WO2014171592A1 - Mechanoluminescence colour-tunable complex film and method for tuning colour thereof - Google Patents

Mechanoluminescence colour-tunable complex film and method for tuning colour thereof Download PDF

Info

Publication number
WO2014171592A1
WO2014171592A1 PCT/KR2013/007545 KR2013007545W WO2014171592A1 WO 2014171592 A1 WO2014171592 A1 WO 2014171592A1 KR 2013007545 W KR2013007545 W KR 2013007545W WO 2014171592 A1 WO2014171592 A1 WO 2014171592A1
Authority
WO
WIPO (PCT)
Prior art keywords
stress
stress luminescent
luminescent material
composite film
light
Prior art date
Application number
PCT/KR2013/007545
Other languages
French (fr)
Korean (ko)
Inventor
정순문
이수근
송성규
Original Assignee
재단법인대구경북과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인대구경북과학기술원 filed Critical 재단법인대구경북과학기술원
Publication of WO2014171592A1 publication Critical patent/WO2014171592A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/58Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing copper, silver or gold
    • C09K11/582Chalcogenides
    • C09K11/584Chalcogenides with zinc or cadmium

Definitions

  • the present invention relates to a light emitting composite film, and more particularly, to a composite film and a color control method for emitting light in a mechanical manner capable of color control.
  • Mechanoluminescence mechanical light emission; higher concepts including triboluminescence, fractoluminescence, deformation-luminescence, etc.
  • Brightness, lifespan, and color control are very important factors to apply such mechanical luminescence to various industries, but until now, many studies have not been conducted due to the limitations of the material itself. In particular, due to the limitation of the brightness and life (or reproducibility) of the light expressed in the material, there is no technical development of color control.
  • An object of the present invention is to provide a method for independently adjusting two or more colors by uniformly mixing at least two or more stress luminescent materials with a stress transfer material in order to solve the above problems of the prior art.
  • the color-controlled mechanically luminescent composite film has at least two stress luminescent materials that emit light by mechanical energy applied thereto, and is external to the stress luminescent material Wherein the first emission spectrum of the first stress luminescent material and the second emission spectrum of the second stress luminescent material of the at least two stress luminescent materials It is characterized by different from each other.
  • the intensities of the first and second emission spectra may be independently adjusted based on the amounts of the first and second stress luminescent materials.
  • the color expressed in the mechanical light emitting composite film may be controlled.
  • the color expressed in the mechanical light emitting composite film can be adjusted.
  • the stress transmission material is an elastic organic material having a transmittance of 80% or more in the visible light region
  • the elastic organic material is polydimethylsiloxane (PDMS), silicone rubber, UV curable epoxy It may be composed of at least one of.
  • the field of application of the mechanical luminescence phenomenon limited to the existing academic research can be expanded to the industry.
  • the embodiments can be applied to lighting and display through color control, and can be applied to bio and imaging such as artificial skin.
  • FIG. 1 is a block diagram showing the internal configuration of a mechanical light-emitting composite film capable of color adjustment according to an embodiment of the present invention.
  • Figure 2 shows the spectral characteristics of the light generated in the composite film according to the present invention at a tensile-restoration rate of 200 cpm (cycle per minute).
  • 3 is a view for explaining an aspect in which the emission color is changed in accordance with the composition ratio of the stress light-emitting material constituting the composite film according to the present invention.
  • FIG. 4 is a view for explaining an aspect that the spectrum is changed according to the composition ratio of the stress light-emitting material constituting the composite film according to the present invention.
  • 5 is a view for explaining an aspect in which the emission spectrum is changed when changing the generation period of the stress applied to the stress light-emitting material constituting the composite film according to the present invention.
  • FIG. 6 is a view for explaining an aspect in which the emission spectrum is changed when changing the generation period of the stress applied to the stress light-emitting material at various composition ratios of the stress light-emitting material constituting the composite film according to the present invention.
  • FIG. 7 is a view for explaining a method of manufacturing a composite film including a letter pattern having a variety of colors shown in FIG.
  • FIG. 8 is a view showing a composite film including a letter pattern having a variety of colors according to an application of the present invention.
  • FIG. 1 is a block diagram showing the internal configuration of the mechanical light-emitting composite film is color control according to an embodiment of the present invention.
  • the mechanically luminescent composite film of which color adjustment is possible delivers at least two or more stress luminescent materials that emit light by mechanical energy applied thereto, and mechanical energy applied to the stress luminescent materials from outside. It consists of a mixture of stress transfer materials.
  • the first emission spectrum of the first stress light-emitting material and the second emission spectrum of the second stress light-emitting material may be different from each other.
  • the two types of stress luminescent materials are uniformly mixed with an elastic organic material (stress transmission material), which is based on the principle of independently controlling the two types of colors.
  • the two stress luminescent materials include copper-doped zinc sulfide (hereinafter referred to as Zns: Cu) that expresses green light, and copper and manganese doped zinc sulfide that express red light.
  • Zns copper-doped zinc sulfide
  • PDMS polydimethylsiloxane
  • the stress luminescent material is ZnS: Mn, ZnS: Cu, Mn, ZnS: Cu, Pb, ZnS: Cu, Pb, Mn, MgF2: Mn, La2O2S: Eu, Y2O2S: Cu, EuD4TEA, EuD4TEA +1.25 mL DMMP, ZnS: Cu, Cl, ZnS: Cu, Mn, Cl, SrAl2O4: Eu, SrAl2O4: Ce, SrAl2O4: Ce, Ho, SrMgAl6O11: Eu, SrCaMgSi2O7: Eu, SrBaMgSi2O7O7O7O7O7 : Eu, Dy, CaYAl3O7: Eu (Ba, Ca), TiO3: Pr3 +, ZnGa2O4: Mn, MgGa2O4: Mn, Ca2Al2SiO7: Ce, Zr
  • inventive idea of the present invention can be found in controlling color of a wide area by using a light emitting material that expresses various light emission colors that can be displayed on color coordinates, without being limited to materials that express green and red light. .
  • a transparent PDMS having a very strong elasticity and excellent durability may be used as the stress transfer material.
  • the PDMS has three advantages as a stress transfer material.
  • PDMS does not adhere to the stress luminescent material when it is mixed with the stress luminescent material because of its low interfacial free energy. In the case of strong adhesion between the stress luminescent material and the stress-transfer material, the interface state may be destroyed as the adhesive surface slips under various deformation states. In the case of PDMS, the surface of the stress luminescent material is stably and repeatedly It can transmit phosphorus stress.
  • PDMS is optically transparent, mechanically emitted light can be transmitted to the outside without light loss.
  • PDMS is durable and does not break down even if it is repeatedly stressed for a long time.
  • FIG. 2 is a view showing the spectral characteristics of the light generated in the composite film according to the present invention at a tensile-restore rate of 200 cpm (cycle per minute).
  • the mechanical emission spectrum of green light is observed in the Zns: Cu stress luminescent material and the mechanical emission spectrum of red light is observed in the ZnS: Cu, Mn stress luminescent material due to externally applied mechanical energy.
  • FIG. 3 is a view for explaining an aspect in which the emission color is changed according to the composition ratio of the stress light-emitting material constituting the composite film according to the present invention.
  • the color of light expressed in the composite film may be changed from red to green.
  • the spectrum of light expressed in the composite film also increases in intensity of the spectrum corresponding to green as the G ratio increases.
  • FIG. 5 is a view for explaining an aspect in which the emission spectrum is changed when changing the generation period of the stress applied to the stress light-emitting material constituting the composite film according to the present invention.
  • the tensile recovery rate is increased from 200 cpm to 500 cpm, the emission spectrum is shifted to the left.
  • the doping position of Cu in ZnS: Cu is located at various energy levels. That is, as the rate of change of stress increases, light of a high energy wavelength band is emitted.
  • the color control in the composite film according to the present invention may be used in the two methods described above. This will be described in detail with reference to FIG. 6.
  • FIG. 6 is a view for explaining an aspect in which the emission spectrum is changed when changing the generation period of the stress applied to the stress luminescent material at various composition ratios of the stress luminescent material constituting the composite film according to the present invention.
  • FIG. 6 shows the results of indirectly measuring the results of color change and spectral change for a high stress change rate (500 cpm or more) by fabricating a composite film according to the present invention with a thick film inorganic EL and applying an electrical frequency. do.
  • the spectrum (a) of Zns: Cu and Mn is kept constant as the frequency is changed, whereas the spectrum (b, c, d, e, f) of Zns: Cu is higher in frequency. It can be seen that the left side shift. This result means that the light emitted on the color coordinates is blue shifted. In addition, it can be seen that the spectrum of light expressed according to the composition ratio of Zns: Cu, Mn: Zns: Cu (O: G) is different.
  • the composition ratio of the stress luminescent material constituting the composite film may be varied to implement a wide color control range.
  • FIGS. 7 and 8 are views for explaining a method of manufacturing a composite film including a letter pattern having a variety of colors shown in Figure 8
  • Figure 8 includes a letter pattern having a variety of colors according to an application of the present invention It is a figure which shows a composite film.
  • a composite film was manufactured using a screen printing technique.
  • a mask for silk screen printing is formed on a glass substrate in a predetermined pattern, and a paste in which at least two stress luminescent materials are mixed is applied onto the mask (a).
  • paints mixing by selecting two or more of the above-described stress luminescent materials) were used to express green, orange, and yellow colors, respectively.
  • the applied paint is pushed with a squeegee (stick) to allow the paint to soak into the mask gap to form a letter pattern (b).
  • PDMS is applied as a transparent material on the formed letter pattern as a transparent substrate (c) and subjected to a curing process for 30 minutes in an environment of 70 °C (d). Thereafter, when curing of the PDMS is completed, the glass substrate is separated to complete the composite film (e).

Abstract

Provided are a colour-tunable complex film which emits light in a mechanical manner and a method for tuning colour thereof. Modes of embodiment of the present invention comprise a mixture of at least two mechanoluminescence materials which emit light by applied mechanical energy and a stress transfer material which transfers mechanical energy applied from the outside to the mechanoluminescence materials, wherein among the at least two mechanoluminescence materials, a first emission spectrum of the first mechanoluminescence material is different from a second emission spectrum of the second mechanoluminescence material.

Description

색 조절이 가능한 기계적 발광 복합필름 및 이의 색 조절방법Mechanical light-emitting composite film with color control and its color control method
본 발명은 발광 복합필름에 관한 것으로서, 보다 상세하게는 색 조절이 가능한 기계적인 방식으로 발광하는 복합필름 및 이의 색 조절방법에 관한 것이다.The present invention relates to a light emitting composite film, and more particularly, to a composite film and a color control method for emitting light in a mechanical manner capable of color control.
기계적인 방식으로 발광하는 현상, 즉 재료에 힘을 가함으로써 발생하는 빛은 Mechanoluminescence (기계적 발광; triboluminescence, fractoluminescence, deformation-luminescence 등을 포함하는 상위 개념) 라는 이름으로 오랫동안 알려져 왔으나, 현재까지도 발광의 원리가 확실하지 않을 뿐만 아니라 학문적인 흥미로서만 다루어지고 있는 실정이다.The phenomenon of light emission in a mechanical manner, i.e. light generated by applying force to a material, has long been known under the name of Mechanoluminescence (mechanical light emission; higher concepts including triboluminescence, fractoluminescence, deformation-luminescence, etc.). Is not only certain but is only treated as an academic interest.
예를 들어, 진공상태에서의 스카치 테이프 박리현상에 의한 X-ray 방출 (Camara et al. Nature 2008) 및 초음파에 의한 자외선 방출 (Eddingsaas et al. Nature 2006)등이 학문적으로는 큰 반향을 일으켰으나 마찰이나 파괴에 의해 빛이 발생한다는 근본적인 문제점으로 인해 산업적 응용 가능성은 매우 낮다고 할 수 있다. For example, X-ray emission from Scotch tape delamination under vacuum (Camara et al. Nature 2008) and ultraviolet radiation from ultrasound (Eddingsaas et al. Nature 2006) have been shown to have great academic repercussions. Due to the fundamental problem that light is generated by friction and destruction, the possibility of industrial application is very low.
이러한 산업 응용에 관한 문제점을 해결하기 위해 일본 산업종합기술연구소(AIST)의 Xu 그룹은 마찰이나 파괴라는 현상으로 인해 발생하는 triboluminescence 및 fractoluminescence 대신에 일부 재료에서의 탄성(elastic) 또는 소성(plastic) 변형으로 빛이 발생하는 deformation luminescence라는 비파괴(non-destructive) 기계적 발광 현상을 일부 응력 센서 등에 응용하고자 하였다.In order to solve these problems related to industrial applications, the Xu Group of the Japan Institute of Industrial Technology (AIST) has developed elastic or plastic deformation in some materials instead of triboluminescence and fractoluminescence caused by friction or fracture. In this study, non-destructive mechanical luminescence phenomenon called deformation luminescence, which generates light, was applied to some stress sensors.
이러한 기계적 발광 현상을 실제 다양한 산업에 응용하기 위해서는 밝기, 수명 및 색 조절이 매우 중요한 요소인데 현재까지는 재료 자체가 가지는 한계로 인해 많은 연구가 진행되지 못하였다. 특히, 재료에서 발현되는 광의 밝기 및 수명(또는 재현성)의 한계로 인해 색 조절에 대한 기술 개발은 전무하다고 할 수 있다.Brightness, lifespan, and color control are very important factors to apply such mechanical luminescence to various industries, but until now, many studies have not been conducted due to the limitations of the material itself. In particular, due to the limitation of the brightness and life (or reproducibility) of the light expressed in the material, there is no technical development of color control.
본 발명은 상술한 종래 기술의 문제점을 해결하기 위하여, 적어도 2개 이상의 응력발광 재료를 응력전달 재료와 균일하게 혼합하여 2종류 이상의 색을 독립적으로 조절하는 방법을 제공하는 것을 목적으로 한다.An object of the present invention is to provide a method for independently adjusting two or more colors by uniformly mixing at least two or more stress luminescent materials with a stress transfer material in order to solve the above problems of the prior art.
본 발명의 목적은 이상에서 언급한 목적으로 제한되지 않으며, 언급되지 않은 또 다른 목적들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.The object of the present invention is not limited to the above-mentioned object, and other objects that are not mentioned will be clearly understood by those skilled in the art from the following description.
상술한 본 발명의 목적을 달성하기 위한 본 발명의 일 면에 따른 색 조절이 가능한 기계적 발광 복합필름은 가해지는 기계적인 에너지에 의해 발광하는 적어도 2개 이상의 응력발광 재료와, 상기 응력발광 재료에 외부에서 가해지는 기계적인 에너지를 전달하는 응력전달 재료의 혼합물로 구성되되, 상기 적어도 2개 이상의 응력발광 재료 중 제1 응력발광 재료의 제1 발광 스펙트럼과 상기 제2 응력발광 재료의 제2 발광 스펙트럼은 서로 상이한 것을 특징으로 한다.According to an aspect of the present invention for achieving the above object of the present invention, the color-controlled mechanically luminescent composite film has at least two stress luminescent materials that emit light by mechanical energy applied thereto, and is external to the stress luminescent material Wherein the first emission spectrum of the first stress luminescent material and the second emission spectrum of the second stress luminescent material of the at least two stress luminescent materials It is characterized by different from each other.
일 실시예로서, 상기 제1 및 제2 발광 스펙트럼의 강도는 상기 제1 및 제2 응력발광 재료의 양에 기초하여 독립적으로 조절될 수 있다.In one embodiment, the intensities of the first and second emission spectra may be independently adjusted based on the amounts of the first and second stress luminescent materials.
일 실시예로서, 상기 제1 응력발광 재료와 상기 제2 응력발광 재료의 혼합비가 변경됨에 따라 상기 기계적 발광 복합필름에서 발현되는 색이 조절될 수 있다.In one embodiment, as the mixing ratio of the first stress luminescent material and the second stress luminescent material is changed, the color expressed in the mechanical light emitting composite film may be controlled.
일 실시예로서, 상기 제1 및 제2 응력발광 재료에 가해지는 기계적인 에너지의 전달 주기가 변경됨에 따라 상기 기계적 발광 복합필름에서 발현되는 색이 조절될 수 있다.In one embodiment, as the transmission period of the mechanical energy applied to the first and second stress light-emitting material is changed, the color expressed in the mechanical light emitting composite film can be adjusted.
일 실시예로서, 상기 응력전달 재료는 가시광 영역에서 투과도가 80% 이상인 탄성 유기재료인 것이되, 상기 탄성 유기재료는 폴리다이메틸실록세인(polydimethylsiloxane, 이하PDMS)와, 실리콘 고무와, UV 경화 에폭시 중 적어도 하나로 구성될 수 있다.In one embodiment, the stress transmission material is an elastic organic material having a transmittance of 80% or more in the visible light region, the elastic organic material is polydimethylsiloxane (PDMS), silicone rubber, UV curable epoxy It may be composed of at least one of.
이상 상술한 바와 같이, 본 발명의 실시예에 따르면 기존 학문적 연구에 국한되어 있던 기계적 발광 현상을 산업으로 응용분야를 확대시킬 수 있다. 본 실시예들은 색 조절을 통한 조명 및 디스플레이로의 응용이 가능하며, 이 외에도 인공피부 등과 같은 바이오, 이미징에도 적용될 수 있다.As described above, according to the embodiment of the present invention, the field of application of the mechanical luminescence phenomenon limited to the existing academic research can be expanded to the industry. The embodiments can be applied to lighting and display through color control, and can be applied to bio and imaging such as artificial skin.
도 1은 본 발명의 일 실시예에 따른 색 조절이 가능한 기계적 발광 복합필름의 내부 구성을 도시한 구성도.1 is a block diagram showing the internal configuration of a mechanical light-emitting composite film capable of color adjustment according to an embodiment of the present invention.
도 2는 200cpm(cycle per minute)의 인장-복원 속도에서 본 발명에 따른 복합필름에서 발생하는 광의 스펙트럼 특성을 도시한 도면.Figure 2 shows the spectral characteristics of the light generated in the composite film according to the present invention at a tensile-restoration rate of 200 cpm (cycle per minute).
도 3은 본 발명에 따른 복합필름을 구성하는 응력발광 재료의 조성비에 따라 발광색이 변화되는 양상을 설명하기 위한 도면.3 is a view for explaining an aspect in which the emission color is changed in accordance with the composition ratio of the stress light-emitting material constituting the composite film according to the present invention.
도 4는 본 발명에 따른 복합필름을 구성하는 응력발광 재료의 조성비에 따른 스펙트럼이 변화되는 양상을 설명하기 위한 도면.4 is a view for explaining an aspect that the spectrum is changed according to the composition ratio of the stress light-emitting material constituting the composite film according to the present invention.
도 5는 본 발명에 따른 복합필름을 구성하는 응력발광 재료에 가해지는 응력의 발생 주기를 변경할 때 발광 스펙트럼이 변화되는 양상을 설명하기 위한 도면.5 is a view for explaining an aspect in which the emission spectrum is changed when changing the generation period of the stress applied to the stress light-emitting material constituting the composite film according to the present invention.
도 6은 본 발명에 따른 복합필름을 구성하는 응력발광 재료의 다양한 조성비에서 응력발광 재료에 가해지는 응력의 발생 주기를 변경할 때 발광 스펙트럼이 변화되는 양상을 설명하기 위한 도면.6 is a view for explaining an aspect in which the emission spectrum is changed when changing the generation period of the stress applied to the stress light-emitting material at various composition ratios of the stress light-emitting material constituting the composite film according to the present invention.
도 7은 도 8에 도시된 다양한 색상을 갖는 글자 패턴을 포함하는 복합필름을 제조하는 일 방법을 설명하기 위한 도면. 7 is a view for explaining a method of manufacturing a composite film including a letter pattern having a variety of colors shown in FIG.
도 8은 본 발명의 응용 예에 따라 다양한 색상을 갖는 글자 패턴을 포함하는 복합필름을 도시한 도면.8 is a view showing a composite film including a letter pattern having a variety of colors according to an application of the present invention.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 한편, 본 명세서에서 사용된 용어는 실시예들을 설명하기 위한 것이며 본 발명을 제한하고자 하는 것은 아니다. 본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함한다.Advantages and features of the present invention and methods for achieving them will be apparent with reference to the embodiments described below in detail with the accompanying drawings. However, the present invention is not limited to the embodiments disclosed below, but will be implemented in various forms, and only the present embodiments are intended to complete the disclosure of the present invention, and the general knowledge in the art to which the present invention pertains. It is provided to fully convey the scope of the invention to those skilled in the art, and the present invention is defined only by the scope of the claims. Meanwhile, the terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. In this specification, the singular also includes the plural unless specifically stated otherwise in the phrase.
이하, 본 발명의 바람직한 실시예를 첨부된 도면들을 참조하여 상세히 설명한다. 우선 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한 본 발명을 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. First of all, in adding reference numerals to the components of each drawing, it should be noted that the same reference numerals are used to refer to the same components even though they are shown in different drawings. In describing the present invention, when it is determined that the detailed description of the related well-known configuration or function may obscure the gist of the present invention, the detailed description thereof will be omitted.
도 1은 본 발명의 일 실시예에 따른 색 조절이 가능한 기계적 발광 복합필름의 내부 구성을 도시한 구성도이다.1 is a block diagram showing the internal configuration of the mechanical light-emitting composite film is color control according to an embodiment of the present invention.
도 1에 도시된 바와 같이, 본 색 조절이 가능한 기계적 발광 복합필름은 가해지는 기계적인 에너지에 의해 발광하는 적어도 2개 이상의 응력발광 재료와, 상기 응력발광 재료에 외부에서 가해지는 기계적인 에너지를 전달하는 응력전달 재료의 혼합물로 구성된다. 여기서, 상기 적어도 2개 이상의 응력발광 재료 중 제1 응력발광 재료의 제1 발광 스펙트럼과 상기 제2 응력발광 재료의 제2 발광 스펙트럼은 서로 상이한 것을 특징으로 한다.As shown in FIG. 1, the mechanically luminescent composite film of which color adjustment is possible delivers at least two or more stress luminescent materials that emit light by mechanical energy applied thereto, and mechanical energy applied to the stress luminescent materials from outside. It consists of a mixture of stress transfer materials. The first emission spectrum of the first stress light-emitting material and the second emission spectrum of the second stress light-emitting material may be different from each other.
즉, 본 발명의 실시예에 따르면 두 종류의 응력발광 재료를 탄성력 있는 유기재료(응력전달 재료)에 균일하게 혼합함으로써 두 종류의 색을 독립적으로 조절하는 원리를 기본으로 한다.That is, according to the embodiment of the present invention, the two types of stress luminescent materials are uniformly mixed with an elastic organic material (stress transmission material), which is based on the principle of independently controlling the two types of colors.
도 1에서 상기 2개의 응력발광 재료로는 녹색 광을 발현하는 구리 도핑된 황화아연(copper-doped zinc sulfide(이하, Zns:Cu))과, 적색 광을 발현하는 구리, 망간 도핑된 황화아연(이하, ZnS:Cu,Mn)이 응력을 상기 발광 재료에 전달하는 응력전달 재료로는 폴리다이메틸실록세인(polydimethylsiloxane, 이하PDMS)을 사용되지만, 이에 한정되지는 않는다. In FIG. 1, the two stress luminescent materials include copper-doped zinc sulfide (hereinafter referred to as Zns: Cu) that expresses green light, and copper and manganese doped zinc sulfide that express red light. Hereinafter, polydimethylsiloxane (hereinafter, referred to as PDMS) is used as a stress transfer material for transferring ZnS: Cu, Mn to the light emitting material, but is not limited thereto.
다른 실시예로서, 상기 응력발광 재료로는 ZnS:Mn, ZnS:Cu,Mn, ZnS:Cu,Pb, ZnS:Cu,Pb,Mn, MgF2:Mn, La2O2S:Eu, Y2O2S:Cu, EuD4TEA, EuD4TEA+1.25 mL DMMP, ZnS:Cu,Cl, ZnS:Cu,Mn,Cl, SrAl2O4:Eu, SrAl2O4:Ce, SrAl2O4:Ce,Ho, SrMgAl6O11:Eu, SrCaMgSi2O7:Eu, SrBaMgSi2O7:Eu, Sr2MgSi2O7:Eu, Ca2MgSi2O7:Eu,Dy, CaYAl3O7:Eu(Ba,Ca), TiO3:Pr3+, ZnGa2O4:Mn, MgGa2O4:Mn, Ca2Al2SiO7:Ce, ZrO2:Ti, ZnS:Mn,Te 등이 사용될 수 있으며, 유기재료(응력전달 재료)로는 PDMS를 포함하여 광학적으로 투명(가시광 영역에서 투과도 80%이상)하며 내구성이 강한 실리콘 고무나 UV curable epoxy 등도 폭넓게 사용될 수 있다.In another embodiment, the stress luminescent material is ZnS: Mn, ZnS: Cu, Mn, ZnS: Cu, Pb, ZnS: Cu, Pb, Mn, MgF2: Mn, La2O2S: Eu, Y2O2S: Cu, EuD4TEA, EuD4TEA +1.25 mL DMMP, ZnS: Cu, Cl, ZnS: Cu, Mn, Cl, SrAl2O4: Eu, SrAl2O4: Ce, SrAl2O4: Ce, Ho, SrMgAl6O11: Eu, SrCaMgSi2O7: Eu, SrBaMgSi2O7O7O7O7O7 : Eu, Dy, CaYAl3O7: Eu (Ba, Ca), TiO3: Pr3 +, ZnGa2O4: Mn, MgGa2O4: Mn, Ca2Al2SiO7: Ce, ZrO2: Ti, ZnS: Mn, Te etc. can be used, and organic materials (stress transfer Materials include optically transparent (over 80% transmittance in the visible region) including PDMS, and can be widely used for durable silicone rubber and UV curable epoxy.
또한, 녹색 및 적색 광을 발현하는 재료만으로 국한되지 않고 색좌표 상에 표시할 수 있는 다양한 발광 색을 발현하는 발광재료를 사용하여 넓은 영역의 색조절을 하는 것에 본 발명의 발명적 사상을 찾을 수 있다.In addition, the inventive idea of the present invention can be found in controlling color of a wide area by using a light emitting material that expresses various light emission colors that can be displayed on color coordinates, without being limited to materials that express green and red light. .
본 발명의 실시예에 따라 색 조절이 가능한 복합필름을 제작하기 위해서는 향상된 기계적 발광 강도 및 수명의 재료 특성이 보장되어야 한다. 이를 위해, 본 발명의 실시예에서는 응력전달 재료로서 탄성력이 매우 강하고 내구성이 좋은 투명 PDMS를 사용할 수 있다.In order to produce a color-controlled composite film according to an embodiment of the present invention, improved mechanical emission intensity and lifespan of material properties should be ensured. To this end, in the embodiment of the present invention, a transparent PDMS having a very strong elasticity and excellent durability may be used as the stress transfer material.
상기 PDMS는 응력전달 재료로서 아래와 같은 3가지의 장점이 있다.The PDMS has three advantages as a stress transfer material.
1. PDMS는 계면에너지(interfacial free energy)가 낮기에 응력발광 재료와 혼합되는 경우 상기 응력발광 재료와 접착하지 않는다. 응력발광 재료와 응력전달 재료가 강한 접착을 이루고 있을 경우 여러 변형 상태에서 접착면이 미끄러짐에 따라 계면상태가 파괴되는 현상이 발생할 수 있는데 PDMS의 경우 응력발광 재료의 표면에 악영향을 미치지 않고 안정적으로 반복적인 응력을 전달할 수 있다.1. PDMS does not adhere to the stress luminescent material when it is mixed with the stress luminescent material because of its low interfacial free energy. In the case of strong adhesion between the stress luminescent material and the stress-transfer material, the interface state may be destroyed as the adhesive surface slips under various deformation states. In the case of PDMS, the surface of the stress luminescent material is stably and repeatedly It can transmit phosphorus stress.
2. PDMS는 광학적으로 투명하기 때문에 기계적 발광한 빛이 외부로 광손실 없이 그대로 전달될 수 있다.2. Since PDMS is optically transparent, mechanically emitted light can be transmitted to the outside without light loss.
3. PDMS는 내구성이 강하기에 장시간 반복적인 응력을 가해도 파괴가 일어나지 않는다. 3. PDMS is durable and does not break down even if it is repeatedly stressed for a long time.
도 2는 200cpm(cycle per minute)의 인장-복원 속도에서 본 발명에 따른 복합필름에서 발생하는 광의 스펙트럼 특성을 도시한 도면이다. 2 is a view showing the spectral characteristics of the light generated in the composite film according to the present invention at a tensile-restore rate of 200 cpm (cycle per minute).
도 2에 도시된 바와 같이, 외부에서 가해진 기계적 에너지에 의해 Zns:Cu 응력발광 재료에서는 녹색 광의 기계적 발광스펙트럼이, ZnS:Cu,Mn 응력발광 재료에서는 적색 광의 기계적 발광스펙트럼이 관찰된다. As shown in FIG. 2, the mechanical emission spectrum of green light is observed in the Zns: Cu stress luminescent material and the mechanical emission spectrum of red light is observed in the ZnS: Cu, Mn stress luminescent material due to externally applied mechanical energy.
전술한 구성을 갖는 복합필름에서 발현되는 광의 색 조절을 위한 일 실시예로서, 상기 복합필름을 구성하는 2개 이상의 응력발광 재료의 조성비를 변경하는 방법이 제안된다. 실제 실험에 있어서 상기 Zns:Cu와 상기 ZnS:Cu,Mn를 적색:녹색(O:G)의 비율로 혼합하였으며, 그 비율은 10:0, 9:1, 8:2, 7:3, 6:4, 5:5, 0:10이 되도록 하였다. 또한 전체적인 발광재료와 PDMS의 비율은 7:3으로 유지하였다.As an embodiment for controlling the color of the light expressed in the composite film having the above-described configuration, a method of changing the composition ratio of two or more stress light-emitting materials constituting the composite film is proposed. In an actual experiment, Zns: Cu and ZnS: Cu, Mn were mixed in a ratio of red: green (O: G), and the ratio was 10: 0, 9: 1, 8: 2, 7: 3, 6 : 4, 5: 5, 0:10. In addition, the ratio of the overall light emitting material and PDMS was maintained at 7: 3.
본 복합필름에서 방출되는 기계적 발광의 광학적 특성을 관찰하기 위하여 인장-복원(stretching-releasing) 시스템을 사용하였으며 그 결과가 도 3에 도시된다. In order to observe the optical properties of the mechanical luminescence emitted by the composite film, a stretching-releasing system was used, and the result is shown in FIG. 3.
도 3은 본 발명에 따른 복합필름을 구성하는 응력발광 재료의 조성비에 따라 발광색이 변화되는 양상을 설명하기 위한 도면이다. 도 3에 도시된 바와 같이, O:G 비율에서 G(녹색) 비율이 증가함에 따라 상기 복합필름에서 발현되는 광의 색은 적색에서 녹색으로 변화함을 알 수 있다. 상기 복합필름에서 발현되는 광의 스펙트럼 역시 G 비율이 증가함에 따라 녹색에 해당하는 스펙트럼의 강도가 증가하는 것을 도 4에서 확인할 수 있다.3 is a view for explaining an aspect in which the emission color is changed according to the composition ratio of the stress light-emitting material constituting the composite film according to the present invention. As shown in FIG. 3, as the G (green) ratio increases in the O: G ratio, the color of light expressed in the composite film may be changed from red to green. It can be seen in FIG. 4 that the spectrum of light expressed in the composite film also increases in intensity of the spectrum corresponding to green as the G ratio increases.
본 발명에 따른 복합필름에서 발현되는 광의 색 조절을 위한 다른 실시예로서, 상기 복합필름에 가해지는 기계적인 에너지의 전달 주기(또는, 인장-복원률)를 변경하는 방법이 제안된다. 즉, 복합필름에 응력을 얼마나 빨리 가해주는지에 따라 발현되는 광의 색이 달라지게 된다. 이를 도 5 내지 도 6을 참조하여 구체적으로 설명한다.As another embodiment for controlling the color of the light expressed in the composite film according to the present invention, a method of changing the transmission period (or tensile-recovery rate) of the mechanical energy applied to the composite film is proposed. That is, the color of the light is different depending on how quickly the stress applied to the composite film. This will be described in detail with reference to FIGS. 5 to 6.
도 5는 본 발명에 따른 복합필름을 구성하는 응력발광 재료에 가해지는 응력의 발생 주기를 변경할 때 발광 스펙트럼이 변화되는 양상을 설명하기 위한 도면이다. 도 5를 참조하면, 인장-복원률이 200cpm에서 500cpm으로 증가할 경우, 발광 스펙트럼이 좌측으로 시프트(blue shift)되는 것을 알 수 있다. 이는 ZnS:Cu에서 Cu의 도핑위치가 다양한 에너지 준위에 위치하기 때문이다. 즉, 응력 변화율이 커질수록 높은 에너지의 파장대의 빛이 방출된다.5 is a view for explaining an aspect in which the emission spectrum is changed when changing the generation period of the stress applied to the stress light-emitting material constituting the composite film according to the present invention. Referring to FIG. 5, it can be seen that when the tensile recovery rate is increased from 200 cpm to 500 cpm, the emission spectrum is shifted to the left. This is because the doping position of Cu in ZnS: Cu is located at various energy levels. That is, as the rate of change of stress increases, light of a high energy wavelength band is emitted.
한편, 본 발명에 따른 복합필름에서 색 조절은 전술한 2가지의 방법을 혼용할 수도 있다. 이를 도 6을 참조하여 구체적으로 설명한다. 도 6은 본 발명에 따른 복합필름을 구성하는 응력발광 재료의 다양한 조성비에서 응력발광 재료에 가해지는 응력의 발생 주기를 변경할 때 발광 스펙트럼이 변화되는 양상을 설명하기 위한 도면이다. On the other hand, the color control in the composite film according to the present invention may be used in the two methods described above. This will be described in detail with reference to FIG. 6. 6 is a view for explaining an aspect in which the emission spectrum is changed when changing the generation period of the stress applied to the stress luminescent material at various composition ratios of the stress luminescent material constituting the composite film according to the present invention.
도 6에는 본 발명에 따른 복합필름을 후막무기 EL로 제작하고, 전기적 진동자(electrical frequency)를 가해줌으로써, 높은 응력변화율(500cpm 이상)에 대한 색 변화 및 스펙트럼 변화 결과를 간접적으로 측정한 결과가 도시된다. 6 shows the results of indirectly measuring the results of color change and spectral change for a high stress change rate (500 cpm or more) by fabricating a composite film according to the present invention with a thick film inorganic EL and applying an electrical frequency. do.
도 6을 참조하면, Zns:Cu, Mn의 스펙트럼(a)은 진동수가 변함에 따라 일정하게 유지되는 것에 비해, Zns:Cu의 스펙트럼(b,c,d,e,f)는 진동수가 높아짐에 따라 좌측으로 변이하는 것을 알 수 있다. 이러한 결과는 결국 색 좌표상에서 방출되는 광이 Blue shift되는 것을 의미한다. 또한, Zns:Cu, Mn : Zns:Cu (O:G)의 조성비에 따라 발현되는 광의 스펙트럼이 달라지는 것을 확인할 수 있다.Referring to FIG. 6, the spectrum (a) of Zns: Cu and Mn is kept constant as the frequency is changed, whereas the spectrum (b, c, d, e, f) of Zns: Cu is higher in frequency. It can be seen that the left side shift. This result means that the light emitted on the color coordinates is blue shifted. In addition, it can be seen that the spectrum of light expressed according to the composition ratio of Zns: Cu, Mn: Zns: Cu (O: G) is different.
한편, Zns:Cu, Mn만이 응력발광 재료로 사용되는 경우에는 진동수가 변함에도 불구하고 스펙트럼이 일정하게 유지되는데, 이는 Zns:Cu, Mn에서 Cu의 경우에는 증감제(sensitizer)로서만 작용하기 때문에, 비록 Cu에 다양한 에너지 준위가 있더라도 Mn은 일정한 상(state)를 유지하기 때문이다.On the other hand, when only Zns: Cu and Mn are used as stress luminescent materials, the spectrum is kept constant even though the frequency is changed. This is because in the case of Cu in Zns: Cu and Mn, it acts only as a sensitizer. This is because Mn maintains a constant state even though Cu has various energy levels.
이와 같이, 본 실시예에 따른 복합필름에서 이를 구성하는 응력발광 재료의 조성비뿐만 아니라, 상기 복합필름에 가해지는 응력의 주기를 다양하게 변화시켜줌으로써 넓은 색 조절 범위를 구현할 수 있다. As such, in the composite film according to the present embodiment, not only the composition ratio of the stress luminescent material constituting the composite film but also various cycles of stress applied to the composite film may be varied to implement a wide color control range.
본 발명에 따른 복합필름에 갖는 전술한 특징(조성비 또는 응력발생 주기에 따라 스펙트럼 변화)을 응용한 예를 도 7 및 도 8을 참조하여 설명한다. 도 7은 도 8에 도시된 다양한 색상을 갖는 글자 패턴을 포함하는 복합필름을 제조하는 일 방법을 설명하기 위한 도면이고, 도 8은 본 발명의 응용 예에 따라 다양한 색상을 갖는 글자 패턴을 포함하는 복합필름을 도시한 도면이다.An example of applying the above-described characteristics (spectral change according to composition ratio or stress generation cycle) of the composite film according to the present invention will be described with reference to FIGS. 7 and 8. 7 is a view for explaining a method of manufacturing a composite film including a letter pattern having a variety of colors shown in Figure 8, Figure 8 includes a letter pattern having a variety of colors according to an application of the present invention It is a figure which shows a composite film.
도 8과 같은 다양한 색상 패턴을 갖는 글자를 구현하기 위해 도 7에 도시된 바와 같이, 복합필름을 스크린 인쇄 기법을 이용하여 제작하였다. 먼저 유리 기재 상에 실크 스크린 인쇄를 위한 마스크를 일정 패턴으로 형성하고, 마스크 상에 적어도 2개 이상의 응력발광 재료가 혼합된 도료(paste)를 도포한다(a). 도 7에는 각각 녹색, 주황색, 노랑색을 발현할 수 있도록 제작된 도료(전술한 응력발광 재료 중 2개 이상을 선택하여 혼합)가 사용되었다.As shown in FIG. 7 to implement letters having various color patterns as shown in FIG. 8, a composite film was manufactured using a screen printing technique. First, a mask for silk screen printing is formed on a glass substrate in a predetermined pattern, and a paste in which at least two stress luminescent materials are mixed is applied onto the mask (a). In FIG. 7, paints (mixing by selecting two or more of the above-described stress luminescent materials) were used to express green, orange, and yellow colors, respectively.
다음으로, 도포된 도료를 스퀴지(밀대)로 밀어 마스크 틈으로 도료가 스며들게 하여 글자 패턴을 형성한다(b). 이후, 형성된 글자 패턴 상으로 응력전달 재료로서 PDMS를 투명 기판으로 적용하고(c), 70℃의 환경에서 30분 동안 경화 과정을 거치게 한다(d). 이후, PDMS의 경화가 완료되면 유리 기재를 분리하여 복합필름을 완성한다(e).Next, the applied paint is pushed with a squeegee (stick) to allow the paint to soak into the mask gap to form a letter pattern (b). Then, PDMS is applied as a transparent material on the formed letter pattern as a transparent substrate (c) and subjected to a curing process for 30 minutes in an environment of 70 ℃ (d). Thereafter, when curing of the PDMS is completed, the glass substrate is separated to complete the composite film (e).
본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명이 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 본 발명의 보호범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구의 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.Those skilled in the art will appreciate that the present invention can be embodied in other specific forms without changing the technical spirit or essential features of the present invention. Therefore, it should be understood that the embodiments described above are exemplary in all respects and not restrictive. The protection scope of the present invention is shown by the following claims rather than the above description, and all changes or modifications derived from the claims and their equivalents should be construed as being included in the scope of the present invention.

Claims (10)

  1. 가해지는 기계적인 에너지에 의해 발광하는 적어도 2개 이상의 응력발광 재료와, 상기 응력발광 재료에 외부에서 가해지는 기계적인 에너지를 전달하는 응력전달 재료의 혼합물로 구성되되,A mixture of at least two stress luminescent materials that emit light by mechanical energy applied and a stress transfer material that delivers mechanical energy applied externally to the stress luminescent material,
    상기 적어도 2개 이상의 응력발광 재료 중 제1 응력발광 재료의 제1 발광 스펙트럼과 제2 응력발광 재료의 제2 발광 스펙트럼은 서로 상이한 것 Among the at least two stress luminescent materials, the first luminescence spectrum of the first stress luminescent material and the second luminescence spectrum of the second stress luminescent material are different from each other.
    을 특징으로 하는 색 조절이 가능한 기계적 발광 복합필름.Mechanical light-emitting composite film, characterized in that the color control.
  2. 제1항에 있어서,The method of claim 1,
    상기 제1 발광 스펙트럼 및 상기 제2 발광 스펙트럼의 강도는 상기 제1 응력발광재료 및 상기 제2 응력발광 재료의 양에 기초하여 독립적으로 조절되는 것Intensities of the first emission spectrum and the second emission spectrum are independently adjusted based on the amounts of the first and second stress luminescent materials.
    을 특징으로 하는 색 조절이 가능한 기계적 발광 복합필름.Mechanical light-emitting composite film, characterized in that the color control.
  3. 제1항에 있어서,The method of claim 1,
    상기 제1 응력발광 재료와 상기 제2 응력발광 재료의 혼합비가 변경됨에 따라 상기 기계적 발광 복합필름에서 발현되는 색이 조절되는 것As the mixing ratio of the first stress luminescent material and the second stress luminescent material is changed, the color expressed in the mechanical light emitting composite film is controlled.
    을 특징으로 하는 색 조절이 가능한 기계적 발광 복합필름.Mechanical light-emitting composite film, characterized in that the color control.
  4. 제1항에 있어서, The method of claim 1,
    상기 제1 응력발광재료 및 상기 제2 응력발광 재료에 가해지는 기계적인 에너지의 전달 주기가 변경됨에 따라 상기 기계적 발광 복합필름에서 발현되는 색이 조절되는 것 The color expressed in the mechanically luminescent composite film is controlled by changing the transmission period of the mechanical energy applied to the first stress luminescent material and the second stress luminescent material.
    을 특징으로 하는 색 조절이 가능한 기계적 발광 복합필름. Mechanical light-emitting composite film, characterized in that the color control.
  5. 제1항에 있어서, The method of claim 1,
    상기 응력전달 재료는 가시광 영역에서 투과도가 80% 이상인 탄성 유기재료인 것이되,The stress transfer material is an elastic organic material having a transmittance of 80% or more in the visible light region,
    상기 탄성 유기재료는 폴리다이메틸실록세인(polydimethylsiloxane, 이하PDMS)와, 실리콘 고무와, UV 경화 에폭시 중 적어도 하나로 구성되는 것The elastic organic material is composed of at least one of polydimethylsiloxane (PDMS), silicone rubber, UV curable epoxy
    을 특징으로 하는 색 조절이 가능한 기계적 발광 복합필름.Mechanical light-emitting composite film, characterized in that the color control.
  6. 가해지는 기계적인 에너지에 의해 발광하는 적어도 2개 이상의 응력발광 재료와, 상기 응력발광 재료에 외부에서 가해지는 기계적인 에너지를 전달하는 응력전달 재료의 혼합물로 구성되는 기계적 발광 복합필름에서 색 조절하는 방법에 있어서,A method for color control in a mechanically luminescent composite film comprising a mixture of at least two stress luminescent materials that emit light by mechanical energy applied and a stress transfer material that delivers mechanical energy applied externally to the stress luminescent material. To
    상기 적어도 2개 이상의 응력발광 재료 중 제1 응력발광 재료의 제1 발광 스펙트럼과 제2 응력발광 재료의 제2 발광 스펙트럼은 서로 상이한 것이되,Among the at least two stress luminescent materials, the first luminescence spectrum of the first stress luminescent material and the second luminescence spectrum of the second stress luminescent material are different from each other,
    상기 제1 응력발광 재료와 상기 제2 응력발광 재료의 혼합비를 변경하는 단계를 포함하는 것Changing a mixing ratio of the first stress luminescent material and the second stress luminescent material
    을 특징으로 하는 기계적 발광 복합필름의 색 조절방법.Color control method of a mechanical light-emitting composite film characterized in that.
  7. 제6항에 있어서, The method of claim 6,
    상기 제1 응력발광 재료 또는 상기 제2 응력발광 재료에 가해지는 기계적인 에너지의 전달 주기를 변경하는 단계Changing a transfer period of mechanical energy applied to the first stress luminescent material or the second stress luminescent material
    를 더 포함하는 기계적 발광 복합필름의 색 조절방법.Color control method of a mechanical light-emitting composite film further comprising.
  8. 가해지는 기계적인 에너지에 의해 발광하는 적어도 2개 이상의 응력발광 재료와, 상기 응력발광 재료에 외부에서 가해지는 기계적인 에너지를 전달하는 응력전달 재료의 혼합물로 구성되는 기계적 발광 복합필름에서 색 조절하는 방법에 있어서,A method for color control in a mechanically luminescent composite film comprising a mixture of at least two stress luminescent materials that emit light by mechanical energy applied and a stress transfer material that delivers mechanical energy applied externally to the stress luminescent material. To
    상기 적어도 2개 이상의 응력발광 재료 중 제1 응력발광 재료의 제1 발광 스펙트럼과 제2 응력발광 재료의 제2 발광 스펙트럼은 서로 상이한 것이되,Among the at least two stress luminescent materials, the first luminescence spectrum of the first stress luminescent material and the second luminescence spectrum of the second stress luminescent material are different from each other,
    상기 제1 응력발광 재료 또는 상기 제2 응력발광 재료에 가해지는 기계적인 에너지의 전달 주기를 변경하는 단계를 포함하는 것Changing the transmission period of mechanical energy applied to the first or second stress luminescent material
    을 특징으로 하는 기계적 발광 복합필름의 색 조절방법. Color control method of a mechanical light-emitting composite film characterized in that.
  9. 가해지는 기계적인 에너지에 의해 발광하는 제1 응력발광 재료와 상기 제1 응력발광 재료와 상이한 발광 스펙트럼을 갖는 제2 응력발광 재료를 제공하는 단계;Providing a first stress luminescent material that emits light by mechanical energy applied and a second stress luminescent material having a different emission spectrum than the first stress luminescent material;
    상기 제1 응력발광 재료 및 상기 제2 응력발광 재료에 외부에서 가해지는 기계적인 에너지를 전달하는 응력전달 재료를 제공하여 복합필름을 형성하는 단계;Forming a composite film by providing a stress transfer material that transfers mechanical energy applied externally to the first stress luminescent material and the second stress luminescent material;
    상기 복합필름에 제1 주기로 응력을 발생시키는 단계; 및Generating stress in the composite film at a first cycle; And
    상기 제1 주기에서 제2 주기로 응력을 변경하는 단계Changing the stress from the first period to the second period
    를 포함하는 기계적 발광 복합필름의 색 조절방법. Color control method of a mechanical light-emitting composite film comprising a.
  10. 제9 항에 있어서, 상기 응력발광 재료를 제공하는 단계는,The method of claim 9, wherein providing the stress luminescent material comprises:
    상기 제1 응력발광 재료와 상기 제2 응력발광 재료의 혼합비를 변경하는 단계를 포함하는 것Changing a mixing ratio of the first stress luminescent material and the second stress luminescent material
    인 기계적 발광 복합필름의 색 조절방법.Color control method of phosphorescent mechanical light emitting composite film.
PCT/KR2013/007545 2013-04-18 2013-08-22 Mechanoluminescence colour-tunable complex film and method for tuning colour thereof WO2014171592A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0042870 2013-04-18
KR1020130042870A KR101501525B1 (en) 2013-04-18 2013-04-18 Color tunable mechanoluminescent composite film and method for tuning color of the same

Publications (1)

Publication Number Publication Date
WO2014171592A1 true WO2014171592A1 (en) 2014-10-23

Family

ID=51731513

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/007545 WO2014171592A1 (en) 2013-04-18 2013-08-22 Mechanoluminescence colour-tunable complex film and method for tuning colour thereof

Country Status (2)

Country Link
KR (1) KR101501525B1 (en)
WO (1) WO2014171592A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017162584A1 (en) * 2016-03-21 2017-09-28 Osram Oled Gmbh Optoelectronic component and method for operating an optoelectronic component
CN112414595A (en) * 2020-09-25 2021-02-26 河北大学 Self-powered visual flexible pressure sensor based on friction electroluminescence
CN114369367A (en) * 2022-01-20 2022-04-19 中国科学院兰州化学物理研究所 Temperature-stress dual-mode flexible sensing material and preparation method thereof

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101701408B1 (en) * 2015-03-09 2017-02-01 김준수 Block for road
KR101675736B1 (en) 2015-09-18 2016-11-14 재단법인대구경북과학기술원 electro-mechanoluminescent film and manufacturing method thereof
KR101717471B1 (en) * 2015-10-19 2017-03-17 한국생산기술연구원 Organic-inorganic composite korean paper light-emitting device and method for manufacturing thereof
KR101895681B1 (en) * 2016-10-21 2018-09-05 경북대학교 산학협력단 Strain measurement sensor capable displaying strain and method of manufacturing the same
CN114848922B (en) * 2022-04-19 2023-01-10 浙江大学 Composite conduit material doped with mechanoluminescence material and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030124383A1 (en) * 2001-11-30 2003-07-03 Morito Akiyama Mechanoluminescence material, producing method thereof, and usage thereof
US20040058150A1 (en) * 2001-02-06 2004-03-25 Geddes Norman J Triboluminescent materials in adhesive compositions for use in adhesive tape
JP2005300587A (en) * 2004-04-06 2005-10-27 Keiji Iimura Mechanical stress luminescent element
US20090286076A1 (en) * 2005-08-03 2009-11-19 Chao-Nan Xu Material to be measured for stress analysis, coating liquid for forming coating film layer on the material to be measured, and stress-induced luminescent structure
JP2010180280A (en) * 2009-02-03 2010-08-19 National Institute Of Advanced Industrial Science & Technology Multi-layer type stress-induced luminescent laminate

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8330373B2 (en) * 2010-02-15 2012-12-11 Abl Ip Holding Llc Phosphor-centric control of color characteristic of white light

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040058150A1 (en) * 2001-02-06 2004-03-25 Geddes Norman J Triboluminescent materials in adhesive compositions for use in adhesive tape
US20030124383A1 (en) * 2001-11-30 2003-07-03 Morito Akiyama Mechanoluminescence material, producing method thereof, and usage thereof
JP2005300587A (en) * 2004-04-06 2005-10-27 Keiji Iimura Mechanical stress luminescent element
US20090286076A1 (en) * 2005-08-03 2009-11-19 Chao-Nan Xu Material to be measured for stress analysis, coating liquid for forming coating film layer on the material to be measured, and stress-induced luminescent structure
JP2010180280A (en) * 2009-02-03 2010-08-19 National Institute Of Advanced Industrial Science & Technology Multi-layer type stress-induced luminescent laminate

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017162584A1 (en) * 2016-03-21 2017-09-28 Osram Oled Gmbh Optoelectronic component and method for operating an optoelectronic component
CN112414595A (en) * 2020-09-25 2021-02-26 河北大学 Self-powered visual flexible pressure sensor based on friction electroluminescence
CN114369367A (en) * 2022-01-20 2022-04-19 中国科学院兰州化学物理研究所 Temperature-stress dual-mode flexible sensing material and preparation method thereof
CN114369367B (en) * 2022-01-20 2022-09-02 中国科学院兰州化学物理研究所 Temperature-stress dual-mode flexible sensing material and preparation method thereof

Also Published As

Publication number Publication date
KR101501525B1 (en) 2015-03-11
KR20140125116A (en) 2014-10-28

Similar Documents

Publication Publication Date Title
WO2014171592A1 (en) Mechanoluminescence colour-tunable complex film and method for tuning colour thereof
CN1706227B (en) Color electroluminescent displays
CN105096749B (en) A kind of display device and preparation method thereof
CN105242449B (en) The preparation method of quantum dot color membrane substrates and quantum dot color membrane substrates
Jeong et al. Bright, wind-driven white mechanoluminescence from zinc sulphide microparticles embedded in a polydimethylsiloxane elastomer
CN103525406B (en) A kind of laminated film and preparation method thereof, sealed cell and optoelectronic device
ATE534719T1 (en) SILICATE-CONTAINING PLUMINUM SUBSTANCE, ITS PRODUCTION AND LIGHTING DEVICE USING THEREOF
CN106200103A (en) Color membrane substrates and manufacture method, display floater and display device
KR20140125907A (en) Mechanically-driven light emitting composite film and method for fabricating the same
CN102336928B (en) Flexible, environmentally-friendly, transparent and adjustable-illuminant-color film material and preparation method thereof
KR101727658B1 (en) Mechanoluminescent Display Apparatus
JP2013519226A5 (en)
WO2013144795A1 (en) Lighting device comprising at least two organic luminescent materials.
US9772069B2 (en) Electro-mechanoluminescent film and method of manufacturing the same
CN113372913B (en) Stress luminescent elastomer and preparation method and application thereof
CN106029806A (en) Sealing tape, phosphor sheet, lighting equipment, liquid crystal display, method for manufacturing phosphor sheet, and sealing method
CN108467731B (en) Short-wavelength blue high-brightness stress luminescent material and preparation method thereof
KR102156542B1 (en) Manufacturing method of polymer composite material for mechano luminescence lighting and the composite material thereof
CN107325816A (en) A kind of red mechanical light emitting flexible material of high brightness
KR101120750B1 (en) White luminescent paint, a luminescent sheet having a painted figure and preparing process thereof
CN109859629A (en) A kind of flexible LED display film
CN103926745A (en) Display unit and manufacturing method thereof
KR101751736B1 (en) Functional particle layer and preparing method thereof
WO2018004018A1 (en) Light-emitting device package
WO2015190688A1 (en) Oxynitride phosphor with improved reliability, method for preparing same, and white light emitting element comprising same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13882138

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13882138

Country of ref document: EP

Kind code of ref document: A1