WO2014172897A1 - 基于干扰的上行链路分数功率控制的方法和装置 - Google Patents

基于干扰的上行链路分数功率控制的方法和装置 Download PDF

Info

Publication number
WO2014172897A1
WO2014172897A1 PCT/CN2013/074814 CN2013074814W WO2014172897A1 WO 2014172897 A1 WO2014172897 A1 WO 2014172897A1 CN 2013074814 W CN2013074814 W CN 2013074814W WO 2014172897 A1 WO2014172897 A1 WO 2014172897A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
transmit power
neighboring base
serving
interference
Prior art date
Application number
PCT/CN2013/074814
Other languages
English (en)
French (fr)
Inventor
刘建国
刘瑾
王栋耀
Original Assignee
上海贝尔股份有限公司
阿尔卡特朗讯
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海贝尔股份有限公司, 阿尔卡特朗讯 filed Critical 上海贝尔股份有限公司
Priority to CN201380075498.1A priority Critical patent/CN105103630B/zh
Priority to PCT/CN2013/074814 priority patent/WO2014172897A1/zh
Priority to EP13882986.6A priority patent/EP2991413A4/en
Priority to JP2016509247A priority patent/JP6110016B2/ja
Priority to TW103111450A priority patent/TWI552627B/zh
Publication of WO2014172897A1 publication Critical patent/WO2014172897A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/243TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account interferences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/242TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account path loss
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/143Downlink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/241TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account channel quality metrics, e.g. SIR, SNR, CIR, Eb/lo
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/245TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account received signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/26TPC being performed according to specific parameters using transmission rate or quality of service QoS [Quality of Service]
    • H04W52/267TPC being performed according to specific parameters using transmission rate or quality of service QoS [Quality of Service] taking into account the information rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/20Interfaces between hierarchically similar devices between access points

Definitions

  • the present invention relates generally to the field of wireless communications and, more particularly, to a method and apparatus for interference based uplink fractional power control. Background technique
  • power control is an important transmission quality control method, and its purpose is to overcome the problem of communication performance degradation caused by wireless channel fading and interference.
  • Power control is divided into downlink (DL) power control (ie, control of base station transmit power) and uplink (UL) power control (ie, transmission to user equipment (UE)), depending on the object of power control. Power is controlled).
  • DL downlink
  • UL uplink
  • FPC Fractional Power Control
  • uplink power control which provides an effective control of UE pair neighbors.
  • the mechanism of interference caused by the cell see reference [1]).
  • the basic FPC for data transmission on the Physical Uplink Shared Channel (PUSCH) is slow and is an open loop power control.
  • the serving base station semi-statically configures a cell-specific transmit power parameter for all UEs it serves, called the corpse.
  • _ CEI _ PUSCH which is expressed in dBm and can be expressed by the following formula ( 1 ) (see Reference [2] ):
  • ⁇ CELL— PUSCH SINR + (l + a) PL mminal +IoT + N Q (1)
  • TM3 ⁇ 4 PL mminal +IoT + N Q (1)
  • each UE also has a UE-specific transmit power offset ⁇ .
  • ⁇ PUSCH which is sent to the corresponding UE through dedicated radio resource control (RRC) signaling.
  • RRC radio resource control
  • the transmit power per PRB of the UE can be set to:
  • the target SINR achieved by the UE can be expressed as:
  • SINR target flat hit, ⁇ structure./ _ (1 - c )x (PL - PL (3) It can be seen that the performance of FPC depends on the assumption that the interference to other cells is mainly due to the user at the edge of the cell. Since ⁇ 1, the target SINR always decreases with the increase of the path loss. However, the interference distribution to neighboring cells is not completely consistent with the distribution of the path loss from the UE to the serving cell, especially for different In the case of a cellular network, the link between the path loss to the serving cell and the interference level to the neighboring cell is small.
  • the downlink-based user access method will result in a smaller cell coverage than the macro cell due to the difference in transmit power between the small cell base station and the macro base station. Due to the imbalance of DL/UL user access and the overlapping of the deployment of the small cell and the macro cell, if the target SINR of the macro cell UE adjacent to the small cell base station is high, it will generate strong interference to the small cell base station.
  • CQI-based FPC scheme is an enhancement of the traditional path loss-based FPC scheme, which has the advantage of enabling detection of when the UE is close to the neighboring cell based on the CQI information reported by the UE, and not only considering the path loss value, Thereby reducing the problem of inter-sector interference.
  • the path loss based FPC algorithm sets the UE to have a higher target SINR, and any deviation from the main orientation of the sector will result in a comparable High levels of interference. At this time, this CQI-based FPC scheme is particularly useful.
  • this scheme relies on CQI feedback from the UE side, and for UEs from different manufacturers, there is a significant difference between CQI measurement reports for the same RF situation.
  • the solution relies on assuming that the transmit power of each base station is the same, thereby controlling the level of interference to neighboring cells.
  • the scheme cannot distinguish whether the interference of the UE to the neighboring cell by the DL SINR is due to the difference in the transmission power of the macro cell and the small cell.
  • the i-hai scheme does not understand the interference of the neighboring cells, so that in the case of asymmetric user scheduling or irregular small cell deployment, since there is no cooperation from neighboring cells, the neighboring cells cannot obtain the desired IoT. Operating point.
  • the present invention provides a scheme for performing uplink fractional power control based on interference to neighboring cells, which is applicable to both homogeneous network deployment and heterogeneous network deployment.
  • a method for uplink score power control based on interference implemented by a serving base station including: transmitting a measurement configuration message to a UE served by the serving base station, the measurement configuration message being used to indicate The UE measures the reference signal received power (RSRP) of the serving base station and the RSRP of the neighboring base station; receives the downlink transmit power of the neighboring base station and the desired IoT operation from the neighboring base station Pointing; receiving an RSRP value of the read serving base station measured by the UE and an RSRP value of the neighboring base station; estimating a downlink transmission power and an RSRP value between the serving base station and the neighboring base station, and estimating between the serving base station and the neighboring base station and the UE Path loss, and select the neighboring base station with the smallest path loss as the strongest neighboring base station; based on the estimated path loss and the serving cell-specific transmit power for the uplink transmission of the UE, determine that the UE is the strongest Interference from RSRP
  • an apparatus for uplink score power control based on interference implemented by a serving base station comprising: a transmitting unit configured to send a measurement configuration message to a UE served by the serving base station
  • the measurement configuration message is used to indicate that the UE measures the RSRP of the donor base station and the RSRP of the neighboring base station
  • the receiving unit is configured to receive the downlink transmission power of the neighboring base station and the desired one from the neighboring base station.
  • An IoT operating point configured to receive an RSRP value of the serving base station measured by the UE and an RSRP value of the neighboring base station; a path loss estimating unit configured to be based on a downlink transmit power of the serving base station and the neighboring base station RSRP value, estimating path loss between the serving base station and the neighboring base station and the UE, and selecting the neighboring base station with the smallest path loss as the strongest neighboring base station; the interference determining unit configured to be based on the estimated path loss sum Cell-specific transmit power for uplink transmission of the UE, determining interference of the UE to the strongest neighbor base station; and transmitting A power determining unit configured to determine a UE-specific transmit power offset for the UE's uplink transmission based on the determined interference and the desired IoT operating point of the strongest neighbor base station.
  • a method for performing uplink fractional power control based on interference implemented by a UE including: receiving a measurement configuration message from a serving base station of the UE, the measurement configuration message being used to indicate a UE pair The RSRP of the serving base station and the neighboring base station performs measurement; in response to receiving the measurement configuration message, measuring RSRP of the serving base station and RSRP of the neighboring base station; transmitting the measured RSRP value to the serving base station; receiving from the serving base station a serving cell-specific transmit power and a UE-specific transmit power offset for an uplink transmission of the UE, wherein the UE-specific transmit power offset is determined by the serving base station based on the serving base station and the neighboring base station and the UE Road loss and expectations Determined by the IoT operating point; and determining the transmit power of the UE based on the received serving cell-specific transmit power and the UE-specific transmit power offset.
  • an apparatus for interference-based uplink fractional power control implemented by a UE comprising: a receiving unit configured to receive a measurement configuration message from a serving base station of the UE, the measurement The configuration message is used to indicate that the UE measures the RSRP of the serving base station and the neighboring base station; the measuring unit is configured to measure the RSRP of the serving base station and the RSRP of the neighboring base station in response to receiving the measurement configuration message; Configuring to transmit the measured RSRP value to the serving base station; the receiving unit is further configured to receive the serving cell-specific transmit power and the UE-specific transmit power offset for the uplink transmission of the UE from the serving base station Shifting, wherein the UE-specific transmit power offset is determined by the serving base station based on a path loss between the serving base station and the neighboring base station and the forgoing UE and a desired IoT operating point; a transmit power determining unit configured to Received cell-specific transmit power and UE-specific transmit power offset
  • an effective FPC scheme for inter-cell/inter-sector interference coordination based on interference is provided, which is applicable to both homogeneous network deployment and heterogeneous network deployment, thereby solving the isomorphism.
  • Inter-sector interference problems in networks and interference imbalances in heterogeneous networks are provided.
  • FIG. 1 shows a schematic diagram of a wireless communication network according to an embodiment of the present invention; a signaling diagram of a method of rate control; and a schematic diagram of a device for rate control;
  • FIG. 4 illustrates interference-based uplink fractional power in accordance with an embodiment of the present invention. Schematic diagram of a rate controlled device
  • Figures 5 and 6 respectively show a comparison between the scheme according to an embodiment of the present invention and the simulation results of the current basic FPC scheme in the case of a homogeneous network and a heterogeneous network.
  • FIG. 1 shows a schematic diagram of a wireless communication network 100 in accordance with an embodiment of the present invention.
  • the wireless communication network 100 includes one or more macro base stations 110 (e.g., macro base stations 110 110 2 ... 110 7 ) and one or more UEs 120 (e.g., UEs) interspersed in the wireless communication network 100. 12 ⁇ , 120 2 , 120 3 , 120 5 and 120 7 ) , wherein each macro base station 110 provides a service for a UE in its coverage area, also referred to as a serving base station.
  • macro base stations 110 e.g., macro base stations 110 2 ... 110 7
  • UEs 120 e.g., UEs
  • the wireless communication network 100 further includes one or more small cell base stations 130 (e.g., small cell base stations 13 ( ⁇ , 130 2 , 130 3, and 130 6 ) compared to the macro base station 110.
  • a relatively small coverage area is provided (marked with diagonal lines in the figure).
  • the term “cell” may refer to a coverage area of a base station and/or a base station or base station subsystem serving the coverage area, depending on the context in which the term is used.
  • the term “cell” may be used interchangeably with “base station”, “eNB”, etc., depending on the context. Further, depending on the communication system involved, “cell” may also be referred to as a sector or the like.
  • 2 shows a signaling diagram of a method 200 of interference-based uplink fractional power control in accordance with an embodiment of the present invention. In the embodiment shown in FIG. 2, the process of performing uplink fractional power control on the UE 1201 (hereinafter referred to as UE or target UE) in FIG. 1 is taken as an example.
  • the macro base station l lC is a serving base station (hereinafter simply referred to as a serving base station) of the target UE 120!, in which a list of its neighboring base stations is stored.
  • a serving base station hereinafter simply referred to as a serving base station
  • the macro base station 1102 ... 1107 ... 13t and the small cell base station and the neighboring base station 1302 is a service base station 110 (hereinafter referred to as adjacent base stations ), whose list is stored in the serving base station.
  • step 202 the serving base station sends a measurement configuration message to the UE, where the measurement configuration message is used to indicate that the UE measures the RSRP of the serving base station and the neighboring base station.
  • the measurement configuration message contains a list of neighboring base stations to measure RSRP. It will be appreciated that the neighboring base stations to which the RSRP is to be measured may be all or only a part of the neighboring base stations of the serving base station.
  • the measurement configuration message is sent by RRC signaling. In one embodiment, the measurement configuration message instructs the UE to periodically measure RSRP values of the serving base station and neighboring base stations.
  • the serving base station receives information about the corresponding downlink transmit power and the desired uplink IoT operating point from the neighboring base station.
  • the downlink transmit power is used to calculate the path loss of the corresponding neighboring base station, and the desired uplink IoT operation point is used for inter-cell/inter-sector interference control.
  • the above information is transmitted through a ⁇ 2 interface between the serving base station and the neighboring base station.
  • the UE Based on the received measurement configuration message, the UE measures the RSRP of the serving base station and the neighboring base station, and transmits the measured RSRP value to the serving base station (step 206).
  • the UE may use a cell-specific reference signal (CRS) for RSRP measurements.
  • CRS cell-specific reference signal
  • the UE may use the Channel State Information (CSI) Reference Signal (CSI-RS) for RSRP measurements.
  • CSI-RS Channel State Information Reference Signal
  • the UE sends the measured RSRP value through RRC signaling. Give the service base station.
  • steps 204 and 206 shown in FIG. 2 is merely illustrative and the invention is not limited to the particular order shown in FIG. In fact, step 204 may be performed before step 206, or after step 206, or both, which are within the scope of the present invention.
  • the serving base station estimates the path loss between the serving base station and each neighboring base station and the forgoing UE based on its own downlink transmission power with the neighboring base station and the received RSRP value, and selects The neighboring base station with the smallest path loss is the strongest neighboring base station.
  • the downlink transmit power of the neighboring base station is ⁇ ⁇ ⁇ , measured by the UE
  • the RSRP value of the read serving base station is RSRP 1
  • the RSRP value of the neighboring base station measured by the UE is R5R/r.
  • the serving base station can estimate the path loss PL_ and f between the serving base station and each neighboring base station and the UE by the following formula (4):
  • the serving base station selects the neighboring base station with the smallest path loss as the strongest neighboring base station, and the strongest neighboring base station can be expressed as:
  • C is the number of the strongest neighboring base station.
  • the serving base station determines the serving cell specific transmit power for the uplink transmission of the UE. For example, similar to equation (1) above, the serving cell has a specific transmit power corpse.
  • CELL PUSCH can be determined by the following formula (6):
  • CELL — PUSCH SINR + (1 + )PL nominal + IoT + N Q (6)
  • ⁇ ⁇ and / ⁇ represent the nominal SINR and the nominal path loss, respectively
  • 0 ⁇ ⁇ ⁇ 1 is the fraction
  • the path loss compensation factor, fo is the desired IoT operating point, which is preset by the serving base station based on the demand for path loss compensation.
  • ⁇ 0 is the thermal noise water per PRB Flat.
  • Step 2 is only schematically placed after step 208 in FIG. 2, however, those skilled in the art will appreciate that step 210 may be performed at any time between steps 202-208, or that method 200 may also omit step 210 altogether.
  • the serving base station may preset the serving cell-specific transmit power for the uplink transmission of the UE it serves when it is powered on or periodically.
  • the serving base station determines the interference of the UE to the strongest neighboring base station.
  • the interference can be expressed as:
  • the serving base station determines the UE-specific transmit power for the uplink transmission of the UE based on the interference level calculated in step 212 and the expected IoT operating point of the strongest neighboring base station for the UE. Offset.
  • the UE-specific transmit power is offset from the corpse.
  • the UE PUSCH can be expressed as:
  • UE_H SCH (8) where (0 ⁇ ⁇ 1) is a factor used to achieve a trade-off between the sector throughput and the cell edge bit rate, which is preset by the serving base station according to the demand for uplink transmission power adjustment. , /(i.r ⁇ ' b ° is the expected total interference level, the strongest neighboring base station reads
  • T neighbOT The expected IoT operating point I of the UE.
  • T neighbOT The function of T neighbOT .
  • /(IoT neighbw ) can be defined as:
  • the serving base station serving the determined cell-specific transmit power / 3 ⁇ 4_ CEI - PUSCH and UE-specific transmit power offset of UE (step 216 3 ⁇ 4_ UE _ PUSCH are transmitted to and
  • the serving cell-specific transmit power 3 ⁇ 4_ CE ⁇ _ PUSCH to the UE through the broadcast channel BCH.
  • the read serving base station may also send a partial path loss compensation factor ⁇ to the UE through the BCH.
  • the partial path loss compensation factor ⁇ can be notified to the UE by the serving base station in any manner or from the serving base station when the UE initially accesses.
  • the UE-specific transmit power offset ⁇ ⁇ pu ⁇ is passed
  • RRC signaling is sent to UEo
  • step 220 the UE according to the received serving cell specific transmit power
  • CELL PUSCH and UE-specific transmit power offset 3 ⁇ 4 ⁇ PUSCH determines its transmit power.
  • the UE may determine its transmit power per PB as:
  • a schematic diagram of the rate controlled device 300 The device 300 may, for example, be or may implement the implementation described above in connection with Figures 1 to 2 The service base station l lOi in the mode.
  • the apparatus 300 includes: a transmitting unit 310 configured to
  • the UE sends a measurement configuration message, which is used to indicate that the UE measures the RSRP of the serving base station and the neighboring base station.
  • the measurement configuration message contains a list of neighboring base stations to measure RSRP. It will be appreciated that the neighboring base stations to which the RSRP is to be measured may be all or only a part of the neighboring base stations of the serving base station.
  • the measurement configuration message is sent by RRC signaling. In one embodiment, the measurement configuration message instructs the UE to periodically measure RSRP values of the serving base station and neighboring base stations.
  • Apparatus 300 also includes a receiving unit 320 configured to receive information from neighboring base stations Corresponding downlink transmit power and information on the desired uplink IoT operating point.
  • the downlink transmit power is used to calculate the path loss of the corresponding neighboring base station, and the desired uplink IoT operating point is used for inter-cell/inter-sector interference control.
  • the above information is sent through an X2 interface between the serving base station and the neighboring base station.
  • the receiving unit 320 is further configured to receive an RSRP value of the serving base station measured by the UE and an RSRP value of the neighboring base station.
  • the apparatus 300 further includes a path loss estimating unit 330 configured to estimate a path loss between the serving base station and each of the neighboring base stations and the UE based on the downlink transmit power and the RSRP value of the serving base station and the neighboring base station, and The neighboring base station with the smallest path loss is selected as the strongest neighboring base station.
  • a path loss estimating unit 330 configured to estimate a path loss between the serving base station and each of the neighboring base stations and the UE based on the downlink transmit power and the RSRP value of the serving base station and the neighboring base station, and The neighboring base station with the smallest path loss is selected as the strongest neighboring base station.
  • the path loss estimation unit 330 can use the above equations (4) and (5) to estimate the path loss and select the strongest neighbor base station.
  • the apparatus 300 also includes an interference determination unit 340 configured to determine interference of the UE with the strongest neighbor base station based on the estimated path loss and the serving cell-specific transmit power for the UE's uplink transmission.
  • the interference determining unit 340 can use the above formula (7) to determine the interference level of the UE to the strongest neighboring base station.
  • Apparatus 300 further includes a transmit power determining unit 350 configured to determine an uplink transmission for the UE based on the determined interference to the strongest neighbor base station and a desired IoT operating point of the strongest neighbor base station UE-specific transmit power offset.
  • the transmit power determining unit 350 may use the above equations (8) - (10) to determine the UE-specific transmit power offset.
  • the transmit power determination unit 350 is further configured to determine the serving cell specific transmit power based on the nominal SINR, the nominal path loss, the fractional path loss compensation factor, and the desired IoT operating point.
  • the transmitting unit 310 is further configured to transmit the UE-specific transmit power offset and the cell-specific transmit power to the UE to enable the UE to determine its uplink transmit power. In an embodiment, the transmitting unit 310 is further configured to send a read serving cell-specific transmit power to the UE through the broadcast channel BCH, and send the UE-specific transmit power offset to the UE through RRC signaling.
  • Apparatus 400 may be, for example, or may be implemented in UE 12 (I) in the embodiments described above in connection with Figures 1-2.
  • the apparatus 400 includes: a receiving unit 410 configured to receive a measurement configuration message from a serving base station, the measurement configuration message being used to instruct the UE to measure RSRP of the serving base station and the neighboring base station.
  • the measurement configuration message contains a list of neighboring base stations to measure RSRP. It will be appreciated that the neighboring base stations to which the RSRP is to be measured may be all or only a part of the neighboring base stations of the serving base station.
  • the measurement configuration message is received via RRC signaling. In one embodiment, the read measurement configuration message instructs the UE to periodically measure RSRP values for the serving base station and neighboring base stations.
  • the apparatus 400 also includes a measurement unit 420 configured to measure the RSRP of the serving base station and the RSRP of the neighboring base station in response to receiving the measurement configuration message.
  • measurement unit 420 may use a cell-specific reference signal (CRS) for RSRP measurements.
  • CRS cell-specific reference signal
  • measurement unit 420 can perform RSRP measurements using a channel state information (CSI) reference signal (CSI-RS).
  • CSI channel state information
  • the apparatus 400 also includes a transmitting unit 430 configured to transmit the measured RSRP value to the serving base station.
  • the transmitting unit 430 transmits the measured RSRP value to the serving base station through R C signaling.
  • the receiving unit 410 is further configured to receive a serving cell-specific transmit power and a UE-specific transmit power offset for the uplink transmission of the UE from the serving base station.
  • the UE-specific transmit power offset is determined by the serving base station based on the path loss between the serving base station and the neighboring base station and the UE and the expected IoT operating point, as described above with reference to FIG. 2 Said.
  • the receiving unit 410 receives the read service cell specific transmit power over the broadcast channel BCH. In addition, the receiving unit 410 can also receive a partial path loss compensation factor ou through the BCH.
  • the receiving unit 410 receives the UE-specific transmit power offset through RRC signaling.
  • the apparatus 400 also includes a transmit power determining unit 440 configured to determine a transmit power of the UE based on the received serving cell-specific transmit power and the UE-specific transmit power offset.
  • the transmission power determining unit 440 can determine its transmission power using Equation (11) above. It can be seen that, according to the solution of the present invention, the transmit power of the UE is adjusted by considering the interference of the UE to the neighboring base station and the interference of the neighboring base station to the UE, and the interference between the UE to the neighboring base station and the transmit power of the UE is established. A more efficient connection provides an efficient FPC scheme for inter-cell/inter-sector interference coordination based on interference. This solution is applicable to both homogeneous network deployment and heterogeneous network deployment, thus solving the problem of inter-sector interference in homogeneous networks and interference imbalance in heterogeneous networks.
  • Figures 5 and 6 respectively show a comparison diagram between the FPC scheme according to an embodiment of the present invention and the simulation result of the current basic FPC scheme in the case of a homogeneous network and a heterogeneous network.
  • the ideal channel estimate based on the UL transmit uplink adaptation scheme of subframe n can be used for rate adaptation in subframe n+7 MCS.
  • Hexagonal star grid 7 macro base station sites, 3 cells per site, macro cell deployment
  • Small cell deployment 0 or 2 sectors per sector, non-wrap-around deployment.
  • ISD Intersite distance
  • Macro 3 ⁇ 4 station and pico base station antenna configuration 2 receive antennas with antenna pattern defined in 3GPP TS 36.814
  • UE antenna with g 1 transmit antenna (O dBi antenna gain, omnidirectional)
  • the nominal SINR 10 dB
  • the nominal path loss of the same uplink power control network 0 dB
  • the nominal path loss of the heterogeneous network 85, ⁇
  • the FPC scheme of the present invention can achieve a more stable and lower IoT level than the basic FPC scheme, and thus the present invention
  • the scheme can effectively adjust the transmission power of each UE by jointly considering the actual interference to neighboring cells and the interference state of neighboring cells.
  • Table 3 below shows the performance analysis in the case of heterogeneous networks.
  • the FPC scheme proposed herein effectively reduces the inter-cell interference of the macro cell UE to the small cell and makes the macro cell and the small cell closer to the IoT operating point. .
  • the proposed scheme can significantly increase the overall average cell throughput with only a small loss of cell edge performance.
  • the functions described herein may be implemented in hardware, software, firmware, or any combination thereof. If implemented in software, the functions may be stored as one or more instructions or code on a computer readable medium or transmitted as one or more instructions or code on a computer readable medium.
  • Computer readable media includes both computer storage media and communication media, including communication media including any means for facilitating the transfer of a computer program from one place to another.
  • a storage medium may be any available media that can be accessed by a general purpose or special purpose computer.
  • Such computer readable media may include, for example, without limitation, RAM, ROM, EEP OM, CD-ROM or other optical disk storage device, magnetic disk storage device or other magnetic storage device, or may be used in a general purpose or special purpose computer or general purpose or Any other medium in the form of an instruction or data structure accessible by a dedicated processor to carry or store the desired program code module. and Also, any connection can be termed a computer readable medium.
  • coaxial cable fiber optic cable, twisted pair, digital subscriber line (DSL), or wireless technologies such as infrared, radio, and microwave
  • coaxial Cables, fiber optic cables, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are also included in the definition of media.
  • DSPs digital signal processors
  • ASICs application specific integrated circuits
  • FPGAs field programmable gate arrays
  • Any combination of the described functions implements or performs the various illustrative logical blocks, modules, and circuits described in connection with the present disclosure.
  • the general purpose processor may be a microprocessor, or the processor may be any conventional processor, controller, microcontroller or state machine.
  • the processor can also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, a combination of one or more microprocessors and a DSP core, or any other such structure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供了一种基于干扰的上行链路分数功率控制的方法和装置。该方法包括:向该服务基站所服务的UE发送测量配置消息,该测量配置消息用于指示UE对该服务基站的参考信号接收功率(RSRP)和相邻基站的RSRP进行测量;从该相邻基站接收该相邻基站的下行链路发射功率和期望的IoT操作点;接收UE所测量的该服务基站的RSRP值和相邻基站的RSRP值;基于服务基站和相邻基站的下行链路发射功率和RSRP值,估计服务基站和相邻基站与该UE之间的路损,并选择路损最小的相邻基站作为最强相邻基站;基于所估计的路损和用于该UE的上行链路传输的服务小区特定的发射功率,确定UE对该最强相邻基站的干扰;以及基于所确定的干扰和该最强相邻基站的该期望的IoT操作点,确定用于该UE的上行链路传输的UE特定的发射功率偏移。

Description

基于干扰的上行链路分数功率控制的方法和装置 技术领域
本发明概括而言涉及无线通信领域, 更具体而言, 涉及一种基 于干扰的上行链路分数功率控制的方法和装置。 背景技术
在无线通信系统中, 功率控制是一种重要的传输质量控制手段, 其目的是克服无线信道衰落和干扰引起的通信性能下降的问题。 按 照功率控制的对象不同,功率控制分为下行链路(DL )功率控制(即, 对基站的发射功率进行控制) 和上行链路 (UL ) 功率控制 (即, 对 用户设备 (UE ) 的发射功率进行控制) 。 在第三代合作伙伴计划 ( 3GPP )长期演进( LTE )中, 已经批准使用分数功率控制( Fractional Power Control, FPC )来进行上行链路功率控制, 其提供了一种有效 的控制 UE对相邻小区造成的干扰的机制 (见参考文献 [1] ) 。 用于 物理上行共享信道(PUSCH )上的数据传输的基本 FPC较慢且是一 种开环功率控制。服务基站为其所服务的所有 UE半静态地配置一个 小区特定的发射功率参数, 称为尸。 _CEI _PUSCH, 其以 dBm表示, 可以 通过下面的公式 ( 1 )表示 (见参考文献 [2] ) :
― CELL— PUSCH = SINR + (l + a)PLmminal +IoT + NQ (1) 其中™¾。„,, 和 , 分别表示标称的信号与干扰和噪声比 ( SINR ) 和标称的路损, 0≤α≤1是分数路损补偿因子, 用于对路损进行分数 补偿, /ο 是期望的干扰与热噪声 (ΙοΤ )操作点, ^是每物理资源 块 (PRB ) 的热噪声水平。
此外, 每个 UE还有一个 UE特定的发射功率偏移 Ρ。― PUSCH, 其 通过专用无线资源控制 (RRC )信令下发给相应 UE。
这样, UE的每 PRB的发射功率可以设置为:
= PO—PUSCH + « x尸 (2) 其中 PUSCH一 0 CELL PUSCH +尸0 UE PUSCH ' PL是用户对服务小区的长期 路损。
在这种情况下, UE实现的目标 SINR可以表示为:
SINRtarget =扁擊, ·„。/ _ (1 - c )x (PL - PL (3) 可以看出, FPC 的性能依赖于假设对其他小区产生的干扰主要 是由于小区边缘处的用户产生的。 由于 α≤ 1 , 目标 SINR总是随着 路损的增加而降^ ί氏。 然而, 对相邻小区的干扰分布并不完全与 UE 到服务小区的路损的分布一致, 尤其是对于异构蜂窝网络来说, 到 服务小区的路损与对相邻小区的干扰水平之间的联系较小。
对于同构蜂窝网络来说, 利用参考文献 [1]中定义的 FPC方案, 小区中心处相邻扇区之间的小的路损差与高的目标 SINR相结合导 致扇区间干扰较高。
对于异构蜂窝网络来说, 由于小小区基站和宏基站之间存在发 射功率差, 采用基于下行链路的用户接入方法将导致小小区的覆盖 范围比宏小区小很多。 由于 DL/UL用户接入的不平衡以及小小区和 宏小区的部署重叠, 若临近小小区基站的宏小区 UE的目标 SINR较 高, 将会对小小区基站产生较强干扰。
这表示假设路损最低的 UE将产生大部分干扰并不总是正确的, 尤其是在异构的部署中或者在具有相关的阴影衰落的三扇区小区部 署中。 另一个重要的问题是非对称的用户调度或不规则的小小区部 署将在小区之间产生干扰失衡, 从而当上行链路功率控制不考虑对 相邻小区的干扰水平以及相邻小区的干扰状态时, 将会造成小区之 间出现 IoT水平波动。
此外, 对于异构的网络部署来说, 在 3GPP LR13.1 中已经提出 了基于信道质量信息 (CQI ) 的 FPC方案来解决扇区间干扰的问题。 基于 CQI的 FPC方案是传统的基于路损的 FPC方案的一种增强,其 好处在于使得能够基于 UE所报告的 CQI信息来检测 UE何时靠近相 邻小区, 而不仅仅只考虑路损值, 从而降低了扇区间干扰问题。 当 在近小区情况下, 基于路损的 FPC算法将 UE设置为具有较高的目 标 SINR, 并且任何与扇区的主朝向的偏离都将对邻近扇区产生相当 高的干扰水平。 此时, 这种基于 CQI的 FPC方案特别有用。
然而, 该方案依赖于从 UE侧的 CQI反馈, 而对于来自不同制 造商的 UE来说, 对于同一射频情况进行的 CQI测量报告之间会有 显著的差别。 并且, 谅方案依赖于假设每个基站的发射功率相同, 从而控制对相邻小区的干扰水平。 这样, 在异构网络 HetNet中, 该 方案不能通过 DL SINR来区分 UE对相邻小区的干扰是否是由于宏 小区和小小区的发射功率不同造成的。 并且, i亥方案也不了解相邻 小区的干扰, 从而在非对称的用户调度或不规则的小小区部署的情 况下, 由于没有来自相邻小区的协作, 所以相邻小区无法获得期望 的 IoT操作点。
因此, 建议在进行上行链路功率控制时, 除了路损之外还应当 考虑对相邻小区产生的干扰, 从而调整 UE的发射功率, 以建立 UE 对相邻小区的干扰与小区间 /扇区间干扰协调的目标 SINR之间的有 效联系。
参考文献:
[1] 3GPP TS36.213, "E-UTRA- Physical layer procedures (Release 11),,·
[2] Nageen Himayat, Shilpa Talwar, Anil Rao and Robert Soni, "Interference Management for 4G Cellular Standards," IEEE Communications Magazine, vol.48, Aug. 2010. 发明内容
针对以上问题, 本发明提供了一种基于对相邻小区的干扰来进 行上行链路分数功率控制的方案, 该方案既适用于同构网络部署也 适用于异构网络部署。
根据本发明的一个方面, 提供了一种由服务基站实现的基于干 扰进行上行链路分数功率控制的方法, 包括: 向该服务基站所服务 的 UE发送测量配置消息,该测量配置消息用于指示 UE对该服务基 站的参考信号接收功率 (RSRP ) 和相邻基站的 RSRP进行测量; 从 谅相邻基站接收谅相邻基站的下行链路发射功率和期望的 IoT操作 点;接收 UE所测量的读服务基站的 RSRP值和相邻基站的 RSRP值; 基于服务基站和相邻基站的下行链路发射功率和 RSRP 值, 估计服 务基站和相邻基站与该 UE之间的路损 ,并选择路损最小的相邻基站 作为最强相邻基站;基于所估计的路损和用于该 UE的上行链路传输 的服务小区特定的发射功率, 确定 UE对该最强相邻基站的干扰; 以 及基于所确定的干扰和该最强相邻基站的谅期望的 IoT操作点, 确 定用于读 UE的上行链路传输的 UE特定的发射功率偏移。
根据本发明的另一个方面, 提供了一种由服务基站实现的基于 干扰进行上行链路分数功率控制的装置, 包括: 发送单元, 其被配 置为向该服务基站所服务的 UE发送测量配置消息,该测量配置消息 用于指示 UE对谅服务基站的 RSRP和相邻基站的 RSRP进行测量; 接收单元, 其被配置为从谅相邻基站接收该相邻基站的下行链路发 射功率和期望的 IoT操作点,并且被配置为接收 UE所测量的该服务 基站的 RSRP值和相邻基站的 RSRP值; 路损估计单元, 其被配置为 基于服务基站和相邻基站的下行链路发射功率和 RSRP值, 估计服 务基站和相邻基站与该 UE之间的路损,并选择路损最小的相邻基站 作为最强相邻基站; 干扰确定单元, 其被配置为基于所估计的路损 和用于该 UE的上行链路传输的服务小区特定的发射功率, 确定 UE 对该最强相邻基站的干扰; 以及发射功率确定单元, 其被配置为基 于所确定的干扰和该最强相邻基站的该期望的 IoT操作点, 确定用 于谅 UE的上行链路传输的 UE特定的发射功率偏移。
根据本发明的另一个方面,提供了一种由 UE实现的基于干扰进 行上行链路分数功率控制的方法, 包括: 从该 UE的服务基站接收测 量配置消息,该测量配置消息用于指示 UE对服务基站和相邻基站的 RSRP进行测量;响应于接收到该测量配置消息,对服务基站的 RSRP 和相邻基站的 RSRP进行测量;将所测量的 RSRP值发送给服务基站; 从服务基站接收用于该 UE 的上行链路传输的服务小区特定的发射 功率和 UE特定的发射功率偏移,其中该 UE特定的发射功率偏移是 由服务基站基于服务基站和相邻基站与该 UE 之间的路损以及期望 的 IoT操作点所确定的; 以及根据接收到的服务小区特定的发射功 率和 UE特定的发射功率偏移来确定 UE的发射功率。
根据本发明的另一个方面,提供了一种由 UE实现的基于干扰的 上行链路分数功率控制的装置, 包括: 接收单元, 其被配置为从该 UE的服务基站接收测量配置消息, 该测量配置消息用于指示 UE对 服务基站和相邻基站的 RSRP 进行测量; 测量单元, 其被配置为响 应于接收到该测量配置消息, 对服务基站的 RSRP 和相邻基站的 RSRP进行测量; 发送单元, 其被配置为将所测量的 RSRP值发送给 服务基站;该接收单元还被配置为从服务基站接收用于该 UE的上行 链路传输的服务小区特定的发射功率和 UE特定的发射功率偏移,其 中该 UE特定的发射功率偏移是由服务基站基于服务基站和相邻基 站与谅 UE之间的路损以及期望的 IoT操作点所确定的;发射功率确 定单元, 其被配置为根据接收到的服务小区特定的发射功率和 UE 特定的发射功率偏移来确定 UE的发射功率。
利用本发明的方案, 提供了一种有效的基于干扰来进行小区间 / 扇区间干扰协调的 FPC方案, 该方案既适用于同构网络部署, 也适 用于异构网络部署, 从而解决了同构网络中的扇区间干扰问题以及 异构网络中的干扰不平衡问题。 附图说明
通过以下参考下列附图所给出的本发明的具体实施方式的描述 之后, 将更好地理解本发明, 并且本发明的其他目的、 细节、 特点 和优点将变得更加显而易见。 在附图中:
图 1示出了根据本发明实施方式的无线通信网络的示意图; 率控制的方法的信令图; ' ' ' 率控制的装置的示意图;
' 图 4 示出了根据本发明实施方式的基于干扰的上行链路分数功 率控制的装置的示意图; 以及
图 5和图 6分别示出了在同构网络情况下和异构网絡情况下, 根据本发明的实施方式的方案与当前的基本 FPC方案的仿真结果之 间的比较图。
其中, 在所有附图中, 相同或相似的标号表示具有相同、 相似 或相应的特征或功肯 。 具体实施方式
下面将参照附图更详细地描述本公开的优选实施方式。 虽然附 图中显示了本公开的优选实施方式, 然而应该理解, 可以以各种形 些实施方式是为了使本公开更加透彻和完整, 并且能够将本公开的 范围完整的传达给本领域的技术人员。
图 1示出了根据本发明实施方式的无线通信网络 100的示意图。 如图 1中所示, 无线通信网络 100中包含一个或多个宏基站 110 (如 宏基站 110 1102…… 1107 )和散布在无线通信网絡 100中的一个或 多个 UE 120 (如 UE 12^、 1202、 1203、 1205和 1207 ) , 其中每个宏 基站 110分别为其覆盖区域内的 UE提供服务,也称为服务基站。此 夕卜, 根据一种实施方式, 无线通信网络 100还包括一个或多个小小 区基站 130 (如小小区基站 13(^、 1302、 1303和 1306 ) , 与宏基站 110相比, 提供相对较小的覆盖区域(图中用斜线标出) 。 虽然图 1 中示出了包含宏基站和小小区基站的异构网络部署作为无线通信网 络 100 的一个示例, 然而通过阅读本说明书的描述, 本领域技术人 员可以理解, 本发明的构思也可以应用于同构网络部署中。
在本公开中, 根据使用该术语的语境, 术语 "小区" 可以指基 站的覆盖区域和 /或对该覆盖区域进行服务的基站或基站子系统。 在 本公开中, 根据上下文, 术语 "小区" 可以与 "基站" 、 "eNB" 等 互换使用。 此外, 根据所涉及的通信系统的不同, "小区,, 还可以 指扇区等。 图 2 示出了根据本发明实施方式的基于干扰的上行链路分数功 率控制的方法 200的信令图。 在图 2所示的实施方式中, 以图 1 中 的 UE 120ι (以下简称为 UE或目标 UE ) 为例描述了对其进行上行 链路分数功率控制的过程。 在这种情况下, 宏基站 l lC 是目标 UE 120!的服务基站 (以下简称为服务基站) , 其中存储着其相邻基站 的列表。 参照图 1 的无线通信网络 100的示意图可以看出, 宏基站 1102... ... 1107和小小区基站 13t 和 1302都是服务基站 110 的相邻基 站 (以下统称为相邻基站) , 其列表存储在服务基站中。
如图 2中所示, 方法 200开始于步骤 202。 在步骤 202, 服务基 站向 UE发送测量配置消息,该测量配置消息用于指示 UE对服务基 站和相邻基站的 RSRP进行测量。
在一种实施方式中,该测量配置消息包含要测量 RSRP的相邻基 站的列表。 可以理解, 要测量 RSRP 的相邻基站可以是服务基站的 所有相邻基站或仅是其一部分。
在一种实施方式中, 该测量配置消息是通过 RRC信令发送的。 在一种实施方式中,该测量配置消息指示 UE周期性地测量服务 基站和相邻基站的 RSRP值。
接下来, 在步骤 204, 服务基站从相邻基站接收关于相应的下行 链路发射功率和期望的上行链路 IoT操作点的信息。 其中, 下行链 路发射功率用于计算相应的相邻基站的路损, 期望的上行链路 IoT 操作点用于小区间 /扇区间干扰控制。
在一种实施方式中, 上述信息通过服务基站与相邻基站之间的 Χ2接口进行发送。
根据接收到的测量配置消息, UE 对服务基站和相邻基站的 RSRP进行测量,并将所测量的 RSRP值发送给服务基站(步骤 206 )。
在一种实施方式中, UE可以使用小区特定的参考信号 (CRS ) 来进行 RSRP测量。 在另一种实施方式中, UE可以使用信道状态信 息 ( CSI ) 参考信号 (CSI-RS ) 来进行 RSRP测量。
在一种实施方式中, UE通过 RRC信令将所测量的 RSRP值发送 给服务基站。
本领域技术人员可以理解, 图 2中所示的步骤 204和 206的执 行顺序只是示意性的, 本发明并不局限于图 2 中所示的特定顺序。 事实上, 步骤 204可以在步骤 206之前执行, 也可以在步骤 206之 后执行, 还可以二者同时执行, 这些都在本发明的保护范围内。
接下来, 在步骤 208, 服务基站基于其自身的和相邻基站的下行 链路发射功率以及所接收的 RSRP值, 估计服务基站和每个相邻基 站与谅 UE之间的路损,并选择路损最小的相邻基站作为最强相邻基 站。
例如, 假设服务基站的下行链路发射功率是 r , UE 要进行
RSRP测量的第 n个 (其中 n=l ... ... N, N是要进行 RSRP测量的相 邻基站的总数)相邻基站的下行链路发射功率是 ΓχΓ Λ^, UE所测量 的读服务基站的 RSRP 值为 RSRP1 , UE 所测量的谅相邻基站的 RSRP值为 R5R/r 。f , 则服务基站可以通过以下的公式 (4 ) 来估计 服务基站和每个相邻基站与该 UE之间的路损 PL—和 f :
服务基站然后选择路损最小的相邻基站作为最强相邻基站, 谅 最强相邻基站可以表示为:
c= min {C } (5)
'ie{l,'",jV}
其中 C是该最强相邻基站的编号。 为了简化起见, 将最强相邻基站 与 UE之间的路损也表示为 PL"ei≠bor, 即 fbor = PL 8hbor
在步骤 210, 服务基站确定用于 UE的上行链路传输的服务小区 特定的发射功率。 例如, 与上面的公式 ( 1 ) 类似, 该服务小区特定 的发射功率尸。 CELL PUSCH可以由下面的公式 (6 ) 来确定:
尸。— CELLPUSCH = SINR + (1 + )PLnominal + IoT + NQ (6) 其中^ ^^和/^^^分别表示标称的 SINR和标称的路损,0≤α≤1 是分数路损补偿因子, fo 是期望的 IoT操作点, 这些参数由服务基 站根据路损补偿的需求而预先设定。 此外, ^0是每 PRB的热噪声水 平。
图 2中只是示意性地将步骤 210放置在步骤 208之后, 然而, 本领域技术人员可以理解, 步骤 210可以在步朦 202到 208之间的 任意时间执行, 或者方法 200也可以完全省略步骤 210。 例如, 服务 基站可以在开机时或周期性地预先设置用于其所服务的 UE 的上行 链路传输的服务小区特定的发射功率。
接下来,在步骤 212,基于该服务小区特定的发射功率 。 CELL PUSCH 和步骤 208所确定的服务基站与该 UE之间的路损 f 和最强相邻 基站与该 UE之间的路损 PL→bor,服务基站确定 UE对该最强相邻基 站的干扰。 例如, 该干扰可以表示为:
Γ _ p prserving p ieighbor f
1 ― rO—CELL— PUSCH卞" x ij ij 、 ·、 ) 其中 /是在给定的 IoT操作点, UE对谅最强相邻基站的干扰水平。
接下来, 在步骤 214, 服务基站基于步骤 212所计算的干扰水平 以及谅最强相邻基站对该 UE的期望的 IoT操作点, 确定用于该 UE 的上行链路传输的 UE特定的发射功率偏移。 例如, 该 UE特定的发 射功率偏移尸。 UE PUSCH可以表示为:
尸。 UE_HSCH
Figure imgf000011_0001
) (8) 其中, (0≤ ≤ 1)是用来实现扇区吞吐量和小区边缘比特率之间的折 中的因子, 其由服务基站根据上行链路发射功率调整的需求而预先 设定, /(i。r^'b° 是考虑到期望的总干扰水平, 该最强相邻基站对读
UE 的期望的 IoT 操作点 I。TneighbOT的函数。 例如, 在一个实例中, /(IoTneighbw)可以定义为:
/(IoTneighbor^10x logi^10(loT^-AfJ/.0 _10^/10 ( 对于 LTE 系统来说, 由于其是干扰受限的系统, 因此可以将 (1。 叫改写为:
/(Ι0Τ ) = l。T hbor -N0 (10) 接下来,服务基站将所确定的服务小区特定的发射功率/ ¾_CEIPUSCH 和 UE 特定的发射功率偏移 ¾_UE_PUSCH分别发送给 UE (步骤 216 和
218) 。 在一种实施方式中,该服务小区特定的发射功率 ¾_CE^_PUSCH通过广 播信道 BCH发送给 UE。 此外, 读服务基站还可以通过 BCH将部分 路损补偿因子 α发送给 UE。 但是本领域技术人员可以理解, 该部分 路损补偿因子 α可以通过任意方式由服务基站通知给 UE或者在 UE 初始接入时即从服务基站获得。
在一种实施方式中, 该 UE 特定的发射功率偏移 ^ ^pu^通过
RRC信令发送给 UEo
接下来在步骤 220, UE根据接收到的服务小区特定的发射功率
CELL PUSCH和 UE特定的发射功率偏移 ¾ ^ PUSCH确定其发射功率。 例如, UE可以将其每 P B的发射功率确定为:
P = ^0_CELL_PUSCH + ^0_UE_PUSCH + X PL & (11) 在这种情况下, 该 UE的目标 SINR可以改写为:
rgel = P —霞 ^靈醒 i"al _ i PL - (12) 可以看出, 根据本发明的方案, 除了路损之外, 还考虑了对相 邻基站产生的干扰来区别对待不同 UE, 从而使得对相邻基站干扰较 强的 UE的目标 SINR较低, 或者反之。 率控制的装置 300的示意图。 装置 300例如可以是或者可以实现在 上文结合图 1至图 2所描述的实施方式中的服务基站 l lOi中。
如图 3 中所示, 装置 300 包括: 发送单元 310, 其被配置为向
UE发送测量配置消息, 该测量配置消息用于指示 UE对服务基站和 相邻基站的 RSRP进行测量。
在一种实施方式中,该测量配置消息包含要测量 RSRP的相邻基 站的列表。 可以理解, 要测量 RSRP 的相邻基站可以是服务基站的 所有相邻基站或仅是其一部分。
在一种实施方式中, 该测量配置消息是通过 RRC信令发送的。 在一种实施方式中,该测量配置消息指示 UE周期性地测量服务 基站和相邻基站的 RSRP值。
装置 300还包括接收单元 320,其被配置为从相邻基站接收关于 相应的下行链路发射功率和期望的上行链路 IoT操作点的信息。 其 中, 下行链路发射功率用于计算相应的相邻基站的路损, 期望的上 行链路 IoT操作点用于小区间 /扇区间干扰控制。
在一种实施方式中, 上述信息通过服务基站与相邻基站之间的 X2接口进行发送。
接收单元 320还被配置为接收 UE所测量的服务基站的 RSRP值 和相邻基站的 RSRP值。
装置 300还包括路损估计单元 330,其被配置为基于服务基站和 相邻基站的下行链路发射功率和 RSRP值, 估计服务基站和每个相 邻基站与谅 UE之间的路损,并选择路损最小的相邻基站作为最强相 邻基站。
例如, 路损估计单元 330 可以使用上面的公式 (4 ) 和 (5 ) 来 估计路损以及选择最强相邻基站。
装置 300还包括干扰确定单元 340,其被配置为基于所估计的路 损和用于 UE的上行链路传输的服务小区特定的发射功率, 确定 UE 对该最强相邻基站的干扰。
例如, 干扰确定单元 340可以使用上面的公式 (7 ) 来确定 UE 对该最强相邻基站的干扰水平。
装置 300还包括发射功率确定单元 350,其被配置为基于所确定 的对该最强相邻基站的干扰和该最强相邻基站的期望的 IoT操作点, 确定用于 UE的上行链路传输的 UE特定的发射功率偏移。
例如, 发射功率确定单元 350可以使用上面的公式 (8 ) - ( 10 ) 来确定谚 UE特定的发射功率偏移。
在一种实施方式中, 发射功率确定单元 350 还被配置为才艮据标 称的 SINR、 标称的路损、 分数路损补偿因子和期望的 IoT操作点, 确定服务小区特定的发射功率。
在一种实施方式中,发送单元 310还被配置为将该 UE特定的发 射功率偏移和谅服务小区特定的发射功率发送给 UE以使得 UE能够 确定其上行链路发射功率。 在一种实施方式中,发送单元 310还被配置为通过广播信道 BCH 向 UE发送读服务小区特定的发射功率, 并且通过 RRC信令向 UE 发送 UE特定的发射功率偏移。
图 4 示出了根据本发明实施方式的基于干扰的上行链路分数功 率控制的装置 400的示意图。 装置 400例如可以是或者可以实现在 上文结合图 1至图 2所描述的实施方式中的 UE 12(^中。
如图 4中所示, 装置 400包括: 接收单元 410, 其被配置为从服 务基站接收测量配置消息,该测量配置消息用于指示 UE对服务基站 和相邻基站的 RSRP进行测量。
在一种实施方式中,谅测量配置消息包含要测量 RSRP的相邻基 站的列表。 可以理解, 要测量 RSRP 的相邻基站可以是服务基站的 所有相邻基站或仅是其一部分。
在一种实施方式中, 该测量配置消息是通过 RRC信令接收的。 在一种实施方式中,读测量配置消息指示 UE周期性地测量服务 基站和相邻基站的 RSRP值。
装置 400还包括测量单元 420,其被配置为响应于接收到该测量 配置消息, 对服务基站的 RSRP和相邻基站的 RSRP进行测量。
在一种实施方式中, 测量单元 420 可以使用小区特定的参考信 号 (CRS )来进行 RSRP测量。 在另一种实施方式中, 测量单元 420 可以使用信道状态信息 ( CSI )参考信号 ( CSI-RS ) 来进行 RSRP测 量。
装置 400还包括发送单元 430, 其被配置为将所测量的 RSRP值 发送给服务基站。
在一种实施方式中, 发送单元 430 通过 R C 信令将所测量的 RSRP值发送给服务基站。
接收单元 410还被配置为从服务基站接收用于 UE的上行链路传 输的服务小区特定的发射功率和 UE 特定的发射功率偏移。 其中该 UE 特定的发射功率偏移是由服务基站基于服务基站和相邻基站与 该 UE之间的路损以及期望的 IoT操作点所确定的, 如上面参考图 2 所述。
在一种实施方式中, 接收单元 410通过广播信道 BCH接收读服 务小区特定的发射功率。 此外, 接收单元 410还可以通过 BCH接收 部分路损补偿因子 ou
在一种实施方式中, 接收单元 410通过 RRC信令接收该 UE特 定的发射功率偏移。
装置 400还包括发射功率确定单元 440,其被配置为根据接收到 的服务小区特定的发射功率和 UE特定的发射功率偏移来确定 UE的 发射功率。
例如, 发射功率确定单元 440 可以使用上面的公式 ( 11 ) 来确 定其发射功率。 可以看出, 根据本发明的方案, 通过考虑 UE对相邻基站的干扰 以及相邻基站对 UE的干扰来调整 UE的发射功率, 在 UE对相邻基 站的干扰和 UE的发射功率之间建立更有效的联系,从而提供了一种 有效的基于干扰来进行小区间 /扇区间干扰协调的 FPC方案。 该方案 既适用于同构网络部署, 也适用于异构网络部署, 从而解决了同构 网络中的扇区间干扰问题以及异构网络中的干扰不平衡问题。
图 5和图 6分别示出了在同构网络情况下和异构网络情况下, 根据本发明的实施方式的 FPC方案与当前的基本 FPC方案的仿真结 果之间的比较图。
仿真假设条件如表 1所示:
表 1仿真假设条件
Figure imgf000015_0001
基于延迟测量。 基于 LTE传输格式, 根据子帧 n的 UL传 上行链路适配方案 输进行的理想信道估计可以用于子帧 n+7 MCS中的速率适 配。
同步 HARQ
上行链路 HA Q
S多传输 4次, 跟踪合并 (CC)。
频域 MMSE、 天线上 MRC
上行链路接收器类型
(无小区间干扰抑制)
六角星形网格、 7个宏基站站点、 每个站点 3 个小区、 宏小区部署
wrap-around部署。
小小区部署 每个扇区 0或 2个扇区、 非 wrap-around部署。
UE数 每个扇区 25个 UE
站点间距离 (ISD) 500 m (3GPP case 1)
最大发射功率 UE: 23dBm
载波频率 /带宽 2G, 10MHz
调度粒度 5个 PRB
宏 ¾站和微微基站天线配置 具有 3GPP TS 36.814中定义的天线方向图的 2根接收天线
UE天线配 g 1根发射天线(O dBi天线增益,全向)
信道估计 理想
基站天线下倾 Λ Case 1 3GPP 2D: N/A
馈送损耗 OdB
信道模型 SCM urban macro high spread for 3GPP case 1
路损模型 As in 3GPP TS 36.814
小区间干扰模型 显式 ' 业务模型 完整缓冲器
对于本发明的基于干扰的 FPC方案,标称 SINR = 10 dB, 同 上行链路功率控制 构网络的标称路损 = 0 dB,异构网络的标称路损 = 85, α
=0.7,所有基站的期望的 ΙοΤ操作点 = 8dB, β=0.5 下面的表 2示出了同构网络情况下的性能分析。
表 2 同构网络下的性能分析
Figure imgf000016_0001
从图 5和表 2中可以看出, 在同构网络情况下, 本发明的 FPC 方案能够实现比基本 FPC方案更稳定更低的 IoT水平, 因此本发明 的方案通过联合考虑对相邻小区的实际干扰和相邻小区的干扰状 态, 能够有效地调整每个 UE的发射功率。
下面的表 3示出了异构网络情况下的性能分析。
表 3异构网络下的性能分析
Figure imgf000017_0001
从图 6和表 3中可以看出, 在异构网络情况下, 本文所建议的 FPC 方案有效地降低了宏小区 UE对小小区的小区间干扰并且使得 宏小区和小小区更接近 IoT操作点。 此外, 所建议的方案能够显著 提高总的平均小区吞吐量, 而只有少量的小区边缘性能损失。 在本文中, 参照附图对本文公开的方法进行了描述。 然而应当 理解, 附图中所示的以及说明书中所描述的步骤顺序仅仅是示意性 的, 在不脱离权利要求的范围的情况下, 这些方法步骤和 /或动作可 以按照不同的顺序执行而不局限于附图中所示的以及说明书中所描 述的具体顺序。
在一个或多个示例性设计中, 可以用硬件、 软件、 固件或它们 的任意组合来实现本申请所述的功能。 如果用软件来实现, 则可以 将所述功能作为一个或多个指令或代码存储在计算机可读介质上, 或者作为计算机可读介质上的一个或多个指令或代码来传输。 计算 机可读介质包括计算机存储介质和通信介质, 其中通信介质包括有 助于计算机程序从一个地方传递到另一个地方的任意介盾。 存储介 质可以是通用或专用计算机可访问的任意可用介质。 这种计算机可 读介质可以包括, 例如但不限于, RAM、 ROM、 EEP OM, CD-ROM 或其它光盘存储设备、 磁盘存储设备或其它磁存储设备, 或者可用 于以通用或专用计算机或者通用或专用处理器可访问的指令或数据 结构的形式来携带或存储希望的程序代码模块的任意其它介质。 并 且, 任意连接也可以被称为是计算机可读介质。 例如, 如果软件是 使用同轴电缆、 光纤光缆、 双绞线、 数字用户线 (DSL ) 或诸如红 外线、 无线电和微波之类的无线技术来从网站、 服务器或其它远程 源传输的, 那么同轴电缆、 光纤光缆、 双絞线、 DSL或诸如红外线、 无线电和微波之类的无线技术也包括在介质的定义中。
可以用通用处理器、 数字信号处理器 (DSP ) 、 专用集成电路 ( ASIC ) 、 现场可编程门阵列 (FPGA )或其它可编程逻辑器件、 分 立门或者晶体管逻辑、 分立硬件组件或用于执行本文所述的功能的 任意组合来实现或执行结合本公开所描述的各种示例性的逻辑块、 模块和电路。 通用处理器可以是微处理器, 或者, 处理器也可以是 任何常规的处理器、 控制器、 微控制器或者状态机。 处理器也可以 实现为计算设备的組合, 例如, DSP 和微处理器的组合、 多个微处 理器、 一个或多个微处理器与 DSP内核的结合, 或者任何其它此种 结构。
本领域普通技术人员还应当理解,结合本申请的实施例描述的 各种示例性的逻辑块、 模块、 电路和算法步骤可以实现成电子硬件、 计算机软件或二者的组合。 为了清楚地表示硬件和软件之间的这种 可互换性, 上文对各种示例性的部件、 块、 模块、 电路和步骤均围 绕其功能进行了一般性描述。 至于这种功能是实现成硬件还是实现 成软件, 取决于特定的应用和施加在整个系统上的设计约束条件。 本领域技术人员可以针对每种特定应用, 以变通的方式实现所描述 的功能, 但是, 这种实现决策不应解释为背离本发明的保护范围。
本公开的以上描述用于使本领域的任何普通技术人员能够实 现或使用本发明。 对于本领域普通技术人员来说, 本公开的各种修 改都是显而易见的, 并且本文定义的一般性原理也可以在不脱离本 发明的精神和保护范围的情况下应用于其它变形。 因此, 本发明并 不限于本文所述的实例和设计, 而是与本文公开的原理和新颖性特 性的最广范围相一致。

Claims

权 利 要 求 书
1. 一种由服务基站实现的基于干扰进行上行链路分数功率控制 的方法, 包括:
向该服务基站所服务的用户设备(UE ) 发送测量配置消息, 该 测量配置消息用于指示 UE对该服务基站的参考信号接收功率
( SRP ) 和相邻基站的 RSRP进行测量;
从该相邻基站接收该相邻基站的下行链路发射功率和期望的干 扰与热噪声 (ΐοτ ) 操作点;
接收 UE所测量的该服务基站的 RSRP值和相邻基站的 RSRP值; 基于服务基站和相邻基站的下行链路发射功率和 RSRP值,估计 服务基站和相邻基站与该 UE之间的路损,并选择路损最小的相邻基 站作为最强相邻基站;
基于所估计的路损和用于该 UE的上行链路传输的服务小区特定 的发射功率, 确定 UE对该最强相邻基站的干扰; 以及
基于所确定的干扰和该最强相邻基站的该期望的 IoT操作点,确 定用于该 UE的上行链路传输的 UE特定的发射功率偏移。
2. 如权利要求 1所述的方法, 还包括:
根据标称的信号与干扰和噪声比 (SINR ) 、 标称的路损、 分数 路损补偿因子和期望的 IoT操作点, 确定该服务小区特定的发射功 率。
3. 如权利要求 2所述的方法, 还包括:
将谅 UE特定的发射功率偏移和该服务小区特定的发射功率发送 给该 UE以使得该 UE能够确定其上行链路发射功率。
4. 如权利要求 3所述的方法, 其中通过广播信道(BCH )向 UE 广播谅服务小区特定的发射功率, 并且通过无线资源控制 (RRC ) 信令向 UE发送该 UE特定的发射功率偏移。
5. 一种由服务基站实现的基于干扰进行上行链路分数功率控制 的装置, 包括: 发送单元, 其被配置为向该服务基站所服务的用户设备(UE ) 发送测量配置消息,谅测量配置消息用于指示 UE对读服务基站的参 考信号接收功率 ( RSRP ) 和相邻基站的 RSRP进行测量;
接收单元,其被配置为从该相邻基站接收该相邻基站的下行链路 发射功率和期望的干扰与热噪声 (IoT )操作点, 并且被配置为接收 UE所测量的该服务基站的 RSRP值和相邻基站的 RSRP值;
路损估计单元,其被配置为基于服务基站和相邻基站的下行链路 发射功率和 RSRP值,估计服务基站和相邻基站与谅 UE之间的路损, 并选择路损最小的相邻基站作为最强相邻基站;
干扰确定单元,其被配置为基于所估计的路损和用于该 UE的上 行链路传输的服务小区特定的发射功率,确定 UE对该最强相邻基站 的干 4尤; 以及
发射功率确定单元,其被配置为基于所确定的干扰和该最强相邻 基站的该期望的 IoT操作点, 确定用于该 UE的上行链路传输的 UE 特定的发射功率偏移。
6. 如权利要求 5所述的装置, 其中所述发射功率确定单元还被 配置为根据标称的信号与干扰和噪声比 (SINR ) 、 标称的路损、 分 数路损补偿因子和期望的 IoT操作点, 确定该服务小区特定的发射 功率。
7. 如权利要求 6所述的装置, 其中所述发送单元还被配置为将 it UE特定的发射功率偏移和该服务小区特定的发射功率发送给该 UE以使得该 UE能够确定其上行链路发射功率。
8. 如权利要求 7所述的装置, 其中所述发送单元还被配置为通 过广播信道(BCH )向 UE广播该服务小区特定的发射功率, 并且通 过无线资源控制( R C )信令向 UE发送该 UE特定的发射功率偏移。
9. 一种由用户设备 (UE ) 实现的基于干扰进行上行链路分数功 率控制的方法, 包括:
从谅 UE的服务基站接收测量配置消息, 该测量配置消息用于指 示 UE对服务基站和相邻基站的参考信号接收功率 (RSRP ) 进行测 量;
响应于接收到该测量配置消息,对服务基站的 RSRP和相邻基站 的 RSRP进行测量;
将所测量的 RSRP值发送给服务基站;
从服务基站接收用于该 UE的上行链路传输的服务小区特定的发 射功率和 UE特定的发射功率偏移,其中该 UE特定的发射功率偏移 是由服务基站基于服务基站和相邻基站与该 UE之间的路损以及期 望的干扰与热噪声 (IoT ) 操作点所确定的; 以及
根据接收到的服务小区特定的发射功率和 UE特定的发射功卑偏 移来确定 UE的发射功率。
10. 一种由用户设备 (UE ) 实现的基于干扰的上行链路分数功 率控制的装置, 包括:
接收单元, 其被配置为从该 UE的服务基站接收测量配置消息, 该测量配置消息用于指示 UE对服务基站和相邻基站的参考信号接 收功率 (RSRP ) 进行测量;
测量单元, 其被配置为响应于接收到该测量配置消息, 对服务基 站的 RSRP和相邻基站的 RSRP进行测量;
发送单元, 其被配置为将所测量的 RSRP值发送给服务基站; 谅接收单元还被配置为从服务基站接收用于该 UE的上行链路传 输的服务小区特定的发射功率和 UE特定的发射功率偏移, 其中谅 UE特定的发射功率偏移是由服务基站基于服务基站和相邻基站与 该 UE之间的路损以及期望的干扰与热噪声( IoT )操作点所确定的; 发射功率确定单元,其被配置为根据接收到的服务小区特定的发 射功率和 UE特定的发射功率偏移来确定 UE的发射功率。
PCT/CN2013/074814 2013-04-26 2013-04-26 基于干扰的上行链路分数功率控制的方法和装置 WO2014172897A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201380075498.1A CN105103630B (zh) 2013-04-26 2013-04-26 基于干扰的上行链路分数功率控制的方法和装置
PCT/CN2013/074814 WO2014172897A1 (zh) 2013-04-26 2013-04-26 基于干扰的上行链路分数功率控制的方法和装置
EP13882986.6A EP2991413A4 (en) 2013-04-26 2013-04-26 METHOD AND DEVICE FOR FRACTIONIZED PERFORMANCE CONTROL AT INTERFERENCE BASIS
JP2016509247A JP6110016B2 (ja) 2013-04-26 2013-04-26 干渉ベースのアップリンク・フラクショナル電力制御のための方法および装置
TW103111450A TWI552627B (zh) 2013-04-26 2014-03-27 Method and apparatus for uplink fractional power control based on interference

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/074814 WO2014172897A1 (zh) 2013-04-26 2013-04-26 基于干扰的上行链路分数功率控制的方法和装置

Publications (1)

Publication Number Publication Date
WO2014172897A1 true WO2014172897A1 (zh) 2014-10-30

Family

ID=51791019

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/074814 WO2014172897A1 (zh) 2013-04-26 2013-04-26 基于干扰的上行链路分数功率控制的方法和装置

Country Status (5)

Country Link
EP (1) EP2991413A4 (zh)
JP (1) JP6110016B2 (zh)
CN (1) CN105103630B (zh)
TW (1) TWI552627B (zh)
WO (1) WO2014172897A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109451582A (zh) * 2018-11-12 2019-03-08 京信通信系统(中国)有限公司 一种信源选择方法、装置、中继设备及存储介质

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107231680B (zh) * 2016-03-23 2021-04-30 中兴通讯股份有限公司 一种开环功率控制的方法和装置
WO2018174632A1 (en) * 2017-03-23 2018-09-27 Samsung Electronics Co., Ltd. Method, apparatus, and system for terminal for measurement configuration of different reference signals and cell measurement report mechanism
WO2019064273A1 (en) * 2017-09-29 2019-04-04 Telefonaktiebolaget Lm Ericsson (Publ) DYNAMIC UPLINK TARGET RECEPTION POWER ADJUSTMENT FOR UPLINK INTERFERENCE MITIGATION
KR102387505B1 (ko) 2018-01-09 2022-04-18 삼성전자주식회사 무선 통신 시스템에서 송신 전력을 조절하기 위한 방법 및 장치
CN110602776B (zh) * 2019-09-30 2021-10-29 展讯通信(上海)有限公司 直连链路的参考信号接收功率rsrp测量方法及装置
US11838229B2 (en) * 2019-10-17 2023-12-05 Qualcomm Incorporated Enhanced ultra-reliable/low-latency communications over-the-air mechanism for shared spectrum
CN111212463B (zh) * 2020-01-10 2022-07-12 京信网络系统股份有限公司 节能方法、装置、计算机设备和存储介质
CN115087009B (zh) * 2022-06-20 2024-04-23 中国联合网络通信集团有限公司 灵活帧结构仿真系统的下行信号检测方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101399579A (zh) * 2007-11-26 2009-04-01 北京邮电大学 一种无线通信系统上行(反向)链路功率控制方法
WO2009078576A1 (en) * 2007-12-17 2009-06-25 Electronics And Telecommunications Research Institute Method of controlling uplink power
CN101584129A (zh) * 2007-01-09 2009-11-18 朗讯科技公司 反向链路功率控制
CN101741437A (zh) * 2008-11-19 2010-06-16 中国移动通信集团公司 一种上行功率控制方法、系统及设备
CN102056218A (zh) * 2009-10-28 2011-05-11 中兴通讯股份有限公司 上行链路功率控制的方法及装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101515815B (zh) * 2008-02-18 2012-07-18 中兴通讯股份有限公司 一种调整移动台发射功率的方法和移动通信网络
JP5084952B2 (ja) * 2008-07-25 2012-11-28 エルジー エレクトロニクス インコーポレイティド 無線通信システムでの信号を伝送するための装置及びその方法
CN101729106B (zh) * 2008-10-30 2013-03-13 上海贝尔阿尔卡特股份有限公司 基于干扰管理和传输质量控制的增强的上行链路功率控制
US8553575B2 (en) * 2009-03-19 2013-10-08 Qualcomm Incorporated Resource partitioning for uplink in a wireless communication network
KR20110091093A (ko) * 2010-02-05 2011-08-11 삼성전자주식회사 무선 이동통신 시스템의 상향링크 간섭제어 방법 및 장치
CN102647747A (zh) * 2011-02-17 2012-08-22 中兴通讯股份有限公司 控制用户设备测量的方法、设备及系统
CN105323041B (zh) * 2011-07-12 2019-06-07 华为技术有限公司 一种小区测量方法、小区资源共享方法和相关设备
EP4142173A1 (en) * 2011-08-05 2023-03-01 Panasonic Intellectual Property Corporation of America Csi-rs reporting for base stations having multiple transmission points

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101584129A (zh) * 2007-01-09 2009-11-18 朗讯科技公司 反向链路功率控制
CN101399579A (zh) * 2007-11-26 2009-04-01 北京邮电大学 一种无线通信系统上行(反向)链路功率控制方法
WO2009078576A1 (en) * 2007-12-17 2009-06-25 Electronics And Telecommunications Research Institute Method of controlling uplink power
CN101741437A (zh) * 2008-11-19 2010-06-16 中国移动通信集团公司 一种上行功率控制方法、系统及设备
CN102056218A (zh) * 2009-10-28 2011-05-11 中兴通讯股份有限公司 上行链路功率控制的方法及装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"E-UTRA-Physical layer procedures (Release 11", 3GPP TS36.213
NAGEEN HIMAYAT; SHILPA TALWAR; ANIL RAO; ROBERT SONI: "Interference Management for 4G Cellular Standards", IEEE COMMUNICATIONS MAGAZINE, vol. 48, August 2010 (2010-08-01), XP011315999
See also references of EP2991413A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109451582A (zh) * 2018-11-12 2019-03-08 京信通信系统(中国)有限公司 一种信源选择方法、装置、中继设备及存储介质
CN109451582B (zh) * 2018-11-12 2022-12-06 京信网络系统股份有限公司 一种信源选择方法、装置、中继设备及存储介质

Also Published As

Publication number Publication date
TWI552627B (zh) 2016-10-01
EP2991413A4 (en) 2016-11-30
CN105103630A (zh) 2015-11-25
JP2016517244A (ja) 2016-06-09
EP2991413A1 (en) 2016-03-02
TW201505467A (zh) 2015-02-01
JP6110016B2 (ja) 2017-04-05
CN105103630B (zh) 2019-04-12

Similar Documents

Publication Publication Date Title
JP6569072B2 (ja) 通信システム及び送受信方法
US11540231B2 (en) Method and device for determining transmission power, and terminal and storage medium
US11452136B2 (en) System and method for network access
US10382153B2 (en) Methods and radio network nodes for measuring interference
WO2014172897A1 (zh) 基于干扰的上行链路分数功率控制的方法和装置
CN109861802B (zh) 无线网络中自适应传输的系统和方法
US8848560B2 (en) Apparatus and method for adaptive transmission during almost blank subframes in a wireless communication network
KR102047705B1 (ko) 무선 통신 시스템에서 단말이 상향링크 송신 전력을 결정하는 방법 및 이를 위한 장치
CN103493551A (zh) 用于具有相同小区id的分布式rrh系统的上行链路功率控制方案
EP2810496A1 (en) Uplink power control in coordinated multi-point wireless communication system
TWI463896B (zh) Method and corresponding device for power control of uplink control channel
KR20170129131A (ko) 부하-인식 채널 상태 참조 신호 송신
WO2015011557A1 (en) Method for determining uplink transmission power
WO2019136677A1 (zh) 信号接收装置及方法、通信系统
JP2022183303A (ja) 端末、無線通信方法、基地局及びシステム
EP2915380A1 (en) Network node, user node and methods for power boosting dpcch
WO2015067376A1 (en) Port selection in combined cell of radio access network
JP6493521B2 (ja) ホーム基地局のためのアップリンクターゲット受信電力を設定するためのホーム基地局、通信システム、方法及びプログラム
JP2015109538A (ja) 基地局装置、移動局装置及び移動通信システム
CN105191430B (zh) 控制用户设备的设备至设备链路的发射功率的方法
JP6174564B2 (ja) 送信装置、受信装置及び送信電力制御方法
WO2017113406A1 (zh) 一种基站自动调整方法、装置及系统
US20220377674A1 (en) Power control for bidirectional sidelink
Kim et al. Enhanced handoff scheme based on efficient uplink quality estimation in LTE-Advanced system
EP4252379A1 (en) Non-collocated scell selection for carrier aggregation

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380075498.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13882986

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013882986

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016509247

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE