WO2014172926A1 - 一种有效提高输出功率的太阳能光伏组件 - Google Patents

一种有效提高输出功率的太阳能光伏组件 Download PDF

Info

Publication number
WO2014172926A1
WO2014172926A1 PCT/CN2013/075545 CN2013075545W WO2014172926A1 WO 2014172926 A1 WO2014172926 A1 WO 2014172926A1 CN 2013075545 W CN2013075545 W CN 2013075545W WO 2014172926 A1 WO2014172926 A1 WO 2014172926A1
Authority
WO
WIPO (PCT)
Prior art keywords
grid line
output power
solar photovoltaic
photovoltaic module
lines
Prior art date
Application number
PCT/CN2013/075545
Other languages
English (en)
French (fr)
Inventor
单伟
李积伟
Original Assignee
合肥晶澳太阳能科技有限公司
上海晶澳太阳能科技有限公司
晶澳太阳能有限公司
晶澳(扬州)太阳能科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 合肥晶澳太阳能科技有限公司, 上海晶澳太阳能科技有限公司, 晶澳太阳能有限公司, 晶澳(扬州)太阳能科技有限公司 filed Critical 合肥晶澳太阳能科技有限公司
Publication of WO2014172926A1 publication Critical patent/WO2014172926A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022433Particular geometry of the grid contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02002Arrangements for conducting electric current to or from the device in operations
    • H01L31/02005Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier
    • H01L31/02008Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier for solar cells or solar cell modules
    • H01L31/0201Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier for solar cells or solar cell modules comprising specially adapted module bus-bar structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the invention belongs to the field of solar photovoltaic power generation, and particularly relates to a solar photovoltaic module.
  • Photovoltaic technology is a technology that uses a large area of PN junction to convert sunlight into electricity, so this PN junction is also called a solar cell.
  • PN junction When such a solar cell is illuminated by the sun, when the energy of the photon in the sunlight is higher than the forbidden band width of the semiconductor, an electron-hole pair will be generated in the solar cell, and the asymmetry of the PN junction determines the photogenerated carrier.
  • the direction of motion, which produces current, is drawn from the terminal of the battery like a normal battery.
  • the design of the front grid is critical to the conversion efficiency of the solar cell.
  • p s is used to characterize the resistivity of the surface of the diffused silicon wafer, and the power loss of the lateral resistance between the two gate lines is given by the following formula
  • the resistance of the front gate line also seriously affects the photovoltaic conversion efficiency.
  • the resistance loss of the rectangular gate line whose resistance is Pm is proportional to its length and the ratio of the amount of electricity passing through it (HB Serreze, Proc. 13 th IEEE Photovoltaic Spec. Conf. (IEEE, New York, 1978), p. 609):
  • W is the width of the rectangular battery
  • L is the gate line length of the cell
  • D is the gate line width
  • the shading loss of the front gate line is related to the geometry of the front gate line and is proportional to the maximum operating voltage:
  • the solar cell front (light-receiving surface) contact structure has evolved into a front metal grid structure consisting of many fine grid lines and several main gate lines (Fig. 1) to reduce shading losses while achieving lower series resistance.
  • the main gate line collects current on all fine gate lines and provides a path for current to be tapped to an external circuit.
  • the number of main grid lines depends on the size of the battery, and the history has evolved from one to two to the current three-inch right-angle silicon wafers. In the future, as the size of individual cells increases, four or five main grids may become necessary.
  • the characteristics of the PN junction dictate the direction of current flow of the solar cell.
  • the prior art uses a method of soldering a strip on the main grid line of the cell to connect a plurality of cells into a string and form a component (Fig. 2) to obtain a higher voltage output. Since all the batteries in the assembly are connected in series, if one of the batteries is blocked, broken, connected badly, etc., but not limited to these reasons, the same current may not be generated like other batteries, and the power output of the solar module will be significant. Lowering, sometimes the battery is completely damaged due to the reverse voltage applied across the bad battery, thus achieving the degree of component failure.
  • a solar photovoltaic module for effectively increasing output power comprising a series of solar cells connected in series, each cell comprising a substrate of a semiconductor material, the conductivity type being N-type or P-type; and an emitter on the front side of the substrate material Structure, the emitter structure includes a doped thin layer obtained using a conductivity type dopant opposite to the substrate material, and an anti-reflection layer over the doped thin layer; an aluminum back field structure exists on the back side of the base material, The structure comprises a heavily doped thin layer obtained using a dopant of the same conductivity type as the substrate material, a metal conductive electrode forming an ohmic contact with the heavily doped thin layer; characterized by: a front side of each of the cell sheets There are at least two independent metal contact gate line units, which are connected in parallel in parallel.
  • the metal contact gate line unit of the present invention is composed of a fine gate line and a main gate line, and the fine gate lines are connected to each other by a connection with the main gate line, and the connection angle of each of the fine gate lines and the main gate line is 45 degrees. And 90 degrees; the metal contact gate line unit is distributed in a matrix form, the matrix comprises a series of small squares of NxM, wherein N refers to the number of subsets parallel to the main gate line, M refers to the main gate line The number of subsets in the vertical direction, where N is 1, 2, 3, 4 and B 5; M is 2, 3, 4 and 5.
  • the number of main gate lines in the present invention is 1 to 3, symmetrically distributed around the center of the silicon wafer; the number of the fine grid lines is 70 to 120, and the fine grid lines are equidistantly distributed;
  • the fine grid lines are connected by a straight line or a curved frame; the main grid lines are segmented, the number of segments is 3 to 12 segments, and the segments are connected by thin wires; the fine grid lines are
  • the width is between 20 microns and 100 microns, the height of the fine grid lines is between 5 microns and 30 microns; the width of the main gate lines is between 0.5 mm and 2 mm, and the height of the main grid lines is between 5 microns and Between 30 microns.
  • the beneficial effects of the present invention are that the effect of the problematic cell on the entire solar photovoltaic module can be minimized, thereby reducing the loss of power output due to the change in resistance and maximizing the output power of the solar photovoltaic component.
  • FIG. 1 is a schematic view showing the design of a front gate line of a general solar cell
  • FIG. 2 is a structural view of a general solar module, wherein (a) is a schematic cross-sectional view of the connection of the battery sheets,
  • FIG. 3 is a schematic diagram of three typical solar cell surface contact grid line units of the present invention, wherein (a) is The fine grid lines are connected by a straight line frame to form a large square, the fine grid lines are perpendicular to the main grid lines and are equally equidistantly distributed, and (b) the thin grid lines are formed by a space connection to form a plurality of small long squares, Grid The lines are perpendicular to the main gate line and are equidistantly distributed in parallel, and (C) is a line formed by connecting the thin gate lines through the head-to-tail connection, and the fine gate lines are perpendicular to the main grid lines and are equidistantly distributed;
  • FIG. 4 is a schematic view of a solar cell having three metal contact grid line units of the present invention, the three metal contact grid line units substantially forming three independent parallel sub-cells;
  • FIG. 5 is a schematic diagram of a solar cell with two segmented contact main gate lines designed for facilitating soldering in the present invention, wherein (a) is a fine gate line through a The straight line frames are connected to form a large square, the fine grid lines are perpendicular to the main grid line and are equally equidistantly distributed, and (b) the thin grid lines are formed by a space connection to form a plurality of small long squares, and the fine grid lines are perpendicular to the main The grid lines are parallel and equidistantly distributed, and (c) is formed by connecting the thin grid lines through the end-to-end connection, and the fine grid lines are perpendicular to the main grid lines and are equidistantly distributed;
  • Figure 6 is a solar cell of the present invention having nine metal contact grid lines, which is equivalent to nine independent parallel sub-cells connected to each other;
  • FIG. 7 is a schematic diagram of a parallel connection of equivalent diode circuits of a solar cell having nine metal contact grid lines according to the present invention.
  • Figure 8 is a schematic view showing the contact of the metal welding strip of the present invention with the segmented main grid line
  • Figure 9 is a schematic illustration of the principle of the light provided by the present invention reaching the area covered by the solder ribbon by reflection and scattering;
  • the invention provides a solar photovoltaic module which effectively increases the output power, comprising a series of solar cells connected in series, each cell comprising a substrate of a semiconductor material, the conductivity type is N type or P type; the front side of the base material There is an emitter structure comprising a doped thin layer obtained using a conductivity type dopant opposite to the substrate material, and an antireflection layer over the doped thin layer; an aluminum is present on the back side of the base material a back field structure comprising a heavily doped thin layer obtained using a dopant of the same conductivity type as the base material, a metal conductive electrode forming an ohmic contact with the heavily doped thin layer; each front side of the cell has at least 2 A separate metal contact gate line unit, these metal contact grid line units are connected in parallel.
  • the metal contact gate line unit 6 of the present invention is composed of a thin gate line 1 and a main gate line 2, and the fine gate lines 1 are connected to each other by a connection with the main gate line 2, and the connection of each of the fine gate lines 1 to the main gate line 2
  • the angle is between 45 degrees and 90 degrees; the metal contact grid line elements 6 are distributed in a matrix form, the matrix comprising a series of small squares of NxM, where N refers to the number of subsets parallel to the main gate line 2, M refers to The number of subsets of the main gate line 2 in the vertical direction, where N is 1, 2, 3, 4 and B 5 ; M is 2, 3, 4 and B 5.
  • Figure 4 is a 1 X 3 design and Figure 6 is a 3 X 3 design.
  • the number of the main gate lines of the present invention is 1 to 3, which are symmetrically distributed around the center of the silicon wafer; the number of fine gate lines is 70 to 120, and the fine gate lines 1 are equidistantly distributed; the fine gate lines 1 pass through one The lines of the straight line or the curve are connected together; the main grid line 2 is of a segmented design, the number of segments is 3 to 12 segments, and the segments are connected by thin wires; the width of the fine grid lines 1 is between 20 micrometers and 100 micrometers.
  • the height of the fine gate line 1 is between 5 micrometers and 30 micrometers; the width of the main gate line 2 is between 0.5 mm and 2 mm, and the height of the main gate line 2 is between 5 micrometers and 30 micrometers.
  • the present invention will be further described in detail below with reference to the accompanying drawings.
  • a plurality of electrode extraction methods are employed instead of the single mesh structure as shown in FIG.
  • the present invention is not limited to changing the metal electrode contact of the front surface, but also includes the design of the back contact cell, such as the one shown in Figure 3, based on the metallization principles discussed in the above background and without sacrificing conversion.
  • the front surface has three separate metal contact grid lines 6 that do not affect each other. Therefore, a battery cell 3 is actually divided into three sub-cells which do not interfere with each other, and the generated photogenerated electrons flow directly from one electrode to the opposite electrode.
  • a battery cell 3 configuration of such three metal contact gate line units 6 when a plurality of battery sheets 3 are joined together, their overall efficiency is provided by three parallel electrodes, that is, for each of the battery sheets 3.
  • One electrode only accounts for one-third of the current of the entire cell. That is to say, if one electrode of a battery cell 3 fails for some reason and cannot generate electricity, it does not lower the power of the entire battery chip 3. Even in the worst case, only one battery piece 3 is lost. One power. Therefore, the correlation between the power loss and the damage degree of the battery sheet 3 may be greatly reduced.
  • the metal contact gate line unit 6 of the present invention has a plurality of design patterns.
  • the fine gate line 1 may be directly connected to the main gate line 2, or may be connected to the main gate line 2 at a certain angle, but the premise is the maximum. Collect current and reduce metal contact resistance.
  • a solar cell module may be a linear array (N 2 ) or a two-dimensional array of metal contact gate line cells (for the entire metal contact gate line unit, the metal electrodes are Independent of each other).
  • the main gate line 2 of the front surface may also be segmented. As shown in FIG. 5, each subcell includes a plurality of fine gate lines 1 and a segmented main gate line 2 having two or more solder joints 8,
  • the fine gate lines may be of various designs including, but not limited to, the fine gate lines 1 being perpendicular or inclined to the main gate lines 2 (angles greater than or equal to 45 degrees, less than 90 degrees).
  • Figure 6 shows a solar cell 7 with a total of nine metal contact grid cells 6 in the 3 X 3 series.
  • the circuit diagram of the equivalent parallel diode 5 connection is shown in Figure 7.
  • This front surface design consists mainly of nine sub-cells. Each cell contributes one-ninth of the total current under sunlight, and the nine components together form a solar cell 7 .
  • a similar example has also been said in the foregoing discussion. If some of the cells fail for some reason, the reverse bias generated by the cell will be limited to the cell due to the characteristics of the parallel circuit. The remaining part of the battery can still continue to operate and convert sunlight into electricity. Therefore, the correlation between power loss and cell damage may be greatly reduced.
  • the main gate line 2 uses a discontinuous contact point design, i.e., a segmented design rather than a continuous main gate soldering, which reduces the shading loss of the gate lines.
  • this design feature is very useful even after the battery is soldered, there is still an open gap region 8 between the cell and the strip 4 to effectively utilize the incident light energy.
  • the refractive indices of EVA (hot melt adhesive) 10 and photovoltaic glass 9 are much larger than air, and some of the reflected and scattered sunlight in the assembly will not be absorbed by the battery immediately. According to Snell's law, this part of sunlight will be in the component.
  • a number of random reflections between the internal EVA 10 and the photovoltaic glass 9 are performed. As shown in Fig. 9, some of these rays may reach within the void region 8 below the solder ribbon 4, so that the photoelectric conversion obtains an additional current gain, and in the conventional design, this open region is to be covered by the metal main gate. Occlusion.

Landscapes

  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Sustainable Development (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

一种有效提高输出功率的太阳能光伏组件,包括一系列串联在一起的太阳能电池片,每个电池片的正面具有至少2个独立的金属接触栅线单元,这些金属接触栅线单元之间以并联的方式连接。本发明太阳能光伏组件可最大限度消除现有技术中有问题的电池片对整个组件的影响,在保证与电池表面的金属栅线形成良好的电极接触与连接的前提下,可使太阳能组件的输出功率最大化,实现太阳能的最大转换以及最好的电力输出。

Description

一种有效提高输出功率的太阳能光伏组件 技术领域
本发明属于太阳能光伏发电领域, 具体涉及一种太阳能光伏组件。
背景技术
光伏技术是使用大面积的 PN结来将太阳光转化为电的技术, 因此这种 PN 结也称为太阳能电池。 当这种太阳能电池被太阳照射时, 太阳光中的光子的能量 高过半导体的禁带宽度时, 将在太阳能电池中产生电子-空穴对, PN结的非对称 性确定了光生载流子的运动方向, 从而产生电流, 像普通电池一样从电池的终端 引出。
实际有很多因素制约着太阳能电池组件的转换效率, 譬如反射率、 电极的 遮挡、 串联电阻、 光伏载流子不能完全收集、 在非活性区域的吸收、 非辐射复合 等。这其中, 在太阳能电池正电极和背电极以及电池之间连接的欧姆电阻将明显 损耗能量, 可能导致光伏转换效率的明显下降, 这将导致发电量少于预期。
正面栅线的设计对太阳能电池的转换效率非常关键。 一般用 ps来表征扩散 后的硅片表面的电阻率,则两根栅线之间的横向电阻的功率损失由下面的公式给 出
Ps = S2pJ0 2 (1) 其中 S是两条栅线之间的间距, J0 是电流密度, 这公式是在当栅线之间的间距 大于栅线宽度时成立的。
正面栅线的电阻也会严重影响光伏转换效率, 电阻是 Pm的矩形栅线的电阻 损失是与它的长度和通过它们的电量的比值成比例关系 (H.B. Serreze, Proc. 13th IEEE Photovoltaic Spec. Conf. (IEEE, New York, 1978), p.609) :
Pm ^ WL3SPmJ0 2 / 3D (2) 这里 W是矩形电池的宽度, L是电池片的栅线长度, D是栅线宽度。
正面栅线的遮光损失与正面栅线几何参数有关, 并与最大工作电压成正比:
Ps = WU0VmpD / S (3) 通过使 Pm 和 Ps之和最小化, 可得到最优的栅线宽度:
Do = LSJ0 (p 3Vmp )m (4) 同时, 可以得到总体功率损失:
PT ^ 2WL2 (pmJo 3Vmp / 3)m (5) 这些能量损失原则上不能被消除, 但是可以最小化。太阳能电池正面(受光 面) 接触结构已经发展成为很多细栅线和几根主栅线组成的正面金属栅格结构 (图 1 ) , 以减小遮光损失, 同时获得较低的串联电阻。 主栅线汇集所有细栅线 上的电流, 并为电流导出至外部电路提供途径。 主栅线的数量取决于电池尺寸, 历史的演变过程是从一条到两条到目前六寸直角硅片上广泛应用的三条。 在未 来, 随着单体电池尺寸越来越大, 四条、 五条主栅可能成为必须。
PN结的特征规定了太阳能电池的电流方向。 为了方便太阳能电池的运输和 安装, 现有技术采用在电池片主栅线上焊接焊带的方式将多个电池连接成串, 并 制成组件 (图 2) , 获得较高的电压输出。 由于组件中所有的电池采用串联的方 式, 如果其中一个电池由于遮蔽、破裂、连接不良等原因,但不仅限于这些原因, 可能不能像其它电池一样产生同样的电流,太阳能电池组件的功率输出将显著降 低, 有时会由于不良电池两端加载的反向电压使电池完全损坏, 从而达到组件失 效的程度。通过在每个电池或少量电池上连接独立的相反极性的旁路二极管可以 角军决上述问题。 (M.A. Green, in Modern Semiconductor Device Physics, ed. S.M. Sze, J. Wiley & Sons, New York, 1998, Chpt.13)。 然而, 因为涉及到将大 量电池装配成面板的生产流程、相关材料、 生产成本等各种因素的制约, 在所有 电池上并联二极管变得不可能。
发明内容
为了尽可能消除现有技术中有问题的电池片对整个组件的影响,本发明的目 的是提供一种新型设计的太阳能光伏组件,该太阳能光伏组件在保证与电池表面 的金属栅线形成良好的电极接触与连接的前提下,可使太阳能组件的输出功率最 大化, 实现太阳能的最大转换以及最好的电力输出。
本发明的目的通过采取以下技术方案予以实现: 一种有效提高输出功率的太阳能光伏组件,包括一系列串联在一起的太阳能 电池片, 每个电池片包含一个半导体材料的基底, 导电类型为 N型或者 P型; 基底材料的正面存在一个发射极结构,这个发射极结构包括一个使用与基底材料 相反的导电类型掺杂剂得到的掺杂薄层, 以及在掺杂薄层之上的减反射层; 基底 材料的背面存在一个铝背场结构,这个结构包含一个使用与基底材料相同导电类 型掺杂剂得到的重掺杂薄层, 一个与重掺杂薄层形成欧姆接触的金属传导电极; 其特征在于: 所述的每个电池片的正面具有至少 2个独立的金属接触栅线单元, 这些金属接触栅线单元之间以并联的方式连接。
本发明所述的金属接触栅线单元由细栅线和主栅线组成,细栅线通过与主栅 线的连接相互联系在一起, 每条细栅线与主栅线的连接角度在 45度和 90度之 间; 所述的金属接触栅线单元以矩阵形式分布,矩阵包含一系列 NxM的小方格, 其中 N指与主栅线平行方向的子集个数, M指与主栅线垂直方向的子集个数, 这里的 N是 1, 2, 3, 4禾 B 5; M是 2、 3、 4禾口 5。
本发明所述的主栅线根数为 1〜3根, 以硅片中心为中心对称分布; 所述的 细栅线根数为 70〜120根, 细栅线平行等距分布; 所述的细栅线通过一个直线或 者曲线的边框联系在一起; 所述的主栅线采用分段式设计, 段数为 3〜12段, 各 分段之间以细线相连; 所述的细栅线的宽度在 20微米至 100微米之间, 细栅线 的高度在 5微米到 30微米之间;所述的主栅线的宽度在 0.5毫米至 2毫米之间, 主栅线的高度在 5微米至 30微米之间。
本发明的有益效果是可将有问题的电池片对整个太阳能光伏组件的影响降 到最低, 从而达到降低由于电阻的变化导致的功率输出的损失, 使太阳能光伏组 件的输出功率最大化。
附图说明
图 1是一般太阳能电池的正面栅线设计示意图;
图 2 是一般太阳能组件的结构图, 其中(a )是电池片连接的横截面示意图,
( b) 是 10个电池组成组件的方法示意图, (c) 是其等价的二极管示意图; 图 3 是本发明的三种典型的太阳能电池表面金属接触栅线单元的示意图,其 中 (a) 是细栅线通过一个直线边框连接形成大方格, 细栅线垂直于主栅线且平 行等距分布, (b) 是细栅线之间通过间隔连接的方式形成多个小长方格, 细栅 线垂直于主栅线且平行等距分布, (C ) 是细栅线之间通过首尾连接的方式形成 折线, 细栅线垂直于主栅线且平行等距分布;
图 4是本发明的具有三个金属接触栅线单元的太阳能电池的示意图, 这三个 金属接触栅线单元基本上形成了三个独立并行的子电池;
图 5是本发明提供的三种细栅线的连接方式, 同时为了组装时便于焊接而设 计的具有两个分段接触的主栅线的太阳能电池示意图, 其中 (a) 是细栅线通过 一个直线边框连接形成大方格, 细栅线垂直于主栅线且平行等距分布, (b) 是 细栅线之间通过间隔连接的方式形成多个小长方格,细栅线垂直于主栅线且平行 等距分布, (c) 是细栅线之间通过首尾连接的方式形成折线, 细栅线垂直于主 栅线且平行等距分布;
图 6是本发明的具有 9个金属接触栅线单元的太阳能电池,它等同于 9个独 立并行的子电池相互连接;
图 7 是本发明的具有 9个金属接触栅线单元的太阳能电池等价的二极管回 路并联示意图;
图 8是本发明的金属焊带与分段式主栅线的接触示意图;
图 9 是本发明提供的光通过反射和散射到达被焊带所覆盖的区域的原理示 意图;
以上图中, 1、 细栅线, 2、 主栅线, 3、 电池片, 4、 焊带, 5、 二极管, 6、 金属接触栅线单元, 7、 焊点, 8、 空隙区域, 9、 光伏玻璃, 10、 热熔胶, 1 1、 电池引出线, 12电池基底。
具体实施方式
本发明提供的一种有效提高输出功率的太阳能光伏组件,包括一系列串联在 一起的太阳能电池片, 每个电池片包含一个半导体材料的基底, 导电类型为 N 型或者 P 型; 基底材料的正面存在一个发射极结构, 这个发射极结构包括一个 使用与基底材料相反的导电类型掺杂剂得到的掺杂薄层,以及在掺杂薄层之上的 减反射层; 基底材料的背面存在一个铝背场结构, 这个结构包含一个使用与基底 材料相同导电类型掺杂剂得到的重掺杂薄层,一个与重掺杂薄层形成欧姆接触的 金属传导电极; 每个电池片的正面具有至少 2个独立的金属接触栅线单元,这些 金属接触栅线单元之间以并联的方式连接。 本发明金属接触栅线单元 6由细栅线 1和主栅线 2组成, 细栅线 1通过与 主栅线 2的连接相互联系在一起, 每条细栅线 1与主栅线 2的连接角度在 45度 和 90度之间; 金属接触栅线单元 6以矩阵形式分布, 矩阵包含一系列 NxM的 小方格, 其中 N指与主栅线 2平行方向的子集个数, M指与主栅线 2垂直方向 的子集个数, 这里的 N是 1, 2, 3, 4禾 B 5; M是 2、 3、 4禾 B 5。 图 4是 1 X 3 的设计, 图 6是 3 X 3的设计。
本发明主栅线 2根数为 1〜3根, 以硅片中心为中心对称分布; 细栅线 1根 数为 70〜120根, 细栅线 1平行等距分布; 细栅线 1通过一个直线或者曲线的边 框联系在一起; 主栅线 2采用分段式设计, 段数为 3〜12段, 各分段之间以细线 相连; 细栅线 1的宽度在 20微米至 100微米之间, 细栅线 1的高度在 5微米到 30微米之间; 主栅线 2的宽度在 0.5毫米至 2毫米之间, 主栅线 2的高度在 5 微米至 30微米之间。
依据上面所列的技术方案, 下面结合附图对本发明作出进一步详细的说明。 为了能够减少由于单个电池片引起的功率损耗, 在本发明太阳能电池组件 中, 采用多个电极引出方式, 而不是如图 1所示的单个网格结构。 目前本发明并 不仅限于改变前表面的金属电极接触,也包含背接触电池的设计,如图 3中所示的 一种图形,是基于在上述背景中所讨论的金属化原则以及在不牺牲转换效率的前 提下获得的最小的遮光面积和最大的功率输出所采用的三种细栅线 1和主栅线 2 的连接设计。
如图 4所示,前表面具有三个独立的金属接触栅线单元 6, 彼此互不影响。 因 此,一个电池片 3实际上是被分成三个互不干涉的子电池,产生的光生电子在直接 从一个电极流向相反的电极。 在这种三个金属接触栅线单元 6的电池片 3配置中, 当多个电池片 3结合在一起,它们的整体效率是通过三个平行的电极所提供,也即 每个电池片 3的一个电极只占了整个电池片的三分之一的电流。也就是说,如果一 个电池片 3的一个电极由于某种原因产生故障而不能发电,它也不会降低整个电 池片 3的功率, 即使最糟糕的情况,也只是损耗一个电池片 3三分之一的功率。 因 此,功率损耗与电池片 3损坏度的相关性可能大大减少。
本发明的金属接触栅线单元 6结构有很多种设计模式,比如细栅线 1可以直接 与主栅线 2相垂直连接, 也可以以一定的角度与主栅线 2相连接, 但是前提是最大 化的收集电流和降低金属接触电阻。一个太阳能电池组件可以是一个线性阵列 (N 2)或者二维阵列 ¾1^≠1, M≠l)所组成的金属接触栅线单元 (对于整个金 属接触栅线单元而言, 其金属电极彼此是相互独立的部分) 。
前表面的主栅线 2也可以是分段设计的, 如图 5所示, 每个子电池包括多条细 栅线 1和具有 2个或多个焊点 8的分段式主栅线 2, 其中细栅线可以是多种设计, 包 括但不限于, 细栅线 1与主栅线 2成垂直或倾斜角度(角度大于等于 45度, 小于 90 度) 。
图 6所示为一个 3 X 3系列共有九个金属接触栅线单元 6的太阳能电池片 7。 其 等效并联二极管 5连接电路图如图 7所示。这个前表面设计主要由九个子电池所组 成。在太阳光照射下, 每个电池片贡献总体电流的九分之一, 这九个部分共同组 成了一个太阳能电池片 7。类似的例子在前面论述中也说过,如果某些电池片由于 某些原因而导致失效,由于并联电路的特性, 该电池片所产生的反向偏压将会被 局限于此电池片中, 剩下的一部分电池片仍可以继续运行并将太阳光转换成电 能。 因此,功率损耗与电池片损坏度的相关性可能大大减少。
由于这些子单元电池采用并联的连接方式,如果其中某个子单元由于一些原 因失效, 在内置的反向偏压下, 这个损坏的电池的不利影响也会局限在一定程度 之内; 剩余的电池单元仍然可以持续的将阳光转换为电能。 因此, 由于单个的电 池失效所导致的整体风险就被大大降低了。
此外,本发明的另一新颖之处在于主栅线 2使用了间断的接触点设计即分段 式设计而不是连续主栅焊接, 减少了栅线的遮光损失。如图 8所示, 即使电池焊 接后, 在电池片和焊带 4之间仍然存在一个开放的空隙区域 8, 可以有效地利用 入射的光能, 因此这个设计特点是非常有用的。 EVA (热熔胶) 10和光伏玻璃 9 的折射率都远大于空气,组件中一部分反射和散射的太阳光并不会被电池立即吸 收利用, 依据斯涅尔定律, 这部分太阳光会在组件内部的 EVA 10和光伏玻璃 9 之间进行多次随机性的反射。如图 9所示,这些光线中的一部分可能会到达焊带 4下面的空隙区域 8之内, 从而光电转换获得额外的电流增益, 而在常规设计中 这个开放区域是会被金属主栅线所遮挡的。
在技术领域中, 改进是随时可能发生的。 因此, 本发明并不局限于此处所描 述的这些特定细节。只要不背离本发明设计的范围, 各种结构和细节上的改进都 是允许的。例如, 前表面金属接触栅线单元的多种结构, 可以被应用于不同的场 合和制品上。

Claims

权利要求
1、一种有效提高输出功率的太阳能光伏组件, 包括一系列串联在一起的太阳能 电池片, 每个电池片包含一个半导体材料的基底, 导电类型为 N型或者 P型; 基底材料的正面存在一个发射极结构, 这个发射极结构包括一个使用与基底材 料相反的导电类型掺杂剂得到的掺杂薄层, 以及在掺杂薄层之上的减反射层; 基底材料的背面存在一个铝背场结构, 这个结构包含一个使用与基底材料相同 导电类型掺杂剂得到的重掺杂薄层, 一个与重掺杂薄层形成欧姆接触的金属传 导电极; 其特征在于: 所述的每个电池片的正面具有至少 2个独立的金属接触 栅线单元, 这些金属接触栅线单元之间以并联的方式连接。
2、根据权利要求 1所述的一种有效提高输出功率的太阳能光伏组件, 其特征在 于: 所述的金属接触栅线单元由细栅线和主栅线组成, 细栅线通过与主栅线的 连接相互联系在一起, 每条细栅线与主栅线的连接角度在 45度和 90度之间。
3、根据权利要求 2所述的一种有效提高输出功率的太阳能光伏组件, 其特征在 于:所述的金属接触栅线单元以矩阵形式分布,矩阵包含一系列 NxM的小方格, 其中 N指与主栅线平行方向的子集个数, M指与主栅线垂直方向的子集个数, 这里的 N是 1, 2, 3, 4禾 B 5; M是 2、 3、 4禾口 5。
4、根据权利要求 2或 3所述的一种有效提高输出功率的太阳能光伏组件,其特 征在于: 所述的主栅线根数为 1〜3根, 以硅片中心为中心对称分布; 所述的细 栅线根数为 70〜120根, 细栅线平行等距分布。
5、根据权利要求 2或 3所述的一种有效提高输出功率的太阳能光伏组件,其特 征在于: 所述的细栅线通过一个直线或者曲线的边框联系在一起。
6、根据权利要求 2或 3所述的一种有效提高输出功率的太阳能光伏组件,其特 征在于: 所述的主栅线采用分段式设计, 段数为 3〜12段, 各分段之间以细线 相连。
7、根据权利要求 2或 3所述的一种有效提高输出功率的太阳能光伏组件,其特 征在于: 所述的细栅线的宽度在 20微米至 100微米之间, 细栅线的高度在 5 微米到 30微米之间。
8、根据权利要求 2或 3所述的一种有效提高输出功率的太阳能光伏组件, 其特 征在于: 所述的主栅线的宽度在 0.5毫米至 2毫米之间, 主栅线的高度在 5微 米至 30微米之间。
PCT/CN2013/075545 2013-04-23 2013-05-13 一种有效提高输出功率的太阳能光伏组件 WO2014172926A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310140711.4 2013-04-23
CN201310140711.4A CN103280465B (zh) 2013-04-23 2013-04-23 一种有效提高输出功率的太阳能光伏组件

Publications (1)

Publication Number Publication Date
WO2014172926A1 true WO2014172926A1 (zh) 2014-10-30

Family

ID=49062949

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/075545 WO2014172926A1 (zh) 2013-04-23 2013-05-13 一种有效提高输出功率的太阳能光伏组件

Country Status (2)

Country Link
CN (1) CN103280465B (zh)
WO (1) WO2014172926A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180050262A (ko) * 2014-09-30 2018-05-14 엘지전자 주식회사 태양 전지 및 이를 포함하는 태양 전지 패널
US10269992B2 (en) * 2012-11-30 2019-04-23 Panasonic Intellectual Property Management Co., Ltd. Solar cell
CN111883658A (zh) * 2020-07-31 2020-11-03 中国科学院合肥物质科学研究院 一种钙钛矿太阳能电池模块及其制备方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104409527A (zh) * 2014-11-06 2015-03-11 浙江正泰太阳能科技有限公司 太阳能电池正面栅线结构、太阳能电池片及太阳能电池组件
US10535790B2 (en) 2015-06-25 2020-01-14 Sunpower Corporation One-dimensional metallization for solar cells
CN106364140B (zh) * 2016-10-25 2018-06-15 昆山良品丝印器材有限公司 太阳能晶体硅电池片用菲林结构及其印刷网版
CN108229007B (zh) * 2017-12-29 2021-06-22 苏州阿特斯阳光电力科技有限公司 多主栅光伏组件模拟方法及光伏组件
CN108447921B (zh) * 2018-04-24 2024-02-02 通威太阳能(安徽)有限公司 一种p型ibc太阳能电池电极结构
CN112599642A (zh) * 2020-12-18 2021-04-02 泰州隆基乐叶光伏科技有限公司 一种电池片的焊接方法以及光伏组件
CN117790596A (zh) 2021-08-27 2024-03-29 晶科能源股份有限公司 光伏电池片、电池组件及制备工艺

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101950761A (zh) * 2010-09-29 2011-01-19 上海晶澳太阳能科技有限公司 一种新型太阳能电池及由其组成的太阳能光伏组件
CN202049973U (zh) * 2011-05-23 2011-11-23 厦门索纳新能源有限公司 一种选择性发射极晶体硅太阳电池
CN102738257A (zh) * 2012-06-15 2012-10-17 晶澳(扬州)太阳能科技有限公司 一种低成本高效率太阳能电池的电极栅线结构
CN102983179A (zh) * 2012-12-10 2013-03-20 常州天合光能有限公司 太阳能电池片的上下式电极结构

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4121928B2 (ja) * 2003-10-08 2008-07-23 シャープ株式会社 太陽電池の製造方法
CN201838602U (zh) * 2010-10-19 2011-05-18 温州昌隆光伏科技有限公司 一种分段栅线晶体硅太阳能电池
CN102157573A (zh) * 2011-02-22 2011-08-17 江门尚日新能源有限公司 一种太阳能电池正电极印刷图形
CN202183399U (zh) * 2011-08-29 2012-04-04 江苏东鋆光伏科技有限公司 太阳能电池组件

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101950761A (zh) * 2010-09-29 2011-01-19 上海晶澳太阳能科技有限公司 一种新型太阳能电池及由其组成的太阳能光伏组件
CN202049973U (zh) * 2011-05-23 2011-11-23 厦门索纳新能源有限公司 一种选择性发射极晶体硅太阳电池
CN102738257A (zh) * 2012-06-15 2012-10-17 晶澳(扬州)太阳能科技有限公司 一种低成本高效率太阳能电池的电极栅线结构
CN102983179A (zh) * 2012-12-10 2013-03-20 常州天合光能有限公司 太阳能电池片的上下式电极结构

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10269992B2 (en) * 2012-11-30 2019-04-23 Panasonic Intellectual Property Management Co., Ltd. Solar cell
KR20200100017A (ko) * 2014-09-30 2020-08-25 엘지전자 주식회사 태양 전지 및 이를 포함하는 태양 전지 패널
KR101989091B1 (ko) 2014-09-30 2019-09-30 엘지전자 주식회사 태양 전지 및 이를 포함하는 태양 전지 패널
KR102580567B1 (ko) 2014-09-30 2023-09-21 상라오 징코 솔라 테크놀러지 디벨롭먼트 컴퍼니, 리미티드 태양 전지 및 이를 포함하는 태양 전지 패널
KR20190065198A (ko) * 2014-09-30 2019-06-11 엘지전자 주식회사 태양 전지 및 이를 포함하는 태양 전지 패널
KR102286290B1 (ko) 2014-09-30 2021-08-05 엘지전자 주식회사 태양 전지 및 이를 포함하는 태양 전지 패널
KR20200098452A (ko) * 2014-09-30 2020-08-20 엘지전자 주식회사 태양 전지 및 이를 포함하는 태양 전지 패널
KR102147206B1 (ko) 2014-09-30 2020-08-24 엘지전자 주식회사 태양 전지 및 이를 포함하는 태양 전지 패널
KR102366021B1 (ko) 2014-09-30 2022-02-22 엘지전자 주식회사 태양 전지 및 이를 포함하는 태양 전지 패널
KR20190059879A (ko) * 2014-09-30 2019-05-31 엘지전자 주식회사 태양 전지 및 이를 포함하는 태양 전지 패널
KR101918231B1 (ko) 2014-09-30 2018-11-14 엘지전자 주식회사 태양 전지 및 이를 포함하는 태양 전지 패널
KR20180050262A (ko) * 2014-09-30 2018-05-14 엘지전자 주식회사 태양 전지 및 이를 포함하는 태양 전지 패널
KR102370564B1 (ko) 2014-09-30 2022-03-04 엘지전자 주식회사 태양 전지 및 이를 포함하는 태양 전지 패널
KR20220031884A (ko) * 2014-09-30 2022-03-14 엘지전자 주식회사 태양 전지 및 이를 포함하는 태양 전지 패널
KR102500464B1 (ko) 2014-09-30 2023-02-17 상라오 징코 솔라 테크놀러지 디벨롭먼트 컴퍼니, 리미티드 태양 전지 및 이를 포함하는 태양 전지 패널
KR20230025828A (ko) * 2014-09-30 2023-02-23 상라오 징코 솔라 테크놀러지 디벨롭먼트 컴퍼니, 리미티드 태양 전지 및 이를 포함하는 태양 전지 패널
CN111883658A (zh) * 2020-07-31 2020-11-03 中国科学院合肥物质科学研究院 一种钙钛矿太阳能电池模块及其制备方法
CN111883658B (zh) * 2020-07-31 2023-10-20 中国科学院合肥物质科学研究院 一种钙钛矿太阳能电池模块及其制备方法

Also Published As

Publication number Publication date
CN103280465A (zh) 2013-09-04
CN103280465B (zh) 2016-12-28

Similar Documents

Publication Publication Date Title
WO2014172926A1 (zh) 一种有效提高输出功率的太阳能光伏组件
US10164127B2 (en) Module fabrication of solar cells with low resistivity electrodes
US10115839B2 (en) Module fabrication of solar cells with low resistivity electrodes
US9947822B2 (en) Bifacial photovoltaic module using heterojunction solar cells
US10074755B2 (en) High efficiency solar panel
KR101699299B1 (ko) 양면 수광형 태양전지
WO2018157826A1 (zh) P型perc双面太阳能电池及其组件、系统和制备方法
WO2018157822A1 (zh) P型perc双面太阳能电池及其组件、系统和制备方法
KR20160017931A (ko) 태양 전지 및 이를 포함하는 태양 전지 모듈
KR102065170B1 (ko) 태양 전지 모듈
KR101411996B1 (ko) 고효율 태양전지
NL2033481B1 (en) Photovoltaic module
KR101626929B1 (ko) 화합물 박막을 이용한 다중접합 태양전지 제조 방법 및 다중접합 태양전지
WO2018157497A1 (zh) 双面太阳能电池组件及系统
US20150114447A1 (en) Junction box and photovoltaic module including the same
KR101562191B1 (ko) 고효율 태양전지
KR102110528B1 (ko) 리본 및 이를 포함하는 태양 전지 모듈
KR101889776B1 (ko) 태양 전지 및 이의 제조 방법, 그리고 태양 전지 모듈
KR20120037069A (ko) 태양 전지
KR20160029515A (ko) 태양 전지 모듈 및 이에 사용되는 리본
KR101866309B1 (ko) 메탈 웰딩 태양전지
KR102620243B1 (ko) 태양 전지 모듈
TWI445186B (zh) 具受光面電極的非線性設計的太陽能電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13883281

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13883281

Country of ref document: EP

Kind code of ref document: A1