WO2016017605A1 - Sintered oxide - Google Patents

Sintered oxide Download PDF

Info

Publication number
WO2016017605A1
WO2016017605A1 PCT/JP2015/071304 JP2015071304W WO2016017605A1 WO 2016017605 A1 WO2016017605 A1 WO 2016017605A1 JP 2015071304 W JP2015071304 W JP 2015071304W WO 2016017605 A1 WO2016017605 A1 WO 2016017605A1
Authority
WO
WIPO (PCT)
Prior art keywords
sintered body
oxide sintered
oxide
powder
density
Prior art date
Application number
PCT/JP2015/071304
Other languages
French (fr)
Japanese (ja)
Inventor
邦彦 中田
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to KR1020177001879A priority Critical patent/KR20170039141A/en
Priority to CN201580040059.6A priority patent/CN106660881A/en
Priority to JP2016538350A priority patent/JPWO2016017605A1/en
Publication of WO2016017605A1 publication Critical patent/WO2016017605A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering

Definitions

  • the present invention relates to an oxide sintered body.
  • An oxide semiconductor film formed from an oxide sintered body containing In, Ga, and Zn has an advantage of higher carrier mobility than an amorphous silicon film.
  • this oxide semiconductor film is generally formed by a sputtering method using a sputtering target including an oxide sintered body containing In, Ga, and Zn.
  • the Vickers hardness is 724
  • the relative density is 96%
  • the bulk resistance value is 9.5 ⁇ 10 ⁇ 4 ⁇ ⁇
  • Oxide sintered body that is cm an oxide sintered body that has a Vickers hardness of 534, a relative density of 96%, and a bulk resistance value of 1.4 ⁇ 10 ⁇ 3 ⁇ ⁇ cm
  • a Vickers hardness Is an oxide sintered body having a relative density of 97% and a bulk resistance value of 4.2 ⁇ 10 ⁇ 3 ⁇ ⁇ cm.
  • Patent Document 2 discloses an InGaZnO 4 single-phase oxide sintered body having a bending strength of 117 MPa and a relative density of 95.9%, a bending strength of 151 MPa, and a relative density of 96. 8% oxide sintered body and the InGaZnO 4 single phase is bending strength is 157MPa, relative density oxide sintered body and the InGaZnO 4 single phase is 96.1%, flexural strength 206MPa InGaZnO 4 single-phase oxide sintered body having a relative density of 97.2% is described.
  • An object of the present invention is to provide an oxide sintered body having a high mechanical strength, a high relative density, a low bulk resistance value, and a uniform composition.
  • the present invention provides the following inventions.
  • the oxide sintered body of the present invention has a high mechanical strength, a high relative density, a small bulk resistance value, and a uniform composition.
  • the oxide sintered body of the present invention contains indium (In), gallium (Ga), and zinc (Zn), further contains oxygen (O) as a constituent element, and preferably 99% or more of the atoms are indium. It consists of gallium, zinc, and oxygen and can be expressed by the following formula.
  • These two compositions are preferable in terms of characteristics.
  • the oxide sintered body of the present invention preferably contains substantially no impurity metal element (M) such as Sn, Zr, Ti, Mo, Si, Cr, W, Ge, V, Mn, etc.
  • the content [M / (In + Ga + Zn + M): weight ratio] of (M) is usually less than 10 ppm.
  • the content of the impurity metal element (M) in the oxide sintered body can be measured by a high frequency inductively coupled plasma (ICP) analyzer.
  • ICP inductively coupled plasma
  • L * in the L * a * b * color system of the oxide sintered body of the present invention is usually 35 or less, preferably 34.5 or less, more preferably 34 or less, and still more preferably 33. .5 or less.
  • the a * in the L * a * b * color system of the oxide sintered body of the present invention is usually ⁇ 0.6 or less, preferably ⁇ 1.0 or less.
  • L * and a * in the L * a * b * color system of the oxide sintered body of the present invention are the surface roughness (Ra) of the surface of the oxide sintered body with abrasive paper by a wet polishing machine. After performing wet polishing until the thickness becomes 0.5 ⁇ m or less, the chromaticity a *, chromaticity b *, and lightness L * of the polished surface are measured with a spectrocolorimeter, and the results are evaluated in the CIE 1976 space. This can be calculated.
  • L *, a * and b * in the L * a * b * color system It is preferable to use a known sample as a standard sample and measure its L *, a * and b * to confirm whether or not it matches the known value.
  • the Vickers hardness of the oxide sintered body of the present invention is usually 400 or more, preferably 405 or more, more preferably 450 or more, and further preferably 470 or more. Since the oxide sintered body of the present invention has a high Vickers hardness, it is particularly suitable as a target in the DC sputtering method, and even when the generation of particles is small and the sputtering power is high, the target is not cracked and is formed. The speed can be increased and the oxide semiconductor film can be manufactured with good production efficiency.
  • the bending strength of the oxide sintered body of the present invention is usually 90 MPa or more, preferably 95 MPa or more, more preferably 130 MPa or more, and further preferably 150 MPa or more. Since the oxide sintered body of the present invention has a high bending strength, it is particularly suitable as a target in the DC sputtering method, and even when the generation of particles is small and the sputtering power is high, the target is not cracked and is formed. The film speed can be increased, and the oxide semiconductor film can be manufactured with good production efficiency.
  • the relative density of the oxide sintered body of the present invention usually exceeds 97%, preferably 99% or more, more preferably 99.5% or more, and further preferably 99.7% or more.
  • the “relative density” in the present specification is the ratio of the density of the oxide sintered body actually obtained to the theoretical density of the oxide sintered body, and is obtained from the following formula.
  • Relative density (%) 100 ⁇ [(density of oxide sintered body) / (theoretical density of oxide sintered body)]
  • the density of the oxide sintered body can be measured by a length measurement method.
  • the theoretical density of an oxide sintered body is, in principle, a value obtained by multiplying the single element density of each metal oxide that is the raw material of the oxide sintered body by the mixing weight ratio of each metal oxide powder and taking the sum of these.
  • the oxide sintered body is made of indium oxide, gallium oxide and zinc oxide, it can be obtained from the following formula.
  • Theoretical density of sintered oxide (Indium oxide simple substance density x mixing weight ratio) + (Gallium oxide simple substance density x mixing weight ratio) + (Zinc oxide simple substance density x mixing weight ratio)
  • the proportion of metal atoms in the mixed powder does not match the proportion of metal atoms in the single-phase crystal described in the JCPDS card, but the deviation is within 5%, the single atom described in the JCPDS card
  • the theoretical density of the phase crystal can be the theoretical density in the above formula.
  • the bulk resistance value of the oxide sintered body of the present invention is usually less than 1.0 ⁇ 10 ⁇ 3 ⁇ ⁇ cm, preferably 9 ⁇ 10 ⁇ 4 ⁇ ⁇ cm or less, and more preferably 8.5 ⁇ . 10 ⁇ 4 ⁇ ⁇ cm or less. Since the oxide sintered body of the present invention is also excellent in conductivity, it is particularly suitable as a target in the DC sputtering method, and from the oxide sintered body of the present invention, there is no abnormal discharge, stably and at high speed. A uniform semiconductor film can be formed efficiently.
  • the bulk resistance value can usually be measured with a resistivity meter.
  • the single phase ratio of the oxide sintered body of the present invention is usually 97.5% or more, preferably 99% or more, more preferably 99.5% or more, and further preferably 99.7% or more. It is.
  • the single phase ratio means a content ratio of InGaZnO 4 or In 2 Ga 2 ZnO 7 which is a homologous crystal structure contained in the oxide sintered body.
  • the single phase ratio can be calculated by X-ray diffraction measurement of the oxide sintered body. Specifically, the oxide sintered body is measured by X-ray diffraction, and the obtained X-ray diffraction pattern is an X-ray diffraction pattern of InGaZnO 4 or In 2 Ga 2 ZnO 7 having a homologous crystal structure (for example, JCPDS (Joint It is confirmed whether or not the homologous phase crystal structure X-ray diffraction pattern obtained from the Committee of Powder Diffraction Standards card).
  • the single-phase ratio is 100 %.
  • the peak that is not assigned is identified, and the crystal structure of the homologous phase in the oxide sintered body And the sum of the proportions of the other crystal structures are taken as 100%, and the proportion of the homologous crystal structure is derived by Rietveld analysis.
  • the crystal grain size of the oxide sintered body of the present invention is usually 9 ⁇ m or less, preferably 8 ⁇ m or less, more preferably 4.5 ⁇ m or less, still more preferably less than 4.0 ⁇ m, and further preferably It is 3.5 ⁇ m or less, more preferably 2 ⁇ m or less.
  • the crystal grain size of the oxide sintered body is measured as follows. SEM-EBSD measurement was performed on the oxide sintered body, and the area (cross-sectional area) of each individual particle was measured by image analysis of the obtained Image Quality Map. The diameter of the circle was calculated assuming that the cross section of the grain was the closest circle.
  • the calculated diameter was multiplied by the occupation ratio of the grains with respect to the entire area, and the diameter per occupied area of the grains was calculated. For all the grains, the diameter per occupied area was calculated, and the total of the calculated diameters per occupied area was defined as the area average diameter, that is, the crystal grain size.
  • One form of the manufacturing method of the oxide sintered compact of this invention includes the following process (A) and process (B).
  • the average particle diameter of the indium oxide powder in the mixed powder obtained in the step (A) is less than 0.6 ⁇ m.
  • the average particle diameter of the powder is a 50% cumulative volume fraction particle diameter in a particle size distribution measured by a laser diffraction / scattering method.
  • step (B) the filling rate of the mixed powder obtained in step (A) into the capsule container is 50% or more, preferably 55% or more, and more preferably 60% or more.
  • the filling rate is calculated by the following equation.
  • Filling rate (%) (tap density of mixed powder / theoretical density of oxide sintered body) ⁇ 100
  • step (A) after calcining at least one powder selected from the group consisting of indium oxide powder, gallium oxide powder and zinc oxide powder, these powders are mixed to obtain a mixed powder, or indium oxide powder And gallium oxide powder and zinc oxide powder are mixed, and the obtained mixed powder is calcined to obtain a mixed powder.
  • the filling rate of the mixed powder is easily set to 50% or more. can do.
  • the step (A) when calcining at least one powder selected from the group consisting of indium oxide powder, gallium oxide powder and zinc oxide powder and then mixing these powders to obtain a mixed powder, preferably indium oxide
  • a mixed powder preferably indium oxide
  • the powder, gallium oxide powder and zinc oxide powder is calcined separately, and the calcined powders are mixed to obtain a mixed powder. Since the tap density of indium oxide powder is not easily increased by calcining, the mixed powder is composed of calcined indium oxide powder, calcined gallium oxide powder and calcined zinc oxide powder, or is not calcined. It is preferably made of indium oxide powder, calcined gallium oxide powder and calcined zinc oxide powder.
  • the molar ratio (In: Ga: Zn) of indium oxide powder: gallium oxide powder: zinc oxide powder is 2: 2:
  • the mixing ratio is 1, it is preferable to prepare a mixed powder made of calcined indium oxide powder, calcined gallium oxide powder and calcined zinc oxide powder.
  • the shrinkage rate of the capsule container in the capsule hot isostatic pressing process (capsule HIP process) can be made 50% or less.
  • the mixed powder can be pressure-sintered without destroying, and volatilization of zinc derived from the zinc oxide powder and indium derived from the indium oxide powder during the production of the sintered body can be suppressed.
  • the shrinkage rate of the capsule container is represented by the following formula.
  • Shrinkage rate of capsule container (%) [1 ⁇ (inner volume of capsule container after capsule HIP treatment / inner volume of capsule container before capsule HIP process)] ⁇ 100
  • the purity of indium oxide (In 2 O 3 ) powder, gallium oxide (Ga 2 O 3 ) powder and zinc oxide (ZnO) powder is 4N or more Is preferred.
  • the tap density is based on JIS K5101. After a powder of a certain volume is filled with a natural drop, an impact due to a certain vibration (tapping) is further applied to the container, and the volume change of the powder disappears. It means the mass of powder per unit volume. The mass of powder per unit volume when the powder is filled into a container with a certain volume by natural dropping and the inner volume is taken as the volume is called bulk density. Generally, the tap density is the bulk density. 1.1 to 1.3 times as large as
  • the indium oxide powder a commercially available indium oxide powder is usually used.
  • the tap density of commercially available indium oxide powder is usually 1.95 g / cm 3 or less, although it varies depending on the average particle size and particle size distribution.
  • the simple substance density (upper limit of tap density) of indium oxide is 7.18 g / cm 3 .
  • a calcining apparatus such as a vertical electric furnace, a tubular furnace, a muffle furnace, a tube furnace, a hearth raising / lowering electric furnace, a box type electric furnace or the like is usually used.
  • the calcination temperature is usually 1200 to 1600 ° C., preferably 1400 to 1600 ° C.
  • the calcination time is usually 8 hours or more and 24 hours or less, preferably 10 hours or more and 15 hours or less.
  • the tap density of the indium oxide powder after calcination is preferably 2.70 g / cm 3 or more, more preferably 3.0 g / cm 3 or more.
  • the calcination may be performed in an atmospheric atmosphere, an oxidizing atmosphere such as an oxidizing atmosphere having a higher oxygen concentration than the air, an inert gas atmosphere such as nitrogen, argon, helium, vacuum, carbon dioxide, hydrogen, You may perform in non-oxidizing atmospheres, such as reducing gas atmospheres, such as carbon monoxide, hydrogen sulfide, and sulfur dioxide. It is preferable to calcine in an oxidizing atmosphere.
  • the calcined indium oxide powder may be crushed by a known means such as a George crusher, a roll crusher, a stamp mill, a hammer mill, or a mortar.
  • gallium oxide powder a commercially available gallium oxide powder is usually used.
  • the tap density of commercially available gallium oxide powder varies depending on the average particle size and particle size distribution, but is usually 1.45 g / cm 3 or less.
  • the single-piece density (upper limit of tap density) of gallium oxide is 5.88 g / cm 3 .
  • the average particle diameter of the gallium oxide powder is usually 0.2 ⁇ m or more and 5 ⁇ m or less, preferably 0.2 ⁇ m or more and 2 ⁇ m or less.
  • the calcination of the gallium oxide powder is usually performed in the same manner as the calcination of the indium oxide powder.
  • the tap density of the calcined gallium oxide powder is preferably 4.0 g / cm 3 or more. It is preferable to perform calcination in an oxidizing atmosphere.
  • the tap density of commercially available gallium oxide powder varies depending on the average particle size and particle size distribution, but is usually 1.12 g / cm 3 or less.
  • the single-piece density (upper limit of tap density) of zinc oxide is 5.6 g / cm 3 .
  • the average particle diameter of the zinc oxide powder is usually 0.6 ⁇ m or more and 5 ⁇ m or less, preferably 1 ⁇ m or more and 5 ⁇ m or less.
  • the calcination of the zinc oxide powder is usually performed in the same manner as the calcination of the indium oxide powder.
  • the tap density of the calcined zinc oxide powder is preferably 4.1 g / cm 3 or more. It is preferable to perform calcination in an oxidizing atmosphere.
  • the tap density of the mixed powder is preferably 3.25 g / cm 3 or more, and the capsule container can be filled with a large amount of the mixed powder, and the capsule container after the capsule HIP treatment contracts symmetrically and becomes easy to process. Therefore, it is more preferably 3.8 to 6.4 g / cm 3 .
  • the tap density of the mixed powder is preferably 3.18 g / cm 3 or more, more preferably 3.8 to 6.3 g / cm 3 .
  • each powder is not limited as long as the powder can be uniformly mixed, and may be dry-mixed by a super mixer, intensive mixer, Henschel mixer, automatic mortar, etc., ball mill, vibration mill, planetary ball mill, etc. May be wet mixed. If uniform mixing is insufficient, each component segregates in the manufactured target, and the resistance distribution of the target becomes non-uniform. That is, the high resistance region and the low resistance region exist depending on the target site, which causes abnormal discharge such as arcing due to charging in the high resistance region during sputtering film formation.
  • the calcined mixed powder is usually also calcined as described above. It is carried out in the same way as firing.
  • the calcining temperature is 1200 to 1650 ° C., preferably 1400 to 1600 ° C. in an oxidizing atmosphere.
  • the tap density of the mixed powder after calcination is preferably 3.18 g / cm 3 or more, more preferably 3.8 to 6.3 g / cm 3 .
  • step (B) the capsule powder is filled with the above-described mixed powder, and then the capsule HIP treatment is performed to obtain the oxide sintered body of the present invention.
  • the mixed powder is enclosed in a vacuum-sealed capsule container. Since the mixed powder is filled in the enclosed space and the capsule HIP process is performed, volatilization of zinc and indium is suppressed unlike pressure sintering such as hot pressing, and as a result, the obtained oxide sintered body and The composition does not easily deviate from the raw material mixed powder, and an oxide sintered body having a high relative density and a high single-phase ratio can be obtained.
  • the material of the capsule container usually includes iron, stainless steel, titanium, aluminum, stainless steel, tantalum, niobium, copper and nickel, and can be appropriately selected depending on the processing temperature of the capsule HIP process.
  • a capsule container made of copper, nickel or aluminum is usually used.
  • the processing temperature is in the range of 1000 ° C. to 1350 ° C., it is made of iron, titanium or stainless steel.
  • Capsule containers are usually used. In the region where the processing temperature is higher than 1350 ° C., capsule containers made of tantalum or niobium are usually used.
  • capsule containers made of aluminum, iron or stainless steel are preferable in terms of cost.
  • the shape and dimensions of the capsule container are not limited as long as it is isotropically pressurized during the capsule HIP process. Specifically, a cylindrical container and a rectangular parallelepiped container are mentioned.
  • the wall thickness of the capsule container is preferably 1.5 mm to 4 mm. Within this range, the capsule container can be easily softened and deformed, and can shrink following the oxide sintered body as the sintering reaction proceeds.
  • the pressure in the capsule container is usually decreased to 1.33 ⁇ 10 ⁇ 2 Pa or less while heating the capsule container to 100 ° C. or more and 600 ° C. or less.
  • the pressure in the capsule container becomes 1.33 ⁇ 10 ⁇ 2 Pa or less, the capsule container is sealed and the capsule HIP process is performed.
  • Capsule HIP treatment is performed by placing a sealed capsule container filled with mixed powder in a HIP apparatus, applying pressure to the capsule container itself using a gas under high temperature and high pressure as a pressure medium, and mixing the capsule container The powder is pressure sintered.
  • the pressure medium an inert gas such as nitrogen or argon is preferable.
  • the pressure applied to the capsule container is preferably 50 MPa or more.
  • the treatment time is preferably 1 hour or longer.
  • the treatment temperature is usually 1000 to 1400 ° C., preferably 1100 ° C. to 1300 ° C. It is preferable that the sintering temperature is 1000 ° C. to 1400 ° C. and the pressure is 50 MPa or more and the treatment is performed for 1 hour or more.
  • Another form of the method for producing an oxide sintered body of the present invention includes the following step (a), step (b) and step (c).
  • the average particle diameter of the indium oxide powder in the mixed powder obtained in the step (a) is less than 0.6 ⁇ m.
  • the average particle diameter of the powder is a 50% cumulative volume fraction particle diameter in a particle size distribution measured by a laser diffraction / scattering method.
  • the purity of indium oxide (In 2 O 3 ) powder, gallium oxide (Ga 2 O 3 ) powder and zinc oxide (ZnO) powder is 4N or more Is preferred.
  • the tap density is based on JIS K5101. After filling a container of a certain volume with powder by natural dropping, the container is further subjected to an impact by a certain vibration (tapping), and the volume change of the powder is eliminated. It means the mass of powder per unit volume. The mass of powder per unit volume when the powder is filled into a container with a certain volume by natural dropping and the inner volume is taken as the volume is called bulk density. Generally, the tap density is the bulk density. 1.1 to 1.3 times as large as
  • the indium oxide powder a commercially available indium oxide powder is usually used.
  • the tap density of commercially available indium oxide powder is usually 1.95 g / cm 3 or less, although it varies depending on the average particle size and particle size distribution.
  • the simple substance density (upper limit of tap density) of indium oxide is 7.18 g / cm 3 .
  • gallium oxide powder a commercially available gallium oxide powder is usually used.
  • the tap density of commercially available gallium oxide powder varies depending on the average particle size and particle size distribution, but is usually 1.45 g / cm 3 or less.
  • the single-piece density (upper limit of tap density) of gallium oxide is 5.88 g / cm 3 .
  • the average particle diameter of the gallium oxide powder is usually 0.2 ⁇ m or more and 5 ⁇ m or less, preferably 0.2 ⁇ m or more and 2 ⁇ m or less.
  • the tap density of commercially available gallium oxide powder varies depending on the average particle size and particle size distribution, but is usually 1.12 g / cm 3 or less.
  • the single-piece density (upper limit of tap density) of zinc oxide is 5.6 g / cm 3 .
  • the average particle diameter of the zinc oxide powder is usually 0.6 ⁇ m or more and 5 ⁇ m or less, preferably 1 ⁇ m or more and 5 ⁇ m or less.
  • each powder is not limited as long as the powder can be uniformly mixed, and may be dry-mixed by a super mixer, intensive mixer, Henschel mixer, automatic mortar, etc., ball mill, vibration mill, planetary ball mill, etc. May be wet mixed. If uniform mixing is insufficient, each component segregates in the manufactured target, and the resistance distribution of the target becomes non-uniform. That is, the high resistance region and the low resistance region exist depending on the target site, which causes abnormal discharge such as arcing due to charging in the high resistance region during sputtering film formation.
  • step (b) when the mixed powder obtained in step (a) is molded to obtain a molded body, it is preferable to perform pressure molding to obtain the molded body.
  • An example of a method for pressure-molding the mixed powder is a cold isostatic pressing method.
  • the pressure during pressure molding is usually 50 to 300 MPa, preferably 100 to 300 MPa.
  • a uniaxial press for example, a cold isostatic press (CIP), or the like can be used.
  • CIP cold isostatic press
  • a uniaxial press and a cold isostatic press (CIP) may be used in combination.
  • the pressing pressure when forming the mixed powder is preferably at least 30 MPa and less than 100 MPa, more preferably 40 MPa or more. If it is less than 30 MPa, there is a possibility that a stable press-molded body cannot be produced. If it is 100 MPa or more, the molded product may be brittle and easily cracked.
  • pressure molding is preferably performed at a pressing pressure of 40 to 90 MPa, more preferably 50 to 80 MPa.
  • the pressing pressure is preferably at least 50 MPa and less than 400 MPa, more preferably 100 MPa or more. If it is less than 50 MPa, there is a possibility that a stable press-molded product cannot be produced. If it is 400 MPa or more, the apparatus becomes too large, which is uneconomical and the molded product may be fragile.
  • the holding time is 1 to 30 minutes. If the holding time is less than 1 minute, the density may not increase, and if it exceeds 60 minutes, it may take too much time and be uneconomical.
  • an organic binder may be blended into the mixed powder and molded.
  • an organic binder is preferably blended.
  • the addition amount of the organic binder is preferably 0.5 to 10 parts by weight, more preferably 1 to 5 parts by weight with respect to 100 parts by weight of the mixed powder.
  • the raw material powder and the organic binder are mixed to form a mixed powder, and pressure molded to form a pressure molded body. And before performing a capsule HIP process to this press-molded body, an organic binder is usually removed.
  • Organic binders include butyral resin, polyvinyl alcohol, acrylic resin, poly ⁇ -methylstyrene, ethyl cellulose, polymethyl lactate, (poly) vinyl butyral, (poly) vinyl acetate, (poly) vinyl alcohol, polyethylene, polystyrene, polybutadiene, (Poly) vinyl pyrrolidone, polyamide, polyethylene oxide, polypropylene oxide, polyacrylamide, polymethacrylate and various acrylic polymers and their copolymers and terpolymers, resins such as methylcellulose, ethylcellulose, hydroxyethylcellulose, nitrocellulose and their derivatives Etc.
  • butyral resin polyvinyl alcohol, acrylic resin, poly ⁇ -methylstyrene, ethyl cellulose, polymethyl lactate, (poly) vinyl butyral, (poly) vinyl acetate, (poly) vinyl alcohol, polyethylene, polystyrene, polybutadiene, (Poly) vinyl
  • the method of blending the organic binder includes a method of mixing the raw material powder, the organic binder, and a solvent and drying the resulting slurry.
  • the obtained molded body may be processed by cutting, grinding or the like according to the shape and size of the capsule container used in the step (c).
  • the mixed powder obtained in the step (a) is granulated to obtain a granulated powder
  • the mixed powder, a solvent and an organic binder are mixed, and the resulting slurry is granulated
  • the granulation method include rolling granulation, fluidized bed (spouted bed) granulation, stirring and mixing granulation, compression granulation, extrusion granulation, pulverization granulation, melt granulation, spray granulation, and the like.
  • the granulator include a bread granulator, a trough granulator, a compression granulator, and a spray dryer.
  • the granulation format either dry or wet can be selected, but wet granulation using the adhesive force of water or a binder (binder) is preferable. Among these, a spray dryer is preferable.
  • the solvent used in preparing the slurry water, an alcohol solvent and a ketone solvent are preferable in terms of uniformity of the particle size distribution of the mixed powder and easy evaporation of the solvent.
  • the alcohol solvent include methanol, ethanol, and isopropyl alcohol
  • examples of the ketone solvent include acetone, methyl ethyl ketone, and cyclohexanone.
  • Halogenated hydrocarbon solvents such as methyl chloride, chloroform, 1,2 dichloroethane and trichloroethylene, ester solvents such as methyl acetate, ethyl acetate, propylene carbonate and propyl acetate, nitrogen-containing solvents such as propiontolyl and N-methylpyrrolidone, dimethyl sulfoxide Sulfur-containing solvents such as tetrahydrofuran, dioxane, propylene oxide, ether solvents such as 2-ethoxyethyl acetate, and hydrocarbon solvents such as benzene and styrene can also be used.
  • the amount of the solvent used is usually 60 to 200 parts by mass with respect to 100 parts by mass of the mixed powder.
  • the wet mixing may be performed by, for example, a wet ball mill using a hard ZrO 2 ball or a vibration mill, and the mixing time when using the wet ball mill or the vibration mill is preferably about 12 to 78 hours.
  • the slurry is supplied to a normal spray dryer, sprayed and dried to obtain a granulated powder.
  • the inlet temperature is usually set to 180 to 250 ° C.
  • the outlet temperature is usually set to 90 to 130 ° C.
  • the density of the molded body or the tap density of the granulated powder is preferably 3.25 g / cm 3 or more, and the capsule container can be filled with many molded bodies or granulated powder, and the capsule container after the capsule HIP treatment Is more preferably 3.8 to 6.4 g / cm 3 , since it shrinks symmetrically to facilitate processing.
  • the density of the molded body or the tap density of the granulated powder is preferably 3.18 g / cm 3 or more, more preferably 3.8 to 6.3 g / cm 3 .
  • step (c) the filling rate of the molded product or granulated powder obtained in step (b) into the capsule container is 50% or more, preferably 55% or more, and preferably 60% or more. Is more preferable.
  • the filling rate is calculated by the following equation.
  • Filling rate (%) (packing density of molded body or tap density of granulated powder / theoretical density of oxide sintered body) ⁇ 100
  • the filling density of the molded body is calculated by the following formula.
  • Filling density weight of molded body / inner volume of capsule container
  • the shrinkage rate of the capsule container in the capsule hot isostatic pressing process (capsule HIP process) can be set to 50% or less. Therefore, the molded body or granulated powder can be pressure-sintered without destroying the capsule container, and the volatilization of zinc derived from zinc oxide powder or indium derived from indium oxide powder during the production of the sintered body can be suppressed.
  • the shrinkage rate of the capsule container is represented by the following formula.
  • Shrinkage rate of capsule container (%) [1 ⁇ (inner volume of capsule container after capsule HIP treatment / inner volume of capsule container before capsule HIP process)] ⁇ 100
  • step (c) the capsule body is filled with the above-mentioned molded body or granulated powder, and then capsule HIP treatment is performed to obtain the oxide sintered body of the present invention.
  • the molded body or the granulated powder is enclosed in a vacuum sealed capsule container. Since the molded body or granulated powder is filled in the enclosed space and capsule HIP treatment is performed, volatilization of zinc and indium is suppressed unlike pressure sintering such as hot pressing, and the resulting oxide
  • the composition does not easily shift between the sintered body and the molded body or granulated powder as the raw material, and an oxide sintered body having a high relative density and a high single-phase ratio can be obtained.
  • the material of the capsule container usually includes iron, stainless steel, titanium, aluminum, tantalum, niobium, copper and nickel, and can be appropriately selected depending on the processing temperature of the capsule HIP processing.
  • a capsule container made of copper, nickel or aluminum is usually used.
  • a capsule container made of iron or stainless steel Is usually used.
  • capsule containers made of tantalum or niobium are usually used.
  • capsule containers made of aluminum, iron or stainless steel are preferable in terms of cost.
  • the shape and dimensions of the capsule container are not limited as long as it is isotropically pressurized during the capsule HIP process. Specifically, a cylindrical container and a rectangular parallelepiped container are mentioned.
  • the wall thickness of the capsule container is preferably 1.5 mm to 4 mm. Within this range, the capsule container can be easily softened and deformed, and can shrink following the oxide sintered body as the sintering reaction proceeds.
  • the capsule container is usually heated to remove the binder contained in the molded body, the solvent contained in the granulated powder, and the organic binder. Thereafter, the capsule container is sealed and a capsule HIP process is performed. Further, the pressure in the capsule container may be decreased to 1.33 ⁇ 10 ⁇ 2 Pa or less while heating the capsule container filled with the molded body or the granulated powder to 100 ° C. or more and 600 ° C. or less. . Thereby, the solvent and organic binder which are contained in the binder and granulated powder which are contained in a molded object are removed. When the pressure in the capsule container becomes 1.33 ⁇ 10 ⁇ 2 Pa or less, the capsule container is sealed and the capsule HIP process is performed.
  • Capsule HIP treatment is performed by placing a sealed capsule container filled with a molded body or granulated powder in a HIP apparatus, applying pressure to the capsule container itself using a gas under high temperature and high pressure as a pressure medium, The mixed powder in the container is subjected to pressure sintering.
  • the pressure medium an inert gas such as nitrogen or argon is preferable.
  • the pressure applied to the capsule container is preferably 50 MPa or more.
  • the treatment time is preferably 1 hour or longer.
  • the treatment temperature is usually 1000 to 1400 ° C., preferably 1100 ° C. to 1300 ° C. It is preferable that the sintering temperature is 1000 ° C. to 1400 ° C. and the pressure is 50 MPa or more and the treatment is performed for 1 hour or more.
  • a sputtering target can be manufactured by processing the oxide sintered body of the present invention into a predetermined shape and a predetermined dimension.
  • a sputtering target having an outer diameter of 152 mm ⁇ 5 mm can be produced by cylindrical grinding of the outer periphery and surface grinding of the surface side.
  • the surface roughness (Ra) of the sputtering target is preferably 5 ⁇ m or less, and more preferably 0.5 ⁇ m or less.
  • the sputtering target is further used in a form in which an indium alloy or the like is bonded as a bonding metal to a backing plate or backing tube made of copper, titanium, or the like.
  • the method of manufacturing the sputtering target by processing the oxide sintered body of the present invention is not limited, and a known method is employed.
  • the sputtering target is used for film formation by sputtering, ion plating, pulse laser deposition (PLD), or electron beam (EB) evaporation. Since the target of the present invention has a high relative density and a high single-phase ratio, abnormal discharge during film formation hardly occurs and film formation can be performed stably. Note that a solid material used in the film formation may be referred to as a “tablet”, but in the present specification, these are referred to as a “sputtering target”. In addition, since the sputtering target of the present invention has a high relative density and a high single-phase ratio, the frequency of nodules and the frequency of abnormal discharge can be reduced as the sputtering time elapses. Production efficiency is also improved, and the resulting film properties are excellent. With the oxide sintered body or sputtering target of the present invention, a transparent semiconductor film having good characteristics as a channel layer of a thin film transistor exhibiting stable semiconductor characteristics can be formed.
  • the film thickness of the transparent semiconductor film is usually 0.5 to 500 nm, preferably 1 to 150 nm, more preferably 3 to 80 nm, from the viewpoint of a semiconductor having high mobility and low S value.
  • the thickness is preferably 10 to 60 nm. If it is 0.5 nm or more, it is possible to form an industrially uniform film. On the other hand, if it is 500 nm or less, the film formation time will not be too long. When the thickness is in the range of 3 to 80 nm, TFT characteristics such as mobility and on / off ratio are particularly good.
  • the sputtering method examples include a DC sputtering method, an AC sputtering method, an RF magnetron sputtering method, an electron beam evaporation method, and an ion plating method, and a DC sputtering method is preferable.
  • the pressure in the chamber during sputtering is usually 0.1 to 2.0 MPa, preferably 0.3 to 0.8 MPa.
  • input power per unit area of the target surface during sputtering is usually 0.5 ⁇ 6.0W / cm 2, preferably 1.0 ⁇ 5.0W / cm 2.
  • Examples of the carrier gas at the time of sputtering include oxygen, helium, argon, xenon, and krypton, and a mixed gas of argon and oxygen is preferable.
  • the ratio of argon: oxygen (Ar: O 2 ) in the mixed gas of argon and oxygen is usually 100: 0 to 80:20, preferably 99.5: 0.5 to 80:20, more preferably Is 99.5: 0.5 to 90:10.
  • Examples of the substrate include glass and resin (PET, PES, etc.).
  • the film formation temperature during sputtering (the temperature of the substrate on which the thin film is formed) is usually 25 ° C. to 450 ° C., preferably 30 ° C. to 250 ° C., more preferably 35 ° C. to 150 ° C.
  • the Vickers hardness of the oxide sintered body was measured by a micro hardness meter (HMV) manufactured by Shimadzu Corporation.
  • Example 1 Indium oxide powder (manufactured by Rare Metal Co., Ltd., tap density: 1.62 g / cm 3 , average particle size: 0.56 ⁇ m) and gallium oxide powder (manufactured by Yamanaka Futec Co., Ltd., tap density: 1.39 g / cm 3 , average particle diameter: 1.5 ⁇ m), zinc oxide powder (manufactured by Hakusuitec Co., Ltd., tap density: 1.02 g / cm 3 , average particle diameter: 1.5 ⁇ m), indium element and gallium element Weighing was performed so that the atomic ratio with zinc element (In: Ga: Zn) was 1: 1: 1, and dry mixing was performed with a super mixer at 3000 rpm for 60 minutes to obtain a mixed powder.
  • Indium oxide powder manufactured by Rare Metal Co., Ltd., tap density: 1.62 g / cm 3 , average particle size: 0.56 ⁇ m
  • gallium oxide powder manufactured by Yamanaka Futec Co., Ltd., tap density: 1.
  • the obtained mixed powder was put into an electric furnace (manufactured by Kitahama Corporation), heated in the atmosphere at a heating rate of 10 ° C./min from room temperature to 1400 ° C., and calcined at 1400 ° C. for 12 hours Went.
  • the obtained powder was lightly pulverized in a mortar to obtain a mixed powder after calcining.
  • the mixed powder after calcining was filled into a stainless steel (SUS304) capsule container (outer diameter 83 mm, inner diameter 80 mm, height 78 mm inside the container) while applying vibration until the volume of the mixed powder disappeared.
  • the tap density of the mixed powder is 4.32 g / cm 3, since the theoretical density of 6.379g / cm 3, the filling ratio was 67.7%.
  • the single crystal theoretical density (6.379 g / cm 3 ) was employed.
  • the exhaust pipe was welded to the upper lid of the capsule container filled with the mixed powder, and then the upper lid and the capsule container were welded.
  • a He leak test was performed to confirm whether there was any gas leak from the welded portion of the capsule container.
  • the amount of leakage at this time was 1 ⁇ 10 ⁇ 6 Torr ⁇ L / sec or less.
  • the exhaust pipe was closed and the capsule container was sealed.
  • the sealed capsule container was placed in a HIP processing apparatus (manufactured by Kobe Steel, Ltd.) and subjected to capsule HIP processing.
  • the treatment temperature was 1200 ° C.
  • the treatment pressure was 118 MPa
  • the treatment was performed for 4 hours using argon gas (purity 99.9%) as a pressure medium.
  • the capsule container was removed to obtain a cylindrical oxide sintered body.
  • the relative density of the obtained oxide sintered body was 100%, and the bulk resistance value (specific resistance) was 8.31 ⁇ 10 ⁇ 4 ⁇ ⁇ cm.
  • the density of the sintered body was measured by a length measurement method, and the theoretical density of InGaZnO 4 (JCPDS card number: 381104) described in the JCPDS card was adopted as the theoretical density of the sintered body.
  • the obtained oxide sintered body had an average crystal grain size of 6.8 ⁇ m, a Vickers hardness of 411.0, and a bending strength of 100 MPa.
  • L * of the obtained oxide sintered body was 28.77, a * was ⁇ 0.69, b * was ⁇ 4.07, and ⁇ L was 68.51.
  • the surface of the obtained oxide sintered body was ground, the outer periphery was ground, and the surface was further polished to prepare a sintered body having a diameter of 50.8 mm and a thickness of 3 mm.
  • ICP High Frequency Inductively Coupled Plasma
  • the atomic ratio of In, Ga and Zn In: Ga: Zn
  • This oxide sintered body was bonded with indium solder using a copper plate as a backing plate to obtain a sputtering target. Using this, an oxide semiconductor film was formed on a transparent substrate (non-alkali glass substrate) by a DC sputtering method to obtain a transparent semiconductor substrate.
  • This oxide sintered body has a relative density of 100%, a (1114) single-phase ratio of 100%, and a bulk resistance value (specific resistance) of 8.31 ⁇ 10 ⁇ 4 ⁇ ⁇ cm. Because of its low density, high density, no defects as a sputtering target, and sufficient DC sputtering, it is possible to suppress the occurrence of abnormal discharge and to efficiently form a uniform oxide semiconductor film. It was.
  • Example 2 In Example 1, using gallium oxide powder having an average particle diameter of 0.6 ⁇ m, and carrying out the same procedure as in Example 1 except that the filling rate of the mixed powder after calcining into the capsule container was set to 66.5%. An oxide sintered body was obtained.
  • the obtained oxide sintered body had a relative density of 100% and a bulk resistance value (specific resistance) of 8.21 ⁇ 10 ⁇ 4 ⁇ ⁇ cm.
  • the average grain size of the obtained oxide sintered body was 8.9 ⁇ m, the Vickers hardness was 410.1, and the bending strength was 99 MPa.
  • L * of the obtained oxide sintered body was 32.49, a * was ⁇ 2.27, b * was ⁇ 3.47, and ⁇ L was 64.79.
  • the surface of the obtained oxide sintered body was ground, the outer periphery was ground, and the surface was further polished to prepare a sintered body having a diameter of 50.8 mm and a thickness of 3 mm.
  • ICP High Frequency Inductively Coupled Plasma
  • the atomic ratio of In, Ga and Zn In: Ga: Zn
  • This oxide sintered body was bonded with indium solder using a copper plate as a backing plate to obtain a sputtering target. Using this, an oxide semiconductor film was formed on a transparent substrate (non-alkali glass substrate) by a DC sputtering method to obtain a transparent semiconductor substrate.
  • This oxide sintered body has a relative density of 100%, a (1114) single-phase ratio of 100%, and a bulk resistance value (specific resistance) of 8.21 ⁇ 10 ⁇ 4 ⁇ ⁇ cm. Because of its low density, high density, no defects as a sputtering target, and sufficient DC sputtering, it is possible to suppress the occurrence of abnormal discharge and to efficiently form a uniform oxide semiconductor film. It was.
  • Example 3 The same procedure as in Example 1 was performed except that gallium oxide powder having an average particle diameter of 0.3 ⁇ m was used in Example 1, and the filling rate of the mixed powder after calcining into the capsule container was set to 65.7%. An oxide sintered body was obtained.
  • the obtained oxide sintered body had a relative density of 100% and a bulk resistance value (specific resistance) of 8.11 ⁇ 10 ⁇ 4 ⁇ ⁇ cm.
  • the average grain size of the obtained oxide sintered body was 7.3 ⁇ m, the Vickers hardness was 422.3, and the bending strength was 105 MPa.
  • L * of the obtained oxide sintered body was 31.42, a * was -2.14, b * was -3.23, and ⁇ L was 65.84.
  • the surface of the obtained oxide sintered body was ground, the outer periphery was ground, and the surface was further polished to prepare a sintered body having a diameter of 50.8 mm and a thickness of 3 mm.
  • ICP High Frequency Inductively Coupled Plasma
  • the atomic ratio of In, Ga and Zn In: Ga: Zn
  • This oxide sintered body was bonded with indium solder using a copper plate as a backing plate to obtain a sputtering target. Using this, an oxide semiconductor film was formed on a transparent substrate (non-alkali glass substrate) by a DC sputtering method to obtain a transparent semiconductor substrate.
  • This oxide sintered body has a relative density of 100%, a (1114) single-phase ratio of 100%, and a bulk resistance value (specific resistance) of 8.11 ⁇ 10 ⁇ 4 ⁇ ⁇ cm. Because of its low density, high density, no defects as a sputtering target, and sufficient DC sputtering, it is possible to suppress the occurrence of abnormal discharge and to efficiently form a uniform oxide semiconductor film. It was.
  • Example 4 In Example 1, the mixture is weighed so that the atomic ratio (In: Ga: Zn) of indium element, gallium element, and zinc element is 2: 2: 1, and the mixed powder after calcination is filled into the capsule container
  • the oxide sintered body was obtained in the same manner as in Example 1 except that the rate was 63.3%.
  • the relative density of the obtained oxide sintered body was 100%, and the bulk resistance value (specific resistance) was 5.65 ⁇ 10 ⁇ 4 ⁇ ⁇ cm.
  • the average grain size of the obtained oxide sintered body was 7.0 ⁇ m, the Vickers hardness was 408.3, and the bending strength was 98 MPa.
  • L * of the obtained oxide sintered body was 29.78, a * was ⁇ 1.22, b * was ⁇ 3.88, and ⁇ L was 67.50.
  • the surface of the obtained oxide sintered body was ground, the outer periphery was ground, and the surface was further polished to prepare a sintered body having a diameter of 50.8 mm and a thickness of 3 mm.
  • ICP high frequency inductively coupled plasma
  • the atomic ratio of In, Ga and Zn In: Ga: Zn
  • This oxide sintered body was bonded with indium solder using a copper plate as a backing plate to obtain a sputtering target. Using this, an oxide semiconductor film was formed on a transparent substrate (non-alkali glass substrate) by a DC sputtering method to obtain a transparent semiconductor substrate.
  • This oxide sintered body has a relative density of 100%, a (2217) single-phase ratio of 100%, and a bulk resistance value (specific resistance) of 5.65 ⁇ 10 ⁇ 4 ⁇ ⁇ cm. Because of its low density, high density, no defects as a sputtering target, and sufficient DC sputtering, it is possible to suppress the occurrence of abnormal discharge and to efficiently form a uniform oxide semiconductor film. It was.
  • Example 5 gallium oxide powder having an average particle size of 0.6 ⁇ m was used and weighed so that the atomic ratio (In: Ga: Zn) of indium element, gallium element and zinc element was 2: 2: 1. And it implemented like Example 1 except the filling rate to the capsule container of the mixed powder after calcination having been 62.8%, and obtained oxide sinter.
  • the obtained oxide sintered body had a relative density of 100% and a bulk resistance value (specific resistance) of 5.53 ⁇ 10 ⁇ 4 ⁇ ⁇ cm.
  • the average grain size of the obtained oxide sintered body was 7.2 ⁇ m, the Vickers hardness was 408.5, and the bending strength was 98 MPa.
  • L * of the obtained oxide sintered body was 33.21, a * was -2.38, b * was -3.33, and ⁇ L was 64.07.
  • the surface of the obtained oxide sintered body was ground, the outer periphery was ground, and the surface was further polished to prepare a sintered body having a diameter of 50.8 mm and a thickness of 3 mm.
  • ICP high frequency inductively coupled plasma
  • the atomic ratio of In, Ga and Zn In: Ga: Zn
  • This oxide sintered body was bonded with indium solder using a copper plate as a backing plate to obtain a sputtering target. Using this, an oxide semiconductor film was formed on a transparent substrate (non-alkali glass substrate) by a DC sputtering method to obtain a transparent semiconductor substrate.
  • This oxide sintered body has a relative density of 100%, (2217) a single-phase ratio of 100%, and a bulk resistance value (specific resistance) of 5.53 ⁇ 10 ⁇ 4 ⁇ ⁇ cm. Because of its low density, high density, no defects as a sputtering target, and sufficient DC sputtering, it is possible to suppress the occurrence of abnormal discharge and to efficiently form a uniform oxide semiconductor film. It was.
  • Example 6 gallium oxide powder having an average particle size of 0.3 ⁇ m was used and weighed so that the atomic ratio (In: Ga: Zn) of indium element, gallium element, and zinc element was 2: 2: 1. And it implemented like Example 1 except having made the filling rate to the capsule container of the mixed powder after calcination 61.5%, and obtained oxide sinter.
  • the obtained oxide sintered body had a relative density of 100% and a bulk resistance value (specific resistance) of 5.43 ⁇ 10 ⁇ 4 ⁇ ⁇ cm.
  • the average grain size of the obtained oxide sintered body was 7.1 ⁇ m, the Vickers hardness was 411.3, and the bending strength was 100 MPa.
  • L * of the obtained oxide sintered body was 32.32, a * was ⁇ 2.30, b * was ⁇ 3.16, and ⁇ L was 64.90.
  • the surface of the obtained oxide sintered body was ground, the outer periphery was ground, and the surface was further polished to prepare a sintered body having a diameter of 50.8 mm and a thickness of 3 mm.
  • ICP high frequency inductively coupled plasma
  • the atomic ratio of In, Ga and Zn In: Ga: Zn
  • This oxide sintered body was bonded with indium solder using a copper plate as a backing plate to obtain a sputtering target. Using this, an oxide semiconductor film was formed on a transparent substrate (non-alkali glass substrate) by a DC sputtering method to obtain a transparent semiconductor substrate.
  • This oxide sintered body has a relative density of 100%, a (2217) single-phase ratio of 100%, and a bulk resistance value (specific resistance) of 5.43 ⁇ 10 ⁇ 4 ⁇ ⁇ cm. Because of its low density, high density, no defects as a sputtering target, and sufficient DC sputtering, it is possible to suppress the occurrence of abnormal discharge and to efficiently form a uniform oxide semiconductor film. It was.
  • Example 7 Indium oxide powder (made by rare metal), tap density: 1.62 g / cm 3 , average particle diameter: 0.56 ⁇ m) and gallium oxide powder (made by rare metal, Inc., tap density 1.50 g) / Cm 3 , average particle size: 1.0 ⁇ m), zinc oxide powder (manufactured by Hakusui Tech Co., Ltd., tap density: 1.02 g / cm 3 , average particle size: 1.5 ⁇ m), indium element and gallium element And zinc element were weighed so that the atomic ratio (In: Ga: Zn) was 1: 1: 1, and dry mixing was performed with a super mixer at 3000 rpm for 60 minutes to obtain a mixed powder.
  • the obtained mixed powder was put into an electric furnace (manufactured by Kitahama Corporation), heated in the atmosphere at a heating rate of 10 ° C./min from room temperature to 1400 ° C., and calcined at 1400 ° C. for 12 hours Went.
  • the obtained powder was lightly pulverized in a mortar to obtain a mixed powder after calcining.
  • the mixed powder after calcining was filled into a stainless steel (SUS304) capsule container (outer diameter 83 mm, inner diameter 80 mm, height 78 mm inside the container) while applying vibration until the volume of the mixed powder disappeared.
  • the tap density of the mixed powder is 4.10 g / cm 3, since the theoretical density of 6.379g / cm 3, the filling ratio was 64.3%.
  • the single crystal theoretical density (6.379 g / cm 3 ) was employed.
  • the exhaust pipe was welded to the upper lid of the capsule container filled with the mixed powder, and then the upper lid and the capsule container were welded.
  • a He leak test was performed to confirm whether there was any gas leak from the welded portion of the capsule container.
  • the amount of leakage at this time was 1 ⁇ 10 ⁇ 6 Torr ⁇ L / sec or less.
  • the exhaust pipe was closed and the capsule container was sealed.
  • the sealed capsule container was placed in a HIP processing apparatus (manufactured by Kobe Steel, Ltd.) and subjected to capsule HIP processing.
  • the treatment temperature was 1220 ° C.
  • the treatment pressure was 118 MPa
  • the treatment was performed for 4 hours using argon gas (purity 99.9%) as a pressure medium.
  • the capsule container was removed to obtain a cylindrical oxide sintered body.
  • the relative density of the obtained oxide sintered body was 100%, and the bulk resistance value (specific resistance) was 8.40 ⁇ 10 ⁇ 4 ⁇ ⁇ cm.
  • the density of the sintered body was measured by a length measurement method, and the theoretical density of InGaZnO 4 (JCPDS card number: 381104) described in the JCPDS card was adopted as the theoretical density of the sintered body.
  • the obtained oxide sintered body had an average crystal grain size of 2.1 ⁇ m, a Vickers hardness of 521.4, and a bending strength of 152 MPa.
  • L * of the obtained oxide sintered body was 32.02, a * was -0.72, b * was -1.15, and ⁇ L was 65.14.
  • the surface of the obtained oxide sintered body was ground, the outer periphery was ground, and the surface was further polished to prepare a sintered body having a diameter of 50.8 mm and a thickness of 3 mm.
  • ICP High Frequency Inductively Coupled Plasma
  • the atomic ratio of In, Ga and Zn In: Ga: Zn
  • This oxide sintered body was bonded with indium solder using a copper plate as a backing plate to obtain a sputtering target. Using this, an oxide semiconductor film was formed on a transparent substrate (non-alkali glass substrate) by a DC sputtering method to obtain a transparent semiconductor substrate.
  • This oxide sintered body has a relative density of 100%, a (1114) single-phase ratio of 100%, and a bulk resistance value (resistivity) of 8.40 ⁇ 10 ⁇ 4 ⁇ ⁇ cm. Because of its low density, high density, no defects as a sputtering target, and sufficient DC sputtering, it is possible to suppress the occurrence of abnormal discharge and to efficiently form a uniform oxide semiconductor film. It was.
  • Example 1 gallium oxide powder having an average particle diameter of 3 ⁇ m was used, calcining was not performed, and the filling rate of the mixed powder (tap density: 2.21 g / cm 3 ) into the capsule container was set to 34.8%. Except for this, the same procedure as in Example 1 was performed, but the capsule burst and an oxide sintered body was not obtained.
  • Example 2 In Example 1, an indium oxide powder having an average particle size of 1 ⁇ m was used, and the same procedure as in Example 1 was performed except that the filling rate of the mixed powder after calcining into the capsule container was 57.4%. A sintered product was obtained.
  • the relative density of the obtained oxide sintered body was 100%, and the bulk resistance value (specific resistance) was 6.3 ⁇ 10 ⁇ 4 ⁇ ⁇ cm.
  • the average grain size of the obtained oxide sintered body was 6.9 ⁇ m, the Vickers hardness was 398.6, and the bending strength was 98 MPa.
  • L * of the obtained oxide sintered body was 35.89, a * was ⁇ 0.21, b * was ⁇ 4.99, and ⁇ L was 61.48.
  • This oxide sintered body was bonded with indium solder using a copper plate as a backing plate to obtain a sputtering target. Using this, an oxide semiconductor film was formed on a transparent substrate (non-alkali glass substrate) by a DC sputtering method to obtain a transparent semiconductor substrate.
  • This oxide sintered body has a relative density of 100%, a (1114) single-phase ratio of 90.2%, and a bulk resistance value (specific resistance) of 6.3 ⁇ 10 ⁇ 4 ⁇ ⁇ cm. For this reason, the uniformity of the composition of the sputtered film was reduced although it was high density.
  • Comparative Example 3 In Comparative Example 2, the mixture was weighed so that the atomic ratio (In: Ga: Zn) of indium element, gallium element, and zinc element was 2: 2: 1, and the mixed powder after calcination was filled into the capsule container An oxide sintered body was obtained in the same manner as in Comparative Example 2 except that the rate was changed to 54.2%.
  • the obtained oxide sintered body had a relative density of 100% and a bulk resistance value (specific resistance) of 4.50 ⁇ 10 ⁇ 4 ⁇ ⁇ cm.
  • the average grain size of the obtained oxide sintered body was 7.0 ⁇ m, the Vickers hardness was 396.4, and the bending strength was 97 MPa.
  • L * of the obtained oxide sintered body was 36.45, a * was ⁇ 0.34, b * was ⁇ 4.87, and ⁇ L was 60.90.
  • This oxide sintered body was bonded with indium solder using a copper plate as a backing plate to obtain a sputtering target. Using this, an oxide semiconductor film was formed on a transparent substrate (non-alkali glass substrate) by a DC sputtering method to obtain a transparent semiconductor substrate.
  • This oxide sintered body has a relative density of 100%, a (2217) single-phase ratio of 84.5%, and a bulk resistance value (specific resistance) of 4.5 ⁇ 10 ⁇ 4 ⁇ ⁇ cm. For this reason, the uniformity of the composition of the sputtered film was reduced although it was high density.
  • Comparative Example 4 In Comparative Example 2, the same procedure as in Comparative Example 2 was performed except that gallium oxide powder having an average particle diameter of 0.6 ⁇ m was used and the filling rate of the mixed powder after calcining into the capsule container was 63.1%. An oxide sintered body was obtained.
  • the relative density of the obtained oxide sintered body was 100%, and the bulk resistance value (specific resistance) was 6.30 ⁇ 10 ⁇ 4 ⁇ ⁇ cm.
  • the average grain size of the obtained oxide sintered body was 7.2 ⁇ m, the Vickers hardness was 392.4, and the bending strength was 93 MPa.
  • L * of the obtained oxide sintered body was 36.56, a * was ⁇ 0.34, b * was ⁇ 5.12, and ⁇ L was 60.80.
  • This oxide sintered body was bonded with indium solder using a copper plate as a backing plate to obtain a sputtering target. Using this, an oxide semiconductor film was formed on a transparent substrate (non-alkali glass substrate) by a DC sputtering method to obtain a transparent semiconductor substrate.
  • This oxide sintered body has a relative density of 100%, a (1114) single-phase ratio of 90.4%, and a bulk resistance value (specific resistance) of 6.3 ⁇ 10 ⁇ 4 ⁇ ⁇ cm. For this reason, the uniformity of the composition of the sputtered film was reduced although it was high density.
  • Comparative Example 5 gallium oxide powder having an average particle diameter of 0.6 ⁇ m was used and weighed so that the atomic ratio (In: Ga: Zn) of indium element, gallium element, and zinc element was 2: 2: 1. And it implemented similarly to the comparative example 2 except the filling rate to the capsule container of the mixed powder after calcination having been 59.9%, and obtained oxide sinter.
  • the relative density of the obtained oxide sintered body was 100%, and the bulk resistance value (specific resistance) was 4.30 ⁇ 10 ⁇ 4 ⁇ ⁇ cm.
  • the obtained oxide sintered body had an average crystal grain size of 7.4 ⁇ m, a Vickers hardness of 390.2, and a bending strength of 92 MPa.
  • L * of the obtained oxide sintered body was 37.5, a * was ⁇ 0.56, b * was ⁇ 4.74, and ⁇ L was 59.90.
  • This oxide sintered body was bonded with indium solder using a copper plate as a backing plate to obtain a sputtering target. Using this, an oxide semiconductor film was formed on a transparent substrate (non-alkali glass substrate) by a DC sputtering method to obtain a transparent semiconductor substrate.
  • This oxide sintered body has a relative density of 100%, a (2217) single-phase ratio of 83.8%, and a bulk resistance value (specific resistance) of 4.3 ⁇ 10 ⁇ 4 ⁇ ⁇ cm. Therefore, although the density was high, the uniformity of the composition of the sputtered film was reduced.
  • Example 8 Indium oxide powder (manufactured by Rare Metal Co., Ltd., tap density: 1.62 g / cm 3 , average particle size: 0.56 ⁇ m) and gallium oxide powder (manufactured by Yamanaka Futec Co., Ltd., tap density: 1.39 g / cm 3 , average particle size: about 1.5 ⁇ m), zinc oxide powder (manufactured by Hakusui Tech Co., Ltd., tap density: 1.02 g / cm 3 , average particle size: about 1.5 ⁇ m), indium element and gallium Weighing was performed so that the atomic ratio of the element and zinc element (In: Ga: Zn) was 1: 1: 1, and dry mixing was performed with a super mixer at 3000 rpm for 1 hour to obtain a mixed powder.
  • the obtained mixed powder was subjected to pressure molding at a pressure of 300 MPa by a cold isostatic pressing method, and the obtained molded product was cut to obtain a cylindrical molded body having a diameter of 115 mm and a height of 40 mm.
  • the density of the cylindrical molded body was 3.52 g / cm 3 .
  • the density of the molded body was calculated by measuring the diameter and height of the molded body, calculating the volume, and dividing the separately measured weight of the molded body by the calculated volume.
  • the cylindrical molded body was transferred to a capsule container (outer diameter 121 mm, inner diameter 115 mm, inner height 40 mm) made of stainless steel (SUS304) so that the molded body did not collapse and filled into the capsule container.
  • the filling density of the mixed powder was 3.52 g / cm 3
  • the theoretical density of the sintered body was 6.379 g / cm 3 , so that the filling rate of the mixed powder was 55.2%.
  • the single crystal theoretical density (6.379 g / cm 3 ) was employed.
  • the exhaust pipe was welded to the upper lid of the capsule container filled with the cylindrical molded body, and then the upper lid and the capsule container were welded. A He leak test was performed to confirm whether there was any gas leak from the welded portion of the capsule container. The amount of leakage at this time was 1 ⁇ 10 ⁇ 6 Torr ⁇ L / sec or less. After removing the gas in the capsule container from the exhaust pipe at 550 ° C. for 7 hours, the exhaust pipe was closed and the capsule container was sealed. The sealed capsule container was placed in a HIP processing apparatus (manufactured by Kobe Steel, Ltd.) and subjected to capsule HIP processing.
  • a HIP processing apparatus manufactured by Kobe Steel, Ltd.
  • the treatment temperature was 1200 ° C.
  • the treatment pressure was 118 MPa
  • the treatment was performed for 4 hours using argon gas (purity 99.9%) as a pressure medium.
  • the capsule container was removed to obtain a cylindrical oxide sintered body.
  • the obtained cylindrical oxide sintered body had a diameter of 94.3 mm and a height of 32.8 mm.
  • the obtained oxide sintered body had a relative density of 100% and a bulk resistance value (specific resistance) of 8.18 ⁇ 10 ⁇ 4 ⁇ ⁇ cm.
  • the density of the sintered body was measured by a length measurement method, and the theoretical density of InGaZnO 4 (JCPDS card number: 381104) described in the JCPDS card was adopted as the theoretical density of the sintered body.
  • the average grain size of the obtained oxide sintered body was 0.77 ⁇ m, the Vickers hardness was 648.1, and the bending strength was 210 MPa.
  • L * of the obtained oxide sintered body was 22.08, a * was ⁇ 1.03, b * was ⁇ 2.48, and ⁇ L was 75.1.
  • the surface of the obtained oxide sintered body was ground, the outer periphery was ground, and the surface was further polished to prepare a sintered body having a diameter of 50.8 mm and a thickness of 3 mm.
  • ICP High Frequency Inductively Coupled Plasma
  • the atomic ratio of In, Ga and Zn In: Ga: Zn
  • This oxide sintered body was bonded with indium solder using a copper plate as a backing plate to obtain a sputtering target. Using this, an oxide semiconductor film was formed on a transparent substrate (non-alkali glass substrate) by a DC sputtering method to obtain a transparent semiconductor substrate.
  • This oxide sintered body has a relative density of 100%, a (1114) single-phase ratio of 100%, and a bulk resistance value (specific resistance) of 8.18 ⁇ 10 ⁇ 4 ⁇ ⁇ cm. It has a high density, no defects as a sputtering target, a low resistance value sufficient for DC sputtering, a small crystal grain size, a fine structure, and a high Vickers hardness, resulting in less generation of particles. Production can be suppressed (suppressing the occurrence of abnormal discharge), and since the mechanical strength is high, the film formation rate can be increased without cracking the target even if the sputtering power is increased, and the production efficiency is good. .
  • Example 9 In Example 8, a gallium oxide powder having an average particle size of 3 ⁇ m was used, and the filling rate of the cylindrical molded body into the capsule container was changed to 57.4%. A ligature was obtained.
  • the relative density of the obtained oxide sintered body was 100%, and the bulk resistance value (specific resistance) was 9.80 ⁇ 10 ⁇ 4 ⁇ ⁇ cm.
  • the obtained oxide sintered body had an average crystal grain size of 4.2 ⁇ m, Vickers hardness of 473.1, and flexural strength of 133 MPa.
  • L * of the obtained oxide sintered body was 33.67, a * was ⁇ 1.94, b * was ⁇ 3.53, and ⁇ L was 63.6.
  • the surface of the obtained oxide sintered body was ground, the outer periphery was ground, and the surface was further polished to prepare a sintered body having a diameter of 50.8 mm and a thickness of 3 mm.
  • ICP High Frequency Inductively Coupled Plasma
  • the atomic ratio of In, Ga and Zn In: Ga: Zn
  • This oxide sintered body was bonded with indium solder using a copper plate as a backing plate to obtain a sputtering target. Using this, an oxide semiconductor film was formed on a transparent substrate (non-alkali glass substrate) by a DC sputtering method to obtain a transparent semiconductor substrate.
  • This oxide sintered body has a relative density of 100%, a (1114) single-phase ratio of 100%, and a bulk resistance value (specific resistance) of 9.8 ⁇ 10 ⁇ 4 ⁇ ⁇ cm. It has a high density, no defects as a sputtering target, a low resistance value sufficient for DC sputtering, a small crystal grain size, a fine structure, and a high Vickers hardness, resulting in less generation of particles. Production can be suppressed (suppressing the occurrence of abnormal discharge), and since the mechanical strength is high, the film formation rate can be increased without cracking the target even if the sputtering power is increased, and the production efficiency is good. .
  • Example 10 In Example 8, the same procedure as in Example 8 was performed except that gallium oxide powder having an average particle size of 0.3 ⁇ m was used and the filling rate of the cylindrical molded body into the capsule container was 54.4%. A sintered product was obtained.
  • the obtained oxide sintered body had a relative density of 100% and a bulk resistance value (specific resistance) of 7.54 ⁇ 10 ⁇ 4 ⁇ ⁇ cm.
  • the obtained oxide sintered body had an average crystal grain size of 0.92 ⁇ m, Vickers hardness of 652.3, and bending strength of 212 MPa.
  • L * of the obtained oxide sintered body was 21.98, a * was ⁇ 0.99, b * was ⁇ 2.39, and ⁇ L was 75.2.
  • the surface of the obtained oxide sintered body was ground, the outer periphery was ground, and the surface was further polished to prepare a sintered body having a diameter of 50.8 mm and a thickness of 3 mm.
  • ICP High Frequency Inductively Coupled Plasma
  • the atomic ratio of In, Ga and Zn In: Ga: Zn
  • This oxide sintered body was bonded with indium solder using a copper plate as a backing plate to obtain a sputtering target. Using this, an oxide semiconductor film was formed on a transparent substrate (non-alkali glass substrate) by a DC sputtering method to obtain a transparent semiconductor substrate.
  • This oxide sintered body has a relative density of 100%, a (1114) single-phase ratio of 100%, and a bulk resistance value (specific resistance) of 7.54 ⁇ 10 ⁇ 4 ⁇ ⁇ cm. It has a high density, no defects as a sputtering target, a low resistance value that allows DC sputtering sufficiently, a small crystal grain size, a fine structure, and a high Vickers hardness.
  • the generation can also be suppressed (the occurrence of abnormal discharge is suppressed), and since the mechanical strength is high, the film formation rate can be increased without cracking the target even when the sputtering power is increased, and the production efficiency is good.
  • Example 11 In Example 8, a gallium oxide powder having an average particle diameter of 1 ⁇ m was used, and the filling rate of the cylindrical molded body into the capsule container was changed to 55.1%. A ligature was obtained.
  • the obtained oxide sintered body had a relative density of 100% and a bulk resistance value (specific resistance) of 9.20 ⁇ 10 ⁇ 4 ⁇ ⁇ cm.
  • the obtained oxide sintered body had an average crystal grain size of 3.5 ⁇ m, Vickers hardness of 538.5, and flexural strength of 162 MPa.
  • L * of the obtained oxide sintered body was 27.46, a * was ⁇ 1.45, b * was ⁇ 3.03, and ⁇ L was 69.8.
  • the surface of the obtained oxide sintered body was ground, the outer periphery was ground, and the surface was further polished to prepare a sintered body having a diameter of 50.8 mm and a thickness of 3 mm.
  • ICP High Frequency Inductively Coupled Plasma
  • the atomic ratio of In, Ga and Zn In: Ga: Zn
  • This oxide sintered body was bonded with indium solder using a copper plate as a backing plate to obtain a sputtering target. Using this, an oxide semiconductor film was formed on a transparent substrate (non-alkali glass substrate) by a DC sputtering method to obtain a transparent semiconductor substrate.
  • This oxide sintered body has a relative density of 100%, a (1114) single-phase ratio of 100%, and a bulk resistance value (resistivity) of 9.2 ⁇ 10 ⁇ 4 ⁇ ⁇ cm. It has a high density, no defects as a sputtering target, a low resistance value sufficient for DC sputtering, a small crystal grain size, a fine structure, and a high Vickers hardness, resulting in less generation of particles. Production can be suppressed (suppressing the occurrence of abnormal discharge), and since the mechanical strength is high, the film formation rate can be increased without cracking the target even if the sputtering power is increased, and the production efficiency is good. .
  • Example 12 Indium oxide powder (manufactured by Rare Metal Co., Ltd., tap density: 1.62 g / cm 3 , average particle size: 0.56 ⁇ m) and gallium oxide powder (manufactured by Yamanaka Futec Co., Ltd., tap density: 1.39 g / cm 3 , average particle size: about 1.5 ⁇ m), zinc oxide powder (manufactured by Hakusui Tech Co., Ltd., tap density: 1.02 g / cm 3 , average particle size: about 1.5 ⁇ m), indium element and gallium Weighing was performed so that the atomic ratio of element to zinc element (In: Ga: Zn) was 1: 1: 1, and the weighed powders were mixed to obtain a mixed powder.
  • Indium oxide powder manufactured by Rare Metal Co., Ltd., tap density: 1.62 g / cm 3 , average particle size: 0.56 ⁇ m
  • gallium oxide powder manufactured by Yamanaka Futec Co., Ltd., tap density: 1.39 g / cm 3
  • the obtained mixed powder, polypropylene carbonate (molecular weight: 200,000), 2 mm ⁇ zirconia balls, ethanol and acetone were mixed to prepare a slurry, and the slurry was wet-mixed by a wet ball mill mixing method.
  • 2 mass parts of polypropylene carbonate was used with respect to 98 mass parts of mixed powder.
  • the slurry After removing the zirconia balls from the slurry, the slurry is sprayed with an explosion-proof spray dryer (DL410 manufactured by Yamato Scientific Co., Ltd.) equipped with a two-fluid nozzle type (orifice diameter 0.7 mm) atomizer and dried at normal pressure. And granulated to obtain a granulated powder having a particle size of 95 ⁇ m and a tap density of 3.43 g / cm 3 .
  • the temperature of the hot air supplied to the spray dryer was 250 ° C., and the temperature at the outlet of the dryer was 93 ° C.
  • the particle size of the granulated powder was measured as follows.
  • the collected powder and hexametaphosphoric acid (dispersing agent) are put into water, irradiated with ultrasonic waves for 3 minutes, and then a laser diffraction / scattering particle size distribution analyzer (Beckman Coulter, Inc.)
  • the particle size distribution was measured by LS-230, manufactured, and the particle size of the granulated powder was defined as a particle size with an integrated volume fraction of 50%.
  • the tap density of the granulated powder was calculated based on JIS K5101 by filling the granulated powder into a graduated cylinder of a predetermined size while applying vibration until the volume of the granulated powder disappeared.
  • the capsule container filled with the granulated powder was kept at 400 ° C. for 5 hours in an air atmosphere to remove the polypropylene carbonate.
  • the tap density of the powder after removing the polypropylene carbonate was 3.31 g / cm 3 , and the filling rate was 51.9%.
  • the exhaust pipe was welded to the upper lid of the capsule container, and then the upper lid and the capsule container were welded.
  • a He leak test was performed to confirm whether there was any gas leak from the welded portion of the capsule container.
  • the amount of leakage at this time was 1 ⁇ 10 ⁇ 9 Pa ⁇ m 3 / sec or less.
  • the exhaust pipe was closed and the capsule container was sealed.
  • the sealed capsule container was placed in a HIP processing apparatus (manufactured by Kobe Steel, Ltd.) and subjected to capsule HIP processing.
  • the treatment temperature was 1200 ° C.
  • the treatment pressure was 118 MPa
  • the treatment was performed for 4 hours using argon gas (purity 99.9%) as a pressure medium.
  • the capsule container was removed to obtain a cylindrical oxide sintered body.
  • the obtained cylindrical oxide sintered body had a diameter of 64.1 mm and a height of 62.4 mm.
  • the obtained oxide sintered body had a relative density of 100% and a bulk resistance value (specific resistance) of 8.18 ⁇ 10 ⁇ 4 ⁇ ⁇ cm.
  • the density of the sintered body was measured by a length measurement method, and the theoretical density of InGaZnO 4 (JCPDS card number: 381104) described in the JCPDS card was adopted as the theoretical density of the sintered body.
  • the average grain size of the obtained oxide sintered body was 0.77 ⁇ m, the Vickers hardness was 648.1, and the bending strength was 210 MPa.
  • L * of the obtained oxide sintered body was 22.08, a * was ⁇ 1.03, b * was ⁇ 2.48, and ⁇ L was 75.1.
  • the surface of the obtained oxide sintered body was ground, the outer periphery was ground, and the surface was further polished to prepare a sintered body having a diameter of 50.8 mm and a thickness of 3 mm.
  • ICP High Frequency Inductively Coupled Plasma
  • the atomic ratio of In, Ga and Zn In: Ga: Zn
  • This oxide sintered body was bonded with indium solder using a copper plate as a backing plate to obtain a sputtering target. Using this, an oxide semiconductor film was formed on a transparent substrate (non-alkali glass substrate) by a DC sputtering method to obtain a transparent semiconductor substrate.
  • This oxide sintered body has a relative density of 100%, a (1114) single-phase ratio of 100%, and a bulk resistance value (specific resistance) of 8.18 ⁇ 10 ⁇ 4 ⁇ ⁇ cm. It has a high density, no defects as a sputtering target, a low resistance value sufficient for DC sputtering, a small crystal grain size, a fine structure, and a high Vickers hardness, resulting in less generation of particles. Production can be suppressed (suppressing the occurrence of abnormal discharge), and since the mechanical strength is high, the film formation rate can be increased without cracking the target even if the sputtering power is increased, and the production efficiency is good. .
  • Example 13 In Example 12, the atomic ratio (In: Ga: Zn) of indium element, gallium element, and zinc element was weighed to be 2: 2: 1, and the filling rate of the granulated powder into the capsule container was 56.
  • the oxide sintered body was obtained in the same manner as in Example 12 except that the content was 2%.
  • the obtained oxide sintered body had a relative density of 100% and a bulk resistance value (specific resistance) of 5.43 ⁇ 10 ⁇ 4 ⁇ ⁇ cm.
  • the average grain size of the obtained oxide sintered body was 0.93 ⁇ m, the Vickers hardness was 610.3, and the bending strength was 195 MPa.
  • L * of the obtained oxide sintered body was 19.62, a * was ⁇ 0.46, b * was ⁇ 0.346, and ⁇ L was 77.52.
  • the surface of the obtained oxide sintered body was ground, the outer periphery was ground, and the surface was further polished to prepare a sintered body having a diameter of 50.8 mm and a thickness of 3 mm.
  • ICP high frequency inductively coupled plasma
  • the atomic ratio of In, Ga and Zn In: Ga: Zn
  • This oxide sintered body was bonded with indium solder using a copper plate as a backing plate to obtain a sputtering target. Using this, an oxide semiconductor film was formed on a transparent substrate (non-alkali glass substrate) by a DC sputtering method to obtain a transparent semiconductor substrate.
  • This oxide sintered body has a relative density of 100%, a (2217) single-phase ratio of 100%, and a bulk resistance value (specific resistance) of 5.43 ⁇ 10 ⁇ 4 ⁇ ⁇ cm. It has a high density, no defects as a sputtering target, a low resistance value sufficient for DC sputtering, a small crystal grain size, a fine structure, and a high Vickers hardness, resulting in less generation of particles. Production can be suppressed (suppressing the occurrence of abnormal discharge), and since the mechanical strength is high, the film formation rate can be increased without cracking the target even if the sputtering power is increased, and the production efficiency is good. .
  • Example 14 In Example 8, a zinc oxide powder having an average particle diameter of 60 nm was used, and the same procedure as in Example 8 was performed except that the filling rate of the mixed powder after calcining into the capsule container was 54.6%. A sintered product was obtained.
  • the obtained oxide sintered body had a relative density of 100% and a bulk resistance value (specific resistance) of 8.18 ⁇ 10 ⁇ 4 ⁇ ⁇ cm.
  • the obtained oxide sintered body had an average crystal grain size of 0.72 ⁇ m, Vickers hardness of 674.1, and flexural strength of 225 MPa.
  • L * of the obtained oxide sintered body was 21,82, a * was ⁇ 1.01, b * was ⁇ 2.43, and ⁇ L was 75.4.
  • the surface of the obtained oxide sintered body was ground, the outer periphery was ground, and the surface was further polished to prepare a sintered body having a diameter of 50.8 mm and a thickness of 3 mm.
  • ICP High Frequency Inductively Coupled Plasma
  • the atomic ratio of In, Ga and Zn In: Ga: Zn
  • This oxide sintered body was bonded with indium solder using a copper plate as a backing plate to obtain a sputtering target. Using this, an oxide semiconductor film was formed on a transparent substrate (non-alkali glass substrate) by a DC sputtering method to obtain a transparent semiconductor substrate.
  • This oxide sintered body has a relative density of 100%, a (1114) single-phase ratio of 100%, and a bulk resistance value (specific resistance) of 8.18 ⁇ 10 ⁇ 4 ⁇ ⁇ cm. It has a high density, no defects as a sputtering target, a low resistance value sufficient for DC sputtering, a small crystal grain size, a fine structure, and a high Vickers hardness, resulting in less generation of particles. Production can be suppressed (suppressing the occurrence of abnormal discharge), and since the mechanical strength is high, the film formation rate can be increased without cracking the target even if the sputtering power is increased, and the production efficiency is good. .
  • Example 15 Indium oxide powder (made by rare metal), tap density: 1.62 g / cm 3 , average particle diameter: 0.56 ⁇ m) and gallium oxide powder (made by rare metal, Inc., tap density 1.50 g) / Cm 3 , average particle size: 1.0 ⁇ m), zinc oxide powder (manufactured by Hakusui Tech Co., Ltd., tap density: 1.02 g / cm 3 , average particle size: 1.5 ⁇ m), indium element and gallium element And zinc element were weighed so that the atomic ratio (In: Ga: Zn) was 1: 1: 1, and dry mixing was performed with a super mixer at 3000 rpm for 1 hour to obtain a mixed powder.
  • the obtained mixed powder was subjected to pressure molding at a pressure of 300 MPa by a cold isostatic pressing method, and the obtained molded product was cut to obtain a cylindrical molded body having a diameter of 115 mm and a height of 40 mm.
  • the density of the cylindrical molded body was 3.66 g / cm 3 .
  • the density of the molded body was calculated by measuring the diameter and height of the molded body, calculating the volume, and dividing the separately measured weight of the molded body by the calculated volume.
  • the cylindrical molded body was transferred to a capsule container (outer diameter 121 mm, inner diameter 115 mm, inner height 40 mm) made of stainless steel (SUS304) so that the molded body did not collapse and filled into the capsule container.
  • the filling density of the mixed powder was 3.66 g / cm 3
  • the theoretical density of the sintered body was 6.379 g / cm 3 , so that the filling rate of the mixed powder was 57.3%.
  • the single crystal theoretical density (6.379 g / cm 3 ) was employed.
  • the exhaust pipe was welded to the upper lid of the capsule container filled with the cylindrical molded body, and then the upper lid and the capsule container were welded. A He leak test was performed to confirm whether there was any gas leak from the welded portion of the capsule container. The amount of leakage at this time was 1 ⁇ 10 ⁇ 6 Torr ⁇ L / sec or less. After removing the gas in the capsule container from the exhaust pipe at 550 ° C. for 7 hours, the exhaust pipe was closed and the capsule container was sealed. The sealed capsule container was placed in a HIP processing apparatus (manufactured by Kobe Steel, Ltd.) and subjected to capsule HIP processing.
  • a HIP processing apparatus manufactured by Kobe Steel, Ltd.
  • the treatment temperature was 1220 ° C.
  • the treatment pressure was 118 MPa
  • the treatment was performed for 4 hours using argon gas (purity 99.9%) as a pressure medium.
  • the capsule container was removed to obtain a cylindrical oxide sintered body.
  • the obtained cylindrical oxide sintered body had a diameter of 94.3 mm and a height of 32.8 mm.
  • the relative density of the obtained oxide sintered body was 100%, and the bulk resistance value (specific resistance) was 8.30 ⁇ 10 ⁇ 4 ⁇ ⁇ cm.
  • the density of the sintered body was measured by a length measurement method, and the theoretical density of InGaZnO 4 (JCPDS card number: 381104) described in the JCPDS card was adopted as the theoretical density of the sintered body.
  • the average grain size of the obtained oxide sintered body was 1.20 ⁇ m, the Vickers hardness was 595.0, and the bending strength was 188 MPa.
  • L * of the obtained oxide sintered body was 34.2, a * was ⁇ 1.55, b * was ⁇ 2.93, and ⁇ L was 63.0.
  • the surface of the obtained oxide sintered body was ground, the outer periphery was ground, and the surface was further polished to prepare a sintered body having a diameter of 50.8 mm and a thickness of 3 mm.
  • ICP High Frequency Inductively Coupled Plasma
  • the atomic ratio of In, Ga and Zn In: Ga: Zn
  • This oxide sintered body was bonded with indium solder using a copper plate as a backing plate to obtain a sputtering target. Using this, an oxide semiconductor film was formed on a transparent substrate (non-alkali glass substrate) by a DC sputtering method to obtain a transparent semiconductor substrate.
  • This oxide sintered body has a relative density of 100%, a (1114) single-phase ratio of 100%, and a bulk resistance value (specific resistance) of 8.18 ⁇ 10 ⁇ 4 ⁇ ⁇ cm. It has a high density, no defects as a sputtering target, a low resistance value sufficient for DC sputtering, a small crystal grain size, a fine structure, and a high Vickers hardness, resulting in less generation of particles. Production can be suppressed (suppressing the occurrence of abnormal discharge), and since the mechanical strength is high, the film formation rate can be increased without cracking the target even if the sputtering power is increased, and the production efficiency is good. .
  • Example 8 was carried out in the same manner as in Example 8 except that indium oxide powder having an average particle size of 4.0 ⁇ m (manufactured by Kojundo Chemical Laboratory Co., Ltd.) was used. .6 mm, height 32.9 mm).
  • the density of the cylindrical molded body was 3.55 g / cm 3 .
  • the capsule container was filled with a cylindrical molded body, and the calculated filling density was 3.55 g / cm 3 . Therefore, the filling rate of the cylindrical molded body into the capsule container was 55.7%.
  • the relative density of the obtained oxide sintered body was 100%, and the bulk resistance value (specific resistance) was 1.1 ⁇ 10 ⁇ 3 ⁇ ⁇ cm.
  • the obtained oxide sintered body had an average crystal grain size of 7.9 ⁇ m, a Vickers hardness of 421.3, and a bending strength of 107 MPa.
  • L * of the obtained oxide sintered body was 35.32, a * was ⁇ 2.08, b * was ⁇ 0.367, and ⁇ L was 59.5.
  • the surface of the obtained oxide sintered body was ground, the outer periphery was ground, and the surface was further polished to prepare a sintered body having a diameter of 50.8 mm and a thickness of 3 mm.
  • ICP High Frequency Inductively Coupled Plasma
  • the atomic ratio of In, Ga and Zn In: Ga: Zn
  • This oxide sintered body was bonded with indium solder using a copper plate as a backing plate to obtain a sputtering target. Using this, an oxide semiconductor film was formed on a transparent substrate (non-alkali glass substrate) by a DC sputtering method to obtain a transparent semiconductor substrate.
  • This oxide sintered body has a relative density of 100%, a (1114) single-phase ratio of 70%, and a bulk resistance value (specific resistance) of 1.1 ⁇ 10 ⁇ 3 ⁇ ⁇ cm. Although the density was high, the uniformity of the composition of the sputtered film was reduced.
  • Comparative Example 7 In Comparative Example 6, the atomic ratio of indium element, gallium element, and zinc element (In: Ga: Zn) was weighed to be 2: 2: 1, and the filling rate of the cylindrical molded body into the capsule container was determined. An oxide sintered body was obtained in the same manner as in Comparative Example 6 except that the content was 55.9%.
  • the relative density of the obtained oxide sintered body was 100%, and the bulk resistance value (specific resistance) was 1.7 ⁇ 10 ⁇ 2 ⁇ ⁇ cm.
  • the average grain size of the obtained oxide sintered body was 8.3 ⁇ m, the Vickers hardness was 398.5, and the bending strength was 96 MPa.
  • L * of the obtained oxide sintered body was 45.8, a * was ⁇ 2.83, b * was ⁇ 3.97, and ⁇ L was 51.6.
  • This oxide sintered body was bonded with indium solder using a copper plate as a backing plate to obtain a sputtering target. Using this, an oxide semiconductor film was formed on a transparent substrate (non-alkali glass substrate) by a DC sputtering method to obtain a transparent semiconductor substrate.
  • This oxide sintered body has a relative density of 100%, a (2217) single-phase ratio of 4%, and a bulk resistance value (specific resistance) of 1.7 ⁇ 10 ⁇ 2 ⁇ ⁇ cm. Although the density was high, the uniformity of the composition of the sputtered film was reduced.
  • Comparative Example 8 In Comparative Example 6, the same procedure as in Comparative Example 6 was performed except that indium oxide powder having an average particle size of 1.0 ⁇ m was used and the filling rate of the cylindrical molded body into the capsule container was set to 56.6%. A sintered product was obtained.
  • the obtained oxide sintered body had a relative density of 100% and a bulk resistance value (specific resistance) of 6.2 ⁇ 10 ⁇ 4 ⁇ ⁇ cm.
  • the obtained oxide sintered body had an average crystal grain size of 4.8 ⁇ m, a Vickers hardness of 421.3, and a bending strength of 107 MPa.
  • L * of the obtained oxide sintered body was 38.3, a * was ⁇ 1.88, b * was ⁇ 2.54, and ⁇ L was 58.9.
  • This oxide sintered body was bonded with indium solder using a copper plate as a backing plate to obtain a sputtering target. Using this, an oxide semiconductor film was formed on a transparent substrate (non-alkali glass substrate) by a DC sputtering method to obtain a transparent semiconductor substrate.
  • This oxide sintered body has a relative density of 100%, a (1114) single-phase ratio of 88.60%, and a bulk resistance value (specific resistance) of 6.2 ⁇ 10 ⁇ 4 ⁇ ⁇ cm. For this reason, the uniformity of the composition of the sputtered film was reduced although it was high density.
  • Comparative Example 9 In Comparative Example 8, the atomic ratio of indium element, gallium element and zinc element (In: Ga: Zn) was weighed to be 2: 2: 1, and the filling rate of the cylindrical molded body into the capsule container was determined. An oxide sintered body was obtained in the same manner as in Comparative Example 8 except that the content was 54.8%.
  • the obtained oxide sintered body had a relative density of 100% and a bulk resistance value (specific resistance) of 4.2 ⁇ 10 ⁇ 4 ⁇ ⁇ cm.
  • the average grain size of the obtained oxide sintered body was 4.7 ⁇ m, the Vickers hardness was 436.2, and the bending strength was 114 MPa.
  • L * of the obtained oxide sintered body was 39.4, a * was -1.93, b * was -3.21, and ⁇ L was 57.9.
  • This oxide sintered body was bonded using indium solder using a copper plate as a backing plate to obtain a sputtering target. Using this, an oxide semiconductor film was formed on a transparent substrate (non-alkali glass substrate) by a DC sputtering method to obtain a transparent semiconductor substrate.
  • This oxide sintered body has a relative density of 100%, a (2217) single-phase ratio of 85.6%, and a bulk resistance value (specific resistance) of 4.2 ⁇ 10 ⁇ 4 ⁇ ⁇ cm. For this reason, the uniformity of the composition of the sputtered film was reduced although it was high density.
  • the oxide sintered body of the present invention is useful as a sputtering target because of its high mechanical strength, high relative density, low bulk resistance, and uniform composition.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Physical Vapour Deposition (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

The present invention provides, as a sintered oxide having high mechanical strength, high relative density, a low bulk resistance value, and a uniform composition, a sintered oxide including In, Ga, and Zn, wherein L* in the L*a*b* color system is 35 or less.

Description

酸化物焼結体Oxide sintered body
 本発明は、酸化物焼結体に関する。 The present invention relates to an oxide sintered body.
 In、GaおよびZnを含む酸化物焼結体から形成される酸化物半導体膜は、アモルファスシリコン膜よりもキャリアの移動度が大きいという利点がある。この酸化物半導体膜は、量産性の点で、In、GaおよびZnを含む酸化物焼結体を含むスパッタリングターゲットを用いて、スパッタリング法により形成されることが一般的である。 An oxide semiconductor film formed from an oxide sintered body containing In, Ga, and Zn has an advantage of higher carrier mobility than an amorphous silicon film. In terms of mass productivity, this oxide semiconductor film is generally formed by a sputtering method using a sputtering target including an oxide sintered body containing In, Ga, and Zn.
 In、GaおよびZnを含む酸化物焼結体として、例えば、特許文献1には、ビッカース硬度が724であり、相対密度が96%であり、バルク抵抗値が9.5×10-4Ω・cmである酸化物焼結体や、ビッカース硬度が534であり、相対密度が96%であり、バルク抵抗値が1.4×10-3Ω・cmである酸化物焼結体や、ビッカース硬度が480であり、相対密度が97%であり、バルク抵抗値が4.2×10-3Ω・cmである酸化物焼結体等が記載されている。また、特許文献2には、抗折強度が117MPaであり、相対密度が95.9%であるInGaZnO4単相の酸化物焼結体や、抗折強度が151MPaであり、相対密度が96.8%であるInGaZnO4単相の酸化物焼結体や、抗折強度が157MPaであり、相対密度が96.1%であるInGaZnO4単相の酸化物焼結体や、抗折強度が206MPaであり、相対密度が97.2%であるInGaZnO4単相の酸化物焼結体等が記載されている。 As an oxide sintered body containing In, Ga, and Zn, for example, in Patent Document 1, the Vickers hardness is 724, the relative density is 96%, and the bulk resistance value is 9.5 × 10 −4 Ω · Oxide sintered body that is cm, an oxide sintered body that has a Vickers hardness of 534, a relative density of 96%, and a bulk resistance value of 1.4 × 10 −3 Ω · cm, and a Vickers hardness Is an oxide sintered body having a relative density of 97% and a bulk resistance value of 4.2 × 10 −3 Ω · cm. Patent Document 2 discloses an InGaZnO 4 single-phase oxide sintered body having a bending strength of 117 MPa and a relative density of 95.9%, a bending strength of 151 MPa, and a relative density of 96. 8% oxide sintered body and the InGaZnO 4 single phase is bending strength is 157MPa, relative density oxide sintered body and the InGaZnO 4 single phase is 96.1%, flexural strength 206MPa InGaZnO 4 single-phase oxide sintered body having a relative density of 97.2% is described.
特開2012-052227号公報JP 2012-052227 A 特開2013-129545号公報JP 2013-129545 A
 本発明の目的は、機械的強度が高く、相対密度が高く、バルク抵抗値が小さく、且つ、組成が均一である酸化物焼結体を提供することにある。 An object of the present invention is to provide an oxide sintered body having a high mechanical strength, a high relative density, a low bulk resistance value, and a uniform composition.
 前記目的を達成するため、本発明は、以下の発明を提供する。 In order to achieve the above object, the present invention provides the following inventions.
[1] In、GaおよびZnを含む酸化物焼結体であって、L*a*b*表色系におけるL*が35以下である酸化物焼結体。 [1] An oxide sintered body containing In, Ga, and Zn, wherein L * in the L * a * b * color system is 35 or less.
[2] L*a*b*表色系におけるa*が-0.6以下である[1]に記載の酸化物焼結体。 [2] The oxide sintered body according to [1], wherein a * in the L * a * b * color system is −0.6 or less.
[3] ビッカース硬度が400以上である[1]または[2]に記載の酸化物焼結体。 [3] The oxide sintered body according to [1] or [2], which has a Vickers hardness of 400 or more.
[4] 抗折強度が90MPa以上である[1]~[3]のいずれかに記載の酸化物焼結体。 [4] The oxide sintered body according to any one of [1] to [3], wherein the bending strength is 90 MPa or more.
[5] 相対密度が99.5%以上である[1]~[4]のいずれかに記載の酸化物焼結体。 [5] The oxide sintered body according to any one of [1] to [4], wherein the relative density is 99.5% or more.
[6] バルク抵抗値が1.0×10-3Ω・cm未満である[1]~[5]のいずれかに記載の酸化物焼結体。 [6] The oxide sintered body according to any one of [1] to [5], wherein the bulk resistance value is less than 1.0 × 10 −3 Ω · cm.
[7] 単相割合が97.5%以上である[1]~[6]のいずれかに記載の酸化物焼結体。 [7] The oxide sintered body according to any one of [1] to [6], wherein the single-phase ratio is 97.5% or more.
[8] 結晶粒径が9μm以下である[1]~[7]のいずれかに記載の酸化物焼結体。 [8] The oxide sintered body according to any one of [1] to [7], wherein the crystal grain size is 9 μm or less.
[9] In、GaおよびZnを含む酸化物焼結体であって、ビッカース硬度が450以上であり、相対密度が97%を超え、バルク抵抗値が1.0×10-3Ω・cm未満である酸化物焼結体。 [9] An oxide sintered body containing In, Ga, and Zn, having a Vickers hardness of 450 or more, a relative density exceeding 97%, and a bulk resistance value of less than 1.0 × 10 −3 Ω · cm An oxide sintered body.
[10] In、GaおよびZnを含む酸化物焼結体であって、抗折強度が130MPa以上であり、相対密度が97%を超え、バルク抵抗値が1.0×10-3Ω・cm未満である酸化物焼結体。 [10] An oxide sintered body containing In, Ga, and Zn, having a bending strength of 130 MPa or more, a relative density exceeding 97%, and a bulk resistance value of 1.0 × 10 −3 Ω · cm Oxide sintered body which is less than.
[11] ビッカース硬度が450以上である[10]に記載の酸化物焼結体。 [11] The oxide sintered body according to [10], having a Vickers hardness of 450 or more.
[12] L*a*b*表色系におけるL*が35以下である[9]~[11]のいずれかに記載の酸化物焼結体。 [12] The oxide sintered body according to any one of [9] to [11], wherein L * in the L * a * b * color system is 35 or less.
[13] L*a*b*表色系におけるa*が-0.6以下である[9]~[12]のいずれかに記載の酸化物焼結体。 [13] The oxide sintered body according to any one of [9] to [12], wherein a * in the L * a * b * color system is −0.6 or less.
[14] 相対密度が99.5%以上である[9]~[13]のいずれかに記載の酸化物焼結体。 [14] The oxide sintered body according to any one of [9] to [13], wherein the relative density is 99.5% or more.
[15] 単相割合が97.5%以上である[9]~[14]のいずれかに記載の酸化物焼結体。 [15] The oxide sintered body according to any one of [9] to [14], wherein the single-phase ratio is 97.5% or more.
[16] 結晶粒径が4.5μm以下である[9]~[15]のいずれかに記載の酸化物焼結体。 [16] The oxide sintered body according to any one of [9] to [15], wherein the crystal grain size is 4.5 μm or less.
[17] [1]~[16]のいずれかに記載の酸化物焼結体を含むスパッタリングターゲット。 [17] A sputtering target including the oxide sintered body according to any one of [1] to [16].
 本発明の酸化物焼結体は、機械的強度が高く、相対密度が高く、バルク抵抗値が小さく、且つ、組成が均一である。 The oxide sintered body of the present invention has a high mechanical strength, a high relative density, a small bulk resistance value, and a uniform composition.
 本発明の酸化物焼結体は、インジウム(In)、ガリウム(Ga)および亜鉛(Zn)を含み、さらに、酸素(O)を構成元素として含み、好ましくは、原子の99%以上がインジウムと、ガリウムと、亜鉛と、酸素とからなり、下記式で表わすことができる。 The oxide sintered body of the present invention contains indium (In), gallium (Ga), and zinc (Zn), further contains oxygen (O) as a constituent element, and preferably 99% or more of the atoms are indium. It consists of gallium, zinc, and oxygen and can be expressed by the following formula.
式:InxGayZnza Formula: In x Ga y Zn z O a
[式中、x/(x+y)は0.2~0.8であり、z/(x+y+z)は0.1~0.5であり、a=(3/2)x+(3/2)y+zである。] [Wherein, x / (x + y) is 0.2 to 0.8, z / (x + y + z) is 0.1 to 0.5, and a = (3/2) x + (3/2) y + z It is. ]
 例えば、x:y:z=1:1:1の場合はInGaZnO4と表すことができ、x:y:z=2:2:1の場合はIn2Ga2ZnO7と表すことができる。この2組成が特性的に好ましい。 For example, x: y: z = 1: 1: 1 can be represented as InGaZnO 4, and x: y: z = 2: 2: 1 can be represented as In 2 Ga 2 ZnO 7 . These two compositions are preferable in terms of characteristics.
 本発明の酸化物焼結体は、好ましくは、Sn、Zr、Ti、Mo、Si、Cr、W、Ge、V、Mn等の不純物金属元素(M)を実質的に含まず、不純物金属元素(M)の含有率[M/(In+Ga+Zn+M):重量比]は、通常10ppm未満である。酸化物焼結体中の不純物金属元素(M)の含有量は、高周波誘導結合プラズマ(ICP)分析装置により測定することができる。 The oxide sintered body of the present invention preferably contains substantially no impurity metal element (M) such as Sn, Zr, Ti, Mo, Si, Cr, W, Ge, V, Mn, etc. The content [M / (In + Ga + Zn + M): weight ratio] of (M) is usually less than 10 ppm. The content of the impurity metal element (M) in the oxide sintered body can be measured by a high frequency inductively coupled plasma (ICP) analyzer.
 本発明の酸化物焼結体の、L*a*b*表色系におけるL*は通常35以下であり、好ましくは34.5以下であり、より好ましくは34以下であり、さらに好ましくは33.5以下である。 L * in the L * a * b * color system of the oxide sintered body of the present invention is usually 35 or less, preferably 34.5 or less, more preferably 34 or less, and still more preferably 33. .5 or less.
 本発明の酸化物焼結体の、L*a*b*表色系におけるa*は、通常-0.6以下であり、好ましくは-1.0以下である。 The a * in the L * a * b * color system of the oxide sintered body of the present invention is usually −0.6 or less, preferably −1.0 or less.
 本発明の酸化物焼結体の、L*a*b*表色系におけるL*やa*は、湿式研磨機により、研磨紙で酸化物焼結体の表面を、表面粗さ(Ra)が0.5μm以下となるまで湿式研磨を行った後、研磨された面の色度a*、色度b*、明度L*を、分光測色計により測定し、その結果をCIE1976空間で評価することにより算出できる。 L * and a * in the L * a * b * color system of the oxide sintered body of the present invention are the surface roughness (Ra) of the surface of the oxide sintered body with abrasive paper by a wet polishing machine. After performing wet polishing until the thickness becomes 0.5 μm or less, the chromaticity a *, chromaticity b *, and lightness L * of the polished surface are measured with a spectrocolorimeter, and the results are evaluated in the CIE 1976 space. This can be calculated.
 本発明の酸化物焼結体の、L*a*b*表色系におけるL*やa*を測定する前に、L*a*b*表色系におけるL*、a*およびb*が既知である試料を標準試料として、そのL*、a*およびb*を測定し、前記既知の値と一致しているか否かを確認することが好ましい。 Before measuring L * and a * in the L * a * b * color system of the oxide sintered body of the present invention, L *, a * and b * in the L * a * b * color system It is preferable to use a known sample as a standard sample and measure its L *, a * and b * to confirm whether or not it matches the known value.
 本発明の酸化物焼結体のビッカース硬度は、通常400以上であり、好ましくは405以上であり、より好ましくは450以上であり、さらに好ましくは470以上である。本発明の酸化物焼結体はビッカース硬度が高いため、特にDCスパッタリング法におけるターゲットとして好適であり、パーティクルの発生が少なく、スパッタ電力が高い場合であっても、ターゲットが割れることなく、成膜速度を大きくすることができ、酸化物半導体膜を良好な生産効率で製造することができる。 The Vickers hardness of the oxide sintered body of the present invention is usually 400 or more, preferably 405 or more, more preferably 450 or more, and further preferably 470 or more. Since the oxide sintered body of the present invention has a high Vickers hardness, it is particularly suitable as a target in the DC sputtering method, and even when the generation of particles is small and the sputtering power is high, the target is not cracked and is formed. The speed can be increased and the oxide semiconductor film can be manufactured with good production efficiency.
 本発明の酸化物焼結体の抗折強度は、通常90MPa以上であり、好ましくは95MPa以上であり、より好ましくは130MPa以上であり、さらに好ましくは150MPa以上である。本発明の酸化物焼結体は抗折強度が高いため、特にDCスパッタリング法におけるターゲットとして好適であり、パーティクルの発生が少なく、スパッタ電力が高い場合であっても、ターゲットが割れることなく、成膜速度を大きくすることができ、酸化物半導体膜を良好な生産効率で製造することができる。 The bending strength of the oxide sintered body of the present invention is usually 90 MPa or more, preferably 95 MPa or more, more preferably 130 MPa or more, and further preferably 150 MPa or more. Since the oxide sintered body of the present invention has a high bending strength, it is particularly suitable as a target in the DC sputtering method, and even when the generation of particles is small and the sputtering power is high, the target is not cracked and is formed. The film speed can be increased, and the oxide semiconductor film can be manufactured with good production efficiency.
 本発明の酸化物焼結体の相対密度は、通常97%を超え、好ましくは99%以上であり、より好ましくは99.5%以上であり、さらに好ましくは99.7%以上である。 The relative density of the oxide sintered body of the present invention usually exceeds 97%, preferably 99% or more, more preferably 99.5% or more, and further preferably 99.7% or more.
 本明細書における“相対密度”とは、酸化物焼結体の理論密度に対する、実際に得られた酸化物焼結体の密度の割合であり、下記式から求められる。 The “relative density” in the present specification is the ratio of the density of the oxide sintered body actually obtained to the theoretical density of the oxide sintered body, and is obtained from the following formula.
相対密度(%)=100×[(酸化物焼結体の密度)/(酸化物焼結体の理論密度)] Relative density (%) = 100 × [(density of oxide sintered body) / (theoretical density of oxide sintered body)]
 酸化物焼結体の密度は、測長法により測定することができる。 The density of the oxide sintered body can be measured by a length measurement method.
 酸化物焼結体の理論密度は、原則として、酸化物焼結体の原料である各金属酸化物の単体密度に各金属酸化物粉末の混合重量比をかけ、それらの和をとった値であり、酸化物焼結体が酸化インジウム、酸化ガリウムおよび酸化亜鉛からなる場合は、下記式から求められる。 The theoretical density of an oxide sintered body is, in principle, a value obtained by multiplying the single element density of each metal oxide that is the raw material of the oxide sintered body by the mixing weight ratio of each metal oxide powder and taking the sum of these. Yes, when the oxide sintered body is made of indium oxide, gallium oxide and zinc oxide, it can be obtained from the following formula.
酸化物焼結体の理論密度=(酸化インジウムの単体密度×混合重量比)+(酸化ガリウムの単体密度×混合重量比)+(酸化亜鉛の単体密度×混合重量比) Theoretical density of sintered oxide = (Indium oxide simple substance density x mixing weight ratio) + (Gallium oxide simple substance density x mixing weight ratio) + (Zinc oxide simple substance density x mixing weight ratio)
 なお、酸化物焼結体の原料である金属酸化物の混合粉末中の金属原子の割合と同じ金属原子の割合の単相結晶の情報がJCPDS(Joint Committee of Powder Diffraction Standards)カードに記載されている場合は、JCPDSカードに記載のその結晶の理論密度を上記式中の理論密度として用いることができる。 In addition, information on single-phase crystals with the same metal atom ratio as the metal oxide ratio in the mixed powder of metal oxide, which is the raw material of the oxide sintered body, is described on the JCPDS (Joint Committee of Powder Diffraction Standards) card. The theoretical density of the crystal described in the JCPDS card can be used as the theoretical density in the above formula.
 例えば、酸化インジウム粉末と酸化ガリウム粉末と酸化亜鉛粉末とを、インジウムとガリウムと亜鉛との原子数比(In:Ga:Zn)が1:1:1となるように混合した場合、JCPDSカードにはInGaZnO4(In:Ga:Zn=1:1:1)の単相結晶の情報が記載されているため、JCPDSカード(No.381104)に記載のInGaZnO4の単相結晶の理論密度(6.379g/cm3)を上記式中の理論密度とすることができる。 For example, when indium oxide powder, gallium oxide powder, and zinc oxide powder are mixed so that the atomic ratio of indium, gallium, and zinc (In: Ga: Zn) is 1: 1: 1, the JCPDS card Describes information on single-phase crystals of InGaZnO 4 (In: Ga: Zn = 1: 1: 1), the theoretical density of single-phase crystals of InGaZnO 4 described in the JCPDS card (No. 381104) (6 .379 g / cm 3 ) can be the theoretical density in the above formula.
 例えば、酸化インジウム粉末と酸化ガリウム粉末と酸化亜鉛粉末とを、インジウムとガリウムと亜鉛との原子数比(In:Ga:Zn)が2:2:1となるように混合した場合は、JCPDSカード(No.381097)に記載のIn2Ga2ZnO7(In:Ga:Zn=2:2:1)の単相結晶の理論密度(6.495g/cm3)を上記式中の理論密度とすることができる。 For example, when indium oxide powder, gallium oxide powder and zinc oxide powder are mixed so that the atomic ratio (In: Ga: Zn) of indium, gallium and zinc is 2: 2: 1, the JCPDS card The theoretical density (6.495 g / cm 3 ) of the single phase crystal of In 2 Ga 2 ZnO 7 (In: Ga: Zn = 2: 2: 1) described in (No. 381097) can do.
 混合粉末中の金属原子の割合と、JCPDSカードに記載されている単相結晶の金属原子の割合とが一致しないが、そのズレが5%以内である場合は、JCPDSカードに記載されている単相結晶の理論密度を上記式中の理論密度とすることができる。 If the proportion of metal atoms in the mixed powder does not match the proportion of metal atoms in the single-phase crystal described in the JCPDS card, but the deviation is within 5%, the single atom described in the JCPDS card The theoretical density of the phase crystal can be the theoretical density in the above formula.
 本発明の酸化物焼結体のバルク抵抗値は、通常1.0×10-3Ω・cm未満であり、好ましくは9×10-4Ω・cm以下であり、より好ましくは8.5×10-4Ω・cm以下である。本発明の酸化物焼結体は導電性にも優れているため、特にDCスパッタリング法におけるターゲットとして好適であり、本発明の酸化物焼結体から、異常放電がなく、安定に、高速に、均一な半導体膜を効率よく形成することができる。 The bulk resistance value of the oxide sintered body of the present invention is usually less than 1.0 × 10 −3 Ω · cm, preferably 9 × 10 −4 Ω · cm or less, and more preferably 8.5 ×. 10 −4 Ω · cm or less. Since the oxide sintered body of the present invention is also excellent in conductivity, it is particularly suitable as a target in the DC sputtering method, and from the oxide sintered body of the present invention, there is no abnormal discharge, stably and at high speed. A uniform semiconductor film can be formed efficiently.
 バルク抵抗値は、通常抵抗率計により測定することができる。 The bulk resistance value can usually be measured with a resistivity meter.
 本発明の酸化物焼結体の単相割合は、通常97.5%以上であり、好ましくは99%以上であり、より好ましくは99.5%以上であり、さらに好ましくは99.7%以上である。 The single phase ratio of the oxide sintered body of the present invention is usually 97.5% or more, preferably 99% or more, more preferably 99.5% or more, and further preferably 99.7% or more. It is.
 本明細書において、単相割合は、酸化物焼結体中に含まれるホモロガス結晶構造であるInGaZnO4やIn2Ga2ZnO7の含有割合を意味する。単相割合は、酸化物焼結体をX線回折測定することにより算出することができる。具体的には、酸化物焼結体をX線回折測定し、得られるX線回折パターンが、ホモロガス結晶構造であるInGaZnO4やIn2Ga2ZnO7のX線回折パターン(例えば、JCPDS(Joint Committee of Powder Diffraction Standards)カードから得られるホモロガス相の結晶構造X線回折パターン)と一致しているか否かを確認する。得られるX線回折パターンがJCPDSカードから得られるホモロガス相の結晶構造X線回折パターンと一致しており、ホモロガス相の結晶構造の回折パターンに帰属されないピークが存在しない場合は、単相割合が100%となる。一方、得られるX線回折パターンに、ホモロガス相の結晶構造の回折パターンに帰属されないピークが存在している場合は、当該帰属されないピークを同定し、酸化物焼結体中のホモロガス相の結晶構造とそれ以外の結晶構造が占める割合の総和を100%として、リートベルト解析によりホモロガス結晶構造が占める割合を導き出す。 In the present specification, the single phase ratio means a content ratio of InGaZnO 4 or In 2 Ga 2 ZnO 7 which is a homologous crystal structure contained in the oxide sintered body. The single phase ratio can be calculated by X-ray diffraction measurement of the oxide sintered body. Specifically, the oxide sintered body is measured by X-ray diffraction, and the obtained X-ray diffraction pattern is an X-ray diffraction pattern of InGaZnO 4 or In 2 Ga 2 ZnO 7 having a homologous crystal structure (for example, JCPDS (Joint It is confirmed whether or not the homologous phase crystal structure X-ray diffraction pattern obtained from the Committee of Powder Diffraction Standards card). When the obtained X-ray diffraction pattern matches the crystal structure X-ray diffraction pattern of the homologous phase obtained from the JCPDS card, and there is no peak that is not attributed to the diffraction pattern of the crystal structure of the homologous phase, the single-phase ratio is 100 %. On the other hand, if there is a peak that does not belong to the diffraction pattern of the crystal structure of the homologous phase in the obtained X-ray diffraction pattern, the peak that is not assigned is identified, and the crystal structure of the homologous phase in the oxide sintered body And the sum of the proportions of the other crystal structures are taken as 100%, and the proportion of the homologous crystal structure is derived by Rietveld analysis.
 本発明の酸化物焼結体の結晶粒径は、通常9μm以下であり、好ましくは8μm以下であり、より好ましくは4.5μm以下であり、さらに好ましくは4.0μm未満であり、さらに好ましくは3.5μm以下であり、さらに好ましくは2μm以下である。なお、本明細書において、酸化物焼結体の結晶粒径は、以下のように測定する。酸化物焼結体のSEM-EBSD測定を実施し、得られたImage Qulity Mapの像解析により個別の粒の面積(断面積)を測定した。該粒の断面を最も大きさの近い円形と仮定して、当該円形の径を算出した。算出した径に、その粒が全体の面積に対する占有割合を乗じ、その粒の占有面積あたりの径を算出した。すべての粒について、占有面積あたりの径を算出し、算出したすべての占有面積あたりの径の合計を面積平均径、すなわち、結晶粒径とした。 The crystal grain size of the oxide sintered body of the present invention is usually 9 μm or less, preferably 8 μm or less, more preferably 4.5 μm or less, still more preferably less than 4.0 μm, and further preferably It is 3.5 μm or less, more preferably 2 μm or less. In the present specification, the crystal grain size of the oxide sintered body is measured as follows. SEM-EBSD measurement was performed on the oxide sintered body, and the area (cross-sectional area) of each individual particle was measured by image analysis of the obtained Image Quality Map. The diameter of the circle was calculated assuming that the cross section of the grain was the closest circle. The calculated diameter was multiplied by the occupation ratio of the grains with respect to the entire area, and the diameter per occupied area of the grains was calculated. For all the grains, the diameter per occupied area was calculated, and the total of the calculated diameters per occupied area was defined as the area average diameter, that is, the crystal grain size.
[酸化物焼結体の製造方法(1)]
 本発明の酸化物焼結体の製造方法の1つの形態は、下記工程(A)および工程(B)を含む。
[Production Method of Oxide Sintered Body (1)]
One form of the manufacturing method of the oxide sintered compact of this invention includes the following process (A) and process (B).
工程(A):酸化インジウム粉末と酸化ガリウム粉末と酸化亜鉛粉末とを混合して、混合粉末を得る工程。 Step (A): A step of mixing indium oxide powder, gallium oxide powder, and zinc oxide powder to obtain a mixed powder.
工程(B):工程(A)で得られた混合粉末をカプセル容器に充填し、混合粉末が充填されたカプセル容器をカプセル熱間等方加圧処理する工程。 Step (B): A step of filling the mixed powder obtained in the step (A) into a capsule container and subjecting the capsule container filled with the mixed powder to hot isostatic pressing of the capsule.
 工程(A)における酸化インジウム粉末と酸化ガリウム粉末と酸化亜鉛粉末との混合は、金属元素の原子比換算で、In:Ga:Zn=x:y:zとしたとき、x/(x+y)が0.2~0.8であり、且つ、z/(x+y+z)が0.1~0.5である関係を満たすよう行われ、In:Ga:Zn=1:1:1または2:2:1となるよう混合を行うことが好ましい。 The mixing of the indium oxide powder, the gallium oxide powder, and the zinc oxide powder in the step (A) is, when converted to the atomic ratio of the metal element, In: Ga: Zn = x: y: z, x / (x + y) is 0.2 to 0.8 and z / (x + y + z) is performed so as to satisfy the relationship of 0.1 to 0.5, and In: Ga: Zn = 1: 1: 1 or 2: 2: It is preferable to perform mixing so as to be 1.
 工程(A)で得られる混合粉末中の酸化インジウム粉末の平均粒子径は、0.6μm未満である。粉末の平均粒子径は、レーザー回折・散乱法により測定した粒度分布における積算体積分率50%粒径である。 The average particle diameter of the indium oxide powder in the mixed powder obtained in the step (A) is less than 0.6 μm. The average particle diameter of the powder is a 50% cumulative volume fraction particle diameter in a particle size distribution measured by a laser diffraction / scattering method.
 工程(B)において、工程(A)で得られた混合粉末のカプセル容器への充填率が、50%以上であり、55%以上であることが好ましく、60%以上であることがより好ましい。ここで、充填率は、下記式で算出される。 In step (B), the filling rate of the mixed powder obtained in step (A) into the capsule container is 50% or more, preferably 55% or more, and more preferably 60% or more. Here, the filling rate is calculated by the following equation.
充填率(%)=(混合粉末のタップ密度/酸化物焼結体の理論密度)×100 Filling rate (%) = (tap density of mixed powder / theoretical density of oxide sintered body) × 100
 工程(A)において、酸化インジウム粉末、酸化ガリウム粉末および酸化亜鉛粉末からなる群から選ばれる少なくとも1つの粉末を仮焼した後、これら粉末を混合して混合粉末を得るか、または、酸化インジウム粉末と酸化ガリウム粉末と酸化亜鉛粉末とを混合し、得られた混合粉末を仮焼して、混合粉末を得ることにより、容易に、工程(B)において、混合粉末の充填率を50%以上とすることができる。工程(A)において、酸化インジウム粉末と酸化ガリウム粉末と酸化亜鉛粉末とを混合し、得られた混合粉末を仮焼して、混合粉末を得ることが好ましい。 In step (A), after calcining at least one powder selected from the group consisting of indium oxide powder, gallium oxide powder and zinc oxide powder, these powders are mixed to obtain a mixed powder, or indium oxide powder And gallium oxide powder and zinc oxide powder are mixed, and the obtained mixed powder is calcined to obtain a mixed powder. Thus, in step (B), the filling rate of the mixed powder is easily set to 50% or more. can do. In the step (A), it is preferable to mix indium oxide powder, gallium oxide powder, and zinc oxide powder and calcine the obtained mixed powder to obtain a mixed powder.
 工程(A)において、酸化インジウム粉末、酸化ガリウム粉末および酸化亜鉛粉末からなる群から選ばれる少なくとも1つの粉末を仮焼した後、これら粉末を混合して混合粉末を得る場合、好ましくは、酸化インジウム粉末、酸化ガリウム粉末および酸化亜鉛粉末のそれぞれを別個に仮焼し、仮焼されたそれぞれの粉末を混合して混合粉末とする。酸化インジウム粉末のタップ密度は仮焼により高くなりにくいため、混合粉末は、仮焼した酸化インジウム粉末、仮焼した酸化ガリウム粉末および仮焼した酸化亜鉛粉末からなるか、または、仮焼していない酸化インジウム粉末、仮焼した酸化ガリウム粉末および仮焼した酸化亜鉛粉末からなることが好ましい。特に、In2Ga2ZnO7で表わさせる酸化物焼結体を製造するために、酸化インジウム粉末:酸化ガリウム粉末:酸化亜鉛粉末をモル比(In:Ga:Zn)で、2:2:1の混合割合とする場合には、仮焼した酸化インジウム粉末、仮焼した酸化ガリウム粉末および仮焼した酸化亜鉛粉末からなる混合粉末を調製することが好ましい。 In the step (A), when calcining at least one powder selected from the group consisting of indium oxide powder, gallium oxide powder and zinc oxide powder and then mixing these powders to obtain a mixed powder, preferably indium oxide Each of the powder, gallium oxide powder and zinc oxide powder is calcined separately, and the calcined powders are mixed to obtain a mixed powder. Since the tap density of indium oxide powder is not easily increased by calcining, the mixed powder is composed of calcined indium oxide powder, calcined gallium oxide powder and calcined zinc oxide powder, or is not calcined. It is preferably made of indium oxide powder, calcined gallium oxide powder and calcined zinc oxide powder. In particular, in order to manufacture an oxide sintered body represented by In 2 Ga 2 ZnO 7 , the molar ratio (In: Ga: Zn) of indium oxide powder: gallium oxide powder: zinc oxide powder is 2: 2: When the mixing ratio is 1, it is preferable to prepare a mixed powder made of calcined indium oxide powder, calcined gallium oxide powder and calcined zinc oxide powder.
 カプセル容器への混合粉末の充填率を50%以上とすることにより、カプセル熱間等方加圧処理(カプセルHIP処理)におけるカプセル容器の収縮率を50%以下とすることができるため、カプセル容器を破壊することなく混合粉末を加圧焼結でき、焼結体製造時の、酸化亜鉛粉末由来の亜鉛や酸化インジウム粉末由来のインジウムの揮発を抑制することができる。なお、カプセル容器の収縮率は、下記式で表される。 By making the filling rate of the mixed powder into the capsule container 50% or more, the shrinkage rate of the capsule container in the capsule hot isostatic pressing process (capsule HIP process) can be made 50% or less. The mixed powder can be pressure-sintered without destroying, and volatilization of zinc derived from the zinc oxide powder and indium derived from the indium oxide powder during the production of the sintered body can be suppressed. The shrinkage rate of the capsule container is represented by the following formula.
カプセル容器の収縮率(%)=[1-(カプセルHIP処理後のカプセル容器の内容積/カプセルHIP処理前のカプセル容器の内容積)]×100 Shrinkage rate of capsule container (%) = [1− (inner volume of capsule container after capsule HIP treatment / inner volume of capsule container before capsule HIP process)] × 100
 不純物による酸化物焼結体の電気特性への悪影響を避けるために、酸化インジウム(In23)粉末、酸化ガリウム(Ga23)粉末および酸化亜鉛(ZnO)粉末の純度は、4N以上が好ましい。 In order to avoid the adverse effect of impurities on the electrical characteristics of the oxide sintered body, the purity of indium oxide (In 2 O 3 ) powder, gallium oxide (Ga 2 O 3 ) powder and zinc oxide (ZnO) powder is 4N or more Is preferred.
 本明細書において、タップ密度は、JIS K5101に基づき、一定容積の容器に粉末を自然落下により充填した後、さらに該容器に一定の振動(タッピング)による衝撃を加え、粉末の体積変化がなくなったときの単位体積当たりの粉末の質量を意味する。なお、一定容積の容器に粉末を自然落下により容器一杯に充填し、その内容積を体積としたときの単位体積当たりの粉末の質量をかさ密度といい、一般的に、タップ密度は、かさ密度の1.1~1.3倍程度の値となる。 In this specification, the tap density is based on JIS K5101. After a powder of a certain volume is filled with a natural drop, an impact due to a certain vibration (tapping) is further applied to the container, and the volume change of the powder disappears. It means the mass of powder per unit volume. The mass of powder per unit volume when the powder is filled into a container with a certain volume by natural dropping and the inner volume is taken as the volume is called bulk density. Generally, the tap density is the bulk density. 1.1 to 1.3 times as large as
 酸化インジウム粉末として、通常、市販の酸化インジウム粉末が用いられる。市販の酸化インジウム粉末のタップ密度は、その平均粒子径や粒度分布により異なるが、通常1.95g/cm3以下である。酸化インジウムの単体密度(タップ密度の上限)は、7.18g/cm3である。 As the indium oxide powder, a commercially available indium oxide powder is usually used. The tap density of commercially available indium oxide powder is usually 1.95 g / cm 3 or less, although it varies depending on the average particle size and particle size distribution. The simple substance density (upper limit of tap density) of indium oxide is 7.18 g / cm 3 .
 酸化インジウム粉末を仮焼する場合、通常、縦型電気炉、管状炉、マッフル炉、チューブ炉、炉床昇降式電気炉、ボックス型電気炉等の仮焼装置が用いられる。 When the indium oxide powder is calcined, a calcining apparatus such as a vertical electric furnace, a tubular furnace, a muffle furnace, a tube furnace, a hearth raising / lowering electric furnace, a box type electric furnace or the like is usually used.
 仮焼温度は、通常1200~1600℃であり、好ましくは1400~1600℃である。仮焼時間は、通常8時間以上24時間以内であり、好ましくは10時間以上15時間以下である。仮焼後の酸化インジウム粉末のタップ密度は、好ましくは2.70g/cm3以上、より好ましくは3.0g/cm3以上である。 The calcination temperature is usually 1200 to 1600 ° C., preferably 1400 to 1600 ° C. The calcination time is usually 8 hours or more and 24 hours or less, preferably 10 hours or more and 15 hours or less. The tap density of the indium oxide powder after calcination is preferably 2.70 g / cm 3 or more, more preferably 3.0 g / cm 3 or more.
 また、仮焼は、大気雰囲気、大気よりも酸素濃度が高い酸化雰囲気等の酸化性雰囲気中で行ってもよいし、窒素、アルゴン、ヘリウム、真空、二酸化炭素等の不活性ガス雰囲気、水素、一酸化炭素、硫化水素、二酸化硫黄等の還元性ガス雰囲気等の非酸化性雰囲気中で行ってもよい。酸化性雰囲気中で仮焼することが好ましい。 The calcination may be performed in an atmospheric atmosphere, an oxidizing atmosphere such as an oxidizing atmosphere having a higher oxygen concentration than the air, an inert gas atmosphere such as nitrogen, argon, helium, vacuum, carbon dioxide, hydrogen, You may perform in non-oxidizing atmospheres, such as reducing gas atmospheres, such as carbon monoxide, hydrogen sulfide, and sulfur dioxide. It is preferable to calcine in an oxidizing atmosphere.
 仮焼後の酸化インジウム粉末は、ジョージクラッシャー、ロールクラッシャー、スタンプミル、ハンマーミル、乳鉢等の公知の手段により解砕してもよい。 The calcined indium oxide powder may be crushed by a known means such as a George crusher, a roll crusher, a stamp mill, a hammer mill, or a mortar.
 酸化ガリウム粉末として、通常、市販の酸化ガリウム粉末が用いられる。市販の酸化ガリウム粉末のタップ密度は、その平均粒子径や粒度分布により異なるが、通常1.45g/cm3以下である。酸化ガリウムの単体密度(タップ密度の上限)は、5.88g/cm3である。
 酸化ガリウム粉末の平均粒子径は、通常0.2μm以上5μm以下、好ましくは0.2μm以上2μm以下である。
As the gallium oxide powder, a commercially available gallium oxide powder is usually used. The tap density of commercially available gallium oxide powder varies depending on the average particle size and particle size distribution, but is usually 1.45 g / cm 3 or less. The single-piece density (upper limit of tap density) of gallium oxide is 5.88 g / cm 3 .
The average particle diameter of the gallium oxide powder is usually 0.2 μm or more and 5 μm or less, preferably 0.2 μm or more and 2 μm or less.
 酸化ガリウム粉末の仮焼は、通常、酸化インジウム粉末の仮焼と同様に実施される。仮焼後の酸化ガリウム粉末のタップ密度は、好ましくは4.0g/cm3以上である。酸化性雰囲気中で仮焼を行うことが好ましい。 The calcination of the gallium oxide powder is usually performed in the same manner as the calcination of the indium oxide powder. The tap density of the calcined gallium oxide powder is preferably 4.0 g / cm 3 or more. It is preferable to perform calcination in an oxidizing atmosphere.
 酸化亜鉛粉末として、通常、市販の酸化亜鉛粉末が用いられる。市販の酸化ガリウム粉末のタップ密度は、その平均粒子径や粒度分布により異なるが、通常1.12g/cm3以下である。酸化亜鉛の単体密度(タップ密度の上限)は、5.6g/cm3である。 As the zinc oxide powder, commercially available zinc oxide powder is usually used. The tap density of commercially available gallium oxide powder varies depending on the average particle size and particle size distribution, but is usually 1.12 g / cm 3 or less. The single-piece density (upper limit of tap density) of zinc oxide is 5.6 g / cm 3 .
 酸化亜鉛粉末の平均粒子径は、通常0.6μm以上5μm以下、好ましくは1μm以上5μm以下である。 The average particle diameter of the zinc oxide powder is usually 0.6 μm or more and 5 μm or less, preferably 1 μm or more and 5 μm or less.
 酸化亜鉛粉末の仮焼も、通常、酸化インジウム粉末の仮焼と同様に実施される。仮焼後の酸化亜鉛粉末のタップ密度は、好ましくは4.1g/cm3以上である。酸化性雰囲気中で仮焼を行うことが好ましい。 The calcination of the zinc oxide powder is usually performed in the same manner as the calcination of the indium oxide powder. The tap density of the calcined zinc oxide powder is preferably 4.1 g / cm 3 or more. It is preferable to perform calcination in an oxidizing atmosphere.
 酸化インジウム粉末:酸化ガリウム粉末:酸化亜鉛粉末をおよそ50.8:34.3:14.9(重量比、モル比ではIn:Ga:Zn=2:2:1)で混合する場合には、混合粉末のタップ密度は、3.25g/cm3以上であることが好ましく、カプセル容器に多くの混合粉末を充填でき、且つ、カプセルHIP処理後のカプセル容器が対称に収縮して加工し易くなることから、より好ましくは3.8~6.4g/cm3である。 When mixing indium oxide powder: gallium oxide powder: zinc oxide powder at approximately 50.8: 34.3: 14.9 (weight ratio, molar ratio In: Ga: Zn = 2: 2: 1) The tap density of the mixed powder is preferably 3.25 g / cm 3 or more, and the capsule container can be filled with a large amount of the mixed powder, and the capsule container after the capsule HIP treatment contracts symmetrically and becomes easy to process. Therefore, it is more preferably 3.8 to 6.4 g / cm 3 .
 酸化インジウム粉末:酸化ガリウム粉末:酸化亜鉛粉末をおよそ44.2:29.9:25.9(重量比、モル比ではIn:Ga:Zn=1:1:1)で混合する場合には、混合粉末のタップ密度は、3.18g/cm3以上であることが好ましく、より好ましくは3.8~6.3g/cm3である。 When mixing indium oxide powder: gallium oxide powder: zinc oxide powder at approximately 44.2: 29.9: 25.9 (weight ratio, molar ratio In: Ga: Zn = 1: 1: 1) The tap density of the mixed powder is preferably 3.18 g / cm 3 or more, more preferably 3.8 to 6.3 g / cm 3 .
 各粉末の混合方法は、均一に粉末を混合できる方法であれば限定されず、スーパーミキサー、インテンシブミキサー、ヘンシェルミキサー、自動乳鉢等により乾式混合してもよいし、ボールミル、振動ミル、遊星ボールミル等により湿式混合してもよい。
 均一な混合が不十分であると、製造したターゲット中に各成分が偏析して、ターゲットの抵抗分布が不均一になる。すなわち、ターゲットの部位により、高抵抗領域と低抵抗領域が存在することになるため、スパッタ成膜時に高抵抗領域での帯電等によるアーキングなどの異常放電の原因となる。
The mixing method of each powder is not limited as long as the powder can be uniformly mixed, and may be dry-mixed by a super mixer, intensive mixer, Henschel mixer, automatic mortar, etc., ball mill, vibration mill, planetary ball mill, etc. May be wet mixed.
If uniform mixing is insufficient, each component segregates in the manufactured target, and the resistance distribution of the target becomes non-uniform. That is, the high resistance region and the low resistance region exist depending on the target site, which causes abnormal discharge such as arcing due to charging in the high resistance region during sputtering film formation.
 酸化インジウム粉末と酸化ガリウム粉末と酸化亜鉛粉末とを混合し、得られた混合粉末を仮焼して、混合粉末を得る場合、混合粉末の仮焼も、通常、前記した、酸化インジウム粉末の仮焼と同様に実施される。好ましくは、酸化性雰囲気中で、仮焼温度が1200~1650℃、好ましくは1400~1600℃で実施される。仮焼後の混合粉末のタップ密度は、3.18g/cm3以上であることが好ましく、より好ましくは3.8~6.3g/cm3である。 When indium oxide powder, gallium oxide powder, and zinc oxide powder are mixed and the obtained mixed powder is calcined to obtain a mixed powder, the calcined mixed powder is usually also calcined as described above. It is carried out in the same way as firing. Preferably, the calcining temperature is 1200 to 1650 ° C., preferably 1400 to 1600 ° C. in an oxidizing atmosphere. The tap density of the mixed powder after calcination is preferably 3.18 g / cm 3 or more, more preferably 3.8 to 6.3 g / cm 3 .
 工程(B)では、上述した混合粉末をカプセル容器に充填した後、カプセルHIP処理が行われ、本発明の酸化物焼結体が得られる。混合粉末は、真空封止されたカプセル容器内に閉じこめられている。閉鎖空間内に混合粉末が充填されてカプセルHIP処理されるため、ホットプレスのような加圧焼結とは異なり、亜鉛やインジウムの揮散が抑制され、その結果、得られる酸化物焼結体とその原料である混合粉末との間での組成のずれが生じにくく、高い相対密度で、高い単相割合の酸化物焼結体が得られる。 In step (B), the capsule powder is filled with the above-described mixed powder, and then the capsule HIP treatment is performed to obtain the oxide sintered body of the present invention. The mixed powder is enclosed in a vacuum-sealed capsule container. Since the mixed powder is filled in the enclosed space and the capsule HIP process is performed, volatilization of zinc and indium is suppressed unlike pressure sintering such as hot pressing, and as a result, the obtained oxide sintered body and The composition does not easily deviate from the raw material mixed powder, and an oxide sintered body having a high relative density and a high single-phase ratio can be obtained.
 カプセル容器の材質としては、通常、鉄、ステンレス、チタン、アルミニウム、ステンレス、タンタル、ニオブ、銅およびニッケルが挙げられ、カプセルHIP処理の処理温度によって適宜選択することができる。処理温度が低温領域(1000℃以下)である場合、銅、ニッケルまたはアルミニウム製のカプセル容器が通常使用され、処理温度が1000℃~1350℃の領域である場合は、鉄、チタンまたはステンレス製のカプセル容器が通常用いられる。処理温度が1350℃よりも高温である領域では、タンタルまたはニオブ製のカプセル容器が通常用いられる。処理温度にもよるが、アルミニウム、鉄またはステンレス製のカプセル容器が、コストの面で好ましい。 The material of the capsule container usually includes iron, stainless steel, titanium, aluminum, stainless steel, tantalum, niobium, copper and nickel, and can be appropriately selected depending on the processing temperature of the capsule HIP process. When the processing temperature is in the low temperature range (1000 ° C. or lower), a capsule container made of copper, nickel or aluminum is usually used. When the processing temperature is in the range of 1000 ° C. to 1350 ° C., it is made of iron, titanium or stainless steel. Capsule containers are usually used. In the region where the processing temperature is higher than 1350 ° C., capsule containers made of tantalum or niobium are usually used. Depending on the treatment temperature, capsule containers made of aluminum, iron or stainless steel are preferable in terms of cost.
 カプセル容器の形状や寸法は限定されず、カプセルHIP処理の際に等方的に加圧されやすい形状であればよい。具体的には、円柱状容器および直方体状容器が挙げられる。
 カプセル容器の壁厚は、1.5mm~4mmが好ましい。この範囲内であれば、カプセル容器が容易に軟化し、変形することができ、焼結反応が進むに従い、酸化物焼結体に追随して収縮することができる。
The shape and dimensions of the capsule container are not limited as long as it is isotropically pressurized during the capsule HIP process. Specifically, a cylindrical container and a rectangular parallelepiped container are mentioned.
The wall thickness of the capsule container is preferably 1.5 mm to 4 mm. Within this range, the capsule container can be easily softened and deformed, and can shrink following the oxide sintered body as the sintering reaction proceeds.
 混合粉末をカプセル容器内に充填した後、通常、カプセル容器を100℃以上600℃以下に加熱しながら、カプセル容器内の圧力を1.33×10-2Pa以下となるまで低下させる。カプセル容器内の圧力が、1.33×10-2Pa以下になれば、カプセル容器を封止し、カプセルHIP処理が行われる。 After filling the mixed powder into the capsule container, the pressure in the capsule container is usually decreased to 1.33 × 10 −2 Pa or less while heating the capsule container to 100 ° C. or more and 600 ° C. or less. When the pressure in the capsule container becomes 1.33 × 10 −2 Pa or less, the capsule container is sealed and the capsule HIP process is performed.
 カプセルHIP処理は、混合粉末が充填され、封止されたカプセル容器を、HIP装置内に配置し、高温高圧下のガスを圧力媒体として、カプセル容器自体に圧力を加えて、カプセル容器内の混合粉末の加圧焼結を行うものである。 Capsule HIP treatment is performed by placing a sealed capsule container filled with mixed powder in a HIP apparatus, applying pressure to the capsule container itself using a gas under high temperature and high pressure as a pressure medium, and mixing the capsule container The powder is pressure sintered.
 圧力媒体であるガスとしては、窒素、アルゴン等の不活性ガスが好ましい。カプセル容器へ加えられる圧力は、50MPa以上が好ましい。処理時間は1時間以上が好ましい。
処理温度は、通常1000~1400℃であり、好ましくは1100℃~1300℃である。焼結温度が1000℃~1400℃で、圧力50MPa以上で、1時間以上処理することが好ましい。
As the pressure medium, an inert gas such as nitrogen or argon is preferable. The pressure applied to the capsule container is preferably 50 MPa or more. The treatment time is preferably 1 hour or longer.
The treatment temperature is usually 1000 to 1400 ° C., preferably 1100 ° C. to 1300 ° C. It is preferable that the sintering temperature is 1000 ° C. to 1400 ° C. and the pressure is 50 MPa or more and the treatment is performed for 1 hour or more.
[酸化物焼結体の製造方法(2)]
 本発明の酸化物焼結体の製造方法のもう1つの形態は、下記工程(a)、工程(b)および工程(c)を含む。
[Production Method of Oxide Sintered Body (2)]
Another form of the method for producing an oxide sintered body of the present invention includes the following step (a), step (b) and step (c).
工程(a):酸化インジウム粉末と酸化ガリウム粉末と酸化亜鉛粉末とを混合して、混合粉末を得る工程。 Step (a): A step of mixing indium oxide powder, gallium oxide powder, and zinc oxide powder to obtain a mixed powder.
工程(b):工程(a)で得られた混合粉末を成型または造粒し、成型体または造粒粉末を得る工程。 Step (b): A step of molding or granulating the mixed powder obtained in step (a) to obtain a molded body or granulated powder.
工程(c):工程(b)で得られた成型体または造粒粉末をカプセル容器に充填し、成型体または造粒粉末が充填されたカプセル容器をカプセル熱間等方加圧処理する工程。 Step (c): a step of filling the molded body or granulated powder obtained in the step (b) into a capsule container, and subjecting the capsule container filled with the molded body or the granulated powder to isostatic pressing.
 工程(a)における酸化インジウム粉末と酸化ガリウム粉末と酸化亜鉛粉末との混合は、金属元素の原子比換算で、In:Ga:Zn=x:y:zとしたとき、x/(x+y)が0.2~0.8であり、且つ、z/(x+y+z)が0.1~0.5である関係を満たすよう行われ、In:Ga:Zn=1:1:1または2:2:1となるよう混合を行うことが好ましい。 The mixing of the indium oxide powder, the gallium oxide powder and the zinc oxide powder in the step (a) is x / (x + y) where In: Ga: Zn = x: y: z in terms of the atomic ratio of the metal element. 0.2 to 0.8 and z / (x + y + z) is performed so as to satisfy the relationship of 0.1 to 0.5, and In: Ga: Zn = 1: 1: 1 or 2: 2: It is preferable to perform mixing so as to be 1.
 工程(a)で得られる混合粉末中の酸化インジウム粉末の平均粒子径は、0.6μm未満である。粉末の平均粒子径は、レーザー回折・散乱法により測定した粒度分布における積算体積分率50%粒径である。 The average particle diameter of the indium oxide powder in the mixed powder obtained in the step (a) is less than 0.6 μm. The average particle diameter of the powder is a 50% cumulative volume fraction particle diameter in a particle size distribution measured by a laser diffraction / scattering method.
 不純物による酸化物焼結体の電気特性への悪影響を避けるために、酸化インジウム(In23)粉末、酸化ガリウム(Ga23)粉末および酸化亜鉛(ZnO)粉末の純度は、4N以上が好ましい。 In order to avoid the adverse effect of impurities on the electrical characteristics of the oxide sintered body, the purity of indium oxide (In 2 O 3 ) powder, gallium oxide (Ga 2 O 3 ) powder and zinc oxide (ZnO) powder is 4N or more Is preferred.
 本明細書において、タップ密度は、JIS K5101に基づき、一定容積の容器に粉末を自然落下により充填した後、さらに該容器に一定の振動(タッピング)による衝撃を加え、粉末の体積変化がなくなったときの単位体積当たりの粉末の質量を意味する。なお、一定容積の容器に粉末を自然落下により容器一杯に充填し、その内容積を体積としたときの単位体積当たりの粉末の質量をかさ密度といい、一般的に、タップ密度は、かさ密度の1.1~1.3倍程度の値となる。 In this specification, the tap density is based on JIS K5101. After filling a container of a certain volume with powder by natural dropping, the container is further subjected to an impact by a certain vibration (tapping), and the volume change of the powder is eliminated. It means the mass of powder per unit volume. The mass of powder per unit volume when the powder is filled into a container with a certain volume by natural dropping and the inner volume is taken as the volume is called bulk density. Generally, the tap density is the bulk density. 1.1 to 1.3 times as large as
 酸化インジウム粉末として、通常、市販の酸化インジウム粉末が用いられる。市販の酸化インジウム粉末のタップ密度は、その平均粒子径や粒度分布により異なるが、通常1.95g/cm3以下である。酸化インジウムの単体密度(タップ密度の上限)は、7.18g/cm3である。 As the indium oxide powder, a commercially available indium oxide powder is usually used. The tap density of commercially available indium oxide powder is usually 1.95 g / cm 3 or less, although it varies depending on the average particle size and particle size distribution. The simple substance density (upper limit of tap density) of indium oxide is 7.18 g / cm 3 .
 酸化ガリウム粉末として、通常、市販の酸化ガリウム粉末が用いられる。市販の酸化ガリウム粉末のタップ密度は、その平均粒子径や粒度分布により異なるが、通常1.45g/cm3以下である。酸化ガリウムの単体密度(タップ密度の上限)は、5.88g/cm3である。
 酸化ガリウム粉末の平均粒子径は、通常0.2μm以上5μm以下、好ましくは0.2μm以上2μm以下である。
As the gallium oxide powder, a commercially available gallium oxide powder is usually used. The tap density of commercially available gallium oxide powder varies depending on the average particle size and particle size distribution, but is usually 1.45 g / cm 3 or less. The single-piece density (upper limit of tap density) of gallium oxide is 5.88 g / cm 3 .
The average particle diameter of the gallium oxide powder is usually 0.2 μm or more and 5 μm or less, preferably 0.2 μm or more and 2 μm or less.
 酸化亜鉛粉末として、通常、市販の酸化亜鉛粉末が用いられる。市販の酸化ガリウム粉末のタップ密度は、その平均粒子径や粒度分布により異なるが、通常1.12g/cm3以下である。酸化亜鉛の単体密度(タップ密度の上限)は、5.6g/cm3である。 As the zinc oxide powder, commercially available zinc oxide powder is usually used. The tap density of commercially available gallium oxide powder varies depending on the average particle size and particle size distribution, but is usually 1.12 g / cm 3 or less. The single-piece density (upper limit of tap density) of zinc oxide is 5.6 g / cm 3 .
 酸化亜鉛粉末の平均粒子径は、通常0.6μm以上5μm以下、好ましくは1μm以上5μm以下である。 The average particle diameter of the zinc oxide powder is usually 0.6 μm or more and 5 μm or less, preferably 1 μm or more and 5 μm or less.
 各粉末の混合方法は、均一に粉末を混合できる方法であれば限定されず、スーパーミキサー、インテンシブミキサー、ヘンシェルミキサー、自動乳鉢等により乾式混合してもよいし、ボールミル、振動ミル、遊星ボールミル等により湿式混合してもよい。
 均一な混合が不十分であると、製造したターゲット中に各成分が偏析して、ターゲットの抵抗分布が不均一になる。すなわち、ターゲットの部位により、高抵抗領域と低抵抗領域が存在することになるため、スパッタ成膜時に高抵抗領域での帯電等によるアーキングなどの異常放電の原因となる。
The mixing method of each powder is not limited as long as the powder can be uniformly mixed, and may be dry-mixed by a super mixer, intensive mixer, Henschel mixer, automatic mortar, etc., ball mill, vibration mill, planetary ball mill, etc. May be wet mixed.
If uniform mixing is insufficient, each component segregates in the manufactured target, and the resistance distribution of the target becomes non-uniform. That is, the high resistance region and the low resistance region exist depending on the target site, which causes abnormal discharge such as arcing due to charging in the high resistance region during sputtering film formation.
 工程(b)において、工程(a)で得られた混合粉末を成型して成型体を得る場合、加圧成型して、成型体を得ることが好ましい。混合粉末を加圧成型する方法としては、冷間静水圧プレス法が挙げられる。加圧成型時の圧力は、通常50~300MPaであり、好ましくは100~300MPaである。 In step (b), when the mixed powder obtained in step (a) is molded to obtain a molded body, it is preferable to perform pressure molding to obtain the molded body. An example of a method for pressure-molding the mixed powder is a cold isostatic pressing method. The pressure during pressure molding is usually 50 to 300 MPa, preferably 100 to 300 MPa.
 混合粉末を加圧成形するには、例えば、一軸プレス、冷間静水圧プレス(CIP)などを使用することができる。成形する際には、一軸プレスと冷間静水圧プレス(CIP)を併用しても構わない。 To press-mold the mixed powder, for example, a uniaxial press, a cold isostatic press (CIP), or the like can be used. When molding, a uniaxial press and a cold isostatic press (CIP) may be used in combination.
 混合粉末を成形する際のプレス圧力は、一軸プレスの場合は、少なくとも30MPa以上100MPa未満であることが好ましく、より好ましくは40MPa以上である。30MPa未満であると、安定なプレス成型体ができないおそれがある。100MPa以上であると、成型体がもろく割れやすくなるおそれがある。 In the case of uniaxial pressing, the pressing pressure when forming the mixed powder is preferably at least 30 MPa and less than 100 MPa, more preferably 40 MPa or more. If it is less than 30 MPa, there is a possibility that a stable press-molded body cannot be produced. If it is 100 MPa or more, the molded product may be brittle and easily cracked.
 成型体の密度を3.19g/cm3以上にするには、好ましくは40~90MPa、より好ましくは50~80MPaのプレス圧力で加圧成型を行う。 In order to increase the density of the molded body to 3.19 g / cm 3 or more, pressure molding is preferably performed at a pressing pressure of 40 to 90 MPa, more preferably 50 to 80 MPa.
 冷間静水圧プレス(CIP)の場合のプレス圧力は、少なくとも50MPa以上400MPa未満であることが好ましく、より好ましくは100MPa以上である。50MPa未満であると、安定なプレス成型体ができないおそれがある。400MPa以上であると、装置が大きくなりすぎ不経済でもあり成型体がもろくわれやすくなるおそれがある。保持時間は1~30分である。保持時間が1分未満であると密度があがらないおそれがあり、60分を超えると時間が掛かりすぎ不経済となるおそれがある。 In the case of cold isostatic pressing (CIP), the pressing pressure is preferably at least 50 MPa and less than 400 MPa, more preferably 100 MPa or more. If it is less than 50 MPa, there is a possibility that a stable press-molded product cannot be produced. If it is 400 MPa or more, the apparatus becomes too large, which is uneconomical and the molded product may be fragile. The holding time is 1 to 30 minutes. If the holding time is less than 1 minute, the density may not increase, and if it exceeds 60 minutes, it may take too much time and be uneconomical.
 より容易に成型体を得るため、混合粉末に有機バインダーを配合し、成型を行ってもよい。一辺が300mm以上、または直径が300mm以上の大型焼結体を作製する場合には、有機バインダーを配合することが好ましい。 In order to obtain a molded body more easily, an organic binder may be blended into the mixed powder and molded. When producing a large sintered body having a side of 300 mm or more or a diameter of 300 mm or more, an organic binder is preferably blended.
 有機バインダーの添加量は、混合粉末100重量部に対して、好ましくは、0.5重量部~10重量部であり、より好ましくは1重量部~5重量部である。 The addition amount of the organic binder is preferably 0.5 to 10 parts by weight, more preferably 1 to 5 parts by weight with respect to 100 parts by weight of the mixed powder.
 有機バインダーを用いる場合は、原料粉末と有機バインダーを混合して混合粉末とし、加圧成形して加圧成型体とする。そして、この加圧成型体にカプセルHIP処理を行う前に、通常有機バインダーを除去する。 When using an organic binder, the raw material powder and the organic binder are mixed to form a mixed powder, and pressure molded to form a pressure molded body. And before performing a capsule HIP process to this press-molded body, an organic binder is usually removed.
 有機バインダーとしては、ブチラール樹脂、ポリビニルアルコール、アクリル樹脂、ポリα-メチルスチレン、エチルセルロース、ポリ乳酸メチル、(ポリ)ビニルブチラール、(ポリ)ビニルアセテート、(ポリ)ビニルアルコール、ポリエチレン、ポリスチレン、ポリブタジエン、(ポリ)ビニルピロリドン、ポリアミド、ポリエチレンオキシド、ポリプロピレンオキシド、ポリアクリルアミド、ポリメタクリレートおよび種々のアクリルポリマーとそれらのコポリマーやターポリマー、メチルセルロース、エチルセルロース、ヒドロキシエチルセルロース、ニトロセルロースなどのセルロースとその誘導体である樹脂などが挙げられる。 Organic binders include butyral resin, polyvinyl alcohol, acrylic resin, poly α-methylstyrene, ethyl cellulose, polymethyl lactate, (poly) vinyl butyral, (poly) vinyl acetate, (poly) vinyl alcohol, polyethylene, polystyrene, polybutadiene, (Poly) vinyl pyrrolidone, polyamide, polyethylene oxide, polypropylene oxide, polyacrylamide, polymethacrylate and various acrylic polymers and their copolymers and terpolymers, resins such as methylcellulose, ethylcellulose, hydroxyethylcellulose, nitrocellulose and their derivatives Etc.
 有機バインダーを配合する方法としては、原料粉末と、有機バインダーと、溶媒とを混合し、得られたスラリーを乾燥させる方法が挙げられる。 The method of blending the organic binder includes a method of mixing the raw material powder, the organic binder, and a solvent and drying the resulting slurry.
 加圧成型後、工程(c)で用いるカプセル容器の形状やサイズに応じて、得られた成型体を切削、研削等により加工してもよい。 After the pressure molding, the obtained molded body may be processed by cutting, grinding or the like according to the shape and size of the capsule container used in the step (c).
 工程(b)において、工程(a)で得られた混合粉末を造粒し、造粒粉末を得る場合、混合粉末と溶媒と有機バインダーとを混合し、得られるスラリーを造粒して、造粒粉末を得ることが好ましい。造粒方法としては、転動造粒、流動層(噴流層)造粒、撹拌混合造粒、圧縮造粒、押出し造粒、解砕造粒、溶融造粒、噴霧造粒などが挙げられる。造粒装置としては、パン型造粒機、たらい型造粒機、圧縮造粒機、スプレードライヤーなどが挙げられる。造粒形式としては、乾式でも湿式のどちらも選択可能であるが、水やバインダー(結合剤)の付着力を利用する湿式造粒が好ましい。その中でもスプレードライヤーが好ましい。 In the step (b), when the mixed powder obtained in the step (a) is granulated to obtain a granulated powder, the mixed powder, a solvent and an organic binder are mixed, and the resulting slurry is granulated, It is preferable to obtain a granular powder. Examples of the granulation method include rolling granulation, fluidized bed (spouted bed) granulation, stirring and mixing granulation, compression granulation, extrusion granulation, pulverization granulation, melt granulation, spray granulation, and the like. Examples of the granulator include a bread granulator, a trough granulator, a compression granulator, and a spray dryer. As the granulation format, either dry or wet can be selected, but wet granulation using the adhesive force of water or a binder (binder) is preferable. Among these, a spray dryer is preferable.
 スラリーを調製する際に用いられる溶媒としては、水、アルコール溶媒およびケトン溶媒が、混合粉末の粒度分布の均一性、溶媒の揮散が容易である点で好ましい。アルコール溶媒としては、メタノール、エタノール、イソプロピルアルコールが挙げられ、ケトン溶媒としては、アセトン、メチルエチルケトン、シクロヘキサノンが挙げられる。塩化メチル、クロロフォルム、1,2ジクロロエタン、トリクロロエチレンなどのハロゲン化炭化水素溶媒、酢酸メチル、酢酸エチル、炭酸プロピレン、酢酸プロピルなどのエステル溶媒、プロピオントリル、N-メチルピロリドンなどの含窒素溶媒、ジメチルスルホキシドなどの含硫黄溶媒、テトラヒドロフラン、ジオキサン、プロピレンオキシド、2-エトキシエチルアセタートなどのエーテル溶媒、ベンゼン、スチレンなどの炭化水素溶媒も使用できる。溶媒の使用量は、混合粉末100質量部に対して、通常60~200質量部である。 As the solvent used in preparing the slurry, water, an alcohol solvent and a ketone solvent are preferable in terms of uniformity of the particle size distribution of the mixed powder and easy evaporation of the solvent. Examples of the alcohol solvent include methanol, ethanol, and isopropyl alcohol, and examples of the ketone solvent include acetone, methyl ethyl ketone, and cyclohexanone. Halogenated hydrocarbon solvents such as methyl chloride, chloroform, 1,2 dichloroethane and trichloroethylene, ester solvents such as methyl acetate, ethyl acetate, propylene carbonate and propyl acetate, nitrogen-containing solvents such as propiontolyl and N-methylpyrrolidone, dimethyl sulfoxide Sulfur-containing solvents such as tetrahydrofuran, dioxane, propylene oxide, ether solvents such as 2-ethoxyethyl acetate, and hydrocarbon solvents such as benzene and styrene can also be used. The amount of the solvent used is usually 60 to 200 parts by mass with respect to 100 parts by mass of the mixed powder.
 湿式混合は、例えば、硬質ZrO2ボールなどを用いた湿式ボールミルや振動ミルにより行なえばよく、湿式ボールミルや振動ミルを用いる場合の混合時間は、12~78時間程度が好ましい。 The wet mixing may be performed by, for example, a wet ball mill using a hard ZrO 2 ball or a vibration mill, and the mixing time when using the wet ball mill or the vibration mill is preferably about 12 to 78 hours.
 スラリーを、通常のスプレードライヤーに供給し、噴霧し、乾燥が行われ、造粒粉末が得られる。この際、入口温度は通常180~250℃、出口温度は通常90~130℃に設定する。 The slurry is supplied to a normal spray dryer, sprayed and dried to obtain a granulated powder. At this time, the inlet temperature is usually set to 180 to 250 ° C., and the outlet temperature is usually set to 90 to 130 ° C.
 酸化インジウム粉末:酸化ガリウム粉末:酸化亜鉛粉末をおよそ50.8:34.3:14.9(重量比、モル比ではIn:Ga:Zn=2:2:1)で混合した場合には、成型体の密度または造粒粉末のタップ密度は、3.25g/cm3以上であることが好ましく、カプセル容器に多くの成型体または造粒粉末を充填でき、且つ、カプセルHIP処理後のカプセル容器が対称に収縮して加工し易くなることから、より好ましくは3.8~6.4g/cm3である。 When indium oxide powder: gallium oxide powder: zinc oxide powder is mixed at about 50.8: 34.3: 14.9 (weight ratio, molar ratio In: Ga: Zn = 2: 2: 1), The density of the molded body or the tap density of the granulated powder is preferably 3.25 g / cm 3 or more, and the capsule container can be filled with many molded bodies or granulated powder, and the capsule container after the capsule HIP treatment Is more preferably 3.8 to 6.4 g / cm 3 , since it shrinks symmetrically to facilitate processing.
 酸化インジウム粉末:酸化ガリウム粉末:酸化亜鉛粉末をおよそ44.2:29.9:25.9(重量比、モル比ではIn:Ga:Zn=1:1:1)で混合する場合には、成型体の密度または造粒粉末のタップ密度は、3.18g/cm3以上であることが好ましく、より好ましくは3.8~6.3g/cm3である。 When mixing indium oxide powder: gallium oxide powder: zinc oxide powder at approximately 44.2: 29.9: 25.9 (weight ratio, molar ratio In: Ga: Zn = 1: 1: 1) The density of the molded body or the tap density of the granulated powder is preferably 3.18 g / cm 3 or more, more preferably 3.8 to 6.3 g / cm 3 .
 工程(c)において、工程(b)で得られた成型体または造粒粉末のカプセル容器への充填率は、50%以上であり、55%以上であることが好ましく、60%以上であることがより好ましい。ここで、充填率は、下記式で算出される。 In step (c), the filling rate of the molded product or granulated powder obtained in step (b) into the capsule container is 50% or more, preferably 55% or more, and preferably 60% or more. Is more preferable. Here, the filling rate is calculated by the following equation.
充填率(%)=(成型体の充填密度または造粒粉末のタップ密度/酸化物焼結体の理論密度)×100 Filling rate (%) = (packing density of molded body or tap density of granulated powder / theoretical density of oxide sintered body) × 100
 なお、成型体の充填密度は、下記式で算出される。 Note that the filling density of the molded body is calculated by the following formula.
充填密度=成型体の重量/カプセル容器の内容積 Filling density = weight of molded body / inner volume of capsule container
 カプセル容器への成型体または造粒粉末の充填率を50%以上とすることにより、カプセル熱間等方加圧処理(カプセルHIP処理)におけるカプセル容器の収縮率を50%以下とすることができるため、カプセル容器を破壊することなく成型体または造粒粉末を加圧焼結でき、焼結体製造時の、酸化亜鉛粉末由来の亜鉛や酸化インジウム粉末由来のインジウムの揮発を抑制することができる。なお、カプセル容器の収縮率は、下記式で表される。 By setting the filling rate of the molded body or granulated powder in the capsule container to 50% or more, the shrinkage rate of the capsule container in the capsule hot isostatic pressing process (capsule HIP process) can be set to 50% or less. Therefore, the molded body or granulated powder can be pressure-sintered without destroying the capsule container, and the volatilization of zinc derived from zinc oxide powder or indium derived from indium oxide powder during the production of the sintered body can be suppressed. . The shrinkage rate of the capsule container is represented by the following formula.
カプセル容器の収縮率(%)=[1-(カプセルHIP処理後のカプセル容器の内容積/カプセルHIP処理前のカプセル容器の内容積)]×100 Shrinkage rate of capsule container (%) = [1− (inner volume of capsule container after capsule HIP treatment / inner volume of capsule container before capsule HIP process)] × 100
 工程(c)では、上述した成型体または造粒粉末をカプセル容器に充填した後、カプセルHIP処理が行われ、本発明の酸化物焼結体が得られる。成型体または造粒粉末は、真空封止されたカプセル容器内に閉じこめられている。閉鎖空間内に成型体または造粒粉末が充填されてカプセルHIP処理されるため、ホットプレスのような加圧焼結とは異なり、亜鉛やインジウムの揮散が抑制され、その結果、得られる酸化物焼結体とその原料である成型体または造粒粉末との間での組成のずれが生じにくく、高い相対密度で、高い単相割合の酸化物焼結体が得られる。 In step (c), the capsule body is filled with the above-mentioned molded body or granulated powder, and then capsule HIP treatment is performed to obtain the oxide sintered body of the present invention. The molded body or the granulated powder is enclosed in a vacuum sealed capsule container. Since the molded body or granulated powder is filled in the enclosed space and capsule HIP treatment is performed, volatilization of zinc and indium is suppressed unlike pressure sintering such as hot pressing, and the resulting oxide The composition does not easily shift between the sintered body and the molded body or granulated powder as the raw material, and an oxide sintered body having a high relative density and a high single-phase ratio can be obtained.
 カプセル容器の材質としては、通常、鉄、ステンレス、チタン、アルミニウム、タンタル、ニオブ、銅およびニッケルが挙げられ、カプセルHIP処理の処理温度によって適宜選択することができる。処理温度が低温領域(1000℃以下)である場合、銅、ニッケルまたはアルミニウム製のカプセル容器が通常使用され、処理温度が1000℃~1350℃の領域である場合は、鉄またはステンレス製のカプセル容器が通常用いられる。処理温度が1350℃よりも高温である領域では、タンタルまたはニオブ製のカプセル容器が通常用いられる。処理温度にもよるが、アルミニウム、鉄またはステンレス製のカプセル容器が、コストの面で好ましい。 The material of the capsule container usually includes iron, stainless steel, titanium, aluminum, tantalum, niobium, copper and nickel, and can be appropriately selected depending on the processing temperature of the capsule HIP processing. When the processing temperature is in the low temperature range (1000 ° C. or lower), a capsule container made of copper, nickel or aluminum is usually used. When the processing temperature is in the range of 1000 ° C. to 1350 ° C., a capsule container made of iron or stainless steel Is usually used. In the region where the processing temperature is higher than 1350 ° C., capsule containers made of tantalum or niobium are usually used. Depending on the treatment temperature, capsule containers made of aluminum, iron or stainless steel are preferable in terms of cost.
 カプセル容器の形状や寸法は限定されず、カプセルHIP処理の際に等方的に加圧されやすい形状であればよい。具体的には、円柱状容器および直方体状容器が挙げられる。
 カプセル容器の壁厚は、1.5mm~4mmが好ましい。この範囲内であれば、カプセル容器が容易に軟化し、変形することができ、焼結反応が進むに従い、酸化物焼結体に追随して収縮することができる。
The shape and dimensions of the capsule container are not limited as long as it is isotropically pressurized during the capsule HIP process. Specifically, a cylindrical container and a rectangular parallelepiped container are mentioned.
The wall thickness of the capsule container is preferably 1.5 mm to 4 mm. Within this range, the capsule container can be easily softened and deformed, and can shrink following the oxide sintered body as the sintering reaction proceeds.
 成型体または造粒粉末をカプセル容器内に充填した後、通常、カプセル容器を加熱し、成型体中に含有しているバインダーや造粒粉末中に含有している溶媒や有機バインダーを除去する。その後、カプセル容器を封止し、カプセルHIP処理が行われる。また、成型体または造粒粉末が充填されたカプセル容器を、100℃以上600℃以下に加熱しながら、カプセル容器内の圧力を1.33×10-2Pa以下となるまで低下させてもよい。これにより、成型体中に含有しているバインダーや造粒粉末中に含有している溶媒や有機バインダーが除去される。カプセル容器内の圧力が、1.33×10-2Pa以下になれば、カプセル容器を封止し、カプセルHIP処理が行われる。 After the molded body or granulated powder is filled in the capsule container, the capsule container is usually heated to remove the binder contained in the molded body, the solvent contained in the granulated powder, and the organic binder. Thereafter, the capsule container is sealed and a capsule HIP process is performed. Further, the pressure in the capsule container may be decreased to 1.33 × 10 −2 Pa or less while heating the capsule container filled with the molded body or the granulated powder to 100 ° C. or more and 600 ° C. or less. . Thereby, the solvent and organic binder which are contained in the binder and granulated powder which are contained in a molded object are removed. When the pressure in the capsule container becomes 1.33 × 10 −2 Pa or less, the capsule container is sealed and the capsule HIP process is performed.
 カプセルHIP処理は、成型体または造粒粉末が充填され、封止されたカプセル容器を、HIP装置内に配置し、高温高圧下のガスを圧力媒体として、カプセル容器自体に圧力を加えて、カプセル容器内の混合粉末の加圧焼結を行うものである。 Capsule HIP treatment is performed by placing a sealed capsule container filled with a molded body or granulated powder in a HIP apparatus, applying pressure to the capsule container itself using a gas under high temperature and high pressure as a pressure medium, The mixed powder in the container is subjected to pressure sintering.
 圧力媒体であるガスとしては、窒素、アルゴン等の不活性ガスが好ましい。カプセル容器へ加えられる圧力は、50MPa以上が好ましい。処理時間は1時間以上が好ましい。処理温度は、通常1000~1400℃であり、好ましくは1100℃~1300℃である。焼結温度が1000℃~1400℃で、圧力50MPa以上で、1時間以上処理することが好ましい。 As the pressure medium, an inert gas such as nitrogen or argon is preferable. The pressure applied to the capsule container is preferably 50 MPa or more. The treatment time is preferably 1 hour or longer. The treatment temperature is usually 1000 to 1400 ° C., preferably 1100 ° C. to 1300 ° C. It is preferable that the sintering temperature is 1000 ° C. to 1400 ° C. and the pressure is 50 MPa or more and the treatment is performed for 1 hour or more.
[スパッタリングターゲット]
 本発明の酸化物焼結体を、所定の形状および所定の寸法に加工することにより、スパッタリングターゲットを製造することができる。本発明の酸化物焼結体について、外周の円筒研削、面側の平面研削をすることにより、例えば外径152mm×5mmのスパッタリングターゲットを製造することができる。スパッタリングターゲットの表面粗さ(Ra)は、5μm以下が好ましく、0.5μm以下がより好ましい。通常、スパッタリングターゲットは、さらに、銅やチタン等からなるバッキングプレートやバッキングチューブに、インジウム系合金などをボンディングメタルとして、貼り合わせた形態で用いられる。
[Sputtering target]
A sputtering target can be manufactured by processing the oxide sintered body of the present invention into a predetermined shape and a predetermined dimension. For the oxide sintered body of the present invention, for example, a sputtering target having an outer diameter of 152 mm × 5 mm can be produced by cylindrical grinding of the outer periphery and surface grinding of the surface side. The surface roughness (Ra) of the sputtering target is preferably 5 μm or less, and more preferably 0.5 μm or less. Usually, the sputtering target is further used in a form in which an indium alloy or the like is bonded as a bonding metal to a backing plate or backing tube made of copper, titanium, or the like.
 本発明の酸化物焼結体を加工してスパッタリングターゲットを製造する方法は制限されず、公知の方法が採用される。 The method of manufacturing the sputtering target by processing the oxide sintered body of the present invention is not limited, and a known method is employed.
 スパッタリングターゲットは、スパッタリング法、イオンプレーティング法、パルスレーザーデポジション(PLD)法またはエレクトロンビーム(EB)蒸着法による成膜に用いられる。本発明のターゲットは、高い相対密度を有し、単相割合も高いため、成膜時の異常放電が発生しにくく、安定的に成膜することができる。なお、このような成膜の際に用いる固形材料のことを「タブレット」と称する場合もあるが、本明細書においてはこれらを含め「スパッタリングターゲット」と称することとする。
 また、本発明のスパッタリングターゲットは、高い相対密度を有し、単相割合も高いため、スパッタ時間の経過に伴って、ノジュールの発生の頻度や異常放電の発生頻度も減らすことができ、スパッタの生産効率も向上し、得られる膜特性にも優れる。本発明の酸化物焼結体またはスパッタリングターゲットにより、安定した半導体特性を示す薄膜トランジスタのチャネル層として良好な特性を備える透明半導体膜を形成することができる。
The sputtering target is used for film formation by sputtering, ion plating, pulse laser deposition (PLD), or electron beam (EB) evaporation. Since the target of the present invention has a high relative density and a high single-phase ratio, abnormal discharge during film formation hardly occurs and film formation can be performed stably. Note that a solid material used in the film formation may be referred to as a “tablet”, but in the present specification, these are referred to as a “sputtering target”.
In addition, since the sputtering target of the present invention has a high relative density and a high single-phase ratio, the frequency of nodules and the frequency of abnormal discharge can be reduced as the sputtering time elapses. Production efficiency is also improved, and the resulting film properties are excellent. With the oxide sintered body or sputtering target of the present invention, a transparent semiconductor film having good characteristics as a channel layer of a thin film transistor exhibiting stable semiconductor characteristics can be formed.
 透明半導体膜の膜厚は、移動度が高く、S値が低い半導体とする点で、通常0.5~500nmであり、好ましくは1~150nmであり、より好ましくは3~80nmであり、さらに好ましくは10~60nmである。0.5nm以上であれば、工業的に均一に成膜することが可能である。一方、500nm以下であれば、成膜時間が長くなりすぎることもない。また、3~80nmの範囲内にあると、移動度やオンオフ比等TFT特性が特に良好である。 The film thickness of the transparent semiconductor film is usually 0.5 to 500 nm, preferably 1 to 150 nm, more preferably 3 to 80 nm, from the viewpoint of a semiconductor having high mobility and low S value. The thickness is preferably 10 to 60 nm. If it is 0.5 nm or more, it is possible to form an industrially uniform film. On the other hand, if it is 500 nm or less, the film formation time will not be too long. When the thickness is in the range of 3 to 80 nm, TFT characteristics such as mobility and on / off ratio are particularly good.
 スパッタリング方式としては、DCスパッタ法、ACスパッタ法、RFマグネトロンスパッタ法、エレクトロンビーム蒸着法およびイオンプレーティング法が挙げられ、好ましくはDCスパッタ法である。
 DCスパッタ法の場合、スパッタリング時のチャンバー内の圧力は、通常0.1~2.0MPaであり、好ましくは0.3~0.8MPaである。DCスパッタ法の場合、スパッタ時におけるターゲット面の単位面積当たりの投入電力は、通常0.5~6.0W/cm2であり、好ましくは1.0~5.0W/cm2である。スパッタ時のキャリアーガスとしては、酸素、ヘリウム、アルゴン、キセノンおよびクリプトンが挙げられ、好ましくはアルゴンと酸素の混合ガスである。アルゴンと酸素の混合ガス中のアルゴン:酸素の比(Ar:O2)は、通常100:0~80:20であり、好ましくは99.5:0.5~80:20であり、より好ましくは99.5:0.5~90:10である。基板としては、ガラス、樹脂(PET、PES等)などが挙げられる。スパッタ時の成膜温度(薄膜を形成する基板の温度)は、通常25℃~450℃、好ましくは30℃~250℃、より好ましくは35℃~150℃である。
Examples of the sputtering method include a DC sputtering method, an AC sputtering method, an RF magnetron sputtering method, an electron beam evaporation method, and an ion plating method, and a DC sputtering method is preferable.
In the case of DC sputtering, the pressure in the chamber during sputtering is usually 0.1 to 2.0 MPa, preferably 0.3 to 0.8 MPa. For DC sputtering input power per unit area of the target surface during sputtering is usually 0.5 ~ 6.0W / cm 2, preferably 1.0 ~ 5.0W / cm 2. Examples of the carrier gas at the time of sputtering include oxygen, helium, argon, xenon, and krypton, and a mixed gas of argon and oxygen is preferable. The ratio of argon: oxygen (Ar: O 2 ) in the mixed gas of argon and oxygen is usually 100: 0 to 80:20, preferably 99.5: 0.5 to 80:20, more preferably Is 99.5: 0.5 to 90:10. Examples of the substrate include glass and resin (PET, PES, etc.). The film formation temperature during sputtering (the temperature of the substrate on which the thin film is formed) is usually 25 ° C. to 450 ° C., preferably 30 ° C. to 250 ° C., more preferably 35 ° C. to 150 ° C.
<粉末の粒度分布の測定>
 レーザー回折式粒度分布測定装置(島津製作所製SALD-2200)により、各粉末の粒度分布を測定し、体積累積基準D50を平均粒子径とした。さらに、FE-SEMにより粉末の形状およびサイズを測定した。
<Measurement of particle size distribution of powder>
The particle size distribution of each powder was measured with a laser diffraction particle size distribution analyzer (SALD-2200, manufactured by Shimadzu Corporation), and the volume cumulative standard D50 was defined as the average particle size. Further, the shape and size of the powder were measured by FE-SEM.
<酸化物焼結体の結晶粒径の測定>
 加速電圧15kV、ワーキングディスタンス15mm、倍率1500倍の条件で、酸化物焼結体のSEM-EBSD測定を実施し、得られたImage Qulity Mapの像解析により個別の粒の面積(断面積)を測定した。該粒の断面を最も大きさの近い円形と仮定して、当該円形の径を算出した。算出した径に、その粒が全体の面積に対する占有割合を乗じ、その粒の占有面積あたりの径を算出した。すべての粒について、占有面積あたりの径を算出し、算出したすべての占有面積あたりの径の合計を面積平均径、すなわち、結晶粒径とした。
<Measurement of crystal grain size of oxide sintered body>
SEM-EBSD measurement of the oxide sintered body was performed under the conditions of an acceleration voltage of 15 kV, a working distance of 15 mm, and a magnification of 1500 times, and the area (cross-sectional area) of each individual particle was measured by image analysis of the obtained Image Quality Map. did. The diameter of the circle was calculated assuming that the cross section of the grain was the closest circle. The calculated diameter was multiplied by the occupation ratio of the grains with respect to the entire area, and the diameter per occupied area of the grains was calculated. For all the grains, the diameter per occupied area was calculated, and the total of the calculated diameters per occupied area was defined as the area average diameter, that is, the crystal grain size.
<酸化物焼結体のビッカース硬度の測定>
 酸化物焼結体のビッカース硬度を、島津製作所製微小硬度計(HMV)により測定した。
<Measurement of Vickers hardness of sintered oxide>
The Vickers hardness of the oxide sintered body was measured by a micro hardness meter (HMV) manufactured by Shimadzu Corporation.
<酸化物焼結体の抗折強度の測定>
 酸化物焼結体の抗折強度を、万能材料試験機(Instron 5584(ロードセル 5kN))により、JIS R1601に準拠して測定した。
試験方法:3点曲げ試験
支点間距離:30mm
支持アンビル:R=2mm
加圧アンビル:R=3mm
試料サイズ:3×4×40mm
ヘッド速度:0.5mm/min
試験温度:22℃
<Measurement of bending strength of sintered oxide>
The bending strength of the oxide sintered body was measured in accordance with JIS R1601 using a universal material testing machine (Instron 5584 (load cell 5 kN)).
Test method: 3-point bending test fulcrum distance: 30 mm
Supporting anvil: R = 2mm
Pressurized anvil: R = 3mm
Sample size: 3x4x40mm
Head speed: 0.5 mm / min
Test temperature: 22 ° C
<酸化物焼結体の色差測定>
 湿式研磨機(株式会社マルトー製マルトーラップ)により、研磨紙(#60)、次いで研磨紙(#180)を用いて、酸化物焼結体の表面を、表面粗さ(Ra)が0.5μm以下となるまで湿式研磨を行った。研磨した面の色度a*、色度b*、明度L*を、分光測色計(日本電色工業株式会社製Z-300A)により測定し、その結果をCIE1976空間で評価した。
<Measurement of color difference of sintered oxide>
Using a wet polishing machine (Malto Wrap Co., Ltd. manufactured by Maruto Co., Ltd.), the surface of the oxide sintered body is polished to a surface roughness (Ra) of 0.5 μm using polishing paper (# 60) and then polishing paper (# 180). Wet polishing was performed until the following. The polished surface was measured for chromaticity a *, chromaticity b *, and lightness L * with a spectrocolorimeter (Z-300A manufactured by Nippon Denshoku Industries Co., Ltd.), and the results were evaluated in the CIE 1976 space.
[実施例1]
 酸化インジウム粉末(稀産金属(株)製、タップ密度:1.62g/cm3、平均粒子径:0.56μm)と、酸化ガリウム粉末(ヤマナカヒューテック(株)製、タップ密度が1.39g/cm3、平均粒子径:1.5μm)と、酸化亜鉛粉末(ハクスイテック(株)製、タップ密度:1.02g/cm3、平均粒子径:1.5μm)とを、インジウム元素とガリウム元素と亜鉛元素との原子数比(In:Ga:Zn)が1:1:1となるように秤量し、スーパーミキサーにて、3000rpmで60分、乾式混合を行い、混合粉末を得た。
[Example 1]
Indium oxide powder (manufactured by Rare Metal Co., Ltd., tap density: 1.62 g / cm 3 , average particle size: 0.56 μm) and gallium oxide powder (manufactured by Yamanaka Futec Co., Ltd., tap density: 1.39 g / cm 3 , average particle diameter: 1.5 μm), zinc oxide powder (manufactured by Hakusuitec Co., Ltd., tap density: 1.02 g / cm 3 , average particle diameter: 1.5 μm), indium element and gallium element Weighing was performed so that the atomic ratio with zinc element (In: Ga: Zn) was 1: 1: 1, and dry mixing was performed with a super mixer at 3000 rpm for 60 minutes to obtain a mixed powder.
 得られた混合粉末を電気炉((株)キタハマ製作所製)に入れ、大気雰囲気中で、昇温速度10℃/分で、室温から1400℃まで昇温した後、1400℃で12時間仮焼を行った。得られた粉末を、乳鉢で軽く粉砕し、仮焼後の混合粉末を得た。 The obtained mixed powder was put into an electric furnace (manufactured by Kitahama Corporation), heated in the atmosphere at a heating rate of 10 ° C./min from room temperature to 1400 ° C., and calcined at 1400 ° C. for 12 hours Went. The obtained powder was lightly pulverized in a mortar to obtain a mixed powder after calcining.
 仮焼後の混合粉末を、ステンレス(SUS304)製のカプセル容器(外径83mm、内径80mm、容器内部の高さ78mm)に、混合粉末の体積変化がなくなるまで振動を付与しながら充填した。混合粉末のタップ密度は4.32g/cm3であり、理論密度が6.379g/cm3であることから、充填率は67.7%であった。なお、理論密度として、組成比In:Ga:Zn=1:1:1であるInGaZnO4(JCPDSカード番号:381104)という単一結晶の情報がJCPDSカードに記載されているため、JCPDSカードに記載されたその単一結晶の理論密度(6.379g/cm3)を採用した。 The mixed powder after calcining was filled into a stainless steel (SUS304) capsule container (outer diameter 83 mm, inner diameter 80 mm, height 78 mm inside the container) while applying vibration until the volume of the mixed powder disappeared. The tap density of the mixed powder is 4.32 g / cm 3, since the theoretical density of 6.379g / cm 3, the filling ratio was 67.7%. As the theoretical density, information on a single crystal of InGaZnO 4 (JCPDS card number: 381104) having a composition ratio In: Ga: Zn = 1: 1: 1 is described in the JCPDS card. The single crystal theoretical density (6.379 g / cm 3 ) was employed.
 混合粉末を充填したカプセル容器の上蓋に排気管を溶接し、その後上蓋とカプセル容器を溶接した。カプセル容器の溶接部からのガス漏れがないかどうかを確認するため、Heリーク検査を行った。この時の漏れ量は1×10-6Torr・L/sec以下であった。550℃で7時間、カプセル容器内のガスを排気管から除去した後、排気管を閉じ、カプセル容器の封止を行った。封止したカプセル容器をHIP処理装置((株)神戸製鋼所製)内に設置し、カプセルHIP処理を行った。処理温度は1200℃、処理圧力は118MPaで、アルゴンガス(純度99.9%)を圧力媒体とし、4時間処理を行った。
カプセルHIP処理後、カプセル容器を取り外し、円柱型の酸化物焼結体を得た。
The exhaust pipe was welded to the upper lid of the capsule container filled with the mixed powder, and then the upper lid and the capsule container were welded. A He leak test was performed to confirm whether there was any gas leak from the welded portion of the capsule container. The amount of leakage at this time was 1 × 10 −6 Torr · L / sec or less. After removing the gas in the capsule container from the exhaust pipe at 550 ° C. for 7 hours, the exhaust pipe was closed and the capsule container was sealed. The sealed capsule container was placed in a HIP processing apparatus (manufactured by Kobe Steel, Ltd.) and subjected to capsule HIP processing. The treatment temperature was 1200 ° C., the treatment pressure was 118 MPa, and the treatment was performed for 4 hours using argon gas (purity 99.9%) as a pressure medium.
After the capsule HIP treatment, the capsule container was removed to obtain a cylindrical oxide sintered body.
 得られた酸化物焼結体の相対密度は100%であり、バルク抵抗値(比抵抗)は8.31×10-4Ω・cmであった。なお、焼結体の密度は、測長法により測定し、焼結体の理論密度として、JCPDSカードに記載のInGaZnO4(JCPDSカード番号:381104)の理論密度を採用した。 The relative density of the obtained oxide sintered body was 100%, and the bulk resistance value (specific resistance) was 8.31 × 10 −4 Ω · cm. The density of the sintered body was measured by a length measurement method, and the theoretical density of InGaZnO 4 (JCPDS card number: 381104) described in the JCPDS card was adopted as the theoretical density of the sintered body.
 得られた酸化物焼結体を電子顕微鏡で観察したところ、空孔もほとんどなく、緻密な焼結体であった。 When the obtained oxide sintered body was observed with an electron microscope, it was a dense sintered body with almost no pores.
 得られた酸化物焼結体の結晶構造をX線回折装置(パナリティカル(株)製EMPYREAN)により調べたところ、ホモロガス構造であるInGaZnO4に帰属される回折ピークのみが観察され、他の結晶相に帰属される回折ピークは全く観察されなかったことから、(1114)単相割合は100%であった。 When the crystal structure of the obtained oxide sintered body was examined with an X-ray diffractometer (EMPYREAN manufactured by Panalical Co., Ltd.), only the diffraction peak attributed to InGaZnO 4 having a homologous structure was observed. Since no diffraction peak attributed to the phase was observed, the (1114) single phase ratio was 100%.
 得られた酸化物焼結体の平均結晶粒径は6.8μmであり、ビッカース硬度は411.0であり、抗折強度は100MPaであった。 The obtained oxide sintered body had an average crystal grain size of 6.8 μm, a Vickers hardness of 411.0, and a bending strength of 100 MPa.
 得られた酸化物焼結体のL*は28.77であり、a*は-0.69であり、b*は-4.07であり、ΔLは68.51であった。 L * of the obtained oxide sintered body was 28.77, a * was −0.69, b * was −4.07, and ΔL was 68.51.
 得られた酸化物焼結体の表面を研削し、外周を研削し、さらに、表面を研磨し、直径50.8mm×厚さ3mmの焼結体を調製した。調製した焼結体をICP(高周波誘導結合プラズマ)分析装置(SEIKO(株)製SPS5000)にて分析したところ、InとGaとZnの原子数比(In:Ga:Zn)は1:1:1であった。この焼結体のInとGaとZnの原子数比は、原料組成(In:Ga:Zn=1:1:1)と同一であり、焼結体製造時のインジウムや亜鉛の揮散がなかったことを示す。 The surface of the obtained oxide sintered body was ground, the outer periphery was ground, and the surface was further polished to prepare a sintered body having a diameter of 50.8 mm and a thickness of 3 mm. When the prepared sintered body was analyzed with an ICP (High Frequency Inductively Coupled Plasma) analyzer (SEIKO Co., Ltd. SPS5000), the atomic ratio of In, Ga and Zn (In: Ga: Zn) was 1: 1: 1 The atomic ratio of In, Ga, and Zn in this sintered body was the same as the raw material composition (In: Ga: Zn = 1: 1: 1), and there was no volatilization of indium or zinc during the production of the sintered body. It shows that.
 この酸化物焼結体を、銅板をバッキングプレートとして用い、インジウムはんだによりボンディングし、スパッタリングターゲットを得た。これを用いてDCスパッタリング法により透明基材(無アルカリガラス基板)上に酸化物半導体膜を成膜して、透明半導体基板を得た。この酸化物焼結体は、相対密度が100%であり、(1114)単相割合が100%であり、バルク抵抗値(比抵抗)が8.31×10-4Ω・cmであることから、高密度であり、スパッタリングターゲットとしての欠陥がなく、DCスパッタリングが十分可能である低抵抗値である為、異常放電の発生を抑制でき、均一な酸化物半導体膜を効率よく形成することができた。 This oxide sintered body was bonded with indium solder using a copper plate as a backing plate to obtain a sputtering target. Using this, an oxide semiconductor film was formed on a transparent substrate (non-alkali glass substrate) by a DC sputtering method to obtain a transparent semiconductor substrate. This oxide sintered body has a relative density of 100%, a (1114) single-phase ratio of 100%, and a bulk resistance value (specific resistance) of 8.31 × 10 −4 Ω · cm. Because of its low density, high density, no defects as a sputtering target, and sufficient DC sputtering, it is possible to suppress the occurrence of abnormal discharge and to efficiently form a uniform oxide semiconductor film. It was.
[実施例2]
 実施例1において、平均粒径が0.6μmの酸化ガリウム粉末を用い、仮焼後の混合粉末のカプセル容器への充填率を66.5%とした以外は、実施例1と同様に実施し、酸化物焼結体を得た。
[Example 2]
In Example 1, using gallium oxide powder having an average particle diameter of 0.6 μm, and carrying out the same procedure as in Example 1 except that the filling rate of the mixed powder after calcining into the capsule container was set to 66.5%. An oxide sintered body was obtained.
 得られた酸化物焼結体の相対密度は100%であり、バルク抵抗値(比抵抗)は8.21×10-4Ω・cmであった。 The obtained oxide sintered body had a relative density of 100% and a bulk resistance value (specific resistance) of 8.21 × 10 −4 Ω · cm.
 得られた酸化物焼結体を電子顕微鏡で観察したところ、空孔もほとんどなく、緻密な焼結体であった。 When the obtained oxide sintered body was observed with an electron microscope, it was a dense sintered body with almost no pores.
 得られた酸化物焼結体の結晶構造をX線回折装置(パナリティカル(株)製EMPYREAN)により調べたところ、ホモロガス構造であるInGaZnO4に帰属される回折ピークのみが観察され、他の結晶相に帰属される回折ピークは全く観察されなかったことから、(1114)単相割合は100%であった。 When the crystal structure of the obtained oxide sintered body was examined with an X-ray diffractometer (EMPYREAN manufactured by Panalical Co., Ltd.), only the diffraction peak attributed to InGaZnO 4 having a homologous structure was observed. Since no diffraction peak attributed to the phase was observed, the (1114) single phase ratio was 100%.
 得られた酸化物焼結体の平均結晶粒径は8.9μmであり、ビッカース硬度は410.1であり、抗折強度は99MPaであった。 The average grain size of the obtained oxide sintered body was 8.9 μm, the Vickers hardness was 410.1, and the bending strength was 99 MPa.
 得られた酸化物焼結体のL*は32.49であり、a*は-2.27であり、b*は-3.47であり、ΔLは64.79であった。 L * of the obtained oxide sintered body was 32.49, a * was −2.27, b * was −3.47, and ΔL was 64.79.
 得られた酸化物焼結体の表面を研削し、外周を研削し、さらに、表面を研磨し、直径50.8mm×厚さ3mmの焼結体を調製した。調製した焼結体をICP(高周波誘導結合プラズマ)分析装置(SEIKO(株)製SPS5000)にて分析したところ、InとGaとZnの原子数比(In:Ga:Zn)は1:1:1であった。この焼結体のInとGaとZnの原子数比は、原料組成(In:Ga:Zn=1:1:1)と同一であり、焼結体製造時のインジウムや亜鉛の揮散がなかったことを示す。 The surface of the obtained oxide sintered body was ground, the outer periphery was ground, and the surface was further polished to prepare a sintered body having a diameter of 50.8 mm and a thickness of 3 mm. When the prepared sintered body was analyzed with an ICP (High Frequency Inductively Coupled Plasma) analyzer (SEIKO Co., Ltd. SPS5000), the atomic ratio of In, Ga and Zn (In: Ga: Zn) was 1: 1: 1 The atomic ratio of In, Ga, and Zn in this sintered body was the same as the raw material composition (In: Ga: Zn = 1: 1: 1), and there was no volatilization of indium or zinc during the production of the sintered body. It shows that.
 この酸化物焼結体を、銅板をバッキングプレートとして用い、インジウムはんだによりボンディングし、スパッタリングターゲットを得た。これを用いてDCスパッタリング法により透明基材(無アルカリガラス基板)上に酸化物半導体膜を成膜して、透明半導体基板を得た。この酸化物焼結体は、相対密度が100%であり、(1114)単相割合が100%であり、バルク抵抗値(比抵抗)が8.21×10-4Ω・cmであることから、高密度であり、スパッタリングターゲットとしての欠陥がなく、DCスパッタリングが十分可能である低抵抗値である為、異常放電の発生を抑制でき、均一な酸化物半導体膜を効率よく形成することができた。 This oxide sintered body was bonded with indium solder using a copper plate as a backing plate to obtain a sputtering target. Using this, an oxide semiconductor film was formed on a transparent substrate (non-alkali glass substrate) by a DC sputtering method to obtain a transparent semiconductor substrate. This oxide sintered body has a relative density of 100%, a (1114) single-phase ratio of 100%, and a bulk resistance value (specific resistance) of 8.21 × 10 −4 Ω · cm. Because of its low density, high density, no defects as a sputtering target, and sufficient DC sputtering, it is possible to suppress the occurrence of abnormal discharge and to efficiently form a uniform oxide semiconductor film. It was.
[実施例3]
 実施例1において、平均粒径が0.3μmの酸化ガリウム粉末を用い、仮焼後の混合粉末のカプセル容器への充填率を65.7%とした以外は、実施例1と同様に実施し、酸化物焼結体を得た。
[Example 3]
The same procedure as in Example 1 was performed except that gallium oxide powder having an average particle diameter of 0.3 μm was used in Example 1, and the filling rate of the mixed powder after calcining into the capsule container was set to 65.7%. An oxide sintered body was obtained.
 得られた酸化物焼結体の相対密度は100%であり、バルク抵抗値(比抵抗)は8.11×10-4Ω・cmであった。 The obtained oxide sintered body had a relative density of 100% and a bulk resistance value (specific resistance) of 8.11 × 10 −4 Ω · cm.
 得られた酸化物焼結体を電子顕微鏡で観察したところ、空孔もほとんどなく、緻密な焼結体であった。 When the obtained oxide sintered body was observed with an electron microscope, it was a dense sintered body with almost no pores.
 得られた酸化物焼結体の結晶構造をX線回折装置(パナリティカル(株)製EMPYREAN)により調べたところ、ホモロガス構造であるInGaZnO4に帰属される回折ピークのみが観察され、他の結晶相に帰属される回折ピークは全く観察されなかったことから、(1114)単相割合は100%であった。 When the crystal structure of the obtained oxide sintered body was examined with an X-ray diffractometer (EMPYREAN manufactured by Panalical Co., Ltd.), only the diffraction peak attributed to InGaZnO 4 having a homologous structure was observed. Since no diffraction peak attributed to the phase was observed, the (1114) single phase ratio was 100%.
 得られた酸化物焼結体の平均結晶粒径は7.3μmであり、ビッカース硬度は422.3であり、抗折強度は105MPaであった。 The average grain size of the obtained oxide sintered body was 7.3 μm, the Vickers hardness was 422.3, and the bending strength was 105 MPa.
 得られた酸化物焼結体のL*は31.42であり、a*は-2.14であり、b*は-3.23であり、ΔLは65.84であった。 L * of the obtained oxide sintered body was 31.42, a * was -2.14, b * was -3.23, and ΔL was 65.84.
 得られた酸化物焼結体の表面を研削し、外周を研削し、さらに、表面を研磨し、直径50.8mm×厚さ3mmの焼結体を調製した。調製した焼結体をICP(高周波誘導結合プラズマ)分析装置(SEIKO(株)製SPS5000)にて分析したところ、InとGaとZnの原子数比(In:Ga:Zn)は1:1:1であった。この焼結体のInとGaとZnの原子数比は、原料組成(In:Ga:Zn=1:1:1)と同一であり、焼結体製造時のインジウムや亜鉛の揮散がなかったことを示す。 The surface of the obtained oxide sintered body was ground, the outer periphery was ground, and the surface was further polished to prepare a sintered body having a diameter of 50.8 mm and a thickness of 3 mm. When the prepared sintered body was analyzed with an ICP (High Frequency Inductively Coupled Plasma) analyzer (SEIKO Co., Ltd. SPS5000), the atomic ratio of In, Ga and Zn (In: Ga: Zn) was 1: 1: 1 The atomic ratio of In, Ga, and Zn in this sintered body was the same as the raw material composition (In: Ga: Zn = 1: 1: 1), and there was no volatilization of indium or zinc during the production of the sintered body. It shows that.
 この酸化物焼結体を、銅板をバッキングプレートとして用い、インジウムはんだによりボンディングし、スパッタリングターゲットを得た。これを用いてDCスパッタリング法により透明基材(無アルカリガラス基板)上に酸化物半導体膜を成膜して、透明半導体基板を得た。この酸化物焼結体は、相対密度が100%であり、(1114)単相割合が100%であり、バルク抵抗値(比抵抗)が8.11×10-4Ω・cmであることから、高密度であり、スパッタリングターゲットとしての欠陥がなく、DCスパッタリングが十分可能である低抵抗値である為、異常放電の発生を抑制でき、均一な酸化物半導体膜を効率よく形成することができた。 This oxide sintered body was bonded with indium solder using a copper plate as a backing plate to obtain a sputtering target. Using this, an oxide semiconductor film was formed on a transparent substrate (non-alkali glass substrate) by a DC sputtering method to obtain a transparent semiconductor substrate. This oxide sintered body has a relative density of 100%, a (1114) single-phase ratio of 100%, and a bulk resistance value (specific resistance) of 8.11 × 10 −4 Ω · cm. Because of its low density, high density, no defects as a sputtering target, and sufficient DC sputtering, it is possible to suppress the occurrence of abnormal discharge and to efficiently form a uniform oxide semiconductor film. It was.
[実施例4]
 実施例1において、インジウム元素とガリウム元素と亜鉛元素との原子数比(In:Ga:Zn)が2:2:1となるように秤量し、仮焼後の混合粉末のカプセル容器への充填率を63.3%とした以外は、実施例1と同様に実施し、酸化物焼結体を得た。
[Example 4]
In Example 1, the mixture is weighed so that the atomic ratio (In: Ga: Zn) of indium element, gallium element, and zinc element is 2: 2: 1, and the mixed powder after calcination is filled into the capsule container The oxide sintered body was obtained in the same manner as in Example 1 except that the rate was 63.3%.
 得られた酸化物焼結体の相対密度は100%であり、バルク抵抗値(比抵抗)は5.65×10-4Ω・cmであった。 The relative density of the obtained oxide sintered body was 100%, and the bulk resistance value (specific resistance) was 5.65 × 10 −4 Ω · cm.
 得られた酸化物焼結体を電子顕微鏡で観察したところ、空孔もほとんどなく、緻密な焼結体であった。 When the obtained oxide sintered body was observed with an electron microscope, it was a dense sintered body with almost no pores.
 得られた酸化物焼結体の結晶構造をX線回折装置(パナリティカル(株)製EMPYREAN)により調べたところ、ホモロガス構造であるIn2Ga2ZnO7に帰属される回折ピークのみが観察され、他の結晶相に帰属される回折ピークは全く観察されなかったことから、(2217)単相割合は100%であった。 When the crystal structure of the obtained oxide sintered body was examined with an X-ray diffractometer (EMPYREAN manufactured by Panalical Co., Ltd.), only a diffraction peak attributed to In 2 Ga 2 ZnO 7 having a homologous structure was observed. Since no diffraction peaks attributed to other crystal phases were observed, the (2217) single-phase ratio was 100%.
 得られた酸化物焼結体の平均結晶粒径は7.0μmであり、ビッカース硬度は408.3であり、抗折強度は98MPaであった。 The average grain size of the obtained oxide sintered body was 7.0 μm, the Vickers hardness was 408.3, and the bending strength was 98 MPa.
 得られた酸化物焼結体のL*は29.78であり、a*は-1.22であり、b*は-3.88であり、ΔLは67.50であった。 L * of the obtained oxide sintered body was 29.78, a * was −1.22, b * was −3.88, and ΔL was 67.50.
 得られた酸化物焼結体の表面を研削し、外周を研削し、さらに、表面を研磨し、直径50.8mm×厚さ3mmの焼結体を調製した。調製した焼結体をICP(高周波誘導結合プラズマ)分析装置(SEIKO(株)製SPS5000)にて分析したところ、InとGaとZnの原子数比(In:Ga:Zn)は2:2:1であった。この焼結体のInとGaとZnの原子数比は、原料組成(In:Ga:Zn=2:2:1)と同一であり、焼結体製造時のインジウムや亜鉛の揮散がなかったことを示す。 The surface of the obtained oxide sintered body was ground, the outer periphery was ground, and the surface was further polished to prepare a sintered body having a diameter of 50.8 mm and a thickness of 3 mm. When the prepared sintered body was analyzed with an ICP (high frequency inductively coupled plasma) analyzer (SEIKO Co., Ltd. SPS5000), the atomic ratio of In, Ga and Zn (In: Ga: Zn) was 2: 2: 1 The atomic ratio of In, Ga, and Zn in this sintered body was the same as the raw material composition (In: Ga: Zn = 2: 2: 1), and there was no volatilization of indium or zinc during the production of the sintered body. It shows that.
 この酸化物焼結体を、銅板をバッキングプレートとして用い、インジウムはんだによりボンディングし、スパッタリングターゲットを得た。これを用いてDCスパッタリング法により透明基材(無アルカリガラス基板)上に酸化物半導体膜を成膜して、透明半導体基板を得た。この酸化物焼結体は、相対密度が100%であり、(2217)単相割合が100%であり、バルク抵抗値(比抵抗)が5.65×10-4Ω・cmであることから、高密度であり、スパッタリングターゲットとしての欠陥がなく、DCスパッタリングが十分可能である低抵抗値である為、異常放電の発生を抑制でき、均一な酸化物半導体膜を効率よく形成することができた。 This oxide sintered body was bonded with indium solder using a copper plate as a backing plate to obtain a sputtering target. Using this, an oxide semiconductor film was formed on a transparent substrate (non-alkali glass substrate) by a DC sputtering method to obtain a transparent semiconductor substrate. This oxide sintered body has a relative density of 100%, a (2217) single-phase ratio of 100%, and a bulk resistance value (specific resistance) of 5.65 × 10 −4 Ω · cm. Because of its low density, high density, no defects as a sputtering target, and sufficient DC sputtering, it is possible to suppress the occurrence of abnormal discharge and to efficiently form a uniform oxide semiconductor film. It was.
[実施例5]
 実施例1において、平均粒径が0.6μmの酸化ガリウム粉末を用い、インジウム元素とガリウム元素と亜鉛元素との原子数比(In:Ga:Zn)が2:2:1となるように秤量し、仮焼後の混合粉末のカプセル容器への充填率を62.8%とした以外は、実施例1と同様に実施し、酸化物焼結体を得た。
[Example 5]
In Example 1, gallium oxide powder having an average particle size of 0.6 μm was used and weighed so that the atomic ratio (In: Ga: Zn) of indium element, gallium element and zinc element was 2: 2: 1. And it implemented like Example 1 except the filling rate to the capsule container of the mixed powder after calcination having been 62.8%, and obtained oxide sinter.
 得られた酸化物焼結体の相対密度は100%であり、バルク抵抗値(比抵抗)は5.53×10-4Ω・cmであった。 The obtained oxide sintered body had a relative density of 100% and a bulk resistance value (specific resistance) of 5.53 × 10 −4 Ω · cm.
 得られた酸化物焼結体を電子顕微鏡で観察したところ、空孔もほとんどなく、緻密な焼結体であった。 When the obtained oxide sintered body was observed with an electron microscope, it was a dense sintered body with almost no pores.
 得られた酸化物焼結体の結晶構造をX線回折装置(パナリティカル(株)製EMPYREAN)により調べたところ、ホモロガス構造であるIn2Ga2ZnO7に帰属される回折ピークのみが観察され、他の結晶相に帰属される回折ピークは全く観察されなかったことから、(2217)単相割合は100%であった。 When the crystal structure of the obtained oxide sintered body was examined with an X-ray diffractometer (EMPYREAN manufactured by Panalical Co., Ltd.), only a diffraction peak attributed to In 2 Ga 2 ZnO 7 having a homologous structure was observed. Since no diffraction peaks attributed to other crystal phases were observed, the (2217) single-phase ratio was 100%.
 得られた酸化物焼結体の平均結晶粒径は7.2μmであり、ビッカース硬度は408.5であり、抗折強度は98MPaであった。 The average grain size of the obtained oxide sintered body was 7.2 μm, the Vickers hardness was 408.5, and the bending strength was 98 MPa.
 得られた酸化物焼結体のL*は33.21であり、a*は-2.38であり、b*は-3.33であり、ΔLは64.07であった。 L * of the obtained oxide sintered body was 33.21, a * was -2.38, b * was -3.33, and ΔL was 64.07.
 得られた酸化物焼結体の表面を研削し、外周を研削し、さらに、表面を研磨し、直径50.8mm×厚さ3mmの焼結体を調製した。調製した焼結体をICP(高周波誘導結合プラズマ)分析装置(SEIKO(株)製SPS5000)にて分析したところ、InとGaとZnの原子数比(In:Ga:Zn)は2:2:1であった。この焼結体のInとGaとZnの原子数比は、原料組成(In:Ga:Zn=2:2:1)と同一であり、焼結体製造時のインジウムや亜鉛の揮散がなかったことを示す。 The surface of the obtained oxide sintered body was ground, the outer periphery was ground, and the surface was further polished to prepare a sintered body having a diameter of 50.8 mm and a thickness of 3 mm. When the prepared sintered body was analyzed with an ICP (high frequency inductively coupled plasma) analyzer (SEIKO Co., Ltd. SPS5000), the atomic ratio of In, Ga and Zn (In: Ga: Zn) was 2: 2: 1 The atomic ratio of In, Ga, and Zn in this sintered body was the same as the raw material composition (In: Ga: Zn = 2: 2: 1), and there was no volatilization of indium or zinc during the production of the sintered body. It shows that.
 この酸化物焼結体を、銅板をバッキングプレートとして用い、インジウムはんだによりボンディングし、スパッタリングターゲットを得た。これを用いてDCスパッタリング法により透明基材(無アルカリガラス基板)上に酸化物半導体膜を成膜して、透明半導体基板を得た。この酸化物焼結体は、相対密度が100%であり、(2217)単相割合が100%であり、バルク抵抗値(比抵抗)が5.53×10-4Ω・cmであることから、高密度であり、スパッタリングターゲットとしての欠陥がなく、DCスパッタリングが十分可能である低抵抗値である為、異常放電の発生を抑制でき、均一な酸化物半導体膜を効率よく形成することができた。 This oxide sintered body was bonded with indium solder using a copper plate as a backing plate to obtain a sputtering target. Using this, an oxide semiconductor film was formed on a transparent substrate (non-alkali glass substrate) by a DC sputtering method to obtain a transparent semiconductor substrate. This oxide sintered body has a relative density of 100%, (2217) a single-phase ratio of 100%, and a bulk resistance value (specific resistance) of 5.53 × 10 −4 Ω · cm. Because of its low density, high density, no defects as a sputtering target, and sufficient DC sputtering, it is possible to suppress the occurrence of abnormal discharge and to efficiently form a uniform oxide semiconductor film. It was.
[実施例6]
 実施例1において、平均粒径が0.3μmの酸化ガリウム粉末を用い、インジウム元素とガリウム元素と亜鉛元素との原子数比(In:Ga:Zn)が2:2:1となるように秤量し、仮焼後の混合粉末のカプセル容器への充填率を61.5%とした以外は、実施例1と同様に実施し、酸化物焼結体を得た。
[Example 6]
In Example 1, gallium oxide powder having an average particle size of 0.3 μm was used and weighed so that the atomic ratio (In: Ga: Zn) of indium element, gallium element, and zinc element was 2: 2: 1. And it implemented like Example 1 except having made the filling rate to the capsule container of the mixed powder after calcination 61.5%, and obtained oxide sinter.
 得られた酸化物焼結体の相対密度は100%であり、バルク抵抗値(比抵抗)は5.43×10-4Ω・cmであった。 The obtained oxide sintered body had a relative density of 100% and a bulk resistance value (specific resistance) of 5.43 × 10 −4 Ω · cm.
 得られた酸化物焼結体を電子顕微鏡で観察したところ、空孔もほとんどなく、緻密な焼結体であった。 When the obtained oxide sintered body was observed with an electron microscope, it was a dense sintered body with almost no pores.
 得られた酸化物焼結体の結晶構造をX線回折装置(パナリティカル(株)製EMPYREAN)により調べたところ、ホモロガス構造であるIn2Ga2ZnO7に帰属される回折ピークのみが観察され、他の結晶相に帰属される回折ピークは全く観察されなかったことから、(2217)単相割合は100%であった。 When the crystal structure of the obtained oxide sintered body was examined with an X-ray diffractometer (EMPYREAN manufactured by Panalical Co., Ltd.), only a diffraction peak attributed to In 2 Ga 2 ZnO 7 having a homologous structure was observed. Since no diffraction peaks attributed to other crystal phases were observed, the (2217) single-phase ratio was 100%.
 得られた酸化物焼結体の平均結晶粒径は7.1μmであり、ビッカース硬度は411.3であり、抗折強度は100MPaであった。 The average grain size of the obtained oxide sintered body was 7.1 μm, the Vickers hardness was 411.3, and the bending strength was 100 MPa.
 得られた酸化物焼結体のL*は32.32であり、a*は-2.30であり、b*は-3.16であり、ΔLは64.90であった。 L * of the obtained oxide sintered body was 32.32, a * was −2.30, b * was −3.16, and ΔL was 64.90.
 得られた酸化物焼結体の表面を研削し、外周を研削し、さらに、表面を研磨し、直径50.8mm×厚さ3mmの焼結体を調製した。調製した焼結体をICP(高周波誘導結合プラズマ)分析装置(SEIKO(株)製SPS5000)にて分析したところ、InとGaとZnの原子数比(In:Ga:Zn)は2:2:1であった。この焼結体のInとGaとZnの原子数比は、原料組成(In:Ga:Zn=2:2:1)と同一であり、焼結体製造時のインジウムや亜鉛の揮散がなかったことを示す。 The surface of the obtained oxide sintered body was ground, the outer periphery was ground, and the surface was further polished to prepare a sintered body having a diameter of 50.8 mm and a thickness of 3 mm. When the prepared sintered body was analyzed with an ICP (high frequency inductively coupled plasma) analyzer (SEIKO Co., Ltd. SPS5000), the atomic ratio of In, Ga and Zn (In: Ga: Zn) was 2: 2: 1 The atomic ratio of In, Ga, and Zn in this sintered body was the same as the raw material composition (In: Ga: Zn = 2: 2: 1), and there was no volatilization of indium or zinc during the production of the sintered body. It shows that.
 この酸化物焼結体を、銅板をバッキングプレートとして用い、インジウムはんだによりボンディングし、スパッタリングターゲットを得た。これを用いてDCスパッタリング法により透明基材(無アルカリガラス基板)上に酸化物半導体膜を成膜して、透明半導体基板を得た。この酸化物焼結体は、相対密度が100%であり、(2217)単相割合が100%であり、バルク抵抗値(比抵抗)が5.43×10-4Ω・cmであることから、高密度であり、スパッタリングターゲットとしての欠陥がなく、DCスパッタリングが十分可能である低抵抗値である為、異常放電の発生を抑制でき、均一な酸化物半導体膜を効率よく形成することができた。 This oxide sintered body was bonded with indium solder using a copper plate as a backing plate to obtain a sputtering target. Using this, an oxide semiconductor film was formed on a transparent substrate (non-alkali glass substrate) by a DC sputtering method to obtain a transparent semiconductor substrate. This oxide sintered body has a relative density of 100%, a (2217) single-phase ratio of 100%, and a bulk resistance value (specific resistance) of 5.43 × 10 −4 Ω · cm. Because of its low density, high density, no defects as a sputtering target, and sufficient DC sputtering, it is possible to suppress the occurrence of abnormal discharge and to efficiently form a uniform oxide semiconductor film. It was.
[実施例7]
 酸化インジウム粉末(稀産金属(株)製、タップ密度:1.62g/cm3、平均粒子径:0.56μm)と、酸化ガリウム粉末(稀産金属(株)製、タップ密度が1.50g/cm3、平均粒子径:1.0μm)と、酸化亜鉛粉末(ハクスイテック(株)製、タップ密度:1.02g/cm3、平均粒子径:1.5μm)とを、インジウム元素とガリウム元素と亜鉛元素との原子数比(In:Ga:Zn)が1:1:1となるように秤量し、スーパーミキサーにて、3000rpmで60分、乾式混合を行い、混合粉末を得た。
[Example 7]
Indium oxide powder (made by rare metal), tap density: 1.62 g / cm 3 , average particle diameter: 0.56 μm) and gallium oxide powder (made by rare metal, Inc., tap density 1.50 g) / Cm 3 , average particle size: 1.0 μm), zinc oxide powder (manufactured by Hakusui Tech Co., Ltd., tap density: 1.02 g / cm 3 , average particle size: 1.5 μm), indium element and gallium element And zinc element were weighed so that the atomic ratio (In: Ga: Zn) was 1: 1: 1, and dry mixing was performed with a super mixer at 3000 rpm for 60 minutes to obtain a mixed powder.
 得られた混合粉末を電気炉((株)キタハマ製作所製)に入れ、大気雰囲気中で、昇温速度10℃/分で、室温から1400℃まで昇温した後、1400℃で12時間仮焼を行った。得られた粉末を、乳鉢で軽く粉砕し、仮焼後の混合粉末を得た。 The obtained mixed powder was put into an electric furnace (manufactured by Kitahama Corporation), heated in the atmosphere at a heating rate of 10 ° C./min from room temperature to 1400 ° C., and calcined at 1400 ° C. for 12 hours Went. The obtained powder was lightly pulverized in a mortar to obtain a mixed powder after calcining.
 仮焼後の混合粉末を、ステンレス(SUS304)製のカプセル容器(外径83mm、内径80mm、容器内部の高さ78mm)に、混合粉末の体積変化がなくなるまで振動を付与しながら充填した。混合粉末のタップ密度は4.10g/cm3であり、理論密度が6.379g/cm3であることから、充填率は64.3%であった。なお、理論密度として、組成比In:Ga:Zn=1:1:1であるInGaZnO4(JCPDSカード番号:381104)という単一結晶の情報がJCPDSカードに記載されているため、JCPDSカードに記載されたその単一結晶の理論密度(6.379g/cm3)を採用した。 The mixed powder after calcining was filled into a stainless steel (SUS304) capsule container (outer diameter 83 mm, inner diameter 80 mm, height 78 mm inside the container) while applying vibration until the volume of the mixed powder disappeared. The tap density of the mixed powder is 4.10 g / cm 3, since the theoretical density of 6.379g / cm 3, the filling ratio was 64.3%. As the theoretical density, information on a single crystal of InGaZnO 4 (JCPDS card number: 381104) having a composition ratio In: Ga: Zn = 1: 1: 1 is described in the JCPDS card. The single crystal theoretical density (6.379 g / cm 3 ) was employed.
 混合粉末を充填したカプセル容器の上蓋に排気管を溶接し、その後上蓋とカプセル容器を溶接した。カプセル容器の溶接部からのガス漏れがないかどうかを確認するため、Heリーク検査を行った。この時の漏れ量は1×10-6Torr・L/sec以下であった。550℃で7時間、カプセル容器内のガスを排気管から除去した後、排気管を閉じ、カプセル容器の封止を行った。封止したカプセル容器をHIP処理装置((株)神戸製鋼所製)内に設置し、カプセルHIP処理を行った。処理温度は1220℃、処理圧力は118MPaで、アルゴンガス(純度99.9%)を圧力媒体とし、4時間処理を行った。
カプセルHIP処理後、カプセル容器を取り外し、円柱型の酸化物焼結体を得た。
The exhaust pipe was welded to the upper lid of the capsule container filled with the mixed powder, and then the upper lid and the capsule container were welded. A He leak test was performed to confirm whether there was any gas leak from the welded portion of the capsule container. The amount of leakage at this time was 1 × 10 −6 Torr · L / sec or less. After removing the gas in the capsule container from the exhaust pipe at 550 ° C. for 7 hours, the exhaust pipe was closed and the capsule container was sealed. The sealed capsule container was placed in a HIP processing apparatus (manufactured by Kobe Steel, Ltd.) and subjected to capsule HIP processing. The treatment temperature was 1220 ° C., the treatment pressure was 118 MPa, and the treatment was performed for 4 hours using argon gas (purity 99.9%) as a pressure medium.
After the capsule HIP treatment, the capsule container was removed to obtain a cylindrical oxide sintered body.
 得られた酸化物焼結体の相対密度は100%であり、バルク抵抗値(比抵抗)は8.40×10-4Ω・cmであった。なお、焼結体の密度は、測長法により測定し、焼結体の理論密度として、JCPDSカードに記載のInGaZnO4(JCPDSカード番号:381104)の理論密度を採用した。 The relative density of the obtained oxide sintered body was 100%, and the bulk resistance value (specific resistance) was 8.40 × 10 −4 Ω · cm. The density of the sintered body was measured by a length measurement method, and the theoretical density of InGaZnO 4 (JCPDS card number: 381104) described in the JCPDS card was adopted as the theoretical density of the sintered body.
 得られた酸化物焼結体を電子顕微鏡で観察したところ、空孔もほとんどなく、緻密な焼結体であった。 When the obtained oxide sintered body was observed with an electron microscope, it was a dense sintered body with almost no pores.
 得られた酸化物焼結体の結晶構造をX線回折装置(パナリティカル(株)製EMPYREAN)により調べたところ、ホモロガス構造であるInGaZnO4に帰属される回折ピークのみが観察され、他の結晶相に帰属される回折ピークは全く観察されなかったことから、(1114)単相割合は100%であった。 When the crystal structure of the obtained oxide sintered body was examined with an X-ray diffractometer (EMPYREAN manufactured by Panalical Co., Ltd.), only the diffraction peak attributed to InGaZnO 4 having a homologous structure was observed. Since no diffraction peak attributed to the phase was observed, the (1114) single phase ratio was 100%.
 得られた酸化物焼結体の平均結晶粒径は2.1μmであり、ビッカース硬度は521.4であり、抗折強度は152MPaであった。 The obtained oxide sintered body had an average crystal grain size of 2.1 μm, a Vickers hardness of 521.4, and a bending strength of 152 MPa.
 得られた酸化物焼結体のL*は32.02であり、a*は-0.72であり、b*は-1.15であり、ΔLは65.14であった。 L * of the obtained oxide sintered body was 32.02, a * was -0.72, b * was -1.15, and ΔL was 65.14.
 得られた酸化物焼結体の表面を研削し、外周を研削し、さらに、表面を研磨し、直径50.8mm×厚さ3mmの焼結体を調製した。調製した焼結体をICP(高周波誘導結合プラズマ)分析装置(SEIKO(株)製SPS5000)にて分析したところ、InとGaとZnの原子数比(In:Ga:Zn)は1:1:1であった。この焼結体のInとGaとZnの原子数比は、原料組成(In:Ga:Zn=1:1:1)と同一であり、焼結体製造時のインジウムや亜鉛の揮散がなかったことを示す。 The surface of the obtained oxide sintered body was ground, the outer periphery was ground, and the surface was further polished to prepare a sintered body having a diameter of 50.8 mm and a thickness of 3 mm. When the prepared sintered body was analyzed with an ICP (High Frequency Inductively Coupled Plasma) analyzer (SEIKO Co., Ltd. SPS5000), the atomic ratio of In, Ga and Zn (In: Ga: Zn) was 1: 1: 1 The atomic ratio of In, Ga, and Zn in this sintered body was the same as the raw material composition (In: Ga: Zn = 1: 1: 1), and there was no volatilization of indium or zinc during the production of the sintered body. It shows that.
 この酸化物焼結体を、銅板をバッキングプレートとして用い、インジウムはんだによりボンディングし、スパッタリングターゲットを得た。これを用いてDCスパッタリング法により透明基材(無アルカリガラス基板)上に酸化物半導体膜を成膜して、透明半導体基板を得た。この酸化物焼結体は、相対密度が100%であり、(1114)単相割合が100%であり、バルク抵抗値(比抵抗)が8.40×10-4Ω・cmであることから、高密度であり、スパッタリングターゲットとしての欠陥がなく、DCスパッタリングが十分可能である低抵抗値である為、異常放電の発生を抑制でき、均一な酸化物半導体膜を効率よく形成することができた。
[比較例1]
 実施例1において、平均粒径が3μmの酸化ガリウム粉末を用い、仮焼を行わず、混合粉末(タップ密度:2.21g/cm3)のカプセル容器への充填率を34.8%とした以外は、実施例1と同様に実施したが、カプセルが破裂し、酸化物焼結体が得られなかった。
This oxide sintered body was bonded with indium solder using a copper plate as a backing plate to obtain a sputtering target. Using this, an oxide semiconductor film was formed on a transparent substrate (non-alkali glass substrate) by a DC sputtering method to obtain a transparent semiconductor substrate. This oxide sintered body has a relative density of 100%, a (1114) single-phase ratio of 100%, and a bulk resistance value (resistivity) of 8.40 × 10 −4 Ω · cm. Because of its low density, high density, no defects as a sputtering target, and sufficient DC sputtering, it is possible to suppress the occurrence of abnormal discharge and to efficiently form a uniform oxide semiconductor film. It was.
[Comparative Example 1]
In Example 1, gallium oxide powder having an average particle diameter of 3 μm was used, calcining was not performed, and the filling rate of the mixed powder (tap density: 2.21 g / cm 3 ) into the capsule container was set to 34.8%. Except for this, the same procedure as in Example 1 was performed, but the capsule burst and an oxide sintered body was not obtained.
[比較例2]
 実施例1において、平均粒径が1μmの酸化インジウム粉末を用い、仮焼後の混合粉末のカプセル容器への充填率を57.4%とした以外は、実施例1と同様に実施し、酸化物焼結体を得た。
[Comparative Example 2]
In Example 1, an indium oxide powder having an average particle size of 1 μm was used, and the same procedure as in Example 1 was performed except that the filling rate of the mixed powder after calcining into the capsule container was 57.4%. A sintered product was obtained.
 得られた酸化物焼結体の相対密度は100%であり、バルク抵抗値(比抵抗)は6.3×10-4Ω・cmであった。 The relative density of the obtained oxide sintered body was 100%, and the bulk resistance value (specific resistance) was 6.3 × 10 −4 Ω · cm.
 得られた酸化物焼結体の結晶構造をX線回折装置(パナリティカル(株)製EMPYREAN)により調べたところ、ホモロガス構造であるInGaZnO4に帰属される回折ピークに加え、他の結晶相に帰属される回折ピークも観察された。(1114)単相割合は90.20%であった。 When the crystal structure of the obtained oxide sintered body was examined with an X-ray diffractometer (EMPYREAN manufactured by Panalical Co., Ltd.), in addition to the diffraction peak attributed to InGaZnO 4 having a homologous structure, An assigned diffraction peak was also observed. (1114) The single phase ratio was 90.20%.
 得られた酸化物焼結体の平均結晶粒径は6.9μmであり、ビッカース硬度は398.6であり、抗折強度は98MPaであった。 The average grain size of the obtained oxide sintered body was 6.9 μm, the Vickers hardness was 398.6, and the bending strength was 98 MPa.
 得られた酸化物焼結体のL*は35.89であり、a*は-0.21であり、b*は-4.99であり、ΔLは61.48であった。 L * of the obtained oxide sintered body was 35.89, a * was −0.21, b * was −4.99, and ΔL was 61.48.
 この酸化物焼結体を、銅板をバッキングプレートとして用い、インジウムはんだによりボンディングし、スパッタリングターゲットを得た。これを用いてDCスパッタリング法により透明基材(無アルカリガラス基板)上に酸化物半導体膜を成膜して、透明半導体基板を得た。この酸化物焼結体は、相対密度が100%であり、(1114)単相割合が90.2%であり、バルク抵抗値(比抵抗)が6.3×10-4Ω・cmであることから、高密度ではあるが、スパッタした膜の組成の均一性が低下していた。 This oxide sintered body was bonded with indium solder using a copper plate as a backing plate to obtain a sputtering target. Using this, an oxide semiconductor film was formed on a transparent substrate (non-alkali glass substrate) by a DC sputtering method to obtain a transparent semiconductor substrate. This oxide sintered body has a relative density of 100%, a (1114) single-phase ratio of 90.2%, and a bulk resistance value (specific resistance) of 6.3 × 10 −4 Ω · cm. For this reason, the uniformity of the composition of the sputtered film was reduced although it was high density.
[比較例3]
 比較例2において、インジウム元素とガリウム元素と亜鉛元素との原子数比(In:Ga:Zn)が2:2:1となるように秤量し、仮焼後の混合粉末のカプセル容器への充填率を54.2%とした以外は、比較例2と同様に実施し、酸化物焼結体を得た。
[Comparative Example 3]
In Comparative Example 2, the mixture was weighed so that the atomic ratio (In: Ga: Zn) of indium element, gallium element, and zinc element was 2: 2: 1, and the mixed powder after calcination was filled into the capsule container An oxide sintered body was obtained in the same manner as in Comparative Example 2 except that the rate was changed to 54.2%.
 得られた酸化物焼結体の相対密度は100%であり、バルク抵抗値(比抵抗)は4.50×10-4Ω・cmであった。 The obtained oxide sintered body had a relative density of 100% and a bulk resistance value (specific resistance) of 4.50 × 10 −4 Ω · cm.
 得られた酸化物焼結体の結晶構造をX線回折装置(パナリティカル(株)製EMPYREAN)により調べたところ、ホモロガス構造であるIn2Ga2ZnO7に帰属される回折ピークに加え、他の結晶相に帰属される回折ピークも観察された。(2217)単相割合は84.50%であった。 When the crystal structure of the obtained oxide sintered body was examined with an X-ray diffractometer (EMPYREAN manufactured by Panalical Co., Ltd.), in addition to the diffraction peak attributed to In 2 Ga 2 ZnO 7 having a homologous structure, A diffraction peak attributed to the crystalline phase was also observed. (2217) The single phase ratio was 84.50%.
 得られた酸化物焼結体の平均結晶粒径は7.0μmであり、ビッカース硬度は396.4であり、抗折強度は97MPaであった。 The average grain size of the obtained oxide sintered body was 7.0 μm, the Vickers hardness was 396.4, and the bending strength was 97 MPa.
 得られた酸化物焼結体のL*は36.45であり、a*は-0.34であり、b*は-4.87であり、ΔLは60.90であった。 L * of the obtained oxide sintered body was 36.45, a * was −0.34, b * was −4.87, and ΔL was 60.90.
 この酸化物焼結体を、銅板をバッキングプレートとして用い、インジウムはんだによりボンディングし、スパッタリングターゲットを得た。これを用いてDCスパッタリング法により透明基材(無アルカリガラス基板)上に酸化物半導体膜を成膜して、透明半導体基板を得た。この酸化物焼結体は、相対密度が100%であり、(2217)単相割合が84.5%であり、バルク抵抗値(比抵抗)が4.5×10-4Ω・cmであることから、高密度ではあるが、スパッタした膜の組成の均一性が低下していた。 This oxide sintered body was bonded with indium solder using a copper plate as a backing plate to obtain a sputtering target. Using this, an oxide semiconductor film was formed on a transparent substrate (non-alkali glass substrate) by a DC sputtering method to obtain a transparent semiconductor substrate. This oxide sintered body has a relative density of 100%, a (2217) single-phase ratio of 84.5%, and a bulk resistance value (specific resistance) of 4.5 × 10 −4 Ω · cm. For this reason, the uniformity of the composition of the sputtered film was reduced although it was high density.
[比較例4]
 比較例2において、平均粒径が0.6μmの酸化ガリウム粉末を用い、仮焼後の混合粉末のカプセル容器への充填率を63.1%とした以外は、比較例2と同様に実施し、酸化物焼結体を得た。
[Comparative Example 4]
In Comparative Example 2, the same procedure as in Comparative Example 2 was performed except that gallium oxide powder having an average particle diameter of 0.6 μm was used and the filling rate of the mixed powder after calcining into the capsule container was 63.1%. An oxide sintered body was obtained.
 得られた酸化物焼結体の相対密度は100%であり、バルク抵抗値(比抵抗)は6.30×10-4Ω・cmであった。 The relative density of the obtained oxide sintered body was 100%, and the bulk resistance value (specific resistance) was 6.30 × 10 −4 Ω · cm.
 得られた酸化物焼結体の結晶構造をX線回折装置(パナリティカル(株)製EMPYREAN)により調べたところ、InGaZnO4に帰属される回折ピークに加え、他の結晶相に帰属される回折ピークも観察された。(1114)単相割合は90.40%であった。 When the crystal structure of the obtained oxide sintered body was examined by an X-ray diffractometer (EMPYREAN manufactured by Panalical Co., Ltd.), in addition to the diffraction peak attributed to InGaZnO 4 , diffraction attributed to other crystal phases A peak was also observed. (1114) The ratio of single phase was 90.40%.
 得られた酸化物焼結体の平均結晶粒径は7.2μmであり、ビッカース硬度は392.4、抗折強度は93MPaであった。 The average grain size of the obtained oxide sintered body was 7.2 μm, the Vickers hardness was 392.4, and the bending strength was 93 MPa.
 得られた酸化物焼結体のL*は36.56であり、a*は-0.34であり、b*は-5.12であり、ΔLは60.80であった。 L * of the obtained oxide sintered body was 36.56, a * was −0.34, b * was −5.12, and ΔL was 60.80.
 この酸化物焼結体を、銅板をバッキングプレートとして用い、インジウムはんだによりボンディングし、スパッタリングターゲットを得た。これを用いてDCスパッタリング法により透明基材(無アルカリガラス基板)上に酸化物半導体膜を成膜して、透明半導体基板を得た。この酸化物焼結体は、相対密度が100%であり、(1114)単相割合が90.4%であり、バルク抵抗値(比抵抗)が6.3×10-4Ω・cmであることから、高密度ではあるが、スパッタした膜の組成の均一性が低下していた。 This oxide sintered body was bonded with indium solder using a copper plate as a backing plate to obtain a sputtering target. Using this, an oxide semiconductor film was formed on a transparent substrate (non-alkali glass substrate) by a DC sputtering method to obtain a transparent semiconductor substrate. This oxide sintered body has a relative density of 100%, a (1114) single-phase ratio of 90.4%, and a bulk resistance value (specific resistance) of 6.3 × 10 −4 Ω · cm. For this reason, the uniformity of the composition of the sputtered film was reduced although it was high density.
[比較例5]
 比較例2において、平均粒径が0.6μmの酸化ガリウム粉末を用い、インジウム元素とガリウム元素と亜鉛元素との原子数比(In:Ga:Zn)が2:2:1となるように秤量し、仮焼後の混合粉末のカプセル容器への充填率を59.9%とした以外は、比較例2と同様に実施し、酸化物焼結体を得た。
[Comparative Example 5]
In Comparative Example 2, gallium oxide powder having an average particle diameter of 0.6 μm was used and weighed so that the atomic ratio (In: Ga: Zn) of indium element, gallium element, and zinc element was 2: 2: 1. And it implemented similarly to the comparative example 2 except the filling rate to the capsule container of the mixed powder after calcination having been 59.9%, and obtained oxide sinter.
 得られた酸化物焼結体の相対密度は100%であり、バルク抵抗値(比抵抗)は4.30×10-4Ω・cmであった。 The relative density of the obtained oxide sintered body was 100%, and the bulk resistance value (specific resistance) was 4.30 × 10 −4 Ω · cm.
 得られた酸化物焼結体の結晶構造をX線回折装置(パナリティカル(株)製EMPYREAN)により調べたところ、ホモロガス構造であるIn2Ga2ZnO7に帰属される回折ピークに加え、他の結晶相に帰属される回折ピークも観察された。(2217)単相割合は83.80%であった。 When the crystal structure of the obtained oxide sintered body was examined with an X-ray diffractometer (EMPYREAN manufactured by Panalical Co., Ltd.), in addition to the diffraction peak attributed to In 2 Ga 2 ZnO 7 having a homologous structure, A diffraction peak attributed to the crystalline phase was also observed. (2217) The ratio of single phase was 83.80%.
 得られた酸化物焼結体の平均結晶粒径は7.4μmであり、ビッカース硬度は390.2であり、抗折強度は92MPaであった。 The obtained oxide sintered body had an average crystal grain size of 7.4 μm, a Vickers hardness of 390.2, and a bending strength of 92 MPa.
 得られた酸化物焼結体のL*は37.5であり、a*は-0.56であり、b*は-4.74であり、ΔLは59.90であった。 L * of the obtained oxide sintered body was 37.5, a * was −0.56, b * was −4.74, and ΔL was 59.90.
 この酸化物焼結体を、銅板をバッキングプレートとして用い、インジウムはんだによりボンディングし、スパッタリングターゲットを得た。これを用いてDCスパッタリング法により透明基材(無アルカリガラス基板)上に酸化物半導体膜を成膜して、透明半導体基板を得た。この酸化物焼結体は、相対密度が100%であり、(2217)単相割合が83.8%であり、バルク抵抗値(比抵抗)4.3×10-4Ω・cmであることから、高密度ではあるが、スパッタした膜の組成の均一性が低下していた。 This oxide sintered body was bonded with indium solder using a copper plate as a backing plate to obtain a sputtering target. Using this, an oxide semiconductor film was formed on a transparent substrate (non-alkali glass substrate) by a DC sputtering method to obtain a transparent semiconductor substrate. This oxide sintered body has a relative density of 100%, a (2217) single-phase ratio of 83.8%, and a bulk resistance value (specific resistance) of 4.3 × 10 −4 Ω · cm. Therefore, although the density was high, the uniformity of the composition of the sputtered film was reduced.
[実施例8]
 酸化インジウム粉末(稀産金属(株)製、タップ密度:1.62g/cm3、平均粒子径:0.56μm)と、酸化ガリウム粉末(ヤマナカヒューテック(株)製、タップ密度が1.39g/cm3、平均粒子径:約1.5μm)と、酸化亜鉛粉末(ハクスイテック(株)製、タップ密度:1.02g/cm3、平均粒子径:約1.5μm)とを、インジウム元素とガリウム元素と亜鉛元素との原子数比(In:Ga:Zn)が1:1:1となるように秤量し、スーパーミキサーにて、3000rpmで1時間、乾式混合を行い、混合粉末を得た。
[Example 8]
Indium oxide powder (manufactured by Rare Metal Co., Ltd., tap density: 1.62 g / cm 3 , average particle size: 0.56 μm) and gallium oxide powder (manufactured by Yamanaka Futec Co., Ltd., tap density: 1.39 g / cm 3 , average particle size: about 1.5 μm), zinc oxide powder (manufactured by Hakusui Tech Co., Ltd., tap density: 1.02 g / cm 3 , average particle size: about 1.5 μm), indium element and gallium Weighing was performed so that the atomic ratio of the element and zinc element (In: Ga: Zn) was 1: 1: 1, and dry mixing was performed with a super mixer at 3000 rpm for 1 hour to obtain a mixed powder.
 得られた混合粉末を冷間静水圧プレス法により、圧力300MPaで加圧成形し、得られた成型物を切削加工し、直径115mm×高さ40mmの円柱状成型体を得た。円柱状成型体の密度は3.52g/cm3であった。 The obtained mixed powder was subjected to pressure molding at a pressure of 300 MPa by a cold isostatic pressing method, and the obtained molded product was cut to obtain a cylindrical molded body having a diameter of 115 mm and a height of 40 mm. The density of the cylindrical molded body was 3.52 g / cm 3 .
 なお、成型体の密度は、成型体の直径と高さを測定し、体積を算出し、別途測定した成型体の重量を、前記算出した体積で除することにより算出した。 The density of the molded body was calculated by measuring the diameter and height of the molded body, calculating the volume, and dividing the separately measured weight of the molded body by the calculated volume.
 円柱状成型体を、ステンレス(SUS304)製のカプセル容器(外径121mm、内径115mm、容器内部の高さ40mm)に、成型体が崩れないように移し、カプセル容器内一杯に充填した。混合粉末の充填密度は3.52g/cm3であり、焼結体の理論密度が6.379g/cm3であることから混合粉末の充填率は55.2%となった。なお、理論密度として、組成比In:Ga:Zn=1:1:1であるInGaZnO4(JCPDSカード番号:381104)という単一結晶の情報がJCPDSカードに記載されているため、JCPDSカードに記載されたその単一結晶の理論密度(6.379g/cm3)を採用した。 The cylindrical molded body was transferred to a capsule container (outer diameter 121 mm, inner diameter 115 mm, inner height 40 mm) made of stainless steel (SUS304) so that the molded body did not collapse and filled into the capsule container. The filling density of the mixed powder was 3.52 g / cm 3 , and the theoretical density of the sintered body was 6.379 g / cm 3 , so that the filling rate of the mixed powder was 55.2%. As the theoretical density, information on a single crystal of InGaZnO 4 (JCPDS card number: 381104) having a composition ratio In: Ga: Zn = 1: 1: 1 is described in the JCPDS card. The single crystal theoretical density (6.379 g / cm 3 ) was employed.
 円柱状成型体を充填したカプセル容器の上蓋に排気管を溶接し、その後上蓋とカプセル容器を溶接した。カプセル容器の溶接部からのガス漏れがないかどうかを確認するため、Heリーク検査を行った。この時の漏れ量は1×10-6Torr・L/sec以下であった。550℃で7時間、カプセル容器内のガスを排気管から除去した後、排気管を閉じ、カプセル容器の封止を行った。封止したカプセル容器をHIP処理装置((株)神戸製鋼所製)内に設置し、カプセルHIP処理を行った。処理温度は1200℃、処理圧力は118MPaで、アルゴンガス(純度99.9%)を圧力媒体とし、4時間処理を行った。カプセルHIP処理後、カプセル容器を取り外し、円柱型の酸化物焼結体を得た。得られた円柱型の酸化物焼結体の直径は94.3mm、高さは32.8mmであった。 The exhaust pipe was welded to the upper lid of the capsule container filled with the cylindrical molded body, and then the upper lid and the capsule container were welded. A He leak test was performed to confirm whether there was any gas leak from the welded portion of the capsule container. The amount of leakage at this time was 1 × 10 −6 Torr · L / sec or less. After removing the gas in the capsule container from the exhaust pipe at 550 ° C. for 7 hours, the exhaust pipe was closed and the capsule container was sealed. The sealed capsule container was placed in a HIP processing apparatus (manufactured by Kobe Steel, Ltd.) and subjected to capsule HIP processing. The treatment temperature was 1200 ° C., the treatment pressure was 118 MPa, and the treatment was performed for 4 hours using argon gas (purity 99.9%) as a pressure medium. After the capsule HIP treatment, the capsule container was removed to obtain a cylindrical oxide sintered body. The obtained cylindrical oxide sintered body had a diameter of 94.3 mm and a height of 32.8 mm.
 得られた酸化物焼結体の相対密度は100%であり、バルク抵抗値(比抵抗)は8.18×10-4Ω・cmであった。なお、焼結体の密度は、測長法により測定し、焼結体の理論密度として、JCPDSカードに記載のInGaZnO4(JCPDSカード番号:381104)の理論密度を採用した。 The obtained oxide sintered body had a relative density of 100% and a bulk resistance value (specific resistance) of 8.18 × 10 −4 Ω · cm. The density of the sintered body was measured by a length measurement method, and the theoretical density of InGaZnO 4 (JCPDS card number: 381104) described in the JCPDS card was adopted as the theoretical density of the sintered body.
 得られた酸化物焼結体を電子顕微鏡で観察したところ、空孔もほとんどなく、緻密な焼結体であった。 When the obtained oxide sintered body was observed with an electron microscope, it was a dense sintered body with almost no pores.
 得られた酸化物焼結体の結晶構造をX線回折装置(パナリティカル(株)製EMPYREAN)により調べたところ、ホモロガス構造であるInGaZnO4に帰属される回折ピークのみが観察され、他の結晶相に帰属される回折ピークは全く観察されなかったことから、(1114)単相割合は100%であった。 When the crystal structure of the obtained oxide sintered body was examined with an X-ray diffractometer (EMPYREAN manufactured by Panalical Co., Ltd.), only the diffraction peak attributed to InGaZnO 4 having a homologous structure was observed. Since no diffraction peak attributed to the phase was observed, the (1114) single phase ratio was 100%.
 得られた酸化物焼結体の平均結晶粒径は0.77μmであり、ビッカース硬度は648.1であり、抗折強度は210MPaであった。 The average grain size of the obtained oxide sintered body was 0.77 μm, the Vickers hardness was 648.1, and the bending strength was 210 MPa.
 得られた酸化物焼結体のL*は22.08であり、a*は-1.03であり、b*は-2.48であり、ΔLは75.1であった。 L * of the obtained oxide sintered body was 22.08, a * was −1.03, b * was −2.48, and ΔL was 75.1.
 得られた酸化物焼結体の表面を研削し、外周を研削し、さらに、表面を研磨し、直径50.8mm×厚さ3mmの焼結体を調製した。調製した焼結体をICP(高周波誘導結合プラズマ)分析装置(SEIKO(株)製SPS5000)にて分析したところ、InとGaとZnの原子数比(In:Ga:Zn)は1:1:1であった。この焼結体のInとGaとZnの原子数比は、原料組成(In:Ga:Zn=1:1:1)と同一であり、焼結体製造時のインジウムや亜鉛の揮散がなかったことを示す。 The surface of the obtained oxide sintered body was ground, the outer periphery was ground, and the surface was further polished to prepare a sintered body having a diameter of 50.8 mm and a thickness of 3 mm. When the prepared sintered body was analyzed with an ICP (High Frequency Inductively Coupled Plasma) analyzer (SEIKO Co., Ltd. SPS5000), the atomic ratio of In, Ga and Zn (In: Ga: Zn) was 1: 1: 1 The atomic ratio of In, Ga, and Zn in this sintered body was the same as the raw material composition (In: Ga: Zn = 1: 1: 1), and there was no volatilization of indium or zinc during the production of the sintered body. It shows that.
 この酸化物焼結体を、銅板をバッキングプレートとして用い、インジウムはんだによりボンディングし、スパッタリングターゲットを得た。これを用いてDCスパッタリング法により透明基材(無アルカリガラス基板)上に酸化物半導体膜を成膜して、透明半導体基板を得た。この酸化物焼結体は、相対密度が100%であり、(1114)単相割合が100%であり、バルク抵抗値(比抵抗)が8.18×10-4Ω・cmであることから、高密度であり、スパッタリングターゲットとしての欠陥がなく、DCスパッタリングが十分可能である低抵抗値であり、また結晶粒径が小さく微細構造であり、ビッカース硬度も高いことからパーティクルの発生が少なくノジュールの生成も抑制でき(異常放電の発生を抑制)、機械的強度が高いことからスパッタ電力を高くしてもターゲットが割れることなく成膜速度を大きくすることができ、生産効率が良好であった。 This oxide sintered body was bonded with indium solder using a copper plate as a backing plate to obtain a sputtering target. Using this, an oxide semiconductor film was formed on a transparent substrate (non-alkali glass substrate) by a DC sputtering method to obtain a transparent semiconductor substrate. This oxide sintered body has a relative density of 100%, a (1114) single-phase ratio of 100%, and a bulk resistance value (specific resistance) of 8.18 × 10 −4 Ω · cm. It has a high density, no defects as a sputtering target, a low resistance value sufficient for DC sputtering, a small crystal grain size, a fine structure, and a high Vickers hardness, resulting in less generation of particles. Production can be suppressed (suppressing the occurrence of abnormal discharge), and since the mechanical strength is high, the film formation rate can be increased without cracking the target even if the sputtering power is increased, and the production efficiency is good. .
[実施例9]
 実施例8において、平均粒径が3μmの酸化ガリウム粉末を用い、円柱状成型体のカプセル容器への充填率を57.4%とした以外は、実施例8と同様に実施し、酸化物焼結体を得た。
[Example 9]
In Example 8, a gallium oxide powder having an average particle size of 3 μm was used, and the filling rate of the cylindrical molded body into the capsule container was changed to 57.4%. A ligature was obtained.
 得られた酸化物焼結体の相対密度は100%であり、バルク抵抗値(比抵抗)は9.80×10-4Ω・cmであった。 The relative density of the obtained oxide sintered body was 100%, and the bulk resistance value (specific resistance) was 9.80 × 10 −4 Ω · cm.
 得られた酸化物焼結体を電子顕微鏡で観察したところ、空孔もほとんどなく、緻密な焼結体であった。 When the obtained oxide sintered body was observed with an electron microscope, it was a dense sintered body with almost no pores.
 得られた酸化物焼結体の結晶構造をX線回折装置(パナリティカル(株)製EMPYREAN)により調べたところ、ホモロガス構造であるInGaZnO4に帰属される回折ピークのみが観察され、他の結晶相に帰属される回折ピークは全く観察されなかったことから、(1114)単相割合は100%であった。 When the crystal structure of the obtained oxide sintered body was examined with an X-ray diffractometer (EMPYREAN manufactured by Panalical Co., Ltd.), only the diffraction peak attributed to InGaZnO 4 having a homologous structure was observed. Since no diffraction peak attributed to the phase was observed, the (1114) single phase ratio was 100%.
 得られた酸化物焼結体の平均結晶粒径は4.2μmであり、ビッカース硬度は473.1であり、抗折強度は133MPaであった。 The obtained oxide sintered body had an average crystal grain size of 4.2 μm, Vickers hardness of 473.1, and flexural strength of 133 MPa.
 得られた酸化物焼結体のL*は33.67であり、a*は-1.94であり、b*は-3.53であり、ΔLは63.6であった。 L * of the obtained oxide sintered body was 33.67, a * was −1.94, b * was −3.53, and ΔL was 63.6.
 得られた酸化物焼結体の表面を研削し、外周を研削し、さらに、表面を研磨し、直径50.8mm×厚さ3mmの焼結体を調製した。調製した焼結体をICP(高周波誘導結合プラズマ)分析装置(SEIKO(株)製SPS5000)にて分析したところ、InとGaとZnの原子数比(In:Ga:Zn)は1:1:1であった。この焼結体のInとGaとZnの原子数比は、原料組成(In:Ga:Zn=1:1:1)と同一であり、焼結体製造時のインジウムや亜鉛の揮散がなかったことを示す。 The surface of the obtained oxide sintered body was ground, the outer periphery was ground, and the surface was further polished to prepare a sintered body having a diameter of 50.8 mm and a thickness of 3 mm. When the prepared sintered body was analyzed with an ICP (High Frequency Inductively Coupled Plasma) analyzer (SEIKO Co., Ltd. SPS5000), the atomic ratio of In, Ga and Zn (In: Ga: Zn) was 1: 1: 1 The atomic ratio of In, Ga, and Zn in this sintered body was the same as the raw material composition (In: Ga: Zn = 1: 1: 1), and there was no volatilization of indium or zinc during the production of the sintered body. It shows that.
 この酸化物焼結体を、銅板をバッキングプレートとして用い、インジウムはんだによりボンディングし、スパッタリングターゲットを得た。これを用いてDCスパッタリング法により透明基材(無アルカリガラス基板)上に酸化物半導体膜を成膜して、透明半導体基板を得た。この酸化物焼結体は、相対密度が100%であり、(1114)単相割合が100%であり、バルク抵抗値(比抵抗)が9.8×10-4Ω・cmであることから、高密度であり、スパッタリングターゲットとしての欠陥がなく、DCスパッタリングが十分可能である低抵抗値であり、また結晶粒径が小さく微細構造であり、ビッカース硬度も高いことからパーティクルの発生が少なくノジュールの生成も抑制でき(異常放電の発生を抑制)、機械的強度が高いことからスパッタ電力を高くしてもターゲットが割れることなく成膜速度を大きくすることができ、生産効率が良好であった。 This oxide sintered body was bonded with indium solder using a copper plate as a backing plate to obtain a sputtering target. Using this, an oxide semiconductor film was formed on a transparent substrate (non-alkali glass substrate) by a DC sputtering method to obtain a transparent semiconductor substrate. This oxide sintered body has a relative density of 100%, a (1114) single-phase ratio of 100%, and a bulk resistance value (specific resistance) of 9.8 × 10 −4 Ω · cm. It has a high density, no defects as a sputtering target, a low resistance value sufficient for DC sputtering, a small crystal grain size, a fine structure, and a high Vickers hardness, resulting in less generation of particles. Production can be suppressed (suppressing the occurrence of abnormal discharge), and since the mechanical strength is high, the film formation rate can be increased without cracking the target even if the sputtering power is increased, and the production efficiency is good. .
[実施例10]
 実施例8において、平均粒径が0.3μmの酸化ガリウム粉末を用い、円柱状成型体のカプセル容器への充填率を54.4%とした以外は、実施例8と同様に実施し、酸化物焼結体を得た。
[Example 10]
In Example 8, the same procedure as in Example 8 was performed except that gallium oxide powder having an average particle size of 0.3 μm was used and the filling rate of the cylindrical molded body into the capsule container was 54.4%. A sintered product was obtained.
 得られた酸化物焼結体の相対密度は100%であり、バルク抵抗値(比抵抗)は7.54×10-4Ω・cmであった。 The obtained oxide sintered body had a relative density of 100% and a bulk resistance value (specific resistance) of 7.54 × 10 −4 Ω · cm.
 得られた酸化物焼結体を電子顕微鏡で観察したところ、空孔もほとんどなく、緻密な焼結体であった。 When the obtained oxide sintered body was observed with an electron microscope, it was a dense sintered body with almost no pores.
 得られた酸化物焼結体の結晶構造をX線回折装置(パナリティカル(株)製EMPYREAN)により調べたところ、ホモロガス構造であるInGaZnO4に帰属される回折ピークのみが観察され、他の結晶相に帰属される回折ピークは全く観察されなかったことから、(1114)単相割合は100%であった。 When the crystal structure of the obtained oxide sintered body was examined with an X-ray diffractometer (EMPYREAN manufactured by Panalical Co., Ltd.), only the diffraction peak attributed to InGaZnO 4 having a homologous structure was observed. Since no diffraction peak attributed to the phase was observed, the (1114) single phase ratio was 100%.
 得られた酸化物焼結体の平均結晶粒径は0.92μmであり、ビッカース硬度は652.3であり、抗折強度は212MPaであった。 The obtained oxide sintered body had an average crystal grain size of 0.92 μm, Vickers hardness of 652.3, and bending strength of 212 MPa.
 得られた酸化物焼結体のL*は21.98であり、a*は-0.99であり、b*は-2.39であり、ΔLは75.2であった。 L * of the obtained oxide sintered body was 21.98, a * was −0.99, b * was −2.39, and ΔL was 75.2.
 得られた酸化物焼結体の表面を研削し、外周を研削し、さらに、表面を研磨し、直径50.8mm×厚さ3mmの焼結体を調製した。調製した焼結体をICP(高周波誘導結合プラズマ)分析装置(SEIKO(株)製SPS5000)にて分析したところ、InとGaとZnの原子数比(In:Ga:Zn)は1:1:1であった。この焼結体のInとGaとZnの原子数比は、原料組成(In:Ga:Zn=1:1:1)と同一であり、焼結体製造時のインジウムや亜鉛の揮散がなかったことを示す。 The surface of the obtained oxide sintered body was ground, the outer periphery was ground, and the surface was further polished to prepare a sintered body having a diameter of 50.8 mm and a thickness of 3 mm. When the prepared sintered body was analyzed with an ICP (High Frequency Inductively Coupled Plasma) analyzer (SEIKO Co., Ltd. SPS5000), the atomic ratio of In, Ga and Zn (In: Ga: Zn) was 1: 1: 1 The atomic ratio of In, Ga, and Zn in this sintered body was the same as the raw material composition (In: Ga: Zn = 1: 1: 1), and there was no volatilization of indium or zinc during the production of the sintered body. It shows that.
 この酸化物焼結体を、銅板をバッキングプレートとして用い、インジウムはんだによりボンディングし、スパッタリングターゲットを得た。これを用いてDCスパッタリング法により透明基材(無アルカリガラス基板)上に酸化物半導体膜を成膜して、透明半導体基板を得た。この酸化物焼結体は、相対密度が100%であり、(1114)単相割合が100%あり、バルク抵抗値(比抵抗)が7.54×10-4Ω・cmであることから、高密度であり、スパッタリングターゲットとしての欠陥がなく、DCスパッタリングが十分可能である低抵抗値であり、また結晶粒径が小さく微細構造であり、ビッカース硬度も高いことからパーティクルの発生が少なくノジュールの生成も抑制でき(異常放電の発生を抑制)、機械的強度が高いことからスパッタ電力を高くしてもターゲットが割れることなく成膜速度を大きくすることができ、生産効率が良好であった。 This oxide sintered body was bonded with indium solder using a copper plate as a backing plate to obtain a sputtering target. Using this, an oxide semiconductor film was formed on a transparent substrate (non-alkali glass substrate) by a DC sputtering method to obtain a transparent semiconductor substrate. This oxide sintered body has a relative density of 100%, a (1114) single-phase ratio of 100%, and a bulk resistance value (specific resistance) of 7.54 × 10 −4 Ω · cm. It has a high density, no defects as a sputtering target, a low resistance value that allows DC sputtering sufficiently, a small crystal grain size, a fine structure, and a high Vickers hardness. The generation can also be suppressed (the occurrence of abnormal discharge is suppressed), and since the mechanical strength is high, the film formation rate can be increased without cracking the target even when the sputtering power is increased, and the production efficiency is good.
[実施例11]
 実施例8において、平均粒径が1μmの酸化ガリウム粉末を用い、円柱状成型体のカプセル容器への充填率を55.1%とした以外は、実施例8と同様に実施し、酸化物焼結体を得た。
[Example 11]
In Example 8, a gallium oxide powder having an average particle diameter of 1 μm was used, and the filling rate of the cylindrical molded body into the capsule container was changed to 55.1%. A ligature was obtained.
 得られた酸化物焼結体の相対密度は100%であり、バルク抵抗値(比抵抗)は9.20×10-4Ω・cmであった。 The obtained oxide sintered body had a relative density of 100% and a bulk resistance value (specific resistance) of 9.20 × 10 −4 Ω · cm.
 得られた酸化物焼結体を電子顕微鏡で観察したところ、空孔もほとんどなく、緻密な焼結体であった。 When the obtained oxide sintered body was observed with an electron microscope, it was a dense sintered body with almost no pores.
 得られた酸化物焼結体の結晶構造をX線回折装置(パナリティカル(株)製EMPYREAN)により調べたところ、ホモロガス構造であるInGaZnO4に帰属される回折ピークのみが観察され、他の結晶相に帰属される回折ピークは全く観察されなかったことから、(1114)単相割合は100%であった。 When the crystal structure of the obtained oxide sintered body was examined with an X-ray diffractometer (EMPYREAN manufactured by Panalical Co., Ltd.), only the diffraction peak attributed to InGaZnO 4 having a homologous structure was observed. Since no diffraction peak attributed to the phase was observed, the (1114) single phase ratio was 100%.
 得られた酸化物焼結体の平均結晶粒径は3.5μmであり、ビッカース硬度は538.5であり、抗折強度は162MPaであった。 The obtained oxide sintered body had an average crystal grain size of 3.5 μm, Vickers hardness of 538.5, and flexural strength of 162 MPa.
 得られた酸化物焼結体のL*は27.46であり、a*は-1.45であり、b*は-3.03であり、ΔLは69.8であった。 L * of the obtained oxide sintered body was 27.46, a * was −1.45, b * was −3.03, and ΔL was 69.8.
 得られた酸化物焼結体の表面を研削し、外周を研削し、さらに、表面を研磨し、直径50.8mm×厚さ3mmの焼結体を調製した。調製した焼結体をICP(高周波誘導結合プラズマ)分析装置(SEIKO(株)製SPS5000)にて分析したところ、InとGaとZnの原子数比(In:Ga:Zn)は1:1:1であった。この焼結体のInとGaとZnの原子数比は、原料組成(In:Ga:Zn=1:1:1)と同一であり、焼結体製造時のインジウムや亜鉛の揮散がなかったことを示す。 The surface of the obtained oxide sintered body was ground, the outer periphery was ground, and the surface was further polished to prepare a sintered body having a diameter of 50.8 mm and a thickness of 3 mm. When the prepared sintered body was analyzed with an ICP (High Frequency Inductively Coupled Plasma) analyzer (SEIKO Co., Ltd. SPS5000), the atomic ratio of In, Ga and Zn (In: Ga: Zn) was 1: 1: 1 The atomic ratio of In, Ga, and Zn in this sintered body was the same as the raw material composition (In: Ga: Zn = 1: 1: 1), and there was no volatilization of indium or zinc during the production of the sintered body. It shows that.
 この酸化物焼結体を、銅板をバッキングプレートとして用い、インジウムはんだによりボンディングし、スパッタリングターゲットを得た。これを用いてDCスパッタリング法により透明基材(無アルカリガラス基板)上に酸化物半導体膜を成膜して、透明半導体基板を得た。この酸化物焼結体は、相対密度が100%であり、(1114)単相割合が100%であり、バルク抵抗値(比抵抗)が9.2×10-4Ω・cmであることから、高密度であり、スパッタリングターゲットとしての欠陥がなく、DCスパッタリングが十分可能である低抵抗値であり、また結晶粒径が小さく微細構造であり、ビッカース硬度も高いことからパーティクルの発生が少なくノジュールの生成も抑制でき(異常放電の発生を抑制)、機械的強度が高いことからスパッタ電力を高くしてもターゲットが割れることなく成膜速度を大きくすることができ、生産効率が良好であった。 This oxide sintered body was bonded with indium solder using a copper plate as a backing plate to obtain a sputtering target. Using this, an oxide semiconductor film was formed on a transparent substrate (non-alkali glass substrate) by a DC sputtering method to obtain a transparent semiconductor substrate. This oxide sintered body has a relative density of 100%, a (1114) single-phase ratio of 100%, and a bulk resistance value (resistivity) of 9.2 × 10 −4 Ω · cm. It has a high density, no defects as a sputtering target, a low resistance value sufficient for DC sputtering, a small crystal grain size, a fine structure, and a high Vickers hardness, resulting in less generation of particles. Production can be suppressed (suppressing the occurrence of abnormal discharge), and since the mechanical strength is high, the film formation rate can be increased without cracking the target even if the sputtering power is increased, and the production efficiency is good. .
[実施例12]
 酸化インジウム粉末(稀産金属(株)製、タップ密度:1.62g/cm3、平均粒子径:0.56μm)と、酸化ガリウム粉末(ヤマナカヒューテック(株)製、タップ密度が1.39g/cm3、平均粒子径:約1.5μm)と、酸化亜鉛粉末(ハクスイテック(株)製、タップ密度:1.02g/cm3、平均粒子径:約1.5μm)とを、インジウム元素とガリウム元素と亜鉛元素との原子数比(In:Ga:Zn)が1:1:1となるように秤量し、秤量した各粉末を混合し、混合粉末を得た。
[Example 12]
Indium oxide powder (manufactured by Rare Metal Co., Ltd., tap density: 1.62 g / cm 3 , average particle size: 0.56 μm) and gallium oxide powder (manufactured by Yamanaka Futec Co., Ltd., tap density: 1.39 g / cm 3 , average particle size: about 1.5 μm), zinc oxide powder (manufactured by Hakusui Tech Co., Ltd., tap density: 1.02 g / cm 3 , average particle size: about 1.5 μm), indium element and gallium Weighing was performed so that the atomic ratio of element to zinc element (In: Ga: Zn) was 1: 1: 1, and the weighed powders were mixed to obtain a mixed powder.
 得られた混合粉末と、ポリプロピレンカーボネート(分子量:20万)と、2mmφジルコニア製ボールと、エタノールと、アセトンとを混合し、スラリーを調製し、該スラリーを湿式ボールミル混合法により湿式混合した。なお、混合粉末98質量部に対して、ポリプロピレンカーボネート2質量部を使用した。 The obtained mixed powder, polypropylene carbonate (molecular weight: 200,000), 2 mmφ zirconia balls, ethanol and acetone were mixed to prepare a slurry, and the slurry was wet-mixed by a wet ball mill mixing method. In addition, 2 mass parts of polypropylene carbonate was used with respect to 98 mass parts of mixed powder.
 スラリーからジルコニア製ボールを除去した後、二流体ノズル方式(オリフィス径0.7mm)のアトマイザーを備えた防爆式スプレードライヤー(ヤマト科学(株)製DL410)により、スラリーを噴霧し、常圧で乾燥させ、造粒を行い、粒径95μm、タップ密度3.43g/cm3の造粒粉末を得た。スプレードライヤーに供給する熱風の温度は、250℃であり、乾燥機出口の温度は、93℃であった。 After removing the zirconia balls from the slurry, the slurry is sprayed with an explosion-proof spray dryer (DL410 manufactured by Yamato Scientific Co., Ltd.) equipped with a two-fluid nozzle type (orifice diameter 0.7 mm) atomizer and dried at normal pressure. And granulated to obtain a granulated powder having a particle size of 95 μm and a tap density of 3.43 g / cm 3 . The temperature of the hot air supplied to the spray dryer was 250 ° C., and the temperature at the outlet of the dryer was 93 ° C.
 造粒粉末の粒径は以下のように測定した。 The particle size of the granulated powder was measured as follows.
 造粒粉末の一部を採取し、採取した粉末とヘキサメタリン酸(分散剤)とを水中に投入し、3分間超音波照射後、レーザー回折・散乱法粒度分布測定装置(ベックマン・コールター(株)製LS-230)により粒度分布を測定し、積算体積分率50%粒径を造粒粉末の粒径とした。 Part of the granulated powder is collected, the collected powder and hexametaphosphoric acid (dispersing agent) are put into water, irradiated with ultrasonic waves for 3 minutes, and then a laser diffraction / scattering particle size distribution analyzer (Beckman Coulter, Inc.) The particle size distribution was measured by LS-230, manufactured, and the particle size of the granulated powder was defined as a particle size with an integrated volume fraction of 50%.
 造粒粉末のタップ密度はJIS K5101に基づいて、所定のサイズのメスシリンダーに、造粒粉末の体積変化がなくなるまで振動を付与しながら、造粒粉末を充填し、算出した。 The tap density of the granulated powder was calculated based on JIS K5101 by filling the granulated powder into a graduated cylinder of a predetermined size while applying vibration until the volume of the granulated powder disappeared.
 造粒粉末を、ステンレス(SUS304)製のカプセル容器(外径83mm、内径80mm、容器内部の高さ78mm)に、造粒粉末の体積変化がなくなるまで、振動を与えながらカプセル容器内一杯に充填した。造粒粉末のタップ密度は3.43g/cm3であり、焼結体の理論密度が6.379g/cm3であることから混合粉末の充填率は53.8%となった。なお、理論密度として、組成比In:Ga:Zn=1:1:1であるInGaZnO4(JCPDSカード番号:381104)という単一結晶の情報がJCPDSカードに記載されているため、JCPDSカードに記載されたその単一結晶の理論密度(6.379g/cm3)を採用した。 Fill the granule powder into a capsule container made of stainless steel (SUS304) (outer diameter 83 mm, inner diameter 80 mm, height 78 mm inside the container) while applying vibration until the volume of the granulated powder disappears. did. Tap density of the granulated powder is 3.43 g / cm 3, the theoretical density of the sintered body is filling rate of the mixed powder since it is 6.379g / cm 3 was 53.8%. As the theoretical density, information on a single crystal of InGaZnO 4 (JCPDS card number: 381104) having a composition ratio In: Ga: Zn = 1: 1: 1 is described in the JCPDS card. The single crystal theoretical density (6.379 g / cm 3 ) was employed.
 造粒粉末を充填したカプセル容器を、大気雰囲気中、400℃で5時間保持し、ポリプロピレンカーボネートを除去した。ポリプロピレンカーボネート除去後の粉末のタップ密度は3.31g/cm3であり、充填率は、51.9%であった。 The capsule container filled with the granulated powder was kept at 400 ° C. for 5 hours in an air atmosphere to remove the polypropylene carbonate. The tap density of the powder after removing the polypropylene carbonate was 3.31 g / cm 3 , and the filling rate was 51.9%.
 カプセル容器の上蓋に排気管を溶接し、その後上蓋とカプセル容器を溶接した。カプセル容器の溶接部からのガス漏れがないかどうかを確認するため、Heリーク検査を行った。この時の漏れ量は1×10-9Pa・m3/sec以下であった。550℃で7時間、カプセル容器内のガスを排気管から除去した後、排気管を閉じ、カプセル容器の封止を行った。封止したカプセル容器をHIP処理装置((株)神戸製鋼所製)内に設置し、カプセルHIP処理を行った。処理温度は1200℃、処理圧力は118MPaで、アルゴンガス(純度99.9%)を圧力媒体とし、4時間処理を行った。カプセルHIP処理後、カプセル容器を取り外し、円柱型の酸化物焼結体を得た。得られた円柱型の酸化物焼結体の直径は64.1mm、高さは62.4mmであった。 The exhaust pipe was welded to the upper lid of the capsule container, and then the upper lid and the capsule container were welded. A He leak test was performed to confirm whether there was any gas leak from the welded portion of the capsule container. The amount of leakage at this time was 1 × 10 −9 Pa · m 3 / sec or less. After removing the gas in the capsule container from the exhaust pipe at 550 ° C. for 7 hours, the exhaust pipe was closed and the capsule container was sealed. The sealed capsule container was placed in a HIP processing apparatus (manufactured by Kobe Steel, Ltd.) and subjected to capsule HIP processing. The treatment temperature was 1200 ° C., the treatment pressure was 118 MPa, and the treatment was performed for 4 hours using argon gas (purity 99.9%) as a pressure medium. After the capsule HIP treatment, the capsule container was removed to obtain a cylindrical oxide sintered body. The obtained cylindrical oxide sintered body had a diameter of 64.1 mm and a height of 62.4 mm.
 得られた酸化物焼結体の相対密度は100%であり、バルク抵抗値(比抵抗)は8.18×10-4Ω・cmであった。なお、焼結体の密度は、測長法により測定し、焼結体の理論密度として、JCPDSカードに記載のInGaZnO4(JCPDSカード番号:381104)の理論密度を採用した。 The obtained oxide sintered body had a relative density of 100% and a bulk resistance value (specific resistance) of 8.18 × 10 −4 Ω · cm. The density of the sintered body was measured by a length measurement method, and the theoretical density of InGaZnO 4 (JCPDS card number: 381104) described in the JCPDS card was adopted as the theoretical density of the sintered body.
 得られた酸化物焼結体を電子顕微鏡で観察したところ、空孔もほとんどなく、緻密な焼結体であった。 When the obtained oxide sintered body was observed with an electron microscope, it was a dense sintered body with almost no pores.
 得られた酸化物焼結体の結晶構造をX線回折装置(パナリティカル(株)製EMPYREAN)により調べたところ、ホモロガス構造であるInGaZnO4に帰属される回折ピークのみが観察され、他の結晶相に帰属される回折ピークは全く観察されなかったことから、(1114)単相割合は100%であった。 When the crystal structure of the obtained oxide sintered body was examined with an X-ray diffractometer (EMPYREAN manufactured by Panalical Co., Ltd.), only the diffraction peak attributed to InGaZnO 4 having a homologous structure was observed. Since no diffraction peak attributed to the phase was observed, the (1114) single phase ratio was 100%.
 得られた酸化物焼結体の平均結晶粒径は0.77μmであり、ビッカース硬度は648.1であり、抗折強度は210MPaであった。 The average grain size of the obtained oxide sintered body was 0.77 μm, the Vickers hardness was 648.1, and the bending strength was 210 MPa.
 得られた酸化物焼結体のL*は22.08であり、a*は-1.03であり、b*は-2.48であり、ΔLは75.1であった。 L * of the obtained oxide sintered body was 22.08, a * was −1.03, b * was −2.48, and ΔL was 75.1.
 得られた酸化物焼結体の表面を研削し、外周を研削し、さらに、表面を研磨し、直径50.8mm×厚さ3mmの焼結体を調製した。調製した焼結体をICP(高周波誘導結合プラズマ)分析装置(SEIKO(株)製SPS5000)にて分析したところ、InとGaとZnの原子数比(In:Ga:Zn)は1:1:1であった。この焼結体のInとGaとZnの原子数比は、原料組成(In:Ga:Zn=1:1:1)と同一であり、焼結体製造時のインジウムや亜鉛の揮散がなかったことを示す。 The surface of the obtained oxide sintered body was ground, the outer periphery was ground, and the surface was further polished to prepare a sintered body having a diameter of 50.8 mm and a thickness of 3 mm. When the prepared sintered body was analyzed with an ICP (High Frequency Inductively Coupled Plasma) analyzer (SEIKO Co., Ltd. SPS5000), the atomic ratio of In, Ga and Zn (In: Ga: Zn) was 1: 1: 1 The atomic ratio of In, Ga, and Zn in this sintered body was the same as the raw material composition (In: Ga: Zn = 1: 1: 1), and there was no volatilization of indium or zinc during the production of the sintered body. It shows that.
 この酸化物焼結体を、銅板をバッキングプレートとして用い、インジウムはんだによりボンディングし、スパッタリングターゲットを得た。これを用いてDCスパッタリング法により透明基材(無アルカリガラス基板)上に酸化物半導体膜を成膜して、透明半導体基板を得た。この酸化物焼結体は、相対密度が100%であり、(1114)単相割合が100%であり、バルク抵抗値(比抵抗)が8.18×10-4Ω・cmであることから、高密度であり、スパッタリングターゲットとしての欠陥がなく、DCスパッタリングが十分可能である低抵抗値であり、また結晶粒径が小さく微細構造であり、ビッカース硬度も高いことからパーティクルの発生が少なくノジュールの生成も抑制でき(異常放電の発生を抑制)、機械的強度が高いことからスパッタ電力を高くしてもターゲットが割れることなく成膜速度を大きくすることができ、生産効率が良好であった。 This oxide sintered body was bonded with indium solder using a copper plate as a backing plate to obtain a sputtering target. Using this, an oxide semiconductor film was formed on a transparent substrate (non-alkali glass substrate) by a DC sputtering method to obtain a transparent semiconductor substrate. This oxide sintered body has a relative density of 100%, a (1114) single-phase ratio of 100%, and a bulk resistance value (specific resistance) of 8.18 × 10 −4 Ω · cm. It has a high density, no defects as a sputtering target, a low resistance value sufficient for DC sputtering, a small crystal grain size, a fine structure, and a high Vickers hardness, resulting in less generation of particles. Production can be suppressed (suppressing the occurrence of abnormal discharge), and since the mechanical strength is high, the film formation rate can be increased without cracking the target even if the sputtering power is increased, and the production efficiency is good. .
[実施例13]
 実施例12において、インジウム元素とガリウム元素と亜鉛元素との原子数比(In:Ga:Zn)が2:2:1となるように秤量し、造粒粉末のカプセル容器への充填率を56.2%とした以外は、実施例12と同様に実施し、酸化物焼結体を得た。
[Example 13]
In Example 12, the atomic ratio (In: Ga: Zn) of indium element, gallium element, and zinc element was weighed to be 2: 2: 1, and the filling rate of the granulated powder into the capsule container was 56. The oxide sintered body was obtained in the same manner as in Example 12 except that the content was 2%.
 得られた酸化物焼結体の相対密度は100%であり、バルク抵抗値(比抵抗)は5.43×10-4Ω・cmであった。 The obtained oxide sintered body had a relative density of 100% and a bulk resistance value (specific resistance) of 5.43 × 10 −4 Ω · cm.
 得られた酸化物焼結体を電子顕微鏡で観察したところ、空孔もほとんどなく、緻密な焼結体であった。 When the obtained oxide sintered body was observed with an electron microscope, it was a dense sintered body with almost no pores.
 得られた酸化物焼結体の結晶構造をX線回折装置(パナリティカル(株)製EMPYREAN)により調べたところ、ホモロガス構造であるIn2Ga2ZnO7に帰属される回折ピークのみが観察され、他の結晶相に帰属される回折ピークは全く観察されなかったことから、(2217)単相割合は100%であった。 When the crystal structure of the obtained oxide sintered body was examined with an X-ray diffractometer (EMPYREAN manufactured by Panalical Co., Ltd.), only a diffraction peak attributed to In 2 Ga 2 ZnO 7 having a homologous structure was observed. Since no diffraction peaks attributed to other crystal phases were observed, the (2217) single-phase ratio was 100%.
 得られた酸化物焼結体の平均結晶粒径は0.93μmであり、ビッカース硬度は610.3であり、抗折強度は195MPaであった。 The average grain size of the obtained oxide sintered body was 0.93 μm, the Vickers hardness was 610.3, and the bending strength was 195 MPa.
 得られた酸化物焼結体のL*は19.62であり、a*は-0.46であり、b*は-0.346であり、ΔLは77.52であった。 L * of the obtained oxide sintered body was 19.62, a * was −0.46, b * was −0.346, and ΔL was 77.52.
 得られた酸化物焼結体の表面を研削し、外周を研削し、さらに、表面を研磨し、直径50.8mm×厚さ3mmの焼結体を調製した。調製した焼結体をICP(高周波誘導結合プラズマ)分析装置(SEIKO(株)製SPS5000)にて分析したところ、InとGaとZnの原子数比(In:Ga:Zn)は2:2:1であった。この焼結体のInとGaとZnの原子数比は、原料組成(In:Ga:Zn=2:2:1)と同一であり、焼結体製造時のインジウムや亜鉛の揮散がなかったことを示す。 The surface of the obtained oxide sintered body was ground, the outer periphery was ground, and the surface was further polished to prepare a sintered body having a diameter of 50.8 mm and a thickness of 3 mm. When the prepared sintered body was analyzed with an ICP (high frequency inductively coupled plasma) analyzer (SEIKO Co., Ltd. SPS5000), the atomic ratio of In, Ga and Zn (In: Ga: Zn) was 2: 2: 1 The atomic ratio of In, Ga, and Zn in this sintered body was the same as the raw material composition (In: Ga: Zn = 2: 2: 1), and there was no volatilization of indium or zinc during the production of the sintered body. It shows that.
 この酸化物焼結体を、銅板をバッキングプレートとして用い、インジウムはんだによりボンディングし、スパッタリングターゲットを得た。これを用いてDCスパッタリング法により透明基材(無アルカリガラス基板)上に酸化物半導体膜を成膜して、透明半導体基板を得た。この酸化物焼結体は、相対密度が100%であり、(2217)単相割合が100%であり、バルク抵抗値(比抵抗)が5.43×10-4Ω・cmであることから、高密度であり、スパッタリングターゲットとしての欠陥がなく、DCスパッタリングが十分可能である低抵抗値であり、また結晶粒径が小さく微細構造であり、ビッカース硬度も高いことからパーティクルの発生が少なくノジュールの生成も抑制でき(異常放電の発生を抑制)、機械的強度が高いことからスパッタ電力を高くしてもターゲットが割れることなく成膜速度を大きくすることができ、生産効率が良好であった。 This oxide sintered body was bonded with indium solder using a copper plate as a backing plate to obtain a sputtering target. Using this, an oxide semiconductor film was formed on a transparent substrate (non-alkali glass substrate) by a DC sputtering method to obtain a transparent semiconductor substrate. This oxide sintered body has a relative density of 100%, a (2217) single-phase ratio of 100%, and a bulk resistance value (specific resistance) of 5.43 × 10 −4 Ω · cm. It has a high density, no defects as a sputtering target, a low resistance value sufficient for DC sputtering, a small crystal grain size, a fine structure, and a high Vickers hardness, resulting in less generation of particles. Production can be suppressed (suppressing the occurrence of abnormal discharge), and since the mechanical strength is high, the film formation rate can be increased without cracking the target even if the sputtering power is increased, and the production efficiency is good. .
[実施例14]
 実施例8において、平均粒径が60nmの酸化亜鉛粉末を用い、仮焼後の混合粉末のカプセル容器への充填率を54.6%とした以外は、実施例8と同様に実施し、酸化物焼結体を得た。
[Example 14]
In Example 8, a zinc oxide powder having an average particle diameter of 60 nm was used, and the same procedure as in Example 8 was performed except that the filling rate of the mixed powder after calcining into the capsule container was 54.6%. A sintered product was obtained.
 得られた酸化物焼結体の相対密度は100%であり、バルク抵抗値(比抵抗)は8.18×10-4Ω・cmであった。 The obtained oxide sintered body had a relative density of 100% and a bulk resistance value (specific resistance) of 8.18 × 10 −4 Ω · cm.
 得られた酸化物焼結体を電子顕微鏡で観察したところ、空孔もほとんどなく、緻密な焼結体であった。 When the obtained oxide sintered body was observed with an electron microscope, it was a dense sintered body with almost no pores.
 得られた酸化物焼結体の結晶構造をX線回折装置(パナリティカル(株)製EMPYREAN)により調べたところ、ホモロガス構造であるInGaZnO4に帰属される回折ピークのみが観察され、他の結晶相に帰属される回折ピークは全く観察されなかったことから、(1114)単相割合は100%であった。 When the crystal structure of the obtained oxide sintered body was examined with an X-ray diffractometer (EMPYREAN manufactured by Panalical Co., Ltd.), only the diffraction peak attributed to InGaZnO 4 having a homologous structure was observed. Since no diffraction peak attributed to the phase was observed, the (1114) single phase ratio was 100%.
 得られた酸化物焼結体の平均結晶粒径は0.72μmであり、ビッカース硬度は674.1であり、抗折強度は225MPaであった。 The obtained oxide sintered body had an average crystal grain size of 0.72 μm, Vickers hardness of 674.1, and flexural strength of 225 MPa.
 得られた酸化物焼結体のL*は21,82であり、a*は-1.01であり、b*は-2.43であり、ΔLは75.4であった。 L * of the obtained oxide sintered body was 21,82, a * was −1.01, b * was −2.43, and ΔL was 75.4.
 得られた酸化物焼結体の表面を研削し、外周を研削し、さらに、表面を研磨し、直径50.8mm×厚さ3mmの焼結体を調製した。調製した焼結体をICP(高周波誘導結合プラズマ)分析装置(SEIKO(株)製SPS5000)にて分析したところ、InとGaとZnの原子数比(In:Ga:Zn)は1:1:1であった。この焼結体のInとGaとZnの原子数比は、原料組成(In:Ga:Zn=1:1:1)と同一であり、焼結体製造時のインジウムや亜鉛の揮散がなかったことを示す。 The surface of the obtained oxide sintered body was ground, the outer periphery was ground, and the surface was further polished to prepare a sintered body having a diameter of 50.8 mm and a thickness of 3 mm. When the prepared sintered body was analyzed with an ICP (High Frequency Inductively Coupled Plasma) analyzer (SEIKO Co., Ltd. SPS5000), the atomic ratio of In, Ga and Zn (In: Ga: Zn) was 1: 1: 1 The atomic ratio of In, Ga, and Zn in this sintered body was the same as the raw material composition (In: Ga: Zn = 1: 1: 1), and there was no volatilization of indium or zinc during the production of the sintered body. It shows that.
 この酸化物焼結体を、銅板をバッキングプレートとして用い、インジウムはんだによりボンディングし、スパッタリングターゲットを得た。これを用いてDCスパッタリング法により透明基材(無アルカリガラス基板)上に酸化物半導体膜を成膜して、透明半導体基板を得た。この酸化物焼結体は、相対密度が100%であり、(1114)単相割合が100%であり、バルク抵抗値(比抵抗)が8.18×10-4Ω・cmであることから、高密度であり、スパッタリングターゲットとしての欠陥がなく、DCスパッタリングが十分可能である低抵抗値であり、また結晶粒径が小さく微細構造であり、ビッカース硬度も高いことからパーティクルの発生が少なくノジュールの生成も抑制でき(異常放電の発生を抑制)、機械的強度が高いことからスパッタ電力を高くしてもターゲットが割れることなく成膜速度を大きくすることができ、生産効率が良好であった。 This oxide sintered body was bonded with indium solder using a copper plate as a backing plate to obtain a sputtering target. Using this, an oxide semiconductor film was formed on a transparent substrate (non-alkali glass substrate) by a DC sputtering method to obtain a transparent semiconductor substrate. This oxide sintered body has a relative density of 100%, a (1114) single-phase ratio of 100%, and a bulk resistance value (specific resistance) of 8.18 × 10 −4 Ω · cm. It has a high density, no defects as a sputtering target, a low resistance value sufficient for DC sputtering, a small crystal grain size, a fine structure, and a high Vickers hardness, resulting in less generation of particles. Production can be suppressed (suppressing the occurrence of abnormal discharge), and since the mechanical strength is high, the film formation rate can be increased without cracking the target even if the sputtering power is increased, and the production efficiency is good. .
[実施例15]
 酸化インジウム粉末(稀産金属(株)製、タップ密度:1.62g/cm3、平均粒子径:0.56μm)と、酸化ガリウム粉末(稀産金属(株)製、タップ密度が1.50g/cm3、平均粒子径:1.0μm)と、酸化亜鉛粉末(ハクスイテック(株)製、タップ密度:1.02g/cm3、平均粒子径:1.5μm)とを、インジウム元素とガリウム元素と亜鉛元素との原子数比(In:Ga:Zn)が1:1:1となるように秤量し、スーパーミキサーにて、3000rpmで1時間、乾式混合を行い、混合粉末を得た。
[Example 15]
Indium oxide powder (made by rare metal), tap density: 1.62 g / cm 3 , average particle diameter: 0.56 μm) and gallium oxide powder (made by rare metal, Inc., tap density 1.50 g) / Cm 3 , average particle size: 1.0 μm), zinc oxide powder (manufactured by Hakusui Tech Co., Ltd., tap density: 1.02 g / cm 3 , average particle size: 1.5 μm), indium element and gallium element And zinc element were weighed so that the atomic ratio (In: Ga: Zn) was 1: 1: 1, and dry mixing was performed with a super mixer at 3000 rpm for 1 hour to obtain a mixed powder.
 得られた混合粉末を冷間静水圧プレス法により、圧力300MPaで加圧成形し、得られた成型物を切削加工し、直径115mm×高さ40mmの円柱状成型体を得た。円柱状成型体の密度は3.66g/cm3であった。 The obtained mixed powder was subjected to pressure molding at a pressure of 300 MPa by a cold isostatic pressing method, and the obtained molded product was cut to obtain a cylindrical molded body having a diameter of 115 mm and a height of 40 mm. The density of the cylindrical molded body was 3.66 g / cm 3 .
 なお、成型体の密度は、成型体の直径と高さを測定し、体積を算出し、別途測定した成型体の重量を、前記算出した体積で除することにより算出した。 The density of the molded body was calculated by measuring the diameter and height of the molded body, calculating the volume, and dividing the separately measured weight of the molded body by the calculated volume.
 円柱状成型体を、ステンレス(SUS304)製のカプセル容器(外径121mm、内径115mm、容器内部の高さ40mm)に、成型体が崩れないように移し、カプセル容器内一杯に充填した。混合粉末の充填密度は3.66g/cm3であり、焼結体の理論密度が6.379g/cm3であることから混合粉末の充填率は57.3%となった。なお、理論密度として、組成比In:Ga:Zn=1:1:1であるInGaZnO4(JCPDSカード番号:381104)という単一結晶の情報がJCPDSカードに記載されているため、JCPDSカードに記載されたその単一結晶の理論密度(6.379g/cm3)を採用した。 The cylindrical molded body was transferred to a capsule container (outer diameter 121 mm, inner diameter 115 mm, inner height 40 mm) made of stainless steel (SUS304) so that the molded body did not collapse and filled into the capsule container. The filling density of the mixed powder was 3.66 g / cm 3 , and the theoretical density of the sintered body was 6.379 g / cm 3 , so that the filling rate of the mixed powder was 57.3%. As the theoretical density, information on a single crystal of InGaZnO 4 (JCPDS card number: 381104) having a composition ratio In: Ga: Zn = 1: 1: 1 is described in the JCPDS card. The single crystal theoretical density (6.379 g / cm 3 ) was employed.
 円柱状成型体を充填したカプセル容器の上蓋に排気管を溶接し、その後上蓋とカプセル容器を溶接した。カプセル容器の溶接部からのガス漏れがないかどうかを確認するため、Heリーク検査を行った。この時の漏れ量は1×10-6Torr・L/sec以下であった。550℃で7時間、カプセル容器内のガスを排気管から除去した後、排気管を閉じ、カプセル容器の封止を行った。封止したカプセル容器をHIP処理装置((株)神戸製鋼所製)内に設置し、カプセルHIP処理を行った。処理温度は1220℃、処理圧力は118MPaで、アルゴンガス(純度99.9%)を圧力媒体とし、4時間処理を行った。カプセルHIP処理後、カプセル容器を取り外し、円柱型の酸化物焼結体を得た。得られた円柱型の酸化物焼結体の直径は94.3mm、高さは32.8mmであった。 The exhaust pipe was welded to the upper lid of the capsule container filled with the cylindrical molded body, and then the upper lid and the capsule container were welded. A He leak test was performed to confirm whether there was any gas leak from the welded portion of the capsule container. The amount of leakage at this time was 1 × 10 −6 Torr · L / sec or less. After removing the gas in the capsule container from the exhaust pipe at 550 ° C. for 7 hours, the exhaust pipe was closed and the capsule container was sealed. The sealed capsule container was placed in a HIP processing apparatus (manufactured by Kobe Steel, Ltd.) and subjected to capsule HIP processing. The treatment temperature was 1220 ° C., the treatment pressure was 118 MPa, and the treatment was performed for 4 hours using argon gas (purity 99.9%) as a pressure medium. After the capsule HIP treatment, the capsule container was removed to obtain a cylindrical oxide sintered body. The obtained cylindrical oxide sintered body had a diameter of 94.3 mm and a height of 32.8 mm.
 得られた酸化物焼結体の相対密度は100%であり、バルク抵抗値(比抵抗)は8.30×10-4Ω・cmであった。なお、焼結体の密度は、測長法により測定し、焼結体の理論密度として、JCPDSカードに記載のInGaZnO4(JCPDSカード番号:381104)の理論密度を採用した。 The relative density of the obtained oxide sintered body was 100%, and the bulk resistance value (specific resistance) was 8.30 × 10 −4 Ω · cm. The density of the sintered body was measured by a length measurement method, and the theoretical density of InGaZnO 4 (JCPDS card number: 381104) described in the JCPDS card was adopted as the theoretical density of the sintered body.
 得られた酸化物焼結体を電子顕微鏡で観察したところ、空孔もほとんどなく、緻密な焼結体であった。 When the obtained oxide sintered body was observed with an electron microscope, it was a dense sintered body with almost no pores.
 得られた酸化物焼結体の結晶構造をX線回折装置(パナリティカル(株)製EMPYREAN)により調べたところ、ホモロガス構造であるInGaZnO4に帰属される回折ピークのみが観察され、他の結晶相に帰属される回折ピークは全く観察されなかったことから、(1114)単相割合は100%であった。 When the crystal structure of the obtained oxide sintered body was examined with an X-ray diffractometer (EMPYREAN manufactured by Panalical Co., Ltd.), only the diffraction peak attributed to InGaZnO 4 having a homologous structure was observed. Since no diffraction peak attributed to the phase was observed, the (1114) single phase ratio was 100%.
 得られた酸化物焼結体の平均結晶粒径は1.20μmであり、ビッカース硬度は595.0であり、抗折強度は188MPaであった。 The average grain size of the obtained oxide sintered body was 1.20 μm, the Vickers hardness was 595.0, and the bending strength was 188 MPa.
 得られた酸化物焼結体のL*は34.2であり、a*は-1.55であり、b*は-2.93であり、ΔLは63.0であった。 L * of the obtained oxide sintered body was 34.2, a * was −1.55, b * was −2.93, and ΔL was 63.0.
 得られた酸化物焼結体の表面を研削し、外周を研削し、さらに、表面を研磨し、直径50.8mm×厚さ3mmの焼結体を調製した。調製した焼結体をICP(高周波誘導結合プラズマ)分析装置(SEIKO(株)製SPS5000)にて分析したところ、InとGaとZnの原子数比(In:Ga:Zn)は1:1:1であった。この焼結体のInとGaとZnの原子数比は、原料組成(In:Ga:Zn=1:1:1)と同一であり、焼結体製造時のインジウムや亜鉛の揮散がなかったことを示す。 The surface of the obtained oxide sintered body was ground, the outer periphery was ground, and the surface was further polished to prepare a sintered body having a diameter of 50.8 mm and a thickness of 3 mm. When the prepared sintered body was analyzed with an ICP (High Frequency Inductively Coupled Plasma) analyzer (SEIKO Co., Ltd. SPS5000), the atomic ratio of In, Ga and Zn (In: Ga: Zn) was 1: 1: 1 The atomic ratio of In, Ga, and Zn in this sintered body was the same as the raw material composition (In: Ga: Zn = 1: 1: 1), and there was no volatilization of indium or zinc during the production of the sintered body. It shows that.
 この酸化物焼結体を、銅板をバッキングプレートとして用い、インジウムはんだによりボンディングし、スパッタリングターゲットを得た。これを用いてDCスパッタリング法により透明基材(無アルカリガラス基板)上に酸化物半導体膜を成膜して、透明半導体基板を得た。この酸化物焼結体は、相対密度が100%であり、(1114)単相割合が100%であり、バルク抵抗値(比抵抗)が8.18×10-4Ω・cmであることから、高密度であり、スパッタリングターゲットとしての欠陥がなく、DCスパッタリングが十分可能である低抵抗値であり、また結晶粒径が小さく微細構造であり、ビッカース硬度も高いことからパーティクルの発生が少なくノジュールの生成も抑制でき(異常放電の発生を抑制)、機械的強度が高いことからスパッタ電力を高くしてもターゲットが割れることなく成膜速度を大きくすることができ、生産効率が良好であった。 This oxide sintered body was bonded with indium solder using a copper plate as a backing plate to obtain a sputtering target. Using this, an oxide semiconductor film was formed on a transparent substrate (non-alkali glass substrate) by a DC sputtering method to obtain a transparent semiconductor substrate. This oxide sintered body has a relative density of 100%, a (1114) single-phase ratio of 100%, and a bulk resistance value (specific resistance) of 8.18 × 10 −4 Ω · cm. It has a high density, no defects as a sputtering target, a low resistance value sufficient for DC sputtering, a small crystal grain size, a fine structure, and a high Vickers hardness, resulting in less generation of particles. Production can be suppressed (suppressing the occurrence of abnormal discharge), and since the mechanical strength is high, the film formation rate can be increased without cracking the target even if the sputtering power is increased, and the production efficiency is good. .
[比較例6]
 実施例8において、平均粒径が4.0μmの酸化インジウム粉末(高純度化学研究所(株)製)を用いた以外は、実施例8と同様に実施し、酸化物焼結体(直径94.6mm、高さ32.9mm)を得た。円柱状成型体の密度は3.55g/cm3であった。また、カプセル容器に円柱状成型体を充填し、算出した充填密度は3.55g/cm3であった。したがって、円柱状成型体のカプセル容器への充填率は55.7%であった。
[Comparative Example 6]
Example 8 was carried out in the same manner as in Example 8 except that indium oxide powder having an average particle size of 4.0 μm (manufactured by Kojundo Chemical Laboratory Co., Ltd.) was used. .6 mm, height 32.9 mm). The density of the cylindrical molded body was 3.55 g / cm 3 . The capsule container was filled with a cylindrical molded body, and the calculated filling density was 3.55 g / cm 3 . Therefore, the filling rate of the cylindrical molded body into the capsule container was 55.7%.
 得られた酸化物焼結体の相対密度は100%であり、バルク抵抗値(比抵抗)は1.1×10-3Ω・cmであった。 The relative density of the obtained oxide sintered body was 100%, and the bulk resistance value (specific resistance) was 1.1 × 10 −3 Ω · cm.
 得られた酸化物焼結体を電子顕微鏡で観察したところ、空孔もほとんどなく、緻密な焼結体であった。 When the obtained oxide sintered body was observed with an electron microscope, it was a dense sintered body with almost no pores.
 得られた酸化物焼結体の結晶構造をX線回折装置(パナリティカル(株)製EMPYREAN)により調べたところ、ホモロガス構造であるInGaZnO4に帰属される回折ピークに加え、他の結晶相に帰属される回折ピークも観察された。(1114)単相割合は70%であった。 When the crystal structure of the obtained oxide sintered body was examined with an X-ray diffractometer (EMPYREAN manufactured by Panalical Co., Ltd.), in addition to the diffraction peak attributed to InGaZnO 4 having a homologous structure, An assigned diffraction peak was also observed. (1114) The ratio of single phase was 70%.
 得られた酸化物焼結体の平均結晶粒径は7.9μmであり、ビッカース硬度は421.3であり、抗折強度は107MPaであった。 The obtained oxide sintered body had an average crystal grain size of 7.9 μm, a Vickers hardness of 421.3, and a bending strength of 107 MPa.
 得られた酸化物焼結体のL*は35.32であり、a*は-2.08であり、b*は-0.367であり、ΔLは59.5であった。 L * of the obtained oxide sintered body was 35.32, a * was −2.08, b * was −0.367, and ΔL was 59.5.
 得られた酸化物焼結体の表面を研削し、外周を研削し、さらに、表面を研磨し、直径50.8mm×厚さ3mmの焼結体を調製した。調製した焼結体をICP(高周波誘導結合プラズマ)分析装置(SEIKO(株)製SPS5000)にて分析したところ、InとGaとZnの原子数比(In:Ga:Zn)は1:1:1であった。この焼結体のInとGaとZnの原子数比は、原料組成(In:Ga:Zn=1:1:1)と同一であり、焼結体製造時のインジウムや亜鉛の揮散がなかったことを示す。 The surface of the obtained oxide sintered body was ground, the outer periphery was ground, and the surface was further polished to prepare a sintered body having a diameter of 50.8 mm and a thickness of 3 mm. When the prepared sintered body was analyzed with an ICP (High Frequency Inductively Coupled Plasma) analyzer (SEIKO Co., Ltd. SPS5000), the atomic ratio of In, Ga and Zn (In: Ga: Zn) was 1: 1: 1 The atomic ratio of In, Ga, and Zn in this sintered body was the same as the raw material composition (In: Ga: Zn = 1: 1: 1), and there was no volatilization of indium or zinc during the production of the sintered body. It shows that.
 この酸化物焼結体を、銅板をバッキングプレートとして用い、インジウムはんだによりボンディングし、スパッタリングターゲットを得た。これを用いてDCスパッタリング法により透明基材(無アルカリガラス基板)上に酸化物半導体膜を成膜して、透明半導体基板を得た。この酸化物焼結体は、相対密度が100%であり、(1114)単相割合が70%であり、バルク抵抗値(比抵抗)が1.1×10-3Ω・cmであることから、高密度ではあるが、スパッタした膜の組成の均一性が低下していた。 This oxide sintered body was bonded with indium solder using a copper plate as a backing plate to obtain a sputtering target. Using this, an oxide semiconductor film was formed on a transparent substrate (non-alkali glass substrate) by a DC sputtering method to obtain a transparent semiconductor substrate. This oxide sintered body has a relative density of 100%, a (1114) single-phase ratio of 70%, and a bulk resistance value (specific resistance) of 1.1 × 10 −3 Ω · cm. Although the density was high, the uniformity of the composition of the sputtered film was reduced.
[比較例7]
 比較例6において、インジウム元素とガリウム元素と亜鉛元素との原子数比(In:Ga:Zn)が2:2:1となるように秤量し、円柱状成型体のカプセル容器への充填率を55.9%とした以外は、比較例6と同様に実施し、酸化物焼結体を得た。
[Comparative Example 7]
In Comparative Example 6, the atomic ratio of indium element, gallium element, and zinc element (In: Ga: Zn) was weighed to be 2: 2: 1, and the filling rate of the cylindrical molded body into the capsule container was determined. An oxide sintered body was obtained in the same manner as in Comparative Example 6 except that the content was 55.9%.
 得られた酸化物焼結体の相対密度は100%であり、バルク抵抗値(比抵抗)は1.7×10-2Ω・cmであった。 The relative density of the obtained oxide sintered body was 100%, and the bulk resistance value (specific resistance) was 1.7 × 10 −2 Ω · cm.
 得られた酸化物焼結体の結晶構造をX線回折装置(パナリティカル(株)製EMPYREAN)により調べたところ、ホモロガス構造であるIn2Ga2ZnO7に帰属される回折ピークに加え、他の結晶相に帰属される回折ピークも観察された。(2217)単相割合は4%であった。 When the crystal structure of the obtained oxide sintered body was examined with an X-ray diffractometer (EMPYREAN manufactured by Panalical Co., Ltd.), in addition to the diffraction peak attributed to In 2 Ga 2 ZnO 7 having a homologous structure, A diffraction peak attributed to the crystalline phase was also observed. (2217) The single phase ratio was 4%.
 得られた酸化物焼結体の平均結晶粒径は8.3μmであり、ビッカース硬度は398.5であり、抗折強度は96MPaであった。 The average grain size of the obtained oxide sintered body was 8.3 μm, the Vickers hardness was 398.5, and the bending strength was 96 MPa.
 得られた酸化物焼結体のL*は45.8であり、a*は-2.83であり、b*は-3.97であり、ΔLは51.6であった。 L * of the obtained oxide sintered body was 45.8, a * was −2.83, b * was −3.97, and ΔL was 51.6.
 この酸化物焼結体を、銅板をバッキングプレートとして用い、インジウムはんだによりボンディングし、スパッタリングターゲットを得た。これを用いてDCスパッタリング法により透明基材(無アルカリガラス基板)上に酸化物半導体膜を成膜して、透明半導体基板を得た。この酸化物焼結体は、相対密度が100%であり、(2217)単相割合が4%であり、バルク抵抗値(比抵抗)が1.7×10-2Ω・cmであることから、高密度ではあるが、スパッタした膜の組成の均一性が低下していた。 This oxide sintered body was bonded with indium solder using a copper plate as a backing plate to obtain a sputtering target. Using this, an oxide semiconductor film was formed on a transparent substrate (non-alkali glass substrate) by a DC sputtering method to obtain a transparent semiconductor substrate. This oxide sintered body has a relative density of 100%, a (2217) single-phase ratio of 4%, and a bulk resistance value (specific resistance) of 1.7 × 10 −2 Ω · cm. Although the density was high, the uniformity of the composition of the sputtered film was reduced.
[比較例8]
 比較例6において、平均粒径が1.0μmの酸化インジウム粉末を用い、円柱状成型体のカプセル容器への充填率を56.6%とした以外は、比較例6と同様に実施し、酸化物焼結体を得た。
[Comparative Example 8]
In Comparative Example 6, the same procedure as in Comparative Example 6 was performed except that indium oxide powder having an average particle size of 1.0 μm was used and the filling rate of the cylindrical molded body into the capsule container was set to 56.6%. A sintered product was obtained.
 得られた酸化物焼結体の相対密度は100%であり、バルク抵抗値(比抵抗)は6.2×10-4Ω・cmであった。 The obtained oxide sintered body had a relative density of 100% and a bulk resistance value (specific resistance) of 6.2 × 10 −4 Ω · cm.
 得られた酸化物焼結体の結晶構造をX線回折装置(パナリティカル(株)製EMPYREAN)により調べたところ、ホモロガス構造であるInGaZnO4に帰属される回折ピークに加え、他の結晶相に帰属される回折ピークも観察された。(1114)単相割合は88.60%であった。 When the crystal structure of the obtained oxide sintered body was examined with an X-ray diffractometer (EMPYREAN manufactured by Panalical Co., Ltd.), in addition to the diffraction peak attributed to InGaZnO 4 having a homologous structure, An assigned diffraction peak was also observed. (1114) The single phase ratio was 88.60%.
 得られた酸化物焼結体の平均結晶粒径は4.8μmであり、ビッカース硬度は421.3であり、抗折強度は107MPaであった。 The obtained oxide sintered body had an average crystal grain size of 4.8 μm, a Vickers hardness of 421.3, and a bending strength of 107 MPa.
 得られた酸化物焼結体のL*は38.3であり、a*は-1.88であり、b*は-2.54であり、ΔLは58.9であった。 L * of the obtained oxide sintered body was 38.3, a * was −1.88, b * was −2.54, and ΔL was 58.9.
 この酸化物焼結体を、銅板をバッキングプレートとして用い、インジウムはんだによりボンディングし、スパッタリングターゲットを得た。これを用いてDCスパッタリング法により透明基材(無アルカリガラス基板)上に酸化物半導体膜を成膜して、透明半導体基板を得た。この酸化物焼結体は、相対密度が100%であり、(1114)単相割合が88.60%であり、バルク抵抗値(比抵抗)が6.2×10-4Ω・cmであることから、高密度ではあるが、スパッタした膜の組成の均一性が低下していた。 This oxide sintered body was bonded with indium solder using a copper plate as a backing plate to obtain a sputtering target. Using this, an oxide semiconductor film was formed on a transparent substrate (non-alkali glass substrate) by a DC sputtering method to obtain a transparent semiconductor substrate. This oxide sintered body has a relative density of 100%, a (1114) single-phase ratio of 88.60%, and a bulk resistance value (specific resistance) of 6.2 × 10 −4 Ω · cm. For this reason, the uniformity of the composition of the sputtered film was reduced although it was high density.
[比較例9]
 比較例8において、インジウム元素とガリウム元素と亜鉛元素との原子数比(In:Ga:Zn)が2:2:1となるように秤量し、円柱状成型体のカプセル容器への充填率を54.8%とした以外は、比較例8と同様に実施し、酸化物焼結体を得た。
[Comparative Example 9]
In Comparative Example 8, the atomic ratio of indium element, gallium element and zinc element (In: Ga: Zn) was weighed to be 2: 2: 1, and the filling rate of the cylindrical molded body into the capsule container was determined. An oxide sintered body was obtained in the same manner as in Comparative Example 8 except that the content was 54.8%.
 得られた酸化物焼結体の相対密度は100%であり、バルク抵抗値(比抵抗)は4.2×10-4Ω・cmであった。 The obtained oxide sintered body had a relative density of 100% and a bulk resistance value (specific resistance) of 4.2 × 10 −4 Ω · cm.
 得られた酸化物焼結体の結晶構造をX線回折装置(パナリティカル(株)製EMPYREAN)により調べたところ、ホモロガス構造であるIn2Ga2ZnO7に帰属される回折ピークに加え、他の結晶相に帰属される回折ピークも観察された。(2217)単相割合は85.60%であった。 When the crystal structure of the obtained oxide sintered body was examined with an X-ray diffractometer (EMPYREAN manufactured by Panalical Co., Ltd.), in addition to the diffraction peak attributed to In 2 Ga 2 ZnO 7 having a homologous structure, A diffraction peak attributed to the crystalline phase was also observed. (2217) The ratio of single phase was 85.60%.
 得られた酸化物焼結体の平均結晶粒径は4.7μmであり、ビッカース硬度は436.2であり、抗折強度は114MPaであった。 The average grain size of the obtained oxide sintered body was 4.7 μm, the Vickers hardness was 436.2, and the bending strength was 114 MPa.
 得られた酸化物焼結体のL*は39.4であり、a*は-1.93であり、b*は-3.21であり、ΔLは57.9であった。 L * of the obtained oxide sintered body was 39.4, a * was -1.93, b * was -3.21, and ΔL was 57.9.
 この酸化物焼結体を、銅板をバッキングプレートとして用い、インジウム半田を用いてボンディングし、スパッタリングターゲットを得た。これを用いてDCスパッタリング法により透明基材(無アルカリガラス基板)上に酸化物半導体膜を成膜して、透明半導体基板を得た。この酸化物焼結体は、相対密度が100%であり、(2217)単相割合が85.6%であり、バルク抵抗値(比抵抗)が4.2×10-4Ω・cmであることから、高密度ではあるが、スパッタした膜の組成の均一性が低下していた。 This oxide sintered body was bonded using indium solder using a copper plate as a backing plate to obtain a sputtering target. Using this, an oxide semiconductor film was formed on a transparent substrate (non-alkali glass substrate) by a DC sputtering method to obtain a transparent semiconductor substrate. This oxide sintered body has a relative density of 100%, a (2217) single-phase ratio of 85.6%, and a bulk resistance value (specific resistance) of 4.2 × 10 −4 Ω · cm. For this reason, the uniformity of the composition of the sputtered film was reduced although it was high density.
 本発明の酸化物焼結体は、機械的強度が高く、相対密度が高く、バルク抵抗値が小さく、且つ、組成が均一であるので、スパッタリングターゲットとして有用である。 The oxide sintered body of the present invention is useful as a sputtering target because of its high mechanical strength, high relative density, low bulk resistance, and uniform composition.

Claims (17)

  1.  In、GaおよびZnを含む酸化物焼結体であって、L*a*b*表色系におけるL*が35以下である酸化物焼結体。 An oxide sintered body containing In, Ga, and Zn, wherein L * in the L * a * b * color system is 35 or less.
  2.  L*a*b*表色系におけるa*が-0.6以下である請求項1に記載の酸化物焼結体。 The oxide sintered body according to claim 1, wherein a * in the L * a * b * color system is -0.6 or less.
  3.  ビッカース硬度が400以上である請求項1または2に記載の酸化物焼結体。 The oxide sintered body according to claim 1 or 2, wherein the Vickers hardness is 400 or more.
  4.  抗折強度が90MPa以上である請求項1~3のいずれかに記載の酸化物焼結体。 The oxide sintered body according to any one of claims 1 to 3, wherein the bending strength is 90 MPa or more.
  5.  相対密度が99.5%以上である請求項1~4のいずれかに記載の酸化物焼結体。 The oxide sintered body according to any one of claims 1 to 4, wherein the relative density is 99.5% or more.
  6.  バルク抵抗値が1.0×10-3Ω・cm未満である請求項1~5のいずれかに記載の酸化物焼結体。 The oxide sintered body according to any one of claims 1 to 5, wherein a bulk resistance value is less than 1.0 × 10 -3 Ω · cm.
  7.  単相割合が97.5%以上である請求項1~6のいずれかに記載の酸化物焼結体。 The oxide sintered body according to any one of claims 1 to 6, wherein a single phase ratio is 97.5% or more.
  8.  結晶粒径が9μm以下である請求項1~7のいずれかに記載の酸化物焼結体。 The oxide sintered body according to any one of claims 1 to 7, wherein the crystal grain size is 9 µm or less.
  9.  In、GaおよびZnを含む酸化物焼結体であって、ビッカース硬度が450以上であり、相対密度が97%を超え、バルク抵抗値が1.0×10-3Ω・cm未満である酸化物焼結体。 An oxide sintered body containing In, Ga and Zn, having a Vickers hardness of 450 or more, a relative density of more than 97%, and a bulk resistance value of less than 1.0 × 10 −3 Ω · cm Sintered product.
  10.  In、GaおよびZnを含む酸化物焼結体であって、抗折強度が130MPa以上であり、相対密度が97%を超え、バルク抵抗値が1.0×10-3Ω・cm未満である酸化物焼結体。 An oxide sintered body containing In, Ga, and Zn, having a bending strength of 130 MPa or more, a relative density of over 97%, and a bulk resistance value of less than 1.0 × 10 −3 Ω · cm. Oxide sintered body.
  11.  ビッカース硬度が450以上である請求項10に記載の酸化物焼結体。 The oxide sintered body according to claim 10, having a Vickers hardness of 450 or more.
  12.  L*a*b*表色系におけるL*が35以下である請求項9~11のいずれかに記載の酸化物焼結体。 The oxide sintered body according to any one of claims 9 to 11, wherein L * in the L * a * b * color system is 35 or less.
  13.  L*a*b*表色系におけるa*が-0.6以下である請求項9~12のいずれかに記載の酸化物焼結体。 The oxide sintered body according to any one of claims 9 to 12, wherein a * in the L * a * b * color system is -0.6 or less.
  14.  相対密度が99.5%以上である請求項9~13のいずれかに記載の酸化物焼結体。 The oxide sintered body according to any one of claims 9 to 13, having a relative density of 99.5% or more.
  15.  単相割合が97.5%以上である請求項9~14のいずれかに記載の酸化物焼結体。 The oxide sintered body according to any one of claims 9 to 14, wherein a single phase ratio is 97.5% or more.
  16.  結晶粒径が4.5μm以下である請求項9~15のいずれかに記載の酸化物焼結体。 The oxide sintered body according to any one of claims 9 to 15, wherein the crystal grain size is 4.5 µm or less.
  17.  請求項1~16のいずれかに記載の酸化物焼結体を含むスパッタリングターゲット。 A sputtering target comprising the oxide sintered body according to any one of claims 1 to 16.
PCT/JP2015/071304 2014-07-31 2015-07-28 Sintered oxide WO2016017605A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020177001879A KR20170039141A (en) 2014-07-31 2015-07-28 Sintered oxide
CN201580040059.6A CN106660881A (en) 2014-07-31 2015-07-28 Sintered oxide
JP2016538350A JPWO2016017605A1 (en) 2014-07-31 2015-07-28 Oxide sintered body

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014156036 2014-07-31
JP2014156035 2014-07-31
JP2014-156036 2014-07-31
JP2014-156035 2014-07-31

Publications (1)

Publication Number Publication Date
WO2016017605A1 true WO2016017605A1 (en) 2016-02-04

Family

ID=55217505

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/071304 WO2016017605A1 (en) 2014-07-31 2015-07-28 Sintered oxide

Country Status (5)

Country Link
JP (1) JPWO2016017605A1 (en)
KR (1) KR20170039141A (en)
CN (1) CN106660881A (en)
TW (1) TW201609552A (en)
WO (1) WO2016017605A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018179556A1 (en) * 2017-03-31 2018-10-04 Jx金属株式会社 Sputtering target and production method therefor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6397593B1 (en) * 2017-10-02 2018-09-26 住友化学株式会社 Sputtering target
CN113423860A (en) * 2019-02-18 2021-09-21 出光兴产株式会社 Oxide sintered body, sputtering target, and method for producing sputtering target

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007223849A (en) * 2006-02-24 2007-09-06 Sumitomo Metal Mining Co Ltd Gallium oxide-based sintered compact and method of manufacturing the same
WO2009157535A1 (en) * 2008-06-27 2009-12-30 出光興産株式会社 Sputtering target for oxide semiconductor, comprising ingao3(zno) crystal phase and process for producing the sputtering target
WO2010070832A1 (en) * 2008-12-15 2010-06-24 出光興産株式会社 Sintered complex oxide and sputtering target comprising same
WO2012017659A1 (en) * 2010-08-05 2012-02-09 三菱マテリアル株式会社 Method for producing sputtering target, and sputtering target

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101699968B1 (en) * 2006-12-13 2017-01-26 이데미쓰 고산 가부시키가이샤 Sputtering target and oxide semiconductor film
KR101267164B1 (en) * 2009-06-05 2013-05-24 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Oxide sintered body, method for producing same, and starting material powder for producing oxide sintered body
US20120184066A1 (en) * 2009-09-30 2012-07-19 Idemitsu Kosan Co., Ltd. SINTERED In-Ga-Zn-O-TYPE OXIDE
JP2013129545A (en) 2011-12-20 2013-07-04 Tosoh Corp Igzo sintered body, method of manufacturing the same, and sputtering target

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007223849A (en) * 2006-02-24 2007-09-06 Sumitomo Metal Mining Co Ltd Gallium oxide-based sintered compact and method of manufacturing the same
WO2009157535A1 (en) * 2008-06-27 2009-12-30 出光興産株式会社 Sputtering target for oxide semiconductor, comprising ingao3(zno) crystal phase and process for producing the sputtering target
WO2010070832A1 (en) * 2008-12-15 2010-06-24 出光興産株式会社 Sintered complex oxide and sputtering target comprising same
WO2012017659A1 (en) * 2010-08-05 2012-02-09 三菱マテリアル株式会社 Method for producing sputtering target, and sputtering target

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018179556A1 (en) * 2017-03-31 2018-10-04 Jx金属株式会社 Sputtering target and production method therefor
JPWO2018179556A1 (en) * 2017-03-31 2019-04-04 Jx金属株式会社 Sputtering target and manufacturing method thereof

Also Published As

Publication number Publication date
KR20170039141A (en) 2017-04-10
JPWO2016017605A1 (en) 2017-05-25
TW201609552A (en) 2016-03-16
CN106660881A (en) 2017-05-10

Similar Documents

Publication Publication Date Title
US11542204B2 (en) Method for producing non-oxide ceramic powders
KR100689597B1 (en) Iron silicide sputtering target and method for production thereof
EP2039665A2 (en) Method of producing a lithium phosphate sintered body and sputtering target
JP6573629B2 (en) High purity refractory metal powders and their use in sputtering targets that can have disordered texture
KR100724256B1 (en) Sputtering target and process for producing the same
JP5768446B2 (en) Barium silicide polycrystal, method for producing the same, and barium silicide sputtering target
WO1995004167A1 (en) High melting point metallic silicide target and method for producing the same, high melting point metallic silicide film and semiconductor device
WO2016017605A1 (en) Sintered oxide
JP6306929B2 (en) Method for manufacturing sintered body
KR101648656B1 (en) Li-CONTAINING PHOSPHATE COMPOUND SINTERED BODY AND SPUTTERING TARGET, AND METHOD FOR MANUFACTURING SAID Li-CONTAINING PHOSPHATE COMPOUND SINTERED BODY
JP6011630B2 (en) Method for producing conductive mayenite compound with high electron density
JP5381724B2 (en) Method for producing ZnO vapor deposition material
JP5381725B2 (en) Method for producing ZnO vapor deposition material
EP2194158A1 (en) ZnO VAPOR DEPOSITION MATERIAL, PROCESS FOR PRODUCING THE SAME, AND ZnO FILM
KR101561182B1 (en) Silicon oxide-based sintered body used in the preparation of silicon oxide and method for preparing same
TWI519648B (en) Ti-Al alloy sputtering target
JP2014224036A (en) PRODUCTION METHOD OF In-Ga-Zn COMPOUND OXIDE SINTERED BODY
WO2021241522A1 (en) METAL-Si BASED POWDER, METHOD FOR PRODUCING SAME, METAL-Si BASED SINTERED BODY, SPUTTERING TARGET, AND METAL-Si BASED THIN FILM MANUFACTURING METHOD
JP5428872B2 (en) Method for producing ZnO vapor deposition material
WO2020170949A1 (en) Oxide sintered body, sputtering target, and method for producing sputtering target
TW201319007A (en) Conductive mayenite compound sintered compact, sputtering target, and method for producing conductive mayenite compound sintered compact
JP2004043955A (en) MgO VAPOR DEPOSITION MATERIAL AND ITS MANUFACTURING PROCESS, MANUFACTURING PROCESS OF MgO DEPOSITION FILM
JPWO2014171545A1 (en) In-Ga-Zn-based composite oxide sintered body and method for producing the same
JP2014224035A (en) PRODUCTION METHOD OF In-Ga-Zn COMPOUND OXIDE SINTERED BODY
JP6883431B2 (en) LiCoO2 sintered body and its manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15827654

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016538350

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177001879

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15827654

Country of ref document: EP

Kind code of ref document: A1