WO2014171545A1 - In-Ga-Zn COMPOSITE OXIDE SINTERED COMPACT AND METHOD FOR MANUFACTURING SAME - Google Patents

In-Ga-Zn COMPOSITE OXIDE SINTERED COMPACT AND METHOD FOR MANUFACTURING SAME Download PDF

Info

Publication number
WO2014171545A1
WO2014171545A1 PCT/JP2014/061098 JP2014061098W WO2014171545A1 WO 2014171545 A1 WO2014171545 A1 WO 2014171545A1 JP 2014061098 W JP2014061098 W JP 2014061098W WO 2014171545 A1 WO2014171545 A1 WO 2014171545A1
Authority
WO
WIPO (PCT)
Prior art keywords
sintered body
powder
capsule
density
mixed powder
Prior art date
Application number
PCT/JP2014/061098
Other languages
French (fr)
Japanese (ja)
Inventor
邦彦 中田
国孝 藤吉
Original Assignee
住友化学株式会社
福岡県
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社, 福岡県 filed Critical 住友化学株式会社
Priority to JP2015512542A priority Critical patent/JPWO2014171545A1/en
Publication of WO2014171545A1 publication Critical patent/WO2014171545A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/638Removal thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • C04B35/6455Hot isostatic pressing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/549Particle size related information the particle size being expressed by crystallite size or primary particle size
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/608Green bodies or pre-forms with well-defined density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density

Definitions

  • the present invention relates to an In—Ga—Zn-based composite oxide sintered body, a manufacturing method thereof, and a target.
  • amorphous silicon films have been mainly used as semiconductor films.
  • an oxide semiconductor film made of a metal composite oxide has high mobility and visible light transmittance, and is mainly composed of In—Ga—Zn-based composite oxide (IGZO).
  • IGZO In—Ga—Zn-based composite oxide
  • the amorphous transparent oxide semiconductor film has the advantage of having higher carrier mobility than the amorphous silicon film, and has attracted attention (Patent Documents 1 to 3).
  • a sputtering method is most suitable because it is excellent in mass productivity.
  • the IGZO target used for this sputtering method needs to have a high density. Further, the IGZO target is required to have a low resistance and uniform enough to suppress the occurrence of abnormal discharge even when used in DC sputtering. Therefore, the IGZO target is required to have a high relative density, and in particular, the relative density is required to be close to 100%.
  • the relative density refers to the ratio of the density of the sintered body actually obtained to the theoretical density of the sintered body.
  • Patent Document 4 discloses an IGZO sintered body having a relative density of 99.8%
  • Patent Document 5 discloses an IGZO sintered body having a relative density of 100%.
  • the manufacturing method of the IGZO sintered body is mixing, pulverizing, granulating, forming, sintering and (reducing) the raw material powder of the IGZO sintered body.
  • molding, sintering, and (reduction) is required.
  • sintering is performed under normal pressure sintering in an oxidizing atmosphere such as an air atmosphere or an oxygen atmosphere, or sintering under an oxygen pressure.
  • the molding process can be omitted if pressure sintering such as hot pressing is employed.
  • pressure sintering such as hot pressing
  • metal In and metal Ga which are constituent components of the IGZO sintered body, are eluted by the reducing action during the hot pressing process.
  • hot press dies and punches are usually made of carbon and thus have a reducing action.
  • the bulk resistance value of the obtained IGZO sintered body was as high as 10 ⁇ 3 ⁇ ⁇ cm or more. For this reason, there is a demand for a method of producing an IGZO sintered body that is uniform, high density, and low resistance (less than 10 ⁇ 3 ⁇ ⁇ cm) without performing capsule-free HIP treatment.
  • the most important point for obtaining a uniform and high-density IGZO sintered body without producing a capsule-free HIP process is to obtain a uniform and high-density IGZO sintered body before entering the sintering process.
  • the zinc oxide powder, indium oxide powder, and gallium oxide powder used as the raw material powders (so-called nanoparticles) whose primary particle size is atomized to a level of several tens to 200 nm are used.
  • JP 2006-165527 A JP 2006-165528 A JP 20061655531 International Publication No. 2010/140548 JP 2010-202450 A JP 2008-280216 A JP 2011-106002 A
  • An object of the present invention is to provide an IGZO sintered body manufacturing method, an IGZO sintered body, and a target that can be manufactured at a low cost and that can achieve a high relative density of 97 to 100%.
  • the present inventors pressurized mixed powder obtained by mixing indium oxide powder, gallium oxide powder and zinc oxide powder having a primary particle size of around 1 ⁇ m at a predetermined ratio. Molding, obtaining a molded body, filling this molded body into a capsule container, setting the filling rate of the mixed powder to 50% or more, and performing capsule HIP treatment, thereby suppressing volatilization of indium and zinc, and a sintered body
  • the composition of the mixed powder which is a raw material, and the intended composition of the sintered body
  • the relative density is 97 to 100% at a low cost
  • the bulk resistance value is less than 1.0 ⁇ 10 ⁇ 3 ⁇ ⁇ cm
  • the present invention has the following configuration.
  • Step (a) of pressure-molding a mixed powder containing indium, gallium, zinc, oxygen and satisfying the following mixing conditions and having a primary particle size of 0.6 ⁇ m or more to form a molded body The step of filling the capsule container with the molded body and performing capsule hot isostatic pressing so that the filling ratio of the mixed powder into the capsule container calculated from the following formula is 50% or more
  • step (a) indium oxide powder, gallium oxide powder and zinc oxide powder are mixed to obtain a mixed powder. .
  • step (a) the mixed powder is pressure-molded so that the density of the molded body is 3.19 g / cm 3 or more.
  • the mixed powder is pressure-molded so that the density of the molded body is 3.25 g / cm 3 or more.
  • a method for producing a knot In the step (a), the mixed powder is pressure-molded so that the density of the molded body is 3.25 g / cm 3 or more.
  • step (9) Production of an In—Ga—Zn-based composite oxide sintered body according to any one of (3) to (8), wherein in step (a), the mixed powder contains a binder and is pressure-molded. Method. (10) In step (b), the molded body is filled into a capsule container, the filling rate of the mixed powder is 50% or more, debinding treatment and vacuum degassing treatment of the capsule container are performed at the same time, and then the capsule is hot, etc. The method for producing an In—Ga—Zn-based composite oxide sintered body according to (9), wherein the pressure treatment is performed.
  • step (b) In-Ga— according to any one of the above (3) to (10), wherein the molded body is subjected to capsule hot isostatic pressing at a sintering temperature of 1000 to 1400 ° C. in step (b).
  • a method for producing a Zn-based composite oxide sintered body (12) The In—Ga—Zn according to any one of the above (3) to (11), wherein in step (b), an inert gas is used as a pressure medium and the molded body is subjected to capsule hot isostatic pressing. Of producing a composite oxide of a composite oxide.
  • (13) The In—Ga—Zn-based composite according to any one of (3) to (12), wherein in step (b), the capsule is subjected to hot isostatic pressing with a pressing force of 50 MPa or more. Manufacturing method of oxide sinter.
  • an IGZO sintered body having a relative density of 97 to 100% can be produced with a simple and few manufacturing process, high productivity and low cost. Further, according to the present invention, volatilization of indium and zinc is suppressed, and there is almost no deviation between the composition of the mixed powder that is a raw material of the IGZO sintered body and the target composition of the IGZO sintered body. Furthermore, since it is not necessary to use mixed powder that has been pulverized to nanoparticles (several tens of nm to 200 nm), handling of the mixed powder is easy, and there is no problem with the safety of nanomaterials.
  • this manufacturing method of the present invention it is possible to provide an IGZO target for sputtering having a relative density of 97 to 100% with no composition deviation at low cost.
  • this target for sputtering film formation abnormalities such as arcing can be obtained. No discharge, no long-term continuous film formation, nodules on the surface, no adverse effect, good transparency that becomes active layer part of thin film transistor in active matrix driving liquid crystal display element and organic EL display element A semiconductor IGZO film can be manufactured.
  • the manufacturing method of the IGZO sintered body of the present invention includes the step (a) of pressing a predetermined mixed powder to form a molded body, and filling the molded body into a capsule container, and hot isostatic pressing of the capsule (Capsule HIP) process (b). This makes it possible to set the relative density of the IGZO sintered body to 97 to 100%.
  • this manufacturing process is a conventional manufacturing process 1 (a series of manufacturing steps of mixing, calcining, coarse pulverization, fine pulverization, granulation, molding, sintering, and capsule-free HIP treatment) or a conventional manufacturing process 2
  • a conventional manufacturing process 1 a series of manufacturing steps of mixing, pulverization, granulation, calcination, pulverization, pulverization, molding, sintering, and capsule-free HIP treatment
  • the number of steps is simple.
  • the primary particle size of the mixed powder is 0.6 ⁇ m or more, which is generally easy to handle for manufacturing a normal oxide sintered body, there is no problem of safety of the nanomaterial, and it is large. There is no need to take any safety measures. Therefore, it can be manufactured at low cost.
  • the relative density is a ratio of the density of the sintered body actually obtained to the theoretical density of the sintered body, and is obtained from the following formula.
  • Relative density (%) (density of sintered body / theoretical density of sintered body) ⁇ 100
  • the density of the sintered body in the above formula can be measured by the evaluation method described in the examples.
  • the theoretical density of the sintered body in the above formula is, in principle, a value obtained by multiplying the single-component density of each metal oxide that is the raw material of the sintered body by the mixing weight ratio of each metal oxide powder and taking the sum, For example, when the sintered body is made of indium oxide, gallium oxide, and zinc oxide, it can be obtained from the following formula.
  • Theoretical density of sintered body (Indium oxide simple substance density ⁇ mixing weight ratio) + (Gallium oxide simple substance density ⁇ mixing weight ratio) + (Zinc oxide simple substance density ⁇ mixing weight ratio)
  • the mixed powder contains indium, gallium, zinc and oxygen. Indium, gallium, zinc and oxygen are typically 99% or more of the total atoms constituting the mixed powder.
  • the mixed powder can be obtained by mixing each raw material powder at a predetermined ratio.
  • the raw material powder is composed of indium-containing powder, gallium-containing powder, and zinc-containing powder.
  • the purity of these raw material powders is usually 2N (99% by mass) or more, preferably 3N (99.9% by mass) or more, and particularly preferably 4N (99.99% by mass) or more. If the purity is lower than 2N, the thin film characteristics may be deteriorated during sputtering film formation.
  • the primary particle size of each raw material powder is generally 0.6 ⁇ m or more, which is generally easy to handle, and preferably 1 to 5 ⁇ m or less. If the primary particle size of each raw material powder is 0.6 ⁇ m or more, the primary particle size of the mixed powder is 0.6 ⁇ m or more.
  • the primary particle size refers to the 50% cumulative volume fraction in the particle size distribution measured by the laser diffraction / scattering method (hereinafter the same).
  • Indium-containing powder examples of the indium-containing powder include indium oxide powder and indium hydroxide powder, and indium oxide powder is preferable because it is easily sintered and by-products remain difficult to remain.
  • Indium oxide generally has a bixbite structure, and may have a structure in which an indium oxide powder having a bixbite structure is preliminarily calcined in a reducing atmosphere to cause oxygen deficiency.
  • the tap density of the indium oxide powder before molding differs from the primary particle size and particle size distribution, but is often 1.95 g / cm 3 or less.
  • the indium oxide powder preferably has no calcining history.
  • the tap density is based on JIS K5101, when a fixed volume container is filled with powder by natural dropping, and then the container is further subjected to a constant vibration (tapping) and the volume of the powder disappears. Is defined as the mass of the powder per unit volume. Note that the powder mass per unit volume when the powder is filled into the container of a certain volume by natural dropping and the inner volume is the volume is called the bulk density, and the tap density is generally 1.1% of the bulk density. The value is about 1.3 times.
  • gallium-containing powder examples include gallium oxide powder and gallium hydroxide powder.
  • Gallium oxide may have a crystal structure of ⁇ -Ga 2 O 3 or ⁇ -Ga 2 O 3 . Alternatively, the structure may be preliminarily calcined in a reducing atmosphere and oxygen deficient.
  • the tap density of the gallium oxide powder before molding differs from the primary particle size and particle size distribution, but is often 1.45 g / cm 3 or less.
  • the gallium oxide powder preferably has no calcining history.
  • zinc-containing powder examples include zinc oxide powder and zinc hydroxide powder.
  • the zinc oxide powder a powder of ZnO or the like having a wurtzite structure is usually used, and further, this ZnO may be preliminarily calcined in a reducing atmosphere to contain oxygen deficiency. Further, the BET specific surface area is not particularly limited.
  • the tap density of the zinc oxide powder before molding differs from the primary particle size and particle size distribution, but is often 1.12 g / cm 3 or less.
  • the zinc oxide powder preferably has no calcining history.
  • the zinc hydroxide powder include amorphous Zn (OH) 2 powder and Zn (OH) 2 powder having a crystal structure.
  • the indium-containing powder, the gallium-containing powder, and the zinc-containing powder are uniformly mixed so as to satisfy the following mixing condition. Thereby, it can be set as the IGZO sintered compact of the composition mentioned later.
  • Mixing conditions: metal atomic ratio In: Ga: Zn x: y: z, x / (x + y) is 0.2 to 0.8, and z / (x + y + z) is 0.1 to 0.5 Satisfy a relationship.
  • the weight ratio of indium oxide powder: gallium oxide powder: zinc oxide powder is approximately 44.2: 29.9: 25.9 (moles).
  • the mixing method is not particularly limited as long as it can be uniformly mixed, and dry mixing or wet mixing (ball mill or the like) is performed using a super mixer, an intensive mixer, a Henschel mixer, an automatic mortar, or the like.
  • wet mixing for example, the mixed powder and an aqueous solvent are mixed, and the resulting slurry is sufficiently mixed by a wet ball mill using a hard ZrO 2 ball or a vibration mill, followed by solid-liquid separation, drying, and granulation.
  • the mixing time when a wet ball mill, vibration mill or bead mill is used is preferably about 12 to 78 hours. Known methods may be employed for solid-liquid separation, drying, and granulation.
  • the aqueous solvent contains water as a main component and may be water alone, or may be a mixture of water and alcohol such as methanol or ethanol. If uniform mixing is insufficient, each component segregates in the manufactured target, and the resistance distribution of the target becomes non-uniform. That is, a high resistance region and a low resistance region exist depending on the part of the target, which causes abnormal discharge such as arcing due to charging in the high resistance region during sputtering film formation.
  • an organic binder may be mixed with the mixed powder.
  • the organic binder is used to improve handling properties, and is particularly necessary when producing a large sintered body having a side of 300 mm or more or a diameter of 300 mm or more.
  • the amount of the organic binder added is preferably 0.5 to 10 parts by weight, more preferably 1 to 5 parts by weight with respect to 100 parts by weight of the mixed powder.
  • the raw material powder and the organic binder are mixed to form a mixed powder, and pressure molded to form a pressure molded body.
  • a binder removal process (degreasing) is performed.
  • This debinding treatment may be performed, for example, after the pressure molded body is filled in the capsule container and before the capsule container is vacuum degassed, or after the pressure molded body is filled in the capsule container, the vacuum degassing is performed.
  • the process may be performed simultaneously with the treatment, the latter is preferable because a process only for degreasing is not necessary in producing the IGZO sintered body.
  • an IGZO sintered body can be produced in the same manner as when no organic binder is used, except that the organic binder is mixed and the binder removal treatment is performed. it can.
  • binders can be used as the organic binder.
  • butyral resin polyvinyl alcohol, acrylic resin, poly ⁇ -methylstyrene, ethyl cellulose, polymethyl lactate, (poly) vinyl butyral, (poly) vinyl acetate, (poly ) Vinyl alcohol, polyethylene, polystyrene, polybutadiene, (poly) vinyl pyrrolidone, polyamide, polyethylene oxide, polypropylene oxide, polyacrylamide, polymethacrylate and various acrylic polymers and their copolymers and terpolymers, methylcellulose, ethylcellulose, hydroxyethylcellulose, nitro Examples thereof include resins such as cellulose and derivatives thereof.
  • the method of mixing the organic binder is not particularly limited, but for example, a raw material powder, an organic binder, a solvent capable of dissolving the organic binder, and a solvent to form a slurry are obtained, and the obtained slurry Can be mixed by wet mixing, followed by a known drying process.
  • inert in an air atmosphere Heating may be performed at least at 400 ° C. or more and about 500 to 700 ° C. in an arbitrary atmosphere such as an atmosphere.
  • the upper lid In order to remove the adsorbed moisture, the upper lid is welded and heated to about 450 to 700 ° C., and at the same time, vacuum degassing is performed until the degree of vacuum in the capsule container is 1.33 ⁇ 10 ⁇ 2 Pa or less.
  • the heat degassing process and the debinding process can be performed simultaneously, and the debinding process can be performed without increasing the manufacturing process without increasing the manufacturing process because the process only for degreasing is not required.
  • Large sintered bodies 300 mm square, 300 mm ⁇ or more) can be produced without particularly increasing the number of processes.
  • a uniaxial press In order to press-mold the mixed powder, for example, a uniaxial press, a cold isostatic press (CIP), or the like can be used. When molding, a uniaxial press and a cold isostatic press (CIP) may be used in combination.
  • CIP cold isostatic press
  • the pressing pressure when forming the mixed powder is at least 30 MPa or more and less than 100 MPa, more preferably 40 MPa or more. If it is less than 30 MPa, there is a possibility that a stable press-molded product cannot be produced. If it is 100 MPa or more, the molded product may be brittle and easily cracked.
  • the density of the molded body 3.19 g / cm 3 or more it is preferably 40 to 90 MPa, more preferably 50 to 80 MPa.
  • CIP cold isostatic pressing
  • it is at least 50 MPa or more and less than 300 MPa, more preferably 100 MPa or more. If it is less than 50 MPa, there is a possibility that a stable press-molded product cannot be produced. If the pressure is 300 MPa or more, the molded body may be easily crushed.
  • the density of the molded body 3.19 g / cm 3 or more it is preferably 100 to 250 MPa, more preferably 150 to 200 MPa.
  • the shape of the molded body is not particularly limited, but a cylindrical shape and a rectangular shape are preferable in order to apply pressure evenly and contract evenly during capsule HIP processing.
  • the size of the molded body is not particularly limited, and is preferably a size corresponding to the size of the capsule container filled with the molded body.
  • the density of the molded body is preferably 50% or more of the theoretical density value of the sintered body made of the mixed powder.
  • it is preferably 3.19 g / cm 3 or more, more preferably 3.8 to 6.3 g / cm 3 .
  • the density of the molded body is preferably 3.25 g / cm 3 or more, more preferably 3.8 to 6.4 g / cm 3 . If the density of the molded body is within the above range, the molded body can be filled into the capsule container without losing its shape, so that the filling rate of the mixed powder described later can be increased to 50% or more.
  • the shrinkage ratio of the capsule container by the treatment can be 50% or less.
  • the density of the molded body can be determined from the volume calculated from the measured value and the measured weight of the molded body by directly measuring the length of the molded body. For example, if the shape of the molded body is a cylindrical shape, the diameter and height of the molded body are directly measured to determine the volume of the cylindrical molded body, the weight is measured, and the density is calculated from the weight and volume. Can be calculated. In addition, when the molded body contains an organic binder and the binder removal treatment of the molded body is performed simultaneously with the vacuum deaeration process of the capsule container, the density of the molded body is a value obtained by subtracting the weight of the organic binder from the measured weight.
  • the weight of the molded body can be obtained from the weight of the molded body and the volume calculated from the measured value.
  • the density of the molded body after the debinding process is the density of the molded body described above. It is preferable to be within the preferable range, and can be obtained in the same manner as the density of the molded body described above.
  • Step (b)> the filling rate of the mixed powder calculated from the formula: (packing density of the mixed powder into the capsule container / theoretical density of the sintered body) ⁇ 100 is 50% or more.
  • the theoretical density of the sintered body in the above formula can be obtained in the same manner as the theoretical density of the sintered body in the above formula for calculating the relative density.
  • the filling density of the mixed powder in the above formula is the mass of the molded body relative to the internal volume of the capsule container when the molded body is filled in the capsule container. The smaller the difference between the size of the molded body and the size in the capsule container, the closer the density value of the mixed powder is to the density value of the molded body. If the molded body does not fit in the capsule container because the size of the molded body is larger than the size of the capsule container, the molded body may be placed in the capsule container after the size is adjusted by mechanical processing such as polishing.
  • the mass of the molded body when determining the packing density of the mixed powder is the measured weight It is the value which deducted the weight of the organic binder from.
  • the mass of the molded body when determining the packing density of the mixed powder is the desorption. It is the weight of the molded body measured after the binder treatment.
  • the shrinkage ratio of the capsule container by the capsule HIP method can be reduced to 50% or less. Therefore, the mixed powder can be pressure-sintered without destroying the capsule container, and a high-density IGZO sintered body in which volatilization of indium and zinc derived from the mixed powder is suppressed can be obtained.
  • Filling the molded body into the capsule container means producing a pressure molded body by CIP, uniaxial press or the like, and transferring all the molded body into the capsule container so that the molded body does not collapse (for example, carefully Use a spatula shape).
  • the molded body contains the above-described organic binder, even a large molded body can be transferred into the capsule container without breaking the shape.
  • the filling rate of the mixed powder can be 50% or more, two or more molded bodies may be filled in the capsule container.
  • the molded body tends to collapse. Therefore, the powder to be filled directly into the capsule container is placed and uniaxial press molding is performed so that the filling ratio of the mixed powder is 50% or more. May be produced.
  • Capsule container As the material of the capsule container, any material can be used as long as the molded body can be sufficiently vacuum-sealed and can be sufficiently deformed at the sintering temperature in the capsule HIP processing but does not have a risk of bursting. For example, iron, stainless steel, aluminum, Stainless steel, tantalum, niobium, copper, nickel, etc. are used. Moreover, a capsule container can be properly used according to the sintering temperature of the capsule HIP process. For example, when the sintering temperature of the capsule HIP treatment is in a low temperature region (1000 ° C. or lower), a capsule container made of copper, nickel, or aluminum can be used. When the sintering temperature is 1000 ° C.
  • iron and stainless capsule containers are used. Tantalum and niobium capsule containers are used in the higher temperature range than the sintering temperature. Depending on the sintering temperature, a capsule container of aluminum, iron or stainless steel is preferable because of its low cost.
  • the shape and dimensions of the capsule container are not particularly limited, and may be matched to a desired shape of the sintered body.
  • a cylindrical shape, a rectangular shape, or the like can be used.
  • the size of the capsule container may be larger or smaller than the size of the molded body as long as the filling ratio of the mixed powder can be 50% or more when the molded body is filled in the capsule container. . If it is a cylindrical shape or a rectangular shape, the uniformity (relative density, composition) of the IGZO sintered body is maintained.
  • the wall thickness of the capsule container is preferably 1.5 mm to 5 mm. Within this range, the capsule container can be easily softened and deformed, and can shrink following the sintered body as the sintering reaction proceeds.
  • a vacuum deaeration process is performed in which the molded body is filled in a capsule container and the capsule container is evacuated. By this evacuation, the gas and adsorbed moisture adhering to the mixed powder can be removed.
  • the heating temperature of the capsule container when evacuating is preferably 100 ° C. or higher and 600 ° C. or lower.
  • the heating temperature of the capsule container when evacuating is about 450 to 700 ° C. as described above.
  • the pressure in the capsule container is reduced to 1.33 ⁇ 10 ⁇ 2 Pa or less while heating the capsule container. If the pressure in the capsule container after evacuation exceeds 1.33 ⁇ 10 -2 Pa, the gas and adsorbed moisture adhering to the mixed powder will not be sufficiently removed. There is a risk that no union is obtained.
  • Capsule HIP processing is performed by placing the vacuum-sealed capsule container in a HIP apparatus.
  • the mixed powder (molded body) inside the capsule container is sintered by applying pressure to the capsule container itself using an inert gas at high temperature and high pressure as a pressure medium.
  • the capsule container itself is oxidized, so that the mechanical strength of the capsule container itself is greatly reduced, and the capsule container may burst during the capsule HIP process.
  • a high density IGZO sintered body cannot be obtained. Since the mixed powder is a closed space confined in the capsule container by vacuum sealing, there is no volatilization of indium and zinc, and no composition shift occurs.
  • the capsule HIP treatment conditions may be any conditions as long as the relative density of the sintered body can be 97 to 100%.
  • the capsule HIP treatment conditions may be set as follows.
  • As the gas as the pressure medium an inert gas such as nitrogen or argon is preferably used.
  • the pressure applied to the capsule container is preferably 50 MPa or more.
  • the sintering time in the capsule HIP treatment is preferably 1 hour or longer.
  • the sintering temperature is 1000 to 1400 ° C, more preferably 1100 to 1300 ° C. If the sintering temperature in the capsule HIP treatment is within the above range, the material of the capsule container is in a temperature region where the material is softened and deformed.
  • the pressure can be applied to 100%.
  • the sintering temperature is preferably 1000 ° C. to 1400 ° C. and the pressure is 50 MPa or more for 1 hour or more. Note that when the temperature is less than 1000 ° C. and the pressure is less than 50 MPa under the capsule HIP processing conditions, the relative density of the obtained sintered body is as low as less than 90%.
  • the In—Ga—Zn-based composite oxide sintered body (IGZO sintered body) of the present invention contains indium (In), gallium (Ga), zinc (Zn), and oxygen (O) as constituent elements, and is typically In addition, 99% or more of the atoms are composed of indium, gallium, zinc, and oxygen, which can be expressed by the following formula.
  • the IGZO sintered body of the present invention does not contain the impurity metal element M (Sn, Zr, Ti, Mo, Si, Cr, W, Ge, V, Mn). That is, the content [M / (In + Ga + Zn + M): weight ratio] of the impurity metal element M in the IGZO sintered body of the present invention is less than 10 ppm.
  • the content of the impurity metal element M in the IGZO sintered body can be measured by the evaluation method described in the examples.
  • the carrier concentration of the film obtained by sputtering film formation is too high, and the thin film transistor having the film as an active layer
  • the on / off ratio which is an important indicator of characteristics, is deteriorated.
  • the carrier concentration of the film obtained by sputtering film formation becomes too low, and the mobility of the film also decreases. This is not preferable in terms of device characteristics.
  • the atomic ratio z / (x + y + z) of zinc with respect to the total amount of indium, gallium and zinc exceeds 0.5, the stability of the film obtained by sputter deposition, moisture resistance, etc. Will deteriorate.
  • the atomic ratio z / (x + y + z) of zinc is less than 0.1, the amorphousness of the film obtained by sputtering film formation becomes weak and crystallization becomes easy.
  • the crystallized film has a large in-plane variation in film characteristics, resulting in a large variation in element characteristics.
  • the decrease in the atomic ratio z / (x + y + z) of zinc is an increase in the ratio of the total amount of In and Ga to the total amount of indium, gallium and zinc.
  • These two types of metals are compared with zinc metal. Since it is expensive, the cost of the IGZO sintered body is increased.
  • “a” describes the case where the stoichiometric composition coincides with the stoichiometric composition, but the oxygen amount in the IGZO sintered body deviates somewhat from the stoichiometric composition and is somewhat oxygen deficient. Therefore, the present invention includes such an IGZO sintered body having oxygen vacancies.
  • the bulk resistance value of the obtained sintered body is preferably less than 1.0 ⁇ 10 ⁇ 3 ⁇ ⁇ cm, more preferably 8 ⁇ 10 ⁇ 4 ⁇ ⁇ cm or less, and further preferably 7 ⁇ 10 ⁇ 4 ⁇ ⁇ cm. Since it is a sintered body excellent in electrical conductivity, it is particularly suitable as a target in the DC sputtering method, and it is possible to efficiently form a uniform amorphous semiconductor film stably and at high speed without abnormal discharge. it can.
  • the bulk resistance value of the IGZO sintered body can be measured by the evaluation method described in the examples.
  • the target of the present invention is used for film formation by sputtering, ion plating, pulsed laser deposition (PLD) or electron beam (EB) vapor deposition, and is an IGZO sintered body obtained by the manufacturing method of the present invention. Is processed. Since the target of the present invention has a high density and is usually 97% or more, preferably 99% or more, and more preferably 100% as a relative density, abnormal deposition hardly occurs when forming a film by sputtering, and the film is stably formed. can do.
  • the solid material used in the film formation may be referred to as “tablet”, in the present invention, these are referred to as “target”.
  • the relative density of the IGZO sintered body is usually 97% or more, preferably 99% or more, more preferably 100%.
  • the frequency of nodule generation and the frequency of abnormal discharge can be dramatically reduced, the sputter production efficiency is improved, and the film properties obtained are excellent.
  • the target of the present invention is formed by processing the above-described IGZO sintered body into a predetermined shape and a predetermined dimension.
  • the target is 152.4 ⁇ ⁇ 5 tmm by performing cylindrical grinding on the outer periphery of the IGZO sintered body obtained as described above and surface grinding on the surface side.
  • an indium alloy or the like can be bonded to a copper backing plate as a bonding metal to obtain a sputtering target.
  • a processing method in particular is not restrict
  • the target of the present invention can be obtained by subjecting the IGZO sintered body to surface grinding or the like, and then cutting it to a predetermined dimension and then attaching it to a support base. Further, if necessary, a plurality of IGZO sintered bodies may be divided into divided shapes to form a large-area target (composite target).
  • Transparent semiconductor film By sputtering an object such as a substrate using the IGZO sintered body or the target of the present invention, a transparent semiconductor film having favorable characteristics as a channel layer of a thin film transistor exhibiting stable semiconductor characteristics can be formed.
  • the film thickness of the transparent semiconductor film is preferably 45 nm or less in terms of a semiconductor having a high mobility and a low S value.
  • the sputtering method examples include a DC sputtering method, an AC sputtering method, an RF magnetron sputtering method, an electron beam evaporation method, an ion plating method, and the like, and a DC sputtering method is preferable.
  • the pressure in the chamber during sputtering is usually 0.1 to 2.0 MPa, and preferably 0.3 to 0.8 MPa.
  • Closing electric power per unit area of the target surface during sputtering if for example, the DC sputtering method is generally 0.5 ⁇ 6.0W / cm 2, is preferably 1.0 ⁇ 5.0W / cm 2 .
  • Examples of the carrier gas at the time of sputtering include oxygen, helium, argon, xenon, krypton, and the like, and preferably a mixed gas of argon and oxygen.
  • As the substrate glass, resin (PET, PES, or the like) can be used.
  • the film thickness at the time of film formation is preferably 1 to 45 nm, more preferably 3 to 30 nm, and particularly preferably 5 to 20 nm.
  • Example 1 Indium oxide powder (In 2 O 3 , manufactured by Soekawa Richemical Co., Ltd., primary particle size: 1 ⁇ m), gallium oxide powder (Ga 2 O 3 , manufactured by Yamanaka Futec Co., Ltd., primary particle size: 1.5 ⁇ m), Zinc oxide powder (ZnO, manufactured by Hakusuitec Co., Ltd., primary particle size: 1.5 ⁇ m) is weighed so that the atomic ratio of indium element, gallium element and zinc element is 1: 1: 1, and an automatic mortar For 1 hour to obtain a mixed powder.
  • Indium oxide powder In 2 O 3 , manufactured by Soekawa Richemical Co., Ltd., primary particle size: 1 ⁇ m
  • gallium oxide powder Ga 2 O 3 , manufactured by Yamanaka Futec Co., Ltd., primary particle size: 1.5 ⁇ m
  • Zinc oxide powder Zinc oxide powder (ZnO, manufactured by Hakusuitec Co., Ltd., primary particle size: 1.5 ⁇ m) is weighed so that the atomic ratio
  • this mixed powder was press-molded by applying a pressure of 300 MPa with a cold isostatic press and cut to obtain a cylindrical molded body having a diameter of 115 mm and a height of 40 mm.
  • the density of the cylindrical molded body was 3.61 g / cm 3 .
  • the density of the molded body was determined by directly measuring the molded body and calculating the volume calculated from the measured diameter and height, and the measured weight of the molded body.
  • IGZO sintered body ⁇ Manufacture of IGZO sintered body>
  • the cylindrical molded body is transferred to a capsule container (outer diameter: 121 mm, inner diameter: 115 mm, height inside the container: 40 mm) made of stainless steel (SUS304) so that the molded body does not collapse, and is placed in the capsule container.
  • the packing density of the mixed powder was 3.61 g / cm 3
  • the theoretical density of the sintered body was 6.379 g / cm 3
  • the packing ratio of the mixed powder was 56.6. %.
  • the packing density and the theoretical density of the sintered body were obtained from the following formula.
  • the exhaust pipe was welded to the upper lid, and then the upper lid and the capsule container were welded.
  • a He leak test was performed. The amount of leakage at this time was 1 ⁇ 10 ⁇ 9 Pa ⁇ m 3 / sec or less.
  • the sealed capsule container was inserted into a HIP processing apparatus (manufactured by Kobe Steel, Ltd.) and subjected to capsule HIP processing.
  • the capsule HIP treatment was performed under a treatment condition of 4 hours using Ar gas (purity: 99.9%) at a temperature of 1220 ° C. and a pressure of 100 MPa as a pressure medium.
  • the capsule container was removed to obtain a cylindrical IGZO sintered body (1).
  • the size of the sintered body (1) was directly measured, it was 95.1 mm in diameter and 33.1 mm in height.
  • the relative density of this IGZO sintered body (1) was 100%, and the bulk resistance value of the sintered body was 6.2 ⁇ 10 ⁇ 4 ⁇ ⁇ cm. Further, when the IGZO sintered body (1) was observed with an electron microscope, it was a dense sintered body with almost no voids. The relative density was determined as shown in the following formula.
  • Relative density 100 ⁇ [(density of sintered body) / (theoretical density of sintered body)]
  • the theoretical density of the sintered body was the theoretical density of InGaZnO 4 (JCPDS card number: 381104) described in the JCPDS card.
  • the density of the sintered body was measured by a length measurement method.
  • the bulk resistance value was measured by a four-terminal four-probe method using a resistivity meter (“LORESTA-GP, MCP-T610” manufactured by Mitsubishi Chemical Corporation). Specifically, four needle-like electrodes are placed on a straight line on the IGZO sintered body (1), and a constant current is passed between the outer two probes and the inner two probes, and the inner two probes. The potential difference generated between them was measured to determine the resistance.
  • the obtained IGZO sintered body (1) was subjected to surface grinding, outer circumference grinding, and surface polishing to obtain a sintered body having a diameter of 50.8 mm ⁇ and a thickness of 3 mm.
  • ICP high frequency inductively coupled plasma
  • an ICP analyzer for each content of impurity metal elements M (Sn, Zr, Ti, Mo, Si, Cr, W, Ge, V, Mn) expected to be included in the IGZO sintered body (1) The analysis was done. From the analysis results, the content ratio [M / (In + Ga + Zn + M): weight ratio] of the impurity metal element M to the component metals (In, Ga, Zn) of the IGZO sintered body (1) was calculated. All the contents were less than 10 ppm.
  • This IGZO sintered body (1) was bonded using indium solder using a copper plate as a backing plate to obtain a sputtering target. Using this, a transparent semiconductor film was formed on a transparent substrate (non-alkali glass substrate) by a DC sputtering method to obtain a transparent semiconductor substrate.
  • Ar gas purity 99.9995% or more, Ar pure
  • Gas 5N
  • DC sputtering is performed for 10 hours under conditions of a pressure of 0.5 Pa, an input power of 3.8 W / cm 2 per unit area of the target surface, and a substrate temperature of room temperature.
  • a stable amorphous transparent semiconductor film with high carrier mobility was formed.
  • almost no nodules were generated on the target surface, and almost no abnormal discharge occurred during film formation.
  • the number of abnormal discharges that occurred during film formation was within 3 times per hour, and there was never a shutdown of the sputtering apparatus due to the occurrence of
  • the composition of the mixed powder which is the raw material of the IGZO sintered body (1), and the composition of the obtained IGZO sintered body (1) do not deviate at all and are extremely high.
  • the particle size of the mixed powder is not a nanoparticle size by a very simple short manufacturing process, a high-density (relative density: 100%) sintered body could be produced without any problem of nanomaterials.
  • Example 2 Indium oxide powder (In 2 O 3 , manufactured by Soekawa Richemical Co., Ltd., primary particle size: 1 ⁇ m), gallium oxide powder (Ga 2 O 3 , manufactured by Yamanaka Futec Co., Ltd., primary particle size: 1.5 ⁇ m), Zinc oxide powder (ZnO, manufactured by Hakusuitec Co., Ltd., primary particle size: 1.5 ⁇ m) is weighed so that the atomic ratio of indium element, gallium element and zinc element is 2: 2: 1, and an automatic mortar For 1 hour.
  • IGZO sintered body ⁇ Manufacture of IGZO sintered body>
  • the cylindrical molded body is transferred to a capsule container (outer diameter: 121 mm, inner diameter: 115 mm, height inside the container: 40 mm) made of stainless steel (SUS304) so that the molded body does not collapse, and is placed in the capsule container.
  • the packing density of the mixed powder was 3.56 g / cm 3
  • the theoretical density of the sintered body was 6.495 g / cm 3
  • the packing ratio of the mixed powder was 54.8. %.
  • the packing density and the theoretical density of the sintered body were obtained from the following formula.
  • the exhaust pipe was welded to the upper lid, and then the upper lid and the capsule container were welded.
  • a He leak test was performed. The amount of leakage at this time was 1 ⁇ 10 ⁇ 9 Pa ⁇ m 3 / sec or less.
  • the sealed capsule container was inserted into a HIP processing apparatus (manufactured by Kobe Steel, Ltd.) and subjected to capsule HIP processing.
  • the capsule HIP treatment was performed under a treatment condition of 4 hours using Ar gas (purity: 99.9%) at a temperature of 1220 ° C. and a pressure of 100 MPa as a pressure medium.
  • the capsule container was removed to obtain a cylindrical IGZO sintered body (2).
  • the size of the sintered body (2) was directly measured, it was 94.2 mm in diameter and 32.8 mm in height.
  • the relative density of this IGZO sintered body (2) was 100%, and the bulk resistance value of the sintered body was measured in the same manner as in Example 1. As a result, it was 4.2 ⁇ 10 ⁇ 4 ⁇ ⁇ cm. . Further, when the IGZO sintered body (2) was observed with an electron microscope, it was a dense sintered body with almost no voids.
  • the relative density was determined as shown in the following formula.
  • Relative density 100 ⁇ [(density of sintered body) / (theoretical density of sintered body)]
  • the theoretical density of the sintered body is In 2 Ga 2 ZnO 7 according to JCPDS card (JCPDS card number: 381097) was adopted theoretical density.
  • the density of the sintered body was measured by a length measurement method.
  • the obtained IGZO sintered body (2) was subjected to surface grinding, outer periphery grinding and then surface polishing to obtain a sintered body having a diameter of 50.8 mm and a thickness of 3 mm.
  • ICP high frequency inductively coupled plasma
  • the IGZO sintered body (2) was bonded using indium solder using a copper plate as a backing plate to obtain a sputtering target. Using this, a transparent semiconductor film was formed on a transparent substrate (non-alkali glass substrate) by a DC sputtering method to obtain a transparent semiconductor substrate.
  • Ar gas purity 99.9995% or more, Ar pure
  • Gas 5N
  • DC sputtering is performed for 10 hours under conditions of a pressure of 0.5 Pa, an input power of 3.8 W / cm 2 per unit area of the target surface, and a substrate temperature of room temperature.
  • a stable amorphous transparent semiconductor film with high carrier mobility was formed.
  • almost no nodules were generated on the target surface, and almost no abnormal discharge occurred during film formation.
  • the number of abnormal discharges that occurred during film formation was within 3 times per hour, and there was never a shutdown of the sputtering apparatus due to the occurrence of
  • the composition of the mixed powder which is the raw material of the IGZO sintered body (2), and the composition of the obtained IGZO sintered body (2) do not deviate at all and are extremely high.
  • the particle size of the mixed powder is not a nanoparticle size by a very simple short manufacturing process, a high-density (relative density: 100%) sintered body could be produced without any problem of nanomaterials.
  • the aqueous slurry thus adjusted was put in a resin pot and wet mixed by a wet ball mill mixing method. This wet mixing was performed using hard ZrO 2 balls as balls
  • the mixed aqueous slurry is taken out, and the water is volatilized with an evaporator by sieving the balls. After that, drying is performed at 100 ° C. for 3 hours with a hot air dryer, and then with a cold isostatic press. It was pressure-molded by applying a pressure of 300 MPa and cut to obtain a cylindrical molded body having a diameter of 300 mm ⁇ and a height of 150 mm. The density of the cylindrical molded body was 3.60 g / cm 3 . The density of the molded body was obtained by directly measuring the length of the molded body and calculating the volume calculated from the measured diameter and height and the weight obtained by subtracting the weight of the organic binder from the measured weight of the molded body.
  • IGZO sintered body The cylindrical molded body is transferred to a capsule container (outer diameter: 308 mm, inner diameter: 300 mm, height inside the container: 150 mm) made of stainless steel (SUS304) so that the molded body does not collapse, and is placed in the capsule container.
  • a capsule container outer diameter: 308 mm, inner diameter: 300 mm, height inside the container: 150 mm
  • SUS304 stainless steel
  • the exhaust pipe was welded to the upper lid, and then the upper lid and the capsule container were welded.
  • a He leak test was performed. The amount of leakage at this time was 1 ⁇ 10 ⁇ 9 Pa ⁇ m 3 / sec or less.
  • the capsule container was evacuated at 600 ° C. for 7 hours to completely remove the binder degreasing and the adsorbed water of the molded body, and the inside of the capsule container became 1.33 ⁇ 10 ⁇ 2 Pa or less.
  • the exhaust pipe was closed and the capsule container was sealed.
  • the sealed capsule container was inserted into a HIP processing apparatus (manufactured by Kobe Steel, Ltd.) and subjected to capsule HIP processing.
  • the capsule HIP treatment was performed under a treatment condition of 4 hours using Ar gas (purity: 99.9%) at a temperature of 1220 ° C. and a pressure of 100 MPa as a pressure medium.
  • the capsule container was removed to obtain a cylindrical IGZO sintered body (3).
  • the diameter was 248.7 mm ⁇ and the height was 124.4 mm.
  • the relative density of the IGZO sintered body (3) was as in Example 1. When determined in the same manner, it was 100%, and the bulk resistance value of the sintered body was 6.2 ⁇ 10 ⁇ 4 ⁇ ⁇ cm as measured in the same manner as in Example 1. Further, when the sintered body (3) was observed with an electron microscope, it was a dense sintered body with almost no pores.
  • the obtained IGZO sintered body (3) was ground and then subjected to surface polishing to obtain a sintered body having a diameter of 50.8 mm ⁇ and a thickness of 3 mm.
  • ICP high frequency inductively coupled plasma
  • This IGZO sintered body (3) was bonded using indium solder using a copper plate as a backing plate to obtain a sputtering target. Using this, a transparent semiconductor film was formed on a transparent substrate (non-alkali glass substrate) by a DC sputtering method to obtain a transparent semiconductor substrate.
  • Ar gas purity 99.9995% or more, Ar pure
  • Gas 5N
  • DC sputtering is performed for 10 hours under conditions of a pressure of 0.5 Pa, an input power of 3.8 W / cm 2 per unit area of the target surface, and a substrate temperature of room temperature.
  • a stable amorphous transparent semiconductor film with high carrier mobility was formed.
  • almost no nodules were generated on the target surface, and almost no abnormal discharge occurred during film formation.
  • the number of abnormal discharges that occurred during film formation was within 3 times per hour, and there was never a shutdown of the sputtering apparatus due to the occurrence of
  • the composition of the mixed powder as the raw material of the IGZO sintered body (3) and the composition of the obtained IGZO sintered body (3) are not displaced at all, and are extremely high.
  • the particle size of the mixed powder is not a nanoparticle size by a very simple short manufacturing process, a high-density (relative density: 100%) sintered body could be produced without any problem of nanomaterials.
  • the aqueous slurry thus adjusted was put in a resin pot and wet mixed by a wet ball mill mixing method. This wet mixing was performed using hard ZrO 2 balls as balls and mixing time of 18 hours.
  • the mixed aqueous slurry is taken out, and the water is volatilized with an evaporator by sieving the balls. After that, drying is performed at 100 ° C. for 3 hours with a hot air dryer, and then with a cold isostatic press. It was pressure-molded by applying a pressure of 300 MPa and cut to obtain a cylindrical molded body having a diameter of 450 mm ⁇ and a height of 150 mm. The density of the cylindrical molded body was 3.52 g / cm 3 . The density of the molded body was obtained by directly measuring the length of the molded body and calculating the volume calculated from the measured diameter and height and the weight obtained by subtracting the weight of the organic binder from the measured weight of the molded body.
  • the exhaust pipe was welded to the upper lid, and then the upper lid and the capsule container were welded.
  • a He leak test was performed. The amount of leakage at this time was 1 ⁇ 10 ⁇ 9 Pa ⁇ m 3 / sec or less.
  • the capsule container was evacuated at 600 ° C. for 7 hours to completely remove the binder degreasing and the adsorbed water of the molded body, and the inside of the capsule container became 1.33 ⁇ 10 ⁇ 2 Pa or less.
  • the exhaust pipe was closed and the capsule container was sealed.
  • the sealed capsule container was inserted into a HIP processing apparatus (manufactured by Kobe Steel, Ltd.) and subjected to capsule HIP processing.
  • the capsule HIP treatment was performed under a treatment condition of 4 hours using Ar gas (purity: 99.9%) at a temperature of 1220 ° C. and a pressure of 100 MPa as a pressure medium.
  • the capsule container was removed to obtain a cylindrical IGZO sintered body (4).
  • the diameter was 366.8 mm ⁇ and the height was 122.3 mm.
  • the relative density of the IGZO sintered body (4) was as in Example 2. When determined in the same manner, it was 100%, and the bulk resistance value of the sintered body was 4.2 ⁇ 10 ⁇ 4 ⁇ ⁇ cm as measured in the same manner as in Example 1. Further, when the sintered body (4) was observed with an electron microscope, it was a dense sintered body with almost no pores.
  • the obtained IGZO sintered body (4) was ground and then subjected to surface polishing to obtain a sintered body having a diameter of 50.8 mm ⁇ and a thickness of 3 mm.
  • ICP high frequency inductively coupled plasma
  • This IGZO sintered body (4) was bonded using indium solder using a copper plate as a backing plate to obtain a sputtering target. Using this, a transparent semiconductor film was formed on a transparent substrate (non-alkali glass substrate) by a DC sputtering method to obtain a transparent semiconductor substrate.
  • Ar gas purity 99.9995% or more, Ar pure
  • Gas 5N
  • DC sputtering is performed for 10 hours under conditions of a pressure of 0.5 Pa, an input power of 3.8 W / cm 2 per unit area of the target surface, and a substrate temperature of room temperature.
  • a stable amorphous transparent semiconductor film with high carrier mobility was formed.
  • almost no nodules were generated on the target surface, and almost no abnormal discharge occurred during film formation.
  • the number of abnormal discharges that occurred during film formation was within 3 times per hour, and there was never a shutdown of the sputtering apparatus due to the occurrence of
  • the composition of the mixed powder that is the raw material of the IGZO sintered body (4) and the composition of the obtained IGZO sintered body (4) are not displaced at all, and are extremely high.
  • the operation of the sputtering apparatus stops.
  • the film could be formed stably without any problems.
  • an extremely high-density and large-sized sintered body (4) could be produced by simultaneously carrying out vacuum degassing treatment and debinding treatment of the capsule container (without passing through a process only for degreasing).
  • the particle size of the mixed powder is not a nanoparticle size by a very simple short manufacturing process, a high-density (relative density: 100%) sintered body could be produced without any problem of nanomaterials.
  • Example 5 Indium oxide powder (In 2 O 3 , manufactured by Soekawa Richemical Co., Ltd., primary particle size: 1 ⁇ m), gallium oxide powder (Ga 2 O 3 , manufactured by Rare Metal Co., Ltd., primary particle size: 3.0 ⁇ m) Zinc oxide powder (ZnO, manufactured by Hakusuitec Co., Ltd., primary particle size: 1.5 ⁇ m) was weighed so that the atomic ratio of indium element, gallium element, and zinc element was 1: 1: 1. Dry mixing was performed in a mortar for 1 hour.
  • IGZO sintered body ⁇ Manufacture of IGZO sintered body>
  • the cylindrical molded body is transferred to a capsule container (outer diameter: 121 mm, inner diameter: 115 mm, height inside the container: 40 mm) made of stainless steel (SUS304) so that the molded body does not collapse, and is placed in the capsule container.
  • the packing density of the mixed powder was 3.46 g / cm 3
  • the theoretical density of the sintered body was 6.379 g / cm 3
  • the packing ratio of the mixed powder was 54. 2%.
  • the packing density and the theoretical density of the sintered body were obtained from the following formula.
  • the exhaust pipe was welded to the upper lid, and then the upper lid and the capsule container were welded.
  • a He leak test was performed. The amount of leakage at this time was 1 ⁇ 10 ⁇ 9 Pa ⁇ m 3 / sec or less.
  • the sealed capsule container was inserted into a HIP processing apparatus (manufactured by Kobe Steel, Ltd.) and subjected to capsule HIP processing.
  • the capsule HIP treatment was performed under a treatment condition of 4 hours using Ar gas (purity: 99.9%) at a temperature of 1220 ° C. and a pressure of 100 MPa as a pressure medium.
  • the capsule container was removed to obtain a cylindrical IGZO sintered body (5).
  • the size of the sintered body (5) was directly measured, it was 93.7 mm in diameter and 32.6 mm in height.
  • the relative density of this IGZO sintered body (5) was determined in the same manner as in Example 1, it was 100%, and the bulk resistance value of the sintered body was measured in the same manner as in Example 1. It was 9 ⁇ 10 ⁇ 4 ⁇ ⁇ cm. Further, when the IGZO sintered body (5) was observed with an electron microscope, it was a dense sintered body with almost no voids.
  • the obtained IGZO sintered body (5) was subjected to surface grinding, outer periphery grinding and then surface polishing to obtain a sintered body having a diameter of 50.8 mm and a thickness of 3 mm.
  • ICP high frequency inductively coupled plasma
  • the ICP analyzer is also used for each content of impurity metal elements M (Sn, Zr, Ti, Mo, Si, Cr, W, Ge, V, Mn) that are expected to be included in the IGZO sintered body (5).
  • the analysis was done. From the analysis results, the content ratio [M / (In + Ga + Zn + M): weight ratio] of the impurity metal element M to the component metals (In, Ga, Zn) of the IGZO sintered body (5) was calculated. All the contents were less than 10 ppm.
  • This IGZO sintered body (5) was bonded using indium solder using a copper plate as a backing plate to obtain a sputtering target. Using this, a transparent semiconductor film was formed on a transparent substrate (non-alkali glass substrate) by a DC sputtering method to obtain a transparent semiconductor substrate.
  • Ar gas purity 99.9995% or more, Ar pure
  • Gas 5N
  • DC sputtering is performed for 10 hours under conditions of a pressure of 0.5 Pa, an input power of 3.8 W / cm 2 per unit area of the target surface, and a substrate temperature of room temperature.
  • a stable amorphous transparent semiconductor film with high carrier mobility was formed.
  • almost no nodules were generated on the target surface, and almost no abnormal discharge occurred during film formation.
  • the number of abnormal discharges that occurred during film formation was within 3 times per hour, and there was never a shutdown of the sputtering apparatus due to the occurrence of
  • the composition of the mixed powder which is the raw material of the IGZO sintered body (5), and the composition of the obtained IGZO sintered body (5) are not displaced at all and are extremely high.
  • the particle size of the mixed powder is not a nanoparticle size by a very simple short manufacturing process, a high-density (relative density: 100%) sintered body could be produced without any problem of nanomaterials.
  • Example 6 Indium oxide powder (In 2 O 3 , manufactured by Soekawa Rikagaku Co., Ltd., primary particle size: 1 ⁇ m), gallium oxide powder (Ga 2 O 3 , manufactured by Rare Metal Co., Ltd., primary particle size: 3.0 ⁇ m)
  • the zinc oxide powder (ZnO, manufactured by Hakusuitec Co., Ltd., primary particle size: 1.5 ⁇ m) is weighed so that the atomic ratio of indium element, gallium element and zinc element is 2: 2: 1, and automatic Dry mixing was performed in a mortar for 1 hour.
  • IGZO sintered body ⁇ Manufacture of IGZO sintered body>
  • the cylindrical molded body is transferred to a capsule container (outer diameter: 121 mm, inner diameter: 115 mm, height inside the container: 40 mm) made of stainless steel (SUS304) so that the molded body does not collapse, and is placed in the capsule container.
  • the packing density of the mixed powder was 3.47 g / cm 3
  • the theoretical density of the sintered body was 6.495 g / cm 3
  • the packing ratio of the mixed powder was 53.4. %.
  • the packing density and the theoretical density of the sintered body were obtained from the following formula.
  • the exhaust pipe was welded to the upper lid, and then the upper lid and the capsule container were welded.
  • a He leak test was performed. The amount of leakage at this time was 1 ⁇ 10 ⁇ 9 Pa ⁇ m 3 / sec or less.
  • the sealed capsule container was inserted into a HIP processing apparatus (manufactured by Kobe Steel, Ltd.) and subjected to capsule HIP processing.
  • the capsule HIP treatment was performed under a treatment condition of 4 hours using Ar gas (purity: 99.9%) at a temperature of 1220 ° C. and a pressure of 100 MPa as a pressure medium.
  • the capsule container was removed to obtain a cylindrical IGZO sintered body (6).
  • the size of the sintered body (6) was directly measured, it was 93.4 mm in diameter and 32.5 mm in height.
  • the relative density of this IGZO sintered body (6) was 100%, and the bulk resistance value of the sintered body was 5.2 ⁇ 10 ⁇ 4 ⁇ ⁇ cm as measured in the same manner as in Example 1. .
  • the IGZO sintered body (6) was observed with an electron microscope, it was a dense sintered body with almost no voids. The relative density was determined as shown in the following formula.
  • Relative density 100 ⁇ [(density of sintered body) / (theoretical density of sintered body)]
  • the theoretical density of the sintered body was the theoretical density of In 2 Ga 2 ZnO 7 (JCPDS card number: 381097) described in the JCPDS card.
  • the density of the sintered body was measured by a length measurement method.
  • the obtained IGZO sintered body (6) was subjected to surface grinding, outer periphery grinding and then surface polishing to obtain a sintered body having a diameter of 50.8 mm and a thickness of 3 mm.
  • ICP high frequency inductively coupled plasma
  • This IGZO sintered body (6) was bonded using indium solder using a copper plate as a backing plate to obtain a sputtering target. Using this, a transparent semiconductor film was formed on a transparent substrate (non-alkali glass substrate) by a DC sputtering method to obtain a transparent semiconductor substrate.
  • Ar gas purity 99.9995% or more, Ar pure
  • Gas 5N
  • DC sputtering is performed for 10 hours under conditions of a pressure of 0.5 Pa, an input power of 3.8 W / cm 2 per unit area of the target surface, and a substrate temperature of room temperature.
  • a stable amorphous transparent semiconductor film with high carrier mobility was formed.
  • almost no nodules were generated on the target surface, and almost no abnormal discharge occurred during film formation.
  • the number of abnormal discharges that occurred during film formation was within 3 times per hour, and there was never a shutdown of the sputtering apparatus due to the occurrence of
  • the composition of the mixed powder that is the raw material of the IGZO sintered body (6) and the composition of the obtained IGZO sintered body (6) are not displaced at all, and are extremely high.
  • the particle size of the mixed powder is not a nanoparticle size by a very simple short manufacturing process, a high-density (relative density: 100%) sintered body could be produced without any problem of nanomaterials.
  • Example 7 Indium oxide powder (In 2 O 3 , manufactured by High Purity Chemical Laboratory Co., Ltd., primary particle size: 4.0 ⁇ m), gallium oxide powder (Ga 2 O 3 , manufactured by rare metal Co., Ltd.), primary particle size : 3.0 ⁇ m), zinc oxide powder (ZnO, manufactured by Hakusuitec Co., Ltd., primary particle size: 1.5 ⁇ m), the atomic ratio of indium element, gallium element and zinc element is 1: 1: 1.
  • the aqueous slurry thus adjusted was put in a resin pot and wet mixed by a wet ball mill mixing method. This wet mixing was performed using hard ZrO 2 balls as balls and mixing time of 18 hours.
  • the mixed aqueous slurry is taken out, and the water is volatilized with an evaporator by sieving the balls. After that, drying is performed at 100 ° C. for 3 hours with a hot air dryer, and then with a cold isostatic press. It was pressure-molded by applying a pressure of 300 MPa and cut to obtain a cylindrical molded body having a diameter of 450 mm ⁇ and a height of 150 mm. The density of the cylindrical molded body was 3.47 g / cm 3 . The density of the molded body was obtained by directly measuring the length of the molded body and calculating the volume calculated from the measured diameter and height and the weight obtained by subtracting the weight of the organic binder from the measured weight of the molded body.
  • the exhaust pipe was welded to the upper lid, and then the upper lid and the capsule container were welded.
  • a He leak test was performed. The amount of leakage at this time was 1 ⁇ 10 ⁇ 9 Pa ⁇ m 3 / sec or less.
  • the capsule container was evacuated at 600 ° C. for 7 hours to completely remove the binder degreasing and the adsorbed water of the molded body, and the inside of the capsule container became 1.33 ⁇ 10 ⁇ 2 Pa or less.
  • the exhaust pipe was closed and the capsule container was sealed.
  • the sealed capsule container was inserted into a HIP processing apparatus (manufactured by Kobe Steel, Ltd.) and subjected to capsule HIP processing.
  • the capsule HIP treatment was performed under a treatment condition of 4 hours using Ar gas (purity: 99.9%) at a temperature of 1220 ° C. and a pressure of 100 MPa as a pressure medium.
  • the capsule container was removed to obtain a cylindrical IGZO sintered body (7).
  • the diameter was 367.0 mm ⁇ and the height was 122.3 mm.
  • the relative density of the IGZO sintered body (7) was as in Example 1. When determined in the same manner, it was 100%, and the bulk resistance value of the sintered body was 8.8 ⁇ 10 ⁇ 4 ⁇ ⁇ cm as measured in the same manner as in Example 1. Further, when the sintered body (7) was observed with an electron microscope, it was a dense sintered body with almost no pores.
  • the obtained IGZO sintered body (7) was ground and then subjected to surface polishing to obtain a sintered body having a diameter of 50.8 mm ⁇ and a thickness of 3 mm.
  • ICP high frequency inductively coupled plasma
  • This IGZO sintered body (7) was bonded using indium solder using a copper plate as a backing plate to obtain a sputtering target. Using this, a transparent semiconductor film was formed on a transparent substrate (non-alkali glass substrate) by a DC sputtering method to obtain a transparent semiconductor substrate.
  • Ar gas purity 99.9995% or more, Ar pure
  • Gas 5N
  • the composition of the mixed powder which is the raw material of the IGZO sintered body (7), and the composition of the obtained IGZO sintered body (7) do not deviate at all and are extremely high.
  • the operation of the sputtering apparatus is stopped.
  • the film could be formed stably without any problems.
  • an extremely high-density and large-sized sintered body (7) could be produced by simultaneously performing the vacuum degassing treatment and the debinding treatment of the capsule container (without going through a process only for degreasing).
  • the particle size of the mixed powder is not a nanoparticle size by a very simple short manufacturing process, a high-density (relative density: 100%) sintered body could be produced without any problem of nanomaterials.
  • the aqueous slurry thus adjusted was put in a resin pot and wet mixed by a wet ball mill mixing method. This wet mixing was performed using hard ZrO 2 balls as balls and mixing time of 18 hours.
  • the mixed aqueous slurry is taken out, and the water is volatilized with an evaporator by sieving the balls. After that, drying is performed at 100 ° C. for 3 hours with a hot air dryer, and then with a cold isostatic press. It was pressure-molded by applying a pressure of 300 MPa and cut to obtain a cylindrical molded body having a diameter of 450 mm ⁇ and a height of 150 mm. The density of the cylindrical molded body was 3.58 g / cm 3 . The density of the molded body was obtained by directly measuring the length of the molded body and calculating the volume calculated from the measured diameter and height and the weight obtained by subtracting the weight of the organic binder from the measured weight of the molded body.
  • the exhaust pipe was welded to the upper lid, and then the upper lid and the capsule container were welded.
  • a He leak test was performed. The amount of leakage at this time was 1 ⁇ 10 ⁇ 9 Pa ⁇ m 3 / sec or less.
  • the capsule container was evacuated at 600 ° C. for 7 hours to completely remove the binder degreasing and the adsorbed water of the molded body, and the inside of the capsule container became 1.33 ⁇ 10 ⁇ 2 Pa or less.
  • the exhaust pipe was closed and the capsule container was sealed.
  • the sealed capsule container was inserted into a HIP processing apparatus (manufactured by Kobe Steel, Ltd.) and subjected to capsule HIP processing.
  • the capsule HIP treatment was performed under a treatment condition of 4 hours using Ar gas (purity: 99.9%) at a temperature of 1220 ° C. and a pressure of 100 MPa as a pressure medium.
  • the capsule container was removed to obtain a cylindrical IGZO sintered body (8).
  • the diameter was 369.0 mm ⁇ and the height was 123.0 mm.
  • the relative density of the IGZO sintered body (8) was as in Example 2. When determined in the same manner, it was 100%, and the bulk resistance value of the sintered body was 4.9 ⁇ 10 ⁇ 4 ⁇ ⁇ cm as measured in the same manner as in Example 1. Further, when the sintered body (8) was observed with an electron microscope, it was a dense sintered body with almost no pores.
  • the obtained IGZO sintered body (8) was ground and then subjected to surface polishing to obtain a sintered body having a diameter of 50.8 mm ⁇ and a thickness of 3 mm.
  • ICP high frequency inductively coupled plasma
  • This IGZO sintered body (8) was bonded using indium solder using a copper plate as a backing plate to obtain a sputtering target. Using this, a transparent semiconductor film was formed on a transparent substrate (non-alkali glass substrate) by a DC sputtering method to obtain a transparent semiconductor substrate.
  • Ar gas purity 99.9995% or more, Ar pure
  • Gas 5N
  • DC sputtering is performed for 10 hours under conditions of a pressure of 0.5 Pa, an input power of 3.8 W / cm 2 per unit area of the target surface, and a substrate temperature of room temperature.
  • a stable amorphous transparent semiconductor film with high carrier mobility was formed.
  • almost no nodules were generated on the target surface, and almost no abnormal discharge occurred during film formation.
  • the number of abnormal discharges that occurred during film formation was within 3 times per hour, and there was never a shutdown of the sputtering apparatus due to the occurrence of
  • the composition of the mixed powder that is the raw material of the IGZO sintered body (8) and the composition of the obtained IGZO sintered body (8) are not displaced at all and are extremely high.
  • the operation of the sputtering apparatus is stopped.
  • the film could be formed stably without any problems.
  • an extremely high-density and large-sized sintered body (8) could be produced by simultaneously performing the vacuum degassing treatment and the debinding treatment of the capsule container (without going through a process only for degreasing).
  • the particle size of the mixed powder is not a nanoparticle size by a very simple short manufacturing process, a high-density (relative density: 100%) sintered body could be produced without any problem of nanomaterials.
  • JCPDS card number JCPDS card
  • capsule HIP treatment was performed in the same manner as in Example 3.
  • the capsule container burst during capsule HIP treatment, and the mixed powder was scattered in the HIP treatment apparatus, making it impossible to produce an IGZO sintered body. It was. Since the filling rate of the mixed powder is extremely low at 24.8% and the shrinkage rate of the capsule container is 75.2%, the shrinkage of the capsule container cannot follow the shrinkage of the mixed powder, and the capsule container is ruptured. .
  • the tap density of indium oxide powder, gallium oxide powder, and zinc oxide powder is based on JIS K5101, and each powder is filled with vibration while applying vibration to a graduated cylinder of a predetermined size until there is no volume change of each powder. And evaluated.
  • the tap density was 1.51 g / cm 3 , which was sintered. Since the theoretical density of the body was 6.495 g / cm 3 , the filling rate was 23.2%.
  • the theoretical density of the sintered body is a crystal phase corresponding to a composition in which the atomic ratio of indium element, gallium element, and zinc element is 2: 2: 1.
  • the JCPDS card has In 2 Ga 2 ZnO 7 ( JCPDS card number: 381097), and the theoretical density described in the JCPDS card was adopted.
  • capsule HIP treatment was performed in the same manner as in Example 3.
  • the capsule container burst during capsule HIP treatment, and the mixed powder was scattered in the HIP treatment apparatus, making it impossible to produce an IGZO sintered body. It was. Since the filling rate of the mixed powder is extremely low as 23.2% and the shrinkage rate of the capsule container is 76.8%, the shrinkage of the capsule container cannot follow the shrinkage of the mixed powder, and the capsule container is ruptured. .
  • the slurry thus prepared was placed in a resin pot and wet mixed by a wet ball mill mixing method. This wet mixing was performed using hard ZrO 2 balls as balls and mixing time of 18 hours. Next, the slurry after wet mixing was taken out, and the balls were sieved and the solvent was removed by an evaporator to obtain a mixed powder.
  • the tap density of indium oxide powder, gallium oxide powder, and zinc oxide powder is based on JIS K5101, and each powder is filled with vibration while applying vibration to a graduated cylinder of a predetermined size until there is no volume change of each powder. And evaluated.
  • the tap density was 1.55 g / cm 3 , which was sintered. Since the theoretical density of the body was 6.379 g / cm 3 , the filling factor was 24.2%.
  • capsule HIP treatment was performed in the same manner as in Example 3.
  • the capsule container burst during capsule HIP treatment, and the mixed powder was scattered in the HIP treatment apparatus, making it impossible to produce an IGZO sintered body. It was.
  • the filling rate of the mixed powder is extremely low at 24.2%, and the shrinkage rate of the capsule container is 75.8%. .
  • the slurry thus prepared was placed in a resin pot and wet mixed by a wet ball mill mixing method. This wet mixing was performed using hard ZrO 2 balls as balls and mixing time of 18 hours. Next, the slurry after wet mixing was taken out, and the balls were sieved and the solvent was removed by an evaporator to obtain a mixed powder.
  • the tap density of indium oxide powder, gallium oxide powder, and zinc oxide powder is based on JIS K5101, and each powder is filled with vibration while applying vibration to a graduated cylinder of a predetermined size until there is no volume change of each powder. And evaluated.
  • the tap density was 1.52 g / cm 3 , which was sintered. Since the theoretical density of the body was 6.495 g / cm 3 , the filling rate was 23.4%.
  • the theoretical density of the sintered body is a crystal phase corresponding to a composition in which the atomic ratio of indium element, gallium element, and zinc element is 2: 2: 1.
  • the JCPDS card has In 2 Ga 2 ZnO 7 ( JCPDS card number: 381097), and the theoretical density described in the JCPDS card was adopted.
  • capsule HIP treatment was performed in the same manner as in Example 3.
  • the capsule container burst during capsule HIP treatment, and the mixed powder was scattered in the HIP treatment apparatus, making it impossible to produce an IGZO sintered body. It was. Since the filling rate of the mixed powder is extremely low as 23.4% and the shrinkage rate of the capsule container is 76.6%, the shrinkage of the capsule container cannot follow the shrinkage of the mixed powder, and the capsule container is ruptured. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

This In-Ga-Zn composite oxide sintered compact is represented by the formula InxGayZnzOa (wherein, x/(x + y) = 0.2 to 0.8, z/(x + y +z) = 0.1 to 0.5, and a = (3/2)x + (3/2)y + z), the In-Ga-Zn composite oxide sintered compact having a bulk resistance value of less than 1.0 × 10-3 Ω⋅cm.

Description

In-Ga-Zn系複合酸化物焼結体およびその製造方法In-Ga-Zn composite oxide sintered body and method for producing the same
 本発明は、In-Ga-Zn系複合酸化物焼結体、その製造方法、ターゲットに関する。 The present invention relates to an In—Ga—Zn-based composite oxide sintered body, a manufacturing method thereof, and a target.
 液晶表示装置や薄膜エレクトロルミネッセンス表示装置、及び有機EL表示装置等、電気泳動方式表示装置、粉末移動方式表示装置等のスイッチング素子、駆動回路素子等において、薄膜トランジスタ(TFT:Thin Film Transistor)のチャネル層として、従来、主として、半導体膜としてアモルファスシリコン膜が使用されてきた。
 しかし、近年、この半導体膜として、金属複合酸化物からなる酸化物半導体膜は、高移動度及び可視光透過性を有しており、In-Ga-Zn系複合酸化物(IGZO)を主成分とするアモルファス透明酸化物半導体膜が、前記アモルファスシリコン膜よりもキャリアの移動度が大きいという利点があり、注目を集めている(特許文献1~3)。
Thin film transistor (TFT) channel layer in switching elements, drive circuit elements, etc. of electrophoretic display devices, powder transfer display devices, etc., such as liquid crystal display devices, thin film electroluminescence display devices, and organic EL display devices In the past, amorphous silicon films have been mainly used as semiconductor films.
However, in recent years, as this semiconductor film, an oxide semiconductor film made of a metal composite oxide has high mobility and visible light transmittance, and is mainly composed of In—Ga—Zn-based composite oxide (IGZO). The amorphous transparent oxide semiconductor film has the advantage of having higher carrier mobility than the amorphous silicon film, and has attracted attention (Patent Documents 1 to 3).
 IGZOを主成分とするアモルファス透明酸化物半導体膜の作製方法としては、量産性に優れている点で、スパッタリング法が、最も適切である。このスパッタリング法に用いられるIGZOターゲットは、高密度である必要がある。さらに、IGZOターゲットには、DCスパッタリングで使用しても異常放電の発生を抑制できるだけの低抵抗で、かつ均一であることが求められている。そのため、IGZOターゲットには、高い相対密度が求められ、特に相対密度が100%に近いことが求められる。ここで、相対密度とは、焼結体の理論密度に対する、実際に得られた焼結体の密度の割合をいう。特許文献4には相対密度が99.8%のIGZO焼結体が、特許文献5には相対密度が100%のIGZO焼結体が開示されている。 As a method for producing an amorphous transparent oxide semiconductor film containing IGZO as a main component, a sputtering method is most suitable because it is excellent in mass productivity. The IGZO target used for this sputtering method needs to have a high density. Further, the IGZO target is required to have a low resistance and uniform enough to suppress the occurrence of abnormal discharge even when used in DC sputtering. Therefore, the IGZO target is required to have a high relative density, and in particular, the relative density is required to be close to 100%. Here, the relative density refers to the ratio of the density of the sintered body actually obtained to the theoretical density of the sintered body. Patent Document 4 discloses an IGZO sintered body having a relative density of 99.8%, and Patent Document 5 discloses an IGZO sintered body having a relative density of 100%.
 しかしながら、IGZOターゲットに用いられるIGZO焼結体の相対密度は、これまでの量産レベルでは、99.0%程度にすぎないという問題がある。 However, there is a problem that the relative density of the IGZO sintered body used for the IGZO target is only about 99.0% at the conventional mass production level.
 IGZO焼結体の製造方法は、従来、例えば、特許文献6,7に記載されているように、IGZO焼結体の原料粉末の混合、粉砕、造粒、成形、焼結及び(還元)、又は混合、造粒、仮焼、粉砕、成形、焼結及び(還元)といった工程を必要としている。焼結は亜鉛やインジウムの揮散を抑制する為に、大気雰囲気、酸素雰囲気などの酸化性雰囲気下での常圧焼結あるいは酸素加圧下での焼結としている。 Conventionally, for example, as described in Patent Documents 6 and 7, the manufacturing method of the IGZO sintered body is mixing, pulverizing, granulating, forming, sintering and (reducing) the raw material powder of the IGZO sintered body. Or the process of mixing, granulation, calcination, grinding | pulverization, shaping | molding, sintering, and (reduction) is required. In order to suppress the volatilization of zinc and indium, sintering is performed under normal pressure sintering in an oxidizing atmosphere such as an air atmosphere or an oxygen atmosphere, or sintering under an oxygen pressure.
 製造コスト低減のため、すなわちIGZO焼結体の製造工程を減らし、少しでも工程を短くするために、ホットプレス等の加圧焼結を採用すると成形の工程を省くことができる。しかし、IGZO焼結体の原料粉末に1000℃以上の高温でホットプレス処理を行うと、ホットプレス処理中の還元作用により、IGZO焼結体の構成成分である金属Inや金属Gaが溶出してしまうという問題がある。これは、ホットプレス用のダイスおよびパンチは通常、カーボン製であるために、還元作用を有するからである。
 そのため、IGZO焼結体の原料粉末の組成と、IGZO焼結体の組成との組成ズレ、ひいてはIGZOターゲットのスパッタにより得られる膜の組成との組成ズレが生じてしまう。また、1000℃未満のホットプレス処理では、高い密度のIGZO焼結体が得られないという問題があった。
In order to reduce the manufacturing cost, that is, to reduce the manufacturing process of the IGZO sintered body and shorten the process as much as possible, the molding process can be omitted if pressure sintering such as hot pressing is employed. However, when the raw powder of the IGZO sintered body is hot pressed at a high temperature of 1000 ° C. or higher, metal In and metal Ga, which are constituent components of the IGZO sintered body, are eluted by the reducing action during the hot pressing process. There is a problem of end. This is because hot press dies and punches are usually made of carbon and thus have a reducing action.
For this reason, a compositional deviation between the composition of the raw material powder of the IGZO sintered body and the composition of the IGZO sintered body, and consequently a compositional deviation between the composition of the film obtained by sputtering of the IGZO target occurs. Moreover, in the hot press process below 1000 degreeC, there existed a problem that a high density IGZO sintered compact was not obtained.
 特許文献5に記載の相対密度100%のIGZO焼結体を製造するには、IGZO焼結体の原料粉末の混合、粉砕、造粒・乾燥、仮焼、解砕、粉砕、成形(冷間静水圧成形)、焼結(常圧焼結処理)という極めて長い工程を経た後、さらにカプセルフリーHIP処理を行う必要があり、高コストになってしまうという問題があった。
 このように、従来の方法では、IGZO焼結体にカプセルフリーHIP処理を行うことで高密度化できるものの、製造工程が多いため、生産性が悪く、コスト増となる欠点を有している。さらに得られるIGZO焼結体のバルク抵抗値は10-3Ω・cm以上と高い値であった。このため、カプセルフリーHIP処理を行わずに、均一かつ高密度で、低抵抗(10-3Ω・cm未満)のIGZO焼結体を製造する方法が望まれている。
In order to produce an IGZO sintered body having a relative density of 100% described in Patent Document 5, mixing, pulverization, granulation / drying, calcination, pulverization, pulverization, molding (cold) of the raw material powder of the IGZO sintered body After passing through extremely long processes of isostatic pressing and sintering (atmospheric pressure sintering process), it is necessary to perform a capsule-free HIP process, resulting in a high cost.
As described above, although the conventional method can increase the density by performing the capsule-free HIP process on the IGZO sintered body, it has a number of manufacturing processes, and thus has the disadvantage that the productivity is poor and the cost is increased. Furthermore, the bulk resistance value of the obtained IGZO sintered body was as high as 10 −3 Ω · cm or more. For this reason, there is a demand for a method of producing an IGZO sintered body that is uniform, high density, and low resistance (less than 10 −3 Ω · cm) without performing capsule-free HIP treatment.
 また、カプセルフリーHIP処理を行わずに、均一かつ高密度のIGZO焼結体を製造する上で均一かつ高密度化するための最大のポイントは、焼結工程に入る前に、IGZO焼結体の原料となる酸化亜鉛粉末、酸化インジウム粉末、酸化ガリウム粉末として、1次粒子サイズを数十nm~200nmレベルまで微粒化した粉体(いわゆるナノ粒子)を用いることである。これにより、焼結工程において、それぞれの粉体間で固相焼結が十分に進行させ、高密度化させることができる。 In addition, the most important point for obtaining a uniform and high-density IGZO sintered body without producing a capsule-free HIP process is to obtain a uniform and high-density IGZO sintered body before entering the sintering process. For the zinc oxide powder, indium oxide powder, and gallium oxide powder used as the raw material, powders (so-called nanoparticles) whose primary particle size is atomized to a level of several tens to 200 nm are used. Thereby, in a sintering process, solid-phase sintering can fully advance between each powder, and can be densified.
 しかしながら、1次粒子サイズが数十nm~200nmレベルになると、粉体は容易に飛散しやすくなり、取り扱いが非常に困難であり、厚生労働省が定めるナノマテリアルの安全性対策を施さなければならない。
 それに加え、酸化インジウムは発ガン性があり、吸入による肺炎の原因となることが報告されているなど安全性の問題(特定化学物質障害予防規則参照)が近年知られており、数十nm~200nmレベルの微粒化された酸化インジウム粉末を含む混合粉末を扱うには、ナノマテリアルの問題及び酸化インジウムの有害性の観点から、安全性の問題をクリアする必要がある。そのためには大掛かりな対策が必要になり、さらなる製造コストアップになる問題があった。
 IGZO焼結体の原料粉末である酸化亜鉛粉末及び酸化ガリウム粉末は発ガン性、吸入による肺炎の原因になる等の有害性の問題は報告されていないが、ナノマテリアルの問題は同様に存在する。
However, when the primary particle size reaches a level of several tens of nm to 200 nm, the powder easily scatters and is very difficult to handle, and safety measures for nanomaterials determined by the Ministry of Health, Labor and Welfare must be taken.
In addition, indium oxide has been known to cause carcinogenicity and has been reported to cause pneumonia due to inhalation. Safety issues (see Regulations for the Prevention of Specific Chemical Substance Disorders) have been known in recent years. In order to handle the mixed powder containing the atomized indium oxide powder at the 200 nm level, it is necessary to clear the safety problem from the viewpoint of the problem of nanomaterials and the harmfulness of indium oxide. For that purpose, a large-scale measure is required, and there is a problem that the manufacturing cost is further increased.
Zinc oxide powder and gallium oxide powder, which are raw material powders of IGZO sintered body, have not been reported to cause harmful effects such as carcinogenicity and cause of pneumonia by inhalation, but problems of nanomaterials exist as well. .
特開2006-165527号公報JP 2006-165527 A 特開2006-165528号公報JP 2006-165528 A 特開2006-165531号公報JP 20061655531 国際公開第2010/140548号International Publication No. 2010/140548 特開2010-202450号公報JP 2010-202450 A 特開2008-280216号公報JP 2008-280216 A 特開2011-106002号公報JP 2011-106002 A
 本発明は、このような事情に着目してなされたものであって、取り扱いに問題のある、いわゆるナノ粒子を使用しなくても、In-Ga-Zn系複合酸化物(IGZO)ターゲットを低コストにて製造でき、しかも高い相対密度97~100%を実現することが可能なIGZO焼結体の製造方法、IGZO焼結体およびターゲットを提供することにある。 The present invention has been made by paying attention to such circumstances, and it is possible to reduce the In—Ga—Zn-based composite oxide (IGZO) target without using so-called nanoparticles that are problematic in handling. An object of the present invention is to provide an IGZO sintered body manufacturing method, an IGZO sintered body, and a target that can be manufactured at a low cost and that can achieve a high relative density of 97 to 100%.
 本発明者らは、上記課題を解決するべく鋭意検討を行った結果、1次粒子サイズが1μm前後の酸化インジウム粉末、酸化ガリウム粉末および酸化亜鉛粉末を所定の比率で混合した混合粉末を加圧成形し、成型体を得、この成型体をカプセル容器に充填して、混合粉末の充填率を50%以上とし、カプセルHIP処理を行うことにより、インジウム、亜鉛の揮散が抑制され、焼結体の原料である混合粉末の組成と焼結体の目的組成とのずれがほとんどなく、低コストで相対密度が97~100%、かつバルク抵抗値が1.0×10-3Ω・cm未満(10-4Ω・cmオーダー)の焼結体を作製することが可能であることを初めて見出し、本発明を完成するに至った。
 さらに、混合粉末の作製の際にバインダーを含有させることにより、300mmφあるいは300mm角以上の大型焼結体を、脱脂工程が増えることなく、上記と同様のプロセスにて作製できることを見出した。
As a result of intensive studies to solve the above-mentioned problems, the present inventors pressurized mixed powder obtained by mixing indium oxide powder, gallium oxide powder and zinc oxide powder having a primary particle size of around 1 μm at a predetermined ratio. Molding, obtaining a molded body, filling this molded body into a capsule container, setting the filling rate of the mixed powder to 50% or more, and performing capsule HIP treatment, thereby suppressing volatilization of indium and zinc, and a sintered body There is almost no deviation between the composition of the mixed powder, which is a raw material, and the intended composition of the sintered body, the relative density is 97 to 100% at a low cost, and the bulk resistance value is less than 1.0 × 10 −3 Ω · cm ( The inventors found for the first time that it was possible to produce a sintered body of the order of 10 −4 Ω · cm) and completed the present invention.
Furthermore, it has been found that a large-sized sintered body of 300 mmφ or 300 mm square or more can be produced by the same process as described above without increasing the degreasing step by including a binder in the production of the mixed powder.
 すなわち、本発明は以下の構成からなる。
 (1)式:InxGayZnza
[式中、x/(x+y)=0.2~0.8、z/(x+y+z)=0.1~0.5、a=(3/2)x+(3/2)y+z]
で表わされるIn-Ga-Zn系複合酸化物焼結体であって、バルク抵抗値が1.0×10-3Ω・cm未満であることを特徴とするIn-Ga-Zn系複合酸化物焼結体。
 (2)スパッタリング法、イオンプレーティング法、パルスレーザーデポジション(PLD)法またはエレクトロンビーム(EB)蒸着法による成膜に用いられるターゲットであって、請求項1に記載のIn-Ga-Zn系複合酸化物焼結体を加工してなることを特徴とするターゲット。
 (3)インジウムと、ガリウムと、亜鉛と、酸素を含み下記混合条件を満たし、かつ1次粒子サイズが0.6μm以上である混合粉末を加圧成形し、成型体とする工程(a)と、下記式から算出される、カプセル容器への混合粉末の充填率が50%以上となるように、前記成型体をカプセル容器に充填して、カプセル熱間等方加圧処理を行う工程(b)とを含むことを特徴とするIn-Ga-Zn系複合酸化物焼結体の製造方法。
 混合条件:金属原子比In:Ga:Zn=x:y:zにおいて、x/(x+y)が0.2~0.8であり、かつz/(x+y+z)が0.1~0.5である関係を満たす。
 充填率(%)=(カプセル容器への混合粉末の充填密度/焼結体の理論密度)×100
 (4)工程(a)において、酸化インジウム粉末、酸化ガリウム粉末および酸化亜鉛粉末を混合して混合粉末とする前記(3)に記載のIn-Ga-Zn系複合酸化物焼結体の製造方法。
 (5)工程(a)において、酸化インジウム粉末、酸化ガリウム粉末および酸化亜鉛粉末を、金属原子比In:Ga:Zn=1:1:1の割合となるように混合して混合粉末とする前記(3)に記載のIn-Ga-Zn系複合酸化物焼結体の製造方法。
 (6)工程(a)において、成型体の密度が3.19g/cm3以上となるように、混合粉末を加圧成形する前記(5)に記載のIn-Ga-Zn系複合酸化物焼結体の製造方法。
 (7)工程(a)において、酸化インジウム粉末、酸化ガリウム粉末および酸化亜鉛粉末を、金属原子比In:Ga:Zn=2:2:1の割合となるように混合して混合粉末とする前記(3)に記載のIn-Ga-Zn系複合酸化物焼結体の製造方法。
 (8)工程(a)において、成型体の密度が3.25g/cm3以上となるように、混合粉末を加圧成形する前記(7)に記載のIn-Ga-Zn系複合酸化物焼結体の製造方法。
 (9)工程(a)において、混合粉末にバインダーを含有させて、加圧成形する前記(3)~(8)のいずれかに記載のIn-Ga-Zn系複合酸化物焼結体の製造方法。
 (10)工程(b)において、成型体をカプセル容器に充填して、混合粉末の充填率を50%以上とし、脱バインダー処理とカプセル容器の真空脱気処理を同時に行い、次いでカプセル熱間等方加圧処理を行う前記(9)に記載のIn-Ga-Zn系複合酸化物焼結体の製造方法。
 (11)工程(b)において、1000~1400℃の焼結温度で、成型体にカプセル熱間等方加圧処理を行う前記(3)~(10)のいずれかに記載のIn-Ga-Zn系複合酸化物焼結体の製造方法。
 (12)工程(b)において、不活性ガスを圧力媒体として用い、成型体にカプセル熱間等方加圧処理を行う前記(3)~(11)のいずれかに記載のIn-Ga-Zn系複合酸化物焼結体の製造方法。
 (13)工程(b)において、50MPa以上の加圧力で、成型体にカプセル熱間等方加圧処理を行う前記(3)~(12)のいずれかに記載のIn-Ga-Zn系複合酸化物焼結体の製造方法。
That is, the present invention has the following configuration.
(1) Formula: In x Ga y Zn z O a
[Wherein, x / (x + y) = 0.2 to 0.8, z / (x + y + z) = 0.1 to 0.5, a = (3/2) x + (3/2) y + z]
An In—Ga—Zn-based composite oxide sintered body represented by the formula, wherein the bulk resistance value is less than 1.0 × 10 −3 Ω · cm. Sintered body.
(2) A target used for film formation by sputtering, ion plating, pulsed laser deposition (PLD), or electron beam (EB) vapor deposition, wherein the In—Ga—Zn system according to claim 1 A target obtained by processing a composite oxide sintered body.
(3) Step (a) of pressure-molding a mixed powder containing indium, gallium, zinc, oxygen and satisfying the following mixing conditions and having a primary particle size of 0.6 μm or more to form a molded body: The step of filling the capsule container with the molded body and performing capsule hot isostatic pressing so that the filling ratio of the mixed powder into the capsule container calculated from the following formula is 50% or more (b) In—Ga—Zn-based composite oxide sintered body characterized by comprising:
Mixing conditions: metal atomic ratio In: Ga: Zn = x: y: z, x / (x + y) is 0.2 to 0.8, and z / (x + y + z) is 0.1 to 0.5 Satisfy a relationship.
Filling rate (%) = (packing density of mixed powder into capsule container / theoretical density of sintered body) × 100
(4) The method for producing an In—Ga—Zn-based composite oxide sintered body according to (3), wherein in step (a), indium oxide powder, gallium oxide powder and zinc oxide powder are mixed to obtain a mixed powder. .
(5) In the step (a), the indium oxide powder, the gallium oxide powder and the zinc oxide powder are mixed so as to have a metal atomic ratio of In: Ga: Zn = 1: 1: 1 to obtain a mixed powder. The method for producing an In—Ga—Zn-based composite oxide sintered body according to (3).
(6) In step (a), the mixed powder is pressure-molded so that the density of the molded body is 3.19 g / cm 3 or more. A method for producing a knot.
(7) In the step (a), the indium oxide powder, the gallium oxide powder and the zinc oxide powder are mixed so as to have a metal atomic ratio of In: Ga: Zn = 2: 2: 1 to obtain a mixed powder. The method for producing an In—Ga—Zn-based composite oxide sintered body according to (3).
(8) In the step (a), the mixed powder is pressure-molded so that the density of the molded body is 3.25 g / cm 3 or more. A method for producing a knot.
(9) Production of an In—Ga—Zn-based composite oxide sintered body according to any one of (3) to (8), wherein in step (a), the mixed powder contains a binder and is pressure-molded. Method.
(10) In step (b), the molded body is filled into a capsule container, the filling rate of the mixed powder is 50% or more, debinding treatment and vacuum degassing treatment of the capsule container are performed at the same time, and then the capsule is hot, etc. The method for producing an In—Ga—Zn-based composite oxide sintered body according to (9), wherein the pressure treatment is performed.
(11) In-Ga— according to any one of the above (3) to (10), wherein the molded body is subjected to capsule hot isostatic pressing at a sintering temperature of 1000 to 1400 ° C. in step (b). A method for producing a Zn-based composite oxide sintered body.
(12) The In—Ga—Zn according to any one of the above (3) to (11), wherein in step (b), an inert gas is used as a pressure medium and the molded body is subjected to capsule hot isostatic pressing. Of producing a composite oxide of a composite oxide.
(13) The In—Ga—Zn-based composite according to any one of (3) to (12), wherein in step (b), the capsule is subjected to hot isostatic pressing with a pressing force of 50 MPa or more. Manufacturing method of oxide sinter.
 本発明によれば、製造工程が簡易で少なく、生産性が高く低コストで相対密度97~100%のIGZO焼結体を作製することができる。また、本発明によれば、インジウム、亜鉛の揮散が抑制され、IGZO焼結体の原料である混合粉末の組成とIGZO焼結体の目的組成とはほとんどずれがなくなる。
 さらに、ナノ粒子(数十nm~200nm)まで粉砕した混合粉末を使用しなくてもよいので、混合粉末の取り扱いが容易であり、ナノマテリアルの安全性の問題もなく、大掛かりな安全対策をする必要もなく、低コストを実現でき、バルク抵抗値が10-4Ω・cmオーダー(低抵抗)の焼結体とすることができる。
 この本発明の製造方法を利用すると、低コストで組成ズレのない相対密度97~100%のスパッタリング用IGZOターゲットを提供できるので、このターゲットを用いて、スパッタリング成膜することにより、アーキング等の異常放電もなく、長時間の連続成膜でも、表面にノジュールが発生して悪影響を及ぼすこともなく、アクティブマトリックス駆動の液晶表示素子や有機EL表示素子中の薄膜トランジスタの活性層部分となる良好な透明半導体IGZO膜を作製することができる。
According to the present invention, an IGZO sintered body having a relative density of 97 to 100% can be produced with a simple and few manufacturing process, high productivity and low cost. Further, according to the present invention, volatilization of indium and zinc is suppressed, and there is almost no deviation between the composition of the mixed powder that is a raw material of the IGZO sintered body and the target composition of the IGZO sintered body.
Furthermore, since it is not necessary to use mixed powder that has been pulverized to nanoparticles (several tens of nm to 200 nm), handling of the mixed powder is easy, and there is no problem with the safety of nanomaterials. This is not necessary, can realize low cost, and can be a sintered body having a bulk resistance value of the order of 10 −4 Ω · cm (low resistance).
By using this manufacturing method of the present invention, it is possible to provide an IGZO target for sputtering having a relative density of 97 to 100% with no composition deviation at low cost. By using this target for sputtering film formation, abnormalities such as arcing can be obtained. No discharge, no long-term continuous film formation, nodules on the surface, no adverse effect, good transparency that becomes active layer part of thin film transistor in active matrix driving liquid crystal display element and organic EL display element A semiconductor IGZO film can be manufactured.
(IGZO焼結体の製造方法)
 本発明のIGZO焼結体の製造方法は、所定の混合粉末を、加圧成形し、成型体とする工程(a)と、成型体をカプセル容器に充填して、カプセル熱間等方加圧(カプセルHIP)処理を行う工程(b)とを含む。これにより、IGZO焼結体の相対密度を97~100%とすることが可能になる。しかも、この製造プロセスは、従来法の製造プロセス1(混合、仮焼、粗粉砕、微粉砕、造粒、成形、焼結およびカプセルフリーHIP処理の一連の製造工程)あるいは従来法の製造プロセス2(混合、粉砕、造粒、仮焼、解砕、粉砕、成形、焼結およびカプセルフリーHIP処理の一連の製造工程)と比較し、少ない工程で簡易である。しかも混合粉末の1次粒子サイズは、通常の酸化物焼結体を製造するのに、一般的に取扱上でも容易な0.6μm以上であるので、ナノマテリアルの安全性の問題もなく、大掛かりな安全対策をする必要もない。そのため、低コストにて製造可能となる。
(Manufacturing method of IGZO sintered body)
The manufacturing method of the IGZO sintered body of the present invention includes the step (a) of pressing a predetermined mixed powder to form a molded body, and filling the molded body into a capsule container, and hot isostatic pressing of the capsule (Capsule HIP) process (b). This makes it possible to set the relative density of the IGZO sintered body to 97 to 100%. Moreover, this manufacturing process is a conventional manufacturing process 1 (a series of manufacturing steps of mixing, calcining, coarse pulverization, fine pulverization, granulation, molding, sintering, and capsule-free HIP treatment) or a conventional manufacturing process 2 Compared with (a series of manufacturing steps of mixing, pulverization, granulation, calcination, pulverization, pulverization, molding, sintering, and capsule-free HIP treatment), the number of steps is simple. Moreover, since the primary particle size of the mixed powder is 0.6 μm or more, which is generally easy to handle for manufacturing a normal oxide sintered body, there is no problem of safety of the nanomaterial, and it is large. There is no need to take any safety measures. Therefore, it can be manufactured at low cost.
 ここで、相対密度とは、焼結体の理論密度に対する、実際に得られた焼結体の密度の割合であり、下記式から求められる。
   相対密度(%)=(焼結体の密度/焼結体の理論密度)×100
 上記式中の焼結体の密度は、実施例に記載の評価方法によって測定することができる。上記式中の焼結体の理論密度は、原則として、焼結体の原料である各金属酸化物の単体密度に各金属酸化物粉末の混合重量比をかけ、和をとった値であり、例えば、焼結体が酸化インジウム、酸化ガリウム、および酸化亜鉛からなる場合は、下記式から求められる。
 焼結体の理論密度=(酸化インジウムの単体密度×混合重量比)+(酸化ガリウムの単体密度×混合重量比)+(酸化亜鉛の単体密度×混合重量比)
Here, the relative density is a ratio of the density of the sintered body actually obtained to the theoretical density of the sintered body, and is obtained from the following formula.
Relative density (%) = (density of sintered body / theoretical density of sintered body) × 100
The density of the sintered body in the above formula can be measured by the evaluation method described in the examples. The theoretical density of the sintered body in the above formula is, in principle, a value obtained by multiplying the single-component density of each metal oxide that is the raw material of the sintered body by the mixing weight ratio of each metal oxide powder and taking the sum, For example, when the sintered body is made of indium oxide, gallium oxide, and zinc oxide, it can be obtained from the following formula.
Theoretical density of sintered body = (Indium oxide simple substance density × mixing weight ratio) + (Gallium oxide simple substance density × mixing weight ratio) + (Zinc oxide simple substance density × mixing weight ratio)
 ただし、混合粉末の金属原子の割合と同じ金属原子の割合の単相結晶の情報がJCPDS(Joint Committee of Powder Diffraction Standards)カードに記載されている場合は、JCPDSカードに記載のその結晶の理論密度を上記式中の焼結体の理論密度として用いることができる。 However, if the information on single-phase crystals with the same metal atom ratio as the mixed powder metal atom ratio is described on the JCPDS (Joint Committee Committee of Powder Diffraction Standards) card, the theoretical density of the crystal described on the JCPDS card Can be used as the theoretical density of the sintered body in the above formula.
 具体例として、酸化インジウム粉末と酸化ガリウム粉末と酸化亜鉛粉末とを、インジウムとガリウムと亜鉛との原子数比がIn:Ga:Zn=1:1:1となるように混合させた場合、JCPDSカードにはInGaZnO4(In:Ga:Zn=1:1:1)の単相結晶の情報が記載されているため、JCPDSカード(No.381104)に記載のInGaZnO4の単相結晶の理論密度(6.379g/cm3)を上記式中の焼結体の理論密度とする。
 他の具体例として、酸化インジウム粉末と酸化ガリウム粉末と酸化亜鉛粉末とを、インジウムとガリウムと亜鉛との原子数比がIn:Ga:Zn=2:2:1となるように混合させた場合は、JCPDSカード(No.381097)に記載のIn2Ga2ZnO7(In:Ga:Zn=2:2:1)の単相結晶の理論密度(6.495g/cm3)を上記式中の焼結体の理論密度とする。
 なお、混合粉末の金属原子の割合と、JCPDSカードに記載されている単相結晶の金属原子の割合とが一致しない場合、そのズレが5%以内であれば、JCPDSカードに記載されている単相結晶の理論密度を上記式中の焼結体の理論密度とする。
As a specific example, when indium oxide powder, gallium oxide powder, and zinc oxide powder are mixed so that the atomic ratio of indium, gallium, and zinc is In: Ga: Zn = 1: 1: 1, JCPDS Since the card contains information on the single-phase crystal of InGaZnO 4 (In: Ga: Zn = 1: 1: 1), the theoretical density of the single-phase crystal of InGaZnO 4 described in the JCPDS card (No. 381104) Let (6.379 g / cm 3 ) be the theoretical density of the sintered body in the above formula.
As another specific example, indium oxide powder, gallium oxide powder, and zinc oxide powder are mixed so that the atomic ratio of indium, gallium, and zinc is In: Ga: Zn = 2: 2: 1. Represents the theoretical density (6.495 g / cm 3 ) of the single phase crystal of In 2 Ga 2 ZnO 7 (In: Ga: Zn = 2: 2: 1) described in the JCPDS card (No. 381097) in the above formula. The theoretical density of the sintered body.
If the proportion of metal atoms in the mixed powder and the proportion of metal atoms in the single-phase crystal described in the JCPDS card do not match, if the deviation is within 5%, the single atom described in the JCPDS card The theoretical density of the phase crystal is defined as the theoretical density of the sintered body in the above formula.
<工程(a)>
(混合粉末)
 混合粉末は、インジウム、ガリウム、亜鉛および酸素を含む。インジウムとガリウムと亜鉛と酸素は、典型的には、混合粉末を構成する全原子の99%以上である。
<Process (a)>
(Mixed powder)
The mixed powder contains indium, gallium, zinc and oxygen. Indium, gallium, zinc and oxygen are typically 99% or more of the total atoms constituting the mixed powder.
 混合粉末は各原料粉末を所定の比率で混合して得ることができる。原料粉末は、インジウム含有粉末、ガリウム含有粉末および亜鉛含有粉末からなる。
 これら原料粉末の純度は、通常2N(99質量%)以上、好ましくは3N(99.9質量%)以上、特に好ましくは4N(99.99質量%)以上である。純度が2Nより低いとスパッタ成膜時の薄膜特性の低下を招くおそれがある。
 各原料粉末の1次粒子サイズは、一般的に取扱いの容易な0.6μm以上であるのがよく、1~5μm以下であることが好ましい。各原料粉末の一次粒子サイズが0.6μm以上であれば、混合粉末の一次粒子サイズは0.6μm以上となる。
The mixed powder can be obtained by mixing each raw material powder at a predetermined ratio. The raw material powder is composed of indium-containing powder, gallium-containing powder, and zinc-containing powder.
The purity of these raw material powders is usually 2N (99% by mass) or more, preferably 3N (99.9% by mass) or more, and particularly preferably 4N (99.99% by mass) or more. If the purity is lower than 2N, the thin film characteristics may be deteriorated during sputtering film formation.
The primary particle size of each raw material powder is generally 0.6 μm or more, which is generally easy to handle, and preferably 1 to 5 μm or less. If the primary particle size of each raw material powder is 0.6 μm or more, the primary particle size of the mixed powder is 0.6 μm or more.
 なお、1次粒子サイズとは、レーザー回折・散乱法により測定した粒度分布における積算体積分率50%粒径をいう(以下同じ)。 The primary particle size refers to the 50% cumulative volume fraction in the particle size distribution measured by the laser diffraction / scattering method (hereinafter the same).
(インジウム含有粉末)
 インジウム含有粉末としては、例えば、酸化インジウム粉末、水酸化インジウム粉末などが挙げられ、焼結のしやすさ、副生成物の残存のし難さから、酸化インジウム粉末が好ましい。酸化インジウムは、通常、ビックスバイト構造であり、ビックスバイト構造の酸化インジウム粉末を予め還元雰囲気で仮焼して酸素欠損させた構造であってもよい。成形前の酸化インジウム粉末のタップ密度は、1次粒子サイズ、粒度分布より異なるが、1.95g/cm3以下であることが多い。酸化インジウム粉末は、仮焼履歴がないのが好ましい。
(Indium-containing powder)
Examples of the indium-containing powder include indium oxide powder and indium hydroxide powder, and indium oxide powder is preferable because it is easily sintered and by-products remain difficult to remain. Indium oxide generally has a bixbite structure, and may have a structure in which an indium oxide powder having a bixbite structure is preliminarily calcined in a reducing atmosphere to cause oxygen deficiency. The tap density of the indium oxide powder before molding differs from the primary particle size and particle size distribution, but is often 1.95 g / cm 3 or less. The indium oxide powder preferably has no calcining history.
 ここで、タップ密度とは、JIS K5101に基づき、一定容積の容器に粉末を自然落下により充填した後、さらに該容器に一定の振動(タッピング)による衝撃を加え、粉末の体積変化がなくなったときの単位体積当たりの粉末の質量と定義する。なお、一定容積の容器に粉末を自然落下により充填し、その内容積を体積としたときの単位体積当たりの粉末の質量をかさ密度といい、一般的にタップ密度は、かさ密度の1.1~1.3倍程度の値となる。 Here, the tap density is based on JIS K5101, when a fixed volume container is filled with powder by natural dropping, and then the container is further subjected to a constant vibration (tapping) and the volume of the powder disappears. Is defined as the mass of the powder per unit volume. Note that the powder mass per unit volume when the powder is filled into the container of a certain volume by natural dropping and the inner volume is the volume is called the bulk density, and the tap density is generally 1.1% of the bulk density. The value is about 1.3 times.
(ガリウム含有粉末)
 ガリウム含有粉末としては、例えば、酸化ガリウム粉末、水酸化ガリウム粉末などが挙げられる。酸化ガリウムは、結晶構造がα-Ga23、β-Ga23のどちらでも構わない。また、予め還元雰囲気で仮焼して酸素欠損させた構造であってもよい。成形前の酸化ガリウム粉末のタップ密度は、1次粒子サイズ、粒度分布より異なるが、1.45g/cm3以下であることが多い。酸化ガリウム粉末は、仮焼履歴がないのが好ましい。
(Gallium-containing powder)
Examples of the gallium-containing powder include gallium oxide powder and gallium hydroxide powder. Gallium oxide may have a crystal structure of α-Ga 2 O 3 or β-Ga 2 O 3 . Alternatively, the structure may be preliminarily calcined in a reducing atmosphere and oxygen deficient. The tap density of the gallium oxide powder before molding differs from the primary particle size and particle size distribution, but is often 1.45 g / cm 3 or less. The gallium oxide powder preferably has no calcining history.
(亜鉛含有粉末)
 亜鉛含有粉末としては、例えば、酸化亜鉛粉末、水酸化亜鉛粉末などが挙げられる。酸化亜鉛粉末には、通常、ウルツ鉱構造のZnO等の粉末が用いられ、さらにこのZnOを予め還元雰囲気で仮焼して酸素欠損を含有させたものを用いてもよい。また、そのBET比表面積は、特に限定されない。成形前の酸化亜鉛粉末のタップ密度は、1次粒子サイズ、粒度分布より異なるが、1.12g/cm3以下であることが多い。酸化亜鉛粉末は、仮焼履歴がないのが好ましい。
 水酸化亜鉛粉末としては、アモルファスのZn(OH)2粉、結晶構造を有するZn(OH)2粉などが挙げられる。
(Zinc-containing powder)
Examples of the zinc-containing powder include zinc oxide powder and zinc hydroxide powder. As the zinc oxide powder, a powder of ZnO or the like having a wurtzite structure is usually used, and further, this ZnO may be preliminarily calcined in a reducing atmosphere to contain oxygen deficiency. Further, the BET specific surface area is not particularly limited. The tap density of the zinc oxide powder before molding differs from the primary particle size and particle size distribution, but is often 1.12 g / cm 3 or less. The zinc oxide powder preferably has no calcining history.
Examples of the zinc hydroxide powder include amorphous Zn (OH) 2 powder and Zn (OH) 2 powder having a crystal structure.
(混合)
 工程(a)では、例えば、インジウム含有粉末と、ガリウム含有粉末と、亜鉛含有粉末とを下記混合条件を満たすように均一に混合する。これにより、後述する組成のIGZO焼結体とすることができる。
 混合条件:金属原子比In:Ga:Zn=x:y:zにおいて、x/(x+y)が0.2~0.8であり、かつz/(x+y+z)が0.1~0.5である関係を満たす。
 原料粉末として、酸化インジウム粉末、酸化ガリウム粉末および酸化亜鉛粉末をそれぞれ用いる場合、酸化インジウム粉末:酸化ガリウム粉末:酸化亜鉛粉末が重量比で、ほぼ44.2:29.9:25.9(モル比でIn:Ga:Zn=1:1:1)や、50.8:34.3:14.9(モル比でIn:Ga:Zn=2:2:1)となるように均一に混合を行うのが好ましい。これにより、後述する特性的に好ましいInGaZnO4やIn2Ga2ZnO7で表わさせるIGZO焼結体とすることができる。
(mixture)
In the step (a), for example, the indium-containing powder, the gallium-containing powder, and the zinc-containing powder are uniformly mixed so as to satisfy the following mixing condition. Thereby, it can be set as the IGZO sintered compact of the composition mentioned later.
Mixing conditions: metal atomic ratio In: Ga: Zn = x: y: z, x / (x + y) is 0.2 to 0.8, and z / (x + y + z) is 0.1 to 0.5 Satisfy a relationship.
When using indium oxide powder, gallium oxide powder and zinc oxide powder as raw material powders, the weight ratio of indium oxide powder: gallium oxide powder: zinc oxide powder is approximately 44.2: 29.9: 25.9 (moles). Mix uniformly so that the ratio is In: Ga: Zn = 1: 1: 1) or 50.8: 34.3: 14.9 (Molar ratio In: Ga: Zn = 2: 2: 1) Is preferably performed. Thus, it is possible to IGZO sintered body which represented the characteristic favorable InGaZnO 4 and In 2 Ga 2 ZnO 7 to be described later.
 混合方法は、均一に混合できる方法であれば特に限定されず、スーパーミキサー、インテンシブミキサー、ヘンシェルミキサー、自動乳鉢等により乾式混合、あるいは湿式混合(ボールミル等)を行う。湿式混合は、例えば、混合粉末と水系溶媒とを混合し、得られたスラリーを硬質ZrO2ボールなどを用いた湿式ボールミルや振動ミルにより充分に混合した後、固液分離・乾燥・造粒を行えばよく、湿式ボールミルや振動ミルやビーズミルを用いた場合の混合時間は、12~78時間程度が好ましい。固液分離、乾燥、造粒については、それぞれ公知の方法を採用すればよい。水系溶媒は、水を主成分とし、水単独であってもよいし、水とメタノール、エタノール等のアルコールなどとの混合物であってもよい。
 均一な混合が不十分であると、製造したターゲット中に各成分が偏析して、ターゲットの抵抗分布が不均一になってしまう。すなわちターゲットの部位により、高抵抗領域と低抵抗領域が存在し、スパッタ成膜時に高抵抗領域での帯電等によるアーキングなどの異常放電の原因となってしまう。
The mixing method is not particularly limited as long as it can be uniformly mixed, and dry mixing or wet mixing (ball mill or the like) is performed using a super mixer, an intensive mixer, a Henschel mixer, an automatic mortar, or the like. In wet mixing, for example, the mixed powder and an aqueous solvent are mixed, and the resulting slurry is sufficiently mixed by a wet ball mill using a hard ZrO 2 ball or a vibration mill, followed by solid-liquid separation, drying, and granulation. The mixing time when a wet ball mill, vibration mill or bead mill is used is preferably about 12 to 78 hours. Known methods may be employed for solid-liquid separation, drying, and granulation. The aqueous solvent contains water as a main component and may be water alone, or may be a mixture of water and alcohol such as methanol or ethanol.
If uniform mixing is insufficient, each component segregates in the manufactured target, and the resistance distribution of the target becomes non-uniform. That is, a high resistance region and a low resistance region exist depending on the part of the target, which causes abnormal discharge such as arcing due to charging in the high resistance region during sputtering film formation.
(バインダー)
 本発明では、混合粉末に有機バインダーを混合してもよい。有機バインダーはハンドリング性を向上させるために用いられ、特に、一辺が300mm以上、または直径が300mm以上の大型焼結体を作製する場合に必要になる。
 有機バインダーの添加量は、混合粉末100重量部に対して、好ましくは、0.5重量部~10重量部であり、より好ましくは1重量部~5重量部である。
(binder)
In the present invention, an organic binder may be mixed with the mixed powder. The organic binder is used to improve handling properties, and is particularly necessary when producing a large sintered body having a side of 300 mm or more or a diameter of 300 mm or more.
The amount of the organic binder added is preferably 0.5 to 10 parts by weight, more preferably 1 to 5 parts by weight with respect to 100 parts by weight of the mixed powder.
 有機バインダーを用いる場合は、原料粉末と有機バインダーを混合して混合粉末とし、加圧成形して加圧成型体とする。そして、この加圧成型体にカプセルHIP処理を行う前に、脱バインダー処理(脱脂)を行う。この脱バインダー処理は、例えば、加圧成型体をカプセル容器に充填した後、カプセル容器の真空脱気処理する前に行ってもよいし、加圧成型体をカプセル容器に充填した後に真空脱気処理と同時に行ってもよいが、後者はIGZO焼結体を製造するにあたり、脱脂するためだけの工程を必要としないため、好ましい。なお、有機バインダーを用いた場合であっても、有機バインダーを混合すること、および脱バインダー処理を行うことを除き、有機バインダーを用いない場合と同様にして、IGZO焼結体を製造することができる。 When using an organic binder, the raw material powder and the organic binder are mixed to form a mixed powder, and pressure molded to form a pressure molded body. And before performing a capsule HIP process to this press-molded body, a binder removal process (degreasing) is performed. This debinding treatment may be performed, for example, after the pressure molded body is filled in the capsule container and before the capsule container is vacuum degassed, or after the pressure molded body is filled in the capsule container, the vacuum degassing is performed. Although the process may be performed simultaneously with the treatment, the latter is preferable because a process only for degreasing is not necessary in producing the IGZO sintered body. Even when an organic binder is used, an IGZO sintered body can be produced in the same manner as when no organic binder is used, except that the organic binder is mixed and the binder removal treatment is performed. it can.
 有機バインダーとして、公知のバインダーを用いることができ、例えば、ブチラール樹脂、ポリビニルアルコール、アクリル樹脂、ポリα-メチルスチレン、エチルセルロース、ポリ乳酸メチル、(ポリ)ビニルブチラール、(ポリ)ビニルアセテート、(ポリ)ビニルアルコール、ポリエチレン、ポリスチレン、ポリブタジエン、(ポリ)ビニルピロリドン、ポリアミド、ポリエチレンオキシド、ポリプロピレンオキシド、ポリアクリルアミド、ポリメタクリレートおよび種々のアクリルポリマーとそれらのコポリマーやターポリマー、メチルセルロース、エチルセルロース、ヒドロキシエチルセルロース、ニトロセルロースなどのセルロースとその誘導体である樹脂などが挙げられる。 As the organic binder, known binders can be used. For example, butyral resin, polyvinyl alcohol, acrylic resin, poly α-methylstyrene, ethyl cellulose, polymethyl lactate, (poly) vinyl butyral, (poly) vinyl acetate, (poly ) Vinyl alcohol, polyethylene, polystyrene, polybutadiene, (poly) vinyl pyrrolidone, polyamide, polyethylene oxide, polypropylene oxide, polyacrylamide, polymethacrylate and various acrylic polymers and their copolymers and terpolymers, methylcellulose, ethylcellulose, hydroxyethylcellulose, nitro Examples thereof include resins such as cellulose and derivatives thereof.
 有機バインダーを混合する方法は、特に制限されるものではないが、例えば、原料粉末と、有機バインダーと、有機バインダーを溶解可能な溶媒と、スラリー状にする溶媒とを混合し、得られたスラリーを充分に湿式混合により混合し、その後の公知の乾燥処理を行う方法などが挙げられる。なお、有機バインダーは、各原料粉末を混合した混合粉末に混合してもよい。
 原料粉末と有機バインダーを混合した粉末を加圧成形するには、有機バインダーを用いないで成型体を作製する場合と同様にして行えばよい。
The method of mixing the organic binder is not particularly limited, but for example, a raw material powder, an organic binder, a solvent capable of dissolving the organic binder, and a solvent to form a slurry are obtained, and the obtained slurry Can be mixed by wet mixing, followed by a known drying process. In addition, you may mix an organic binder with the mixed powder which mixed each raw material powder.
In order to press-mold a powder obtained by mixing a raw material powder and an organic binder, it may be performed in the same manner as in the case of producing a molded body without using an organic binder.
 有機バインダーを用いて成型した加圧成型体をカプセル容器に充填した後、カプセル容器の真空脱気処理する前に脱バインダー処理を行う場合は、例えば、雰囲気は問わず、大気雰囲気下、不活性雰囲気下等の任意の雰囲気下にて少なくとも400℃以上、500~700℃程度の加熱をすればよい。
 有機バインダーを用いて成型した成型体をカプセル容器に充填した後、カプセル容器の真空脱気処理と脱バインダー処理を同時に行う場合は、成型体をカプセル容器に充填した後、カプセル容器に排気管を有する上蓋を溶接し、吸着水分を除去する目的で450~700℃程度に加熱すると同時に、カプセル容器内の真空度が1.33×10-2Pa以下になるまで真空脱気を行えばよい。これにより、加熱脱気プロセスと脱バインダー処理を同時に行うことができ、脱脂するためだけの工程を必要としないため製造プロセスを増やさずにコストアップにならずに脱バインダー処理をすることができ、大型焼結体(300mm角、300mmφ以上)を特にプロセスを増やさずに作製することができる。
When filling the capsule container with the pressure-molded body molded using an organic binder and then performing the debinding process before vacuum degassing of the capsule container, for example, in any atmosphere, inert in an air atmosphere Heating may be performed at least at 400 ° C. or more and about 500 to 700 ° C. in an arbitrary atmosphere such as an atmosphere.
When the capsule container is filled with a molded body molded using an organic binder, and the capsule container is subjected to vacuum degassing and debindering at the same time, after filling the molded body into the capsule container, an exhaust pipe is connected to the capsule container. In order to remove the adsorbed moisture, the upper lid is welded and heated to about 450 to 700 ° C., and at the same time, vacuum degassing is performed until the degree of vacuum in the capsule container is 1.33 × 10 −2 Pa or less. Thereby, the heat degassing process and the debinding process can be performed simultaneously, and the debinding process can be performed without increasing the manufacturing process without increasing the manufacturing process because the process only for degreasing is not required. Large sintered bodies (300 mm square, 300 mmφ or more) can be produced without particularly increasing the number of processes.
(加圧成形)
 混合粉末を加圧成形するには、例えば、一軸プレス、冷間静水圧プレス(CIP)などを使用することができる。成形する際には、一軸プレスと冷間静水圧プレス(CIP)を併用しても構わない。
(Pressure molding)
In order to press-mold the mixed powder, for example, a uniaxial press, a cold isostatic press (CIP), or the like can be used. When molding, a uniaxial press and a cold isostatic press (CIP) may be used in combination.
 混合粉末を成形する際のプレス圧力は、一軸プレスの場合は、少なくとも30MPa以上100MPa未満であり、より好ましくは40MPa以上にすることが好ましい。30MPa未満であると、安定なプレス成型体ができないおそれがある。100MPa以上であると、成型体がもろく割れやすくなるおそれがある。
 例えば、成型体の密度を3.19g/cm3以上にするには、好ましくは40~90MPa、より好ましくは50~80MPaである。
In the case of uniaxial pressing, the pressing pressure when forming the mixed powder is at least 30 MPa or more and less than 100 MPa, more preferably 40 MPa or more. If it is less than 30 MPa, there is a possibility that a stable press-molded product cannot be produced. If it is 100 MPa or more, the molded product may be brittle and easily cracked.
For example, in order to make the density of the molded body 3.19 g / cm 3 or more, it is preferably 40 to 90 MPa, more preferably 50 to 80 MPa.
 冷間静水圧プレス(CIP)の場合は、少なくとも50MPa以上300MPa未満であり、より好ましくは100MPa以上することが好ましい。50MPa未満であると、安定なプレス成型体ができないおそれがある。300MPa以上であると、成型体がもろくわれやすくなるおそれがある。
 例えば、成型体の密度を3.19g/cm3以上にするには、好ましくは100~250MPa、より好ましくは150~200MPaである。
In the case of cold isostatic pressing (CIP), it is at least 50 MPa or more and less than 300 MPa, more preferably 100 MPa or more. If it is less than 50 MPa, there is a possibility that a stable press-molded product cannot be produced. If the pressure is 300 MPa or more, the molded body may be easily crushed.
For example, to make the density of the molded body 3.19 g / cm 3 or more, it is preferably 100 to 250 MPa, more preferably 150 to 200 MPa.
(成型体)
 成型体の形状は、特に限定されないが、カプセルHIP処理時に、均等に圧力が加わり、均等に収縮させるために円柱形状、矩形状が好ましい。また、成型体のサイズは、特に限定されず、この成型体を充填するカプセル容器のサイズに対応したサイズであるのが好ましい。
(Molded body)
The shape of the molded body is not particularly limited, but a cylindrical shape and a rectangular shape are preferable in order to apply pressure evenly and contract evenly during capsule HIP processing. The size of the molded body is not particularly limited, and is preferably a size corresponding to the size of the capsule container filled with the molded body.
 成型体の密度は、混合粉末からなる焼結体の理論密度の値の50%以上であるのが好ましい。例えば、InGaZnO4で表わされるIGZO焼結体を製造する際、インジウムとガリウムと亜鉛との原子数比がIn:Ga:Zn=1:1:1となるように混合した混合粉末からなる成型体の場合は、好ましくは3.19g/cm3以上であり、より好ましくは3.8~6.3g/cm3である。また、例えば、In2Ga2ZnO7で表わされるIGZO焼結体を製造する際、インジウムとガリウムと亜鉛との原子数比がIn:Ga:Zn=2:2:1となるように混合した混合粉末からなる成型体の場合は、成型体の密度は、好ましくは3.25g/cm3以上であり、より好ましくは3.8~6.4g/cm3である。
 成型体の密度が上記範囲内であれば、この成型体をカプセル容器内に型崩れすることなく一杯に詰めることで、後述する混合粉末の充填率を50%以上にすることができ、カプセルHIP処理によるカプセル容器の収縮率を50%以下にすることができる。
The density of the molded body is preferably 50% or more of the theoretical density value of the sintered body made of the mixed powder. For example, when manufacturing an IGZO sintered body represented by InGaZnO 4 , a molded body made of a mixed powder mixed so that the atomic ratio of indium, gallium, and zinc is In: Ga: Zn = 1: 1: 1. In this case, it is preferably 3.19 g / cm 3 or more, more preferably 3.8 to 6.3 g / cm 3 . Also, for example, when manufacturing an IGZO sintered body represented by In 2 Ga 2 ZnO 7 , mixing was performed so that the atomic ratio of indium, gallium, and zinc was In: Ga: Zn = 2: 2: 1. In the case of a molded body made of a mixed powder, the density of the molded body is preferably 3.25 g / cm 3 or more, more preferably 3.8 to 6.4 g / cm 3 .
If the density of the molded body is within the above range, the molded body can be filled into the capsule container without losing its shape, so that the filling rate of the mixed powder described later can be increased to 50% or more. The shrinkage ratio of the capsule container by the treatment can be 50% or less.
 成型体の密度は、直接成型体の測長を行い、この測定値から算出した体積と、測定した成型体の重量とから求めることができる。例えば、成型体の形状が円柱形状である場合は、成型体の直径と高さを直接測長することにより、円柱形状の成型体の体積を求め、重量を測定して、重量と体積から密度を計算することができる。なお、成型体が有機バインダーを含有し、この成型体の脱バインダー処理をカプセル容器の真空脱気処理と同時に行う場合、成型体の密度は、測定した重量から有機バインダーの重量を差し引いた値を成型体の重量とし、この成型体の重量と、上記測定値から算出した体積とから求めることができる。また、成型体が有機バインダーを含有し、この成型体の脱バインダー処理をカプセル容器の真空脱気処理をする前に行う場合、脱バインダー処理後の成型体の密度は、上述した成型体の密度の好ましい範囲内であるのが好ましく、上述した成型体の密度と同様に求めることができる。 The density of the molded body can be determined from the volume calculated from the measured value and the measured weight of the molded body by directly measuring the length of the molded body. For example, if the shape of the molded body is a cylindrical shape, the diameter and height of the molded body are directly measured to determine the volume of the cylindrical molded body, the weight is measured, and the density is calculated from the weight and volume. Can be calculated. In addition, when the molded body contains an organic binder and the binder removal treatment of the molded body is performed simultaneously with the vacuum deaeration process of the capsule container, the density of the molded body is a value obtained by subtracting the weight of the organic binder from the measured weight. The weight of the molded body can be obtained from the weight of the molded body and the volume calculated from the measured value. In addition, when the molded body contains an organic binder, and the debinding treatment of the molded body is performed before the vacuum degassing processing of the capsule container, the density of the molded body after the debinding process is the density of the molded body described above. It is preferable to be within the preferable range, and can be obtained in the same manner as the density of the molded body described above.
<工程(b)>
 工程(b)では、式:(カプセル容器への混合粉末の充填密度/焼結体の理論密度)×100から算出される混合粉末の充填率が50%以上となるように、上述のようにして得られた成型体をカプセル容器に充填した後、カプセル容器を気密封止してカプセルHIP処理をすることにより製造する。
<Step (b)>
In the step (b), as described above, the filling rate of the mixed powder calculated from the formula: (packing density of the mixed powder into the capsule container / theoretical density of the sintered body) × 100 is 50% or more. After the molded body thus obtained is filled into a capsule container, the capsule container is hermetically sealed and subjected to capsule HIP treatment.
 なお、上記式中の焼結体の理論密度とは、上述した相対密度を算出する式中の焼結体の理論密度と同様にして求めることができる。
 また、上記式中の混合粉末の充填密度とは、成型体をカプセル容器に充填した際、カプセル容器の内容積に対する成型体の質量である。混合粉末の充填密度の値は、成型体のサイズとカプセル容器内のサイズとの差が小さければ小さいほど、その成型体の密度の値に近づく。成型体のサイズがカプセル容器のサイズよりも大きいなど成型体がカプセル容器に収まらない場合、成型体を研磨等の機械加工によって、サイズを整えてからカプセル容器に収めればよい。なお、成型体が有機バインダーを含有し、この成型体の脱バインダー処理をカプセル容器の真空脱気処理と同時に行う場合、混合粉末の充填密度を求める際の成型体の質量とは、測定した重量から有機バインダーの重量を差し引いた値である。また、成型体が有機バインダーを含有し、この成型体の脱バインダー処理をカプセル容器の真空脱気処理をする前に行う場合、混合粉末の充填密度を求める際の成型体の質量とは、脱バインダー処理後に測定した成型体の重量である。
The theoretical density of the sintered body in the above formula can be obtained in the same manner as the theoretical density of the sintered body in the above formula for calculating the relative density.
The filling density of the mixed powder in the above formula is the mass of the molded body relative to the internal volume of the capsule container when the molded body is filled in the capsule container. The smaller the difference between the size of the molded body and the size in the capsule container, the closer the density value of the mixed powder is to the density value of the molded body. If the molded body does not fit in the capsule container because the size of the molded body is larger than the size of the capsule container, the molded body may be placed in the capsule container after the size is adjusted by mechanical processing such as polishing. In addition, when the molded body contains an organic binder and the binder removal treatment of the molded body is performed at the same time as the vacuum deaeration process of the capsule container, the mass of the molded body when determining the packing density of the mixed powder is the measured weight It is the value which deducted the weight of the organic binder from. In addition, when the molded body contains an organic binder, and the binder removal treatment of the molded body is performed before the vacuum degassing of the capsule container, the mass of the molded body when determining the packing density of the mixed powder is the desorption. It is the weight of the molded body measured after the binder treatment.
 混合粉末をカプセル容器内に充填して、混合粉末の充填率を50%以上とすることで、カプセルHIP法によるカプセル容器の収縮率を50%以下にすることができる。そのため、カプセル容器を破壊することなく混合粉末を加圧焼結でき、混合粉末由来のインジウム、亜鉛の揮発を抑制した高密度のIGZO焼結体とすることができる。
 なお、カプセル容器の収縮率とは、下記式で表される。
 カプセル容器の収縮率(%)=[1-(カプセルHIP処理後のカプセル容器の内容積/カプセルHIP処理前のカプセル容器の内容積)]×100
By filling the mixed powder in the capsule container and setting the filling rate of the mixed powder to 50% or more, the shrinkage ratio of the capsule container by the capsule HIP method can be reduced to 50% or less. Therefore, the mixed powder can be pressure-sintered without destroying the capsule container, and a high-density IGZO sintered body in which volatilization of indium and zinc derived from the mixed powder is suppressed can be obtained.
The shrinkage rate of the capsule container is represented by the following formula.
Shrinkage rate of capsule container (%) = [1− (inner volume of capsule container after capsule HIP treatment / inner volume of capsule container before capsule HIP process)] × 100
 成型体をカプセル容器に充填するとは、CIPや一軸プレス等により加圧成型体を作製し、この成型体を、カプセル容器内に成型体が崩れないようにすべて移すことをいう(例えば、慎重にヘラ形状のものを利用する)。この際、成型体が上述した有機バインダーを含むものであれば、大型の成型体であっても形を崩さずにすべてをカプセル容器内に移すことができる。また、混合粉末の充填率を50%以上にすることができれば、2個以上の成型体をカプセル容器内に充填してもよい。
 また、成型体をカプセル容器に移す際に、成型体が崩れやすいので、直接カプセル容器に充填すべき粉末を入れ一軸プレス成形を行い、混合粉末の充填率が50%以上となるように成型体を作製してもよい。
Filling the molded body into the capsule container means producing a pressure molded body by CIP, uniaxial press or the like, and transferring all the molded body into the capsule container so that the molded body does not collapse (for example, carefully Use a spatula shape). At this time, if the molded body contains the above-described organic binder, even a large molded body can be transferred into the capsule container without breaking the shape. If the filling rate of the mixed powder can be 50% or more, two or more molded bodies may be filled in the capsule container.
In addition, when the molded body is transferred to the capsule container, the molded body tends to collapse. Therefore, the powder to be filled directly into the capsule container is placed and uniaxial press molding is performed so that the filling ratio of the mixed powder is 50% or more. May be produced.
(カプセル容器)
 カプセル容器の材質としては、成型体を充分真空封止ができて、カプセルHIP処理における焼結温度にて充分変形するが破裂するおそれがない材料であればよく、例えば、鉄、ステンレス、アルミニウム、ステンレス、タンタル、ニオブ、銅、ニッケル等が用いられる。また、カプセルHIP処理の焼結温度によってカプセル容器を使い分けすることができる。例えば、カプセルHIP処理の焼結温度が低温領域(1000℃以下)では、銅、ニッケル、アルミニウムのカプセル容器を使用することができる。焼結温度が1000℃~1350℃領域では、鉄、ステンレスのカプセル容器が用いられる。焼結温度がそれより、高温領域ではタンタル、ニオブのカプセル容器が用いられる。焼結温度にもよるが、アルミニウム、鉄またはステンレスのカプセル容器がコスト的に安価で好ましい。
(Capsule container)
As the material of the capsule container, any material can be used as long as the molded body can be sufficiently vacuum-sealed and can be sufficiently deformed at the sintering temperature in the capsule HIP processing but does not have a risk of bursting. For example, iron, stainless steel, aluminum, Stainless steel, tantalum, niobium, copper, nickel, etc. are used. Moreover, a capsule container can be properly used according to the sintering temperature of the capsule HIP process. For example, when the sintering temperature of the capsule HIP treatment is in a low temperature region (1000 ° C. or lower), a capsule container made of copper, nickel, or aluminum can be used. When the sintering temperature is 1000 ° C. to 1350 ° C., iron and stainless capsule containers are used. Tantalum and niobium capsule containers are used in the higher temperature range than the sintering temperature. Depending on the sintering temperature, a capsule container of aluminum, iron or stainless steel is preferable because of its low cost.
 カプセル容器の形状や寸法は、特に限定されず、所望の焼結体の形状に合わせた形状に合わせればよい。例えば、円柱形状、矩形状等を用いることができる。
 カプセル容器のサイズは、カプセル容器内に成型体を充填した際に、混合粉末の充填率を50%以上とすることができるサイズであれば、成型体のサイズよりも大きくても小さくてもよい。円柱形状、矩形形状であれば、IGZO焼結体の均一性(相対密度、組成)が維持される。
 カプセル容器の壁厚は、1.5mm~5mmが好ましい。この範囲内であれば、カプセル容器が容易に軟化し、変形することができ、焼結反応が進むに従い、焼結体に追随して収縮することができる。
The shape and dimensions of the capsule container are not particularly limited, and may be matched to a desired shape of the sintered body. For example, a cylindrical shape, a rectangular shape, or the like can be used.
The size of the capsule container may be larger or smaller than the size of the molded body as long as the filling ratio of the mixed powder can be 50% or more when the molded body is filled in the capsule container. . If it is a cylindrical shape or a rectangular shape, the uniformity (relative density, composition) of the IGZO sintered body is maintained.
The wall thickness of the capsule container is preferably 1.5 mm to 5 mm. Within this range, the capsule container can be easily softened and deformed, and can shrink following the sintered body as the sintering reaction proceeds.
(真空脱気処理)
 カプセルHIP処理を行う際に、成型体をカプセル容器内に充填し、カプセル容器内の真空引きをする真空脱気処理を行う。この真空引きにて、混合粉等に付着しているガス、吸着水分の除去することができる。
 真空引きする際のカプセル容器の加熱温度は100℃以上600℃以下であることが好ましい。なお、成型体が有機バインダーを含む場合には、真空引きする際のカプセル容器の加熱温度は上述したように、450~700℃程度である。
 カプセル容器の真空引きは、カプセル容器を加熱しながら、カプセル容器内の圧力を1.33×10-2Pa以下となるまで減圧する。真空引き後のカプセル容器内の圧力が1.33×10-2Paを超えたままであると、混合粉末に付着しているガス、吸着水分の除去が充分に行われないため、高密度の焼結体が得られないおそれがある。
(Vacuum degassing treatment)
When performing the capsule HIP process, a vacuum deaeration process is performed in which the molded body is filled in a capsule container and the capsule container is evacuated. By this evacuation, the gas and adsorbed moisture adhering to the mixed powder can be removed.
The heating temperature of the capsule container when evacuating is preferably 100 ° C. or higher and 600 ° C. or lower. When the molded body contains an organic binder, the heating temperature of the capsule container when evacuating is about 450 to 700 ° C. as described above.
In evacuation of the capsule container, the pressure in the capsule container is reduced to 1.33 × 10 −2 Pa or less while heating the capsule container. If the pressure in the capsule container after evacuation exceeds 1.33 × 10 -2 Pa, the gas and adsorbed moisture adhering to the mixed powder will not be sufficiently removed. There is a risk that no union is obtained.
 カプセルHIP処理を行う際は、カプセル容器に排気管を接続し、上記のようにして、加熱、真空引きを実施し、カプセル容器内の圧力が1.33×10-2Pa以下になれば、カプセル容器に接続された排気管を閉じ、カプセル容器を封止する。 When performing capsule HIP treatment, connect the exhaust pipe to the capsule container, perform heating and evacuation as described above, and if the pressure in the capsule container is 1.33 × 10 −2 Pa or less, The exhaust pipe connected to the capsule container is closed, and the capsule container is sealed.
(カプセルHIP処理)
 カプセルHIP処理は、この真空封止したカプセル容器をHIP装置に配置して行う。
 カプセルHIP処理は、高温高圧下の不活性ガスを圧力媒体として、カプセル容器自体に圧力を加えて、カプセル容器内部の混合粉末(成型体)の焼結を行うものである。カプセルHIP処理が酸化性雰囲気下で行われると、カプセル容器自体が酸化されるため、カプセル容器自身の機械的強度が大幅に低下し、カプセルHIP処理中にカプセル容器が破裂してしまう可能性があり、その結果、高密度のIGZO焼結体とすることができないおそれがある。混合粉末はカプセル容器内に真空封止にて閉じこめられている閉鎖空間なので、インジウム、亜鉛の揮散もなく組成ずれもおこることはない。
(Capsule HIP processing)
Capsule HIP processing is performed by placing the vacuum-sealed capsule container in a HIP apparatus.
In the capsule HIP treatment, the mixed powder (molded body) inside the capsule container is sintered by applying pressure to the capsule container itself using an inert gas at high temperature and high pressure as a pressure medium. When the capsule HIP process is performed in an oxidizing atmosphere, the capsule container itself is oxidized, so that the mechanical strength of the capsule container itself is greatly reduced, and the capsule container may burst during the capsule HIP process. As a result, there is a possibility that a high density IGZO sintered body cannot be obtained. Since the mixed powder is a closed space confined in the capsule container by vacuum sealing, there is no volatilization of indium and zinc, and no composition shift occurs.
 カプセルHIP処理条件は、焼結体の相対密度を97~100%とすることができる条件であればよく、例えば、下記のように設定すればよい。
 圧力媒体としてのガスとしては、窒素、アルゴン等の不活性ガスを用いるのが好ましい。カプセル容器への加圧力は、好ましくは50MPa以上である。カプセルHIP処理における焼結時間は1時間以上であるのが好ましい。焼結温度は1000~1400℃、より好ましくは1100~1300℃である。カプセルHIP処理における焼結温度が上記範囲内であれば、カプセル容器の材料が軟化、変形する温度領域であり、カプセルHIP処理に際して、負荷する圧力は金属カプセルが抵抗となることなく、焼結体に圧力を100%かけることができる。特に、焼結温度が1000℃~1400℃で、圧力50MPa以上の条件で1時間以上行うことが好ましい。なお、カプセルHIP処理条件で温度が1000℃未満、圧力50MPa未満では、得られる焼結体の相対密度が90%未満と低くなる。
The capsule HIP treatment conditions may be any conditions as long as the relative density of the sintered body can be 97 to 100%. For example, the capsule HIP treatment conditions may be set as follows.
As the gas as the pressure medium, an inert gas such as nitrogen or argon is preferably used. The pressure applied to the capsule container is preferably 50 MPa or more. The sintering time in the capsule HIP treatment is preferably 1 hour or longer. The sintering temperature is 1000 to 1400 ° C, more preferably 1100 to 1300 ° C. If the sintering temperature in the capsule HIP treatment is within the above range, the material of the capsule container is in a temperature region where the material is softened and deformed. The pressure can be applied to 100%. In particular, the sintering temperature is preferably 1000 ° C. to 1400 ° C. and the pressure is 50 MPa or more for 1 hour or more. Note that when the temperature is less than 1000 ° C. and the pressure is less than 50 MPa under the capsule HIP processing conditions, the relative density of the obtained sintered body is as low as less than 90%.
(IGZO焼結体)
 本発明のIn-Ga-Zn系複合酸化物焼結体(IGZO焼結体)は、インジウム(In)、ガリウム(Ga)、亜鉛(Zn)及び酸素(O)を構成元素として含み、典型的に原子の99%以上がインジウムと、ガリウムと、亜鉛と、酸素とからなり、下記式で表わすことができる。
 式:InxGayZnza
[式中、x/(x+y)が0.2~0.8、z/(x+y+z)が0.1~0.5、a=(3/2)x+(3/2)y+z]
で表され、例えば、x:y:z=1:1:1の場合は、InGaZnO4と、x:y:z=2:2:1の場合は、In2Ga2ZnO7と表すことができる。なかでも、この2組成が特性的に好ましい。
 また、本発明のIGZO焼結体は不純物金属元素M(Sn、Zr、Ti、Mo、Si、Cr、W、Ge、V、Mn)を含まない。すなわち、本発明のIGZO焼結体における不純物金属元素Mの含有率[M/(In+Ga+Zn+M):重量比]は、10ppm未満である。
 IGZO焼結体の不純物金属元素Mの含有量は、実施例に記載の評価方法によって測定することができる。
(IGZO sintered body)
The In—Ga—Zn-based composite oxide sintered body (IGZO sintered body) of the present invention contains indium (In), gallium (Ga), zinc (Zn), and oxygen (O) as constituent elements, and is typically In addition, 99% or more of the atoms are composed of indium, gallium, zinc, and oxygen, which can be expressed by the following formula.
Formula: In x Ga y Zn z O a
[Wherein, x / (x + y) is 0.2 to 0.8, z / (x + y + z) is 0.1 to 0.5, a = (3/2) x + (3/2) y + z]
For example, when x: y: z = 1: 1: 1, it can be expressed as InGaZnO 4, and when x: y: z = 2: 2: 1, it can be expressed as In 2 Ga 2 ZnO 7. it can. Among these, these two compositions are preferable in terms of characteristics.
Moreover, the IGZO sintered body of the present invention does not contain the impurity metal element M (Sn, Zr, Ti, Mo, Si, Cr, W, Ge, V, Mn). That is, the content [M / (In + Ga + Zn + M): weight ratio] of the impurity metal element M in the IGZO sintered body of the present invention is less than 10 ppm.
The content of the impurity metal element M in the IGZO sintered body can be measured by the evaluation method described in the examples.
 インジウムとガリウムの合計量に対するインジウムの原子数比x/(x+y)が0.8を超えると、スパッタ成膜して得られる膜のキャリア濃度が高過ぎてしまい、その膜を活性層とする薄膜トランジスタ特性の重要な指標であるon/off比が悪くなってしまう。一方、このインジウムの原子数比x/(x+y)が0.2未満になると、スパッタ成膜して得られる膜のキャリア濃度が低くなり過ぎてしまうと共に、膜の移動度も低下してしまって、素子特性上、好ましくない。
 また、IGZO焼結体は、インジウムとガリウムと亜鉛の合計量に対する亜鉛の原子数比z/(x+y+z)が0.5を超えると、スパッタ成膜して得られる膜の安定性、耐湿性等が劣化してしまう。一方、この亜鉛の原子数比z/(x+y+z)が0.1未満になると、スパッタ成膜して得られる膜の非晶質性が弱くなり、結晶化し易くなってしまう。
 結晶化膜は膜特性の面内ばらつきが大きく、素子特性のばらつきを大きくしてしまう。更に、亜鉛の原子数比z/(x+y+z)の減少とは、インジウムとガリウムと亜鉛の合計量に対するInとGaの合計量の比の増加であり、これら2種類の金属は亜鉛金属と比較し高価であるため、IGZO焼結体のコストアップとなってしまう。
 本明細書中において、aは化学的量論組成と一致した場合についての記載をしているが、IGZO焼結体中の酸素量は、化学的量論組成からずれて、多少酸素欠損していることの方が常態であり、本発明はそのように酸素欠損を有したIGZO焼結体をも包含するのである。
If the atomic ratio x / (x + y) of indium to the total amount of indium and gallium exceeds 0.8, the carrier concentration of the film obtained by sputtering film formation is too high, and the thin film transistor having the film as an active layer The on / off ratio, which is an important indicator of characteristics, is deteriorated. On the other hand, when the atomic ratio x / (x + y) of indium is less than 0.2, the carrier concentration of the film obtained by sputtering film formation becomes too low, and the mobility of the film also decreases. This is not preferable in terms of device characteristics.
Moreover, when the atomic ratio z / (x + y + z) of zinc with respect to the total amount of indium, gallium and zinc exceeds 0.5, the stability of the film obtained by sputter deposition, moisture resistance, etc. Will deteriorate. On the other hand, when the atomic ratio z / (x + y + z) of zinc is less than 0.1, the amorphousness of the film obtained by sputtering film formation becomes weak and crystallization becomes easy.
The crystallized film has a large in-plane variation in film characteristics, resulting in a large variation in element characteristics. Furthermore, the decrease in the atomic ratio z / (x + y + z) of zinc is an increase in the ratio of the total amount of In and Ga to the total amount of indium, gallium and zinc. These two types of metals are compared with zinc metal. Since it is expensive, the cost of the IGZO sintered body is increased.
In the present specification, “a” describes the case where the stoichiometric composition coincides with the stoichiometric composition, but the oxygen amount in the IGZO sintered body deviates somewhat from the stoichiometric composition and is somewhat oxygen deficient. Therefore, the present invention includes such an IGZO sintered body having oxygen vacancies.
 得られた焼結体のバルク抵抗値は、好ましくは1.0×10-3Ω・cm未満、より好ましくは8×10-4Ω・cm以下、さらに好ましくは7×10-4Ω・cm以下であり、導電性に優れた焼結体であるため、特にDCスパッタリング法におけるターゲットとして、好適であり、異常放電がなく安定に高速に均一なアモルファスの半導体膜の形成を効率よく行うことができる。
 IGZO焼結体のバルク抵抗値は、実施例に記載の評価方法によって測定することができる。
The bulk resistance value of the obtained sintered body is preferably less than 1.0 × 10 −3 Ω · cm, more preferably 8 × 10 −4 Ω · cm or less, and further preferably 7 × 10 −4 Ω · cm. Since it is a sintered body excellent in electrical conductivity, it is particularly suitable as a target in the DC sputtering method, and it is possible to efficiently form a uniform amorphous semiconductor film stably and at high speed without abnormal discharge. it can.
The bulk resistance value of the IGZO sintered body can be measured by the evaluation method described in the examples.
(ターゲット)
 本発明のターゲットは、スパッタリング法、イオンプレーティング法、パルスレーザーデポジション(PLD)法またはエレクトロンビーム(EB)蒸着法による成膜に用いられ、本発明の製造方法により得られたIGZO焼結体を加工してなる。本発明のターゲットは高密度で、通常相対密度として97%以上、好ましくは99%以上、より好ましくは100%であるためスパッタリングにて成膜する際、異常放電が発生しにくく、安定に成膜することができる。
 なお、このような成膜の際に用いる固形材料のことを「タブレット」と称する場合もあるが、本発明においてはこれらを含め「ターゲット」と称することとする。
(target)
The target of the present invention is used for film formation by sputtering, ion plating, pulsed laser deposition (PLD) or electron beam (EB) vapor deposition, and is an IGZO sintered body obtained by the manufacturing method of the present invention. Is processed. Since the target of the present invention has a high density and is usually 97% or more, preferably 99% or more, and more preferably 100% as a relative density, abnormal deposition hardly occurs when forming a film by sputtering, and the film is stably formed. can do.
In addition, although the solid material used in the film formation may be referred to as “tablet”, in the present invention, these are referred to as “target”.
 本発明のターゲットは、スパッタリングターゲットとして、スパッタ成膜に用いられる場合、IGZO焼結体の相対密度は通常97%以上であり、好ましくは99%以上、より好ましくは100%であるので、スパッタ時間の経過に伴って、ノジュールの発生の頻度、異常放電の発生頻度は劇的に減らすことができ、スパッタの生産効率も向上し、得られる膜特性にも優れる。 When the target of the present invention is used for sputtering film formation as a sputtering target, the relative density of the IGZO sintered body is usually 97% or more, preferably 99% or more, more preferably 100%. As the time elapses, the frequency of nodule generation and the frequency of abnormal discharge can be dramatically reduced, the sputter production efficiency is improved, and the film properties obtained are excellent.
 本発明のターゲットは、上述したIGZO焼結体を所定の形状および所定の寸法に加工してなる。ターゲットの製作に際しては、上記によって得られたIGZO焼結体の外周の円筒研削、面側の平面研削をすることによって、例えば152.4φ×5tmmのターゲットに加工する。これをさらに、例えば銅製のバッキングプレートに、インジウム系合金などをボンディングメタルとして、貼り合わせることでスパッタリングターゲットとすることができる。
 加工方法は、特に制限されず、適宜公知の方法を採用すればよい。例えば、IGZO焼結体に平面研削等を施した後、所定の寸法に切断してから、支持台に貼着することにより、本発明のターゲットを得ることができる。また、必要に応じて、複数枚のIGZO焼結体を分割形状にならべて、大面積のターゲット(複合ターゲット)としてもよい。
The target of the present invention is formed by processing the above-described IGZO sintered body into a predetermined shape and a predetermined dimension. When the target is manufactured, for example, the target is 152.4φ × 5 tmm by performing cylindrical grinding on the outer periphery of the IGZO sintered body obtained as described above and surface grinding on the surface side. Further, for example, an indium alloy or the like can be bonded to a copper backing plate as a bonding metal to obtain a sputtering target.
A processing method in particular is not restrict | limited, What is necessary is just to employ | adopt a well-known method suitably. For example, the target of the present invention can be obtained by subjecting the IGZO sintered body to surface grinding or the like, and then cutting it to a predetermined dimension and then attaching it to a support base. Further, if necessary, a plurality of IGZO sintered bodies may be divided into divided shapes to form a large-area target (composite target).
(透明半導体膜)
 IGZO焼結体または本発明のターゲットを用いて基板等の対象物にスパッタすることにより、安定した半導体特性を示す薄膜トランジスタのチャネル層として良好な特性を備える透明半導体膜を形成することができる。
 透明半導体膜の膜厚は、移動度が高く、S値が低い半導体とする点で45nm以下であるのが好ましい。
(Transparent semiconductor film)
By sputtering an object such as a substrate using the IGZO sintered body or the target of the present invention, a transparent semiconductor film having favorable characteristics as a channel layer of a thin film transistor exhibiting stable semiconductor characteristics can be formed.
The film thickness of the transparent semiconductor film is preferably 45 nm or less in terms of a semiconductor having a high mobility and a low S value.
 スパッタリング方式としては、DCスパッタ法、ACスパッタ法、RFマグネトロンスパッタ法、エレクトロンビーム蒸着法、イオンプレーティング法等が挙げられ、好ましくはDCスパッタ法である。
 スパッタリング時のチャンバー内の圧力は、例えばDCスパッタ法の場合は、通常0.1~2.0MPaであり、好ましくは0.3~0.8MPaである。スパッタ時におけるターゲット面の単位面積当たりの投入電力は、例えばDCスパッタ法の場合は、通常0.5~6.0W/cm2であり、好ましくは1.0~5.0W/cm2である。スパッタ時のキャリアーガスとしては、例えば酸素、ヘリウム、アルゴン、キセノン、クリプトンなどが挙げられ、好ましくはアルゴンと酸素の混合ガスである。アルゴンと酸素の混合ガスのアルゴン:酸素の流量比は、通常、Ar:O2=100:0~80:20であり、好ましくは100:0~90:10である。基板としては、ガラス、樹脂(PET、PES等)などを用いることができる。成膜時の膜厚としては、1~45nmが好ましく、3~30nmがさらに好ましく、5~20nmが特に好ましい。
Examples of the sputtering method include a DC sputtering method, an AC sputtering method, an RF magnetron sputtering method, an electron beam evaporation method, an ion plating method, and the like, and a DC sputtering method is preferable.
For example, in the case of the DC sputtering method, the pressure in the chamber during sputtering is usually 0.1 to 2.0 MPa, and preferably 0.3 to 0.8 MPa. Closing electric power per unit area of the target surface during sputtering, if for example, the DC sputtering method is generally 0.5 ~ 6.0W / cm 2, is preferably 1.0 ~ 5.0W / cm 2 . Examples of the carrier gas at the time of sputtering include oxygen, helium, argon, xenon, krypton, and the like, and preferably a mixed gas of argon and oxygen. The flow ratio of argon: oxygen in the mixed gas of argon and oxygen is usually Ar: O 2 = 100: 0 to 80:20, preferably 100: 0 to 90:10. As the substrate, glass, resin (PET, PES, or the like) can be used. The film thickness at the time of film formation is preferably 1 to 45 nm, more preferably 3 to 30 nm, and particularly preferably 5 to 20 nm.
 以下、実施例および比較例に基づいて説明する。なお、本実施例はあくまで本発明の一例であり、この例によって本発明は何ら制限されるものではなく、本発明に含まれる実施例以外の種々の変形を包含するものである。 Hereinafter, description will be made based on examples and comparative examples. In addition, a present Example is an example of this invention to the last, This invention is not restrict | limited at all by this example, Various modifications other than the Example contained in this invention are included.
(実施例1)
 酸化インジウム粉末(In23、添川理化学(株)製、1次粒子サイズ:1μm)、酸化ガリウム粉末(Ga23、ヤマナカヒューテック(株)製、1次粒子サイズ:1.5μm)、酸化亜鉛粉末(ZnO、ハクスイテック(株)製、1次粒子サイズ:1.5μm)をインジウム元素とガリウム元素と亜鉛元素との原子数比が1:1:1となるように秤量し、自動乳鉢にて1時間、乾式混合を行い、混合粉末を得た。
(Example 1)
Indium oxide powder (In 2 O 3 , manufactured by Soekawa Richemical Co., Ltd., primary particle size: 1 μm), gallium oxide powder (Ga 2 O 3 , manufactured by Yamanaka Futec Co., Ltd., primary particle size: 1.5 μm), Zinc oxide powder (ZnO, manufactured by Hakusuitec Co., Ltd., primary particle size: 1.5 μm) is weighed so that the atomic ratio of indium element, gallium element and zinc element is 1: 1: 1, and an automatic mortar For 1 hour to obtain a mixed powder.
 次いで、この混合粉末に冷間静水圧プレスにて300MPaの圧力をかけて加圧成形し、切削加工を行い、直径115mm、高さ40mmの円柱状成型体を得た。円柱状成型体の密度は3.61g/cm3であった。
 なお、成型体の密度は、直接成型体の測長を行い、測長した直径と高さから算出した体積と、測定した成型体の重量とから求めた。
Next, this mixed powder was press-molded by applying a pressure of 300 MPa with a cold isostatic press and cut to obtain a cylindrical molded body having a diameter of 115 mm and a height of 40 mm. The density of the cylindrical molded body was 3.61 g / cm 3 .
The density of the molded body was determined by directly measuring the molded body and calculating the volume calculated from the measured diameter and height, and the measured weight of the molded body.
<IGZO焼結体の製造>
 円柱状の成型体をステンレス(SUS304)でできたカプセル容器(外径:121mm、内径:115mm、容器内部の高さ:40mm)に成型体が崩れないようにカプセル容器に移し、カプセル容器内に一杯に詰めた(充填した)ところ、混合粉末の充填密度は3.61g/cm3となり、焼結体の理論密度が6.379g/cm3であることから混合粉末の充填率は56.6%となった。
 なお、充填密度および焼結体の理論密度は、下記式より求めた。
 充填密度=成型体の重量/カプセル容器の内容積
 焼結体の理論密度は、インジウム元素とガリウム元素と亜鉛元素との原子数比が1:1:1に対応する結晶相として、JCPDSカードにはInGaZnO4(JCPDSカード番号:381104)という単相結晶の情報があり、JCPDSカードに記載されたこの単相結晶の理論密度を採用した。
<Manufacture of IGZO sintered body>
The cylindrical molded body is transferred to a capsule container (outer diameter: 121 mm, inner diameter: 115 mm, height inside the container: 40 mm) made of stainless steel (SUS304) so that the molded body does not collapse, and is placed in the capsule container. When filled (filled), the packing density of the mixed powder was 3.61 g / cm 3 , and the theoretical density of the sintered body was 6.379 g / cm 3 , so the packing ratio of the mixed powder was 56.6. %.
The packing density and the theoretical density of the sintered body were obtained from the following formula.
Filling density = Molded body weight / Capsule container internal volume The theoretical density of the sintered body is the crystal phase corresponding to the 1: 1 atomic ratio of indium, gallium and zinc elements. Has information on a single-phase crystal called InGaZnO 4 (JCPDS card number: 381104), and the theoretical density of this single-phase crystal described in the JCPDS card was adopted.
 カプセル容器に混合粉末を充填した後に、排気管を上蓋に溶接し、その後上蓋とカプセル容器を溶接した。カプセル容器の溶接部の健全性を確認するため、Heリーク検査を行った。この時の漏れ量を1×10-9Pa・m3/sec以下とした。その後、550℃で7時間、カプセル容器内の真空引きを行った後、カプセル容器内が1.33×10-2Pa以下になったことを確認し、排気管を閉じ、カプセル容器の封止を行った。封止したカプセル容器をHIP処理装置((株)神戸製鋼所製)に挿入し、カプセルHIP処理を行った。カプセルHIP処理は、温度1220℃、圧力100MPaのArガス(純度99.9%)を圧力媒体とし、4時間の処理条件で行った。 After filling the capsule container with the mixed powder, the exhaust pipe was welded to the upper lid, and then the upper lid and the capsule container were welded. In order to confirm the soundness of the welded part of the capsule container, a He leak test was performed. The amount of leakage at this time was 1 × 10 −9 Pa · m 3 / sec or less. Then, after evacuating the capsule container for 7 hours at 550 ° C., confirm that the inside of the capsule container is 1.33 × 10 −2 Pa or less, close the exhaust pipe, and seal the capsule container Went. The sealed capsule container was inserted into a HIP processing apparatus (manufactured by Kobe Steel, Ltd.) and subjected to capsule HIP processing. The capsule HIP treatment was performed under a treatment condition of 4 hours using Ar gas (purity: 99.9%) at a temperature of 1220 ° C. and a pressure of 100 MPa as a pressure medium.
 カプセルHIP処理後、カプセル容器を取り外し、円柱型のIGZO焼結体(1)を得た。この焼結体(1)のサイズを、直接測長して求めたところ、直径95.1mm、高さ33.1mmであった。
 このIGZO焼結体(1)の相対密度は100%であり、焼結体のバルク抵抗値は、6.2×10-4Ω・cmであった。また、電子顕微鏡にてIGZO焼結体(1)を観察したところ、空孔もほとんどなく緻密な焼結体であった。
 なお、相対密度は、下式に示すように求めた。
 相対密度=100×[(焼結体の密度)/(焼結体の理論密度)]
 なお、焼結体の理論密度は、JCPDSカードに記載のInGaZnO4(JCPDSカード番号:381104)の理論密度を採用した。
 焼結体の密度は、測長法により測定した。
 また、バルク抵抗値は、抵抗率計(三菱化学(株)製「LORESTA‐GP、MCP‐T610」)を用いて、四端子四探針法により測定した。詳しくは、IGZO焼結体(1)に4本の針状の電極を直線上に置き、外側の二探針間と内側の二探針間とに一定の電流を流し、内側の二探針間に生じる電位差を測定して抵抗を求めた。
After the capsule HIP treatment, the capsule container was removed to obtain a cylindrical IGZO sintered body (1). When the size of the sintered body (1) was directly measured, it was 95.1 mm in diameter and 33.1 mm in height.
The relative density of this IGZO sintered body (1) was 100%, and the bulk resistance value of the sintered body was 6.2 × 10 −4 Ω · cm. Further, when the IGZO sintered body (1) was observed with an electron microscope, it was a dense sintered body with almost no voids.
The relative density was determined as shown in the following formula.
Relative density = 100 × [(density of sintered body) / (theoretical density of sintered body)]
The theoretical density of the sintered body was the theoretical density of InGaZnO 4 (JCPDS card number: 381104) described in the JCPDS card.
The density of the sintered body was measured by a length measurement method.
The bulk resistance value was measured by a four-terminal four-probe method using a resistivity meter (“LORESTA-GP, MCP-T610” manufactured by Mitsubishi Chemical Corporation). Specifically, four needle-like electrodes are placed on a straight line on the IGZO sintered body (1), and a constant current is passed between the outer two probes and the inner two probes, and the inner two probes. The potential difference generated between them was measured to determine the resistance.
 得られたIGZO焼結体(1)に表面研削、外周研削ついで表面研磨を施し、直径が50.8mmφ、厚さ3mmの焼結体とした。
 得られたIGZO焼結体(1)をICP(高周波誘導結合プラズマ)分析装置(SEIKO(株)製「SPS5000」)にて分析したところ、InとGaとZnの原子数比はIn:Ga:Zn=1:1:1であった。このIGZO焼結体(1)のInとGaとZnの原子数比は、仕込み組成である、In:Ga:Zn=1:1:1とまったくずれていないことから、インジウムや亜鉛の揮散はなかった。
 また、IGZO焼結体(1)に含まれると予想される不純物金属元素M(Sn、Zr、Ti、Mo、Si、Cr、W、Ge、V、Mn)の各含有率についてもICP分析装置にて分析をおこなった。分析結果より、IGZO焼結体(1)の成分金属(In、Ga、Zn)に対する不純物金属元素Mの含有率[M/(In+Ga+Zn+M):重量比]を算出したところ、各不純物金属元素Mの含有率はすべて10ppm未満であった。
The obtained IGZO sintered body (1) was subjected to surface grinding, outer circumference grinding, and surface polishing to obtain a sintered body having a diameter of 50.8 mmφ and a thickness of 3 mm.
When the obtained IGZO sintered body (1) was analyzed with an ICP (high frequency inductively coupled plasma) analyzer (“SPS5000” manufactured by SEIKO Co., Ltd.), the atomic ratio of In, Ga, and Zn was In: Ga: Zn = 1: 1: 1. Since the atomic ratio of In, Ga, and Zn in this IGZO sintered body (1) is not shifted at all from the charged composition, In: Ga: Zn = 1: 1: 1, the volatilization of indium and zinc is There wasn't.
Also, an ICP analyzer for each content of impurity metal elements M (Sn, Zr, Ti, Mo, Si, Cr, W, Ge, V, Mn) expected to be included in the IGZO sintered body (1) The analysis was done. From the analysis results, the content ratio [M / (In + Ga + Zn + M): weight ratio] of the impurity metal element M to the component metals (In, Ga, Zn) of the IGZO sintered body (1) was calculated. All the contents were less than 10 ppm.
 このIGZO焼結体(1)を、銅板をバッキングプレートとして用い、インジウム半田を用いてボンディングし、スパッタリングターゲットを得た。これを用いてDCスパッタリング法により透明基材(無アルカリガラス基板)上に透明半導体膜を成膜して、透明半導体基板を得た。すなわち、スパッタリング装置(キャノンアネルバエンジニアリング(株)製「E-200」)内に、上記ターゲットと透明基材(石英ガラス基板)とをそれぞれ設置し、Arガス(純度99.9995%以上、Ar純ガス=5N)を12sccmで導入して、圧力0.5Pa、ターゲット面の単位面積当たりの投入電力3.8W/cm2、基板温度は室温の条件下で10時間連続DCスパッタリングを行い、基板上にキャリアの移動度が大きく、安定したアモルファス透明半導体膜を形成した。
 その結果、ターゲット表面には、ほとんどノジュールが発生することなく、成膜中にほとんど異常放電は発生しなかった。具体的には、成膜中に発生した異常放電の回数は、1時間あたり3回以内であり、この異常放電の発生に起因するスパッタリング装置の運転停止は一度もなかった。異常放電の回数は、マイクロアークモニターにより検出した。
This IGZO sintered body (1) was bonded using indium solder using a copper plate as a backing plate to obtain a sputtering target. Using this, a transparent semiconductor film was formed on a transparent substrate (non-alkali glass substrate) by a DC sputtering method to obtain a transparent semiconductor substrate. That is, in the sputtering apparatus (“E-200” manufactured by Canon Anelva Engineering Co., Ltd.), the target and the transparent base material (quartz glass substrate) were respectively installed, and Ar gas (purity 99.9995% or more, Ar pure) Gas = 5N) is introduced at 12 sccm, DC sputtering is performed for 10 hours under conditions of a pressure of 0.5 Pa, an input power of 3.8 W / cm 2 per unit area of the target surface, and a substrate temperature of room temperature. In addition, a stable amorphous transparent semiconductor film with high carrier mobility was formed.
As a result, almost no nodules were generated on the target surface, and almost no abnormal discharge occurred during film formation. Specifically, the number of abnormal discharges that occurred during film formation was within 3 times per hour, and there was never a shutdown of the sputtering apparatus due to the occurrence of abnormal discharges. The number of abnormal discharges was detected by a micro arc monitor.
 以上より、インジウムや亜鉛の揮散がない為、IGZO焼結体(1)の原料である混合粉末の組成と、得られたIGZO焼結体(1)の組成とはまったくずれがなく、極めて高密度(相対密度:100%)かつ低抵抗のIGZO焼結体であり、その結果、IGZO焼結体(1)を加工してなるターゲットを用いてDCスパッタリングしてもスパッタリング装置の運転が停止することなく安定に製膜できた。 From the above, since there is no volatilization of indium and zinc, the composition of the mixed powder, which is the raw material of the IGZO sintered body (1), and the composition of the obtained IGZO sintered body (1) do not deviate at all and are extremely high. This is an IGZO sintered body having a density (relative density: 100%) and low resistance. As a result, even if DC sputtering is performed using a target obtained by processing the IGZO sintered body (1), the operation of the sputtering apparatus is stopped. The film could be formed stably without any problems.
 以上のように、極めて簡易な短い製造プロセスにて、混合粉末の粒径はナノ粒子サイズでないため、ナノマテリアルの問題もなく高密度(相対密度:100%)な焼結体を作製できた。 As described above, since the particle size of the mixed powder is not a nanoparticle size by a very simple short manufacturing process, a high-density (relative density: 100%) sintered body could be produced without any problem of nanomaterials.
(実施例2)
 酸化インジウム粉末(In23、添川理化学(株)製、1次粒子サイズ:1μm)、酸化ガリウム粉末(Ga23、ヤマナカヒューテック(株)製、1次粒子サイズ:1.5μm)、酸化亜鉛粉末(ZnO、ハクスイテック(株)製、1次粒子サイズ:1.5μm)をインジウム元素とガリウム元素と亜鉛元素との原子数比が2:2:1となるように秤量し、自動乳鉢にて1時間、乾式混合を行った。
 次いで、冷間静水圧プレスにて300MPaの圧力をかけて加圧成形し、切削加工を行い、直径115mmφ、高さ40mmの円柱状成型体を得た。円柱状成型体の密度は3.56g/cm3であった。
 なお、成型体の密度は、直接成型体の測長を行い、測長した直径と高さから算出した体積と、測定した成型体の重量とから求めた。
(Example 2)
Indium oxide powder (In 2 O 3 , manufactured by Soekawa Richemical Co., Ltd., primary particle size: 1 μm), gallium oxide powder (Ga 2 O 3 , manufactured by Yamanaka Futec Co., Ltd., primary particle size: 1.5 μm), Zinc oxide powder (ZnO, manufactured by Hakusuitec Co., Ltd., primary particle size: 1.5 μm) is weighed so that the atomic ratio of indium element, gallium element and zinc element is 2: 2: 1, and an automatic mortar For 1 hour.
Subsequently, it was press-molded by applying a pressure of 300 MPa in a cold isostatic press and cut to obtain a cylindrical molded body having a diameter of 115 mmφ and a height of 40 mm. The density of the cylindrical molded body was 3.56 g / cm 3 .
The density of the molded body was determined by directly measuring the molded body and calculating the volume calculated from the measured diameter and height, and the measured weight of the molded body.
<IGZO焼結体の製造>
 円柱状の成型体をステンレス(SUS304)でできたカプセル容器(外径:121mm、内径:115mm、容器内部の高さ:40mm)に成型体が崩れないようにカプセル容器に移し、カプセル容器内に一杯に詰めた(充填した)ところ、混合粉末の充填密度は3.56g/cm3となり、焼結体の理論密度が6.495g/cm3であることから混合粉末の充填率は54.8%となった。
 なお、充填密度および焼結体の理論密度は、下記式より求めた。
 充填密度=成型体の重量/カプセル容器の内容積
 焼結体の理論密度はインジウム元素とガリウム元素と亜鉛元素との原子数が2:2:1に対応する結晶相として、JCPDSカードにはIn2Ga2ZnO7(JCPDSカード番号:381097)の単相結晶の情報があり、JCPDSカードに記載されたこの単相結晶の理論密度を採用した。
<Manufacture of IGZO sintered body>
The cylindrical molded body is transferred to a capsule container (outer diameter: 121 mm, inner diameter: 115 mm, height inside the container: 40 mm) made of stainless steel (SUS304) so that the molded body does not collapse, and is placed in the capsule container. When filled (filled), the packing density of the mixed powder was 3.56 g / cm 3 , and the theoretical density of the sintered body was 6.495 g / cm 3 , so the packing ratio of the mixed powder was 54.8. %.
The packing density and the theoretical density of the sintered body were obtained from the following formula.
Filling density = Molded body weight / Capsule container inner volume The theoretical density of the sintered body is the crystal phase corresponding to the number of atoms of indium element, gallium element and zinc element is 2: 2: 1. 2 Ga 2 ZnO 7 (JCPDS card number: 381097) contains information single phase crystal, it was adopted theoretical density of the single-phase crystal described in JCPDS card.
 カプセル容器に混合粉末を充填した後に、排気管を上蓋に溶接し、その後上蓋とカプセル容器を溶接した。カプセル容器の溶接部の健全性を確認するため、Heリーク検査を行った。この時の漏れ量を1×10-9Pa・m3/sec以下とした。その後、550℃で7時間、カプセル容器内の真空引きを行った後、カプセル容器内が1.33×10-2Pa以下になったことを確認し、排気管を閉じ、カプセル容器の封止を行った。封止したカプセル容器をHIP処理装置((株)神戸製鋼所製)に挿入し、カプセルHIP処理を行った。カプセルHIP処理は、温度1220℃、圧力100MPaのArガス(純度99.9%)を圧力媒体とし、4時間の処理条件で行った。 After filling the capsule container with the mixed powder, the exhaust pipe was welded to the upper lid, and then the upper lid and the capsule container were welded. In order to confirm the soundness of the welded part of the capsule container, a He leak test was performed. The amount of leakage at this time was 1 × 10 −9 Pa · m 3 / sec or less. Then, after evacuating the capsule container for 7 hours at 550 ° C., confirm that the inside of the capsule container is 1.33 × 10 −2 Pa or less, close the exhaust pipe, and seal the capsule container Went. The sealed capsule container was inserted into a HIP processing apparatus (manufactured by Kobe Steel, Ltd.) and subjected to capsule HIP processing. The capsule HIP treatment was performed under a treatment condition of 4 hours using Ar gas (purity: 99.9%) at a temperature of 1220 ° C. and a pressure of 100 MPa as a pressure medium.
 カプセルHIP処理後、カプセル容器を取り外し、円柱型のIGZO焼結体(2)を得た。この焼結体(2)のサイズを、直接測長して求めたところ、直径94.2mm、高さ32.8mmであった。
 このIGZO焼結体(2)の相対密度は100%であり、焼結体のバルク抵抗値は、実施例1と同様にして測定したところ、4.2×10-4Ω・cmであった。また、電子顕微鏡にてIGZO焼結体(2)を観察したところ、空孔もほとんどなく緻密な焼結体であった。
 なお、相対密度は、下式に示すように求めた。
 相対密度=100×[(焼結体の密度)/(焼結体の理論密度)]
 なお、焼結体の理論密度はJCPDSカードに記載のIn2Ga2ZnO7(JCPDSカード番号:381097)の理論密度を採用した。
 焼結体の密度は、測長法により測定した。
After the capsule HIP treatment, the capsule container was removed to obtain a cylindrical IGZO sintered body (2). When the size of the sintered body (2) was directly measured, it was 94.2 mm in diameter and 32.8 mm in height.
The relative density of this IGZO sintered body (2) was 100%, and the bulk resistance value of the sintered body was measured in the same manner as in Example 1. As a result, it was 4.2 × 10 −4 Ω · cm. . Further, when the IGZO sintered body (2) was observed with an electron microscope, it was a dense sintered body with almost no voids.
The relative density was determined as shown in the following formula.
Relative density = 100 × [(density of sintered body) / (theoretical density of sintered body)]
The theoretical density of the sintered body is In 2 Ga 2 ZnO 7 according to JCPDS card (JCPDS card number: 381097) was adopted theoretical density.
The density of the sintered body was measured by a length measurement method.
 得られたIGZO焼結体(2)に表面研削、外周研削ついで表面研磨を施し、直径が50.8mm、厚さ3mmの焼結体とした。
 得られたIGZO焼結体(2)をICP(高周波誘導結合プラズマ)分析装置(SEIKO(株)製「SPS5000」)にて分析したところ、InとGaとZnの原子数比はIn:Ga:Zn=2:2:1であった。このIGZO焼結体(2)のInとGaとZnの原子数比は、仕込み組成である、In:Ga:Zn=2:2:1とまったくずれていないことから、インジウムや亜鉛の揮散はなかった。
The obtained IGZO sintered body (2) was subjected to surface grinding, outer periphery grinding and then surface polishing to obtain a sintered body having a diameter of 50.8 mm and a thickness of 3 mm.
When the obtained IGZO sintered body (2) was analyzed with an ICP (high frequency inductively coupled plasma) analyzer (“SPS5000” manufactured by SEIKO Co., Ltd.), the atomic ratio of In, Ga, and Zn was In: Ga: Zn = 2: 2: 1. Since the atomic ratio of In, Ga, and Zn in this IGZO sintered body (2) is not shifted at all from the charged composition, In: Ga: Zn = 2: 2: 1, the volatilization of indium and zinc is There wasn't.
 このIGZO焼結体(2)を、銅板をバッキングプレートとして用い、インジウム半田を用いてボンディングし、スパッタリングターゲットを得た。これを用いてDCスパッタリング法により透明基材(無アルカリガラス基板)上に透明半導体膜を成膜して、透明半導体基板を得た。すなわち、スパッタリング装置(キャノンアネルバエンジニアリング(株)製「E-200」)内に、上記ターゲットと透明基材(石英ガラス基板)とをそれぞれ設置し、Arガス(純度99.9995%以上、Ar純ガス=5N)を12sccmで導入して、圧力0.5Pa、ターゲット面の単位面積当たりの投入電力3.8W/cm2、基板温度は室温の条件下で10時間連続DCスパッタリングを行い、基板上にキャリアの移動度が大きく、安定したアモルファス透明半導体膜を形成した。その結果、ターゲット表面には、ほとんどノジュールが発生することなく、成膜中にほとんど異常放電は発生しなかった。具体的には、成膜中に発生した異常放電の回数は、1時間あたり3回以内であり、この異常放電の発生に起因するスパッタリング装置の運転停止は一度もなかった。異常放電の回数は、マイクロアークモニターにより検出した。 The IGZO sintered body (2) was bonded using indium solder using a copper plate as a backing plate to obtain a sputtering target. Using this, a transparent semiconductor film was formed on a transparent substrate (non-alkali glass substrate) by a DC sputtering method to obtain a transparent semiconductor substrate. That is, in the sputtering apparatus (“E-200” manufactured by Canon Anelva Engineering Co., Ltd.), the target and the transparent base material (quartz glass substrate) were respectively installed, and Ar gas (purity 99.9995% or more, Ar pure) Gas = 5N) is introduced at 12 sccm, DC sputtering is performed for 10 hours under conditions of a pressure of 0.5 Pa, an input power of 3.8 W / cm 2 per unit area of the target surface, and a substrate temperature of room temperature. In addition, a stable amorphous transparent semiconductor film with high carrier mobility was formed. As a result, almost no nodules were generated on the target surface, and almost no abnormal discharge occurred during film formation. Specifically, the number of abnormal discharges that occurred during film formation was within 3 times per hour, and there was never a shutdown of the sputtering apparatus due to the occurrence of abnormal discharges. The number of abnormal discharges was detected by a micro arc monitor.
 以上より、インジウムや亜鉛の揮散がない為、IGZO焼結体(2)の原料である混合粉末の組成と、得られたIGZO焼結体(2)の組成とはまったくずれがなく、極めて高密度(相対密度:100%)かつ低抵抗のIGZO焼結体であり、その結果、IGZO焼結体(2)を加工してなるターゲットを用いてDCスパッタリングしてもスパッタリング装置の運転が停止することなく安定に製膜できた。 From the above, since there is no volatilization of indium and zinc, the composition of the mixed powder, which is the raw material of the IGZO sintered body (2), and the composition of the obtained IGZO sintered body (2) do not deviate at all and are extremely high. IGZO sintered body having a density (relative density: 100%) and low resistance. As a result, even if DC sputtering is performed using a target obtained by processing the IGZO sintered body (2), the operation of the sputtering apparatus is stopped. The film could be formed stably without any problems.
 以上のように、極めて簡易な短い製造プロセスにて、混合粉末の粒径はナノ粒子サイズでないため、ナノマテリアルの問題もなく高密度(相対密度:100%)な焼結体を作製できた。 As described above, since the particle size of the mixed powder is not a nanoparticle size by a very simple short manufacturing process, a high-density (relative density: 100%) sintered body could be produced without any problem of nanomaterials.
(実施例3)
 酸化インジウム粉末(In23、添川理化学(株)製、1次粒子サイズ:1μm)、酸化ガリウム粉末(Ga23、ヤマナカヒューテック(株)製、1次粒子サイズ:1.5μm)、酸化亜鉛粉末(ZnO、ハクスイテック(株)製、1次粒子サイズ:1.5μm)をインジウム元素とガリウム元素と亜鉛元素との原子数比が1:1:1とからなる混合粉末とエチルセルロース(和光純薬製)と、水とを、混合粉末:有機バインダー(エチルセルロース)=98.5:1.5(重量比)となる割合となるように混合し、水系スラリーを得た。
 このように調整した水系スラリーを樹脂製ポットに入れ、湿式ボールミル混合法により湿式混合した。この湿式混合は、ボールとして硬質ZrO2ボールを用い、混合時間を18時間として行った。
(Example 3)
Indium oxide powder (In 2 O 3 , manufactured by Soekawa Richemical Co., Ltd., primary particle size: 1 μm), gallium oxide powder (Ga 2 O 3 , manufactured by Yamanaka Futec Co., Ltd., primary particle size: 1.5 μm), Zinc oxide powder (ZnO, manufactured by Hakusuitec Co., Ltd., primary particle size: 1.5 μm) was mixed with a mixed powder composed of an indium element, a gallium element, and a zinc element at a 1: 1: 1 ratio and ethyl cellulose (sum) (Made by Kokuyo Pure Chemical Co., Ltd.) and water were mixed at a ratio of mixed powder: organic binder (ethylcellulose) = 98.5: 1.5 (weight ratio) to obtain an aqueous slurry.
The aqueous slurry thus adjusted was put in a resin pot and wet mixed by a wet ball mill mixing method. This wet mixing was performed using hard ZrO 2 balls as balls and mixing time of 18 hours.
 次いで、混合後の水系スラリーを取り出し、ボールを篩いにより、エバポレーターにて水を揮散させ、その後、熱風乾燥機にて、100℃で3時間乾燥処理を行った後、冷間静水圧プレスにて300MPaの圧力をかけて加圧成形し、切削加工を行い、直径300mmφ、高さ150mmの円柱状成型体を得た。円柱状成型体の密度は、3.60g/cm3であった。
 なお、成型体の密度は、直接成型体の測長を行い、測長した直径と高さから算出した体積と、測定した成型体の重量から有機バインダーの重量を差し引いた重量とから求めた。
Next, the mixed aqueous slurry is taken out, and the water is volatilized with an evaporator by sieving the balls. After that, drying is performed at 100 ° C. for 3 hours with a hot air dryer, and then with a cold isostatic press. It was pressure-molded by applying a pressure of 300 MPa and cut to obtain a cylindrical molded body having a diameter of 300 mmφ and a height of 150 mm. The density of the cylindrical molded body was 3.60 g / cm 3 .
The density of the molded body was obtained by directly measuring the length of the molded body and calculating the volume calculated from the measured diameter and height and the weight obtained by subtracting the weight of the organic binder from the measured weight of the molded body.
<IGZO焼結体の製造>
 円柱状の成型体をステンレス(SUS304)でできたカプセル容器(外径:308mm、内径:300mm、容器内部の高さ:150mm)に成型体が崩れないようにカプセル容器に移し、カプセル容器内に一杯に詰め(充填し)、実施例1と同様にして充填密度を求めたところ、混合粉末の充填密度は3.60g/cm3となり、焼結体の理論密度が6.379g/cm3であることから混合粉末の充填率は56.4%となった。
<Manufacture of IGZO sintered body>
The cylindrical molded body is transferred to a capsule container (outer diameter: 308 mm, inner diameter: 300 mm, height inside the container: 150 mm) made of stainless steel (SUS304) so that the molded body does not collapse, and is placed in the capsule container. When filled up (filled) and the packing density was determined in the same manner as in Example 1, the packing density of the mixed powder was 3.60 g / cm 3 , and the theoretical density of the sintered body was 6.379 g / cm 3 . As a result, the filling rate of the mixed powder was 56.4%.
 カプセル容器に混合粉末を充填した後に、排気管を上蓋に溶接し、その後上蓋とカプセル容器を溶接した。カプセル容器の溶接部の健全性を確認するため、Heリーク検査を行った。この時の漏れ量を1×10-9Pa・m3/sec以下とした。その後、600℃で7時間にてカプセル容器内の真空引きを行い、バインダーの脱脂と成型体の吸着水を完全に取り去り、カプセル容器内が1.33×10-2Pa以下になったことを確認し、排気管を閉じ、カプセル容器の封止を行った。封止したカプセル容器をHIP処理装置((株)神戸製鋼所製)に挿入し、カプセルHIP処理を行った。カプセルHIP処理は、温度1220℃、圧力100MPaのArガス(純度99.9%)を圧力媒体とし、4時間の処理条件で行った。 After filling the capsule container with the mixed powder, the exhaust pipe was welded to the upper lid, and then the upper lid and the capsule container were welded. In order to confirm the soundness of the welded part of the capsule container, a He leak test was performed. The amount of leakage at this time was 1 × 10 −9 Pa · m 3 / sec or less. After that, the capsule container was evacuated at 600 ° C. for 7 hours to completely remove the binder degreasing and the adsorbed water of the molded body, and the inside of the capsule container became 1.33 × 10 −2 Pa or less. After confirming, the exhaust pipe was closed and the capsule container was sealed. The sealed capsule container was inserted into a HIP processing apparatus (manufactured by Kobe Steel, Ltd.) and subjected to capsule HIP processing. The capsule HIP treatment was performed under a treatment condition of 4 hours using Ar gas (purity: 99.9%) at a temperature of 1220 ° C. and a pressure of 100 MPa as a pressure medium.
 カプセルHIP処理後、カプセル容器を取り外し、円柱型のIGZO焼結体(3)を得た。このIGZO焼結体(3)のサイズを、直接測長して求めたところ、直径248.7mmφ、高さ124.4mmであり、このIGZO焼結体(3)の相対密度は実施例1と同様にして求めたところ、100%であり、焼結体のバルク抵抗値は、実施例1と同様にして測定したところ、6.2×10-4Ω・cmであった。また、電子顕微鏡にて焼結体(3)を観察したところ、空孔もほとんどなく緻密な焼結体であった。 After the capsule HIP treatment, the capsule container was removed to obtain a cylindrical IGZO sintered body (3). When the size of the IGZO sintered body (3) was directly measured, the diameter was 248.7 mmφ and the height was 124.4 mm. The relative density of the IGZO sintered body (3) was as in Example 1. When determined in the same manner, it was 100%, and the bulk resistance value of the sintered body was 6.2 × 10 −4 Ω · cm as measured in the same manner as in Example 1. Further, when the sintered body (3) was observed with an electron microscope, it was a dense sintered body with almost no pores.
 得られたIGZO焼結体(3)に研削ついで表面研磨を施し、直径が50.8mmφ、厚さ3mmの焼結体とした。
 得られたIGZO焼結体(3)をICP(高周波誘導結合プラズマ)分析装置(SEIKO(株)製「SPS5000」)にて分析したところ、InとGaとZnの原子数比はIn:Ga:Zn=1:1:1であった。このIGZO焼結体(3)のInとGaとZnの原子数比は、仕込み組成である、In:Ga:Zn=1:1:1とまったくずれていないことから、インジウムや亜鉛の揮散はなかった。
The obtained IGZO sintered body (3) was ground and then subjected to surface polishing to obtain a sintered body having a diameter of 50.8 mmφ and a thickness of 3 mm.
When the obtained IGZO sintered body (3) was analyzed with an ICP (high frequency inductively coupled plasma) analyzer (“SPS5000” manufactured by SEIKO Co., Ltd.), the atomic ratio of In, Ga, and Zn was In: Ga: Zn = 1: 1: 1. Since the atomic ratio of In, Ga, and Zn in this IGZO sintered body (3) is not shifted at all from the charged composition, In: Ga: Zn = 1: 1: 1, the volatilization of indium and zinc is There wasn't.
 このIGZO焼結体(3)を、銅板をバッキングプレートとして用い、インジウム半田を用いてボンディングし、スパッタリングターゲットを得た。これを用いてDCスパッタリング法により透明基材(無アルカリガラス基板)上に透明半導体膜を成膜して、透明半導体基板を得た。すなわち、スパッタリング装置(キャノンアネルバエンジニアリング(株)製「E-200」)内に、上記ターゲットと透明基材(石英ガラス基板)とをそれぞれ設置し、Arガス(純度99.9995%以上、Ar純ガス=5N)を12sccmで導入して、圧力0.5Pa、ターゲット面の単位面積当たりの投入電力3.8W/cm2、基板温度は室温の条件下で10時間連続DCスパッタリングを行い、基板上にキャリアの移動度が大きく、安定したアモルファス透明半導体膜を形成した。その結果、ターゲット表面には、ほとんどノジュールが発生することなく、成膜中にほとんど異常放電は発生しなかった。具体的には、成膜中に発生した異常放電の回数は、1時間あたり3回以内であり、この異常放電の発生に起因するスパッタリング装置の運転停止は一度もなかった。異常放電の回数は、マイクロアークモニターにより検出した。 This IGZO sintered body (3) was bonded using indium solder using a copper plate as a backing plate to obtain a sputtering target. Using this, a transparent semiconductor film was formed on a transparent substrate (non-alkali glass substrate) by a DC sputtering method to obtain a transparent semiconductor substrate. That is, in the sputtering apparatus (“E-200” manufactured by Canon Anelva Engineering Co., Ltd.), the target and the transparent base material (quartz glass substrate) were respectively installed, and Ar gas (purity 99.9995% or more, Ar pure) Gas = 5N) is introduced at 12 sccm, DC sputtering is performed for 10 hours under conditions of a pressure of 0.5 Pa, an input power of 3.8 W / cm 2 per unit area of the target surface, and a substrate temperature of room temperature. In addition, a stable amorphous transparent semiconductor film with high carrier mobility was formed. As a result, almost no nodules were generated on the target surface, and almost no abnormal discharge occurred during film formation. Specifically, the number of abnormal discharges that occurred during film formation was within 3 times per hour, and there was never a shutdown of the sputtering apparatus due to the occurrence of abnormal discharges. The number of abnormal discharges was detected by a micro arc monitor.
 以上より、インジウムや亜鉛の揮散がない為、IGZO焼結体(3)の原料である混合粉末の組成と、得られたIGZO焼結体(3)の組成とはまったくずれがなく、極めて高密度(相対密度:100%)かつ低抵抗のIGZO焼結体であり、その結果、IGZO焼結体(3)を加工してなるターゲットを用いてDCスパッタリングしてもスパッタリング装置の運転が停止することなく安定に製膜できた。 From the above, since there is no volatilization of indium and zinc, the composition of the mixed powder as the raw material of the IGZO sintered body (3) and the composition of the obtained IGZO sintered body (3) are not displaced at all, and are extremely high. This is an IGZO sintered body having a density (relative density: 100%) and low resistance. As a result, even if DC sputtering is performed using a target obtained by processing the IGZO sintered body (3), the operation of the sputtering apparatus is stopped. The film could be formed stably without any problems.
 以上のように、極めて簡易な短い製造プロセスにて、混合粉末の粒径はナノ粒子サイズでないため、ナノマテリアルの問題もなく高密度(相対密度:100%)な焼結体を作製できた。 As described above, since the particle size of the mixed powder is not a nanoparticle size by a very simple short manufacturing process, a high-density (relative density: 100%) sintered body could be produced without any problem of nanomaterials.
(実施例4)
 酸化インジウム粉末(In23、添川理化学(株)製、1次粒子サイズ:1μm)、酸化ガリウム粉末(Ga23、ヤマナカヒューテック(株)製、1次粒子サイズ:1.5μm)、酸化亜鉛粉末(ZnO、ハクスイテック(株)製、1次粒子サイズ:1.5μm)をインジウム元素とガリウム元素と亜鉛元素との原子数比が2:2:1とからなる混合粉末と、エチルセルロース(和光純薬製)と、水とを、混合粉末:有機バインダー(エチルセルロース)=98.5:1.5(重量比)となる割合となるように混合し、水系スラリーを得た。
 このように調整した水系スラリーを樹脂製ポットに入れ、湿式ボールミル混合法により湿式混合した。この湿式混合は、ボールとして硬質ZrO2ボールを用い、混合時間を18時間として行った。
Example 4
Indium oxide powder (In 2 O 3 , manufactured by Soekawa Richemical Co., Ltd., primary particle size: 1 μm), gallium oxide powder (Ga 2 O 3 , manufactured by Yamanaka Futec Co., Ltd., primary particle size: 1.5 μm), A mixed powder comprising zinc oxide powder (ZnO, manufactured by Hakutech Co., Ltd., primary particle size: 1.5 μm) having an atomic ratio of indium element, gallium element and zinc element of 2: 2: 1, and ethyl cellulose ( Wako Pure Chemical Industries, Ltd.) and water were mixed at a ratio of mixed powder: organic binder (ethylcellulose) = 98.5: 1.5 (weight ratio) to obtain an aqueous slurry.
The aqueous slurry thus adjusted was put in a resin pot and wet mixed by a wet ball mill mixing method. This wet mixing was performed using hard ZrO 2 balls as balls and mixing time of 18 hours.
 次いで、混合後の水系スラリーを取り出し、ボールを篩いにより、エバポレーターにて水を揮散させ、その後、熱風乾燥機にて、100℃で3時間乾燥処理を行った後、冷間静水圧プレスにて300MPaの圧力をかけて加圧成形し、切削加工を行い、直径450mmφ、高さ150mmの円柱状成型体を得た。円柱状成型体の密度は、3.52g/cm3であった。
 なお、成型体の密度は、直接成型体の測長を行い、測長した直径と高さから算出した体積と、測定した成型体の重量から有機バインダーの重量を差し引いた重量とから求めた。
Next, the mixed aqueous slurry is taken out, and the water is volatilized with an evaporator by sieving the balls. After that, drying is performed at 100 ° C. for 3 hours with a hot air dryer, and then with a cold isostatic press. It was pressure-molded by applying a pressure of 300 MPa and cut to obtain a cylindrical molded body having a diameter of 450 mmφ and a height of 150 mm. The density of the cylindrical molded body was 3.52 g / cm 3 .
The density of the molded body was obtained by directly measuring the length of the molded body and calculating the volume calculated from the measured diameter and height and the weight obtained by subtracting the weight of the organic binder from the measured weight of the molded body.
<IGZO焼結体の製造>
 円柱状の成型体をステンレス(SUS304)でできたカプセル容器(外径:458mm、内径:450mm、容器内部の高さ:150mm)に成型体が崩れないようにカプセル容器に移し、カプセル容器内に一杯に詰め(充填し)、実施例1と同様にして充填密度を求めたところ、混合粉末の充填密度は3.52g/cm3となり、焼結体の理論密度が6.495g/cm3であることから混合粉末の充填率は54.2%となった。
<Manufacture of IGZO sintered body>
The cylindrical molded body is transferred to a capsule container (outer diameter: 458 mm, inner diameter: 450 mm, height inside the container: 150 mm) made of stainless steel (SUS304) so that the molded body does not collapse, and is placed in the capsule container When filled (filled) and the packing density was determined in the same manner as in Example 1, the packing density of the mixed powder was 3.52 g / cm 3 and the theoretical density of the sintered body was 6.495 g / cm 3 . For this reason, the filling rate of the mixed powder was 54.2%.
 カプセル容器に混合粉末を充填した後に、排気管を上蓋に溶接し、その後上蓋とカプセル容器を溶接した。カプセル容器の溶接部の健全性を確認するため、Heリーク検査を行った。この時の漏れ量を1×10-9Pa・m3/sec以下とした。その後、600℃で7時間にてカプセル容器内の真空引きを行い、バインダーの脱脂と成型体の吸着水を完全に取り去り、カプセル容器内が1.33×10-2Pa以下になったことを確認し、排気管を閉じ、カプセル容器の封止を行った。封止したカプセル容器をHIP処理装置((株)神戸製鋼所製)に挿入し、カプセルHIP処理を行った。カプセルHIP処理は、温度1220℃、圧力100MPaのArガス(純度99.9%)を圧力媒体とし、4時間の処理条件で行った。 After filling the capsule container with the mixed powder, the exhaust pipe was welded to the upper lid, and then the upper lid and the capsule container were welded. In order to confirm the soundness of the welded part of the capsule container, a He leak test was performed. The amount of leakage at this time was 1 × 10 −9 Pa · m 3 / sec or less. After that, the capsule container was evacuated at 600 ° C. for 7 hours to completely remove the binder degreasing and the adsorbed water of the molded body, and the inside of the capsule container became 1.33 × 10 −2 Pa or less. After confirming, the exhaust pipe was closed and the capsule container was sealed. The sealed capsule container was inserted into a HIP processing apparatus (manufactured by Kobe Steel, Ltd.) and subjected to capsule HIP processing. The capsule HIP treatment was performed under a treatment condition of 4 hours using Ar gas (purity: 99.9%) at a temperature of 1220 ° C. and a pressure of 100 MPa as a pressure medium.
 カプセルHIP処理後、カプセル容器を取り外し、円柱型のIGZO焼結体(4)を得た。このIGZO焼結体(4)のサイズを、直接測長して求めたところ、直径366.8mmφ、高さ122.3mmであり、このIGZO焼結体(4)の相対密度は実施例2と同様にして求めたところ、100%であり、焼結体のバルク抵抗値は、実施例1と同様にして測定したところ、4.2×10-4Ω・cmであった。また、電子顕微鏡にて焼結体(4)を観察したところ、空孔もほとんどなく緻密な焼結体であった。 After the capsule HIP treatment, the capsule container was removed to obtain a cylindrical IGZO sintered body (4). When the size of the IGZO sintered body (4) was directly measured, the diameter was 366.8 mmφ and the height was 122.3 mm. The relative density of the IGZO sintered body (4) was as in Example 2. When determined in the same manner, it was 100%, and the bulk resistance value of the sintered body was 4.2 × 10 −4 Ω · cm as measured in the same manner as in Example 1. Further, when the sintered body (4) was observed with an electron microscope, it was a dense sintered body with almost no pores.
 得られたIGZO焼結体(4)に研削ついで表面研磨を施し、直径が50.8mmφ、厚さ3mmの焼結体とした。
 得られたIGZO焼結体(4)をICP(高周波誘導結合プラズマ)分析装置(SEIKO(株)製「SPS5000」)にて分析したところ、InとGaとZnの原子数比はIn:Ga:Zn=2:2:1であった。このIGZO焼結体(4)のInとGaとZnの原子数比は、仕込み組成である、In:Ga:Zn=2:2:1とまったくずれていないことから、インジウムや亜鉛の揮散はなかった。
The obtained IGZO sintered body (4) was ground and then subjected to surface polishing to obtain a sintered body having a diameter of 50.8 mmφ and a thickness of 3 mm.
When the obtained IGZO sintered body (4) was analyzed with an ICP (high frequency inductively coupled plasma) analyzer (“SPS5000” manufactured by SEIKO Co., Ltd.), the atomic ratio of In, Ga, and Zn was In: Ga: Zn = 2: 2: 1. Since the atomic ratio of In, Ga, and Zn in this IGZO sintered body (4) is not shifted at all from the charged composition, In: Ga: Zn = 2: 2: 1, the volatilization of indium and zinc is There wasn't.
 このIGZO焼結体(4)を、銅板をバッキングプレートとして用い、インジウム半田を用いてボンディングし、スパッタリングターゲットを得た。これを用いてDCスパッタリング法により透明基材(無アルカリガラス基板)上に透明半導体膜を成膜して、透明半導体基板を得た。すなわち、スパッタリング装置(キャノンアネルバエンジニアリング(株)製「E-200」)内に、上記ターゲットと透明基材(石英ガラス基板)とをそれぞれ設置し、Arガス(純度99.9995%以上、Ar純ガス=5N)を12sccmで導入して、圧力0.5Pa、ターゲット面の単位面積当たりの投入電力3.8W/cm2、基板温度は室温の条件下で10時間連続DCスパッタリングを行い、基板上にキャリアの移動度が大きく、安定したアモルファス透明半導体膜を形成した。その結果、ターゲット表面には、ほとんどノジュールが発生することなく、成膜中にほとんど異常放電は発生しなかった。具体的には、成膜中に発生した異常放電の回数は、1時間あたり3回以内であり、この異常放電の発生に起因するスパッタリング装置の運転停止は一度もなかった。異常放電の回数は、マイクロアークモニターにより検出した。 This IGZO sintered body (4) was bonded using indium solder using a copper plate as a backing plate to obtain a sputtering target. Using this, a transparent semiconductor film was formed on a transparent substrate (non-alkali glass substrate) by a DC sputtering method to obtain a transparent semiconductor substrate. That is, in the sputtering apparatus (“E-200” manufactured by Canon Anelva Engineering Co., Ltd.), the target and the transparent base material (quartz glass substrate) were respectively installed, and Ar gas (purity 99.9995% or more, Ar pure) Gas = 5N) is introduced at 12 sccm, DC sputtering is performed for 10 hours under conditions of a pressure of 0.5 Pa, an input power of 3.8 W / cm 2 per unit area of the target surface, and a substrate temperature of room temperature. In addition, a stable amorphous transparent semiconductor film with high carrier mobility was formed. As a result, almost no nodules were generated on the target surface, and almost no abnormal discharge occurred during film formation. Specifically, the number of abnormal discharges that occurred during film formation was within 3 times per hour, and there was never a shutdown of the sputtering apparatus due to the occurrence of abnormal discharges. The number of abnormal discharges was detected by a micro arc monitor.
 以上より、インジウムや亜鉛の揮散がない為、IGZO焼結体(4)の原料である混合粉末の組成と、得られたIGZO焼結体(4)の組成とはまったくずれがなく、極めて高密度(相対密度:100%)かつ低抵抗のIGZO焼結体であり、その結果、IGZO焼結体(4)を加工してなるターゲットを用いてDCスパッタリングしてもスパッタリング装置の運転が停止することなく安定に製膜できた。さらに、極めて高密度で大型の焼結体(4)を、カプセル容器の真空脱気処理と脱バインダー処理を同時に行い(脱脂するためだけの工程を経ずに)、作製することができた。 From the above, since there is no volatilization of indium and zinc, the composition of the mixed powder that is the raw material of the IGZO sintered body (4) and the composition of the obtained IGZO sintered body (4) are not displaced at all, and are extremely high. This is an IGZO sintered body having a density (relative density: 100%) and low resistance. As a result, even if DC sputtering is performed using a target obtained by processing the IGZO sintered body (4), the operation of the sputtering apparatus stops. The film could be formed stably without any problems. Furthermore, an extremely high-density and large-sized sintered body (4) could be produced by simultaneously carrying out vacuum degassing treatment and debinding treatment of the capsule container (without passing through a process only for degreasing).
 以上のように、極めて簡易な短い製造プロセスにて、混合粉末の粒径はナノ粒子サイズでないため、ナノマテリアルの問題もなく高密度(相対密度:100%)な焼結体を作製できた。 As described above, since the particle size of the mixed powder is not a nanoparticle size by a very simple short manufacturing process, a high-density (relative density: 100%) sintered body could be produced without any problem of nanomaterials.
(実施例5)
 酸化インジウム粉末(In23、添川理化学(株)製、1次粒子サイズ:1μm)、酸化ガリウム粉末(Ga23、稀産金属(株)製、1次粒子サイズ:3.0μm)、酸化亜鉛粉末(ZnO、ハクスイテック(株)製、1次粒子サイズ:1.5μm)をインジウム元素とガリウム元素と亜鉛元素との原子数比が1:1:1となるように秤量し、自動乳鉢にて1時間、乾式混合を行った。
(Example 5)
Indium oxide powder (In 2 O 3 , manufactured by Soekawa Richemical Co., Ltd., primary particle size: 1 μm), gallium oxide powder (Ga 2 O 3 , manufactured by Rare Metal Co., Ltd., primary particle size: 3.0 μm) Zinc oxide powder (ZnO, manufactured by Hakusuitec Co., Ltd., primary particle size: 1.5 μm) was weighed so that the atomic ratio of indium element, gallium element, and zinc element was 1: 1: 1. Dry mixing was performed in a mortar for 1 hour.
 次いで、冷間静水圧プレスにて300MPaの圧力をかけて加圧成形し、切削加工を行い、直径115mmφ、高さ40mmの円柱状成型体を得た。円柱状成型体の密度は3.56g/cm3であった。
 なお、成型体の密度は、直接成型体の測長を行い、測長した直径と高さから算出した体積と、測定した成型体の重量とから求めた。
Subsequently, it was press-molded by applying a pressure of 300 MPa in a cold isostatic press and cut to obtain a cylindrical molded body having a diameter of 115 mmφ and a height of 40 mm. The density of the cylindrical molded body was 3.56 g / cm 3 .
The density of the molded body was determined by directly measuring the molded body and calculating the volume calculated from the measured diameter and height, and the measured weight of the molded body.
<IGZO焼結体の製造>
 円柱状の成型体をステンレス(SUS304)でできたカプセル容器(外径:121mm、内径:115mm、容器内部の高さ:40mm)に成型体が崩れないようにカプセル容器に移し、カプセル容器内に一杯に詰めた(充填した)ところ、混合粉末の充填密度は、3.46g/cm3となり、焼結体の理論密度が6.379g/cm3であることから混合粉末の充填率は54.2%となった。
 なお、充填密度および焼結体の理論密度は、下記式より求めた。
 充填密度=成型体の重量/カプセル容器の内容積
 焼結体の理論密度は、インジウム元素とガリウム元素と亜鉛元素との原子数比が1:1:1に対応する結晶相として、JCPDSカードにはInGaZnO4(JCPDSカード番号:381104)という単相結晶の情報があり、JCPDSカードに記載されたこの単相結晶の理論密度を採用した。
<Manufacture of IGZO sintered body>
The cylindrical molded body is transferred to a capsule container (outer diameter: 121 mm, inner diameter: 115 mm, height inside the container: 40 mm) made of stainless steel (SUS304) so that the molded body does not collapse, and is placed in the capsule container. When filled (filled), the packing density of the mixed powder was 3.46 g / cm 3 , and the theoretical density of the sintered body was 6.379 g / cm 3 , so the packing ratio of the mixed powder was 54. 2%.
The packing density and the theoretical density of the sintered body were obtained from the following formula.
Filling density = Molded body weight / Capsule container internal volume The theoretical density of the sintered body is the crystal phase corresponding to the 1: 1 atomic ratio of indium, gallium and zinc elements. Has information on a single-phase crystal called InGaZnO 4 (JCPDS card number: 381104), and the theoretical density of this single-phase crystal described in the JCPDS card was adopted.
 カプセル容器に混合粉末を充填した後に、排気管を上蓋に溶接し、その後上蓋とカプセル容器を溶接した。カプセル容器の溶接部の健全性を確認するため、Heリーク検査を行った。この時の漏れ量を1×10-9Pa・m3/sec以下とした。その後、550℃で7時間、カプセル容器内の真空引きを行った後、カプセル容器内が1.33×10-2Pa以下になったことを確認し、排気管を閉じ、カプセル容器の封止を行った。封止したカプセル容器をHIP処理装置((株)神戸製鋼所製)に挿入し、カプセルHIP処理を行った。カプセルHIP処理は、温度1220℃、圧力100MPaのArガス(純度99.9%)を圧力媒体とし、4時間の処理条件で行った。 After filling the capsule container with the mixed powder, the exhaust pipe was welded to the upper lid, and then the upper lid and the capsule container were welded. In order to confirm the soundness of the welded part of the capsule container, a He leak test was performed. The amount of leakage at this time was 1 × 10 −9 Pa · m 3 / sec or less. Then, after evacuating the capsule container for 7 hours at 550 ° C., confirm that the inside of the capsule container is 1.33 × 10 −2 Pa or less, close the exhaust pipe, and seal the capsule container Went. The sealed capsule container was inserted into a HIP processing apparatus (manufactured by Kobe Steel, Ltd.) and subjected to capsule HIP processing. The capsule HIP treatment was performed under a treatment condition of 4 hours using Ar gas (purity: 99.9%) at a temperature of 1220 ° C. and a pressure of 100 MPa as a pressure medium.
 カプセルHIP処理後、カプセル容器を取り外し、円柱型のIGZO焼結体(5)を得た。この焼結体(5)のサイズを、直接測長して求めたところ、直径93.7mm、高さ32.6mmであった。
 このIGZO焼結体(5)の相対密度は、実施例1と同様にして求めたところ、100%であり、焼結体のバルク抵抗値は、実施例1と同様にして測定したところ、6.9×10-4Ω・cmであった。また、電子顕微鏡にてIGZO焼結体(5)を観察したところ、空孔もほとんどなく緻密な焼結体であった。
After the capsule HIP treatment, the capsule container was removed to obtain a cylindrical IGZO sintered body (5). When the size of the sintered body (5) was directly measured, it was 93.7 mm in diameter and 32.6 mm in height.
When the relative density of this IGZO sintered body (5) was determined in the same manner as in Example 1, it was 100%, and the bulk resistance value of the sintered body was measured in the same manner as in Example 1. It was 9 × 10 −4 Ω · cm. Further, when the IGZO sintered body (5) was observed with an electron microscope, it was a dense sintered body with almost no voids.
 得られたIGZO焼結体(5)に表面研削、外周研削ついで表面研磨を施し、直径が50.8mm、厚さ3mmの焼結体とした。
 得られたIGZO焼結体(5)をICP(高周波誘導結合プラズマ)分析装置(SEIKO(株)製「SPS5000」)にて分析したところ、InとGaとZnの原子数比はIn:Ga:Zn=1:1:1であった。このIGZO焼結体(5)のInとGaとZnの原子数比は、仕込み組成である、In:Ga:Zn=1:1:1とまったくずれていないことから、インジウムや亜鉛の揮散はなかった。
 また、IGZO焼結体(5)に含まれると予想される不純物金属元素M(Sn、Zr、Ti、Mo、Si、Cr、W、Ge、V、Mn)の各含有率についてもICP分析装置にて分析をおこなった。分析結果より、IGZO焼結体(5)の成分金属(In、Ga、Zn)に対する不純物金属元素Mの含有率[M/(In+Ga+Zn+M):重量比]を算出したところ、各不純物金属元素Mの含有率はすべて10ppm未満であった。
The obtained IGZO sintered body (5) was subjected to surface grinding, outer periphery grinding and then surface polishing to obtain a sintered body having a diameter of 50.8 mm and a thickness of 3 mm.
When the obtained IGZO sintered body (5) was analyzed with an ICP (high frequency inductively coupled plasma) analyzer (“SPS5000” manufactured by SEIKO Co., Ltd.), the atomic ratio of In, Ga, and Zn was In: Ga: Zn = 1: 1: 1. Since the atomic ratio of In, Ga, and Zn in this IGZO sintered body (5) is not shifted at all from the charged composition, In: Ga: Zn = 1: 1: 1, the volatilization of indium and zinc is There wasn't.
Further, the ICP analyzer is also used for each content of impurity metal elements M (Sn, Zr, Ti, Mo, Si, Cr, W, Ge, V, Mn) that are expected to be included in the IGZO sintered body (5). The analysis was done. From the analysis results, the content ratio [M / (In + Ga + Zn + M): weight ratio] of the impurity metal element M to the component metals (In, Ga, Zn) of the IGZO sintered body (5) was calculated. All the contents were less than 10 ppm.
 このIGZO焼結体(5)を、銅板をバッキングプレートとして用い、インジウム半田を用いてボンディングし、スパッタリングターゲットを得た。これを用いてDCスパッタリング法により透明基材(無アルカリガラス基板)上に透明半導体膜を成膜して、透明半導体基板を得た。すなわち、スパッタリング装置(キャノンアネルバエンジニアリング(株)製「E-200」)内に、上記ターゲットと透明基材(石英ガラス基板)とをそれぞれ設置し、Arガス(純度99.9995%以上、Ar純ガス=5N)を12sccmで導入して、圧力0.5Pa、ターゲット面の単位面積当たりの投入電力3.8W/cm2、基板温度は室温の条件下で10時間連続DCスパッタリングを行い、基板上にキャリアの移動度が大きく、安定したアモルファス透明半導体膜を形成した。その結果、ターゲット表面には、ほとんどノジュールが発生することなく、成膜中にほとんど異常放電は発生しなかった。具体的には、成膜中に発生した異常放電の回数は、1時間あたり3回以内であり、この異常放電の発生に起因するスパッタリング装置の運転停止は一度もなかった。異常放電の回数は、マイクロアークモニターにより検出した。 This IGZO sintered body (5) was bonded using indium solder using a copper plate as a backing plate to obtain a sputtering target. Using this, a transparent semiconductor film was formed on a transparent substrate (non-alkali glass substrate) by a DC sputtering method to obtain a transparent semiconductor substrate. That is, in the sputtering apparatus (“E-200” manufactured by Canon Anelva Engineering Co., Ltd.), the target and the transparent base material (quartz glass substrate) were respectively installed, and Ar gas (purity 99.9995% or more, Ar pure) Gas = 5N) is introduced at 12 sccm, DC sputtering is performed for 10 hours under conditions of a pressure of 0.5 Pa, an input power of 3.8 W / cm 2 per unit area of the target surface, and a substrate temperature of room temperature. In addition, a stable amorphous transparent semiconductor film with high carrier mobility was formed. As a result, almost no nodules were generated on the target surface, and almost no abnormal discharge occurred during film formation. Specifically, the number of abnormal discharges that occurred during film formation was within 3 times per hour, and there was never a shutdown of the sputtering apparatus due to the occurrence of abnormal discharges. The number of abnormal discharges was detected by a micro arc monitor.
 以上より、インジウムや亜鉛の揮散がない為、IGZO焼結体(5)の原料である混合粉末の組成と、得られたIGZO焼結体(5)の組成とはまったくずれがなく、極めて高密度(相対密度:100%)かつ低抵抗のIGZO焼結体であり、その結果、IGZO焼結体(5)を加工してなるターゲットを用いてDCスパッタリングしてもスパッタリング装置の運転が停止することなく安定に製膜できた。 From the above, since there is no volatilization of indium and zinc, the composition of the mixed powder, which is the raw material of the IGZO sintered body (5), and the composition of the obtained IGZO sintered body (5) are not displaced at all and are extremely high. This is an IGZO sintered body having a density (relative density: 100%) and low resistance. As a result, even if DC sputtering is performed using a target obtained by processing the IGZO sintered body (5), the operation of the sputtering apparatus stops. The film could be formed stably without any problems.
 以上のように、極めて簡易な短い製造プロセスにて、混合粉末の粒径はナノ粒子サイズでないため、ナノマテリアルの問題もなく高密度(相対密度:100%)な焼結体を作製できた。 As described above, since the particle size of the mixed powder is not a nanoparticle size by a very simple short manufacturing process, a high-density (relative density: 100%) sintered body could be produced without any problem of nanomaterials.
 (実施例6)
 酸化インジウム粉末(In23、添川理化学(株)製、1次粒子サイズ:1μm)、酸化ガリウム粉末(Ga23、稀産金属(株)製、1次粒子サイズ:3.0μm)、酸化亜鉛粉末(ZnO、ハクスイテック(株)製、1次粒子サイズ:1.5μm)をインジウム元素とガリウム元素と亜鉛元素との原子数比が2:2:1となるように秤量し、自動乳鉢にて1時間、乾式混合を行った。
 次いで、冷間静水圧プレスにて300MPaの圧力をかけて加圧成形し、切削加工を行い、直径115mmφ、高さ40mmの円柱状成型体を得た。円柱状成型体の密度は3.47g/cm3であった。
 なお、成型体の密度は、直接成型体の測長を行い、測長した直径と高さから算出した体積と、測定した成型体の重量とから求めた。
(Example 6)
Indium oxide powder (In 2 O 3 , manufactured by Soekawa Rikagaku Co., Ltd., primary particle size: 1 μm), gallium oxide powder (Ga 2 O 3 , manufactured by Rare Metal Co., Ltd., primary particle size: 3.0 μm) The zinc oxide powder (ZnO, manufactured by Hakusuitec Co., Ltd., primary particle size: 1.5 μm) is weighed so that the atomic ratio of indium element, gallium element and zinc element is 2: 2: 1, and automatic Dry mixing was performed in a mortar for 1 hour.
Subsequently, it was press-molded by applying a pressure of 300 MPa in a cold isostatic press and cut to obtain a cylindrical molded body having a diameter of 115 mmφ and a height of 40 mm. The density of the cylindrical molded body was 3.47 g / cm 3 .
The density of the molded body was determined by directly measuring the molded body and calculating the volume calculated from the measured diameter and height, and the measured weight of the molded body.
<IGZO焼結体の製造>
 円柱状の成型体をステンレス(SUS304)でできたカプセル容器(外径:121mm、内径:115mm、容器内部の高さ:40mm)に成型体が崩れないようにカプセル容器に移し、カプセル容器内に一杯に詰めた(充填した)ところ、混合粉末の充填密度は3.47g/cm3となり、焼結体の理論密度が6.495g/cm3であることから混合粉末の充填率は53.4%となった。
 なお、充填密度および焼結体の理論密度は、下記式より求めた。
 充填密度=成型体の重量/カプセル容器の内容積
 焼結体の理論密度はインジウム元素とガリウム元素と亜鉛元素との原子数が2:2:1に対応する結晶相として、JCPDSカードにはIn2Ga2ZnO7(JCPDSカード番号:381097)の単相結晶の情報があり、JCPDSカードに記載されたこの単相結晶の理論密度を採用した。
<Manufacture of IGZO sintered body>
The cylindrical molded body is transferred to a capsule container (outer diameter: 121 mm, inner diameter: 115 mm, height inside the container: 40 mm) made of stainless steel (SUS304) so that the molded body does not collapse, and is placed in the capsule container. When filled (filled), the packing density of the mixed powder was 3.47 g / cm 3 , and the theoretical density of the sintered body was 6.495 g / cm 3 , so the packing ratio of the mixed powder was 53.4. %.
The packing density and the theoretical density of the sintered body were obtained from the following formula.
Filling density = Molded body weight / Capsule container inner volume The theoretical density of the sintered body is the crystal phase corresponding to the number of atoms of indium element, gallium element and zinc element is 2: 2: 1. There is information on single-phase crystals of 2 Ga 2 ZnO 7 (JCPDS card number: 381097), and the theoretical density of this single-phase crystal described in the JCPDS card was adopted.
 カプセル容器に混合粉末を充填した後に、排気管を上蓋に溶接し、その後上蓋とカプセル容器を溶接した。カプセル容器の溶接部の健全性を確認するため、Heリーク検査を行った。この時の漏れ量を1×10-9Pa・m3/sec以下とした。その後、550℃で7時間、カプセル容器内の真空引きを行った後、カプセル容器内が1.33×10-2Pa以下になったことを確認し、排気管を閉じ、カプセル容器の封止を行った。封止したカプセル容器をHIP処理装置((株)神戸製鋼所製)に挿入し、カプセルHIP処理を行った。カプセルHIP処理は、温度1220℃、圧力100MPaのArガス(純度99.9%)を圧力媒体とし、4時間の処理条件で行った。 After filling the capsule container with the mixed powder, the exhaust pipe was welded to the upper lid, and then the upper lid and the capsule container were welded. In order to confirm the soundness of the welded part of the capsule container, a He leak test was performed. The amount of leakage at this time was 1 × 10 −9 Pa · m 3 / sec or less. Then, after evacuating the capsule container for 7 hours at 550 ° C., confirm that the inside of the capsule container is 1.33 × 10 −2 Pa or less, close the exhaust pipe, and seal the capsule container Went. The sealed capsule container was inserted into a HIP processing apparatus (manufactured by Kobe Steel, Ltd.) and subjected to capsule HIP processing. The capsule HIP treatment was performed under a treatment condition of 4 hours using Ar gas (purity: 99.9%) at a temperature of 1220 ° C. and a pressure of 100 MPa as a pressure medium.
 カプセルHIP処理後、カプセル容器を取り外し、円柱型のIGZO焼結体(6)を得た。この焼結体(6)のサイズを、直接測長して求めたところ、直径93.4mm、高さ32.5mmであった。
 このIGZO焼結体(6)の相対密度は100%であり、焼結体のバルク抵抗値は、実施例1と同様にして測定したところ、5.2×10-4Ω・cmであった。また、電子顕微鏡にてIGZO焼結体(6)を観察したところ、空孔もほとんどなく緻密な焼結体であった。
 なお、相対密度は、下式に示すように求めた。
 相対密度=100×[(焼結体の密度)/(焼結体の理論密度)]
 なお、焼結体の理論密度はJCPDSカードに記載のIn2Ga2ZnO7(JCPDSカード番号:381097)の理論密度を採用した。
 焼結体の密度は、測長法により測定した。
After the capsule HIP treatment, the capsule container was removed to obtain a cylindrical IGZO sintered body (6). When the size of the sintered body (6) was directly measured, it was 93.4 mm in diameter and 32.5 mm in height.
The relative density of this IGZO sintered body (6) was 100%, and the bulk resistance value of the sintered body was 5.2 × 10 −4 Ω · cm as measured in the same manner as in Example 1. . Further, when the IGZO sintered body (6) was observed with an electron microscope, it was a dense sintered body with almost no voids.
The relative density was determined as shown in the following formula.
Relative density = 100 × [(density of sintered body) / (theoretical density of sintered body)]
The theoretical density of the sintered body was the theoretical density of In 2 Ga 2 ZnO 7 (JCPDS card number: 381097) described in the JCPDS card.
The density of the sintered body was measured by a length measurement method.
 得られたIGZO焼結体(6)に表面研削、外周研削ついで表面研磨を施し、直径が50.8mm、厚さ3mmの焼結体とした。
 得られたIGZO焼結体(6)をICP(高周波誘導結合プラズマ)分析装置(SEIKO(株)製「SPS5000」)にて分析したところ、InとGaとZnの原子数比はIn:Ga:Zn=2:2:1であった。このIGZO焼結体(6)のInとGaとZnの原子数比は、仕込み組成である、In:Ga:Zn=2:2:1とまったくずれていないことから、インジウムや亜鉛の揮散はなかった。
The obtained IGZO sintered body (6) was subjected to surface grinding, outer periphery grinding and then surface polishing to obtain a sintered body having a diameter of 50.8 mm and a thickness of 3 mm.
When the obtained IGZO sintered body (6) was analyzed with an ICP (high frequency inductively coupled plasma) analyzer (“SPS5000” manufactured by SEIKO Co., Ltd.), the atomic ratio of In, Ga, and Zn was In: Ga: Zn = 2: 2: 1. Since the atomic ratio of In, Ga, and Zn in this IGZO sintered body (6) is not shifted at all from the charged composition, In: Ga: Zn = 2: 2: 1, the volatilization of indium and zinc is There wasn't.
 このIGZO焼結体(6)を、銅板をバッキングプレートとして用い、インジウム半田を用いてボンディングし、スパッタリングターゲットを得た。これを用いてDCスパッタリング法により透明基材(無アルカリガラス基板)上に透明半導体膜を成膜して、透明半導体基板を得た。すなわち、スパッタリング装置(キャノンアネルバエンジニアリング(株)製「E-200」)内に、上記ターゲットと透明基材(石英ガラス基板)とをそれぞれ設置し、Arガス(純度99.9995%以上、Ar純ガス=5N)を12sccmで導入して、圧力0.5Pa、ターゲット面の単位面積当たりの投入電力3.8W/cm2、基板温度は室温の条件下で10時間連続DCスパッタリングを行い、基板上にキャリアの移動度が大きく、安定したアモルファス透明半導体膜を形成した。その結果、ターゲット表面には、ほとんどノジュールが発生することなく、成膜中にほとんど異常放電は発生しなかった。具体的には、成膜中に発生した異常放電の回数は、1時間あたり3回以内であり、この異常放電の発生に起因するスパッタリング装置の運転停止は一度もなかった。異常放電の回数は、マイクロアークモニターにより検出した。 This IGZO sintered body (6) was bonded using indium solder using a copper plate as a backing plate to obtain a sputtering target. Using this, a transparent semiconductor film was formed on a transparent substrate (non-alkali glass substrate) by a DC sputtering method to obtain a transparent semiconductor substrate. That is, in the sputtering apparatus (“E-200” manufactured by Canon Anelva Engineering Co., Ltd.), the target and the transparent base material (quartz glass substrate) were respectively installed, and Ar gas (purity 99.9995% or more, Ar pure) Gas = 5N) is introduced at 12 sccm, DC sputtering is performed for 10 hours under conditions of a pressure of 0.5 Pa, an input power of 3.8 W / cm 2 per unit area of the target surface, and a substrate temperature of room temperature. In addition, a stable amorphous transparent semiconductor film with high carrier mobility was formed. As a result, almost no nodules were generated on the target surface, and almost no abnormal discharge occurred during film formation. Specifically, the number of abnormal discharges that occurred during film formation was within 3 times per hour, and there was never a shutdown of the sputtering apparatus due to the occurrence of abnormal discharges. The number of abnormal discharges was detected by a micro arc monitor.
 以上より、インジウムや亜鉛の揮散がない為、IGZO焼結体(6)の原料である混合粉末の組成と、得られたIGZO焼結体(6)の組成とはまったくずれがなく、極めて高密度(相対密度:100%)かつ低抵抗のIGZO焼結体であり、その結果、IGZO焼結体(6)を加工してなるターゲットを用いてDCスパッタリングしてもスパッタリング装置の運転が停止することなく安定に製膜できた。 From the above, since there is no volatilization of indium and zinc, the composition of the mixed powder that is the raw material of the IGZO sintered body (6) and the composition of the obtained IGZO sintered body (6) are not displaced at all, and are extremely high. This is an IGZO sintered body having a density (relative density: 100%) and low resistance. As a result, even if DC sputtering is performed using a target obtained by processing the IGZO sintered body (6), the operation of the sputtering apparatus is stopped. The film could be formed stably without any problems.
 以上のように、極めて簡易な短い製造プロセスにて、混合粉末の粒径はナノ粒子サイズでないため、ナノマテリアルの問題もなく高密度(相対密度:100%)な焼結体を作製できた。 As described above, since the particle size of the mixed powder is not a nanoparticle size by a very simple short manufacturing process, a high-density (relative density: 100%) sintered body could be produced without any problem of nanomaterials.
(実施例7)
 酸化インジウム粉末(In23、高純度化学研究所(株)製、1次粒子サイズ:4.0μm)、酸化ガリウム粉末(Ga23、稀産金属(株)製、1次粒子サイズ:3.0μm)、酸化亜鉛粉末(ZnO、ハクスイテック(株)製、1次粒子サイズ:1.5μm)をインジウム元素とガリウム元素と亜鉛元素との原子数比が1:1:1とからなる混合粉末とエチルセルロース(和光純薬製)と、水とを、混合粉末:有機バインダー(エチルセルロース)=98.5:1.5(重量比)となる割合となるように混合し、水系スラリーを得た。
 このように調整した水系スラリーを樹脂製ポットに入れ、湿式ボールミル混合法により湿式混合した。この湿式混合は、ボールとして硬質ZrO2ボールを用い、混合時間を18時間として行った。
(Example 7)
Indium oxide powder (In 2 O 3 , manufactured by High Purity Chemical Laboratory Co., Ltd., primary particle size: 4.0 μm), gallium oxide powder (Ga 2 O 3 , manufactured by rare metal Co., Ltd.), primary particle size : 3.0 μm), zinc oxide powder (ZnO, manufactured by Hakusuitec Co., Ltd., primary particle size: 1.5 μm), the atomic ratio of indium element, gallium element and zinc element is 1: 1: 1. The mixed powder, ethyl cellulose (manufactured by Wako Pure Chemical Industries, Ltd.) and water are mixed so that the ratio of mixed powder: organic binder (ethyl cellulose) = 98.5: 1.5 (weight ratio) is obtained to obtain an aqueous slurry. It was.
The aqueous slurry thus adjusted was put in a resin pot and wet mixed by a wet ball mill mixing method. This wet mixing was performed using hard ZrO 2 balls as balls and mixing time of 18 hours.
 次いで、混合後の水系スラリーを取り出し、ボールを篩いにより、エバポレーターにて水を揮散させ、その後、熱風乾燥機にて、100℃で3時間乾燥処理を行った後、冷間静水圧プレスにて300MPaの圧力をかけて加圧成形し、切削加工を行い、直径450mmφ、高さ150mmの円柱状成型体を得た。円柱状成型体の密度は、3.47g/cm3であった。
 なお、成型体の密度は、直接成型体の測長を行い、測長した直径と高さから算出した体積と、測定した成型体の重量から有機バインダーの重量を差し引いた重量とから求めた。
Next, the mixed aqueous slurry is taken out, and the water is volatilized with an evaporator by sieving the balls. After that, drying is performed at 100 ° C. for 3 hours with a hot air dryer, and then with a cold isostatic press. It was pressure-molded by applying a pressure of 300 MPa and cut to obtain a cylindrical molded body having a diameter of 450 mmφ and a height of 150 mm. The density of the cylindrical molded body was 3.47 g / cm 3 .
The density of the molded body was obtained by directly measuring the length of the molded body and calculating the volume calculated from the measured diameter and height and the weight obtained by subtracting the weight of the organic binder from the measured weight of the molded body.
<IGZO焼結体の製造>
 円柱状の成型体をステンレス(SUS304)でできたカプセル容器(外径:458mm、内径:450mm、容器内部の高さ:150mm)に成型体が崩れないようにカプセル容器に移し、カプセル容器内に一杯に詰め(充填し)、実施例1と同様にして充填密度を求めたところ、混合粉末の充填密度は3.47g/cm3となり、焼結体の理論密度が6.379g/cm3であることから混合粉末の充填率は54.4%となった。
<Manufacture of IGZO sintered body>
The cylindrical molded body is transferred to a capsule container (outer diameter: 458 mm, inner diameter: 450 mm, height inside the container: 150 mm) made of stainless steel (SUS304) so that the molded body does not collapse. When filled (filled) and the packing density was determined in the same manner as in Example 1, the packing density of the mixed powder was 3.47 g / cm 3 , and the theoretical density of the sintered body was 6.379 g / cm 3 . As a result, the filling rate of the mixed powder was 54.4%.
 カプセル容器に混合粉末を充填した後に、排気管を上蓋に溶接し、その後上蓋とカプセル容器を溶接した。カプセル容器の溶接部の健全性を確認するため、Heリーク検査を行った。この時の漏れ量を1×10-9Pa・m3/sec以下とした。その後、600℃で7時間にてカプセル容器内の真空引きを行い、バインダーの脱脂と成型体の吸着水を完全に取り去り、カプセル容器内が1.33×10-2Pa以下になったことを確認し、排気管を閉じ、カプセル容器の封止を行った。封止したカプセル容器をHIP処理装置((株)神戸製鋼所製)に挿入し、カプセルHIP処理を行った。カプセルHIP処理は、温度1220℃、圧力100MPaのArガス(純度99.9%)を圧力媒体とし、4時間の処理条件で行った。 After filling the capsule container with the mixed powder, the exhaust pipe was welded to the upper lid, and then the upper lid and the capsule container were welded. In order to confirm the soundness of the welded part of the capsule container, a He leak test was performed. The amount of leakage at this time was 1 × 10 −9 Pa · m 3 / sec or less. After that, the capsule container was evacuated at 600 ° C. for 7 hours to completely remove the binder degreasing and the adsorbed water of the molded body, and the inside of the capsule container became 1.33 × 10 −2 Pa or less. After confirming, the exhaust pipe was closed and the capsule container was sealed. The sealed capsule container was inserted into a HIP processing apparatus (manufactured by Kobe Steel, Ltd.) and subjected to capsule HIP processing. The capsule HIP treatment was performed under a treatment condition of 4 hours using Ar gas (purity: 99.9%) at a temperature of 1220 ° C. and a pressure of 100 MPa as a pressure medium.
 カプセルHIP処理後、カプセル容器を取り外し、円柱型のIGZO焼結体(7)を得た。このIGZO焼結体(7)のサイズを、直接測長して求めたところ、直径367.0mmφ、高さ122.3mmであり、このIGZO焼結体(7)の相対密度は実施例1と同様にして求めたところ、100%であり、焼結体のバルク抵抗値は、実施例1と同様にして測定したところ、8.8×10-4Ω・cmであった。また、電子顕微鏡にて焼結体(7)を観察したところ、空孔もほとんどなく緻密な焼結体であった。 After the capsule HIP treatment, the capsule container was removed to obtain a cylindrical IGZO sintered body (7). When the size of the IGZO sintered body (7) was directly measured, the diameter was 367.0 mmφ and the height was 122.3 mm. The relative density of the IGZO sintered body (7) was as in Example 1. When determined in the same manner, it was 100%, and the bulk resistance value of the sintered body was 8.8 × 10 −4 Ω · cm as measured in the same manner as in Example 1. Further, when the sintered body (7) was observed with an electron microscope, it was a dense sintered body with almost no pores.
 得られたIGZO焼結体(7)に研削ついで表面研磨を施し、直径が50.8mmφ、厚さ3mmの焼結体とした。
 得られたIGZO焼結体(7)をICP(高周波誘導結合プラズマ)分析装置(SEIKO(株)製「SPS5000」)にて分析したところ、InとGaとZnの原子数比はIn:Ga:Zn=1:1:1であった。このIGZO焼結体(7)のInとGaとZnの原子数比は、仕込み組成である、In:Ga:Zn=1:1:1とまったくずれていないことから、インジウムや亜鉛の揮散はなかった。
The obtained IGZO sintered body (7) was ground and then subjected to surface polishing to obtain a sintered body having a diameter of 50.8 mmφ and a thickness of 3 mm.
When the obtained IGZO sintered body (7) was analyzed with an ICP (high frequency inductively coupled plasma) analyzer (“SPS5000” manufactured by SEIKO Co., Ltd.), the atomic ratio of In, Ga, and Zn was In: Ga: Zn = 1: 1: 1. Since the atomic ratio of In, Ga, and Zn in this IGZO sintered body (7) is not shifted at all from the charged composition, In: Ga: Zn = 1: 1: 1, the volatilization of indium and zinc is There wasn't.
 このIGZO焼結体(7)を、銅板をバッキングプレートとして用い、インジウム半田を用いてボンディングし、スパッタリングターゲットを得た。これを用いてDCスパッタリング法により透明基材(無アルカリガラス基板)上に透明半導体膜を成膜して、透明半導体基板を得た。すなわち、スパッタリング装置(キャノンアネルバエンジニアリング(株)製「E-200」)内に、上記ターゲットと透明基材(石英ガラス基板)とをそれぞれ設置し、Arガス(純度99.9995%以上、Ar純ガス=5N)を12sccmで導入して、圧力0.5Pa、ターゲット面の単位面積当たりの投入電力3.8W/cm2、基板温度は室温の条件下で10時間連続DCスパッタリングを行い、基板上にキャリアの移動度が大きく、安定したアモルファス透明半導体膜を形成した。その結果、ターゲット表面には、ほとんどノジュールが発生することなく、成膜中にほとんど異常放電は発生しなかった。具体的には、成膜中に発生した異常放電の回数は、1時間あたり3回以内であり、この異常放電の発生に起因するスパッタリング装置の運転停止は一度もなかった。異常放電の回数は、マイクロアークモニターにより検出した。 This IGZO sintered body (7) was bonded using indium solder using a copper plate as a backing plate to obtain a sputtering target. Using this, a transparent semiconductor film was formed on a transparent substrate (non-alkali glass substrate) by a DC sputtering method to obtain a transparent semiconductor substrate. That is, in the sputtering apparatus (“E-200” manufactured by Canon Anelva Engineering Co., Ltd.), the target and the transparent base material (quartz glass substrate) were respectively installed, and Ar gas (purity 99.9995% or more, Ar pure) Gas = 5N) is introduced at 12 sccm, DC sputtering is performed for 10 hours under conditions of a pressure of 0.5 Pa, an input power of 3.8 W / cm 2 per unit area of the target surface, and a substrate temperature of room temperature. In addition, a stable amorphous transparent semiconductor film with high carrier mobility was formed. As a result, almost no nodules were generated on the target surface, and almost no abnormal discharge occurred during film formation. Specifically, the number of abnormal discharges that occurred during film formation was within 3 times per hour, and there was never a shutdown of the sputtering apparatus due to the occurrence of abnormal discharges. The number of abnormal discharges was detected by a micro arc monitor.
 以上より、インジウムや亜鉛の揮散がない為、IGZO焼結体(7)の原料である混合粉末の組成と、得られたIGZO焼結体(7)の組成とはまったくずれがなく、極めて高密度(相対密度:100%)かつ低抵抗のIGZO焼結体であり、その結果、IGZO焼結体(7)を加工してなるターゲットを用いてDCスパッタリングしてもスパッタリング装置の運転が停止することなく安定に製膜できた。さらに、極めて高密度で大型の焼結体(7)を、カプセル容器の真空脱気処理と脱バインダー処理を同時に行い(脱脂するためだけの工程を経ずに)、作製することができた。 From the above, since there is no volatilization of indium and zinc, the composition of the mixed powder, which is the raw material of the IGZO sintered body (7), and the composition of the obtained IGZO sintered body (7) do not deviate at all and are extremely high. This is an IGZO sintered body having a density (relative density: 100%) and a low resistance. As a result, even if DC sputtering is performed using a target obtained by processing the IGZO sintered body (7), the operation of the sputtering apparatus is stopped. The film could be formed stably without any problems. Furthermore, an extremely high-density and large-sized sintered body (7) could be produced by simultaneously performing the vacuum degassing treatment and the debinding treatment of the capsule container (without going through a process only for degreasing).
 以上のように、極めて簡易な短い製造プロセスにて、混合粉末の粒径はナノ粒子サイズでないため、ナノマテリアルの問題もなく高密度(相対密度:100%)な焼結体を作製できた。 As described above, since the particle size of the mixed powder is not a nanoparticle size by a very simple short manufacturing process, a high-density (relative density: 100%) sintered body could be produced without any problem of nanomaterials.
(実施例8)
 酸化インジウム粉末(In23、添川理化学(株)製、1次粒子サイズ:1μm)、酸化ガリウム粉末(Ga23、稀産金属(株)製、1次粒子サイズ:1.0μm)、酸化亜鉛粉末(ZnO、ハクスイテック(株)製、1次粒子サイズ:1.5μm)をインジウム元素とガリウム元素と亜鉛元素との原子数比が2:2:1とからなる混合粉末とエチルセルロース(和光純薬製)と、水とを、混合粉末:有機バインダー(エチルセルロース)=98.5:1.5(重量比)となる割合となるように混合し、水系スラリーを得た。
 このように調整した水系スラリーを樹脂製ポットに入れ、湿式ボールミル混合法により湿式混合した。この湿式混合は、ボールとして硬質ZrO2ボールを用い、混合時間を18時間として行った。
(Example 8)
Indium oxide powder (In 2 O 3 , manufactured by Soekawa Rikagaku Co., Ltd., primary particle size: 1 μm), gallium oxide powder (Ga 2 O 3 , manufactured by Rare Metal Co., Ltd., primary particle size: 1.0 μm) Zinc oxide powder (ZnO, manufactured by Hakusuitec Co., Ltd., primary particle size: 1.5 μm) is mixed with a mixed powder composed of an indium element, a gallium element, and a zinc element having an atomic ratio of 2: 2: 1 and ethylcellulose ( Wako Pure Chemical Industries, Ltd.) and water were mixed at a ratio of mixed powder: organic binder (ethylcellulose) = 98.5: 1.5 (weight ratio) to obtain an aqueous slurry.
The aqueous slurry thus adjusted was put in a resin pot and wet mixed by a wet ball mill mixing method. This wet mixing was performed using hard ZrO 2 balls as balls and mixing time of 18 hours.
 次いで、混合後の水系スラリーを取り出し、ボールを篩いにより、エバポレーターにて水を揮散させ、その後、熱風乾燥機にて、100℃で3時間乾燥処理を行った後、冷間静水圧プレスにて300MPaの圧力をかけて加圧成形し、切削加工を行い、直径450mmφ、高さ150mmの円柱状成型体を得た。円柱状成型体の密度は、3.58g/cm3であった。
 なお、成型体の密度は、直接成型体の測長を行い、測長した直径と高さから算出した体積と、測定した成型体の重量から有機バインダーの重量を差し引いた重量とから求めた。
Next, the mixed aqueous slurry is taken out, and the water is volatilized with an evaporator by sieving the balls. After that, drying is performed at 100 ° C. for 3 hours with a hot air dryer, and then with a cold isostatic press. It was pressure-molded by applying a pressure of 300 MPa and cut to obtain a cylindrical molded body having a diameter of 450 mmφ and a height of 150 mm. The density of the cylindrical molded body was 3.58 g / cm 3 .
The density of the molded body was obtained by directly measuring the length of the molded body and calculating the volume calculated from the measured diameter and height and the weight obtained by subtracting the weight of the organic binder from the measured weight of the molded body.
<IGZO焼結体の製造>
 円柱状の成型体をステンレス(SUS304)でできたカプセル容器(外径:458mm、内径:450mm、容器内部の高さ:150mm)に成型体が崩れないようにカプセル容器に移し、カプセル容器内に一杯に詰め(充填し)、実施例1と同様にして充填密度を求めたところ、混合粉末の充填密度は3.58g/cm3となり、焼結体の理論密度が6.495g/cm3であることから混合粉末の充填率は55.1%となった。
<Manufacture of IGZO sintered body>
The cylindrical molded body is transferred to a capsule container (outer diameter: 458 mm, inner diameter: 450 mm, height inside the container: 150 mm) made of stainless steel (SUS304) so that the molded body does not collapse, and is placed in the capsule container When filled (filled) and the packing density was determined in the same manner as in Example 1, the packing density of the mixed powder was 3.58 g / cm 3 and the theoretical density of the sintered body was 6.495 g / cm 3 . As a result, the filling rate of the mixed powder was 55.1%.
 カプセル容器に混合粉末を充填した後に、排気管を上蓋に溶接し、その後上蓋とカプセル容器を溶接した。カプセル容器の溶接部の健全性を確認するため、Heリーク検査を行った。この時の漏れ量を1×10-9Pa・m3/sec以下とした。その後、600℃で7時間にてカプセル容器内の真空引きを行い、バインダーの脱脂と成型体の吸着水を完全に取り去り、カプセル容器内が1.33×10-2Pa以下になったことを確認し、排気管を閉じ、カプセル容器の封止を行った。封止したカプセル容器をHIP処理装置((株)神戸製鋼所製)に挿入し、カプセルHIP処理を行った。カプセルHIP処理は、温度1220℃、圧力100MPaのArガス(純度99.9%)を圧力媒体とし、4時間の処理条件で行った。 After filling the capsule container with the mixed powder, the exhaust pipe was welded to the upper lid, and then the upper lid and the capsule container were welded. In order to confirm the soundness of the welded part of the capsule container, a He leak test was performed. The amount of leakage at this time was 1 × 10 −9 Pa · m 3 / sec or less. After that, the capsule container was evacuated at 600 ° C. for 7 hours to completely remove the binder degreasing and the adsorbed water of the molded body, and the inside of the capsule container became 1.33 × 10 −2 Pa or less. After confirming, the exhaust pipe was closed and the capsule container was sealed. The sealed capsule container was inserted into a HIP processing apparatus (manufactured by Kobe Steel, Ltd.) and subjected to capsule HIP processing. The capsule HIP treatment was performed under a treatment condition of 4 hours using Ar gas (purity: 99.9%) at a temperature of 1220 ° C. and a pressure of 100 MPa as a pressure medium.
 カプセルHIP処理後、カプセル容器を取り外し、円柱型のIGZO焼結体(8)を得た。このIGZO焼結体(8)のサイズを、直接測長して求めたところ、直径369.0mmφ、高さ123.0mmであり、このIGZO焼結体(8)の相対密度は実施例2と同様にして求めたところ、100%であり、焼結体のバルク抵抗値は、実施例1と同様にして測定したところ、4.9×10-4Ω・cmであった。また、電子顕微鏡にて焼結体(8)を観察したところ、空孔もほとんどなく緻密な焼結体であった。 After the capsule HIP treatment, the capsule container was removed to obtain a cylindrical IGZO sintered body (8). When the size of the IGZO sintered body (8) was directly measured, the diameter was 369.0 mmφ and the height was 123.0 mm. The relative density of the IGZO sintered body (8) was as in Example 2. When determined in the same manner, it was 100%, and the bulk resistance value of the sintered body was 4.9 × 10 −4 Ω · cm as measured in the same manner as in Example 1. Further, when the sintered body (8) was observed with an electron microscope, it was a dense sintered body with almost no pores.
 得られたIGZO焼結体(8)に研削ついで表面研磨を施し、直径が50.8mmφ、厚さ3mmの焼結体とした。
 得られたIGZO焼結体(8)をICP(高周波誘導結合プラズマ)分析装置(SEIKO(株)製「SPS5000」)にて分析したところ、InとGaとZnの原子数比はIn:Ga:Zn=2:2:1であった。このIGZO焼結体(8)のInとGaとZnの原子数比は、仕込み組成である、In:Ga:Zn=2:2:1とまったくずれていないことから、インジウムや亜鉛の揮散はなかった。
The obtained IGZO sintered body (8) was ground and then subjected to surface polishing to obtain a sintered body having a diameter of 50.8 mmφ and a thickness of 3 mm.
When the obtained IGZO sintered body (8) was analyzed with an ICP (high frequency inductively coupled plasma) analyzer (“SPS5000” manufactured by SEIKO Co., Ltd.), the atomic ratio of In, Ga, and Zn was In: Ga: Zn = 2: 2: 1. Since the atomic ratio of In, Ga, and Zn in this IGZO sintered body (8) is not shifted at all from the charged composition, In: Ga: Zn = 2: 2: 1, the volatilization of indium and zinc is There wasn't.
 このIGZO焼結体(8)を、銅板をバッキングプレートとして用い、インジウム半田を用いてボンディングし、スパッタリングターゲットを得た。これを用いてDCスパッタリング法により透明基材(無アルカリガラス基板)上に透明半導体膜を成膜して、透明半導体基板を得た。すなわち、スパッタリング装置(キャノンアネルバエンジニアリング(株)製「E-200」)内に、上記ターゲットと透明基材(石英ガラス基板)とをそれぞれ設置し、Arガス(純度99.9995%以上、Ar純ガス=5N)を12sccmで導入して、圧力0.5Pa、ターゲット面の単位面積当たりの投入電力3.8W/cm2、基板温度は室温の条件下で10時間連続DCスパッタリングを行い、基板上にキャリアの移動度が大きく、安定したアモルファス透明半導体膜を形成した。その結果、ターゲット表面には、ほとんどノジュールが発生することなく、成膜中にほとんど異常放電は発生しなかった。具体的には、成膜中に発生した異常放電の回数は、1時間あたり3回以内であり、この異常放電の発生に起因するスパッタリング装置の運転停止は一度もなかった。異常放電の回数は、マイクロアークモニターにより検出した。 This IGZO sintered body (8) was bonded using indium solder using a copper plate as a backing plate to obtain a sputtering target. Using this, a transparent semiconductor film was formed on a transparent substrate (non-alkali glass substrate) by a DC sputtering method to obtain a transparent semiconductor substrate. That is, in the sputtering apparatus (“E-200” manufactured by Canon Anelva Engineering Co., Ltd.), the target and the transparent base material (quartz glass substrate) were respectively installed, and Ar gas (purity 99.9995% or more, Ar pure) Gas = 5N) is introduced at 12 sccm, DC sputtering is performed for 10 hours under conditions of a pressure of 0.5 Pa, an input power of 3.8 W / cm 2 per unit area of the target surface, and a substrate temperature of room temperature. In addition, a stable amorphous transparent semiconductor film with high carrier mobility was formed. As a result, almost no nodules were generated on the target surface, and almost no abnormal discharge occurred during film formation. Specifically, the number of abnormal discharges that occurred during film formation was within 3 times per hour, and there was never a shutdown of the sputtering apparatus due to the occurrence of abnormal discharges. The number of abnormal discharges was detected by a micro arc monitor.
 以上より、インジウムや亜鉛の揮散がない為、IGZO焼結体(8)の原料である混合粉末の組成と、得られたIGZO焼結体(8)の組成とはまったくずれがなく、極めて高密度(相対密度:100%)かつ低抵抗のIGZO焼結体であり、その結果、IGZO焼結体(8)を加工してなるターゲットを用いてDCスパッタリングしてもスパッタリング装置の運転が停止することなく安定に製膜できた。さらに、極めて高密度で大型の焼結体(8)を、カプセル容器の真空脱気処理と脱バインダー処理を同時に行い(脱脂するためだけの工程を経ずに)、作製することができた。 From the above, since there is no volatilization of indium and zinc, the composition of the mixed powder that is the raw material of the IGZO sintered body (8) and the composition of the obtained IGZO sintered body (8) are not displaced at all and are extremely high. This is an IGZO sintered body having a density (relative density: 100%) and a low resistance. As a result, even if DC sputtering is performed using a target obtained by processing the IGZO sintered body (8), the operation of the sputtering apparatus is stopped. The film could be formed stably without any problems. Furthermore, an extremely high-density and large-sized sintered body (8) could be produced by simultaneously performing the vacuum degassing treatment and the debinding treatment of the capsule container (without going through a process only for degreasing).
 以上のように、極めて簡易な短い製造プロセスにて、混合粉末の粒径はナノ粒子サイズでないため、ナノマテリアルの問題もなく高密度(相対密度:100%)な焼結体を作製できた。 As described above, since the particle size of the mixed powder is not a nanoparticle size by a very simple short manufacturing process, a high-density (relative density: 100%) sintered body could be produced without any problem of nanomaterials.
 (比較例1)
<IGZO焼結体の製造>
 タップ密度が1.95g/cm3の酸化インジウム粉末(In23、添川理化学(株)製、1次粒子サイズ:1μm)、タップ密度が1.39g/cm3の酸化ガリウム粉末(Ga23、ヤマナカヒューテック(株)製、1次粒子サイズ:1.5μm)、タップ密度が1.02g/cm3である酸化亜鉛粉末(ZnO、ハクスイテック(株)製、1次粒子サイズ:1.5μm)をインジウム元素とガリウム元素と亜鉛元素との原子数比が1:1:1となるように秤量した混合粉末と、更に2mmφジルコニア製ボールとポリプロピレンカーボネート(Empower Materials社製の「QPAC40」、分子量:20万)と、エタノールと、ポリプロピレンカーボネートを溶解させるためのアセトンとを、混合粉末:有機バインダー(ポリプロピレンカーボネート)=97:3(重量比)となる割合となるように混合し、スラリーを得た。このように調製したスラリーを樹脂製ポットに入れ、湿式ボールミル混合法により湿式混合した。この湿式混合は、ボールとして硬質ZrO2ボールを用い、混合時間を18時間として行った。次いで、湿式混合後のスラリーを取り出し、ボールを篩いにより、溶媒をエバポレーターにより除去し混合粉末を得た。なお、酸化インジウム粉末、酸化ガリウム粉末、酸化亜鉛粉末のタップ密度はJIS K5101に基づいて、所定のサイズのメスシリンダーにそれぞれの粉末の体積変化がなくなるまで振動を付与しながらそれぞれの粉末を充填し、評価を行った。
(Comparative Example 1)
<Manufacture of IGZO sintered body>
Indium oxide powder having a tap density of 1.95 g / cm 3 (In 2 O 3 , primary particle size: 1 μm, manufactured by Soekawa Rikagaku Co., Ltd.), gallium oxide powder having a tap density of 1.39 g / cm 3 (Ga 2 O 3 , manufactured by Yamanaka Hutech Co., Ltd., primary particle size: 1.5 μm, zinc oxide powder having a tap density of 1.02 g / cm 3 (ZnO, manufactured by Hakusui Tech Co., Ltd.) Primary particle size: 1. 5 μm), a mixed powder weighed so that the atomic ratio of indium element, gallium element and zinc element is 1: 1: 1. Molecular weight: 200,000), ethanol, and acetone for dissolving polypropylene carbonate, mixed powder: organic binder (polypropylene carbonate) 97: 3 were mixed such that the proportion of the (weight ratio) to obtain a slurry. The slurry thus prepared was placed in a resin pot and wet mixed by a wet ball mill mixing method. This wet mixing was performed using hard ZrO 2 balls as balls and mixing time of 18 hours. Next, the slurry after wet mixing was taken out, and the balls were sieved and the solvent was removed by an evaporator to obtain a mixed powder. The tap density of indium oxide powder, gallium oxide powder, and zinc oxide powder is based on JIS K5101, and each powder is filled with vibration while applying vibration to a graduated cylinder of a predetermined size until there is no volume change of each powder. And evaluated.
 得られた混合粉末を、実施例1で用いたのと同様のカプセル容器に混合粉末の体積変化がなくなるまで振動を付与しながら充填したところ、タップ密度は1.58g/cm3となり、焼結体の理論密度が6.379g/cm3であることから充填率は24.8%となった。
 なお、充填率は、下式に示すように求めた。
 充填率=100×[(タップ密度)/(焼結体の理論密度)]
 なお、焼結体の理論密度は、インジウム元素とガリウム元素と亜鉛元素との原子数比が1:1:1となる組成に対応する結晶相として、JCPDSカードにはInGaZnO4(JCPDSカード番号:381104)という単相結晶の情報があり、JCPDSカードに記載されたこの理論密度を採用した。
When the obtained mixed powder was filled in the same capsule container as used in Example 1 while applying vibration until the volume of the mixed powder disappeared, the tap density was 1.58 g / cm 3 , which was sintered. Since the theoretical density of the body was 6.379 g / cm 3 , the filling rate was 24.8%.
The filling rate was determined as shown in the following formula.
Filling rate = 100 × [(tap density) / (theoretical density of sintered body)]
It should be noted that the theoretical density of the sintered body is InGaZnO 4 (JCPDS card number: JCPDS card) as a crystal phase corresponding to a composition in which the atomic ratio of indium element, gallium element and zinc element is 1: 1: 1. 381104), and the theoretical density described in the JCPDS card was adopted.
 その後、実施例3と同様にしてカプセルHIP処理を行ったところ、カプセルHIP処理中にカプセル容器が破裂し、混合粉末がHIP処理装置内に飛散し、IGZO焼結体を作製することが出来なかった。
 混合粉末の充填率が24.8%と極めて低く、カプセル容器の収縮率が75.2%となるため、混合粉末の収縮にカプセル容器の収縮が追随できず、カプセル容器が破裂してしまった。
Thereafter, capsule HIP treatment was performed in the same manner as in Example 3. As a result, the capsule container burst during capsule HIP treatment, and the mixed powder was scattered in the HIP treatment apparatus, making it impossible to produce an IGZO sintered body. It was.
Since the filling rate of the mixed powder is extremely low at 24.8% and the shrinkage rate of the capsule container is 75.2%, the shrinkage of the capsule container cannot follow the shrinkage of the mixed powder, and the capsule container is ruptured. .
 (比較例2)
<IGZO焼結体の製造>
 タップ密度が1.95g/cm3の酸化インジウム粉末(In23、添川理化学(株)製、1次粒子サイズ:1μm)、タップ密度が1.39g/cm3の酸化ガリウム粉末(Ga23、ヤマナカヒューテック(株)製、1次粒子サイズ:1.5μm)、タップ密度が1.02g/cm3である酸化亜鉛粉末(ZnO、ハクスイテック(株)製、1次粒子サイズ:1.5μm)をインジウム元素とガリウム元素と亜鉛元素との原子数比が2:2:1となるように秤量した混合粉末と、更に2mmφジルコニア製ボールとポリプロピレンカーボネート(Empower Materials社製の「QPAC40」、分子量:20万)と、エタノールと、ポリプロピレンカーボネートを溶解させるためのアセトンとを、混合粉末:有機バインダー(ポリプロピレンカーボネート)=97:3(重量比)となる割合となるように混合し、スラリーを得た。このように調製したスラリーを樹脂製ポットに入れ、湿式ボールミル混合法により湿式混合した。この湿式混合は、ボールとして硬質ZrO2ボールを用い、混合時間を18時間として行った。次いで、湿式混合後のスラリーを取り出し、ボールを篩いにより、溶媒をエバポレーターにより除去し混合粉末を得た。なお、酸化インジウム粉末、酸化ガリウム粉末、酸化亜鉛粉末のタップ密度はJIS K5101に基づいて、所定のサイズのメスシリンダーにそれぞれの粉末の体積変化がなくなるまで振動を付与しながらそれぞれの粉末を充填し、評価を行った。
(Comparative Example 2)
<Manufacture of IGZO sintered body>
Indium oxide powder having a tap density of 1.95 g / cm 3 (In 2 O 3 , primary particle size: 1 μm, manufactured by Soekawa Rikagaku Co., Ltd.), gallium oxide powder having a tap density of 1.39 g / cm 3 (Ga 2 O 3 , manufactured by Yamanaka Hutech Co., Ltd., primary particle size: 1.5 μm, zinc oxide powder having a tap density of 1.02 g / cm 3 (ZnO, manufactured by Hakusui Tech Co., Ltd.) Primary particle size: 1. 5 μm) and a mixed powder in which the atomic ratio of indium element, gallium element and zinc element is 2: 2: 1, and a 2 mmφ zirconia ball and polypropylene carbonate (“QPAC40” manufactured by Empower Materials, Molecular weight: 200,000), ethanol and acetone for dissolving polypropylene carbonate, mixed powder: organic binder (polypropylene carbonate) 97: 3 were mixed such that the proportion of the (weight ratio) to obtain a slurry. The slurry thus prepared was placed in a resin pot and wet mixed by a wet ball mill mixing method. This wet mixing was performed using hard ZrO 2 balls as balls and mixing time of 18 hours. Next, the slurry after wet mixing was taken out, and the balls were sieved and the solvent was removed by an evaporator to obtain a mixed powder. The tap density of indium oxide powder, gallium oxide powder, and zinc oxide powder is based on JIS K5101, and each powder is filled with vibration while applying vibration to a graduated cylinder of a predetermined size until there is no volume change of each powder. And evaluated.
 得られた混合粉末を、実施例1で用いたのと同様のカプセル容器に混合粉末の体積変化がなくなるまで振動を付与しながら充填したところ、タップ密度は1.51g/cm3となり、焼結体の理論密度が6.495g/cm3であることから充填率は23.2%となった。
 なお、充填率は、下式に示すように求めた。
 充填率=100×[(タップ密度)/(焼結体の理論密度)]
 なお、焼結体の理論密度は、インジウム元素とガリウム元素と亜鉛元素との原子数比が2:2:1となる組成に対応する結晶相として、JCPDSカードにはIn2Ga2ZnO7(JCPDSカード番号:381097)という単相結晶の情報があり、JCPDSカードに記載されたこの理論密度を採用した。
When the obtained mixed powder was filled in a capsule container similar to that used in Example 1 while vibration was applied until the volume of the mixed powder disappeared, the tap density was 1.51 g / cm 3 , which was sintered. Since the theoretical density of the body was 6.495 g / cm 3 , the filling rate was 23.2%.
The filling rate was determined as shown in the following formula.
Filling rate = 100 × [(tap density) / (theoretical density of sintered body)]
The theoretical density of the sintered body is a crystal phase corresponding to a composition in which the atomic ratio of indium element, gallium element, and zinc element is 2: 2: 1. The JCPDS card has In 2 Ga 2 ZnO 7 ( JCPDS card number: 381097), and the theoretical density described in the JCPDS card was adopted.
 その後、実施例3と同様にしてカプセルHIP処理を行ったところ、カプセルHIP処理中にカプセル容器が破裂し、混合粉末がHIP処理装置内に飛散し、IGZO焼結体を作製することが出来なかった。
 混合粉末の充填率が23.2%と極めて低く、カプセル容器の収縮率が76.8%となるため、混合粉末の収縮にカプセル容器の収縮が追随できず、カプセル容器が破裂してしまった。
Thereafter, capsule HIP treatment was performed in the same manner as in Example 3. As a result, the capsule container burst during capsule HIP treatment, and the mixed powder was scattered in the HIP treatment apparatus, making it impossible to produce an IGZO sintered body. It was.
Since the filling rate of the mixed powder is extremely low as 23.2% and the shrinkage rate of the capsule container is 76.8%, the shrinkage of the capsule container cannot follow the shrinkage of the mixed powder, and the capsule container is ruptured. .
(比較例3)
<IGZO焼結体の製造>
 タップ密度が1.95g/cm3の酸化インジウム粉末(In23、添川理化学(株)製、1次粒子サイズ:1μm)、タップ密度が1.47g/cm3の酸化ガリウム粉末(Ga23、稀産金属(株)製、1次粒子サイズ:3.0μm)、タップ密度が1.02g/cm3である酸化亜鉛粉末(ZnO、ハクスイテック(株)製、1次粒子サイズ:1.5μm)をインジウム元素とガリウム元素と亜鉛元素との原子数比が1:1:1となるように秤量した混合粉末と、更に2mmφジルコニア製ボールとポリプロピレンカーボネート(Empower Materials社製の「QPAC40」、分子量:20万)と、エタノールと、ポリプロピレンカーボネートを溶解させるためのアセトンとを、混合粉末:有機バインダー(ポリプロピレンカーボネート)=97:3(重量比)となる割合となるように混合し、スラリーを得た。このように調製したスラリーを樹脂製ポットに入れ、湿式ボールミル混合法により湿式混合した。この湿式混合は、ボールとして硬質ZrO2ボールを用い、混合時間を18時間として行った。次いで、湿式混合後のスラリーを取り出し、ボールを篩いにより、溶媒をエバポレーターにより除去し混合粉末を得た。なお、酸化インジウム粉末、酸化ガリウム粉末、酸化亜鉛粉末のタップ密度はJIS K5101に基づいて、所定のサイズのメスシリンダーにそれぞれの粉末の体積変化がなくなるまで振動を付与しながらそれぞれの粉末を充填し、評価を行った。
(Comparative Example 3)
<Manufacture of IGZO sintered body>
Indium oxide powder having a tap density of 1.95 g / cm 3 (In 2 O 3 , primary particle size: 1 μm, manufactured by Soekawa Richemical Co., Ltd.), gallium oxide powder having a tap density of 1.47 g / cm 3 (Ga 2 O 3 , rare metal production Co., Ltd., primary particle size: 3.0 μm, zinc oxide powder with a tap density of 1.02 g / cm 3 (ZnO, produced by Hakusui Tech Co., Ltd.) Primary particle size: 1 .5 μm), a mixed powder obtained by weighing the atomic ratio of indium element, gallium element, and zinc element to 1: 1: 1, and a 2 mmφ zirconia ball and polypropylene carbonate (“QPAC40” manufactured by Empower Materials) , Molecular weight: 200,000), ethanol and acetone for dissolving polypropylene carbonate, mixed powder: organic binder (polypropylene carbonate) = 97: 3 ( They were mixed in a ratio Amount ratio) to obtain a slurry. The slurry thus prepared was placed in a resin pot and wet mixed by a wet ball mill mixing method. This wet mixing was performed using hard ZrO 2 balls as balls and mixing time of 18 hours. Next, the slurry after wet mixing was taken out, and the balls were sieved and the solvent was removed by an evaporator to obtain a mixed powder. The tap density of indium oxide powder, gallium oxide powder, and zinc oxide powder is based on JIS K5101, and each powder is filled with vibration while applying vibration to a graduated cylinder of a predetermined size until there is no volume change of each powder. And evaluated.
 得られた混合粉末を、実施例1で用いたのと同様のカプセル容器に混合粉末の体積変化がなくなるまで振動を付与しながら充填したところ、タップ密度は1.55g/cm3となり、焼結体の理論密度が6.379g/cm3であることから充填率は24.2%となった。
 なお、充填率は、下式に示すように求めた。
 充填率=100×[(タップ密度)/(焼結体の理論密度)]
 なお、焼結体の理論密度は、インジウム元素とガリウム元素と亜鉛元素との原子数比が1:1:1となる組成に対応する結晶相として、JCPDSカードにはInGaZnO4(JCPDSカード番号:381104)という単相結晶の情報があり、JCPDSカードに記載されたこの理論密度を採用した。
When the obtained mixed powder was filled in a capsule container similar to that used in Example 1 while applying vibration until the volume of the mixed powder disappeared, the tap density was 1.55 g / cm 3 , which was sintered. Since the theoretical density of the body was 6.379 g / cm 3 , the filling factor was 24.2%.
The filling rate was determined as shown in the following formula.
Filling rate = 100 × [(tap density) / (theoretical density of sintered body)]
It should be noted that the theoretical density of the sintered body is InGaZnO 4 (JCPDS card number: JCPDS card) as a crystal phase corresponding to a composition in which the atomic ratio of indium element, gallium element and zinc element is 1: 1: 1. 381104), and the theoretical density described in the JCPDS card was adopted.
 その後、実施例3と同様にしてカプセルHIP処理を行ったところ、カプセルHIP処理中にカプセル容器が破裂し、混合粉末がHIP処理装置内に飛散し、IGZO焼結体を作製することが出来なかった。
 混合粉末の充填率が24.2%と極めて低く、カプセル容器の収縮率が75.8%となるため、混合粉末の収縮にカプセル容器の収縮が追随できず、カプセル容器が破裂してしまった。
Thereafter, capsule HIP treatment was performed in the same manner as in Example 3. As a result, the capsule container burst during capsule HIP treatment, and the mixed powder was scattered in the HIP treatment apparatus, making it impossible to produce an IGZO sintered body. It was.
The filling rate of the mixed powder is extremely low at 24.2%, and the shrinkage rate of the capsule container is 75.8%. .
 (比較例4)
<IGZO焼結体の製造>
 タップ密度が1.95g/cm3の酸化インジウム粉末(In23、添川理化学(株)製、1次粒子サイズ:1μm)、タップ密度が1.48g/cm3の酸化ガリウム粉末(Ga23、稀産金属(株)製、1次粒子サイズ:1.0μm)、タップ密度が1.02g/cm3である酸化亜鉛粉末(ZnO、ハクスイテック(株)製、1次粒子サイズ:1.5μm)をインジウム元素とガリウム元素と亜鉛元素との原子数比が2:2:1となるように秤量した混合粉末と、更に2mmφジルコニア製ボールとポリプロピレンカーボネート(Empower Materials社製の「QPAC40」、分子量:20万)と、エタノールと、ポリプロピレンカーボネートを溶解させるためのアセトンとを、混合粉末:有機バインダー(ポリプロピレンカーボネート)=97:3(重量比)となる割合となるように混合し、スラリーを得た。このように調製したスラリーを樹脂製ポットに入れ、湿式ボールミル混合法により湿式混合した。この湿式混合は、ボールとして硬質ZrO2ボールを用い、混合時間を18時間として行った。次いで、湿式混合後のスラリーを取り出し、ボールを篩いにより、溶媒をエバポレーターにより除去し混合粉末を得た。なお、酸化インジウム粉末、酸化ガリウム粉末、酸化亜鉛粉末のタップ密度はJIS K5101に基づいて、所定のサイズのメスシリンダーにそれぞれの粉末の体積変化がなくなるまで振動を付与しながらそれぞれの粉末を充填し、評価を行った。
(Comparative Example 4)
<Manufacture of IGZO sintered body>
Indium oxide powder having a tap density of 1.95 g / cm 3 (In 2 O 3 , primary particle size: 1 μm, manufactured by Soekawa Rikagaku Co., Ltd.), gallium oxide powder having a tap density of 1.48 g / cm 3 (Ga 2 O 3 , rare metal production Co., Ltd., primary particle size: 1.0 μm, zinc oxide powder having a tap density of 1.02 g / cm 3 (ZnO, Hakusui Tech Co., Ltd., primary particle size: 1) .5 μm) mixed powder in which the atomic ratio of indium element, gallium element and zinc element was 2: 2: 1, 2 mmφ zirconia balls and polypropylene carbonate (“QPAC40” manufactured by Empower Materials) , Molecular weight: 200,000), ethanol and acetone for dissolving polypropylene carbonate, mixed powder: organic binder (polypropylene carbonate) = 97: 3 ( They were mixed in a ratio Amount ratio) to obtain a slurry. The slurry thus prepared was placed in a resin pot and wet mixed by a wet ball mill mixing method. This wet mixing was performed using hard ZrO 2 balls as balls and mixing time of 18 hours. Next, the slurry after wet mixing was taken out, and the balls were sieved and the solvent was removed by an evaporator to obtain a mixed powder. The tap density of indium oxide powder, gallium oxide powder, and zinc oxide powder is based on JIS K5101, and each powder is filled with vibration while applying vibration to a graduated cylinder of a predetermined size until there is no volume change of each powder. And evaluated.
 得られた混合粉末を、実施例1で用いたのと同様のカプセル容器に混合粉末の体積変化がなくなるまで振動を付与しながら充填したところ、タップ密度は1.52g/cm3となり、焼結体の理論密度が6.495g/cm3であることから充填率は23.4%となった。
 なお、充填率は、下式に示すように求めた。
 充填率=100×[(タップ密度)/(焼結体の理論密度)]
 なお、焼結体の理論密度は、インジウム元素とガリウム元素と亜鉛元素との原子数比が2:2:1となる組成に対応する結晶相として、JCPDSカードにはIn2Ga2ZnO7(JCPDSカード番号:381097)という単相結晶の情報があり、JCPDSカードに記載されたこの理論密度を採用した。
When the obtained mixed powder was filled in the same capsule container as used in Example 1 while applying vibration until the volume of the mixed powder disappeared, the tap density was 1.52 g / cm 3 , which was sintered. Since the theoretical density of the body was 6.495 g / cm 3 , the filling rate was 23.4%.
The filling rate was determined as shown in the following formula.
Filling rate = 100 × [(tap density) / (theoretical density of sintered body)]
The theoretical density of the sintered body is a crystal phase corresponding to a composition in which the atomic ratio of indium element, gallium element, and zinc element is 2: 2: 1. The JCPDS card has In 2 Ga 2 ZnO 7 ( JCPDS card number: 381097), and the theoretical density described in the JCPDS card was adopted.
 その後、実施例3と同様にしてカプセルHIP処理を行ったところ、カプセルHIP処理中にカプセル容器が破裂し、混合粉末がHIP処理装置内に飛散し、IGZO焼結体を作製することが出来なかった。
 混合粉末の充填率が23.4%と極めて低く、カプセル容器の収縮率が76.6%となるため、混合粉末の収縮にカプセル容器の収縮が追随できず、カプセル容器が破裂してしまった。
Thereafter, capsule HIP treatment was performed in the same manner as in Example 3. As a result, the capsule container burst during capsule HIP treatment, and the mixed powder was scattered in the HIP treatment apparatus, making it impossible to produce an IGZO sintered body. It was.
Since the filling rate of the mixed powder is extremely low as 23.4% and the shrinkage rate of the capsule container is 76.6%, the shrinkage of the capsule container cannot follow the shrinkage of the mixed powder, and the capsule container is ruptured. .

Claims (13)

  1.  式:InxGayZnza
    [式中、x/(x+y)=0.2~0.8、z/(x+y+z)=0.1~0.5、a=(3/2)x+(3/2)y+z]
    で表わされるIn-Ga-Zn系複合酸化物焼結体であって、
     バルク抵抗値が1.0×10-3Ω・cm未満であることを特徴とするIn-Ga-Zn系複合酸化物焼結体。
    Formula: In x Ga y Zn z O a
    [Wherein, x / (x + y) = 0.2 to 0.8, z / (x + y + z) = 0.1 to 0.5, a = (3/2) x + (3/2) y + z]
    An In—Ga—Zn-based composite oxide sintered body represented by:
    An In—Ga—Zn-based composite oxide sintered body having a bulk resistance value of less than 1.0 × 10 −3 Ω · cm.
  2.  スパッタリング法、イオンプレーティング法、パルスレーザーデポジション(PLD)法またはエレクトロンビーム(EB)蒸着法による成膜に用いられるターゲットであって、請求項1に記載のIn-Ga-Zn系複合酸化物焼結体を加工してなることを特徴とするターゲット。 2. The In—Ga—Zn-based composite oxide according to claim 1, which is a target used for film formation by sputtering, ion plating, pulse laser deposition (PLD), or electron beam (EB) evaporation. A target obtained by processing a sintered body.
  3.  インジウムと、ガリウムと、亜鉛と、酸素を含み下記混合条件を満たし、かつ1次粒子サイズが0.6μm以上である混合粉末を加圧成形し、成型体とする工程(a)と、
     下記式から算出される、カプセル容器への混合粉末の充填率が50%以上となるように、前記成型体をカプセル容器に充填して、カプセル熱間等方加圧処理を行う工程(b)とを含むことを特徴とするIn-Ga-Zn系複合酸化物焼結体の製造方法。
     混合条件:金属原子比In:Ga:Zn=x:y:zにおいて、x/(x+y)が0.2~0.8であり、かつz/(x+y+z)が0.1~0.5である関係を満たす。
     充填率(%)=(カプセル容器への混合粉末の充填密度/焼結体の理論密度)×100
    A step (a) of pressure-molding a mixed powder containing indium, gallium, zinc, oxygen and satisfying the following mixing conditions and having a primary particle size of 0.6 μm or more to form a molded body;
    The step (b) of filling the molded body into the capsule container and subjecting the capsule to hot isostatic pressing so that the filling rate of the mixed powder into the capsule container calculated from the following formula is 50% or more A method for producing an In—Ga—Zn-based composite oxide sintered body.
    Mixing conditions: metal atomic ratio In: Ga: Zn = x: y: z, x / (x + y) is 0.2 to 0.8, and z / (x + y + z) is 0.1 to 0.5 Satisfy a relationship.
    Filling rate (%) = (packing density of mixed powder into capsule container / theoretical density of sintered body) × 100
  4.  工程(a)において、酸化インジウム粉末、酸化ガリウム粉末および酸化亜鉛粉末を混合して混合粉末とする請求項3に記載のIn-Ga-Zn系複合酸化物焼結体の製造方法。 4. The method for producing an In—Ga—Zn composite oxide sintered body according to claim 3, wherein in step (a), indium oxide powder, gallium oxide powder and zinc oxide powder are mixed to form a mixed powder.
  5.  工程(a)において、酸化インジウム粉末、酸化ガリウム粉末および酸化亜鉛粉末を、金属原子比In:Ga:Zn=1:1:1の割合となるように混合して混合粉末とする請求項3に記載のIn-Ga-Zn系複合酸化物焼結体の製造方法。 In the step (a), indium oxide powder, gallium oxide powder and zinc oxide powder are mixed so as to have a metal atomic ratio of In: Ga: Zn = 1: 1: 1 to form a mixed powder. A method for producing the described In—Ga—Zn-based composite oxide sintered body.
  6.  工程(a)において、成型体の密度が3.19g/cm3以上となるように、混合粉末を加圧成形する請求項5に記載のIn-Ga-Zn系複合酸化物焼結体の製造方法。 6. The production of an In—Ga—Zn-based composite oxide sintered body according to claim 5, wherein in the step (a), the mixed powder is pressure-molded so that the density of the molded body is 3.19 g / cm 3 or more. Method.
  7.  工程(a)において、酸化インジウム粉末、酸化ガリウム粉末および酸化亜鉛粉末を、金属原子比In:Ga:Zn=2:2:1の割合となるように混合して混合粉末とする請求項3に記載のIn-Ga-Zn系複合酸化物焼結体の製造方法。 In the step (a), indium oxide powder, gallium oxide powder and zinc oxide powder are mixed so as to have a metal atomic ratio of In: Ga: Zn = 2: 2: 1 to form a mixed powder. A method for producing the described In—Ga—Zn-based composite oxide sintered body.
  8.  工程(a)において、成型体の密度が3.25g/cm3以上となるように、混合粉末を加圧成形する請求項7に記載のIn-Ga-Zn系複合酸化物焼結体の製造方法。 The production of an In-Ga-Zn-based composite oxide sintered body according to claim 7, wherein in the step (a), the mixed powder is pressure-molded so that the density of the molded body is 3.25 g / cm 3 or more. Method.
  9.  工程(a)において、混合粉末にバインダーを含有させて、加圧成形する請求項3~8のいずれかに記載のIn-Ga-Zn系複合酸化物焼結体の製造方法。 The method for producing an In-Ga-Zn-based composite oxide sintered body according to any one of claims 3 to 8, wherein in the step (a), the mixed powder contains a binder and is pressure-molded.
  10.  工程(b)において、成型体をカプセル容器に充填して、混合粉末の充填率を50%以上とし、脱バインダー処理とカプセル容器の真空脱気処理を同時に行い、次いでカプセル熱間等方加圧処理を行う請求項9に記載のIn-Ga-Zn系複合酸化物焼結体の製造方法。 In step (b), the molded body is filled into a capsule container, the filling rate of the mixed powder is set to 50% or more, debinding treatment and vacuum degassing treatment of the capsule container are performed at the same time, and then capsule hot isostatic pressing The method for producing an In—Ga—Zn-based composite oxide sintered body according to claim 9, wherein the treatment is performed.
  11.  工程(b)において、1000~1400℃の焼結温度で、成型体にカプセル熱間等方加圧処理を行う請求項3~10のいずれかに記載のIn-Ga-Zn系複合酸化物焼結体の製造方法。 The In-Ga-Zn-based composite oxide firing according to any one of claims 3 to 10, wherein in the step (b), the molded body is subjected to capsule hot isostatic pressing at a sintering temperature of 1000 to 1400 ° C. A method for producing a knot.
  12.  工程(b)において、不活性ガスを圧力媒体として用い、成型体にカプセル熱間等方加圧処理を行う請求項3~11のいずれかに記載のIn-Ga-Zn系複合酸化物焼結体の製造方法。 The In-Ga-Zn-based composite oxide sintered product according to any one of claims 3 to 11, wherein in the step (b), an inert gas is used as a pressure medium, and the capsule is subjected to capsule hot isostatic pressing. Body manufacturing method.
  13.  工程(b)において、50MPa以上の加圧力で、成型体にカプセル熱間等方加圧処理を行う請求項3~12のいずれかに記載のIn-Ga-Zn系複合酸化物焼結体の製造方法。 The In-Ga-Zn-based composite oxide sintered body according to any one of claims 3 to 12, wherein in the step (b), the molded body is subjected to capsule hot isostatic pressing with an applied pressure of 50 MPa or more. Production method.
PCT/JP2014/061098 2013-04-19 2014-04-18 In-Ga-Zn COMPOSITE OXIDE SINTERED COMPACT AND METHOD FOR MANUFACTURING SAME WO2014171545A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015512542A JPWO2014171545A1 (en) 2013-04-19 2014-04-18 In-Ga-Zn-based composite oxide sintered body and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013088273 2013-04-19
JP2013-088273 2013-04-19

Publications (1)

Publication Number Publication Date
WO2014171545A1 true WO2014171545A1 (en) 2014-10-23

Family

ID=51731479

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/061098 WO2014171545A1 (en) 2013-04-19 2014-04-18 In-Ga-Zn COMPOSITE OXIDE SINTERED COMPACT AND METHOD FOR MANUFACTURING SAME

Country Status (3)

Country Link
JP (1) JPWO2014171545A1 (en)
TW (1) TW201509865A (en)
WO (1) WO2014171545A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109207947A (en) * 2018-09-28 2019-01-15 上海大学 A kind of preparation method of target

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03173705A (en) * 1989-12-01 1991-07-29 Osaka Titanium Co Ltd Production of high density sintered body
JPH08245220A (en) * 1994-06-10 1996-09-24 Hoya Corp Electrically conductive oxide and electrode using same
JP2011195924A (en) * 2010-03-23 2011-10-06 Sumitomo Electric Ind Ltd In-Ga-Zn BASED COMPOUND OXIDE SINTERED BODY, AND METHOD FOR MANUFACTURING THE SAME
WO2012017659A1 (en) * 2010-08-05 2012-02-09 三菱マテリアル株式会社 Method for producing sputtering target, and sputtering target

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002004036A (en) * 2000-06-20 2002-01-09 Kobe Steel Ltd ZnS-SiO2 TARGET MATERIAL AND ITS PRODUCTION METHOD
TWI473896B (en) * 2008-06-27 2015-02-21 Idemitsu Kosan Co From InGaO 3 (ZnO) crystal phase, and a method for producing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03173705A (en) * 1989-12-01 1991-07-29 Osaka Titanium Co Ltd Production of high density sintered body
JPH08245220A (en) * 1994-06-10 1996-09-24 Hoya Corp Electrically conductive oxide and electrode using same
JP2011195924A (en) * 2010-03-23 2011-10-06 Sumitomo Electric Ind Ltd In-Ga-Zn BASED COMPOUND OXIDE SINTERED BODY, AND METHOD FOR MANUFACTURING THE SAME
WO2012017659A1 (en) * 2010-08-05 2012-02-09 三菱マテリアル株式会社 Method for producing sputtering target, and sputtering target

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109207947A (en) * 2018-09-28 2019-01-15 上海大学 A kind of preparation method of target

Also Published As

Publication number Publication date
JPWO2014171545A1 (en) 2017-02-23
TW201509865A (en) 2015-03-16

Similar Documents

Publication Publication Date Title
TWI480255B (en) Oxide sintered body and sputtering target
JP5339100B2 (en) Zn-Si-O-based oxide sintered body, method for producing the same, sputtering target, and tablet for vapor deposition
JP5993703B2 (en) Method for producing zinc oxide powder
TWI565679B (en) Oxide sintered body and sputtering target
KR101331293B1 (en) Sintered oxide and oxide semiconductor thin film
JP6306929B2 (en) Method for manufacturing sintered body
WO2012067061A1 (en) Production method for high-purity lanthanum, high-purity lanthanum, sputtering target composed of high-purity lanthanum, and metal gate film containing high-purity lanthanum as main component
WO2017122618A1 (en) Method for preparing amorphous composite metal oxide
TWI542714B (en) An oxide sintered body, and a sputtering target made of the oxide sintered body
JP2014224036A (en) PRODUCTION METHOD OF In-Ga-Zn COMPOUND OXIDE SINTERED BODY
WO2011010603A1 (en) TARGET FOR ZnO-BASED TRANSPARENT CONDUCTIVE FILM AND METHOD FOR PRODUCING SAME
WO2014171545A1 (en) In-Ga-Zn COMPOSITE OXIDE SINTERED COMPACT AND METHOD FOR MANUFACTURING SAME
WO2016017605A1 (en) Sintered oxide
JP5081960B2 (en) Oxide sintered body and oxide semiconductor thin film
JP5367660B2 (en) Oxide sintered body and oxide semiconductor thin film
JP2014224035A (en) PRODUCTION METHOD OF In-Ga-Zn COMPOUND OXIDE SINTERED BODY
JP2006298714A (en) Oxide sintered compact, sputtering target and transparent conductive film
JP2017014535A (en) Sputtering target and production method thereof
TW201525169A (en) Sputtering target and method of manufacturing the same
JP5367659B2 (en) Oxide sintered body and oxide semiconductor thin film
JP2013209741A (en) Method for producing zinc oxide-based sintered compact, and target
JP2014097920A (en) Zinc oxide-based powder and method for producing zinc oxide-based sintered compact
WO2015052927A1 (en) Sputtering target and method for producing same
JP5761253B2 (en) Zn-Si-O-based oxide sintered body, method for producing the same, sputtering target, and tablet for vapor deposition
JP2020164957A (en) Sputtering target and manufacturing method of sputtering target

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14784644

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015512542

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14784644

Country of ref document: EP

Kind code of ref document: A1