WO2014171640A1 - Instantaneous cooling device for cold water - Google Patents

Instantaneous cooling device for cold water Download PDF

Info

Publication number
WO2014171640A1
WO2014171640A1 PCT/KR2014/002452 KR2014002452W WO2014171640A1 WO 2014171640 A1 WO2014171640 A1 WO 2014171640A1 KR 2014002452 W KR2014002452 W KR 2014002452W WO 2014171640 A1 WO2014171640 A1 WO 2014171640A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
flow path
type
thermoelectric module
cold water
Prior art date
Application number
PCT/KR2014/002452
Other languages
French (fr)
Korean (ko)
Inventor
권택율
윤영균
성기혁
Original Assignee
주식회사 리빙케어
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 리빙케어 filed Critical 주식회사 리빙케어
Priority to CN201480021067.1A priority Critical patent/CN105121983B/en
Publication of WO2014171640A1 publication Critical patent/WO2014171640A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D19/00Arrangement or mounting of refrigeration units with respect to devices or objects to be refrigerated, e.g. infrared detectors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D35/00Filtering devices having features not specifically covered by groups B01D24/00 - B01D33/00, or for applications not specifically covered by groups B01D24/00 - B01D33/00; Auxiliary devices for filtration; Filter housing constructions
    • B01D35/18Heating or cooling the filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B21/00Machines, plants or systems, using electric or magnetic effects
    • F25B21/02Machines, plants or systems, using electric or magnetic effects using Peltier effect; using Nernst-Ettinghausen effect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators

Definitions

  • the present invention relates to a cooling device for instantaneous cold water, and more particularly, to a cooling device for instantaneous cold water, which is additionally installed in an electronic product such as a water purifier to supply cold water instantaneously.
  • Such a water purifier is typically provided with a water storage tank for storing water, and the water storage tank is provided with a cooling device to cool the stored water and make it cold. Since the size of such a cooling device is influenced by the size of electronic products, a thin cooling device is applied in consideration of the size.
  • Patent Registration No. 0884645 A technology related to such a cooling device has been proposed in Patent Registration No. 0884645 and Patent Registration No. 1244476.
  • FIG. 1 is a schematic diagram of the instantaneous cooling device for water purifiers in the patent registration No. 084645 (hereinafter referred to as 'prior art 1').
  • the instantaneous cooling apparatus for the water purifier of the prior art 1 includes an antifreeze tank 110 accommodating an antifreeze 111 therein, and an antifreeze cooling unit configured to cool the antifreeze 111 in the antifreeze tank 110. 130, an antifreeze circulating unit 140 for circulating the antifreeze in the antifreeze tank 110 through a circulation pipe 141 provided outside the antifreeze tank 110, and an antifreeze and purification inside the circulation pipe 141.
  • a heat exchanger 160 for cooling the purified water inside the purified water pipe 163 by heat-exchanging purified water inside the purified water pipe 163 through which purified water flows in.
  • the circulation pipe 141 is provided in the heat exchanger 160.
  • the control unit 170 may further include an amount of heat exchange between the antifreeze inside and the purified water inside the purified water pipe 163.
  • the instantaneous cooling device for water purifiers according to the prior art 1 has a problem in that the volume of a refrigerant supply-related accessory device for cooling water increases, and the consumption of electricity due to the driving of the cooling coil increases.
  • FIG. 2 is a configuration diagram showing the instantaneous cooling device for water purifier in the patent registration No. 1244476 (hereinafter referred to as 'prior art 2').
  • the instantaneous cooling apparatus for a water purifier includes a plurality of purified water filters 10 for filtering raw water supplied from raw water supply means, and a purified water tank for storing purified water filtered by the purified water filter 10.
  • the cooling tank 40 is connected to the purified water tank 20 through a cooling pipe 30 to cool the purified water, and the cooling tank 40 is cooled to a cryogenic state so that the purified water cooling tank 40
  • the water purifier including a cooling cycle 50 to be cooled by the cooling and the water discharge pipe 70 is connected to the cooling tank 40 and the cold water intake coke 60 to allow the cooled cold water to be discharged.
  • a control valve 110 installed in the cooling pipe 30 adjacent to the cooling tank 40 to open and close the cooling pipe 30 so that the flow rate of the purified water flowing in the cooling pipe 30 is controlled;
  • a cooling structure (120) configured inside the cooling tank (40) to extend a contact area at the same time as extending the moving path of purified water introduced into the cooling tank (40);
  • a hydraulic valve 130 installed at the cooling tube 30 to allow the purified water to flow into the cooling tank 40 at a constant water pressure when the cooling tube 30 is opened by the control valve 110;
  • An air filter (140) installed at an upper side of the control valve (110) to prevent contaminants from being introduced from the outside through a through hole (115) formed in the control valve (110);
  • control means 150 for controlling the control valve 110 to open the cold water pipe 40 when the cold water intake coke 60 is opened.
  • the control valve 110 includes the purified water tank. It is a water intake valve connecting the cooling pipe 30 between the 30 and the cooling tank 40 so as to be bent in a '-' shape, and between the inlet portion 31 and the outlet portion 32 of the cooling tube 30. Cork valve body 111 to connect the letter 'a', the cock opening and closing member 113 is inserted into the cock valve body 111 to open and close the cold water passage 112, and the cock opening and closing member 113 Is coupled to the elevating means 114 and the coke opening and closing member 114 to open or close the cold water passage 112 by moving the cock opening and closing member 113 up or down when the operation signal of the control means 150 is provided.
  • An elastic spring 115 provided on the upper side and the inside of the cock valve body 111, and a through hole formed in the longitudinal direction in the cock opening and closing member 113 (1) 16).
  • the instantaneous cooling device for water purifier increases the volume of the refrigerant supply-related accessories for cooling the water, increases the electricity consumption according to the operation of the cooling cycle, and includes a cooling tank to cool the water over time. There was a problem that the quality of the water stored in the tank is degraded.
  • An object of the present invention is to solve the problems of the prior art as described above, it is possible to implement a thin water, so when applied to a water purifier with a cold water function is possible to implement a micro water purifier, etc. It is possible to save energy, and it is not necessary to have a cold water reservoir, and it is possible to drink clean water at all times, and it is possible to use it for commercial use because it can be infinitely extracted, and it provides an instant cold water cooling device that can adjust the cold water temperature desired by the user. It is.
  • the sealing plate is formed on the rear surface, the closing plate is connected to the inlet pipe and the discharge pipe at both ends of the flow path;
  • a thermoelectric module for thermoelectric cooling of water flowing in the flow path of the closing plate;
  • a heat transfer plate interposed between the closure plate and the thermoelectric module;
  • a water jacket in close contact with the rear surface of the thermoelectric module and cooling the heat dissipating surface of the thermoelectric module in a water cooling manner.
  • the present invention may further include a closing plate that is in close contact with the rear surface of the closing plate is formed in a separate flow path formed on the surface symmetrical to communicate with the flow path of the closing plate.
  • the present invention may further include a closing plate in close contact with the rear surface of the flow path plate.
  • finishing plate in the present invention may be formed of silicon or Teflon material.
  • the present invention is provided with a valve provided to control the flow rate of the water flowing into the inlet pipe and a temperature sensor for sensing the temperature of the water discharged to the discharge pipe is provided to control the outlet temperature through the temperature of the water sensed by the sensor
  • the control unit may be further provided.
  • thermoelectric module in the present invention may be provided with a bulk (bulk) type or skeleton (skeleton) type.
  • thermoelectric module according to the present invention has a skeleton-like, P-type and N-type elements sequentially arranged, coating layers formed on both sides of the P-type and N-type elements, and on both sides of the P-type and N-type elements.
  • An electrode may be alternately attached, and a bonding layer may be interposed between the both-side coating layers of the P-type and N-type elements and both sides of the electrode to temporarily fix the electrode.
  • the present invention since it is possible to implement a thinner, when applied to a water purifier provided with a cold water function, it is possible to implement a micro water purifier, etc., and to extract electricity only when necessary, thus saving electricity and eliminating the need for a cold water reservoir. It is possible to drink clean water, and infinitely extractable, so it can be used enough for commercial use, and it is possible to adjust the cold water temperature desired by the user.
  • FIG. 1 is a schematic diagram of an instantaneous cooling apparatus for a water purifier according to the prior art 1.
  • FIG. 2 is a block diagram showing the instantaneous cooling device for water purifier according to the prior art 2.
  • FIG 3 is an exploded perspective view of an apparatus for cooling instantaneous cold water according to a first embodiment of the present invention.
  • FIG. 4 is a cross-sectional view of the instantaneous cold water cooling apparatus according to the first embodiment of the present invention.
  • FIG. 5 is a combined perspective view of the instantaneous cold water cooling apparatus according to the first embodiment of the present invention.
  • FIG. 6 is a schematic diagram illustrating a state in which the instantaneous cold water cooling apparatus according to the first embodiment of the present invention is associated with a control unit.
  • thermoelectric module 7 and 8 are a side view and a process diagram of the skeletal thermoelectric module in the instantaneous cold water cooling apparatus according to the first embodiment of the present invention.
  • FIG. 9 is a cross-sectional view of an instant chill water cooling apparatus according to a second embodiment of the present invention.
  • the sealing plate is formed on the rear surface, the closing plate is connected to the inlet pipe and the discharge pipe at both ends of the flow path;
  • a thermoelectric module for thermoelectric cooling of water flowing in the flow path of the closing plate;
  • a heat transfer plate interposed between the closure plate and the thermoelectric module;
  • a water jacket in close contact with the rear surface of the thermoelectric module and cooling the heat dissipating surface of the thermoelectric module in a water cooling manner.
  • the present invention may further include a closing plate that is in close contact with the rear surface of the closing plate is formed in a separate flow path formed on the surface symmetrical to communicate with the flow path of the closing plate.
  • the present invention may further include a closing plate in close contact with the rear surface of the flow path plate.
  • finishing plate in the present invention may be formed of silicon or Teflon material.
  • the present invention is provided with a valve provided to control the flow rate of the water flowing into the inlet pipe and a temperature sensor for sensing the temperature of the water discharged to the discharge pipe is provided to control the outlet temperature through the temperature of the water sensed by the sensor
  • the control unit may be further provided.
  • thermoelectric module in the present invention may be provided with a bulk (bulk) type or skeleton (skeleton) type.
  • thermoelectric module according to the present invention has a skeleton-like, P-type and N-type elements sequentially arranged, coating layers formed on both sides of the P-type and N-type elements, and on both sides of the P-type and N-type elements.
  • An electrode may be alternately attached, and a bonding layer may be interposed between the both-side coating layers of the P-type and N-type elements and both sides of the electrode to temporarily fix the electrode.
  • ... unit means a unit for processing at least one function or operation, which may be implemented in hardware or software or a combination of hardware and software.
  • FIG. 3 is an exploded perspective view of the instantaneous cold water cooling apparatus according to the first embodiment of the present invention
  • FIG. 4 is a cross-sectional view of the instantaneous cold water cooling apparatus according to the first embodiment of the present invention
  • 5 is a combined perspective view of the instantaneous cold water cooling apparatus according to the first embodiment of the present invention
  • FIG. 6 is a schematic diagram of a state in which the instantaneous cold water cooling apparatus according to the first embodiment of the present invention is associated with a control unit.
  • 7 and 8 illustrate a skeletal thermoelectric module in the instantaneous cold water cooling apparatus according to the first embodiment of the present invention.
  • the instantaneous cold water cooling apparatus 100 is the flow path plate 110, the closing plate 120, the heat transfer plate 130, the thermoelectric module 140, the water jacket ( 150) and the controller (C).
  • through holes 112 and 114 are formed in both ends of an upper surface thereof in a thickness direction, and a semicircular flow path 116 is formed on a bottom surface thereof. In this case, the through holes 112 and 114 are formed at both ends of the flow path 116, respectively.
  • a groove having a set depth is formed on the bottom surface of the flow path plate 110 so as to accommodate the finish plate 120, the heat transfer plate 130, and the thermoelectric module 140, which will be described later, on the inner side of the flow path plate 110.
  • the flow path plate 110 is formed of a material such as synthetic resin.
  • the closing plate 120 is formed of a silicon material or the like and is in close contact with the bottom surface of the flow path plate 110, and has a semicircular flow path 126 formed to communicate with the flow path 116 formed on the bottom surface of the flow path plate 110. Is formed on the upper surface.
  • the closing plate 120 is connected to both ends of the flow path 126 in the inlet pipe 122 and the discharge pipe 124 in the orthogonal direction is in close contact with the bottom surface of the flow path plate 110 the inlet pipe 122 And the discharge pipe 124 is inserted into the through holes 112 and 114 and exposed to the outside.
  • the inlet pipe 122 is provided with an automatic valve (V) to control the inflow flow rate
  • the discharge pipe 124 is provided with a temperature sensor (S) for sensing the temperature of the water discharged.
  • the heat transfer plate 130 is provided to increase the heat transfer efficiency to the finish plate 120 according to the heat absorption in the thermoelectric module 140 disposed in close contact with the bottom surface of the finish plate 120.
  • the heat transfer plate 130 is illustrated as being made of sus (Stainless Use Steel) material, but is not limited thereto and may be changed to ceramic, aluminum, and high temperature glass.
  • thermoelectric module 140 A plurality of thermoelectric modules 140 are in close contact with the bottom surface of the heat transfer plate 130, and when power is applied, the thermoelectric module 140 absorbs heat at one junction and emits heat at the other junction according to the Peltier effect.
  • the thermoelectric module is an environmentally friendly energy material capable of converting thermal energy and electrical energy.
  • the p-type and n-type thermoelectric semiconductors in the form of chips are electrically mounted in series with ceramic substrates such as alumina interposed therebetween. have.
  • the charges (electrons, holes) inside the thermoelectric semiconductor absorb the thermal energy at one end of the thermoelectric module and move to the opposite side, whereby one side of the thermoelectric module is cooled and the opposite side is Fever occurs.
  • the thermoelectric module 140 is in close contact with the bottom surface of the heat transfer plate 130, the heat dissipation surface is in close contact with the water jacket 150 to be described later.
  • thermoelectric module 140 may be applied to the bulk (bulk) type or skeleton (skeleton) type.
  • the bulk type thermoelectric module 140 includes P-type and N-type devices electrically connected to the upper and lower substrates on which electrode patterns are formed and soldered on the electrode patterns of the upper and lower substrates. do.
  • an insulating layer may be formed on surfaces of the upper and lower substrates, and terminal lines are soldered and attached to apply power to both ends of the electrode patterns.
  • the P-type and N-type elements are alternately arranged in the electrode patterns of the upper and lower substrates. That is, upper surfaces of one P-type and N-type devices are electrically connected through electrode patterns formed on the bottom of the upper substrate, and lower surfaces of the other N-type and P-type devices are electrically connected through the electrode patterns formed on the upper surface of the lower substrate. Are alternately connected.
  • thermoelectric modules 7 and 8 are skeletal thermoelectric modules in a vehicle steering wheel capable of temperature control according to the present invention are shown in side and process views.
  • thermoelectric module 140 is skeletal, the structure of the thermoelectric module 140 has upper and lower electrodes 142 and 144 and upper and lower bonding layers 142a and 144a as shown in FIG. 7. , Upper and lower coating layers 142b and 144b, an N-type element 146 and a P-type element 148, and in order to maximize the amount of current generation, it is preferable to increase the temperature difference between the heat absorbing surface and the heat generating surface.
  • the thermoelectric module 140 of the present invention has a structure in which an upper coating layer 142b, an upper bonding layer 142a, and an upper electrode 142 are sequentially stacked on the upper surfaces of the N-type element 146 and the P-type element 148.
  • the lower coating layer 144b, the lower bonding layer 144a, and the lower electrode 144 are sequentially stacked on the bottom surfaces of the N-type element 146 and the P-type element 148.
  • the upper and lower bonding layers 142a and 144a are formed on the opposite surfaces (electrode attachment surfaces) of the upper and lower ceramic substrates 140a and 140b as temporary substrates by printing according to the upper and lower electrode patterns according to models.
  • Glue An adhesive layer by an adhesive or the like or an adhesive layer by an adhesive may be formed.
  • the upper and lower electrodes 142 and 144 may be formed of a material such as copper (oxygen-free copper), and may be changed to a material having excellent electric and thermal conductivity, and the anode and the cathode may be connected to the double lower electrode 144. .
  • the n-type element 146 and the P-type element 148 are ⁇ -type so that a plurality of elements are sequentially installed between the upper and lower electrodes 142 and 144 so as to be energized by the upper and lower electrodes 142 and 144. While being connected in series.
  • the N-type device 146 and the P-type device 148 are formed on both surfaces thereof to form coating layers 142b and 144b to improve adhesion to the upper and lower electrodes 142 and 144, and the N-type device ( 146 and the P-type element 148 and the upper and lower electrodes 142 and 144 may be prevented from interdiffusion.
  • both surfaces of the N-type element 146 and the P-type element 148 are provided through the upper and lower electrodes 142 and 144. It is alternately connected, and the connection shape through the upper and lower electrodes 142 and 144 may be arranged in a zigzag shape or the like to widen the temperature transfer area.
  • Method of manufacturing a skeletal thermoelectric module is a device preparation step, electrode preparation step, electrode alignment step, bonding layer forming step, electrode temporary fixing step, solder printing step, device mounting step, A soldering step and a substrate and jig stripping step.
  • the device preparation step is to improve adhesion to the upper and lower electrodes 142 and 144 on both surfaces of the N-type element 146 and the P-type element 148, that is, the electrode attachment surface, and the N-type element 146 and the P Forming the coating layers 142b and 144b for the purpose of preventing mutual diffusion between the type device 148 and the upper and lower electrodes 142 and 144.
  • the device preparation step is subdivided into a primary coating layer shape step and a secondary coating layer forming step when the upper and lower coating layers 142b and 144b are formed.
  • the primary coating layer formed by the primary coating layer shape step is a layer coated with Ni (nickel), W (tungsten), Mo (molybdenum) and the like.
  • the secondary coating layer formed by the secondary coating layer forming step is a layer coated with Au (gold), Sn (tin), or the like.
  • the first coating layer when forming the upper and lower coating layers 142b and 144b, the first coating layer may be omitted and only the second coating layer may be formed. Furthermore, the upper and lower coating layers 142b and 144b may be formed by a plating method or a deposition method, and may be embodied by an electric or electroless method as the plating method, and the sputtering method as the deposition method. , Ion plating, spray coating, or the like.
  • the electrode preparation step is to prepare the upper and lower electrodes 142 and 144 formed of a material such as copper (oxygen-free copper).
  • the upper and lower electrodes 142 and 144 may be changed to a material having excellent electric and thermal conductivity.
  • a step of forming a coating layer on the upper and lower electrodes 142 and 144 may be further included, and the coating layer may include the N-type element 146 and the P-type element 148 in the device preparation step.
  • the upper and lower coating layers 142b and 144b formed on both surfaces may be performed in advance in the same purpose and method.
  • the electrode preparation step may be implemented by a plating method such as electric or electroless.
  • the upper and lower electrodes 142 and 144 may be used without a coating layer.
  • the upper and lower electrodes 142 and 144 may be aligned using an alignment jig (not shown) to match the electrode pattern for each model of the thermoelectric module 140.
  • the electrode aligning step is not shown in the figure, the electrode alignment jig (electrode fixing) film (adhesive tape) is attached to the electrode alignment jig in which the upper and lower electrodes (142, 144) is inserted and temporarily fixed and then electrode alignment This is the step of aligning the position through the automatic (vibration / vibration method).
  • the electrode aligning step is to align through the electrode alignment jig inserted into each of the upper and lower electrodes 142 and 144.
  • the bonding layer forming step may be performed by printing the upper and lower bonding layers 142a and 144a on the opposing surfaces (electrode attachment surfaces) of the upper and lower ceramic substrates 140a and 140b as temporary substrates according to the upper and lower electrode patterns for each model.
  • the upper and lower bonding layers 142a and 144a may be formed through an adhesive layer by a glue adhesive or an adhesive layer by an adhesive. (See Fig. 8 (a), (b), (e), (f))
  • the upper and lower ceramic substrates 140a and 140b are not limited thereto, and may be changed to a substrate made of various materials used to temporarily adhere the electrodes.
  • the upper and lower bonding layers 142a and 144a are alternately arranged on opposite surfaces of the upper and lower ceramic substrates 140a and 140b. This is because the elements are continuously arranged in the order of the N-type element 146, the P-type element 148, the N-type element 146, and the P-type element 148, so that the adjacent N-type element 146 of the elements and
  • the upper bonding layer 142a is formed to be arranged to connect the upper surface of the P-type element 148 to the upper electrode 142 through the upper bonding layer 142a, and the N-type and the neighboring P-type element 148 are formed.
  • the lower bonding layer 144a may be arranged to connect the bottom surface of the device 146 to the lower electrode 144 through the lower bonding layer 144a.
  • the upper and lower electrodes 142 and 144 alternately connect the N-type element 146 and the P-type element 148 in the upper and lower surfaces.
  • the electrode temporary fixing step is a step of bonding and fixing the upper and lower electrodes 142 and 144 arranged on the upper and lower bonding layers 142a and 144a of the upper and lower ceramic substrates 140a and 140b in a predetermined pattern, respectively. . (See Fig. 8 (c), (g))
  • the solder printing step is to print the upper and lower solder layers 143a and 143b on the upper and lower electrodes 142 and 144 respectively mounted on the upper and lower ceramic substrates 140a and 140b in a set pattern. (See Fig. 8 (d), (h))
  • the upper and lower solder layers 143a and 143b may be formed on the upper and lower electrodes 142 and 144 mounted on the upper and lower ceramic substrates 140a and 140b by solder.
  • the upper electrode, the lower electrode (142, 144) is inserted into the alignment jig in the state,
  • the upper and lower solder layers 143a and 143b may be printed on the exposed surfaces of the lower electrodes 142 and 144 in accordance with the electrode pattern for each model.
  • the upper and lower solder layers 143a and 143b are modeled using solder on the upper and lower electrodes 142 and 144 mounted on the upper and lower ceramic substrates 140a and 140b which are one of the solder printing steps.
  • the printing according to the star electrode pattern may be performed through a solder printer.
  • the upper and lower electrodes 142 are inserted into the alignment jig while the upper and lower electrodes 142 and 144 are inserted into the alignment jig through the electrode alignment step without the bonding layer forming step and the electrode temporary fixing step.
  • the printing of the upper and lower solder layers 143a and 143b according to the electrode pattern for each model using solder on the exposed surface of the 144 may also be performed through a solder printer.
  • the N-type device 146 and the P-type device 148 are sequentially mounted on the lower solder layer 143b printed on the lower ceramic substrate 140b.
  • the N-type device 146 And a first detailed step of sequentially arranging the P-type elements 148 on the lower ceramic substrate 140b on which the lower solder layer 143b is printed, and printing the lower solder layer 1143b.
  • the element 146 and the P-type element 148 may be performed in any one of the third detailed steps of mounting the aligned element alignment jig. (See FIG. 8 (i), (j))
  • the first sub-step of the device mounting step includes device adsorption of the N-type element 146 and the P-type element 148 in a device alignment jig in which the N-type element 146 and the P-type element 148 are aligned.
  • the lower solder layer 143b is mounted on the printed lower electrode 144 after being adsorbed by a mounting mount or the like.
  • an element alignment jig is mounted on the lower electrode 144 on which the lower solder layer 143b is printed, and the N-type element 146 and the P-type element 148 are mounted. It shows how to align and mount.
  • the N-type device 146 is formed by adsorbing the lower electrode 144 onto the device alignment jig in which the lower electrode 144 is aligned, such as an element adsorption mounting mounter. ) And the P-type element 148 are mounted on the aligned alignment jig.
  • the N-type element 146 and the P-type element 148 are inserted into holes in the device alignment jig (holes are formed in the pattern of the element) and then the element is aligned.
  • the jig for stirring is used to align the N-type element 146 and the P-type element 148.
  • the soldering step is a step of soldering the first substrate S1 which is the upper substrate after sequential mounting of the N-type element 146 and the P-type element 148 on the first substrate S2 which is the lower substrate. [See FIG. 8 (k)]
  • the soldering step may be divided into a first sub-step and a second sub-step, and any one of these steps may be alternatively performed.
  • the first detailed step of the soldering step may include mounting the N-type device 146 and the P-type device 148 and then attaching the N-type device 146 and the P-type device 148 to the first substrate S1. It is a step of mounting on the soldering process.
  • the second sub-step of the soldering step may be performed by performing the second and third sub-steps of the device mounting step so that the jig for aligning the device is mounted after the N-type device 146 and the P-type device 148 are mounted. This is the step of soldering while bonded.
  • soldering step may be implemented through a reflow furnace or hot plate process.
  • the substrate and jig removal step is to remove the upper and lower ceramic substrates 140a and 140b and the alignment jig from the manufactured thermoelectric module 140. (See FIG. 8 (l), (m))
  • the substrate and jig stripping step may be performed by continuously performing the first sub-step of the soldering step, and the soldered N-type element 146 and P-type element 148 are temporary substrates through washing solution and ultrasonic cleaning.
  • the first sub-step of separating the lower ceramic substrates 140a and 140b and the second sub-step of the soldering step are successively soldered to the N-type element 146 and the P-type element 148 and the alignment jig.
  • the second detailed step of separating from the thermoelectric module 140 through the washing solution and ultrasonic cleaning can be performed alternatively.
  • the water jacket 150 is in close contact with the bottom surface of the thermoelectric module 140 while the bottom edge of the flow path plate 110 is in close contact with the top edge to cool the heat dissipation surface of the thermoelectric module 140 by water cooling. At this time, the water jacket 150 is formed so that the cold water flows therein, the cold water inlet pipe and the cold water discharge pipe is in communication with each other.
  • the control unit (C) controls the operation of the automatic valve (V) installed in the inlet pipe (122) so as to control the amount of current and whether or not the current is applied to the thermoelectric module (140) and to control the flow rate of the incoming water, According to the result of the temperature sensor S installed in the 124, the temperature control of the cold water desired by the user can be controlled by controlling the thermoelectric module 140.
  • control unit (C) includes a control board (not shown in the figure) that can control the water exit temperature by sensing the water exit unit temperature.
  • the instantaneous cold water cooling device 100 is installed inside the water purifier, and when the user is required to use cold water, power is applied to the thermoelectric module 140 through the control of the controller C.
  • thermoelectric module 140 is absorbed while flowing along the flow paths 116 and 126 of the flow path plate 110 and the closing plate 120 through the heat transfer plate 130 in close contact with the heat absorbing surface.
  • Cold water is transferred to the water to become cold water.
  • the heat dissipation surface of the thermoelectric module 140 is cooled by the cooling water of the water jacket 150 in close contact with the heat dissipation surface. As such, the cold water is continuously discharged through the inlet pipe 122 while being discharged through the discharge pipe 124.
  • the temperature sensor S installed in the discharge pipe 124 detects the temperature of the discharge water and then controls the amount of current applied from the controller C to the thermoelectric module 140.
  • the present invention is installed in a cold water cooler to minimize the charge area, so it is possible to implement an ultra-small cold water cooler, and to save electricity by applying power to the thermoelectric module 140 only when cold water is required to extract cold water. It is possible to supply clean water at all times by instantaneous cold water storage without separate cold water reservoir, and can be used for commercial use by infinite extraction by instantaneous cold watering, and can control cold water discharge temperature by checking the temperature of cold water. have.
  • FIG. 9 is a cross-sectional view of an apparatus for cooling instantaneous cold water according to a second embodiment of the present invention.
  • the instantaneous cold water cooling apparatus 200 is the flow path plate 210, the closing plate 220, heat transfer plate 230, thermoelectric module 240, water jacket ( 250 and a control unit C, wherein the flow path plate 210, the heat transfer plate 230, the thermoelectric module 240, the water jacket 250, and the control unit C, except for the closing plate 220, are included.
  • the closing plate 220 does not have a flow path formed on the upper surface of the flow path plate 210, which is in contact with the bottom surface of the flow path plate 210, and is formed of silicon or Teflon material. As such, since the water flows through the flow path 216 formed on the bottom surface of the flow path plate 210, the flow path may be omitted on the top surface of the finish plate 220.
  • the closing plate 220 is not sealed with the flow path 216 of the flow path plate 210 by the closing plate 220, and only the portion of the flow path 216 is subjected to a separate sealing process. Can be omitted.
  • reference numeral 222 which is not described, is an inlet pipe, and 224 is an outlet pipe.
  • the present invention relates to a chiller for instantaneous cold water, the present invention, the sealing plate is formed on the rear surface, the closing plate is connected to the inlet pipe and the discharge pipe at both ends of the flow path; A thermoelectric module for thermoelectric cooling of water flowing in the flow path of the closing plate; A heat transfer plate interposed between the closure plate and the thermoelectric module; And a water jacket in close contact with the rear surface of the thermoelectric module to cool the heat dissipation surface of the thermoelectric module in a water cooling manner.
  • the present invention since it is possible to implement a thinner, when applied to a water purifier provided with a cold water function, it is possible to implement a micro water purifier, etc., and to extract electricity only when necessary, thus saving electricity and eliminating the need for a cold water reservoir. It is possible to drink clean water, and infinitely extractable, so it can be used enough for commercial use, and it is possible to adjust the cold water temperature desired by the user.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

The present invention relates to an instantaneous cooling device for cold water, comprising: a finishing plate having a sealed flow path formed on the back side thereof and having an inlet pipe and an outlet pipe connected to the ends of the flow path; a thermoelectric module for thermoelectrically cooling water flowing inside the flow path of the finishing plate; a heat transfer plate interposed between the finishing plate and the thermoelectric module; and a water jacket which comes into close contact with the back side of the thermoelectric module and cools a radiating surface of the thermoelectric module using a water cooling manner. The present invention provides the advantages of: implementing a subminiature water purifier or the like when applied to a water purifier or the like having cold-water functions since the invention may be thin; saving electricity since cold water is extracted only in case of necessity; enabling users to continuously drink clean water since there is no need to install a cold water storage bin; enabling use in businesses due to the unlimited extraction of water; and allowing users to adjust the desired temperature of cold water.

Description

순간 냉수용 냉각장치Instant chill water chiller
본 발명은 순간 냉수용 냉각장치에 관한 것으로, 더욱 상세하게는 정수기 등과 같은 전자제품에 부가 설치되어 순간적으로 냉수를 공급할 수 있게 한 순간 냉수용 냉각장치에 관한 것이다.The present invention relates to a cooling device for instantaneous cold water, and more particularly, to a cooling device for instantaneous cold water, which is additionally installed in an electronic product such as a water purifier to supply cold water instantaneously.
최근, 전자제품의 사이즈가 점차 축소되면서 그 내부에 수용되는 여러 가지 부품들 역시 사이즈 축소가 요구되고 있다.Recently, as the size of electronic products is gradually reduced, various parts accommodated therein are also required to be reduced in size.
최근에 출시되고 있는 정수기는 사이즈는 작아지면서 기능은 기존과 동일하거나 기존 제품보다 우월하여 수요가 증가하고 있는 추세이다. 이러한 정수기에는 통상적으로 물을 저장하는 저수탱크가 마련되어 있으며, 상기 저수탱크에는 저장된 물을 냉각시켜 냉수화할 수 있도록 냉각장치가 구비된다. 이러한 냉각장치의 사이즈는 전자제품의 사이즈에 영향을 받고 있으므로 사이즈를 고려하였을 때 박형의 냉각장치가 적용되고 추세이다.Recently, water purifiers are getting smaller and smaller, but their functions are the same or superior to existing products. Such a water purifier is typically provided with a water storage tank for storing water, and the water storage tank is provided with a cooling device to cool the stored water and make it cold. Since the size of such a cooling device is influenced by the size of electronic products, a thin cooling device is applied in consideration of the size.
이러한 냉각장치와 관련된 기술이 특허등록 제0884645호 및 특허등록 제1244476호에 제안된 바 있다.A technology related to such a cooling device has been proposed in Patent Registration No. 0884645 and Patent Registration No. 1244476.
이하에서 종래기술로서 특허등록 제0884645호 및 특허등록 제1244476호에 개시된 정수기용 순간 냉각 장치 및 정수기용 순간냉각장치를 간략히 설명한다.Hereinafter, the instantaneous cooling device for water purifier and the instantaneous cooling device for water purifier disclosed in Patent Registration No. 0884645 and Patent Registration No. 1244476 will be briefly described.
도 1은 특허등록 제0884645호(이하 '종래기술 1'이라 함)에서 정수기용 순간 냉각 장치의 개략도이다. 도 1에서 보는 바와 같이 종래기술 1의 정수기용 순간 냉각 장치는 내부에 부동액(111)을 수용하는 부동액 탱크(110)와, 상기 부동액 탱크(110) 내의 부동액(111)을 냉각시키는 부동액 냉각부(130)와, 상기 부동액 탱크(110) 내의 부동액을 상기 부동액 탱크(110) 외부에 설치된 순환관(141)을 통하여 순환시키는 부동액 순환부(140)와, 상기 순환관(141) 내부의 부동액과 정화된 정수가 유입되어 흐르는 정수관(163) 내부의 정수를 열교환시켜 상기 정수관(163) 내부의 정수를 냉각시키는 열교환부(160)를 포함하여 구성되며, 상기 열교환부(160)에서 상기 순환관(141) 내부의 부동액과 상기 정수관(163) 내부의 정수 사이의 열교환되는 양을 제어하는 제어부(170)를 추가로 포함할 수 있다.Figure 1 is a schematic diagram of the instantaneous cooling device for water purifiers in the patent registration No. 084645 (hereinafter referred to as 'prior art 1'). As shown in FIG. 1, the instantaneous cooling apparatus for the water purifier of the prior art 1 includes an antifreeze tank 110 accommodating an antifreeze 111 therein, and an antifreeze cooling unit configured to cool the antifreeze 111 in the antifreeze tank 110. 130, an antifreeze circulating unit 140 for circulating the antifreeze in the antifreeze tank 110 through a circulation pipe 141 provided outside the antifreeze tank 110, and an antifreeze and purification inside the circulation pipe 141. And a heat exchanger 160 for cooling the purified water inside the purified water pipe 163 by heat-exchanging purified water inside the purified water pipe 163 through which purified water flows in. The circulation pipe 141 is provided in the heat exchanger 160. The control unit 170 may further include an amount of heat exchange between the antifreeze inside and the purified water inside the purified water pipe 163.
그러나 종래기술 1에 의한 정수기용 순간 냉각 장치는 물을 냉각시키기 위한 냉매 공급 관련 부속 장치의 부피가 커지고, 냉각 코일의 구동에 따른 전기 소모량이 증가하는 문제점이 있었다.However, the instantaneous cooling device for water purifiers according to the prior art 1 has a problem in that the volume of a refrigerant supply-related accessory device for cooling water increases, and the consumption of electricity due to the driving of the cooling coil increases.
도 2는 특허등록 제1244476호(이하 '종래기술 2'라 함)에서 정수기용 순간냉각장치를 나타낸 구성도이다. 도 2에서 보는 바와 같이 종래기술의 정수기용 순간냉각장치는, 원수공급수단으로부터 공급되는 원수를 필터링하는 복수개의 정수필터(10), 상기 정수필터(10)에 의해 필터링된 정수가 저장되는 정수탱크(20), 상기 정수탱크(20)에 냉각관(30)을 통해 연결되어 상기 정수를 냉각시키는 냉각탱크(40), 상기 냉각탱크(40)를 극저온 상태로 냉각시켜 상기 정수가 냉각탱크(40)에 의해 냉각되도록 하는 냉각사이클(50) 및 상기 냉각탱크(40)와 냉수 취수용 코크(60)에 연결되어 상기 냉각된 냉수가 출수되도록 하는 출수관(70)을 포함하는 정수기에 있어서, 상기 냉각탱크(40)측에 인접한 냉각관(30)에 설치되어 냉각관(30)에 흐르는 정수의 유량이 제어되도록 냉각관(30)을 개폐시키는 제어밸브(110); 상기 냉각탱크(40)의 내부에 구성되어 상기 냉각탱크(40) 내부로 유입된 정수의 이동로를 연장함과 동시에 접촉면적을 증대시키는 냉각용구조물(120); 상기 냉각관(30)에 설치되어 상기 제어밸브(110)에 의한 냉각관(30)의 개방시 상기 정수가 일정한 수압으로 냉각탱크(40)에 유입되도록 하는 수압밸브(130); 상기 제어밸브(110)의 상측부에 설치되어 제어밸브(110)에 형성되는 통공(115)을 통하여 외부로부터 오염물이 유입되는 것을 방지하는 에어필터(140); 및 상기 냉수 취수용 코크(60)의 개방을 위한 동작시 냉수관(40)이 개방되도록 제어밸브(110)를 제어하는 제어수단(150)을 포함하고, 상기 제어밸브(110)는 상기 정수탱크(30)와 냉각탱크(40) 사이의 냉각관(30)을 'ㄱ'자 형상으로 절곡되도록 연결하는 취수밸브이고, 상기 냉각관(30)의 유입부(31)와 유출부(32) 사이를 'ㄱ'자로 연결하는 코크밸브바디(111)와, 상기 코크밸브바디(111)의 내부에 삽입되어 냉수로(112)를 개폐하는 코크개폐부재(113)와, 상기 코크개폐부재(113)에 결합되어 상기 제어수단(150)의 동작신호 제공시 상기 코크개폐부재(113)를 상승 또는 하강 이동시켜 냉수로(112)가 개폐되도록 하는 승강수단(114)과, 상기 코크개폐부재(113)의 상측부와 코크밸브바디(111)의 내측에 구비되는 탄성스프링(115)과, 상기 코크개폐부재(113)에 길이방향으로 형성되는 통공(116)을 포함한다.Figure 2 is a configuration diagram showing the instantaneous cooling device for water purifier in the patent registration No. 1244476 (hereinafter referred to as 'prior art 2'). As shown in FIG. 2, the instantaneous cooling apparatus for a water purifier according to the related art includes a plurality of purified water filters 10 for filtering raw water supplied from raw water supply means, and a purified water tank for storing purified water filtered by the purified water filter 10. (20), the cooling tank 40 is connected to the purified water tank 20 through a cooling pipe 30 to cool the purified water, and the cooling tank 40 is cooled to a cryogenic state so that the purified water cooling tank 40 In the water purifier including a cooling cycle 50 to be cooled by the cooling and the water discharge pipe 70 is connected to the cooling tank 40 and the cold water intake coke 60 to allow the cooled cold water to be discharged. A control valve 110 installed in the cooling pipe 30 adjacent to the cooling tank 40 to open and close the cooling pipe 30 so that the flow rate of the purified water flowing in the cooling pipe 30 is controlled; A cooling structure (120) configured inside the cooling tank (40) to extend a contact area at the same time as extending the moving path of purified water introduced into the cooling tank (40); A hydraulic valve 130 installed at the cooling tube 30 to allow the purified water to flow into the cooling tank 40 at a constant water pressure when the cooling tube 30 is opened by the control valve 110; An air filter (140) installed at an upper side of the control valve (110) to prevent contaminants from being introduced from the outside through a through hole (115) formed in the control valve (110); And control means 150 for controlling the control valve 110 to open the cold water pipe 40 when the cold water intake coke 60 is opened. The control valve 110 includes the purified water tank. It is a water intake valve connecting the cooling pipe 30 between the 30 and the cooling tank 40 so as to be bent in a '-' shape, and between the inlet portion 31 and the outlet portion 32 of the cooling tube 30. Cork valve body 111 to connect the letter 'a', the cock opening and closing member 113 is inserted into the cock valve body 111 to open and close the cold water passage 112, and the cock opening and closing member 113 Is coupled to the elevating means 114 and the coke opening and closing member 114 to open or close the cold water passage 112 by moving the cock opening and closing member 113 up or down when the operation signal of the control means 150 is provided. An elastic spring 115 provided on the upper side and the inside of the cock valve body 111, and a through hole formed in the longitudinal direction in the cock opening and closing member 113 (1) 16).
그러나 종래기술 2에 의한 정수기용 순간냉각장치는 물을 냉각시키기 위한 냉매 공급 관련 부속 장치의 부피가 커지고, 냉각 사이클의 구동에 따른 전기 소모량이 증가하고, 냉각탱크를 구비하여 시간이 경과하면 상기 냉각탱크에 저장된 물의 질이 저하되는 문제점이 있었다.However, the instantaneous cooling device for water purifier according to the prior art 2 increases the volume of the refrigerant supply-related accessories for cooling the water, increases the electricity consumption according to the operation of the cooling cycle, and includes a cooling tank to cool the water over time. There was a problem that the quality of the water stored in the tank is degraded.
본 발명의 목적은 상기한 바와 같은 종래 기술의 문제점을 해결하기 위한 것으로, 얇게 구현이 가능하므로 냉수 기능이 부여된 정수기 등에 적용할 경우 초소형 정수기 등의 구현이 가능하고, 필요시에만 냉수 추출하므로 전기를 절약 가능하고, 냉수 저장통을 구비할 필요가 없어 항상 깨끗한 물의 음용이 가능하고, 무한 추출이 가능하여 업소용으로도 충분히 사용 가능하며, 사용자가 원하는 냉수 온도의 조절이 가능한 순간 냉수용 냉각장치를 제공하는 것이다.An object of the present invention is to solve the problems of the prior art as described above, it is possible to implement a thin water, so when applied to a water purifier with a cold water function is possible to implement a micro water purifier, etc. It is possible to save energy, and it is not necessary to have a cold water reservoir, and it is possible to drink clean water at all times, and it is possible to use it for commercial use because it can be infinitely extracted, and it provides an instant cold water cooling device that can adjust the cold water temperature desired by the user. It is.
상기한 바와 같은 목적을 달성하기 위한 본 발명의 특징에 따르면, 본 발명은, 이면에 실링 처리된 유로가 형성되고, 상기 유로의 양 끝단에 유입관과 배출관이 연결되는 마감 플레이트; 상기 마감 플레이트의 유로 내부를 유동하는 물을 열전냉각시키는 열전 모듈; 상기 마감 플레이트와 상기 열전 모듈 사이에 개입되는 열전달 플레이트; 및 상기 열전 모듈의 이면에 밀착되어 상기 열전모듈의 방열면을 수냉 방식으로 냉각시키는 워터 재킷을 포함하는 순간 냉수용 냉각장치를 통해 달성된다.According to a feature of the present invention for achieving the above object, the present invention, the sealing plate is formed on the rear surface, the closing plate is connected to the inlet pipe and the discharge pipe at both ends of the flow path; A thermoelectric module for thermoelectric cooling of water flowing in the flow path of the closing plate; A heat transfer plate interposed between the closure plate and the thermoelectric module; And a water jacket in close contact with the rear surface of the thermoelectric module and cooling the heat dissipating surface of the thermoelectric module in a water cooling manner.
또한, 본 발명에서는 상기 마감 플레이트의 이면에 밀착되어 상기 마감 플레이트의 유로와 연통되도록 대칭 형성된 별도의 유로가 표면에 형성되는 마감 플레이트를 더 포함할 수 있다.In addition, the present invention may further include a closing plate that is in close contact with the rear surface of the closing plate is formed in a separate flow path formed on the surface symmetrical to communicate with the flow path of the closing plate.
또한, 본 발명에서는 상기 유로 플레이트의 이면에 밀착되는 마감 플레이트를 더 포함할 수 있다.In addition, the present invention may further include a closing plate in close contact with the rear surface of the flow path plate.
또한, 본 발명에서의 상기 마감 플레이트는 실리콘 또는 테프론 재질로 형성될 수 있다.In addition, the finishing plate in the present invention may be formed of silicon or Teflon material.
또한, 본 발명에는 상기 유입관에 유입되는 물의 유량을 제어할 수 있도록 구비된 밸브와 상기 배출관에 배출되는 물의 온도를 센싱하는 온도 센서가 구비되어 상기 센서에서 센싱된 물의 온도를 통해 출수 온도를 제어하는 제어부가 더 구비될 수 있다.In addition, the present invention is provided with a valve provided to control the flow rate of the water flowing into the inlet pipe and a temperature sensor for sensing the temperature of the water discharged to the discharge pipe is provided to control the outlet temperature through the temperature of the water sensed by the sensor The control unit may be further provided.
또한, 본 발명에서의 상기 열전 모듈은 벌크(bulk)형 또는 골격(skeleton)형이 구비될 수 있다.In addition, the thermoelectric module in the present invention may be provided with a bulk (bulk) type or skeleton (skeleton) type.
또한, 본 발명에서의 상기 열전 모듈은 골격형으로, 순차 배열되는 P형 및 N형 소자와, 상기 P형 및 N형 소자의 양면에 형성되는 코팅층과, 상기 P형 및 N형 소자의 양면에 교호되게 부착되는 전극 및 상기 P형 및 N형 소자의 양면 코팅층과 상기 전극의 양면과의 사이에 개입되어 전극을 가고정시키는 접합층을 포함할 수 있다.In addition, the thermoelectric module according to the present invention has a skeleton-like, P-type and N-type elements sequentially arranged, coating layers formed on both sides of the P-type and N-type elements, and on both sides of the P-type and N-type elements. An electrode may be alternately attached, and a bonding layer may be interposed between the both-side coating layers of the P-type and N-type elements and both sides of the electrode to temporarily fix the electrode.
본 발명에 의하면, 얇게 구현이 가능하므로 냉수 기능이 부여된 정수기 등에 적용할 경우 초소형 정수기 등의 구현이 가능하고, 필요시에만 냉수 추출하므로 전기를 절약 가능하고, 냉수 저장통을 구비할 필요가 없어 항상 깨끗한 물의 음용이 가능하고, 무한 추출이 가능하여 업소용으로도 충분히 사용 가능하며, 사용자가 원하는 냉수 온도의 조절이 가능한 효과가 있다.According to the present invention, since it is possible to implement a thinner, when applied to a water purifier provided with a cold water function, it is possible to implement a micro water purifier, etc., and to extract electricity only when necessary, thus saving electricity and eliminating the need for a cold water reservoir. It is possible to drink clean water, and infinitely extractable, so it can be used enough for commercial use, and it is possible to adjust the cold water temperature desired by the user.
도 1은 종래기술 1에 의한 정수기용 순간 냉각 장치의 개략도이다.1 is a schematic diagram of an instantaneous cooling apparatus for a water purifier according to the prior art 1. FIG.
도 2는 종래기술 2에 의한 정수기용 순간냉각장치를 나타낸 구성도이다.2 is a block diagram showing the instantaneous cooling device for water purifier according to the prior art 2.
도 3은 본 발명의 제1 실시예에 의한 순간 냉수용 냉각장치의 분해사시도이다.3 is an exploded perspective view of an apparatus for cooling instantaneous cold water according to a first embodiment of the present invention.
도 4는 본 발명의 제1 실시예에 의한 순간 냉수용 냉각장치의 단면도이다.4 is a cross-sectional view of the instantaneous cold water cooling apparatus according to the first embodiment of the present invention.
도 5는 본 발명의 제1 실시예에 의한 순간 냉수용 냉각장치의 결합사시도이다.5 is a combined perspective view of the instantaneous cold water cooling apparatus according to the first embodiment of the present invention.
도 6은 본 발명의 제1 실시예에 의한 순간 냉수용 냉각장치가 제어부와 연계된 상태를 도시한 계략도이다.6 is a schematic diagram illustrating a state in which the instantaneous cold water cooling apparatus according to the first embodiment of the present invention is associated with a control unit.
도 7 및 도 8은 본 발명의 제1 실시예에 의한 순간 냉수용 냉각장치에서 골격형 열전 모듈의 측면도 및 공정도이다.7 and 8 are a side view and a process diagram of the skeletal thermoelectric module in the instantaneous cold water cooling apparatus according to the first embodiment of the present invention.
도 9는 본 발명의 제2 실시예에 의한 순간 냉수용 냉각장치의 단면도이다.9 is a cross-sectional view of an instant chill water cooling apparatus according to a second embodiment of the present invention.
상기한 바와 같은 목적을 달성하기 위한 본 발명의 특징에 따르면, 본 발명은, 이면에 실링 처리된 유로가 형성되고, 상기 유로의 양 끝단에 유입관과 배출관이 연결되는 마감 플레이트; 상기 마감 플레이트의 유로 내부를 유동하는 물을 열전냉각시키는 열전 모듈; 상기 마감 플레이트와 상기 열전 모듈 사이에 개입되는 열전달 플레이트; 및 상기 열전 모듈의 이면에 밀착되어 상기 열전모듈의 방열면을 수냉 방식으로 냉각시키는 워터 재킷을 포함하는 순간 냉수용 냉각장치를 통해 달성된다.According to a feature of the present invention for achieving the above object, the present invention, the sealing plate is formed on the rear surface, the closing plate is connected to the inlet pipe and the discharge pipe at both ends of the flow path; A thermoelectric module for thermoelectric cooling of water flowing in the flow path of the closing plate; A heat transfer plate interposed between the closure plate and the thermoelectric module; And a water jacket in close contact with the rear surface of the thermoelectric module and cooling the heat dissipating surface of the thermoelectric module in a water cooling manner.
또한, 본 발명에서는 상기 마감 플레이트의 이면에 밀착되어 상기 마감 플레이트의 유로와 연통되도록 대칭 형성된 별도의 유로가 표면에 형성되는 마감 플레이트를 더 포함할 수 있다.In addition, the present invention may further include a closing plate that is in close contact with the rear surface of the closing plate is formed in a separate flow path formed on the surface symmetrical to communicate with the flow path of the closing plate.
또한, 본 발명에서는 상기 유로 플레이트의 이면에 밀착되는 마감 플레이트를 더 포함할 수 있다.In addition, the present invention may further include a closing plate in close contact with the rear surface of the flow path plate.
또한, 본 발명에서의 상기 마감 플레이트는 실리콘 또는 테프론 재질로 형성될 수 있다.In addition, the finishing plate in the present invention may be formed of silicon or Teflon material.
또한, 본 발명에는 상기 유입관에 유입되는 물의 유량을 제어할 수 있도록 구비된 밸브와 상기 배출관에 배출되는 물의 온도를 센싱하는 온도 센서가 구비되어 상기 센서에서 센싱된 물의 온도를 통해 출수 온도를 제어하는 제어부가 더 구비될 수 있다.In addition, the present invention is provided with a valve provided to control the flow rate of the water flowing into the inlet pipe and a temperature sensor for sensing the temperature of the water discharged to the discharge pipe is provided to control the outlet temperature through the temperature of the water sensed by the sensor The control unit may be further provided.
또한, 본 발명에서의 상기 열전 모듈은 벌크(bulk)형 또는 골격(skeleton)형이 구비될 수 있다.In addition, the thermoelectric module in the present invention may be provided with a bulk (bulk) type or skeleton (skeleton) type.
또한, 본 발명에서의 상기 열전 모듈은 골격형으로, 순차 배열되는 P형 및 N형 소자와, 상기 P형 및 N형 소자의 양면에 형성되는 코팅층과, 상기 P형 및 N형 소자의 양면에 교호되게 부착되는 전극 및 상기 P형 및 N형 소자의 양면 코팅층과 상기 전극의 양면과의 사이에 개입되어 전극을 가고정시키는 접합층을 포함할 수 있다.In addition, the thermoelectric module according to the present invention has a skeleton-like, P-type and N-type elements sequentially arranged, coating layers formed on both sides of the P-type and N-type elements, and on both sides of the P-type and N-type elements. An electrode may be alternately attached, and a bonding layer may be interposed between the both-side coating layers of the P-type and N-type elements and both sides of the electrode to temporarily fix the electrode.
본 명세서 및 청구범위에 사용된 용어나 단어는 발명자가 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.The terms or words used in the present specification and claims are meant to be consistent with the technical spirit of the present invention on the basis of the principle that the inventor can appropriately define the concept of the term in order to best explain his invention. It must be interpreted as and concepts.
명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함" 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다. 또한, 명세서에 기재된 "...부"라는 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미하며, 이는 하드웨어나 소프트웨어 또는 하드웨어 및 소프트웨어의 결합으로 구현될 수도 있다.Throughout the specification, when a part is said to "include" a certain component, it means that it can further include other components, without excluding other components unless otherwise stated. In addition, the term "... unit" described in the specification means a unit for processing at least one function or operation, which may be implemented in hardware or software or a combination of hardware and software.
이하 도면을 참고하여 본 발명에 의한 순간 냉수용 냉각장치에 대한 실시 예의 구성을 상세하게 설명하기로 한다.Hereinafter, with reference to the drawings will be described in detail the configuration of the embodiment for the instantaneous cold water cooling apparatus according to the present invention.
<실시예 1><Example 1>
도 3에는 본 발명의 제1 실시예에 의한 순간 냉수용 냉각장치가 분해사시도로 도시되어 있고, 도 4에는 본 발명의 제1 실시예에 의한 순간 냉수용 냉각장치가 단면도로 도시되어 있고, 도 5에는 본 발명의 제1 실시예에 의한 순간 냉수용 냉각장치가 결합사시도로 도시되어 있고, 도 6에는 본 발명의 제1 실시예에 의한 순간 냉수용 냉각장치가 제어부와 연계된 상태가 계략도로 도시되어 있으며, 도 7 및 도 8에는 본 발명의 제1 실시예에 의한 순간 냉수용 냉각장치에서 골격형 열전 모듈이 측면도 및 공정도로 도시되어 있다.3 is an exploded perspective view of the instantaneous cold water cooling apparatus according to the first embodiment of the present invention, and FIG. 4 is a cross-sectional view of the instantaneous cold water cooling apparatus according to the first embodiment of the present invention. 5 is a combined perspective view of the instantaneous cold water cooling apparatus according to the first embodiment of the present invention, and FIG. 6 is a schematic diagram of a state in which the instantaneous cold water cooling apparatus according to the first embodiment of the present invention is associated with a control unit. 7 and 8 illustrate a skeletal thermoelectric module in the instantaneous cold water cooling apparatus according to the first embodiment of the present invention.
이들 도면에 의하면, 본 발명의 제1 실시예에 따른 순간 냉수용 냉각장치(100)는 유로 플레이트(110), 마감 플레이트(120), 열전달 플레이트(130), 열전 모듈(140), 워터 재킷(150) 및 제어부(C)를 포함한다.According to these drawings, the instantaneous cold water cooling apparatus 100 according to the first embodiment of the present invention is the flow path plate 110, the closing plate 120, the heat transfer plate 130, the thermoelectric module 140, the water jacket ( 150) and the controller (C).
유로 플레이트(110)는 상면 양단에 관통홀(112, 114)이 각각 두께 방향으로 관통 형성되고, 저면에 반원 형상의 유로(116)가 형성된다. 이때, 상기 관통홀(112, 114)은 유로(116)의 양 끝단에 각각 형성된다.In the flow path plate 110, through holes 112 and 114 are formed in both ends of an upper surface thereof in a thickness direction, and a semicircular flow path 116 is formed on a bottom surface thereof. In this case, the through holes 112 and 114 are formed at both ends of the flow path 116, respectively.
그리고 상기 유로 플레이트(110)의 저면에는 후술할 마감 플레이트(120), 열전달 플레이트(130) 및 열전 모듈(140)이 수용되도록 설정 깊이의 홈이 가장자리를 제외한 안쪽에 형성된다. 한편, 상기 유로 플레이트(110)는 합성수지 등의 재질로 형성된다.In addition, a groove having a set depth is formed on the bottom surface of the flow path plate 110 so as to accommodate the finish plate 120, the heat transfer plate 130, and the thermoelectric module 140, which will be described later, on the inner side of the flow path plate 110. On the other hand, the flow path plate 110 is formed of a material such as synthetic resin.
마감 플레이트(120)는 실리콘 재질 등으로 형성되어 유로 플레이트(110)의 저면에 밀착되며, 상기 유로 플레이트(110)의 저면에 형성된 유로(116)와 대칭 형성되어 연통되도록 반원 형상의 유로(126)가 상면에 형성된다. The closing plate 120 is formed of a silicon material or the like and is in close contact with the bottom surface of the flow path plate 110, and has a semicircular flow path 126 formed to communicate with the flow path 116 formed on the bottom surface of the flow path plate 110. Is formed on the upper surface.
즉, 상기 마감 플레이트(120)는 유로(126)의 양 끝단에 유입관(122)과 배출관(124)이 직교 방향으로 연통되어 상기 유로 플레이트(110)의 저면에 밀착되면 상기 유입관(122)과 배출관(124)이 관통홀(112, 114)에 삽입되고 외부로 노출된다. That is, the closing plate 120 is connected to both ends of the flow path 126 in the inlet pipe 122 and the discharge pipe 124 in the orthogonal direction is in close contact with the bottom surface of the flow path plate 110 the inlet pipe 122 And the discharge pipe 124 is inserted into the through holes 112 and 114 and exposed to the outside.
그리고 상기 유입관(122)에는 유입 유량을 제어할 수 있도록 자동 밸브(V)가 구비되고, 상기 배출관(124)에는 배출되는 물의 온도를 센싱하는 온도 센서(S)가 구비된다.And the inlet pipe 122 is provided with an automatic valve (V) to control the inflow flow rate, the discharge pipe 124 is provided with a temperature sensor (S) for sensing the temperature of the water discharged.
열전달 플레이트(130)는 마감 플레이트(120)의 저면에 밀착되어 하측에 배치된 열전 모듈(140)에서의 흡열에 따른 마감 플레이트(120)로 열전달 효율을 상승시키기 위해 구비된다. 이때, 상기 열전달 플레이트(130)는 서스(SUS: Stainless Use Steel) 재질로 구비됨을 예시하였으나, 이에 한정하지 않고 세라믹, 알루미늄 및 고온 유리 등으로 변경 실시가 가능하다. The heat transfer plate 130 is provided to increase the heat transfer efficiency to the finish plate 120 according to the heat absorption in the thermoelectric module 140 disposed in close contact with the bottom surface of the finish plate 120. In this case, the heat transfer plate 130 is illustrated as being made of sus (Stainless Use Steel) material, but is not limited thereto and may be changed to ceramic, aluminum, and high temperature glass.
열전 모듈(140)은 열전달 플레이트(130)의 저면에 다수개가 밀착되며, 전원이 인가되면 펠티어(Peltier) 효과에 따라 일측 접합부에서 열을 흡수하고 타측 접합부에서 열을 발산한다. 여기서, 열전 모듈은 열에너지와 전기에너지의 상호변환이 가능한 친환경적인 에너지재료로써, 알루미나 등의 세라믹기판을 사이에 두고 칩 형태의 p형과 n형의 열전반도체가 전기적으로 직렬로 실장된 형태를 가지고 있다. 특히, 열전 모듈에 전기에너지를 인가하게 되면 열전반도체 내부의 전하(전자, 정공)는 열전모듈의 일단에서 열에너지를 흡수하여 반대면으로 이동시키며, 이로 인하여 열전 모듈의 일면은 냉각이 되고 반대면은 발열이 된다. 이때, 상기 열전 모듈(140)은 흡열면이 열전달 플레이트(130)의 저면에 밀착되고, 방열면이 후술할 워터 재킷(150)에 밀착된다.A plurality of thermoelectric modules 140 are in close contact with the bottom surface of the heat transfer plate 130, and when power is applied, the thermoelectric module 140 absorbs heat at one junction and emits heat at the other junction according to the Peltier effect. Here, the thermoelectric module is an environmentally friendly energy material capable of converting thermal energy and electrical energy. The p-type and n-type thermoelectric semiconductors in the form of chips are electrically mounted in series with ceramic substrates such as alumina interposed therebetween. have. In particular, when electrical energy is applied to the thermoelectric module, the charges (electrons, holes) inside the thermoelectric semiconductor absorb the thermal energy at one end of the thermoelectric module and move to the opposite side, whereby one side of the thermoelectric module is cooled and the opposite side is Fever occurs. At this time, the thermoelectric module 140 is in close contact with the bottom surface of the heat transfer plate 130, the heat dissipation surface is in close contact with the water jacket 150 to be described later.
한편, 상기 열전 모듈(140)은 벌크(bulk)형 또는 골격(skeleton)형 등이 적용될 수 있다. On the other hand, the thermoelectric module 140 may be applied to the bulk (bulk) type or skeleton (skeleton) type.
벌크(bulk)형 열전 모듈(140)은 도면에 도시하지 않았지만 전극 패턴이 형성된 상, 하부 기판과 상기 상, 하부 기판의 전극 패턴 상에 솔더링을 통해 전기적으로 접속되는 P형 및 N형 소자를 포함한다. 이때, 상기 상, 하부 기판의 표면에 절연층이 형성될 수 있고, 상기 전극 패턴 중 양 끝단에 전원을 인가할 수 있도록 단자선이 솔더링하여 부착된다. Although not illustrated in the drawing, the bulk type thermoelectric module 140 includes P-type and N-type devices electrically connected to the upper and lower substrates on which electrode patterns are formed and soldered on the electrode patterns of the upper and lower substrates. do. In this case, an insulating layer may be formed on surfaces of the upper and lower substrates, and terminal lines are soldered and attached to apply power to both ends of the electrode patterns.
더욱이, 상기 P형 및 N형 소자는 상기 상, 하부 기판의 전극 패턴에 교번되게 배치된다. 즉, 일측 P형 및 N형 소자의 상면이 상부 기판의 저면에 형성된 전극 패턴을 통해 전기적으로 연결되고, 타측 N형 및 P형 소자의 저면이 하부 기판의 상면에 형성된 전극 패턴을 통해 전기적으로 연결되어 교번되게 연결된다.Further, the P-type and N-type elements are alternately arranged in the electrode patterns of the upper and lower substrates. That is, upper surfaces of one P-type and N-type devices are electrically connected through electrode patterns formed on the bottom of the upper substrate, and lower surfaces of the other N-type and P-type devices are electrically connected through the electrode patterns formed on the upper surface of the lower substrate. Are alternately connected.
도 7 및 도 8에는 본 발명에 의한 온도 조절이 가능한 차량용 스티어링 휠에서 골격형 열전 모듈이 측면도 및 공정도로 도시되어 있다.7 and 8 are skeletal thermoelectric modules in a vehicle steering wheel capable of temperature control according to the present invention are shown in side and process views.
상기 열전 모듈(140)이 골격(skeleton)형이면, 상기 열전 모듈(140)의 구조는 도 7에 도시된 바와 같이 상, 하부 전극(142, 144), 상, 하부 접합층(142a, 144a), 상, 하부 코팅층(142b, 144b), N형 소자(146) 및 P형 소자(148)를 포함하며, 전류의 발생량을 극대화하기 위하여 흡열면과 발열면에 온도차를 크게 하는 것이 바람직하다. If the thermoelectric module 140 is skeletal, the structure of the thermoelectric module 140 has upper and lower electrodes 142 and 144 and upper and lower bonding layers 142a and 144a as shown in FIG. 7. , Upper and lower coating layers 142b and 144b, an N-type element 146 and a P-type element 148, and in order to maximize the amount of current generation, it is preferable to increase the temperature difference between the heat absorbing surface and the heat generating surface.
본 발명의 열전 모듈(140)은 N형 소자(146) 및 P형 소자(148)의 상면에 상부 코팅층(142b), 상부 접합층(142a), 상부 전극(142)이 순차 적층되는 구조로 형성되고, 상기 N형 소자(146) 및 P형 소자(148)의 저면에 하부 코팅층(144b), 하부 접합층(144a), 하부 전극(144)이 순차 적층되는 구조로 형성된다.The thermoelectric module 140 of the present invention has a structure in which an upper coating layer 142b, an upper bonding layer 142a, and an upper electrode 142 are sequentially stacked on the upper surfaces of the N-type element 146 and the P-type element 148. The lower coating layer 144b, the lower bonding layer 144a, and the lower electrode 144 are sequentially stacked on the bottom surfaces of the N-type element 146 and the P-type element 148.
상, 하부 접합층(142a, 144a)은 임시 기판인 상, 하부 세라믹 기판(140a, 140b)의 대향면(전극 부착면)에 모델별 상, 하부 전극 패턴에 맞게 인쇄 등을 통해 형성되며, 글루(Glue) 접착제 등에 의한 접착층 또는 점착제에 의한 점착층이 형성될 수 있다.The upper and lower bonding layers 142a and 144a are formed on the opposite surfaces (electrode attachment surfaces) of the upper and lower ceramic substrates 140a and 140b as temporary substrates by printing according to the upper and lower electrode patterns according to models. (Glue) An adhesive layer by an adhesive or the like or an adhesive layer by an adhesive may be formed.
상, 하부 전극(142, 144)은 구리(무산소동) 등의 재질로 형성되어, 전기와 열전도도 등이 우수한 재질로의 변경이 가능하며, 이중 하부 전극(144)에 양극과 음극이 연결된다.The upper and lower electrodes 142 and 144 may be formed of a material such as copper (oxygen-free copper), and may be changed to a material having excellent electric and thermal conductivity, and the anode and the cathode may be connected to the double lower electrode 144. .
N형 소자(146) 및 P형 소자(148)는 복수개가 상, 하부 전극(142, 144)의 사이에 순차적으로 설치되어 상기 상, 하부 전극(142, 144)에 의해 통전될 수 있게 π형이면서 직렬로 연결된다. The n-type element 146 and the P-type element 148 are π-type so that a plurality of elements are sequentially installed between the upper and lower electrodes 142 and 144 so as to be energized by the upper and lower electrodes 142 and 144. While being connected in series.
이때, 상기 N형 소자(146) 및 P형 소자(148)는 그 양면에 코팅층(142b, 144b)을 형성하여 상, 하부 전극(142, 144)과의 부착성 향상과, 상기 N형 소자(146) 및 P형 소자(148)와 상기 상, 하부 전극(142, 144) 간의 상호 확산을 방지하게 된다. In this case, the N-type device 146 and the P-type device 148 are formed on both surfaces thereof to form coating layers 142b and 144b to improve adhesion to the upper and lower electrodes 142 and 144, and the N-type device ( 146 and the P-type element 148 and the upper and lower electrodes 142 and 144 may be prevented from interdiffusion.
이렇게, N형 소자(146) 및 P형 소자(148)가 교번되게 배치된 상태에서 상, 하부 전극(142, 144)을 통해 상기 N형 소자(146) 및 P형 소자(148)의 양면에 교호되게 접속되며, 상기 상, 하부 전극(142, 144)을 통한 접속 형상이 온도 전달 면적을 넓히기 위해 지그재그 형상 등으로 배열될 수 있다.Thus, in the state where the N-type element 146 and the P-type element 148 are alternately arranged, both surfaces of the N-type element 146 and the P-type element 148 are provided through the upper and lower electrodes 142 and 144. It is alternately connected, and the connection shape through the upper and lower electrodes 142 and 144 may be arranged in a zigzag shape or the like to widen the temperature transfer area.
본 실시 예에 의한 골격형 열전 모듈의 제조방법은 도 8에 도시된 바와 같이 소자 준비 단계, 전극 준비 단계, 전극 정렬 단계, 접합층 형성 단계, 전극 가고정 단계, 솔더 인쇄 단계, 소자 실장 단계, 솔더링 단계 그리고 기판 및 지그 탈거 단계를 포함한다.Method of manufacturing a skeletal thermoelectric module according to the present embodiment is a device preparation step, electrode preparation step, electrode alignment step, bonding layer forming step, electrode temporary fixing step, solder printing step, device mounting step, A soldering step and a substrate and jig stripping step.
소자 준비 단계는 N형 소자(146) 및 P형 소자(148)의 양면 즉, 전극 부착면에 상, 하부 전극(142, 144)과의 부착성 향상과, 상기 N형 소자(146) 및 P형 소자(148)와 상기 상, 하부 전극(142, 144) 간의 상호 확산방지 목적으로 코팅층(142b, 144b)을 형성하는 단계이다.The device preparation step is to improve adhesion to the upper and lower electrodes 142 and 144 on both surfaces of the N-type element 146 and the P-type element 148, that is, the electrode attachment surface, and the N-type element 146 and the P Forming the coating layers 142b and 144b for the purpose of preventing mutual diffusion between the type device 148 and the upper and lower electrodes 142 and 144.
여기서, 소자 준비 단계는 상, 하부 코팅층(142b, 144b) 형성 시 1차 코팅층 형상 단계와 2차 코팅층 형성 단계로 세분화된다. Here, the device preparation step is subdivided into a primary coating layer shape step and a secondary coating layer forming step when the upper and lower coating layers 142b and 144b are formed.
상기 1차 코팅층 형상 단계에 의해 형성되는 1차 코팅층은 Ni(니켈), W(텅스텐) 및 Mo(몰리브덴) 등으로 코팅하는 층이다. 그리고 상기 2차 코팅층 형상 단계에 의해 형성되는 2차 코팅층은 Au(금) 및 Sn(주석) 등으로 코팅하는 층이다.The primary coating layer formed by the primary coating layer shape step is a layer coated with Ni (nickel), W (tungsten), Mo (molybdenum) and the like. The secondary coating layer formed by the secondary coating layer forming step is a layer coated with Au (gold), Sn (tin), or the like.
한편, 상, 하부 코팅층(142b, 144b) 형성 시 1차 코팅층은 생략하고, 2차 코팅층만 형성할 수 있다. 더욱이, 상기 상, 하부 코팅층(142b, 144b)은 도금 방법 또는 증착 방법 등을 통해 형성되며, 상기 도금 방법으로는 전기 또는 무전해 등의 방법으로 구현 가능하고, 상기 증착 방법으로는 스퍼터링(Sputtering), 이온도금, 분사코팅 등의 방법 등으로 구현 가능하다.Meanwhile, when forming the upper and lower coating layers 142b and 144b, the first coating layer may be omitted and only the second coating layer may be formed. Furthermore, the upper and lower coating layers 142b and 144b may be formed by a plating method or a deposition method, and may be embodied by an electric or electroless method as the plating method, and the sputtering method as the deposition method. , Ion plating, spray coating, or the like.
전극 준비 단계는 구리(무산소동) 등의 재질로 형성된 상, 하부 전극(142, 144)을 준비하는 단계이다. 이때, 상기 상, 하부 전극(142, 144)은 전기와 열전도도 등이 우수한 재질로의 변경이 가능하다.The electrode preparation step is to prepare the upper and lower electrodes 142 and 144 formed of a material such as copper (oxygen-free copper). In this case, the upper and lower electrodes 142 and 144 may be changed to a material having excellent electric and thermal conductivity.
한편, 상기 전극 준비 단계에서는 상, 하부 전극(142, 144)에 코팅층을 형성하는 단계가 더 포함될 수 있으며, 상기 코팅층은 상기 소자 준비 단계에서 N형 소자(146) 및 P형 소자(148)의 양면에 형성된 상, 하부 코팅층(142b, 144b)과 동일한 목적 및 방법으로 사전에 수행할 수 있다.Meanwhile, in the electrode preparation step, a step of forming a coating layer on the upper and lower electrodes 142 and 144 may be further included, and the coating layer may include the N-type element 146 and the P-type element 148 in the device preparation step. The upper and lower coating layers 142b and 144b formed on both surfaces may be performed in advance in the same purpose and method.
여기서, 상기 전극 준비 단계는 전기 또는 무전해 등의 도금 방법 등으로 구현할 수 있다. 그리고 상기 상, 하부 전극(142, 144)은 코팅층 없이 사용할 수도 있다.Here, the electrode preparation step may be implemented by a plating method such as electric or electroless. The upper and lower electrodes 142 and 144 may be used without a coating layer.
전극 정렬 단계는 열전 모듈(140)의 모델별 전극 패턴에 맞게 상, 하부 전극(142, 144)을 정렬 지그(도면에 미도시)를 이용하여 배열하는 단계이다. 이때, 상기 전극 정렬 단계는 도면에는 도시하지 않았지만, 상기 상, 하부 전극(142, 144)을 삽입한 전극 정렬 지그에 전극 고정(지지)용 필름(점착테이프)을 부착하여 가고정시킨 후 전극 정렬기(자동/진동 방식)를 통해 정위치로 정렬시키는 단계이다. 다시 말해서, 상기 전극 정렬 단계는 상기 상, 하부 전극(142, 144)별로 삽입한 전극 정렬 지그를 통해 정렬하는 것이다.In the electrode alignment step, the upper and lower electrodes 142 and 144 may be aligned using an alignment jig (not shown) to match the electrode pattern for each model of the thermoelectric module 140. At this time, the electrode aligning step is not shown in the figure, the electrode alignment jig (electrode fixing) film (adhesive tape) is attached to the electrode alignment jig in which the upper and lower electrodes (142, 144) is inserted and temporarily fixed and then electrode alignment This is the step of aligning the position through the automatic (vibration / vibration method). In other words, the electrode aligning step is to align through the electrode alignment jig inserted into each of the upper and lower electrodes 142 and 144.
접합층 형성 단계는 임시 기판인 상, 하부 세라믹 기판(140a, 140b)의 대향면(전극 부착면)에 상, 하부 접합층(142a, 144a)을 모델별 상, 하부 전극 패턴에 맞게 인쇄 등을 통해 형성하는 단계로, 상기 상, 하부 접합층(142a, 144a)이 글루(Glue) 접착제 등에 의한 접착층 또는 점착제에 의한 점착층을 통해 형성될 수 있다. [도 8 (a), (b), (e), (f) 참조]The bonding layer forming step may be performed by printing the upper and lower bonding layers 142a and 144a on the opposing surfaces (electrode attachment surfaces) of the upper and lower ceramic substrates 140a and 140b as temporary substrates according to the upper and lower electrode patterns for each model. In the step of forming through, the upper and lower bonding layers 142a and 144a may be formed through an adhesive layer by a glue adhesive or an adhesive layer by an adhesive. (See Fig. 8 (a), (b), (e), (f))
여기서, 상, 하부 세라믹 기판(140a, 140b)은 이에 한정하지 않고 전극을 임시로 점착하는데 사용되는 다양한 재질의 기판으로 변경 실시가 가능하다.Here, the upper and lower ceramic substrates 140a and 140b are not limited thereto, and may be changed to a substrate made of various materials used to temporarily adhere the electrodes.
더욱이, 접합층 형성 단계는 상, 하부 세라믹 기판(140a, 140b)의 대향면에 상, 하부 접합층(142a, 144a)이 서로 교호되게 배열 형성된다. 이는 소자가 N형 소자(146), P형 소자(148), N형 소자(146) 및 P형 소자(148) 순서로 연속 배열됨에 있어, 상기 소자 중 이웃한 상기 N형 소자(146) 및 P형 소자(148)의 상면을 상부 접합층(142a)을 통해 상부 전극(142)으로 연결할 수 있도록 상기 상부 접합층(142a)을 배열 형성하고, 이웃한 상기 P형 소자(148)와 N형 소자(146)의 저면을 하부 접합층(144a)을 통해 하부 전극(144)으로 연결할 수 있도록 상기 하부 접합층(144a)을 배열 형성하는 것이다. 이렇게 상, 하부 전극(142, 144)이 N형 소자(146) 및 P형 소자(148)를 상, 하면에서 교호되게 연결하는 것이다.Further, in the bonding layer forming step, the upper and lower bonding layers 142a and 144a are alternately arranged on opposite surfaces of the upper and lower ceramic substrates 140a and 140b. This is because the elements are continuously arranged in the order of the N-type element 146, the P-type element 148, the N-type element 146, and the P-type element 148, so that the adjacent N-type element 146 of the elements and The upper bonding layer 142a is formed to be arranged to connect the upper surface of the P-type element 148 to the upper electrode 142 through the upper bonding layer 142a, and the N-type and the neighboring P-type element 148 are formed. The lower bonding layer 144a may be arranged to connect the bottom surface of the device 146 to the lower electrode 144 through the lower bonding layer 144a. Thus, the upper and lower electrodes 142 and 144 alternately connect the N-type element 146 and the P-type element 148 in the upper and lower surfaces.
전극 가고정 단계는 상, 하부 세라믹 기판(140a, 140b)의 상, 하부 접합층(142a, 144a)에 설정 패턴에 맞게 배열된 상, 하부 전극(142, 144)을 각각 접합하여 가고정하는 단계이다. [도 8 (c), (g) 참조]The electrode temporary fixing step is a step of bonding and fixing the upper and lower electrodes 142 and 144 arranged on the upper and lower bonding layers 142a and 144a of the upper and lower ceramic substrates 140a and 140b in a predetermined pattern, respectively. . (See Fig. 8 (c), (g))
솔더 인쇄 단계는 상, 하부 세라믹 기판(140a, 140b)의 각각 실장된 상, 하부 전극(142, 144) 상에 설정 패턴으로 상, 하부 솔더층(143a, 143b)을 인쇄하는 단계이다. [도 8 (d), (h) 참조]The solder printing step is to print the upper and lower solder layers 143a and 143b on the upper and lower electrodes 142 and 144 respectively mounted on the upper and lower ceramic substrates 140a and 140b in a set pattern. (See Fig. 8 (d), (h))
여기서, 상기 솔더 인쇄 단계는 상기 상, 하부 세라믹 기판(140a, 140b) 상에 실장된 상, 하부 전극(142, 144) 위에 솔더를 이용하여 상, 하부 솔더층(143a, 143b)을 모델별 전극 패턴에 맞게 인쇄하는 단계를 통해 구현하거나, 다르게는 접합층 형성 단계와 전극 가고정 단계를 거치지 않고 전극 정렬 단계를 통해 상, 하부 전극(142, 144)을 정렬 지그에 삽입한 상태로 상기 상, 하부 전극(142, 144)의 노출된 표면에 솔더를 이용하여 상, 하부 솔더층(143a, 143b)을 모델별 전극 패턴에 맞게 인쇄하는 단계를 통해 구현할 수 있다.Here, in the solder printing step, the upper and lower solder layers 143a and 143b may be formed on the upper and lower electrodes 142 and 144 mounted on the upper and lower ceramic substrates 140a and 140b by solder. Through the printing step according to the pattern, or alternatively through the electrode alignment step without going through the bonding layer forming step and the electrode temporary fixing step, the upper electrode, the lower electrode (142, 144) is inserted into the alignment jig in the state, The upper and lower solder layers 143a and 143b may be printed on the exposed surfaces of the lower electrodes 142 and 144 in accordance with the electrode pattern for each model.
이때, 상기 솔더 인쇄 단계 중 하나인 상기 상, 하부 세라믹 기판(140a, 140b) 상에 실장된 상, 하부 전극(142, 144) 위에 솔더를 이용하여 상, 하부 솔더층(143a, 143b)을 모델별 전극 패턴에 맞게 인쇄하는 단계는 솔더 프린터(Solder Printer) 등을 통해 실시할 수 있다. 그리고 상기 솔더 인쇄 단계 중 다른 하나인 접합층 형성 단계와 전극 가고정 단계를 거치지 않고 전극 정렬 단계를 통해 상, 하부 전극(142, 144)을 정렬 지그에 삽입한 상태로 상기 상, 하부 전극(142, 144)의 노출된 표면에 솔더를 이용하여 상, 하부 솔더층(143a, 143b)을 모델별 전극 패턴에 맞게 인쇄하는 단계 역시 솔더 프린터 등을 통해 실시할 수 있다. In this case, the upper and lower solder layers 143a and 143b are modeled using solder on the upper and lower electrodes 142 and 144 mounted on the upper and lower ceramic substrates 140a and 140b which are one of the solder printing steps. The printing according to the star electrode pattern may be performed through a solder printer. In addition, the upper and lower electrodes 142 are inserted into the alignment jig while the upper and lower electrodes 142 and 144 are inserted into the alignment jig through the electrode alignment step without the bonding layer forming step and the electrode temporary fixing step. The printing of the upper and lower solder layers 143a and 143b according to the electrode pattern for each model using solder on the exposed surface of the 144 may also be performed through a solder printer.
소자 실장 단계는 상기 하부 세라믹 기판(140b)에 인쇄된 하부 솔더층(143b) 상에 N형 소자(146) 및 P형 소자(148)를 순차적으로 실장하는 단계로, 상기 N형 소자(146) 및 P형 소자(148)를 각각 순차적으로 정렬한 후 상기 하부 솔더층(143b)이 인쇄된 상기 하부 세라믹 기판(140b) 상에 실장하는 제1 세부 단계와, 상기 하부 솔더층(1143b)이 인쇄된 상기 하부 세라믹 기판(140b) 상에 상기 N형 소자(146) 및 P형 소자(148)를 각각 정렬한 후 실장하는 제2 세부 단계, 및 상기 하부 전극(144)을 정렬한 후 상기 N형 소자(146) 및 P형 소자(148)가 정렬된 소자 정렬용 지그에 실장하는 제3 세부 단계 중 어느 하나의 단계로 수행할 수 있다. [도 8 (i), (j) 참조]In the device mounting step, the N-type device 146 and the P-type device 148 are sequentially mounted on the lower solder layer 143b printed on the lower ceramic substrate 140b. The N-type device 146 And a first detailed step of sequentially arranging the P-type elements 148 on the lower ceramic substrate 140b on which the lower solder layer 143b is printed, and printing the lower solder layer 1143b. A second detailed step of aligning and mounting the N-type element 146 and the P-type element 148 on the lower ceramic substrate 140b, and the N-type after aligning the lower electrode 144. The element 146 and the P-type element 148 may be performed in any one of the third detailed steps of mounting the aligned element alignment jig. (See FIG. 8 (i), (j))
즉, 상기 소자 실장 단계의 제1 세부 단계는 N형 소자(146) 및 P형 소자(148)가 정렬된 소자 정렬용 지그에서 상기 N형 소자(146) 및 P형 소자(148)를 소자흡착 실장용 마운터(Mounter) 등으로 흡착한 후 상기 하부 솔더층(143b)이 인쇄된 하부 전극(144) 상에 실장하는 방법을 나타낸다. That is, the first sub-step of the device mounting step includes device adsorption of the N-type element 146 and the P-type element 148 in a device alignment jig in which the N-type element 146 and the P-type element 148 are aligned. The lower solder layer 143b is mounted on the printed lower electrode 144 after being adsorbed by a mounting mount or the like.
그리고 상기 소자 실장 단계의 제2 세부 단계는 상기 하부 솔더층(143b)이 인쇄된 하부 전극(144) 상에 소자 정렬용 지그를 장착하고, 상기 N형 소자(146) 및 P형 소자(148)를 정렬하여 실장하는 방법을 나타낸다. In the second detailed step of the device mounting step, an element alignment jig is mounted on the lower electrode 144 on which the lower solder layer 143b is printed, and the N-type element 146 and the P-type element 148 are mounted. It shows how to align and mount.
마지막으로, 상기 소자 실장 단계의 제3 세부 단계는 상기 하부 전극(144)이 정렬된 소자 정렬용 지그에 상기 하부 전극(144)을 소자흡착 실장용 마운터 등으로 흡착한 후 상기 N형 소자(146) 및 P형 소자(148)가 정렬된 정렬 지그에 실장하는 방법을 나타낸다.Lastly, in the third detailed step of the device mounting step, the N-type device 146 is formed by adsorbing the lower electrode 144 onto the device alignment jig in which the lower electrode 144 is aligned, such as an element adsorption mounting mounter. ) And the P-type element 148 are mounted on the aligned alignment jig.
특히, 상기 제1, 2, 3 세부 단계에서는 상기 N형 소자(146) 및 P형 소자(148)를 상기 소자 정렬용 지그 내의 홀(소자의 패턴으로 홀 가공되어 있음)에 삽입한 후 소자 정렬용 지그를 진동 교반하여 상기 N형 소자(146) 및 P형 소자(148)를 정렬하는 것이다.In particular, in the first, second, and third detailed steps, the N-type element 146 and the P-type element 148 are inserted into holes in the device alignment jig (holes are formed in the pattern of the element) and then the element is aligned. The jig for stirring is used to align the N-type element 146 and the P-type element 148.
솔더링 단계는 하부 기판인 제1 기판(S2) 상에 상기 N형 소자(146) 및 P형 소자(148)의 순차적인 실장 후, 상기 상부 기판인 제1 기판(S1)을 솔더링하는 단계이다. [도 8 (k) 참조]The soldering step is a step of soldering the first substrate S1 which is the upper substrate after sequential mounting of the N-type element 146 and the P-type element 148 on the first substrate S2 which is the lower substrate. [See FIG. 8 (k)]
여기서, 상기 솔더링 단계는 제1 세부 단계와 제2 세부 단계로 구분할 수 있으며, 이 중 어느 하나의 단계를 택일하여 수행할 수 있다.In this case, the soldering step may be divided into a first sub-step and a second sub-step, and any one of these steps may be alternatively performed.
이때, 상기 솔더링 단계의 제1 세부 단계는 상기 N형 소자(146) 및 P형 소자(148)의 실장 후 상기 제1 기판(S1)을 상기 N형 소자(146) 및 P형 소자(148) 상에 실장하여 솔더링을 시행하는 단계이다.In this case, the first detailed step of the soldering step may include mounting the N-type device 146 and the P-type device 148 and then attaching the N-type device 146 and the P-type device 148 to the first substrate S1. It is a step of mounting on the soldering process.
다음으로, 상기 솔더링 단계의 제2 세부 단계는 상기 소자 실장 단계의 제2, 3 세부 단계를 연속적으로 수행하여 상기 N형 소자(146) 및 P형 소자(148)의 실장 후에 소자 정렬용 지그가 결합된 채로 솔더링을 시행하는 단계이다.Next, the second sub-step of the soldering step may be performed by performing the second and third sub-steps of the device mounting step so that the jig for aligning the device is mounted after the N-type device 146 and the P-type device 148 are mounted. This is the step of soldering while bonded.
더욱이, 상기 솔더링 단계는 리플로우 퍼니스(Reflow furnace) 또는 핫플레이트(Hot Plate) 공정을 통해 구현될 수 있다.In addition, the soldering step may be implemented through a reflow furnace or hot plate process.
기판 및 지그 탈거 단계는 상기 상, 하부 세라믹 기판(140a, 140b)과 정렬 지그를 제조된 열전 모듈(140)에서 탈거하는 단계이다. [도 8 (l), (m) 참조]The substrate and jig removal step is to remove the upper and lower ceramic substrates 140a and 140b and the alignment jig from the manufactured thermoelectric module 140. (See FIG. 8 (l), (m))
더욱 상세하게, 기판 및 지그 탈거 단계는 상기 솔더링 단계의 제1 세부 단계를 연속 실시하여 솔더링 된 상기 N형 소자(146) 및 P형 소자(148)를 세척액 및 초음파세척을 통하여 임시 기판인 상기 상, 하부 세라믹 기판(140a, 140b)과 분리시키는 제1 세부 단계와, 상기 솔더링 단계의 제2 세부 단계를 연속 실시하여 솔더링 된 상기 N형 소자(146) 및 P형 소자(148)와 상기 정렬 지그를 세척액 및 초음파세척을 통하여 열전 모듈(140)에서 분리시키는 제2 세부 단계를 택일하여 수행할 수 있다.More specifically, the substrate and jig stripping step may be performed by continuously performing the first sub-step of the soldering step, and the soldered N-type element 146 and P-type element 148 are temporary substrates through washing solution and ultrasonic cleaning. The first sub-step of separating the lower ceramic substrates 140a and 140b and the second sub-step of the soldering step are successively soldered to the N-type element 146 and the P-type element 148 and the alignment jig. The second detailed step of separating from the thermoelectric module 140 through the washing solution and ultrasonic cleaning can be performed alternatively.
워터 재킷(Water jacket: 150)은 유로 플레이트(110)의 저면 가장자리가 상면 가장자리에 밀착되면서 열전 모듈(140)의 저면에 밀착되어 상기 열전 모듈(140)의 방열면을 수냉 방식으로 냉각시킨다. 이때, 상기 워터 재킷(150)은 내부에 냉수가 유동될 수 있도록 공간이 형성되고, 냉수 유입관과 냉수 배출관이 각각 연통된다.The water jacket 150 is in close contact with the bottom surface of the thermoelectric module 140 while the bottom edge of the flow path plate 110 is in close contact with the top edge to cool the heat dissipation surface of the thermoelectric module 140 by water cooling. At this time, the water jacket 150 is formed so that the cold water flows therein, the cold water inlet pipe and the cold water discharge pipe is in communication with each other.
제어부(C)는 열전 모듈(140)에 전류량 및 전류 인가 여부 등을 제어함과 동시에 유입되는 물의 유량을 제어할 수 있도록 유입관(122)에 설치된 자동 밸브(V)의 작동을 제어하고, 배출관(124)에 설치된 온도 센서(S)의 결과값에 따라 사용자가 원하는 냉수의 온도 조절이 상기 열전 모듈(140)을 제어하여 가능케 한다.The control unit (C) controls the operation of the automatic valve (V) installed in the inlet pipe (122) so as to control the amount of current and whether or not the current is applied to the thermoelectric module (140) and to control the flow rate of the incoming water, According to the result of the temperature sensor S installed in the 124, the temperature control of the cold water desired by the user can be controlled by controlling the thermoelectric module 140.
한편, 상기 제어부(C)에는 출수부 온도를 센싱하여 출수 온도를 제어할 수 있는 제어 보드(도면에 미도시)를 포함한다.On the other hand, the control unit (C) includes a control board (not shown in the figure) that can control the water exit temperature by sensing the water exit unit temperature.
그러므로 본 발명에 의한 순간 냉수용 냉각장치(100)는 정수기 등의 내부에 설치되어 사용자로 하여금 냉수 사용이 요구되면 제어부(C)의 제어를 통해 열전 모듈(140)에 전원이 인가된다.Therefore, the instantaneous cold water cooling device 100 according to the present invention is installed inside the water purifier, and when the user is required to use cold water, power is applied to the thermoelectric module 140 through the control of the controller C.
다음으로, 상기 열전 모듈(140)의 흡열면이 흡열되면서 상기 흡열면과 밀착된 열전달 플레이트(130)를 통해 유로 플레이트(110)와 마감 플레이트(120)의 유로(116, 126)를 따라 유동하는 물에 냉기를 전달하여 냉수화가 된다. 한편, 상기 열전 모듈(140)의 방열면은 상기 방열면에 밀착된 워터 재킷(150)의 냉각수를 통해 냉각된다. 이렇게, 냉수는 배출관(124)을 통해 배출되면서 유입관(122)을 통해 시수가 계속적으로 유입된다.Next, the heat absorbing surface of the thermoelectric module 140 is absorbed while flowing along the flow paths 116 and 126 of the flow path plate 110 and the closing plate 120 through the heat transfer plate 130 in close contact with the heat absorbing surface. Cold water is transferred to the water to become cold water. On the other hand, the heat dissipation surface of the thermoelectric module 140 is cooled by the cooling water of the water jacket 150 in close contact with the heat dissipation surface. As such, the cold water is continuously discharged through the inlet pipe 122 while being discharged through the discharge pipe 124.
더욱이, 냉수의 온도 조절이 요구되면, 배출관(124)에 설치된 온도 센서(S)가 배출수의 온도를 감지하고 있다가 제어부(C)에서 열전 모듈(140)로 인가되는 전류량을 제어하게 된다.In addition, when the temperature control of the cold water is required, the temperature sensor S installed in the discharge pipe 124 detects the temperature of the discharge water and then controls the amount of current applied from the controller C to the thermoelectric module 140.
결국, 본 발명은 냉수기 등에 설치되어 차지 면적을 최소화되게 하므로 초소형 냉수기 등의 구현이 가능하고, 냉수 필요시에만 열전 모듈(140)에 전원을 인가하여 냉수를 추출하므로 전기를 절약할 수 있고, 별도의 냉수 저장통 없이 순간적으로 냉수화시켜 항상 깨끗한 물을 공급 가능하고, 순간적 냉수화에 따른 무한 추출이 가능하여 업소용으로도 충분히 사용 가능하며, 냉수의 온도를 체크하여 냉수 배출 온도를 제어할 수 있다.After all, the present invention is installed in a cold water cooler to minimize the charge area, so it is possible to implement an ultra-small cold water cooler, and to save electricity by applying power to the thermoelectric module 140 only when cold water is required to extract cold water. It is possible to supply clean water at all times by instantaneous cold water storage without separate cold water reservoir, and can be used for commercial use by infinite extraction by instantaneous cold watering, and can control cold water discharge temperature by checking the temperature of cold water. have.
<실시예 2><Example 2>
도 9에는 본 발명의 제2 실시예에 의한 순간 냉수용 냉각장치가 단면도로 도시되어 있다.9 is a cross-sectional view of an apparatus for cooling instantaneous cold water according to a second embodiment of the present invention.
이 도면에 의하면, 본 발명의 제2 실시예에 따른 순간 냉수용 냉각장치(200)는 유로 플레이트(210), 마감 플레이트(220), 열전달 플레이트(230), 열전 모듈(240), 워터 재킷(250) 및 제어부(C)를 포함하며, 상기 마감 플레이트(220)를 제외한 나머지인 상기 유로 플레이트(210), 열전달 플레이트(230), 열전 모듈(240), 워터 재킷(250) 및 제어부(C)는 제1 실시예의 그것과 동일한 구조와 기능을 하므로 상세한 설명은 생략한다.According to this figure, the instantaneous cold water cooling apparatus 200 according to the second embodiment of the present invention is the flow path plate 210, the closing plate 220, heat transfer plate 230, thermoelectric module 240, water jacket ( 250 and a control unit C, wherein the flow path plate 210, the heat transfer plate 230, the thermoelectric module 240, the water jacket 250, and the control unit C, except for the closing plate 220, are included. Has the same structure and function as that of the first embodiment, and thus a detailed description thereof will be omitted.
상기 마감 플레이트(220)는 제1 실시예와는 다르게 상기 유로 플레이트(210)의 저면과 맞닿는 상면에 유로가 형성되지 않으며, 실리콘 또는 테프론 재질 등으로 형성된다. 이렇게, 상기 유로 플레이트(210)의 저면에 형성된 유로(216)를 통해 물이 유동되는 통로로 활용할 수 있으므로, 상기 마감 플레이트(220)의 상면에 유로 형성을 생략할 수 있다.Unlike the first embodiment, the closing plate 220 does not have a flow path formed on the upper surface of the flow path plate 210, which is in contact with the bottom surface of the flow path plate 210, and is formed of silicon or Teflon material. As such, since the water flows through the flow path 216 formed on the bottom surface of the flow path plate 210, the flow path may be omitted on the top surface of the finish plate 220.
한편, 도면에는 도시하지 않았지만, 상기 마감 플레이트(220)로 유로 플레이트(210)의 유로(216)를 실링하지 않고, 상기 유로(216) 부위만 별도의 실링 처리를 하여 상기 마감 플레이트(220)를 생략시킬 수 있다.On the other hand, although not shown in the drawing, the closing plate 220 is not sealed with the flow path 216 of the flow path plate 210 by the closing plate 220, and only the portion of the flow path 216 is subjected to a separate sealing process. Can be omitted.
한편, 설명하지 않은 부호 222는 유입관이고, 224는 배출관이다.On the other hand, reference numeral 222, which is not described, is an inlet pipe, and 224 is an outlet pipe.
이상과 같이 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 상기의 실시예에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다.As described above, the present invention has been described by way of limited embodiments and drawings, but the present invention is not limited to the above embodiments, and those skilled in the art to which the present invention pertains various modifications and variations from such descriptions. This is possible.
그러므로 본 발명의 범위는 설명된 실시예에 국한되어 정해져서는 아니 되며, 후술하는 특허청구범위뿐 아니라 이 특허청구범위와 균등한 것들에 의해 정해져야 한다.Therefore, the scope of the present invention should not be limited to the described embodiments, but should be defined not only by the claims below but also by the equivalents of the claims.
본 발명은 순간 냉수용 냉각장치에 관한 것으로, 본 발명은, 이면에 실링 처리된 유로가 형성되고, 상기 유로의 양 끝단에 유입관과 배출관이 연결되는 마감 플레이트; 상기 마감 플레이트의 유로 내부를 유동하는 물을 열전냉각시키는 열전 모듈; 상기 마감 플레이트와 상기 열전 모듈 사이에 개입되는 열전달 플레이트; 및 상기 열전 모듈의 이면에 밀착되어 상기 열전모듈의 방열면을 수냉 방식으로 냉각시키는 워터 재킷을 포함한다.The present invention relates to a chiller for instantaneous cold water, the present invention, the sealing plate is formed on the rear surface, the closing plate is connected to the inlet pipe and the discharge pipe at both ends of the flow path; A thermoelectric module for thermoelectric cooling of water flowing in the flow path of the closing plate; A heat transfer plate interposed between the closure plate and the thermoelectric module; And a water jacket in close contact with the rear surface of the thermoelectric module to cool the heat dissipation surface of the thermoelectric module in a water cooling manner.
본 발명에 의하면, 얇게 구현이 가능하므로 냉수 기능이 부여된 정수기 등에 적용할 경우 초소형 정수기 등의 구현이 가능하고, 필요시에만 냉수 추출하므로 전기를 절약 가능하고, 냉수 저장통을 구비할 필요가 없어 항상 깨끗한 물의 음용이 가능하고, 무한 추출이 가능하여 업소용으로도 충분히 사용 가능하며, 사용자가 원하는 냉수 온도의 조절이 가능한 효과가 있다.According to the present invention, since it is possible to implement a thinner, when applied to a water purifier provided with a cold water function, it is possible to implement a micro water purifier, etc., and to extract electricity only when necessary, thus saving electricity and eliminating the need for a cold water reservoir. It is possible to drink clean water, and infinitely extractable, so it can be used enough for commercial use, and it is possible to adjust the cold water temperature desired by the user.

Claims (7)

  1. 이면에 실링 처리된 유로가 형성되고, 상기 유로의 양 끝단에 유입관과 배출관이 연결되는 유로 플레이트;A flow path plate formed on a rear surface of the flow path, the inflow pipe and the discharge pipe connected to both ends of the flow path;
    상기 유로 플레이트의 유로 내부를 유동하는 물을 열전냉각시키는 열전 모듈;A thermoelectric module for thermoelectric cooling of water flowing in the passage of the passage plate;
    상기 유로 플레이트와 상기 열전 모듈 사이에 개입되는 열전달 플레이트; 및A heat transfer plate interposed between the flow path plate and the thermoelectric module; And
    상기 열전 모듈의 이면에 밀착되어 상기 열전모듈의 방열면을 수냉 방식으로 냉각시키는 워터 재킷을 포함하는 순간 냉수용 냉각장치.And a water jacket in close contact with the rear surface of the thermoelectric module and cooling the heat dissipating surface of the thermoelectric module in a water cooling manner.
  2. 제1항에 있어서,The method of claim 1,
    상기 유로 플레이트의 이면에 밀착되어 상기 유로 플레이트의 유로와 연통되도록 대칭 형성된 별도의 유로가 표면에 형성되는 마감 플레이트를 더 포함하는 순간 냉수용 냉각장치.And a finishing plate in close contact with the back surface of the flow path plate and having a separate flow path symmetrically formed to communicate with the flow path of the flow path plate.
  3. 제1항에 있어서,The method of claim 1,
    상기 유로 플레이트의 이면에 밀착되는 마감 플레이트를 더 포함하는 순간 냉수용 냉각장치.Cooling device for the instant cold water further comprises a closing plate in close contact with the back surface of the flow path plate.
  4. 제2항 또는 제3항에 있어서,The method according to claim 2 or 3,
    상기 마감 플레이트는 실리콘 또는 테프론 재질로 형성되는 순간 냉수용 냉각장치.Cooling device for instantaneous cold water is formed in the finishing plate is made of silicon or Teflon material.
  5. 제1항에 있어서,The method of claim 1,
    상기 유입관에 유입되는 물의 유량을 제어할 수 있도록 구비된 밸브와, 상기 배출관에 배출되는 물의 온도를 센싱하는 온도 센서가 구비되어 상기 센서에서 센싱된 물의 온도를 통해 출수 온도를 제어하는 제어부가 더 구비되는 순간 냉수용 냉각장치.A valve is provided to control the flow rate of the water flowing into the inlet pipe, and a temperature sensor for sensing the temperature of the water discharged to the discharge pipe is further provided to control the outlet water through the temperature of the water sensed by the sensor Cooling device for instant cold water provided.
  6. 제1항에 있어서,The method of claim 1,
    상기 열전 모듈은 벌크(bulk)형 또는 골격(skeleton)형인 순간 냉수용 냉각장치.The thermoelectric module is a bulk type (bulk) or skeleton (skeleton) type instantaneous cold water cooling device.
  7. 제6항에 있어서,The method of claim 6,
    상기 열전 모듈은 골격형으로, 순차 배열되는 P형 및 N형 소자와, 상기 P형 및 N형 소자의 양면에 형성되는 코팅층과, 상기 P형 및 N형 소자의 양면에 교호되게 부착되는 전극 및 상기 P형 및 N형 소자의 양면 코팅층과 상기 전극의 양면과의 사이에 개입되어 전극을 가고정시키는 접합층을 포함하는 순간 냉수용 냉각장치.The thermoelectric module has a skeleton type, sequentially arranged P-type and N-type elements, coating layers formed on both sides of the P-type and N-type elements, electrodes alternately attached to both sides of the P-type and N-type elements, and And a bonding layer interposed between both surfaces of the P-type and N-type elements and both surfaces of the electrode to temporarily fix the electrode.
PCT/KR2014/002452 2013-04-19 2014-03-24 Instantaneous cooling device for cold water WO2014171640A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201480021067.1A CN105121983B (en) 2013-04-19 2014-03-24 Instantaneous cooling device for cold water

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020130043702A KR101498047B1 (en) 2013-04-19 2013-04-19 Cooling device for instant cold water
KR10-2013-0043702 2013-04-19

Publications (1)

Publication Number Publication Date
WO2014171640A1 true WO2014171640A1 (en) 2014-10-23

Family

ID=51731542

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/002452 WO2014171640A1 (en) 2013-04-19 2014-03-24 Instantaneous cooling device for cold water

Country Status (3)

Country Link
KR (1) KR101498047B1 (en)
CN (1) CN105121983B (en)
WO (1) WO2014171640A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115031442A (en) * 2022-05-18 2022-09-09 杭州大和热磁电子有限公司 Water-cooled semiconductor water chiller

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101674386B1 (en) * 2015-04-03 2016-11-10 리빙케어소재기술(주) Thermoelectric modules for instant hot and cold
CN107356045A (en) * 2017-04-15 2017-11-17 吕芳顺 A kind of intelligent cooling-water machine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1140863A (en) * 1997-07-22 1999-02-12 Nissan Motor Co Ltd Thermoelectric generator
KR100241795B1 (en) * 1993-11-29 2000-03-02 시마가 테쭈오 Adsorption Chiller and Cooling Power Control Method
US20080196863A1 (en) * 2007-02-16 2008-08-21 Hiroaki Takechi Fluid temperature control device
US20080223504A1 (en) * 2007-03-15 2008-09-18 Ibiden Co., Ltd. Method of manufacturing thermoelectric converter
KR20130013195A (en) * 2011-07-27 2013-02-06 주식회사 글로벌스탠다드테크놀로지 Heat exchanger for process cooling system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060086096A1 (en) * 2004-10-22 2006-04-27 Nanocoolers, Inc. Thermoelectric cooling and/or moderation of transient thermal load using phase change material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100241795B1 (en) * 1993-11-29 2000-03-02 시마가 테쭈오 Adsorption Chiller and Cooling Power Control Method
JPH1140863A (en) * 1997-07-22 1999-02-12 Nissan Motor Co Ltd Thermoelectric generator
US20080196863A1 (en) * 2007-02-16 2008-08-21 Hiroaki Takechi Fluid temperature control device
US20080223504A1 (en) * 2007-03-15 2008-09-18 Ibiden Co., Ltd. Method of manufacturing thermoelectric converter
KR20130013195A (en) * 2011-07-27 2013-02-06 주식회사 글로벌스탠다드테크놀로지 Heat exchanger for process cooling system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115031442A (en) * 2022-05-18 2022-09-09 杭州大和热磁电子有限公司 Water-cooled semiconductor water chiller

Also Published As

Publication number Publication date
KR101498047B1 (en) 2015-03-11
CN105121983A (en) 2015-12-02
KR20140125638A (en) 2014-10-29
CN105121983B (en) 2017-03-22

Similar Documents

Publication Publication Date Title
US8232637B2 (en) Insulated metal substrates incorporating advanced cooling
US6374616B2 (en) Heat exchanger
US4758926A (en) Fluid-cooled integrated circuit package
US6531653B1 (en) Low cost high solar flux photovoltaic concentrator receiver
EP0409918B1 (en) Liquid cooled multi-chip integrated circuit module
WO2014171640A1 (en) Instantaneous cooling device for cold water
US4860444A (en) Method of assembling a fluid-cooled integrated circuit package
JPH0779142B2 (en) Heat exchanger
AU2004216692A1 (en) Electrical bus with associated porous metal heat sink and method of manufacturing same
JP2010027986A (en) Thermoelectric conversion module and its production process
US11252811B2 (en) Power distribution from point-of-load with cooling
EP0015053A1 (en) A method of manufacturing a semi-conductor power device assembly and an assembly thereby produced
WO2017014589A1 (en) Heat-exchanging module and laundry treating apparatus including the same
JP4350884B2 (en) Heat exchanger
KR101388492B1 (en) Skeleton type thermoelectric module manufacture method and thermoelectric unit having skeleton type thermoelectric module and manufacture method thereof
CN111555000A (en) Heat dissipation battery module and battery package
WO2023038415A1 (en) Vapor chamber and method for manufacturing same
WO2023224254A1 (en) Pcb cooling apparatus, and method for manufacturing same
CN110171197A (en) A kind of UV-LED cure lamp
CN214472916U (en) Micro-welding-point heat transfer device based on Peltier effect
CN220934064U (en) Power module and electronic equipment
WO2024101737A1 (en) Ceramic substrate for power module and manufacturing method thereof
WO2022270914A1 (en) Thermoelectric device
CN113517242B (en) Thermoelectric integrated heat radiation module
WO2021230620A1 (en) Power module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14785333

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14785333

Country of ref document: EP

Kind code of ref document: A1