一中, 各个副边线圈的匝数与相对应的电路模块的电压和 功率成正比。
具体的, 电器主电路 31 的电压高于电器控制电路 32的电压, 相应的, 第 一副边线圈 11的匝数多于第二副边线圈 12的匝数。
在本发明实施例一中, 电器主电路 31包括: 阻性负载和感性负载。
需要说明的是, 仅是通过电阻类的元件进行工作的负载称为阻性负载, 例 如: 灯泡; 回路中有电感, 电容元件参与工作的负载, 称为感性负载; 例如日 光灯, 电动机。
在本发明实施例一中, 通过对在具有多个副边线圈的副边线圈组中产生的 感应电流进行整流、 滤波后给电器的各个模块进行供电, 从而有效的利用了磁 力线, 提高了电力传输效率, 同时, 降低了接收端电路的复杂程度, 降低了制 作成本。 实施例二
通过设置第二副边线圈的参数, 第二副边线圈中产生的感应电流的电压经 过整流、 滤波后的电压为 20~30伏。 为了满足电器控制电路对电压要求, 如图 2 所示, 本发明提供的一种无线电力接收装置, 还包括: 将第二副边线圈中产生 的感应电流的电压转换成电器控制电路的电压的 LDO (low dropout regulator, 低压差线性稳压器) 模块 41。
LDO 模块 41 一端连接第二整流滤波电路 22, 另一端连接电器控制电路
32。
LDO模块 41 从第二感应电流的电压中减去超额的电压, 产生经过调节的 输出电压给电器控制电路。 压降电压, 是指 LDO将输出电压维持在电器控制电 路的电压额定值上下 lOOmV之内。 可以满足将第二感应电流的电压转换成电器 控制电路的电压的要求, 而且, LDO 具有成本低, 噪音低, 静态电流小的优 点。 实施例三
一种无线电力传输系统, 包括, 无线电力传输发射端和上述任意一项无线 电力传输接收端。
无线电力传输发射端 (即原边模块) , 如图 3所示, 包括整流滤波稳压电 路 31、 辅助电源 32、 逆变电路 33、 逆变控制电路 34、 频率跟踪控制电路 35和 原边线圈 36, 其中:
整流滤波稳压电路 31, 用于将交流电整流滤波后, 输出稳定的直流电作为 逆变电路 33的输入;
辅助电源 32, 用于提供电源给逆变控制电路 34;
逆变电路 33, 用于将直流电压转变为高频交流电压, 作为原边线圈 36的激 励;
逆变控制电路 34, 用于输出逆变电路的 PWM (Pulse Width Modulation,脉 冲宽度调制) -控制, 并根据频率跟踪控制电路 35的反馈信息, 来调整 Ρ ί输出 波形的频率与相位;
频率跟踪控制电路 35, 用于跟随原边线圈 36谐振耦合频率变化, 实现对原 边模块回路的频率跟踪控制并传递到逆变控制电路 34;
原边线圈 36, 用于在高频交流电对原边线圈 36的激励下产生高频交流电磁 场。
在本发明实施例三中, 无线电力传输接收端通过采用具有多个副边线圈的 副边线圈组, 副边线圈组的各个副边线圈中产生的感应电流经过整流、 滤波后 给电路模块进行供电, 从而有效的利用了电磁场能量, 提高了电能传输效率, 同时, 降低了接收端电路的复杂程度, 降低了制作成本。 实施例四
本发明实施例一和实施例二各公开了一种无线电力传输接收端, 相对应无 线电力传输接收端, 本发明实施例四公开了一种无线电力传输接收方法, 包 括:
歩骤 S401 , 副边线圈组中的各个副边线圈分别与由无线电力传输发射端的 原边线圈产生的电磁场谐振耦合, 拾取原边的电磁场能量;
歩骤 S402, 对副边线圈组中的各个副边线圈中产生的感应电流进行整流、 滤波, 向相对应的电路模块进行供电。
具体的, 副边线圈组包括: 第一副边线圈和第二副边线圈。 电路模块包 括: 电器控制电路和电器主电路。
具体的, 第一副边线圈与原边线圈产生的电磁场谐振耦合, 拾取原边的电 磁场能量;
整流滤波电路对第一副边线圈中产生的第一感应电流进行整流、 滤波, 向 电器控制电路进行供电。
具体的, 第二副边线圈与原边线圈产生的电磁场谐振耦合, 拾取原边的电 磁场能量;
整流滤波电路对第二副边线圈中产生的第二感应电流进行整流、 滤波, LDO模块将第二感应电流的电压转换为电器主电路的电压, 向电器主电路进行 供电。
显然, 本领域技术人员应该明白, 上述的本发明的各模块或各歩骤可以用 通用的计算装置来实现, 它们可以集中在单个计算装置上, 或者分布在多个计 算装置所组成的网络上, 可选地, 他们可以用计算机装置可执行的程序代码来 实现, 从而可以将它们存储在存储装置中由计算装置来执行, 或者将它们分别 制作成各个集成电路模块, 或者将它们中的多个模块或歩骤制作成单个集成电
路模块来实现。 这样, 本发明不限制于任何特定的硬件和软件的结合。
以上仅为本发明的优选实施例, 并不用于限制本发明, 对于本领域技术人 员而言, 本发明可以有各种改动和变化。 凡在本发明的精神和原理之内所作的 任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。
Claims
1、 一种无线电力传输接收端, 其特征在于, 包括:
依次连接的副边线圈组、 整流滤波电路和电路模块, 其中,
所述副边线圈组包括至少两个副边线圈,
所述副边线圈组中的各个副边线圈分别与由无线电力传输发射端的原边线 圈产生的电磁场谐振耦合, 拾取原边的电磁场能量, 并且
所述整流滤波电路对所述副边线圈组中的各个副边线圈中产生的感应电流 进行整流、 滤波, 并向相对应的所述电路模块进行供电。
2、 根据权利要求 1所述的无线电力传输接收端, 其特征在于, 所述电路模 块包括电器控制电路和电器主电路。
3、 根据权利要求 2所述的无线电力传输接收端, 其特征在于, 所述副边线 圈组包括: 第一副边线圈和第二副边线圈, 其中,
所述第一副边线圈与所述电器主电路相对应, 并且
所述第二副边线圈与所述电器控制电路相对应。
4、 根据权利要求 3所述的无线电力传输接收端, 其特征在于, 所述整流滤 波电路包括: 第一整流滤波电路和第二整流滤波电路;
所述第一整流滤波电路的一端连接所述第一副边线圈, 所述第一整流滤波 电路的另一端连接所述电器主电路;
所述第二整流滤波电路的一端连接所述第二副边线圈, 所述第二整流滤波 电路的另一端连接所述电器控制电路;
5、 根据权利要求 1所述的无线电力传输接收端, 其特征在于, 所述副边线 圈组中的各个副边线圈的匝数与相对应的所述电路模块的电压和功率成正比。
6、 根据权利要求 2所述的无线电力传输接收端, 其特征在于, 所述电器主 电路包括: 阻性负载和感性负载。
7、 根据权利要求 3所述的无线电力传输接收端, 其特征在于, 还包括: 将 所述第二副边线圈中产生的感应电流的电压转换成所述电器控制电路的电压的 LDO模块, 其中,
所述 LDO模块一端连接所述第二整流滤波电路, 另一端连接所述电器控制 电路。
8、 一种无线电力传输系统, 其特征在于, 包括, 无线电力传输发射端和 如权利要求 1~7中任意一项所述的无线电力传输接收端。
9、 一种无线电力传输接收方法, 其特征在于, 包括:
副边线圈组中的各个副边线圈分别与原边线圈产生的电磁场谐振耦合, 拾 取原边的电磁场能量;
对所述副边线圈组中的各个副边线圈中产生的感应电流进行整流、 滤波, 向相对应的电路模块进行供电。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310153302.8 | 2013-04-27 | ||
CN201310153302.8A CN104124764B (zh) | 2013-04-27 | 2013-04-27 | 无线电力传输接收端、系统及接收方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014173033A1 true WO2014173033A1 (zh) | 2014-10-30 |
Family
ID=51770075
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2013/080760 WO2014173033A1 (zh) | 2013-04-27 | 2013-08-02 | 无线电力传输接收端、系统及接收方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN104124764B (zh) |
WO (1) | WO2014173033A1 (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106787246A (zh) * | 2017-01-04 | 2017-05-31 | 天津理工大学 | 一种场效应管式玩具赛车轨道的无线供电系统及轨道玩具赛车 |
CN112531923A (zh) * | 2019-09-17 | 2021-03-19 | 广州腾龙电子塑胶科技有限公司 | 一种双频无线传输电能及信号系统 |
CN114717584A (zh) * | 2022-03-29 | 2022-07-08 | 浙江大学杭州国际科创中心 | 一种基于无线电能传输技术的电化学合成装置及方法 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107749675A (zh) * | 2017-10-26 | 2018-03-02 | 武汉慧驰科技有限公司 | 基于磁谐振耦合的无线电能传输系统 |
US11296552B2 (en) | 2018-06-12 | 2022-04-05 | Nanyang Technological University | Transmitter device, wireless power transfer system, and methods of forming the same |
CN113067395B (zh) * | 2019-12-31 | 2024-06-11 | 华为技术有限公司 | 电子设备、无线充电接收装置及控制方法、无线充电系统 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5633577A (en) * | 1994-06-06 | 1997-05-27 | Nippondenso Co., Ltd. | Battery charging system for electric vehicles |
JP2003153457A (ja) * | 2001-11-09 | 2003-05-23 | Denso Corp | 非接触式充電装置 |
CN101345438A (zh) * | 2008-08-28 | 2009-01-14 | 旭丽电子(广州)有限公司 | 无线供电装置 |
CN201510739U (zh) * | 2009-07-16 | 2010-06-23 | 深圳市三子科技有限公司 | 可无线充电的游戏装置组合 |
CN202550639U (zh) * | 2012-04-13 | 2012-11-21 | 天津三星光电子有限公司 | 一种具有无线充电功能的用电系统 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5573190B2 (ja) * | 2010-01-21 | 2014-08-20 | ソニー株式会社 | ワイヤレス給電システム |
CN202634088U (zh) * | 2012-06-13 | 2012-12-26 | 河南天擎机电技术有限公司 | 物联网传感器网络内一对多无线充电系统 |
-
2013
- 2013-04-27 CN CN201310153302.8A patent/CN104124764B/zh active Active
- 2013-08-02 WO PCT/CN2013/080760 patent/WO2014173033A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5633577A (en) * | 1994-06-06 | 1997-05-27 | Nippondenso Co., Ltd. | Battery charging system for electric vehicles |
JP2003153457A (ja) * | 2001-11-09 | 2003-05-23 | Denso Corp | 非接触式充電装置 |
CN101345438A (zh) * | 2008-08-28 | 2009-01-14 | 旭丽电子(广州)有限公司 | 无线供电装置 |
CN201510739U (zh) * | 2009-07-16 | 2010-06-23 | 深圳市三子科技有限公司 | 可无线充电的游戏装置组合 |
CN202550639U (zh) * | 2012-04-13 | 2012-11-21 | 天津三星光电子有限公司 | 一种具有无线充电功能的用电系统 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106787246A (zh) * | 2017-01-04 | 2017-05-31 | 天津理工大学 | 一种场效应管式玩具赛车轨道的无线供电系统及轨道玩具赛车 |
CN106787246B (zh) * | 2017-01-04 | 2023-08-29 | 天津理工大学 | 一种场效应管式玩具赛车轨道的无线供电系统及轨道玩具赛车 |
CN112531923A (zh) * | 2019-09-17 | 2021-03-19 | 广州腾龙电子塑胶科技有限公司 | 一种双频无线传输电能及信号系统 |
CN114717584A (zh) * | 2022-03-29 | 2022-07-08 | 浙江大学杭州国际科创中心 | 一种基于无线电能传输技术的电化学合成装置及方法 |
CN114717584B (zh) * | 2022-03-29 | 2023-06-06 | 浙江大学杭州国际科创中心 | 一种基于无线电能传输技术的电化学合成装置及方法 |
Also Published As
Publication number | Publication date |
---|---|
CN104124764A (zh) | 2014-10-29 |
CN104124764B (zh) | 2018-08-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Madawala et al. | A power–frequency controller for bidirectional inductive power transfer systems | |
WO2014173033A1 (zh) | 无线电力传输接收端、系统及接收方法 | |
EP3057220B1 (en) | Systems, methods, and apparatus for a high power factor single phase rectifier | |
US20130127257A1 (en) | Power generating system and wireless power transmission system | |
US8902613B2 (en) | Integrated converter with single-ended control, power factor correction, and low output ripple | |
Makarabbi et al. | Compatibility and performance study of home appliances in a DC home distribution system | |
CN104158305A (zh) | 基于自适应磁耦合谐振匹配的能量与信息同步传输系统 | |
CN107707036A (zh) | 双通道无线电能传输系统及其能量与信号同步传输方法 | |
WO2014010518A1 (ja) | 受電機器及び電力伝送システム | |
CN202178712U (zh) | 双同步谐振切换式直流电源供应器 | |
JP2013532461A (ja) | 非接触型の誘導電力伝送システムの回路 | |
CN102868232A (zh) | 磁谐振无线充电装置 | |
CN103023160A (zh) | 用于印刷电路板的无线供电系统 | |
CN113991887A (zh) | 无线充电发射装置和无线充电系统 | |
KR101393580B1 (ko) | 급전측 코일과 집전측 코일 간의 상대적 위치에 둔감한 무선전력 전송시스템 | |
KR102192021B1 (ko) | 단상 절연형 역률개선용 세픽 컨버터 | |
CN101340154A (zh) | 用于直流开关电源的变压整流输出电路 | |
TW201406021A (zh) | 非接觸式轉換系統 | |
CN201947180U (zh) | 非隔离型反激式开关电源电路 | |
Nagashima et al. | Inductively coupled wireless power transfer with class-DE power amplifier | |
Bohare | Design and Implementation of Wireless Power Transmission via Radio Frequency | |
CN203801099U (zh) | 电源电路和微波炉 | |
CN202750315U (zh) | 一种磁控管灯丝供电电路 | |
JP5561210B2 (ja) | 非接触電力伝送装置 | |
CN209844624U (zh) | 一种无线供电装置及厨电设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13882639 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13882639 Country of ref document: EP Kind code of ref document: A1 |