KR20220026093A - Method of DNA isolation using affinity column in sugar honey - Google Patents

Method of DNA isolation using affinity column in sugar honey Download PDF

Info

Publication number
KR20220026093A
KR20220026093A KR1020200106725A KR20200106725A KR20220026093A KR 20220026093 A KR20220026093 A KR 20220026093A KR 1020200106725 A KR1020200106725 A KR 1020200106725A KR 20200106725 A KR20200106725 A KR 20200106725A KR 20220026093 A KR20220026093 A KR 20220026093A
Authority
KR
South Korea
Prior art keywords
honey
buffer
affinity column
dna
residual
Prior art date
Application number
KR1020200106725A
Other languages
Korean (ko)
Other versions
KR102371553B1 (en
Inventor
윤병수
김선미
김문정
김병희
김소민
Original Assignee
경기대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 경기대학교 산학협력단 filed Critical 경기대학교 산학협력단
Priority to KR1020200106725A priority Critical patent/KR102371553B1/en
Publication of KR20220026093A publication Critical patent/KR20220026093A/en
Application granted granted Critical
Publication of KR102371553B1 publication Critical patent/KR102371553B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/1003Extracting or separating nucleic acids from biological samples, e.g. pure separation or isolation methods; Conditions, buffers or apparatuses therefor
    • C12N15/1006Extracting or separating nucleic acids from biological samples, e.g. pure separation or isolation methods; Conditions, buffers or apparatuses therefor by means of a solid support carrier, e.g. particles, polymers
    • C12N15/101Extracting or separating nucleic acids from biological samples, e.g. pure separation or isolation methods; Conditions, buffers or apparatuses therefor by means of a solid support carrier, e.g. particles, polymers by chromatography, e.g. electrophoresis, ion-exchange, reverse phase

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Plant Pathology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

The present invention provides a method for isolating residual genes using an affinity column in sugar honey, which includes the steps of: (a) inducing binding promotion of residual genes present in sugar honey to a silica membrane using a binding buffer; (b) loading a sample containing the residual gene onto the affinity column including a silica membrane; (c) removing impurities by using a washing buffer; and (d) recovering the residual gene of interest from the affinity column by using an elution buffer.

Description

사양꿀에서 어피니티 컬럼을 이용한 잔류 유전자 분리방법{Method of DNA isolation using affinity column in sugar honey}Method of DNA isolation using affinity column in sugar honey

본 발명은 사양꿀에서 잔류 유전자 분리방법에 관한 것으로, 보다 상세하게는 사양꿀에서 어피니티 컬럼을 이용한 잔류 유전자 분리방법에 관한 것이다.The present invention relates to a method for isolating residual genes from fermented honey, and more particularly, to a method for isolating residual genes from fermented honey using an affinity column.

국내 식약처 고시(2016-43)에 따르면 벌꿀을 순수 벌꿀과 사양 벌꿀로 나누고 있으며, 사양 벌꿀은 '꿀벌의 생존을 위해 최소량의 설탕으로 사양한 후 채밀한 벌꿀'이라 규정(비특허문헌 1 참조)하여, 사양 벌꿀 역시 벌꿀의 이름으로 시장에 유통될 수 있는 근거(비특허문헌 2 참조)를 제공하게 되어 생산자와 소비자에 피해가 우려되고 있다.According to the notification of the Ministry of Food and Drug Safety (2016-43) in Korea, honey is divided into pure honey and specification honey. ), breeding honey also provides a basis for distribution in the market under the name of honey (see Non-Patent Document 2), and there is concern about damage to producers and consumers.

현재 우리나라를 포함하여 캐나다 등 세계 여러 나라에서 동위원소비 질량분석법(isotope ratio mass spectrometry)은 벌꿀에 사탕수수와 옥수수 시럽의 첨가를 확인하는 데 이용되고 있다. 이 방법은 생물체 내의 탄소대사경로가 달라짐으로 인해 안정동위원소 C13의 C12에 대한 상대적 비율이 달라진다는 사실에 기초하여, C3 식물군(CO2 고정 과정(fixation process)에서 캘빈 회로(Calvin cycle)를 경유하는 식물군, 비트(beet), 단풍나무, 대부분의 과일 등)의 안정동위원소비는 - (22~30)‰, C4 식물군(CO2 고정 과정(fixation process)에서 해치 슬랙 회로(Hatch Slack cycle)를 경유하는 식물군, 옥수수(corn), 사탕수수(cane) 등)의 안정동위원소비는 - (8~11)‰, CAM 식물군(CO2 고정 과정(fixation process)에서 CAM(Crassulacean Acid Metabolism)을 통하는 식물군, 파인애플(pineapple) 등)의 안정동위원소비는 - (11~13.5)‰ 로 구별된다. 이에 탄소동위원소비는 벌꿀에 포함된 당의 유래를 추정할 수 있는 잣대가 되어 국제분석화학기구(AOAC)에서 벌꿀 내 C4 설탕을 구별해 내는 방법으로 채택하였다. 국내에서도 이 방법을 통해 사양꿀의 판별을 하고 있다(비특허문헌 3 내지 5참조).Currently, isotope ratio mass spectrometry (isotope ratio mass spectrometry) is used to confirm the addition of sugar cane and corn syrup to honey in many countries, including Korea and Canada. Based on the fact that the relative ratio of stable isotope C13 to C12 is changed due to the change in the carbon metabolic pathway in the organism, this method converts the Calvin cycle in the C3 plant population (CO 2 fixation process). Stable isotope ratios of passing plants, beets, maples, most fruits, etc.) are - (22~30)‰, C4 flora (CO 2 fixation process) in the hatch slack circuit (Hatch) Stable isotope ratios of plant groups passing through the slack cycle, corn, sugarcane, etc.) are - (8~11)‰, CAM (CO 2 fixation process) in the CAM plant group (CO 2 fixation process) The stable isotope ratio of plant groups, pineapple, etc.) through Crassulacean Acid Metabolism) is distinguished by - (11~13.5)‰. Accordingly, the carbon isotope ratio became a standard for estimating the origin of the sugar contained in honey, and was adopted by the International Organization for Analytical Chemistry (AOAC) as a method for distinguishing C4 sugar in honey. In Korea, this method is also used to discriminate fermented honey (see Non-Patent Documents 3 to 5).

그러나 이 방법은 탄소원소분석기가 장착된 동위원소비 질량분석기(isotope ratio mass spectrometer)와 같은 고가의 기기가 있어야 하며, 검출에 요구되는 시간 및 C3 식물군, 벌꿀 및 사양꿀이 혼합되었을 경우 구분이 어렵다는 문제점이 있다.However, this method requires an expensive instrument such as an isotope ratio mass spectrometer equipped with a carbon element analyzer, and the time required for detection and classification is difficult when C3 flora, honey, and fermented honey are mixed. There is a difficult problem.

최근 PCR법을 이용한 유전자검출법을 통해 이런 문제점을 해결하려는 노력이 있어 왔다. 이런 노력에 맞추어 사양꿀에 잔류하는 유전자의 분리는 매우 중요하다. 기존 사양꿀에서 유전자 분리는 열처리 혹은 CTAB(cetyl trimethylammonium bromide) 등의 시약을 사용하는 전처리 과정이 있어 긴 시간이 소요되었으며, 페놀(Phenol) 처리로 인하여 많은 시료량이 요구되는 등의 문제가 있었다(비특허문헌 6 및 7 참조).Recently, there have been efforts to solve this problem through the gene detection method using the PCR method. In line with these efforts, it is very important to isolate the remaining genes in fermented honey. Gene isolation from conventional fermented honey took a long time as there was a pretreatment process using heat treatment or reagents such as CTAB (cetyl trimethylammonium bromide), and there was a problem such as requiring a large amount of sample due to phenol treatment (N. See Patent Documents 6 and 7).

[비특허문헌][Non-patent literature]

1. MFDS, 2014, Food Standard Code, Ministry of food and Drug Safety, Cheongju, Korea.1. MFDS, 2014, Food Standard Code, Ministry of food and Drug Safety, Cheongju, Korea.

2. AOAC, 1995. Official Method of Analysis of AOAC Intl. 20th ed. Method 998-12. Association of Official Analytical Chemists, Arlington, VA, USA.2. AOAC, 1995. Official Method of Analysis of AOAC Intl. 20th ed. Method 998-12. Association of Official Analytical Chemists, Arlington, VA, USA.

3. Somin Kim, Byounghee Kim, Moonjung Kim, Jungmin Kim, Truong A Tai, Byoungsu Yoon, Detection of Sugar Beet (Beta vulgaris) - Specific Gene from Honey Made by Sugar of Sugar Beet, Journal of Apiculture Vol.33 No.3 2018. 09 213 - 219.3. Somin Kim, Byounghee Kim, Moonjung Kim, Jungmin Kim, Truong A Tai, Byoungsu Yoon, Detection of Sugar Beet (Beta vulgaris) - Specific Gene from Honey Made by Sugar of Sugar Beet, Journal of Apiculture Vol.33 No.3 2018. 09 213 - 219.

4. Byounghee Kim, Somin Kim, Moonjung Kim, Jungmin Kim, Truong A Tai, Byoungsu Yoon, Detection of Sugar Cane (Saccharum officinarum)-specific Gene from Sugar and Sugar-honey, Journal of Apiculture 33(3), 2018. 9, 221-226.4. Byounghee Kim, Somin Kim, Moonjung Kim, Jungmin Kim, Truong A Tai, Byoungsu Yoon, Detection of Sugar Cane (Saccharum officinarum)-specific Gene from Sugar and Sugar-honey, Journal of Apiculture 33(3), 2018. 9 , 221-226.

5. Hwa-Jung Sung, Chuleui Jung, Jiyoung Kwon, Ho-Yong Sohn, Evaluation of Commercial Korean Honey Quality and Correlation Analysis of the Quality Parameters, Journal of Life Science 28(12), 2018.12, 1489-1500.5. Hwa-Jung Sung, Chuleui Jung, Jiyoung Kwon, Ho-Yong Sohn, Evaluation of Commercial Korean Honey Quality and Correlation Analysis of the Quality Parameters, Journal of Life Science 28(12), 2018.12, 1489-1500.

6. Sobrino-Gregorio, L., S. Vilanova, J. Prohens and I. Escriche. 2018, Detection of honey adulteration by conventional and real-time PCR, Food Control, 2015, 95:57-62.6. Sobrino-Gregorio, L., S. Vilanova, J. Prohens and I. Escriche. 2018, Detection of honey adulteration by conventional and real-time PCR, Food Control, 2015, 95:57-62.

7. Sona Arun Jain; Fl

Figure pat00001
via Thalita de Jesus; Giulia Manso Marchioro; Ed
Figure pat00002
lson Divino de Ara
Figure pat00003
jo. Extraction of DNA from honey and its amplification by PCR for botanical identification. Food Sci. Technol (Campinas) vol.33 no.4 753-756.7. Sona Arun Jain; Fl
Figure pat00001
via Thalita de Jesus; Giulia Manso Marchioro; Ed
Figure pat00002
lson Divino de Ara
Figure pat00003
jo. Extraction of DNA from honey and its amplification by PCR for botanical identification. Food Sci. Technol (Campinas) vol.33 no.4 753-756.

본 발명은 사양꿀에서 잔류 유전자를 어피니티 컬럼(affinity column)을 사용하여 분리하는 새로운 방법을 제시하고자 한다.The present invention intends to present a new method of separating residual genes from fermented honey using an affinity column.

상기 과제를 해결하기 위하여 본 발명은, 사양꿀에서 어피니티 컬럼(affinity column)을 이용한 잔류 유전자 분리방법으로서, (a) 바인딩 버퍼(binding buffer)를 이용하여 사양꿀에 존재하는 잔류 유전자가 실리카 멤브레인(silica membrane)에 결합 촉진을 유도하는 단계; (b) 상기 잔류 유전자 함유 시료를 실리카 멤브레인(silica membrane)을 포함하는 상기 어피니티 컬럼에 로딩(loading)하는 단계; (c) 세척 버퍼(washing buffer)를 이용하여 불순물을 제거하는 단계; 및 (d) 용출 버퍼(elution buffer)를 이용하여 상기 어피니티 컬럼으로부터 목적하는 잔류 유전자를 회수하는 단계;를 포함하는 사양꿀에서 어피니티 컬럼을 이용한 잔류 유전자 분리방법을 제공한다.In order to solve the above problem, the present invention is a method for isolating residual genes using an affinity column in fermented honey, (a) using a binding buffer, wherein residual genes present in fermented honey are silica membrane (silica membrane) inducing the promotion of binding; (b) loading the residual gene-containing sample into the affinity column including a silica membrane; (c) removing impurities using a washing buffer; and (d) recovering the desired residual gene from the affinity column using an elution buffer.

또한 상기 바인딩 버퍼(binding buffer)는 구아니딘 하이드로클로라이드(guanidine hydrochloride, GnHCl)인 것을 특징으로 하는 사양꿀에서 어피니티 컬럼을 이용한 잔류 유전자 분리방법을 제공한다.In addition, the binding buffer (binding buffer) is guanidine hydrochloride (guanidine hydrochloride, GnHCl) provides a method for separating residual genes using an affinity column from honey, characterized in that.

또한 상기 세척 버퍼(washing buffer)는 염 및 에탄올을 포함하되, 80 내지 90 %(v/v)의 에탄올에 대하여 상기 염의 농도가 10 내지 20 mM인 것을 특징으로 하는 사양꿀에서 어피니티 컬럼을 이용한 잔류 유전자 분리방법을 제공한다.In addition, the washing buffer includes salt and ethanol, but the concentration of the salt is 10 to 20 mM with respect to 80 to 90% (v/v) of ethanol using an affinity column. A method for isolating residual genes is provided.

또한 상기 용출 버퍼(elution buffer)는 5 내지 15 mM 트리스-염화수소(Tris-HCl)이거나, 5 내지 15 mM 트리스-염화수소(Tris-HCl)와 0.1 내지 1 mM EDTA(Ethylenediaminetetraacetic acid)의 혼합물이거나, 증류수인 것을 특징으로 하는 사양꿀에서 어피니티 컬럼을 이용한 잔류 유전자 분리방법을 제공한다.In addition, the elution buffer is 5 to 15 mM Tris-hydrogen chloride (Tris-HCl), or a mixture of 5 to 15 mM Tris-hydrogen chloride (Tris-HCl) and 0.1 to 1 mM Ethylenediaminetetraacetic acid (EDTA), distilled water It provides a method for isolating residual genes using an affinity column in the specification honey, characterized in that it is.

본 발명은 사양꿀에 존재하는 잔류 유전자를 분리하기 위한 방법으로, 기존 꿀에서 유전자 분리와는 달리 어피니티 컬럼을 사용하여, 기존 방법보다 유전자를 분리하는 데 빠르고 조작이 간편하여 다량으로 많은 시료에서 유전자 분리가 가능한 장점을 가지며, 이러한 장점은 벌꿀 품질평가에 유전자 검출법의 적용을 보다 유리하게 하는 효과가 있다.The present invention is a method for isolating residual genes present in fermented honey. Unlike gene separation in conventional honey, by using an affinity column, it is faster and easier to operate than conventional methods to separate genes from a large number of samples. It has the advantage of being able to isolate genes, and this advantage has the effect of making the application of the gene detection method more advantageous in the evaluation of honey quality.

도 1은 본 발명의 실험예에서 사탕수수 특이 유전자 재조합 DNA(pSc) 주형 copy 수에 따른 초고속 PCR 결과를 나타낸 그래프이다. (a) pSc 주형 copy 수 10' serial dilution에 대한 검출한계와 PCR amplicon의 특이성 확인을 위한 증폭곡선과 융점분석그래프, (B) pSc serial dilution에 대한 Ct 값을 통하여 정량곡선을 작성하여 직선성과 기울기 조사하여 기울기 -0.2856, R2=0.998의 상관계수를 얻어 정량선의 신뢰성 확보하였다.
도 2는 본 발명의 실험예에서 DNA binding buffer에 따른 꿀에서 잔류 유전자 검출 결과를 나타낸 그래프이다. 100 ㎕ 꿀에 108의 사탕수수 특이 유전자 재조합 DNA(pSc)를 넣고 500 ㎕의 각기 다른 농도의 GnHCl binding buffer를 넣고 회수된 pSc에 대한 PCR amplicon의 증폭곡선과 이 amplicon의 특이성 확인을 위한 융점분석 그래프를 나타내고 있다.
도 3은 본 발명의 실험예에서 DNA binding buffer에 따른 꿀에서 잔류 유전자 검출 결과를 나타낸 그래프이다. 100 ㎕ 꿀에 108의 사탕수수 특이 유전자 재조합 DNA(pSc)를 넣고 500 ㎕의 각기 다른 농도의 GuSCN binding buffer를 넣고 회수된 pSc에 대한 PCR amplicon의 증폭곡선과 이 amplicon 특이성 확인을 위한 융점분석 그래프를 나타내고 있다.
도 4는 본 발명의 실험예에서 시판되고 있는 DNA binding column 제품 간 DNA binding capacity를 비교한 결과를 나타낸 그래프이다. 100 ㎕ 꿀에 108의 사탕수수 특이 유전자 재조합 DNA(pSc)를 넣고 500 ㎕의 5 M GnHCl binding buffer를 사용하여 5가지 다른 column을 통해 회수된 pSc에 대한 PCR amplicon의 증폭곡선과 이 amplicon 특이성 확인을 위한 융점분석 그래프를 나타내고 있다.
도 5는 본 발명의 실험예에서 Washing buffer 조성에 따라 회수되는 DNA 양의 Ct값 및 Tm값을 나타낸 그래프이다. PCR 증폭 그래프를 통하여 에탄올을 80 %(v/v)로 고정하고 염의 농도를 10 mM, 15 mM 및 20 mM Tris-HCl(pH 7.6)로 변화시킨 buffer로 column을 washing하여 얻은 회수된 DNA 시료에서 사탕수수 특이 유전자가 증폭되었음을 확인할 수 있으며, 융점분석 그래프를 통하여 모든 시료에서 증폭된 PCR amplicon이 사탕수수 유전자에 특이적인 산물임을 확인하였다.
도 6은 본 발명의 실험예에서 Washing buffer 조성에 따라 회수되는 DNA 양의 Ct값 및 Tm값을 나타낸 그래프이다. PCR 증폭 그래프를 통하여 에탄올을 85 %(v/v)로 고정하고 염의 농도를 10 mM, 15 mM 및 20 mM Tris-HCl(pH 7.6)로 변화시킨 buffer로 column을 washing하여 얻은 회수된 DNA 시료에서 사탕수수 특이 유전자가 증폭되었음을 확인할 수 있으며, 융점분석 그래프를 통하여 모든 시료에서 증폭된 PCR amplicon이 사탕수수 유전자에 특이적인 산물임을 확인하였다.
도 7은 본 발명의 실험예에서 Elution buffer 조성에 따라 회수되는 DNA 양의 Ct값 및 Tm값을 나타낸 그래프이다. PCR 증폭 그래프를 통하여 10 mM Tris-HCl(pH 8.5), TE buffer(10 mM Tris-HCl 및 0.5 mM EDTA, pH 8.5)와 DW로 elution하여 얻은 회수된 DNA 시료에서 사탕수수 특이 유전자가 증폭되었음을 확인할 수 있으며, 융점분석 그래프를 통하여 모든 시료에서 증폭된 PCR amplicon이 사탕수수 유전자에 특이적인 산물임을 확인하였다.
도 8은 본 발명의 실험예에서 Elution buffer 조성에 따라 회수되는 DNA 양의 Ct값 및 Tm값을 나타낸 그래프이다. PCR 증폭 그래프를 통하여 10 mM Tris-HCl(pH 9.0), TE buffer(10 mM Tris-HCl, 0.5 mM EDTA, pH 9.0)와 DW로 elution하여 얻은 회수된 DNA 시료에서 사탕수수 특이 유전자가 증폭되었음을 확인할 수 있으며, 융점분석 그래프를 통하여 모든 시료에서 증폭된 PCR amplicon이 사탕수수 유전자에 특이적인 산물임을 확인하였다.
도 9는 본 발명의 실험예에서 시판되고 있는 affinity column을 이용하여 꿀의 잔류 유전자를 분리하여 시행한 유전자 검출법으로 사탕수수 특이 유전자를 검출 및 정량한 결과를 나타낸 그래프이다.
1 is a graph showing the results of ultrafast PCR according to the number of copies of sugarcane-specific genetic recombinant DNA (pSc) template in an experimental example of the present invention. (a) Amplification curve and melting point analysis graph to confirm the detection limit for serial dilution of 10' pSc template copy number and specificity of PCR amplicons, (B) Quantitative curves were prepared through Ct values for pSc serial dilution to ensure linearity and slope The correlation coefficient of slope -0.2856 and R 2 =0.998 was obtained by investigation, and the reliability of the quantitative line was secured.
Figure 2 is a graph showing the residual gene detection results in honey according to the DNA binding buffer in the experimental example of the present invention. Add 10 8 sugar cane-specific recombinant DNA (pSc) to 100 μl honey, add 500 μl of different concentrations of GnHCl binding buffer, and analyze the PCR amplicon amplification curve for the recovered pSc and melting point analysis to confirm the specificity of this amplicon shows the graph.
Figure 3 is a graph showing the residual gene detection results in honey according to the DNA binding buffer in the experimental example of the present invention. Add 10 8 sugar cane-specific recombinant DNA (pSc) to 100 μl honey, add 500 μl of GuSCN binding buffer of different concentrations, and amplification curve of PCR amplicon for the recovered pSc and melting point analysis graph for confirming the specificity of this amplicon represents
Figure 4 is a graph showing the results of comparing the DNA binding capacity between the commercially available DNA binding column products in the Experimental Example of the present invention. Add 10 8 sugar cane-specific recombinant DNA (pSc) to 100 μl honey and use 500 μl of 5 M GnHCl binding buffer to confirm the amplification curve and specificity of PCR amplicon for pSc recovered through 5 different columns The melting point analysis graph for
5 is a graph showing the Ct value and the Tm value of the amount of DNA recovered according to the washing buffer composition in the experimental example of the present invention. From the recovered DNA sample obtained by washing the column with a buffer in which ethanol was fixed at 80% (v/v) through the PCR amplification graph and the salt concentration was changed to 10 mM, 15 mM and 20 mM Tris-HCl (pH 7.6) It can be confirmed that the sugar cane-specific gene was amplified, and it was confirmed that the PCR amplicon amplified in all samples was a sugar cane gene-specific product through the melting point analysis graph.
6 is a graph showing the Ct value and the Tm value of the amount of DNA recovered according to the washing buffer composition in the experimental example of the present invention. From the recovered DNA sample obtained by washing the column with a buffer in which ethanol was fixed at 85% (v/v) through the PCR amplification graph and the salt concentration was changed to 10 mM, 15 mM and 20 mM Tris-HCl (pH 7.6) It can be confirmed that the sugar cane-specific gene was amplified, and it was confirmed that the PCR amplicon amplified in all samples was a sugar cane gene-specific product through the melting point analysis graph.
7 is a graph showing the Ct value and the Tm value of the amount of DNA recovered according to the composition of the elution buffer in the experimental example of the present invention. Through the PCR amplification graph, it was confirmed that the sugar cane-specific gene was amplified in the recovered DNA sample obtained by elution with 10 mM Tris-HCl (pH 8.5), TE buffer (10 mM Tris-HCl and 0.5 mM EDTA, pH 8.5) and DW. Through the melting point analysis graph, it was confirmed that the PCR amplicon amplified in all samples was a product specific to the sugar cane gene.
8 is a graph showing the Ct value and the Tm value of the amount of DNA recovered according to the composition of the elution buffer in the experimental example of the present invention. Through the PCR amplification graph, it was confirmed that the sugar cane-specific gene was amplified in the recovered DNA sample obtained by elution with 10 mM Tris-HCl (pH 9.0), TE buffer (10 mM Tris-HCl, 0.5 mM EDTA, pH 9.0) and DW. Through the melting point analysis graph, it was confirmed that the PCR amplicon amplified in all samples was a product specific to the sugar cane gene.
9 is a graph showing the results of detection and quantification of sugar cane-specific genes by a gene detection method performed by isolating residual genes of honey using a commercially available affinity column in an experimental example of the present invention.

이하, 실시예를 통하여 본 발명을 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여, 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서, 본 명세서에 기재된 실시예의 구성은 본 발명의 가장 바람직한 일실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원 시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다. Hereinafter, the present invention will be described in detail through examples. Prior to this, the terms or words used in the present specification and claims should not be construed as being limited to their ordinary or dictionary meanings, and the inventor should properly understand the concept of the term in order to best describe his invention. Based on the principle that can be defined, it should be interpreted as meaning and concept consistent with the technical idea of the present invention. Accordingly, since the configuration of the embodiments described in the present specification is only the most preferred embodiment of the present invention and does not represent all the technical spirit of the present invention, various equivalents and modifications that can be substituted for them at the time of the present application It should be understood that there may be

본 발명은 사양꿀에서 잔류 유전자를 어피니티 컬럼(affinity column)을 사용하는 분리하는 새로운 방법으로서, (a) 바인딩 버퍼(binding buffer)를 이용하여 사양꿀에 존재하는 잔류 유전자가 실리카 멤브레인(silica membrane)에 결합 촉진을 유도하는 단계; (b) 상기 잔류 유전자 함유 시료를 실리카 멤브레인(silica membrane)을 포함하는 상기 어피니티 컬럼에 로딩(loading)하는 단계; (c) 세척 버퍼(washing buffer)를 이용하여 불순물을 제거하는 단계; 및 (d) 용출 버퍼(elution buffer)를 이용하여 상기 어피니티 컬럼으로부터 목적하는 잔류 유전자를 회수하는 단계;를 포함하는 사양꿀에서 어피니티 컬럼을 이용한 잔류 유전자 분리방법을 개시한다.The present invention is a new method for separating residual genes from fermented honey using an affinity column, (a) using a binding buffer to prevent residual genes from fermented honey using a silica membrane ) inducing binding promotion to; (b) loading the residual gene-containing sample into the affinity column including a silica membrane; (c) removing impurities using a washing buffer; and (d) recovering the desired residual gene from the affinity column using an elution buffer; discloses a method for isolating residual genes using an affinity column in fermented honey comprising a.

상기 (a) 단계는 목적하는 잔류 유전자에 적합한 pH와 목적하는 잔류 유전자가 컬럼의 실리카(silica)와 결합을 촉진하도록 브릿지(bridge)를 생성시키는 단계이다.Step (a) is a step of generating a bridge such that a pH suitable for the desired residual gene and the desired residual gene promote binding to the silica of the column.

본 발명에서 상기 바인딩 버퍼는 특별히 한정되는 것은 아니나, 사양꿀에서 어피니티 컬럼을 통해 잔류 유전자를 효율적으로 분리하는 데 있어 구아니딘 하이드로클로라이드(guanidine hydrochloride, GnHCl)이 가장 적합한 것을 확인하였다.In the present invention, the binding buffer is not particularly limited, but it was confirmed that guanidine hydrochloride (GnHCl) was most suitable for efficiently separating residual genes through an affinity column in fermented honey.

상기 (b) 단계는 평형화된 컬럼에 목적하는 잔류 유전자 함유 시료를 흘려 주어 목적하는 잔류 유전자를 부착시키는 단계이다.Step (b) is a step of attaching the desired residual gene by flowing a sample containing the desired residual gene to the equilibrated column.

본 발명에서는 어피니티 컬럼으로서 실리카 멤브레인(silica membrane)을 포함하는 컬럼을 사용함으로써 실리카 멤브레인에 목적하는 잔류 유전자가 결합할 수 있도록 한다.In the present invention, by using a column including a silica membrane as an affinity column, a desired residual gene can be bound to the silica membrane.

상기 (c) 단계는 목적하는 잔류 유전자를 제외한 불순물을 제거하기 위한 단계이다.Step (c) is a step for removing impurities except for the desired residual gene.

본 발명에서 상기 세척 버퍼는 특별히 한정되는 것은 아니나, 사양꿀에서 어피니티 컬럼을 통해 잔류 유전자를 효율적으로 분리하는 데 있어 염 및 에탄올을 포함하되, 80 내지 90 %(v/v)의 에탄올에 대하여 상기 염의 농도가 10 내지 20 mM인 것이 가장 적합한 것을 확인하였다.In the present invention, the washing buffer is not particularly limited, but includes salt and ethanol in efficiently separating residual genes through an affinity column in raw honey, 80 to 90% (v/v) of ethanol It was confirmed that the salt concentration of 10 to 20 mM is most suitable.

상기 (d) 단계는 용출 버퍼를 이용하여 어피니티 컬럼으로부터 목적하는 잔류 유전자를 회수하는 단계이다.Step (d) is a step of recovering the desired residual gene from the affinity column using the elution buffer.

본 발명에서 상기 용출 버퍼는 특별히 한정되는 것은 아니나, 사양꿀에서 어피니티 컬럼을 통해 잔류 유전자를 효율적으로 분리하는 데 있어 5 내지 15 mM 트리스-염화수소(Tris-HCl)이거나, 5 내지 15 mM 트리스-염화수소(Tris-HCl)와 0.1 내지 1 mM EDTA(Ethylenediaminetetraacetic acid)의 혼합물이거나, 증류수인 것이 가장 적합한 것을 확인하였다.In the present invention, the elution buffer is not particularly limited, but 5 to 15 mM Tris-hydrogen chloride (Tris-HCl) or 5 to 15 mM Tris- It was confirmed that a mixture of hydrogen chloride (Tris-HCl) and 0.1 to 1 mM ethylenediaminetetraacetic acid (EDTA) or distilled water was most suitable.

이하, 실험예를 들어 본 발명을 더욱 상세히 설명한다.Hereinafter, the present invention will be described in more detail by way of experimental examples.

실험 방법experimental method

(1) pGEM-sugarcane-cp(pSc) plasmid DNA 희석을 통한 특이 유전자 검출한계 및 정량선 작성(1) Creation of specific gene detection limit and quantitative line through pGEM-sugarcane-cp(pSc) plasmid DNA dilution

사양꿀에서 DNA isolation의 최적조건을 알아보고자 pGEM-sugarcane-cp(pSc) plasmid DNA를 일정 분자수를 넣어주고, QIAquick PCR purification kit를 이용하여 DNA를 isolation하여 회수된 DNA copy 수를 넣어 준 양과 비교하여 최적조건을 확인하였다.In order to find out the optimal conditions for DNA isolation in fermented honey, add a certain number of molecules to pGEM-sugarcane-cp(pSc) plasmid DNA, isolate the DNA using the QIAquick PCR purification kit, and compare it with the amount of the recovered DNA copy number. Optimal conditions were confirmed.

이 실험에서 사용하는 pSc는 사탕수수 엽록체에 위치한 maturase K(matK, GenBank accession No. LN 849913) 유전자이다(비특허문헌 4 참조). 이를 검출하기 위한 primer로는 Cane-dF(서열번호 1) 5’-CACCGCAATTATTTTTATTCTGAG-3’, Cane-dR(서열번호 2) 5’-GAACATCTTGAATCCGGTATTC-3’ 를 사용하였다. PCR 반응액은 1 ㎕ 10 pmole primer(F, R), 5 ㎕ 2x Rapi:Detect Master mix(Genesystem, Korea), 2 ㎕ 증류수, 1 ㎕ pSc를 혼합, 10 ㎕ reaction volume으로 만들어, 95℃ 30s의 1 cycle의 초기변성 반응 후, 95℃ 3s, 55℃ 3s, 72℃ 3s를 1 cycle로 총 50 cycle을 GENECHECKER(Genesystem, Korea)를 사용하여 수행하였다. 이후 Ct 값의 변화와 Tm 값, dCt10 값을 이용하여 분석하였다.The pSc used in this experiment is a maturase K (matK, GenBank accession No. LN 849913) gene located in the chloroplast of sugar cane (see Non-Patent Document 4). As primers for detecting this, Cane-dF (SEQ ID NO: 1) 5'-CACCGCAATTATTTTTATTCTGAG-3' and Cane-dR (SEQ ID NO: 2) 5'-GAACATCTTGAATCCGGTATTC-3' were used. The PCR reaction solution was prepared by mixing 1 μl 10 pmole primer (F, R), 5 μl 2x Rapi:Detect Master mix (Genesystem, Korea), 2 μl distilled water, and 1 μl pSc, into a 10 μl reaction volume, and heated at 95°C for 30s. After 1 cycle of initial denaturation reaction, a total of 50 cycles of 95°C 3s, 55°C 3s, 72°C 3s were performed as 1 cycle using GENECHECKER (Genesystem, Korea). Thereafter, the analysis was performed using the change in Ct value, the Tm value, and the dCt 10 value.

(2) DNA affinity column을 이용한 잔류 유전자 분리법(2) Residual gene separation using DNA affinity column

꿀에 존재하는 잔류 유전자를 분리하기 위하여 CTAB법과는 다른 DNA affinity column법을 꿀에 적용하여 적합여부를 조사하였다.In order to isolate residual genes present in honey, a DNA affinity column method different from CTAB method was applied to honey and the suitability was investigated.

1) 꿀에서 잔류 DNA isolation을 위한 적정 바인딩 버퍼(binding buffer) 선정1) Selection of an appropriate binding buffer for residual DNA isolation from honey

꿀 100 ㎕에 1x 108 pSC 1 ㎕ 첨가 후 GI buffer(5 M GnHCl, 30% IPA)와 GSI buffer(5 M GuSCN, 30% IPA)와 QIAGEN Kit를 사용하여 DNA를 분리하고, 그 회수율을 비교하였으며, 실험 방법은 다음과 같다. 1x 108 pSC 1 ㎕를 꿀 시료에 100 ㎕에 첨가한 후 각각의 buffer를 500 ㎕ 첨가한다. Vortexer를 이용하여 잘 섞어준 후 QIAGEN column에 넣어주고, 13,000 rpm에서 30s 동안 원심분리 한다. 세척 버퍼(washing buffer) 700 ㎕를 column에 넣고 13,000 rpm에서 30s 동안 원심분리 한다. 3’ DW(증류수) 50 ㎕로 용출(Elution)하였고, GI buffer 및 GSI buffer와 비교하기 위해 QIAGEN kit를 사용한 시료 1개는 kit 내 50 ㎕ 용출 버퍼(elution buffer)를 사용하여 DNA를 얻었다. 이 중 1 ㎕를 이용하여 PCR을 수행하여 결과를 분석하였다.After adding 1 μl of 1x 10 8 pSC to 100 μl of honey, DNA is isolated using GI buffer (5 M GnHCl, 30% IPA), GSI buffer (5 M GuSCN, 30% IPA) and QIAGEN Kit, and the recovery rate is compared. and the experimental method is as follows. After adding 1 μl of 1x 10 8 pSC to 100 μl of honey sample, 500 μl of each buffer is added. After mixing well using a vortexer, put it in a QIAGEN column, and centrifuge at 13,000 rpm for 30s. 700 μl of washing buffer is added to the column and centrifuged at 13,000 rpm for 30 s. Elution was performed with 50 μl of 3' DW (distilled water), and for comparison with GI buffer and GSI buffer, one sample using the QIAGEN kit was DNA obtained using 50 μl of the elution buffer in the kit. PCR was performed using 1 μl of this to analyze the results.

2) 꿀에서 잔류 DNA isolation을 위한 적정 DNA binding column 비교 2) Comparison of appropriate DNA binding column for residual DNA isolation from honey

적정 어피니티 컬럼(affinity column) 선정을 위해 5개의 서로 다른 제품의 column을 대상으로 꿀 100 ㎕에 1x 108 pSC 1 ㎕를 첨가 후 GI buffer를 500 ㎕ 넣고 잘 섞어준 후 5개 다른 column에 넣고 13,000 rpm에서 원심분리 하였다. 실험은 duplicate로 실시하였으며 washing buffer로 washing한 후 50 ㎕ 3’DW를 이용하여 Elution을 하였다. 이렇게 얻은 50 ㎕에서 1 ㎕를 사용하여 PCR을 수행하여 그 결과를 분석하였다.To select an appropriate affinity column, add 1 µl of 1x 10 8 pSC to 100 µl of honey for columns of 5 different products, add 500 µl of GI buffer, mix well, and put in 5 different columns Centrifugation was performed at 13,000 rpm. Experiments were performed in duplicate, and after washing with washing buffer, elution was performed using 50 μl 3'DW. PCR was performed using 1 μl of the 50 μl thus obtained, and the results were analyzed.

3) 꿀에서 잔류 DNA isolation을 위한 적정 세척 버퍼(washing buffer) 선정3) Selection of appropriate washing buffer for residual DNA isolation from honey

적정 washing buffer 선정을 위해 washing buffer A와 B를 비교하기 위해 꿀 100 ㎕에 1x 108 pSC 1 ㎕를 첨가 후 GI buffer를 500 ㎕ 넣고 잘 섞어준 후 P column에 넣고 13,000 rpm에서 원심분리 하였다. washing buffer A 및 B로 washing한 후 50 ㎕ 3’DW를 이용하여 Elution을 하였다. 이렇게 얻은 50 ㎕에서 1 ㎕를 사용하여 PCR을 수행하여 그 결과를 분석하였다.To compare washing buffers A and B for selection of appropriate washing buffer, 1 μl of 1x 10 8 pSC was added to 100 μl of honey, 500 μl of GI buffer was added, mixed well, placed in P column, and centrifuged at 13,000 rpm. After washing with washing buffers A and B, elution was performed using 50 μl 3'DW. PCR was performed using 1 μl of the 50 μl thus obtained, and the results were analyzed.

4) 꿀에서 잔류 DNA isolation을 위한 적정 용출 버퍼(elution buffer) 선정 4) Selection of an appropriate elution buffer for residual DNA isolation from honey

적정 Elution buffer 선정을 위해 3’DW, Elution buffer A와 B를 비교하기 위해 꿀 100 ㎕에 1x 108 pSC 1 ㎕를 첨가 후 GI buffer를 500 ㎕ 넣고 잘 섞어준 후 P column에 넣고 13,000 rpm에서 원심분리 하였다. washing buffer A로 washing한 후 50 ㎕ 3’DW, Elution buffer A, B를 이용하여 Elution을 하였다. 이렇게 얻은 50 ㎕에서 1 ㎕를 사용하여 PCR을 수행하고 결과를 분석하였다.To select an appropriate elution buffer, 3'DW, and to compare Elution buffers A and B, add 1 µl of 1x 10 8 pSC to 100 µl of honey, add 500 µl of GI buffer, mix well, put in P column, and centrifuge at 13,000 rpm separated. After washing with washing buffer A, elution was performed using 50 μl 3'DW and Elution buffers A and B. PCR was performed using 1 μl of the 50 μl thus obtained, and the results were analyzed.

5) 꿀 시료량에 따른 회수율과 회수분자수5) Recovery rate and number of recovered molecules according to the amount of honey sample

꿀 시료의 양을 증가시켰을 때 분리되는 DNA 양의 증가를 알아보기 위하여 1개의 column에 꿀 시료의 양을 변화시켜 DNA를 분리하고 이를 PCR 하여 그 회수율을 비교하였으며, 실험 방법은 다음과 같다. 꿀 3.8 ㎖에 1x108 분자수의 pSC 38 ㎕ 넣는다. GI buffer 19 ㎖를 각각 tube에 넣고 잘 섞어준다. 각 column에 꿀 시료액을 0.6 ㎖, 1 ㎖, 6 ㎖ 및 12 ㎖를 통과시킨다. Washing buffer A 700 ㎕로 washing한다. Elution buffer A 50 ㎕를 넣어 elution 한다. 얻은 50 ㎕ DNA에서 1 ㎕로 PCR을 수행하고 결과를 분석하였다.In order to determine the increase in the amount of DNA separated when the amount of honey sample is increased, the amount of honey sample in one column was changed to separate DNA, and PCR was performed to compare the recovery rate. The experimental method is as follows. Add 38 µl of 1x10 8 molecules of pSC to 3.8 ml of honey. Add 19 ml of GI buffer to each tube and mix well. Pass 0.6 ml, 1 ml, 6 ml, and 12 ml of honey sample solution through each column. Wash with 700 μl of Washing Buffer A. Elution is performed by adding 50 μl of Elution buffer A. PCR was performed with 1 μl of the obtained 50 μl DNA and the results were analyzed.

(3) 시판 제품에서 사탕수수 특이 유전자 검출(3) Detection of sugarcane-specific genes in commercial products

5개의 제품 시료 2 ㎕에 10 ㎕의 GI buffer를 넣고 잘 섞어준 후 Pro column에 놓고 원심분리 하였다. 700 ㎕의 washing buffer A를 column에 넣고 원심분리한 후 50 ㎕ Elution buffer A로 elution 하였다. 이 중 1 ㎕를 사용하여 PCR을 수행하고 결과를 분석하였다.10 μl of GI buffer was added to 2 μl of 5 product samples, mixed well, placed on a Pro column, and centrifuged. 700 μl of washing buffer A was added to the column, centrifuged, and then elution was performed with 50 μl Elution buffer A. PCR was performed using 1 μl of this, and the results were analyzed.

실험 결과Experiment result

(1) pGEM-sugarcane-cp(pSc) plasmid DNA 희석을 통한 특이 유전자 검출한계 및 정량선 작성(1) Creation of specific gene detection limit and quantitative line through pGEM-sugarcane-cp(pSc) plasmid DNA dilution

1x1011 분자수 pGEM-sugarcane-cp(pSc) plasmid DNA를 10’ serial dilution 하여 109, 108, 107, 106, 105, 104, 103, 102, 101, 100 분자수, 그리고 음성대조군(negative, DW)으로 총 10개의 시료로 초고속 PCR을 다음과 같이 수행하였고, 그 결과를 하기 표 1 및 도 1에 나타내었다.1x10 11 Molecules 10 9 , 10 8 , 10 7 , 10 6 , 10 5 , 10 4 , 10 3 , 10 2 , 10 1 , 10 0 Number of molecules by 10' serial dilution of pGEM-sugarcane-cp(pSc) plasmid DNA, And as a negative control (negative, DW), ultra-fast PCR was performed with a total of 10 samples as follows, and the results are shown in Table 1 and FIG. 1 below.

pSc moleculespSc molecules Ct(Cycle)Ct(Cycle) Tm(℃)Tm(℃) dCt10(cycle)dCt 10 (cycle) 1x108 1x10 8 17.1317.13 76.5176.51 3.073.07 1x107 1x10 7 20.2020.20 76.5176.51 3.973.97 1x106 1x10 6 24.1724.17 76.1876.18 3.993.99 1x105 1x10 5 28.1628.16 76.1876.18 3.003.00 1x104 1x10 4 31.1631.16 76.1876.18 2.992.99 1x103 1x10 3 34.1534.15 76.1876.18 3.963.96 1x102 1x10 2 38.1138.11 75.5275.52 76.05±0.4176.05±0.41

표 1 및 도 1을 참조하면, pSc의 검출한계는 1x102 으로 나타났으며 융점온도는 평균 76.05℃ 였다. 이 결과를 이용하여 검량선을 작성하여 직선성과 기울기를 조사하였다. 그 결과 y=-0.2856x + 12.879 으로 신뢰성 높은 기울기 값 범위인 -0.25 ~ -0.33 안에 들며 높은 상관계수 값(R2=0.998)을 얻었다. 이를 정량실험에 사용하였다.Referring to Table 1 and FIG. 1 , the detection limit of pSc was 1× 10 2 , and the average melting point temperature was 76.05°C. Using this result, a calibration curve was prepared and the linearity and inclination were investigated. As a result, y=-0.2856x + 12.879, which is within the reliable slope value range of -0.25 to -0.33, and a high correlation coefficient value (R 2 =0.998) was obtained. This was used for quantitative experiments.

(2) DNA affinity column을 이용한 잔류 유전자 분리(2) Residual gene isolation using DNA affinity column

1) 꿀에서 잔류 DNA isolation을 위한 적정 binding buffer 선정1) Select an appropriate binding buffer for residual DNA isolation from honey

guanidine hydrochloride(GnHCl)과 guanidine thiocyanate(GuSCN)의 결합력을 비교하였다. DNA binding buffer에 사용하는 chaotropic agent의 농도가 높을수록 결합력이 좋다는 보고에 따라, chaotropic agent 중 대표적인 guanidine hydrochloride과 guanidine thiocyanate을 사용하여 결합력의 변화를 알아보았다. 각 농도에 따라 2개의 시료를 시험하였으며 외부에서 넣어준 재조합의 DNA copy 수에 따른 Ct값 비교를 위하여 2개의 재조합 DNA 시료와 함께 qPCR을 수행하였고, GnHCl에 대한 결과를 하기 표 2 및 도 2에 나타내었고, GuSCN에 대한 결과를 하기 표 3 및 도 3에 나타내었다.The binding strength of guanidine hydrochloride (GnHCl) and guanidine thiocyanate (GuSCN) was compared. According to the report that the higher the concentration of the chaotropic agent used in the DNA binding buffer, the better the binding power. Two samples were tested according to each concentration, and qPCR was performed with two recombinant DNA samples to compare Ct values according to the number of externally added recombinant DNA copies, and the results for GnHCl are shown in Table 2 and FIG. 2 below. was shown, and the results for GuSCN are shown in Table 3 and FIG. 3 below.

No.No. SampleSample Ct (Cycle)Ct (Cycle) DNA 분자수number of DNA molecules Tm(℃)Tm(℃) 1One 5 M GnHCl (1)5 M GnHCl (1) 23.3723.37 76.0376.03 22 5 M GnHCl (2)5 M GnHCl (2) 23.3423.34 76.0376.03 23.36±0.0223.36±0.02 1.6x106 1.6x10 6 33 6 M GnHCl (1)6 M GnHCl (1) 24.3024.30 75.7075.70 44 6 M GnHCl (2)6 M GnHCl (2) 23.3823.38 75.7075.70 23.4±0.6523.4±0.65 1.2x106 1.2x10 6 55 107 pSc10 7 pSc 20.3620.36 76.3676.36 66 105 pSc10 5 pSc 28.0828.08 76.0376.03 75.98±0.2575.98±0.25

No.No. SampleSample Ct(Cycle)Ct(Cycle) DNA 분자수number of DNA molecules Tm (℃)Tm (℃) 1One 5 M GuSCN (1)5 M GuSCN (1) 27.0027.00 75.7075.70 22 5 M GuSCN (2)5 M GuSCN (2) 26.9426.94 75.7075.70 33 5 M GuSCN (3)5 M GuSCN (3) 26.9526.95 75.7075.70 26.96±0.0326.96±0.03 1.5x105 1.5x10 5 44 4 M GuSCN (1)4 M GuSCN (1) 26.2526.25 75.7075.70 55 4 M GuSCN (2)4 M GuSCN (2) 27.9527.95 75.7075.70 66 4 M GuSCN (3)4 M GuSCN (3) 29.9829.98 75.7075.70 28.06±1.5228.06±1.52 7.3x104 7.3x10 4 77 5 M GI (1)5 M GI (1) 25.9525.95 75.8075.80 88 5 M GI (2)5M GI (2) 26.0126.01 76.0376.03 25.98±0.0325.98±0.03 2.9x105 2.9x10 5 99 107 pSc10 7 pSc 20.9020.90 76.3676.36 1010 105 pSc10 5 pSc 26.9226.92 76.3676.36 75.86±0.2775.86±0.27

표 2 및 도 2를 참조하면, 5 M과 6 M GnHCl 사이에 회수된 유전자 copy 수는 1.6x106 와 1.2x106으로 유효한 차이를 보이지 않았다.Referring to Table 2 and Figure 2, the number of gene copies recovered between 5 M and 6 M GnHCl did not show an effective difference between 1.6x10 6 and 1.2x10 6 .

표 3 및 도 3을 참조하면, GuSCN으로 제조된 binding buffer의 경우 5 M의 GuSCN binding buffer로 회수된 유전자의 분자수(1.5x105)가 4 M의 GuSCN binding buffer로 회수된 유전자의 분자수(7.3x104)보다 많았으나, 5 M GnHCl binding buffer보다 효과적이지는 않은 것으로 나타났다. 이에 affinity column법을 이용한 잔류 유전자 분리법에서는 4 내지 6 M 수준의 GnHCl binding buffer 사용이 적합한 것으로 파악되었으며, 이후 실험에서는 5 M의 GnHCl binding buffer 사용을 결정하였다.Referring to Table 3 and Figure 3, in the case of the binding buffer prepared with GuSCN, the number of molecules of the gene recovered with 5 M GuSCN binding buffer (1.5x10 5 ) The number of molecules of the gene recovered with 4 M GuSCN binding buffer (7.3x10) 4 ), but it was not found to be more effective than 5 M GnHCl binding buffer. Therefore, in the residual gene separation method using the affinity column method, the use of a 4 to 6 M level of GnHCl binding buffer was found to be suitable, and in the subsequent experiment, it was decided to use a 5 M GnHCl binding buffer.

2) 꿀에서 잔류 DNA isolation을 위한 적정 DNA binding column 비교 2) Comparison of appropriate DNA binding column for residual DNA isolation from honey

잔류 DNA 분리에서 column의 DNA 결합능력은 중요하다. 이에 현재 국내에서 시판되는 어피니티 컬럼(silica membrane based column) 5가지를 이용하여 DNA binding capacity의 차이를 확인하였고, 그 결과를 하기 표 4 및 도 4에 나타내었다.In the separation of residual DNA, the DNA binding capacity of the column is important. Therefore, the difference in DNA binding capacity was confirmed using 5 kinds of affinity columns currently commercially available in Korea, and the results are shown in Table 4 and FIG. 4 below.

No.No. columncolumn Ct(Cycle)Ct(Cycle) Aver. CtAver. Ct Tm(℃)Tm(℃) DNA 분자수number of DNA molecules 1One probioprobio 23.5123.51 75.7075.70 22 25.2525.25 24.38±1.2324.38±1.23 75.7075.70 8.3x105 8.3x10 5 33 viralGeneviralGene 24.4024.40 76.0376.03 44 23.5023.50 23.95±0.6423.95±0.64 76.0376.03 1.1x106 1.1x10 6 55 pathogenpathogen 25.2625.26 76.0376.03 66 25.2225.22 25.24±0.0325.24±0.03 75.7075.70 4.7x105 4.7x10 5 77 Intron-plaIntron-pla 25.2025.20 75.7075.70 88 24.3424.34 24.77±0.6124.77±0.61 75.7075.70 6.4x105 6.4x10 5 99 biosolutionbiosolution 24.3024.30 75.7075.70 1010 24.2724.27 24.29±0.0224.29±0.02 75.7075.70 8.8x105 8.8x10 5 75.80±0.1675.80±0.16

표 4 및 도 4를 참조하면, 5개 제조사의 column은 4.7x105에서 1.1x106로 회수되는 분자수의 차이를 보여 column이 꿀에서 미량의 DNA를 분리 시 중요하게 고려되어야 하는 항목임을 확인하였다.Referring to Table 4 and Figure 4, the columns of the five manufacturers showed a difference in the number of molecules recovered from 4.7x10 5 to 1.1x10 6 It was confirmed that the column is an important item to be considered when isolating a trace amount of DNA from honey.

3) 꿀에서 잔류 DNA isolation을 위한 적정 washing buffer 선정3) Selection of appropriate washing buffer for residual DNA isolation from honey

회수되는 DNA의 순도(purity)를 위하여 column에 DNA를 결합시킨 후 다음과 같이 washing buffer의 조성을 변화시켜 회수되는 DNA 양의 변화를 확인하였다. Washing buffer는 염과 에탄올로 구성되어 있으며, 에탄올 80 %(v/v)에 대한 결과를 하기 표 5 및 도 5에 나타내었고, 에탄올 85 %(v/v)에 대한 결과를 하기 표 6(PE Sample(비교군)은 에탄올 80 %(v/v)) 및 도 6에 나타내었다.For the purity of the recovered DNA, after binding the DNA to the column, the composition of the washing buffer was changed as follows to confirm the change in the amount of recovered DNA. Washing buffer consists of salt and ethanol, and the results for ethanol 80% (v/v) are shown in Table 5 and Figure 5 below, and the results for ethanol 85% (v/v) are shown in Table 6 (PE) The sample (comparative group) was ethanol 80% (v/v)) and is shown in FIG. 6 .

No.No. SampleSample Buffer 조성 (80% EtOH)Buffer composition (80% EtOH) Ct cycleCt cycle DNA 분자수number of DNA molecules Tm(℃)Tm(℃) 1One PE (1)PE (1) 10 mM Tris-HCl (pH7.6)10 mM Tris-HCl (pH7.6) 25.2525.25 76.0376.03 22 PE (2)PE (2) 26.1626.16 76.0376.03 25.71±0.4625.71±0.46 3.4x105 3.4x10 5 33 A (1)A (1) 15 mM Tris-HCl (pH7.6)15 mM Tris-HCl (pH7.6) 25.2025.20 76.0376.03 44 A (2)A (2) 25.2425.24 76.0376.03 55 A (3)A (3) 25.2525.25 76.0376.03 25.23±0.0225.23±0.02 4.7x105 4.7x10 5 66 B (1)B (1) 20 mM Tris-HCl (pH7.6)20 mM Tris-HCl (pH7.6) 25.2325.23 76.0376.03 77 B (2)B (2) 25.2325.23 75.7075.70 88 B (3)B (3) 26.1626.16 75.7075.70 25.54±0.4425.54±0.44 3.8x105 3.8x10 5 99 1x107 1x10 7 Positive DNAPositive DNA 21.2321.23 76.3676.36 1010 1x105 1x10 5 Positive DNAPositive DNA 27.1127.11 76.3676.36 76.03±0.276.03±0.2

No.No. SampleSample Buffer 조성 (85% EtOH)Buffer composition (85% EtOH) Ct cycleCt cycle DNA 분자수number of DNA molecules Tm(℃)Tm(℃) 1One PE (1)PE (1) 10mM Tris-HCl (pH7.6)
+ 80% EtOH
10 mM Tris-HCl (pH7.6)
+ 80% EtOH
24.2724.27 75.8575.85
22 PE (2)PE (2) 26.0726.07 75.8575.85 25.17±0.925.17±0.9 4.9x105 4.9x10 5 33 A (1)A (1) 15mM Tris-HCl (pH7.6)15mM Tris-HCl (pH7.6) 24.2624.26 75.8575.85 44 A (2)A (2) 25.1925.19 75.8575.85 55 A (3)A (3) 25.2225.22 75.8575.85 24.89±0.4524.89±0.45 5.9x105 5.9x10 5 66 B (1)B (1) 20mM Tris-HCl (pH7.6)20 mM Tris-HCl (pH7.6) 25.2025.20 75.8575.85 77 B (2)B (2) 25.2125.21 75.5275.52 88 B (3)B (3) 24.9024.90 75.8575.85 24.90±0.4324.90±0.43 5.9x105 5.9x10 5 99 1x107 1x10 7 Positive DNAPositive DNA 20.2620.26 76.5176.51 1010 1x105 1x10 5 Positive DNAPositive DNA 27.1827.18 76.1876.18 75.91±0.275.91±0.2

표 5, 표 6, 도 5 및 도 6을 참조하면, 에탄올을 80 %(v/v)로 고정하고 염의 농도를 변화시켰을 때와, 에탄올을 85 %(v/v)로 고정하고 염의 농도를 변화시켰을 때의 비교 결과, 염의 농도는 15 mM에서 85%(v/v) 에탄올에서 회수율이 높게 나타난 것으로부터, affinity column법을 이용한 잔류 유전자 분리법에서 washing buffer는 염 및 에탄올을 포함하되, 80 내지 90 %(v/v)의 에탄올에 대하여 염의 농도가 10 내지 20 mM인 washing buffer의 사용이 적합한 것으로 파악되었고, 이후 실험에서는 85 %(v/v)의 에탄올에 대하여 염의 농도가 15 mM인 washing buffer 사용을 결정하였다.Referring to Table 5, Table 6, Figures 5 and 6, when ethanol was fixed at 80% (v/v) and the salt concentration was changed, ethanol was fixed at 85% (v/v) and the salt concentration was As a result of comparison when changed, the salt concentration showed a high recovery rate in 85% (v/v) ethanol at 15 mM. For 90% (v/v) ethanol, it was determined that the washing buffer with a salt concentration of 10 to 20 mM was suitable, and in subsequent experiments, washing with a salt concentration of 15 mM for 85% (v/v) ethanol was found to be suitable. It was decided to use the buffer.

4) 꿀에서 잔류 DNA isolation을 위한 적정 Elution buffer 선정 4) Selection of an appropriate elution buffer for residual DNA isolation from honey

column affinity법의 마지막 단계인 DNA elution을 위하여 10 mM Tris-HCl(pH 8.5), TE buffer(10 mM Tris-HCl 및 0.5 mM EDTA, pH 8.5)와 DW간의 elution 효과를 비교하였고, 그 결과를 하기 표 7, 표 8, 도 7 및 도 8에 나타내었다.For DNA elution, the last step of the column affinity method, the elution effect between 10 mM Tris-HCl (pH 8.5), TE buffer (10 mM Tris-HCl and 0.5 mM EDTA, pH 8.5) and DW was compared. It is shown in Table 7, Table 8, FIGS. 7 and 8.

No.No. SampleSample Elution Buffer 조성Elution Buffer Composition Ct cycleCt cycle DNA분자수number of DNA molecules Tm(℃)Tm(℃) 1One D1D1 DWDW 24.2724.27 76.1876.18 22 D2D2 DWDW 24.3124.31 76.1876.18 24.29±0.0224.29±0.02 8.8x105 8.8x10 5 33 A1A1 10 mM Tris-HCl (pH8.5)10 mM Tris-HCl (pH8.5) 24.3124.31 76.1876.18 44 A2A2 24.3024.30 76.5176.51 55 A3A3 25.2225.22 76.1876.18 24.61±0.4324.61±0.43 7.1x105 7.1x10 5 66 B1B1 10 mM Tris-HCl (pH8.5)
+ 0.5 mM EDTA
10 mM Tris-HCl (pH8.5)
+ 0.5 mM EDTA
24.2824.28 76.1876.18
77 B2B2 24.2024.20 75.8575.85 88 B3B3 24.2324.23 76.1876.18 24.24±0.0324.24±0.03 9.1x105 9.1x10 5 99 1x107 1x10 7 Positive DNAPositive DNA 20.7520.75 76.5176.51 1010 1x105 1x10 5 Positive DNAPositive DNA 28.2028.20 76.5176.51 76.25±0.276.25±0.2

No.No. SampleSample Elution Buffer 조성Elution Buffer Composition Ct cycleCt cycle DNA분자수number of DNA molecules Tm(℃)Tm(℃) 1One D1D1 DWDW 25.1625.16 76.0376.03 22 D2D2 DWDW 26.2026.20 76.0376.03 25.68±0.5225.68±0.52 3.5x105 3.5x10 5 33 A1A1 10 mM Tris-HCl (pH9.0)10 mM Tris-HCl (pH9.0) 26.1526.15 76.0376.03 44 A2A2 25.2025.20 76.0376.03 55 A3A3 26.1326.13 76.0376.03 25.83±0.4425.83±0.44 3.2x105 3.2x10 5 66 B1B1 10 mM Tris-HCl (pH9.0)
+ 0.5 mM EDTA
10 mM Tris-HCl (pH9.0)
+ 0.5 mM EDTA
25.2025.20 76.0376.03
77 B2B2 25.1825.18 75.7075.70 88 B3B3 25.2025.20 76.0376.03 25.19±0.0125.19±0.01 4.8x105 4.8x10 5 99 1x107 1x10 7 Positive DNAPositive DNA 23.1123.11 76.6876.68 1010 1x105 1x10 5 Positive DNAPositive DNA 30.1130.11 76.0376.03 76.06±0.2376.06±0.23

표 7 및 도 7을 참조하면, 10 mM Tris-HCl(pH 8.5)만으로 elution 하였을 때 7.1x105 DNA로 정량되어 사용된 3가지 elution buffer 중 제일 적은 분자수를 회수하였고, TE buffer(10 mM Tris-HCl 및 0.5mM EDTA, pH 8.5)와 DW의 경우 DNA 정량값은 8.8x105과 9.1x105로 유효한 차이를 보이지 않았다.Referring to Table 7 and Figure 7, when elution was performed with only 10 mM Tris-HCl (pH 8.5), the smallest number of molecules was recovered among the three elution buffers used as quantified as 7.1x10 5 DNA, and TE buffer (10 mM Tris- In the case of HCl and 0.5 mM EDTA, pH 8.5) and DW, DNA quantitative values were 8.8x10 5 and 9.1x10 5 , showing no effective difference.

또한 표 8 및 도 8을 참조하면, 염의 pH를 염기성에 맞추어 제조된 10 mM Tris-HCl(pH 9.0)만으로 elution 하였을 때 3.2x105로 나타났다. TE buffer(10 mM Tris-HCl 및 0.5 mM EDTA, pH 9.0)와 DW의 비교에서 DNA 정량값은 4.8x105와 3.5x105으로 pH 8.5의 TE와는 다르게 차이를 보였다.In addition, referring to Table 8 and FIG. 8, when the pH of the salt was elution only with 10 mM Tris-HCl (pH 9.0) prepared in accordance with basicity, it was found to be 3.2x10 5 . In the comparison of TE buffer (10 mM Tris-HCl and 0.5 mM EDTA, pH 9.0) and DW, DNA quantitative values were 4.8x10 5 and 3.5x10 5 , which was different from TE at pH 8.5.

이로부터 상기 사용된 elution buffer의 조성 및 pH에 따라 DNA 정량값에 다소 차이가 있었으나, affinity column법을 이용한 잔류 유전자 분리에 있어 사탕수수 특이 유전자 증폭 확인에 적합함을 확인하였다.From this, although there was a slight difference in the DNA quantification value depending on the composition and pH of the elution buffer used, it was confirmed that it was suitable for confirming sugar cane-specific gene amplification in the separation of residual genes using the affinity column method.

(3) 시판 제품에서 사탕수수 특이 유전자 검출(3) Detection of sugarcane-specific genes in commercial products

상술한 방법으로 5개의 제품 시료 2 ㎖를 사용하여 유전자를 분리 및 이를 이용한 유전자 검출법을 실행하였고, 그 결과를 하기 표 9 및 도 9에 나타내었다. Genes were isolated using 2 ml of 5 product samples as described above and a gene detection method using the same was performed, and the results are shown in Table 9 and FIG. 9 below.

Commercial productcommercial product Ct (Cycle)Ct (Cycle) Tm(℃)Tm(℃) DetectionDetection Quanti.(㎕)
(y=-3.4939x+45.053)
Quanti. (μl)
(y=-3.4939x+45.053)
AA 37.3137.31 75.7075.70 ++ 8.2x103 8.2x10 3 BB 39.3039.30 67.8567.85 -- C* C * 38.2738.27 75.3775.37 ++ 4.3x103 4.3x10 3 DD 38.2538.25 75.3775.37 ++ 4.4x103 4.4x10 3 EE 25.6325.63 75.7075.70 ++ 1.8x107 1.8x10 7

* 경기대 양봉장에서 100% 사탕수수 설탕으로 제조한 사양꿀 * Honey made from 100% cane sugar at Gyeonggi University Apiary

표 9 및 도 9를 참조하면, 시판되고 있는 affinity column을 이용하여 꿀의 잔류 유전자를 분리하여 시행한 유전자 검출법으로 사탕수수 특이 유전자를 검출 및 정량 결과, B 시료를 제외한 4개의 PCR amplicon은 비슷한 Tm값을 보였고, 검출 PCR만으로도 최소 103 분자수 만큼 검출됨을 확인하였다.Referring to Table 9 and FIG. 9, sugar cane-specific genes were detected and quantified by a gene detection method performed by isolating residual genes of honey using a commercially available affinity column. As a result, four PCR amplicons except for sample B had similar Tm value, and it was confirmed that at least 10 3 molecules were detected only by detection PCR.

본 발명에서는 꿀에 제작된 재조합 DNA를 넣어주고 인위적으로 혼입한 재조합 DNA의 특정 프라이머를 이용하여 유전자 분리의 각 단계별 회수율을 검토하는 방법으로 꿀에서 가장 적절하게 잔류하고 있는 유전자 분리법을 정립하였다. 이는 향후 빠르고 정확한 유전자 검출법을 꿀에 적용하여 품질평가 및 관리를 용이하게 할 것으로 기대된다.In the present invention, a method for separating the most appropriate remaining genes in honey was established by putting the recombinant DNA produced in honey and examining the recovery rate of each step of gene separation using specific primers of the artificially incorporated recombinant DNA. This is expected to facilitate quality evaluation and management by applying a fast and accurate gene detection method to honey in the future.

이상에서 설명한 본 발명의 바람직한 실시예들은 기술적 과제를 해결하기 위해 개시된 것으로, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 본 발명의 사상 및 범위 안에서 다양한 수정, 변경, 부가 등이 가능할 것이며, 이러한 수정 변경 등은 이하의 청구범위에 속하는 것으로 보아야 할 것이다.Preferred embodiments of the present invention described above are disclosed to solve the technical problem, and various modifications, changes, additions, etc. will be possible within the spirit and scope of the present invention by those of ordinary skill in the art to which the present invention pertains. , such modifications and changes should be regarded as belonging to the following claims.

<110> Kyonggi University Industry & Academia Cooperation Foundation <120> Method of DNA isolation using affinity column in sugar honey <130> NP20-08061 <160> 2 <170> KoPatentIn 3.0 <210> 1 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Cane-dF Primer <400> 1 caccgcaatt atttttattc tgag 24 <210> 2 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Cane-dR Primer <400> 2 gaacatcttg aatccggtat tc 22 <110> Kyonggi University Industry & Academia Cooperation Foundation <120> Method of DNA isolation using affinity column in sugar honey <130> NP20-08061 <160> 2 <170> KoPatentIn 3.0 <210> 1 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Cane-dF Primer <400> 1 caccgcaatt atttttattc tgag 24 <210> 2 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Cane-dR Primer <400> 2 gaacatcttg aatccggtat tc 22

Claims (4)

사양꿀에서 어피니티 컬럼(affinity column)을 이용한 잔류 유전자 분리방법으로서,
(a) 바인딩 버퍼(binding buffer)를 이용하여 사양꿀에 존재하는 잔류 유전자가 실리카 멤브레인(silica membrane)에 결합 촉진을 유도하는 단계;
(b) 상기 잔류 유전자 함유 시료를 실리카 멤브레인(silica membrane)을 포함하는 상기 어피니티 컬럼에 로딩(loading)하는 단계;
(c) 세척 버퍼(washing buffer)를 이용하여 불순물을 제거하는 단계; 및
(d) 용출 버퍼(elution buffer)를 이용하여 상기 어피니티 컬럼으로부터 목적하는 잔류 유전자를 회수하는 단계;
를 포함하는 사양꿀에서 어피니티 컬럼을 이용한 잔류 유전자 분리방법.
As a residual gene separation method using an affinity column in fermented honey,
(a) using a binding buffer (binding buffer) to induce binding of the residual gene present in the honey to a silica membrane (silica membrane);
(b) loading the residual gene-containing sample into the affinity column including a silica membrane;
(c) removing impurities using a washing buffer; and
(d) recovering the desired residual gene from the affinity column using an elution buffer;
Residual gene separation method using an affinity column in fermented honey containing
제1항에 있어서,
상기 바인딩 버퍼(binding buffer)는 구아니딘 하이드로클로라이드(guanidine hydrochloride, GnHCl)인 것을 특징으로 하는 사양꿀에서 어피니티 컬럼을 이용한 잔류 유전자 분리방법.
The method of claim 1,
The binding buffer (binding buffer) is guanidine hydrochloride (guanidine hydrochloride, GnHCl), characterized in that the residual gene separation method using an affinity column from the honey.
제1항에 있어서,
상기 세척 버퍼(washing buffer)는 염 및 에탄올을 포함하되, 80 내지 90 %(v/v)의 에탄올에 대하여 상기 염의 농도가 10 내지 20 mM인 것을 특징으로 하는 사양꿀에서 어피니티 컬럼을 이용한 잔류 유전자 분리방법.
According to claim 1,
The washing buffer includes salt and ethanol, but the concentration of the salt is 10 to 20 mM with respect to 80 to 90% (v/v) of ethanol Residue using an affinity column in fermented honey Gene isolation method.
제1항에 있어서,
상기 용출 버퍼(elution buffer)는 5 내지 15 mM 트리스-염화수소(Tris-HCl)이거나, 5 내지 15 mM 트리스-염화수소(Tris-HCl)와 0.1 내지 1 mM EDTA(Ethylenediaminetetraacetic acid)의 혼합물이거나, 증류수인 것을 특징으로 하는 사양꿀에서 어피니티 컬럼을 이용한 잔류 유전자 분리방법.
The method of claim 1,
The elution buffer is 5 to 15 mM Tris-hydrogen chloride (Tris-HCl), or a mixture of 5 to 15 mM Tris-hydrogen chloride (Tris-HCl) and 0.1 to 1 mM Ethylenediaminetetraacetic acid (EDTA), or distilled water. Residual gene separation method using an affinity column in specification honey, characterized in that.
KR1020200106725A 2020-08-25 2020-08-25 Method of DNA isolation using affinity column in sugar honey KR102371553B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200106725A KR102371553B1 (en) 2020-08-25 2020-08-25 Method of DNA isolation using affinity column in sugar honey

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200106725A KR102371553B1 (en) 2020-08-25 2020-08-25 Method of DNA isolation using affinity column in sugar honey

Publications (2)

Publication Number Publication Date
KR20220026093A true KR20220026093A (en) 2022-03-04
KR102371553B1 KR102371553B1 (en) 2022-03-07

Family

ID=80813929

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200106725A KR102371553B1 (en) 2020-08-25 2020-08-25 Method of DNA isolation using affinity column in sugar honey

Country Status (1)

Country Link
KR (1) KR102371553B1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102433322A (en) * 2011-12-07 2012-05-02 广州市质量监督检测研究院 Extraction method for honey gene
WO2014171767A1 (en) * 2013-04-17 2014-10-23 주식회사 제놀루션 Method for determining authenticity of honey using dna detection

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102433322A (en) * 2011-12-07 2012-05-02 广州市质量监督检测研究院 Extraction method for honey gene
WO2014171767A1 (en) * 2013-04-17 2014-10-23 주식회사 제놀루션 Method for determining authenticity of honey using dna detection

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
비특허문헌 1 *

Also Published As

Publication number Publication date
KR102371553B1 (en) 2022-03-07

Similar Documents

Publication Publication Date Title
Arulandhu et al. Development and validation of a multi-locus DNA metabarcoding method to identify endangered species in complex samples
Aljanabi et al. An improved and rapid protocol for the isolation of polysaccharide-and polyphenol-free sugarcane DNA
Bhat et al. The possible role of 10398A and 16189C mtDNA variants in providing susceptibility toT2DM in two North Indian populations: a replicative study
CN101956008A (en) Rapid compound PCR (Polymerase Chain Reaction) amplification fluorescence assay kit for 16 gene loca
EP3528616A1 (en) Genetic markers for distinguishing the phenotype of a cannabis sativa sample
KR102371553B1 (en) Method of DNA isolation using affinity column in sugar honey
KR102371559B1 (en) Method of DNA isolation using affinity column in native honey
CN109750093B (en) Method for identifying or assisting in identifying liquorice
WO2015179672A1 (en) Methods of isolation of cell free complexes and circulating cell-free nucleic acid
CN109628559B (en) Method and kit for detecting Y chromosome copy number variation
CN111808937A (en) Fut 1508 dupT allele of Bombay blood group and detection method and application thereof
CN108410990B (en) Application of IGFBP3 in preparation of product for diagnosing I-type neurofibroma combined with spinal malformation disease
CN113667673B (en) Montellike FUT1236delG allele and detection method and application thereof
EP1616953B1 (en) Method of detecting beta 3 adrenaline receptor mutant gene and nucleic acid probe and kit therefor
CN116377103A (en) Nucleic acid reagent, kit and detection method for detecting illicium verum and/or red-poison fennel
CN110257505B (en) Non-deletion α thalassemia point mutation rapid detection kit and detection method
Sah et al. Association between Vitamin D Receptor Fokl and Bsml Gene Polymorphism and Diabetes Mellitus in Nepalese Population
CN109735644B (en) Primer pair for identifying or assisting in identifying liquorice and application thereof
CN112029868A (en) Portunus trituberculatus microsatellite markers and application thereof in growth trait association analysis
CN106967830B (en) Application of ZFP gene as internal reference gene in quantitative detection of gene expression level of trichogramma borer
Hashami Nia et al. Using HRM Technique to Identify Population Markers in Kurdish Cities
CN107058509A (en) Kit and its detection method for detecting SLC2A9 gene SNP site rs3775948 genotype
CN115725745B (en) SNP molecular marker related to sheep multi-thoracic vertebrae and amplification primer set and application
CN117230184B (en) Nucleic acid combination for detecting Alzheimer disease gene based on time-of-flight nucleic acid mass spectrometry technology and application
JP4658816B2 (en) Primer for detection of peanut and detection method thereof

Legal Events

Date Code Title Description
GRNT Written decision to grant