WO2014171767A1 - Method for determining authenticity of honey using dna detection - Google Patents

Method for determining authenticity of honey using dna detection Download PDF

Info

Publication number
WO2014171767A1
WO2014171767A1 PCT/KR2014/003369 KR2014003369W WO2014171767A1 WO 2014171767 A1 WO2014171767 A1 WO 2014171767A1 KR 2014003369 W KR2014003369 W KR 2014003369W WO 2014171767 A1 WO2014171767 A1 WO 2014171767A1
Authority
WO
WIPO (PCT)
Prior art keywords
honey
dna
sample
bee
plant
Prior art date
Application number
PCT/KR2014/003369
Other languages
French (fr)
Korean (ko)
Inventor
김동호
Original Assignee
주식회사 제놀루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 제놀루션 filed Critical 주식회사 제놀루션
Publication of WO2014171767A1 publication Critical patent/WO2014171767A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/6895Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for plants, fungi or algae
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/13Plant traits
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers

Definitions

  • the present invention relates to a method of detecting plant-derived DNA and honeybee-derived DNA from honey to determine a sample containing no pure honey and heat-treated honey, specification honey, diluted honey, and pure honey at all.
  • Honey is honeycomb honey that honeybees collect natural products such as flower honey and sap and store them in honeycomb, and honey is honey that is not added to other foods or food additives such as pollen, royal jelly, sugar, sweetener.
  • Honeycomb honey means that honey bees collect natural materials such as flower honey and sap and store them in the honeycomb and then seal all or part of the honeycomb.
  • the honeycomb is a honey bee that collects natural honey such as flower honey and sap. It refers to matured things that have been stored in honeycomb (Food Code).
  • Honey contains sugars such as glucose and fructose as well as ideal nutrients such as vitamins, proteins, minerals and amino acids that are unique to pollen, preventing and treating fatigue, anemia, diabetes and liver disease, relieving hangovers and improving beauty.
  • fructose which is a main ingredient in honey, is consumed in the food industry as a sweetener because it has a fast absorption rate and high sweetening effect compared to sucrose.
  • honey is honey that is produced by bees eating sugar and storing it in the process of raising bees.
  • Sugar like nectar, is collected by bees and then transferred from bees to bees, digested by enzymes in the body, stored in honeycombs, dehydrated and dried.
  • honey has a shorter stay in the body than honey and lacks various nutrients derived from honey, honey's quality is much lower than honey.
  • Another example of fake honey is honey diluted with impurities such as rice syrup or corn syrup. Rice syrup and corn syrup are much cheaper than pure honey, but, like pure honey, they contain fructose and have a similar sweetness.
  • honey added to these rice syrup or corn syrup is also significantly lower than various honey content.
  • honey autonomous labeling allows labeling of 13C / 12C isotope ratio autonomously. Plants are classified as C3, C4, CAM plants according to the method of fixing CO 2 in photosynthesis. Plants such as rice, wheat, and corn are C3 plants, and the flowering plants that are the source of wheat are mainly C4 plants.
  • honey honey diluted with C3 plant rice or corn syrup and sugar honey produced with sugar water has a relatively high 13C / 12C isotope ratio.
  • acacia honey, wildflower honey, rapeseed honey and chestnut honey have a carbon isotope ratio of -23.5 or less, miscellaneous honey -22 or less, honey with added rice syrup, -9 to -11 or less, and honey honey -12 It is known to appear as follows.
  • the authenticity of honey using the 13C / 12C isotope ratio requires complex equipment and skilled manpower.
  • the syrups of C4 plants such as beet are added, the false 13C / 12C isotope ratio is low even though it is fake honey. There is a limit.
  • honey that has undergone excessive heat treatment is also a problem as the quality is poor as a variety of fake honey.
  • Mature honey has a very high osmotic pressure, so bacteria and fungi do not grow and can be stored for a long time, but immature honey that has been pulverized before being sufficiently dehydrated is easily deteriorated.
  • beekeepers are concentrating on selling prematurely mature immature honey to high-temperature concentrators and drying them due to delivery schedules.
  • Honey treated with a high-temperature concentrator has significantly lower nutrient content than natural honey, which is fully matured after nutrients are destroyed during heat treatment.
  • An object of the present invention is to provide a method for discriminating pure honey and a sample containing no heat treated honey, specification honey, diluted honey, and pure honey by detecting plant DNA and bee DNA in honey.
  • the present invention provides a method for determining the authenticity of the honey sample by detecting plant DNA and bee DNA in the honey sample.
  • determination of the authenticity of the honey sample means to determine the sample that does not contain pure honey and heat-treated honey, specification honey, diluted honey, and pure honey at all.
  • Honey contains a large amount of plant DNA from pollen origin.
  • using a conventional extraction method requires a lot of time and effort for each sample, it is difficult to use for various sample analysis. It also assumes that honey will contain somatic cells of bee origin, as all honey will be fed back from the semi-digested state after honey bees have received nectar of plant origin.
  • Applicants' extraction method among the various extraction methods can simultaneously extract DNA of plant pollen origin and bee somatic origin contained in the sample.
  • 'pure honey' means honey prepared purely from flower honey by bees.
  • 'heat-treated honey' refers to honey that is artificially heat-treated in the manufacturing process in order to replace the enrichment effect through the ripening process.
  • the 'specific honey' means an artificially produced honey that lacks the content of flower honey originated from a flower by providing a bee with a sugar-containing diet.
  • 'diluted honey' means honey prepared by mixing and adding a substance containing sugar such as some rice syrup and corn syrup to pure honey.
  • sample which does not contain pure honey at all refers to a sample made of only a substance containing sugar such as rice syrup and corn syrup without containing pure honey at all.
  • the high and low degree of plant DNA or bee DNA content is determined based on pure honey as the reference honey.
  • the detection of plant DNA and bee DNA can be performed using quantitative PCR.
  • the present invention is a.
  • the step 1) may be more preferably performed using Geno-Honey DNA Kit and magnetic beads of Genoa Korea.
  • Other DNA separation methods that can be used include Qiaquick PCR Clean up Kit (Qiagen) or DNeasy Tissue Kit (Qiagen).
  • Qiaquick PCR Clean up Kit Qiagen
  • DNeasy Tissue Kit Qiagen
  • the method of separating DNA is not limited thereto.
  • the process of detecting plant DNA and bee DNA in step 2) may be performed in any order or simultaneously.
  • the detection of step 2) may be performed using quantitative PCR.
  • the plant common primer pair of SEQ ID NO: 1 and 2 and the bee common primer pair of SEQ ID NO: 3 and 4 can be used.
  • primers that can be used are not limited to this, and may be used in the future to replace additional common primers for plants and bees. In this case, the same sample can be used to replace the difference between the value and the current primer.
  • honey may be determined to be honeycomb honey.
  • Sugar contains trace amounts of plant DNA, and sugar-supplied honeybees visit flowers very low.
  • the honey may be determined to be honey that has been heat-treated at a temperature of about 80 ° C. or more and less than 90 ° C.
  • Plant-derived DNA because of its pollen origin, is wrapped in a thick cell wall, making it more heat resistant than honey bee DNA. This is because the plant DNA content is significantly maintained while the bee DNA content is significantly reduced when heat treated at a temperature of about 80 ° C. or more and less than 90 ° C.
  • the honey may be determined to be honey that has been heat-treated at a temperature of about 80 ° C. or more and less than 90 ° C.
  • Plant-derived DNA because of its pollen origin, is wrapped in a thick cell wall, making it more heat resistant than honey bee DNA. This is because the plant DNA content is significantly maintained while the bee DNA content is significantly reduced when heat treated at a temperature of about 80 ° C. or more and less than 90 ° C. This also includes the case where pure honey is diluted with some impurities.
  • the honey sample in step 1) is 1 to 3 ml
  • the separated DNA in step 2) is 5 to 10 ⁇ l of the DNA solution isolated from the honey sample and the detection is sequence It can be performed by quantitative PCR using the plant consensus primer pair of No. 1 and SEQ ID NO: 2 and the bee consensus primer pair of SEQ ID NOs: 3 and 4. It is apparent to those skilled in the art that such quantitative PCR conditions may be variously set according to a person skilled in the art, and thus, the Ct value detected may vary. Thus the quantitative PCR conditions are not limited thereby.
  • the honey sample is heat-treated at 90 ° C. or higher, specification honey, diluted honey, or pure honey at all. Provides a method for discriminating between samples that do not contain.
  • the honey sample is heat-treated at 80 ° C. or higher, specification honey, diluted honey, or pure honey at all. Provides a method for discriminating between samples that do not contain.
  • the honey sample is provided with a method of discriminating the sample that contains no honey or pure honey heat-treated at 90 ° C or more.
  • the honey sample is determined as diluted honey. To provide.
  • the Ct value for the plant DNA in the quantitative PCR condition is a good quality pure honey containing a large amount of plant DNA, the smaller the Ct value based on 27, while the higher the Ct value is diluted honey, It can be judged as honey or heat-treated honey at a temperature above 90 ° C.
  • the Ct value for the bee DNA in the quantitative PCR conditions is a good quality honey containing a large amount of bee DNA as the Ct value is smaller, based on 25, while the honey is diluted, the higher the Ct value, or It can be judged that honey is heat-treated at a temperature of 80 ° C or higher.
  • the extraction of DNA from each of the two species contained therein and the measurement thereof can be used to determine the quality of honey according to the relative values.
  • the method of the present invention can process multiple samples simultaneously, does not consume large amounts of samples, and can be performed simply and quickly. Therefore, it is possible to ensure the trust of consumers and encourage the production of pure honey by enabling the effective authenticity of honey.
  • 1 is a diagram showing changes in plant DNA and bee DNA content in honey according to the heat treatment.
  • Figure 2 is a diagram showing the changes in plant DNA and bee DNA content in the honey product marketed when stored for 0, 2, 4, 6 months from the date of manufacture.
  • Acacia honey was harvested from a honeycomb located more than 100 meters from a forest composed of more than 70% acacia trees in Hwasun, Jeollanam-do, Korea. After wax capping in a honeycomb for 35 days, the beeswax sealed with a heated wax knife over July 15 to 20, 2012 was cut out and harvested by centrifuging the honeycomb.
  • the sample names of the honey honey were acacia honey I and II, respectively.
  • honey was harvested.
  • the sugar was dissolved in warm distilled water to prepare an aqueous 30% sugar solution, which was placed in a 30 ⁇ 40 cm Pyrex glass plate located within 10 cm of the honeycomb inlet for 7 days.
  • After waxing in a honeycomb 35 days after sugar water supply (wax capping) was sealed by cutting the beeswax sealed with a beeswax knife heated from 15 to 20 July 2012 and centrifuged the honeycomb.
  • the sample names of the honey honey were set as the specification honey I, II and III, respectively.
  • miscellaneous honey was harvested from a honeycomb located about 1.2 km away from various flowers and plants. After wax capping in a honeycomb for 35 days, the beeswax sealed with a heated wax knife over September 20 to 10, 2012 was cut out and the honeycomb was centrifuged. The sample names of the honey that was sampled were miscellaneous honeys I and II, respectively.
  • the honey that was collected was not exposed to sunlight and stored at room temperature.
  • DNA was extracted from the honey samples prepared in 1-1 using Geno-Honey DNA kit manufactured by Genol.
  • the specific extraction process is as follows.
  • Each honey sample was first transferred to a 15 ml Falcon tube by about 3 ml using a 1 ml pipette or poured.
  • the volume of whole honey was measured after centrifugation at 1,000 rpm for 1 minute with a vertical clinical centrifuge. Two times the volume of the measured volume was added to distilled water warmed to 37 ° C. before mixing to dissolve. If not soluble, stir with a metal rod to dissolve completely. 1.5 ml of this solution was taken and transferred to a microtube, followed by centrifugation at 14,000 rpm for 2 minutes. After discarding the supernatant, 1.5 ml of the same solution was added again and centrifuged again.
  • the results for each sample are shown in Table 2 below.
  • the Ct value is the average value obtained after three independent analyzes. Smaller Ct values indicate higher DNA content.
  • honeybee DNA and plant DNA contents change when commercially available honey products are stored for a long time
  • two samples of honey products produced in Korea K12 samples of miscellaneous honey and K17 samples of acacia honey stored at room temperature. For information, see Table 3 below) for 6 months from the day of production.
  • honeybee DNA and plant DNA were detected using quantitative PCR.
  • the honey bee DNA and plant DNA content in the honey can be a marker for determining the authenticity of the honey even after long-term storage.
  • Bee honey and plant DNA were measured by quantitative PCR as described in Example 1 above by purchasing 23 kinds of domestic honey products at a grocery store or a department store in Seoul, South Korea. Specific data are shown in Table 3 below.
  • the Ct value is the average value obtained after two independent analyzes.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Immunology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Mycology (AREA)
  • Botany (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

The present invention relates to a method for determining the authenticity of a honey sample by detecting a plant DNA and a honeybee DNA in the honey sample. It is possible to distinguish pure honey, heat-treated honey, honey made from sugar syrup, diluted honey, and a sample containing no pure honey by using the method of the present invention. A plurality of samples can be simultaneously treated by using the method of the present invention, and the method of the present invention can be simply and rapidly carried out without consuming a large quantity of samples. Therefore, it is possible to guarantee consumer confidence and encourage the production of pure honey by enabling the authenticity of honey to be effectively distinguished.

Description

DNA 검출을 이용한 벌꿀의 진위 판별 방법Authenticity Determination of Honey Using DNA Detection
본 발명은 벌꿀에서 식물 기원 DNA 및 꿀벌 기원 DNA를 검출하여 순수벌꿀과 열처리된 벌꿀, 사양 벌꿀, 희석된 벌꿀, 및 순수벌꿀을 전혀 포함하지 않은 시료를 판별하는 방법에 관한 것이다.The present invention relates to a method of detecting plant-derived DNA and honeybee-derived DNA from honey to determine a sample containing no pure honey and heat-treated honey, specification honey, diluted honey, and pure honey at all.
벌꿀류란 꿀벌들이 꽃꿀, 수액 등 자연물을 채집하여 벌집에 저장한 벌집꿀과 이것에서 채밀한 벌꿀로서 화분, 로얄젤리, 당류, 감미료 등 다른 식품이나 식품첨가물을 첨가하지 아니한 것을 말한다. 벌집꿀이란 꿀벌들이 꽃꿀, 수액 등 자연물을 채집하여 벌집 속에 저장한 후 벌집의 전체 또는 일부를 봉한 것으로, 벌집 고유의 형태를 유지하고 있는 것을 말하고, 벌꿀이란 꿀벌이 꽃꿀, 수액 등 자연물을 채집하여 벌집에 저장한 것을 채밀한 것으로 숙성된 것을 말한다(식품공전). 벌꿀에는 꽃가루 특유의 비타민, 단백질, 미네랄, 아미노산 등과 같은 이상적인 영양성분뿐만 아니라, 포도당 및 과당 등과 같은 당 성분이 포함되어 있어 피로회복, 빈혈, 당뇨병, 간질환의 예방과 치료, 숙취해소, 미용증진, 소아 발육촉진 등에 우수한 효능을 나타내는 것으로 알려져 있고, 벌꿀 내의 주성분인 과당은 자당(庶糖)에 비해서 흡수율이 빠르고 높은 감미 효과를 나타내기 때문에 감미료로서 식품 산업계에서 다량 소비되고 있다.Honey is honeycomb honey that honeybees collect natural products such as flower honey and sap and store them in honeycomb, and honey is honey that is not added to other foods or food additives such as pollen, royal jelly, sugar, sweetener. Honeycomb honey means that honey bees collect natural materials such as flower honey and sap and store them in the honeycomb and then seal all or part of the honeycomb. The honeycomb is a honey bee that collects natural honey such as flower honey and sap. It refers to matured things that have been stored in honeycomb (Food Code). Honey contains sugars such as glucose and fructose as well as ideal nutrients such as vitamins, proteins, minerals and amino acids that are unique to pollen, preventing and treating fatigue, anemia, diabetes and liver disease, relieving hangovers and improving beauty. It is known to show excellent efficacy in promoting children's development and the like, and fructose, which is a main ingredient in honey, is consumed in the food industry as a sweetener because it has a fast absorption rate and high sweetening effect compared to sucrose.
그러나 밀원의 부족 및 순수벌꿀의 높은 생산 단가로 인하여 시중에는 다양한 가짜벌꿀이 유통되고 있다. 가짜벌꿀의 대표적인 예가 사양벌꿀(sugar-fed honey)이다. 사양벌꿀은 꿀벌을 기르는 과정에서 꿀벌이 설탕을 먹고 저장하여 생산한 꿀을 말한다. 설탕도 꽃꿀(nectar)처럼 꿀벌에 의해 채집된 후 꿀벌에서 꿀벌로 옮겨지며 체내의 효소에 의해 소화되고 벌집에 보관되어 탈수, 건조되는 과정을 거친다. 그러나 설탕은 꽃꿀보다 꿀벌 체내에 머무르는 시간이 짧고 꽃꿀에서 유래한 각종 영양소가 결핍되어 있기 때문에 사양벌꿀의 품질은 순수벌꿀보다 크게 떨어진다. 가짜벌꿀의 또 다른 예는 쌀 시럽이나 옥수수 시럽 등 불순물로 희석된 벌꿀이다. 쌀 시럽이나 옥수수 시럽은 가격이 순수벌꿀보다 훨씬 저렴하지만 순수벌꿀과 마찬가지로 과당이 포함되어 있어 유사한 단맛을 낸다. 그러나 이러한 쌀 시럽이나 옥수수 시럽이 첨가된 벌꿀 역시 각종 영양소 함량은 순수벌꿀보다 크게 떨어진다. However, due to the lack of wheat and the high production cost of pure honey, various fake honeys are on the market. A representative example of fake honey is sugar-fed honey. Honey is honey that is produced by bees eating sugar and storing it in the process of raising bees. Sugar, like nectar, is collected by bees and then transferred from bees to bees, digested by enzymes in the body, stored in honeycombs, dehydrated and dried. However, because sugar has a shorter stay in the body than honey and lacks various nutrients derived from honey, honey's quality is much lower than honey. Another example of fake honey is honey diluted with impurities such as rice syrup or corn syrup. Rice syrup and corn syrup are much cheaper than pure honey, but, like pure honey, they contain fructose and have a similar sweetness. However, honey added to these rice syrup or corn syrup is also significantly lower than various honey content.
시중가가 순수벌꿀의 1/5 미만인 가짜벌꿀이 순수벌꿀로 둔갑하여 판매되는 사태가 빈번히 발생하여 소비자의 신뢰가 떨어지고 양봉산업에 위협이 되자, 대한민국 식약처는 2009.08.01 부터 벌꿀 자율표시제를 도입하여 운영하고 있다. 벌꿀 자율표시제는 13C/12C 동위원소비율을 자율적으로 라벨에 표시하도록 한 것이다. 식물은 광합성에서 CO2를 고정하는 방식에 따라 C3, C4, CAM 식물로 분류되는데, 벼, 밀, 옥수수 등의 식물은 C3 식물이고, 밀원이 되는 꽃을 피우는 식물들은 주로 C4 식물에 해당한다. 순수벌꿀은 13C/12C 동위원소비율이 낮게 나타나고, C3 식물인 쌀이나 옥수수 시럽로 희석된 벌꿀, 설탕물로 제조된 사양벌꿀은 13C/12C 동위원소비율이 상대적으로 높게 나타난다. 예를 들어 아카시아꿀, 야생화꿀, 유채꿀, 밤꿀 등은 탄소동위원소비가 -23.5이하, 잡화꿀은 -22이하, 쌀 시럽 등이 첨가된 꿀은 -9 내지 -11이하, 사양벌꿀은 -12이하로 나타난다고 알려져 있다. 그러나 13C/12C 동위원소비율을 이용한 벌꿀의 진위 판별 방법은 복잡한 기기 및 숙련된 인력이 필요하고, 비트 등 C4 식물의 시럽이 첨가된 경우에는 가짜벌꿀임에도 불구하고 13C/12C 동위원소비율이 낮게 나타나기 때문에 한계가 있다. When the market price is less than 1/5 of the pure honey, the fake honey is sold as pure honey, which is frequently sold. As a result, consumers' confidence is lowered and the beekeeping industry is threatened. Korea Food and Drug Administration introduced honey autonomous labeling system from 2009.08.01. Operate. Honey autonomous labeling allows labeling of 13C / 12C isotope ratio autonomously. Plants are classified as C3, C4, CAM plants according to the method of fixing CO 2 in photosynthesis. Plants such as rice, wheat, and corn are C3 plants, and the flowering plants that are the source of wheat are mainly C4 plants. Pure honey has a low 13C / 12C isotope ratio, and honey honey diluted with C3 plant rice or corn syrup and sugar honey produced with sugar water has a relatively high 13C / 12C isotope ratio. For example, acacia honey, wildflower honey, rapeseed honey and chestnut honey have a carbon isotope ratio of -23.5 or less, miscellaneous honey -22 or less, honey with added rice syrup, -9 to -11 or less, and honey honey -12 It is known to appear as follows. However, the authenticity of honey using the 13C / 12C isotope ratio requires complex equipment and skilled manpower. When the syrups of C4 plants such as beet are added, the false 13C / 12C isotope ratio is low even though it is fake honey. There is a limit.
그 외에 벌꿀의 진위 판별 방법으로 벌꿀 내에 포함된 화학물질의 다변량 분석 방법, 벌꿀 내의 꽃가루를 계수하고 형태를 판별하는 방법 등이 보고된 바 있으나, 시간과 노력이 엄청나게 소요되고 대량의 시료를 처리할 수 없어 현실적으로 이용되지 않고 있다. In addition, as a method of determining the authenticity of honey, multivariate analysis of chemical substances contained in honey and counting and pollen counting of pollen in honey have been reported.However, it takes a great deal of time and effort to process a large amount of samples. It cannot be used realistically.
또한 과도한 열처리를 거친 벌꿀 역시 각종 가짜벌꿀만큼이나 품질이 떨어져 문제가 된다. 성숙된 벌꿀은 삼투압이 매우 높아 세균이나 곰팡이가 번식하지 못하여 장기간 보관이 가능하나, 충분히 탈수화되기 전에 채밀된 미성숙 벌꿀은 쉽게 변질된다. 따라서 양봉업자들이 납품 일정 등으로 인하여 조기 채밀한 미성숙 벌꿀을 고열 농축기로 농축, 건조하여 판매하는 일이 암암리에 일어나고 있다. 고열 농축기로 처리된 벌꿀은 열처리 과정에서 영양소가 파괴되어 충분히 성숙된 후 채밀된 천연벌꿀보다 영양소 함량이 현저히 낮다. In addition, the honey that has undergone excessive heat treatment is also a problem as the quality is poor as a variety of fake honey. Mature honey has a very high osmotic pressure, so bacteria and fungi do not grow and can be stored for a long time, but immature honey that has been pulverized before being sufficiently dehydrated is easily deteriorated. As a result, beekeepers are concentrating on selling prematurely mature immature honey to high-temperature concentrators and drying them due to delivery schedules. Honey treated with a high-temperature concentrator has significantly lower nutrient content than natural honey, which is fully matured after nutrients are destroyed during heat treatment.
본 발명은 벌꿀에서 식물 DNA 및 꿀벌 DNA를 검출함으로써 순수벌꿀과 열처리된 벌꿀, 사양벌꿀, 희석된 벌꿀, 및 순수벌꿀을 전혀 포함하지 않은 시료를 판별하는 방법을 제공하는 것을 목적으로 한다. An object of the present invention is to provide a method for discriminating pure honey and a sample containing no heat treated honey, specification honey, diluted honey, and pure honey by detecting plant DNA and bee DNA in honey.
상기의 목적을 달성하기 위하여, 본 발명은 벌꿀 시료에서 식물 DNA 및 꿀벌 DNA를 검출함으로써 그 벌꿀시료의 진위를 판별하는 방법을 제공한다. In order to achieve the above object, the present invention provides a method for determining the authenticity of the honey sample by detecting plant DNA and bee DNA in the honey sample.
본 발명에 있어서 ‘벌꿀 시료의 진위 판별’이란 순수벌꿀과 열처리된 벌꿀, 사양벌꿀, 희석된 벌꿀, 및 순수벌꿀을 전혀 포함하지 않은 시료를 판별하는 것을 의미한다. In the present invention, "determination of the authenticity of the honey sample" means to determine the sample that does not contain pure honey and heat-treated honey, specification honey, diluted honey, and pure honey at all.
벌꿀에는 다량의 화분 기원의 식물 DNA 가 함유되어 있다. 하지만 기존의 추출 방법을 사용 시 각 시료 당 많은 시간과 노력이 필요하므로 다양한 시료 분석용으로 사용은 어렵다. 또한 모든 꿀은 식물 기원의 꽃꿀을 꿀벌이 섭취한 후 반 소화 상태에서 다시 공급됨으로 꿀에는 꿀벌 기원의 체세포가 포함될 것으로 본 주장은 가정한다. 다양한 추출법 중에서 본 출원인의 추출 방법은 시료에 함유된 식물 꽃가루 기원 및 벌의 체세포 기원의 DNA 를 동시에 추출 할 수 있다. Honey contains a large amount of plant DNA from pollen origin. However, using a conventional extraction method requires a lot of time and effort for each sample, it is difficult to use for various sample analysis. It also assumes that honey will contain somatic cells of bee origin, as all honey will be fed back from the semi-digested state after honey bees have received nectar of plant origin. Applicants' extraction method among the various extraction methods can simultaneously extract DNA of plant pollen origin and bee somatic origin contained in the sample.
본 발명에 있어서 ‘순수벌꿀’은 꿀벌에 의하여 순수하게 꽃꿀로부터 제조된 벌꿀을 의미한다. In the present invention, 'pure honey' means honey prepared purely from flower honey by bees.
본 발명에 있어서 ‘열처리된 벌꿀’이란 벌꿀이 숙성과정을 통해 농축효과를 대신하기 위해 제조과정에서 인위적인 열처리된 벌꿀을 의미한다. In the present invention, 'heat-treated honey' refers to honey that is artificially heat-treated in the manufacturing process in order to replace the enrichment effect through the ripening process.
본 발명에 있어서 ‘사양벌꿀’이란 꿀벌에게 설탕이 함유된 식이물을 제공하여 꽃으로부터 기원한 꽃꿀 함량이 부족한 인위적으로 제조된 벌꿀을 의미한다. In the present invention, the 'specific honey' means an artificially produced honey that lacks the content of flower honey originated from a flower by providing a bee with a sugar-containing diet.
본 발명에 있어서 ‘희석된 벌꿀’이란 순수 벌꿀에 일부 쌀 시럽, 옥수수 시럽 등의 당분을 포함하고 있는 물질을 혼합, 첨가하여 제조된 벌꿀을 의미한다.In the present invention, 'diluted honey' means honey prepared by mixing and adding a substance containing sugar such as some rice syrup and corn syrup to pure honey.
본 발명에 있어서 ‘순수벌꿀을 전혀 포함하지 않은 시료’란 순수벌꿀을 전혀 포함하지 않고 쌀 시럽, 옥수수 시럽 등의 당분을 포함하고 있는 물질만으로 제조된 시료를 의미한다. In the present invention, the "sample which does not contain pure honey at all" refers to a sample made of only a substance containing sugar such as rice syrup and corn syrup without containing pure honey at all.
본 발명에 있어서 식물 DNA 또는 꿀벌 DNA 함량의 높고 낮은 정도는 순수벌꿀을 기준벌꿀로 하여 판단한다. In the present invention, the high and low degree of plant DNA or bee DNA content is determined based on pure honey as the reference honey.
본 발명의 방법에 있어서, 식물 DNA 및 꿀벌 DNA의 검출은 정량적 PCR을 이용하여 수행될 수 있다. In the method of the present invention, the detection of plant DNA and bee DNA can be performed using quantitative PCR.
본 발명은The present invention
1) 벌꿀 시료에서 DNA를 분리하는 단계 및1) separating the DNA from the honey sample and
2) 상기 분리된 DNA에서 식물 DNA 및 꿀벌 DNA를 검출하는 단계를 포함하는, 벌꿀의 진위 판별 방법을 제공한다.2) provides a method for determining the authenticity of honey, comprising the step of detecting plant DNA and bee DNA from the separated DNA.
본 발명의 방법에 있어서, 상기 1)단계는 보다 바람직하게는 대한민국 제놀루션 사의 Geno-Honey DNA Kit 와 자성비드(magnetic bead)를 사용하여 수행될 수 있다. 그 외에 사용될 수 있는 DNA 분리 방법으로 Qiaquick PCR Clean up Kit (Qiagen) 또는 DNeasy Tissue Kit (Qiagen)를 이용한 방법이 있다. 그러나 DNA의 분리 방법은 이에 제한되지 않는다. In the method of the present invention, the step 1) may be more preferably performed using Geno-Honey DNA Kit and magnetic beads of Genoa Korea. Other DNA separation methods that can be used include Qiaquick PCR Clean up Kit (Qiagen) or DNeasy Tissue Kit (Qiagen). However, the method of separating DNA is not limited thereto.
본 발명의 방법에 있어서, 상기 2)단계에서 식물 DNA 및 꿀벌 DNA를 검출하는 과정은 순서에 관계없이, 또는 동시에 수행될 수 있다. In the method of the present invention, the process of detecting plant DNA and bee DNA in step 2) may be performed in any order or simultaneously.
본 발명의 일 구현예로서, 상기 2)단계의 검출은 정량적 PCR을 이용하여 수행될 수 있다. 이때 서열번호 1 및 2의 식물 공통 프라이머 쌍 및 서열번호 3 및 4의 꿀벌 공통 프라이머 쌍을 사용할 수 있다. 그러나 사용될 수 있는 프라이머는 이에 한정되지 않으며, 향후 식물과 꿀벌에 대한 추가적인 공통 프라이머를 대체하여 사용할 수 있다. 이런 경우 동일 시료를 이용해서 값의 차이를 현재의 사용 프라이머와 값과 차이를 본 후 대체해서 사용할 수 있다. In one embodiment of the present invention, the detection of step 2) may be performed using quantitative PCR. At this time, the plant common primer pair of SEQ ID NO: 1 and 2 and the bee common primer pair of SEQ ID NO: 3 and 4 can be used. However, primers that can be used are not limited to this, and may be used in the future to replace additional common primers for plants and bees. In this case, the same sample can be used to replace the difference between the value and the current primer.
벌꿀의 식물 DNA 및 꿀벌 DNA 함량이 모두 낮은 경우, 하기의 4 가지 가능성이 있다. 즉, i. 불순물 첨가 벌꿀일 가능성(쌀 시럽이나 옥수수 시럽 역시 식물에서 유래한 것이지만 가공 처리 과정을 통해 식물 DNA가 거의 함유되어 있지 않음) ii. 제조과정에서 마이크로필터링 되었을 가능성, 및 iii. 제조과정에서 90℃이상의 고열로 처리된 벌꿀일 가능성, 및 iv. 순수 벌꿀이 일부이상의 불순물에 희석된 경우. 마이크로필터링은 기술적으로 복잡하고 비용과 노력이 많이 소모되어 상업적인 벌꿀 제품 생산에 이용될 가능성이 매우 낮은 점을 고려할 때, ii.마이크로필터링 되었을 가능성은 없다고 볼 수 있다. 따라서 벌꿀의 식물 DNA 및 꿀벌 DNA 함량이 모두 낮은 경우 불순물 첨가 벌꿀이거나 90℃이상의 고열로 처리된 벌꿀인 것으로 판별할 수 있다. If both the plant and bee DNA contents of honey are low, there are four possibilities. I. Possibility of impurity added honey (rice syrup or corn syrup is also derived from plants but contains little plant DNA through processing) ii. The possibility of microfiltering in the manufacturing process, and iii. The possibility of honey being treated at high temperatures above 90 ° C. during the manufacturing process, and iv. Pure honey is diluted with some or more impurities. Considering the fact that microfiltering is technically complicated and expensive and very unlikely to be used for the production of commercial honey products, it is unlikely that ii. Therefore, if the honey content of both the plant DNA and the bee DNA is low, it can be determined that the honey is impurity-added honey or honey treated at a high temperature of 90 ° C or higher.
벌꿀의 식물 DNA 함량이 낮으나 꿀벌 DNA 함량은 높은 경우, 그 벌꿀은 사양벌꿀인 것으로 판별할 수 있다. 설탕에는 식물 DNA가 미량 포함되어 있고, 설탕을 공급받은 꿀벌은 꽃을 방문하는 횟수가 현저히 낮기 때문이다. If honey has a low plant DNA content but a high bee DNA content, the honey may be determined to be honeycomb honey. Sugar contains trace amounts of plant DNA, and sugar-supplied honeybees visit flowers very low.
벌꿀의 식물 DNA 함량은 높으나 꿀벌 DNA 함량은 낮은 경우, 그 벌꿀은 약 80℃ 이상 90℃ 미만의 온도로 열처리된 벌꿀인 것으로 판별할 수 있다. 식물 기원 DNA 는 꽃가루 기원으로 두터운 세포벽에 싸여 있는 관계로 꿀벌 DNA보다는 열에 강하다. 약 80℃ 이상 90℃ 미만의 온도로 열처리한 경우에 식물 DNA 함량이 상당히 유지되는 반면 꿀벌 DNA 함량은 대폭 감소하기 때문이다. If the honey content of the plant DNA is high but the bee DNA is low, the honey may be determined to be honey that has been heat-treated at a temperature of about 80 ° C. or more and less than 90 ° C. Plant-derived DNA, because of its pollen origin, is wrapped in a thick cell wall, making it more heat resistant than honey bee DNA. This is because the plant DNA content is significantly maintained while the bee DNA content is significantly reduced when heat treated at a temperature of about 80 ° C. or more and less than 90 ° C.
벌꿀의 식물 DNA 와 꿀벌 DNA 함량이 동시에 낮은 경우, 그 벌꿀은 약 80℃ 이상 90℃ 미만의 온도로 열처리된 벌꿀인 것으로 판별할 수 있다. 식물 기원 DNA 는 꽃가루 기원으로 두터운 세포벽에 싸여 있는 관계로 꿀벌 DNA보다는 열에 강하다. 약 80℃ 이상 90℃ 미만의 온도로 열처리한 경우에 식물 DNA 함량이 상당히 유지되는 반면 꿀벌 DNA 함량은 대폭 감소하기 때문이다. 이런 경우 역시 순수 벌꿀이 일부 불순물에 희석된 경우도 포함한다.If the honey content of the plant DNA and the bee DNA is low at the same time, the honey may be determined to be honey that has been heat-treated at a temperature of about 80 ° C. or more and less than 90 ° C. Plant-derived DNA, because of its pollen origin, is wrapped in a thick cell wall, making it more heat resistant than honey bee DNA. This is because the plant DNA content is significantly maintained while the bee DNA content is significantly reduced when heat treated at a temperature of about 80 ° C. or more and less than 90 ° C. This also includes the case where pure honey is diluted with some impurities.
본 발명의 방법의 일 구현예로서, 상기 1) 단계에서 벌꿀 시료는 1 내지 3 ml이고, 상기 2) 단계에서 상기 분리된 DNA는 벌꿀 시료로부터 분리된 DNA 용액 5 내지 10 μl이고 상기 검출은 서열번호 1 및 서열번호 2의 식물 공통 프라이머 쌍 및 서열번호 3 및 4의 꿀벌 공통 프라이머 쌍을 이용하여 정량적 PCR로 수행될 수 있다. 이러한 정량적 PCR 조건은 당업자의 통상의 지식에 따라 다양하게 설정할 수 있으며, 이에 의하여 검출되는 Ct 값이 달라질 수 있다는 것이 당업자에게 자명하다. 따라서 상기 정량적 PCR 조건은 이에 의하여 제한되지 않는다. In one embodiment of the method of the present invention, the honey sample in step 1) is 1 to 3 ml, the separated DNA in step 2) is 5 to 10 μl of the DNA solution isolated from the honey sample and the detection is sequence It can be performed by quantitative PCR using the plant consensus primer pair of No. 1 and SEQ ID NO: 2 and the bee consensus primer pair of SEQ ID NOs: 3 and 4. It is apparent to those skilled in the art that such quantitative PCR conditions may be variously set according to a person skilled in the art, and thus, the Ct value detected may vary. Thus the quantitative PCR conditions are not limited thereby.
본 발명의 일 구현예로서, 상기 정량적 PCR 조건에서 식물 DNA에 대한 Ct 값이 27 이상으로 검출되는 경우 그 벌꿀 시료를 90℃ 이상으로 열처리된 벌꿀, 사양벌꿀, 희석된 벌꿀, 또는 순수벌꿀을 전혀 포함하지 않은 시료로 판별하는 방법을 제공한다. As an embodiment of the present invention, when the Ct value for the plant DNA is detected to be 27 or more under the quantitative PCR conditions, the honey sample is heat-treated at 90 ° C. or higher, specification honey, diluted honey, or pure honey at all. Provides a method for discriminating between samples that do not contain.
본 발명의 다른 구현예로서, 상기 정량적 PCR 조건에서 꿀벌 DNA에 대한 Ct 값이 25 이상으로 검출되는 경우 그 벌꿀 시료를 80℃ 이상으로 열처리된 벌꿀, 사양벌꿀, 희석된 벌꿀, 또는 순수벌꿀을 전혀 포함하지 않은 시료로 판별하는 방법을 제공한다.As another embodiment of the present invention, when the Ct value for honeybee DNA is detected at 25 or more under the quantitative PCR conditions, the honey sample is heat-treated at 80 ° C. or higher, specification honey, diluted honey, or pure honey at all. Provides a method for discriminating between samples that do not contain.
본 발명의 방법에 있어서, 식물 DNA 및 꿀벌 DNA가 모두 검출되지 않는 경우 그 벌꿀 시료를 90℃ 이상으로 열처리된 벌꿀 또는 순수벌꿀을 전혀 포함하지 않은 시료로 판별하는 방법을 제공한다. In the method of the present invention, when both the plant DNA and the bee DNA are not detected, the honey sample is provided with a method of discriminating the sample that contains no honey or pure honey heat-treated at 90 ° C or more.
본 발명의 다른 구현예로서, 상기 정량적 PCR 조건에서 식물 DNA에 대한 Ct 값이 27 이상으로 검출되나 꿀벌 DNA에 대한 Ct 값이 25 미만으로 검출되는 경우 그 벌꿀 시료를 사양벌꿀로 판별하는 방법을 제공한다. In another embodiment of the present invention, when the Ct value for plant DNA is detected to be 27 or more under the quantitative PCR condition, but the Ct value for bee DNA is detected to be less than 25, a method for discriminating the honey sample as the specification honey do.
본 발명의 또 다른 구현예로서, 상기 정량적 PCR 조건에서 식물 DNA에 대한 Ct 값이 27 이상으로 검출되고 꿀벌 DNA에 대한 Ct 값이 25 이상으로 검출되는 경우 그 벌꿀 시료를 희석된 벌꿀로 판별하는 방법을 제공한다. As another embodiment of the present invention, when the Ct value for plant DNA is detected to be 27 or more and the Ct value for bee DNA to be 25 or more in the quantitative PCR condition, the honey sample is determined as diluted honey. To provide.
본 발명의 방법에 있어서, 상기 정량적 PCR 조건에서 식물 DNA에 대한 Ct 값은 27을 기준으로 Ct 값이 작을수록 식물 DNA 가 다량 포함된 좋은 품질의 순수벌꿀로, 반면 Ct 값이 클수록 희석된 벌꿀, 사양벌꿀, 혹은 90℃ 이상의 온도로 열처리된 벌꿀로 판단할 수 있다. In the method of the present invention, the Ct value for the plant DNA in the quantitative PCR condition is a good quality pure honey containing a large amount of plant DNA, the smaller the Ct value based on 27, while the higher the Ct value is diluted honey, It can be judged as honey or heat-treated honey at a temperature above 90 ° C.
본 발명의 방법에 있어서, 상기 정량적 PCR 조건에서 꿀벌 DNA에 대한 Ct 값은 25를 기준으로 Ct 값이 작을수록 꿀벌 DNA 가 다량 포함된 좋은 품질의 벌꿀로, 반면 Ct 값이 클수록 희석된 벌꿀, 혹은 80℃ 이상의 온도로 열처리된 벌꿀로 판단할 수 있다. In the method of the present invention, the Ct value for the bee DNA in the quantitative PCR conditions is a good quality honey containing a large amount of bee DNA as the Ct value is smaller, based on 25, while the honey is diluted, the higher the Ct value, or It can be judged that honey is heat-treated at a temperature of 80 ° C or higher.
상기에서 기술된 바와 같이, 함유된 각 두 종의 DNA 추출과 이에 대한 측정을 통해 상대적인 값의 고저에 따라 벌꿀의 품질을 측정할 수 있다. As described above, the extraction of DNA from each of the two species contained therein and the measurement thereof can be used to determine the quality of honey according to the relative values.
본 발명의 방법은 다수의 시료를 동시에 처리할 수 있고 많은 양의 시료를 소모하지 않으며, 간단하고 신속하게 수행될 수 있다. 따라서 벌꿀의 효과적인 진위 판별을 가능하게 하여 소비자의 신뢰를 보장하고 순수벌꿀 생산을 장려할 수 있을 것이다.The method of the present invention can process multiple samples simultaneously, does not consume large amounts of samples, and can be performed simply and quickly. Therefore, it is possible to ensure the trust of consumers and encourage the production of pure honey by enabling the effective authenticity of honey.
도 1은 열처리에 따른 벌꿀 내 식물 DNA 및 꿀벌 DNA 함량 변화를 나타낸 도이다. 1 is a diagram showing changes in plant DNA and bee DNA content in honey according to the heat treatment.
도 2는 제조일로부터 0, 2, 4, 6개월까지 보관되었을 때 시판되는 벌꿀 제품 내의 식물 DNA 및 꿀벌 DNA 함량 변화를 나타낸 도이다. Figure 2 is a diagram showing the changes in plant DNA and bee DNA content in the honey product marketed when stored for 0, 2, 4, 6 months from the date of manufacture.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 실시예에 의해 본 발명의 내용이 한정되는 것은 아니다. Hereinafter, preferred examples are provided to aid in understanding the present invention. However, the following examples are merely provided to more easily understand the present invention, and the contents of the present invention are not limited by the examples.
이하에서 언급된 시약 및 용매는 특별한 언급이 없는 한 시그마 알드리치 사(Sigma Aldrich®) 로부터 구입한 것이다.The reagents and solvents mentioned below were purchased from Sigma Aldrich ® unless otherwise noted.
실시예 1. 식물 및 꿀벌 DNA의 검출을 이용한 벌꿀의 진위 판별Example 1 Authenticity of Honey Using Detection of Plant and Bee DNA
1-1. 벌꿀 시료의 준비 1-1. Preparation of Honey Samples
대한민국 전라남도 화순의, 70% 이상 아카시아 나무로 조성된 숲에서 100 미터 이상 떨어진 곳에 위치한 벌집으로부터 아카시아꿀을 채밀하였다. 35일간 벌집에서의 밀랍 봉인(wax capping) 후에 2012년 7월 15일부터 20일에 걸쳐 가열된 밀랍 칼로 봉인된 밀랍을 잘라내고 벌집을 원심분리함으로써 채밀하였다. 채밀된 벌꿀의 시료명을 각각 아카시아꿀 Ⅰ 및 Ⅱ로 하였다.Acacia honey was harvested from a honeycomb located more than 100 meters from a forest composed of more than 70% acacia trees in Hwasun, Jeollanam-do, Korea. After wax capping in a honeycomb for 35 days, the beeswax sealed with a heated wax knife over July 15 to 20, 2012 was cut out and harvested by centrifuging the honeycomb. The sample names of the honey honey were acacia honey I and II, respectively.
상기와 동일한 지역에서 사양벌꿀을 채밀하였다. 설탕을 따뜻한 증류수에 용해하여 30% 설탕 수용액을 준비하고, 이를 벌집 입구에서 10 cm 내에 위치한 30X40 cm 크기의 Pyrex 글래스 플레이트에 7일간 배치하였다. 설탕물 공급 이후 35일간 벌집에서의 밀랍 봉인(wax capping) 후에 2012년 7월 15일부터 20일에 걸쳐 가열된 밀랍 칼로 봉인된 밀랍을 잘라내고 벌집을 원심분리함으로써 채밀하였다. 채밀된 벌꿀의 시료명을 각각 사양벌꿀 Ⅰ, Ⅱ 및 Ⅲ으로 하였다. In the same area as above, the honey was harvested. The sugar was dissolved in warm distilled water to prepare an aqueous 30% sugar solution, which was placed in a 30 × 40 cm Pyrex glass plate located within 10 cm of the honeycomb inlet for 7 days. After waxing in a honeycomb 35 days after sugar water supply (wax capping) was sealed by cutting the beeswax sealed with a beeswax knife heated from 15 to 20 July 2012 and centrifuged the honeycomb. The sample names of the honey honey were set as the specification honey I, II and III, respectively.
상기와 동일한 지역에서, 각종 꽃 및 식물이 혼재하는 약 1.2 km 떨어진 곳에 위치한 벌집으로부터 잡화꿀을 채밀하였다. 35일간 벌집에서의 밀랍 봉인(wax capping) 후에 2012년 9월 20일부터 10일에 걸쳐 가열된 밀랍 칼로 봉인된 밀랍을 잘라내고 벌집을 원심분리함으로써 채밀하였다. 채밀된 벌꿀의 시료명을 각각 잡화꿀 Ⅰ 및 Ⅱ로 하였다. In the same area as above, miscellaneous honey was harvested from a honeycomb located about 1.2 km away from various flowers and plants. After wax capping in a honeycomb for 35 days, the beeswax sealed with a heated wax knife over September 20 to 10, 2012 was cut out and the honeycomb was centrifuged. The sample names of the honey that was sampled were miscellaneous honeys I and II, respectively.
채밀된 벌꿀은 햇빛에 노출되지 않도록 하고 상온에서 보관하였다. The honey that was collected was not exposed to sunlight and stored at room temperature.
1-2. DNA 추출1-2. DNA extraction
대한민국 제놀루션 사의 Geno-Honey DNA 키트를 사용하여 1-1에서 준비한 벌꿀 시료로부터 DNA를 추출하였다. 구체적인 추출 과정은 하기와 같다.DNA was extracted from the honey samples prepared in 1-1 using Geno-Honey DNA kit manufactured by Genol. The specific extraction process is as follows.
먼저 각각의 벌꿀 시료를 1 ml 피펫을 사용하거나 부어서 약 3 ml 씩 15 ml 팔콘 튜브로 옮겼다. 수직 임상 원심분리기로 1분간 1,000 rpm으로 원심분리한 후 전체꿀의 부피를 측정하였다. 측정된 부피의 2배 부피의 미리 37℃로 데워진 증류수를 첨가한 후 혼합하여 용해시켰다. 잘 용해되지 않는 경우 금속 막대로 휘저어 완전히 용해시켰다. 이 용액을 1.5 ml 씩 취하여 마이크로튜브로 옮긴 후, 2분간 14,000 rpm에서 원심분리하였다. 상층액을 버린 후, 동일 용액 1.5 ml을 다시 첨가하고 재 원심분리하였다. 그 후 상층액을 완전히 제거한 후 남은 고형물을 약 1분간 vortex 한 후, Geno-Honey DNA 키트의 용액 0.6 ml 및 자성비드 40 μl 을 첨가하고 10초간 볼텍싱하였다. 2분 후 마이크로튜브를 자성 스탠드(Jinfinity Bioscience, Augusta, USA)로 옮겼다. 상층액을 버리고 1 ml의 70% 에탄올을 첨가하고 자성 스탠드에서 5-6회 뒤집어 혼합한 후, 다시 상층액을 버렸다. 그 후 14,000 rpm에서 10초간 원심분리하고 피펫팅을 통해 모든 액체를 제거하였다. 그 다음 50 μl의 증류수를 첨가하고 펄스 볼텍싱 함으로써 자성 비드에 결합한 DNA를 추출하였다. Each honey sample was first transferred to a 15 ml Falcon tube by about 3 ml using a 1 ml pipette or poured. The volume of whole honey was measured after centrifugation at 1,000 rpm for 1 minute with a vertical clinical centrifuge. Two times the volume of the measured volume was added to distilled water warmed to 37 ° C. before mixing to dissolve. If not soluble, stir with a metal rod to dissolve completely. 1.5 ml of this solution was taken and transferred to a microtube, followed by centrifugation at 14,000 rpm for 2 minutes. After discarding the supernatant, 1.5 ml of the same solution was added again and centrifuged again. After the supernatant was completely removed, the remaining solids were vortexed for about 1 minute, and then 0.6 ml of the solution of Geno-Honey DNA kit and 40 μl of magnetic beads were added and vortexed for 10 seconds. After 2 minutes the microtubes were transferred to a magnetic stand (Jinfinity Bioscience, Augusta, USA). The supernatant was discarded and 1 ml of 70% ethanol was added and inverted and mixed 5-6 times on a magnetic stand, after which the supernatant was discarded again. It was then centrifuged at 14,000 rpm for 10 seconds and all liquid was removed by pipetting. Then, 50 μl of distilled water was added and pulse vortexed to extract DNA bound to the magnetic beads.
1-3. 식물 및 꿀벌 DNA의 검출1-3. Detection of Plant and Bee DNA
벌꿀에는 다양한 꿀벌 DNA 및 식물 DNA가 포함되어 있을 것을 고려하여, 하기와 같이 각각에 대한 공통 프라이머(universal primer)를 사용하였다. 프라이머의 서열은 하기 표 1과 같다. Considering that honey contains various bee DNA and plant DNA, a universal primer for each was used as follows. The sequence of the primer is shown in Table 1 below.
[표 1]TABLE 1
Figure PCTKR2014003369-appb-I000001
Figure PCTKR2014003369-appb-I000001
상기 1-2에서 준비한 DNA 추출 용액 5 μl, 12.5 ul의 2 X SYBR premix Ex Taq (Takara, Japan) 및 각각의 프라이머 0.2 pM씩을 사용하여 총 25 ul를 이용한 정량적 PCR을 수행하였다. 정량적 PCR에는 Smartcyler (Cepheid, US)를 사용하여 정량적 pcr을 진행 하였다. 벌의 DNA 측정은 95도에서 30초간 처리 후 95도에서 5초간 변성 후 57℃에서 20초 동안 어닐링 및 연장이 일어나도록 총 35 사이클 수행하였다. 식물의 DNA 측정은 95도에서 30초간 처리 후 95도에서 5초간 변성 후 55℃에서 20초 동안 어닐링 및 연장이 일어나도록 총 35 사이클 수행하였다. 5 μl of the DNA extraction solution prepared in 1-2, 12.5 ul of 2 X SYBR premix Ex Taq (Takara, Japan) and 0.2 pM of each primer were used for quantitative PCR using a total of 25 ul. For quantitative PCR, Smartcyler (Cepheid, US) was used to perform quantitative pcr. Bee DNA measurements were performed for a total of 35 cycles so that annealing and extension occurred at 57 ° C. for 20 seconds after denaturation at 95 ° C. for 5 seconds after treatment at 95 ° C. for 30 seconds. Plant DNA measurements were performed for a total of 35 cycles so that annealing and extension occurred at 55 ° C. for 20 seconds after denaturation at 95 ° C. for 5 seconds after treatment at 95 ° C. for 30 seconds.
각 시료에 대한 결과는 하기 표 2에 나타내었다. Ct 값은 3회의 독립적 분석 후 얻은 평균값이다. Ct 값이 작을수록 DNA 함량이 높은 것을 의미한다. The results for each sample are shown in Table 2 below. The Ct value is the average value obtained after three independent analyzes. Smaller Ct values indicate higher DNA content.
[표 2]TABLE 2
Figure PCTKR2014003369-appb-I000002
Figure PCTKR2014003369-appb-I000002
상기 표 2에 기재된 바와 같이, 사양벌꿀의 경우 식물 DNA에 대한 Ct 값이 아카시아꿀이나 잡화꿀보다 높게 나타난 반면 꿀벌 DNA에 대한 Ct 값은 비슷하게 나타나 식물 DNA 함량은 낮고 꿀벌 DNA 함량은 순수벌꿀과 차이가 없는 것을 알 수 있었다. 쌀 시럽 및 옥수수 시럽에서는 식물 DNA 및 꿀벌 DNA가 모두 검출되지 않았다. As shown in Table 2, in the case of specification honey, the Ct value of plant DNA was higher than that of acacia honey or miscellaneous honey, while the Ct value of bee DNA was similar, indicating that the plant DNA content was low and the bee DNA content was different from that of pure honey. I could see that there is no. Neither plant DNA nor bee DNA was detected in rice syrup and corn syrup.
실시예 2. 열처리에 따른 DNA 함량의 변화 확인Example 2. Confirmation of change of DNA content by heat treatment
3배 희석된 아카시아 벌꿀 시료 1.5 ml를 마이크로튜브로 옮긴 후 각각 90℃, 80℃ 및 55℃로 설정된 열블록에 두어 열처리하였다. 그 후 마이크로튜브를 원심분리하여 펠렛을 수집하고, 두 개의 동일한 시료에서 수집한 펠렛을 합친 후 실시예 1-2 및 1-3의 과정을 동일하게 수행하여 열처리된 시료에서의 꿀벌 DNA 및 식물 DNA에 대한 Ct 값의 변화를 확인하였다. 1.5 ml of three-fold diluted acacia honey samples were transferred to microtubes and heat treated by placing them in a heat block set at 90 ° C., 80 ° C. and 55 ° C., respectively. Thereafter, the pellets are collected by centrifugation of the microtubes, and the pellets collected from two identical samples are combined, and then the same procedure as in Examples 1-2 and 1-3 is performed to obtain honeybee DNA and plant DNA from the heat-treated sample. The change in Ct value for was confirmed.
결과는 도 1에 나타내었다. 도 1 상단의 도에서, 90℃로 처리된 벌꿀에서 꿀벌 DNA 및 식물 DNA 모두 열처리 1시간 내에 현저히 감소된 것을 알 수 있다. 도 1 중단의 도에서, 80℃로 처리된 벌꿀에서 식물 DNA는 열처리 2시간 후에도 최초의 약 80%가 유지되나 꿀벌 DNA는 열처리 2시간 이내에 최초 DNA 양의 5% 미만으로 감소하는 것을 알 수 있다. 이는 세포벽에 의해 보호되는 식물 DNA가 꿀벌 DNA보다 열에 대한 안정성이 높기 때문인 것으로 보인다. 도 1 하단의 도에서 55℃로 처리된 벌꿀에서 꿀벌 DNA 및 식물 DNA 모두 거의 변화가 없는 것을 알 수 있다. The results are shown in FIG. In the diagram at the top of FIG. 1, it can be seen that both honey bee DNA and plant DNA in honey treated at 90 ° C. were significantly reduced within 1 hour of heat treatment. In the diagram of FIG. 1, it can be seen that in the honey treated at 80 ° C., the plant DNA was maintained at about 80% after 2 hours of heat treatment, but the bee DNA decreased to less than 5% of the original DNA amount within 2 hours of heat treatment. . This seems to be because plant DNA protected by cell walls is more heat resistant than honey bee DNA. In the diagram at the bottom of Figure 1 it can be seen that in the honey treated at 55 ℃ both bee DNA and plant DNA almost no change.
상기 결과로부터 벌꿀 시료로부터 꿀벌 DNA 및 식물 DNA가 모두 검출되지 않거나 미량만이 검출되면 제조과정에서 90℃ 이상의 온도로 열처리되었을 가능성이 있는 것으로, 식물 DNA만이 주로 검출된다면 제조과정에서 약 80℃의 온도로 열처리되었을 가능성이 있는 것으로 판별할 수 있다. From the above results, if neither bee DNA nor plant DNA is detected from the honey sample or only a small amount is detected, it may be heat treated at a temperature of 90 ° C. or higher during the manufacturing process. It can be judged that there is a possibility that the heat treatment.
실시예 3. 장기 보관 후 DNA의 확인Example 3. Identification of DNA After Long-Term Storage
시판되는 벌꿀 제품이 장기간 보관된 경우 꿀벌 DNA 및 식물 DNA 함량이 어떻게 변화하는지 알아보기 위하여, 상온에서 보관된 대한민국에서 생산된 벌꿀 제품 시료 2종(잡화꿀인 K12 시료 및 아카시아꿀인 K17 시료. 자세한 정보는 하기의 표 3 참조)를 생산된 날부터 6개월까지 모니터링하였다. 상기 실시예 1에 기재된 방법대로 DNA를 추출한 후 꿀벌 DNA 및 식물 DNA를 정량적 PCR을 사용하여 검출하였다. To find out how bee DNA and plant DNA contents change when commercially available honey products are stored for a long time, two samples of honey products produced in Korea (K12 samples of miscellaneous honey and K17 samples of acacia honey) stored at room temperature. For information, see Table 3 below) for 6 months from the day of production. After extracting DNA according to the method described in Example 1, honeybee DNA and plant DNA were detected using quantitative PCR.
결과는 도 2에 나타내었다. 도 2에서 K12 시료(상단의 도) 및 K17시료(하단의 도) 모두 시간이 경과하여도 꿀벌 DNA 및 식물 DNA 함량이 일정하게 유지되는 것을 확인하였다. The results are shown in FIG. In Figure 2, both the K12 sample (top diagram) and the K17 sample (bottom diagram) were confirmed that the bee DNA and plant DNA contents were maintained constant over time.
상기 결과로부터 벌꿀에서의 꿀벌 DNA 및 식물 DNA 함량이 장기간 보관 후에도 그 벌꿀의 진위를 판별할 수 있는 마커가 될 수 있음을 확인하였다. From the above results, it was confirmed that the honey bee DNA and plant DNA content in the honey can be a marker for determining the authenticity of the honey even after long-term storage.
실시예 4. 시판되는 벌꿀의 판별Example 4 Identification of Commercial Honey
대한민국 서울 지역의 식료품점 또는 백화점에서 국산 벌꿀 제품 23종을 구매하여 상기 실시예1에 기재된 바와 같이 정량적 PCR을 이용하여 포함된 꿀벌 DNA 및 식물 DNA를 측정하였다. 구체적인 데이터는 하기 표 3과 같다. Ct 값은 2회의 독립적 분석 후 얻은 평균값이다.Bee honey and plant DNA were measured by quantitative PCR as described in Example 1 above by purchasing 23 kinds of domestic honey products at a grocery store or a department store in Seoul, South Korea. Specific data are shown in Table 3 below. The Ct value is the average value obtained after two independent analyzes.
[표 3]TABLE 3
Figure PCTKR2014003369-appb-I000003
Figure PCTKR2014003369-appb-I000003
상기 표 3에 나타난 바와 같이, 총 23종의 국산 벌꿀 제품 시료 중 6종의 시료(K4, K10, K12, K16, K17, 및 K22)만이 높은 수준의 식물 DNA를 함유하였다. 2종의 시료(K11 및 K19)는 식물 DNA를 전혀 포함하고 있지 않았다. 이와 같이 식물 DNA를 적게 포함하고 있거나 전혀 포함하고 있지 않은 시료들은 사양벌꿀이거나 불순물 첨가 벌꿀이거나 제조과정에서 90℃ 이상의 고열로 처리된 벌꿀이라고 볼 수 있다. K6, 7, 8, 13, 14, 20 의 경우는 각 DNA 가 함유되어 있으나 값이 모두 높은 것으로 보아 순수한 벌꿀이 불순물로 희석된 벌꿀로 판단할 수 있다. 일부 경우 (K2, 3, 5, 18) 식물 DNA 결핍으로 보아서 사양벌꿀로 판단된다. 또한 4종의 시료(K9, 11, 19, 및 21)는 두 가지 DNA를 전혀 포함하고 있지 않거나 미량 함유함으로 보아 순수벌꿀을 포함하고 있지 않거나(즉, 불순물만으로 제조됨) 혹은 제조과정에서 고열로 처리된 벌꿀이라고 볼 수 있다. As shown in Table 3, only six samples (K4, K10, K12, K16, K17, and K22) of the 23 domestic honey product samples contained high levels of plant DNA. Two samples (K11 and K19) did not contain any plant DNA. As such, samples containing little or no plant DNA may be considered honey or impurity added honey or honey processed at a high temperature of 90 ° C. or higher during the manufacturing process. In case of K6, 7, 8, 13, 14, 20, each DNA is contained but the value is high, so pure honey can be judged as honey diluted with impurities. In some cases (K2, 3, 5, 18) it is considered to be honey bee due to plant DNA deficiency. In addition, the four samples (K9, 11, 19, and 21) do not contain any pure DNA or contain trace amounts of the two DNAs, which do not contain pure honey (i.e., are made only of impurities) or It can be considered processed honey.
일부 제품은 벌꿀 자율표시제에 따라 13C/12C 동위원소 비율을 라벨에 기재하고 있었다. K1, 2, 6, 13, 및 14 시료는 13C/12C 동위원소 비율이 23.5라고 기재하고 있었음에도 불구하고 식물 DNA가 아주 적은 양으로 함유되어 있었다. 이는 그 제품들이 라벨에 13C/12C 동위원소 비율에 오류가 있거나, 비트 등 C4 식물을 첨가했다는 것을 암시한다. Some products listed the 13C / 12C isotope ratio on the label according to the honey autolabel. K1, 2, 6, 13, and 14 samples contained very small amounts of plant DNA, although the 13C / 12C isotope ratio was described as 23.5. This suggests that the products may have errors in the 13C / 12C isotope ratio on the label, or added C4 plants such as beet.
또한 콤비타 사(Paengoroa. New Zealand)의 대리점 또는 서울지역의 백화점에서 수입산 벌꿀 제품 14종 및 제조국가가 밝혀지지 않은 벌꿀 제품 2종을 구매하여 상기 실시예1에 기재된 바와 같이 정량적 PCR을 이용하여 포함된 꿀벌 DNA 및 식물 DNA를 측정하였다. 수입산 벌꿀 제품들은 라벨에 13C/12C 동위원소 비율을 기재하고 있지 않았기 때문에 이에 대한 데이터는 없다. 구체적인 데이터는 하기 표 4와 같다. Ct 값은 2회의 독립적 분석 후 얻은 평균값이다.In addition, 14 kinds of imported honey products and 2 kinds of honey products of unknown country were purchased from a distributor of Paengoroa.New Zealand or a department store in Seoul, and quantitative PCR was used as described in Example 1 above. Bee DNA and plant DNA included were measured. Imported honey products do not have a 13C / 12C isotope ratio on the label, so there is no data on this. Specific data are shown in Table 4 below. The Ct value is the average value obtained after two independent analyzes.
[표 4]TABLE 4
Figure PCTKR2014003369-appb-I000004
Figure PCTKR2014003369-appb-I000004
상기 표 4에 나타난 바와 같이, 6종의 시료 (I2, 10, 11, 12, 13)은 다량의 두 가지 DNA 가 함유된 좋은 품질의 제품으로 판단된다. (I1, 3, 6, 7, 8, 9)의 시료의 경우 현격하게 낮은 식물 DNA 함량으로 보아 사양꿀로 판정된다. I4 시료는 두 가지 DNA 가 결핍된 점으로 보아 순수벌꿀이 포함되어 있지 않은 것으로 판명된다. 제조국가가 밝혀지지 않은 2종의 시료 (U1, U2) 도 매우 적은 양의 식물 DNA 및 꿀벌 DNA를 포함하며 이는 희석된 꿀로 판단된다. As shown in Table 4, six samples (I2, 10, 11, 12, 13) are judged to be good quality products containing a large amount of two DNA. Samples of (I1, 3, 6, 7, 8, and 9) are judged to be honey because of their significantly lower plant DNA content. The I4 sample was found to be free of pure honey because of its lack of two DNAs. Two samples of unknown origin (U1, U2) also contain very small amounts of plant DNA and bee DNA, which is believed to be diluted honey.

Claims (10)

  1. 벌꿀 시료에서 식물 DNA 및 꿀벌 DNA를 검출함으로써 그 벌꿀시료의 진위를 판별하는 방법. A method for determining the authenticity of honey samples by detecting plant DNA and bee DNA in honey samples.
  2. 제1항에 있어서, 상기 식물 DNA 및 꿀벌 DNA의 검출은 정량적 PCR을 이용하여 수행되는 방법. The method of claim 1, wherein the detection of plant DNA and bee DNA is performed using quantitative PCR.
  3. 1) 벌꿀 시료에서 DNA를 분리하는 단계;및1) separating the DNA from the honey sample; and
    2) 상기 분리된 DNA에서 식물 DNA 및 꿀벌 DNA를 검출하는 단계를 포함하는, 벌꿀시료의 진위 판별 방법.2) detecting the authenticity of the honey sample, comprising the step of detecting plant DNA and bee DNA from the separated DNA.
  4. 제3항에 있어서, 상기 2) 단계는 서열번호 1 및 서열번호 2의 식물 공통 프라이머 쌍 및 서열번호 3 및 4의 꿀벌 공통 프라이머 쌍을 이용하여 수행되는 방법. The method of claim 3, wherein step 2) is performed using a plant common primer pair of SEQ ID NO: 1 and SEQ ID NO: 2 and a bee common primer pair of SEQ ID NO: 3 and 4.
  5. 제3항에 있어서, 상기 1) 단계에서 벌꿀 시료는 1 내지 3 ml이고, 상기 2) 단계에서 상기 분리된 DNA는 벌꿀 시료로부터 분리된 DNA 용액 5 내지 10 μl이고 상기 검출은 서열번호 1 및 서열번호 2의 식물 공통 프라이머 쌍 및 서열번호 3 및 4의 꿀벌 공통 프라이머 쌍을 이용하여 정량적 PCR로 수행되는 방법. The method of claim 3, wherein the honey sample in step 1) is 1 to 3 ml, and in step 2), the separated DNA is 5-10 μl of the DNA solution isolated from the honey sample and the detection is SEQ ID NO: 1 and the sequence. A method performed by quantitative PCR using a plant consensus primer pair of No. 2 and a bee consensus primer pair of SEQ ID NOs: 3 and 4.
  6. 제5항에 있어서, 식물 DNA에 대한 Ct 값이 27 이상으로 검출되는 경우 그 벌꿀 시료를 90℃ 이상으로 열처리된 벌꿀, 사양벌꿀, 희석된 벌꿀, 또는 순수벌꿀을 전혀 포함하지 않은 시료로 판별하는 방법. The method according to claim 5, wherein when the Ct value of the plant DNA is detected to be 27 or more, the honey sample is determined as a sample containing no honey, specification honey, diluted honey, or pure honey, which is heat-treated at 90 ° C or higher. Way.
  7. 제5항에 있어서, 꿀벌 DNA에 대한 Ct 값이 25 이상으로 검출되는 경우 그 벌꿀 시료를 80℃ 이상으로 열처리된 벌꿀, 사양벌꿀, 희석된 벌꿀, 또는 순수벌꿀을 전혀 포함하지 않은 시료로 판별하는 방법. The method according to claim 5, wherein when the Ct value of the honeybee DNA is detected to be 25 or more, the honey sample is determined as a sample containing no honey, specification honey, diluted honey, or pure honey at least 80 ° C. Way.
  8. 제3항에 있어서, 식물 DNA 및 꿀벌 DNA가 모두 검출되지 않는 경우 그 벌꿀 시료를 90℃ 이상으로 열처리된 벌꿀 또는 순수벌꿀을 전혀 포함하지 않은 시료로 판별하는 방법. 4. The method according to claim 3, wherein when both plant DNA and bee DNA are not detected, the honey sample is determined as a sample containing no honey or pure honey heat-treated at 90 ° C or higher.
  9. 제5항에 있어서, 식물 DNA에 대한 Ct 값이 27 이상으로 검출되나 꿀벌 DNA에 대한 Ct 값이 25 미만으로 검출되는 경우 그 벌꿀 시료를 사양벌꿀로 판별하는 방법. The method according to claim 5, wherein when the Ct value for the plant DNA is detected to be 27 or more but the Ct value for the bee DNA is to be detected to be less than 25, the honey sample is determined as the specification honey.
  10. 제5항에 있어서, 식물 DNA에 대한 Ct 값이 27 이상으로 검출되고 꿀벌 DNA에 대한 Ct 값이 25 이상으로 검출되는 경우 그 벌꿀 시료를 희석된 벌꿀로 판별하는 방법. The method of claim 5, wherein when the Ct value for plant DNA is detected to be 27 or more and the Ct value for bee DNA is detected to be 25 or more, the honey sample is determined as diluted honey.
PCT/KR2014/003369 2013-04-17 2014-04-17 Method for determining authenticity of honey using dna detection WO2014171767A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201361813121P 2013-04-17 2013-04-17
US61/813,121 2013-04-17

Publications (1)

Publication Number Publication Date
WO2014171767A1 true WO2014171767A1 (en) 2014-10-23

Family

ID=51731619

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/003369 WO2014171767A1 (en) 2013-04-17 2014-04-17 Method for determining authenticity of honey using dna detection

Country Status (1)

Country Link
WO (1) WO2014171767A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101747243B1 (en) * 2015-05-22 2017-06-14 대한민국 Method for Adulteration of Pure Honey with Rice Syrup
US11162950B2 (en) 2018-11-29 2021-11-02 International Business Machines Corporation Zonal nanofluidic anti-tamper device for product authentication
US11164190B2 (en) 2018-11-29 2021-11-02 International Business Machines Corporation Method for product authentication using a microfluidic reader
CN113621731A (en) * 2021-08-26 2021-11-09 中国农业科学院蜜蜂研究所 Method for tracing and identifying origin of Guizhou blueberry honey
CN113699220A (en) * 2021-08-26 2021-11-26 中国农业科学院蜜蜂研究所 Method for identifying honey and tracing honey producing area by regional plant sources
KR20220022730A (en) * 2020-08-19 2022-02-28 경기대학교 산학협력단 Method of DNA isolation using affinity column in native honey
KR20220026093A (en) * 2020-08-25 2022-03-04 경기대학교 산학협력단 Method of DNA isolation using affinity column in sugar honey
WO2023093731A1 (en) * 2021-11-23 2023-06-01 中国农业科学院蜜蜂研究所 Method for identifying degree of maturity of acacia honey
US11710005B2 (en) 2018-11-29 2023-07-25 International Business Machines Corporation Use of microfluidic reader device for product authentication

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000049688A (en) * 2000-04-24 2000-08-05 김태진 Verification kit for real honey
WO2008136730A1 (en) * 2007-05-03 2008-11-13 Tobias Olofsson Novel bacteria isolated from fresh honey or the honey producing tract of honey bees
US20100120032A1 (en) * 2007-01-29 2010-05-13 Marc Henri Germain Van Den Bulcke Transgenic plant event detection

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000049688A (en) * 2000-04-24 2000-08-05 김태진 Verification kit for real honey
US20100120032A1 (en) * 2007-01-29 2010-05-13 Marc Henri Germain Van Den Bulcke Transgenic plant event detection
WO2008136730A1 (en) * 2007-05-03 2008-11-13 Tobias Olofsson Novel bacteria isolated from fresh honey or the honey producing tract of honey bees

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
RURAL DEVELOPMENT ADMINISTRATION: "Sorting Good ''Honey''-Rural Development Administration briefing, ''development of Method for Mixed Pollen Analysis'' for Measurement of Honey Purity", RURAL DEVELOPMENT ADMINISTRATION BRIEFING MATERIALS, 22 June 2011 (2011-06-22), Retrieved from the Internet <URL:http://www.rda.go.kr/board/board.do?catgId=&menu_id=pun&boardId=briefing&searchKey=subject&userJumin=&searchVal=0622&searchSDate=&prgId=spe_briefing&ptrtlet_kind=default&portlet_rowCnt=4&mode=view&portlet_gubun=1&currPage=1&CNNTENT2=&searchEDate=&CONTENT1=&nckUserNm=&list_kind=news&CONTENT3=&dataNo=> *
SCHNELL, IDA B RHOLM ET AL.: "Characterisation of insect and plant origins using DNA extracted from small volumes of bee honey.", ARTHROPOD-PLANT INTERACTIONS, vol. 4, no. 2, 2010, pages 107 - 116 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101747243B1 (en) * 2015-05-22 2017-06-14 대한민국 Method for Adulteration of Pure Honey with Rice Syrup
US11162950B2 (en) 2018-11-29 2021-11-02 International Business Machines Corporation Zonal nanofluidic anti-tamper device for product authentication
US11164190B2 (en) 2018-11-29 2021-11-02 International Business Machines Corporation Method for product authentication using a microfluidic reader
US11710005B2 (en) 2018-11-29 2023-07-25 International Business Machines Corporation Use of microfluidic reader device for product authentication
KR20220022730A (en) * 2020-08-19 2022-02-28 경기대학교 산학협력단 Method of DNA isolation using affinity column in native honey
KR102371559B1 (en) 2020-08-19 2022-03-07 경기대학교 산학협력단 Method of DNA isolation using affinity column in native honey
KR20220026093A (en) * 2020-08-25 2022-03-04 경기대학교 산학협력단 Method of DNA isolation using affinity column in sugar honey
KR102371553B1 (en) 2020-08-25 2022-03-07 경기대학교 산학협력단 Method of DNA isolation using affinity column in sugar honey
CN113621731A (en) * 2021-08-26 2021-11-09 中国农业科学院蜜蜂研究所 Method for tracing and identifying origin of Guizhou blueberry honey
CN113699220A (en) * 2021-08-26 2021-11-26 中国农业科学院蜜蜂研究所 Method for identifying honey and tracing honey producing area by regional plant sources
WO2023093731A1 (en) * 2021-11-23 2023-06-01 中国农业科学院蜜蜂研究所 Method for identifying degree of maturity of acacia honey

Similar Documents

Publication Publication Date Title
WO2014171767A1 (en) Method for determining authenticity of honey using dna detection
Wolf et al. Inter-specific hybridization underlies phenotypic variability in Daphnia populations
Siret et al. Toward the authentication of varietal wines by the analysis of grape (Vitis vinifera L.) residual DNA in must and wine using microsatellite markers
Lu et al. Nuclear DNA content and chromosome numbers in switchgrass
US20160140288A1 (en) Method for forming personal nutrition complex according to incidence of disease and genetic polymorphism by a prediction system
Radhika et al. Genetic diversity and population structure analysis of native and crossbred goat genetic groups of Kerala, India
CN104140949A (en) Blastocyst nutrient solution and preparation method thereof
Feng et al. Genetic diversity and geographical differentiation of cultivated six-rowed naked barley landraces from the Qinghai-Tibet plateau of China detected by SSR analysis
CN104164400A (en) In-vitro fertilization liquid and preparation method thereof
Marcussen et al. Species delimitation in the Ponto-Caucasian Viola sieheana complex, based on evidence from allozymes, morphology, ploidy levels, and crossing experiments
CN101580873A (en) Test kit and testing method for staphylococcus aureus toxin gene in food
Baloš et al. Comparative study of water content in honey produced in different years
CN114807421A (en) Method for constructing asparagus molecular identity card based on SSR (simple sequence repeat) markers
CN109022612B (en) Rapid detection method for purity of broccoli hybrid and application
CN104140952A (en) Hyaluronidase and preparation method thereof
KR20120124654A (en) Analysis of the purity of honey, using pollen mixed in honey
JPS5823771A (en) Utilizing method of supernatant liquid of pollen extract
CN108060208B (en) Method for identifying snake bile
CN104611425B (en) A kind of SNP marker related to china holstein cowses S. aureus L-forms Mastitis resistance and its application
CN102925583B (en) Processing method and detecting method for sample of nosema bombycis naegeli in graine by utilizing PCR (Polymerase Chain Reaction) method
CN103898236B (en) Primer pair, kit and method for detecting verticillium lecanii ferment powder added in cordyceps sinensis ultra-fine powder
CN104988240A (en) Method for identifying swarm royal jelly high yield character with SNP mark rs16287910
CN114525355B (en) Method for identifying authenticity of Viola variety and special SSR primer combination thereof
CN102747153B (en) Millet waxy gene cosegregation molecular marker and detection method thereof
CN101984077B (en) Paternity testing single nucleotide polymorphism (SNP) label combinations and detection method for Holstein cattle group

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14785917

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14785917

Country of ref document: EP

Kind code of ref document: A1