WO2014171386A1 - Liquid-crystal display, polarizing plate, and polarizer-protecting film - Google Patents

Liquid-crystal display, polarizing plate, and polarizer-protecting film Download PDF

Info

Publication number
WO2014171386A1
WO2014171386A1 PCT/JP2014/060377 JP2014060377W WO2014171386A1 WO 2014171386 A1 WO2014171386 A1 WO 2014171386A1 JP 2014060377 W JP2014060377 W JP 2014060377W WO 2014171386 A1 WO2014171386 A1 WO 2014171386A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
retardation
polyester film
less
liquid crystal
Prior art date
Application number
PCT/JP2014/060377
Other languages
French (fr)
Japanese (ja)
Inventor
芳紀 斎宮
林原 幹也
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Priority to CN201480022354.4A priority Critical patent/CN105143967B/en
Priority to KR1020217023849A priority patent/KR102505572B1/en
Priority to KR1020157031897A priority patent/KR102285068B1/en
Priority to JP2014525240A priority patent/JP6586727B2/en
Publication of WO2014171386A1 publication Critical patent/WO2014171386A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133635Multifunctional compensators

Definitions

  • the present invention relates to a liquid crystal display device, a polarizing plate and a polarizer protective film. More specifically, the present invention relates to a liquid crystal display device, a polarizing plate, and a polarizer protective film that have good visibility and are suitable for thinning.
  • Liquid crystal display devices are widely used in mobile phones, tablet terminals, personal computers, televisions, PDAs, electronic dictionaries, car navigation systems, music players, digital cameras, digital video cameras, and the like. As liquid crystal display devices become smaller and lighter, their use is no longer limited to offices and indoors, but is also being used outdoors and while moving by car or train.
  • Patent Document 1 discloses that a polyester film having a retardation of 3000 to 30000 nm is protected by a polarizer for the purpose of suppressing deterioration in image quality caused by rainbow spots or the like that may occur depending on the viewing angle when the liquid crystal display device is viewed. Use as a film is disclosed.
  • the present invention provides a polarizer protective film, a polarizing plate, and a liquid crystal display device in which the liquid crystal display device is realized that enables further thinning of the liquid crystal display device while maintaining good visibility.
  • the inventors of the present invention have made extensive studies in order to solve the above-mentioned problems. By controlling the degree of surface orientation of the polyester film to a certain level or less, the retardation value is maintained at 3000 or more and 30000 or less, and good visual recognition is achieved. The present inventors have found that it is possible to increase the mechanical strength of the film and reduce the thickness of the film while maintaining the properties. Based on such knowledge, the inventors have further studied and improved, and have completed the present invention.
  • the representative present invention is as follows.
  • Item 1 A backlight light source, two polarizing plates, a liquid crystal cell disposed between the two polarizing plates, the backlight light source is a white light source having a continuous emission spectrum;
  • the polarizing plate has a structure in which a polarizer protective film is laminated on both sides of a polarizer, At least one of the polarizer protective films has the following physical properties (a) to (c): (A) Retardation (Re) which is 3000 nm or more and 30000 nm or less; (B) ratio (Re / Rth) of retardation (Re) and thickness direction retardation (Rth) which is 1.0 or more; and (c) degree of plane orientation ( ⁇ P) which is 0.12 or less; It is a polyester film that satisfies Liquid crystal display device.
  • the polyester film has the following physical properties (d): (D) Birefringence index ( ⁇ Nxy) of 0.1 or more 2.
  • Item 4. The liquid crystal display device according to any one of Items 1 to 3, wherein the polyester film has a thickness of 20 ⁇ m to 90 ⁇ m.
  • Item 5. The liquid crystal display device according to any one of Items 1 to 4, wherein the polyester film has a tear strength of 50 mN or more.
  • the polarizing plate which has the structure where the polyester film which satisfy
  • the polyester film has the following physical properties (d): (D) Birefringence index ( ⁇ Nxy) of 0.1 or more Item 7.
  • Item 9. The polarizing plate according to any one of Items 6 to 8, wherein the polyester film has a tear strength of 50 mN or more.
  • Item 10. The following physical properties (a) to (c): (A) Retardation (Re) which is 3000 nm or more and 30000 nm or less; (B) ratio (Re / Rth) of retardation (Re) and thickness direction retardation (Rth) which is 1.0 or more; and (c) degree of plane orientation ( ⁇ P) which is 0.12 or less; A polarizer protective film, which is a polyester film satisfying the requirements.
  • the polyester film has the following physical properties (d): (D) Birefringence index ( ⁇ Nxy) of 0.1 or more Item 11.
  • Item 13. Item 13.
  • the polarizer protective film according to any one of Items 10 to 13, which is for a liquid crystal display device having a white light source having a continuous emission spectrum.
  • the polarizer protective film of the present invention is suitable for thinning because it is excellent in mechanical strength (tear strength).
  • the polarizer protective film of the present invention and the polarizing plate laminated with the polarizer film can be produced by producing a liquid crystal display device using the same, and when the image is viewed, rainbow spots can occur depending on the angle at which the image is viewed. Can be suppressed. Therefore, according to the present invention, it is possible to provide a liquid crystal display device that is excellent in visibility and thinner.
  • “rainbow spot” is a concept including “color spot”, “color shift”, and “interference color”.
  • the liquid crystal display device includes a backlight light source, two polarizing plates, and a liquid crystal cell disposed between the two polarizing plates.
  • the side where the backlight light source of the liquid crystal display device is located is referred to as the “light source side” with respect to the side where the person views the image, and the side where the person views the image is referred to as the “viewing side”.
  • the arrangement order of the constituent members of the liquid crystal display device is usually from a light source side to a viewing side, a backlight source, a polarizing plate (also referred to as “light source side polarizing plate”), a liquid crystal cell, and a polarizing plate (“viewing side”). Also referred to as “polarizing plate”.
  • the backlight light source is preferably a white light source having a continuous and broad emission spectrum from the viewpoint of suppressing the occurrence of rainbow spots when an image is visually recognized.
  • Continuous and broad emission spectrum means an emission spectrum in which there is no wavelength region where the light intensity is zero in the wavelength region of at least 450 to 650 nm, preferably in the visible light region.
  • the visible light region is, for example, a wavelength region of 400 to 760 nm, and may be 360 to 760 nm, 400 to 830 nm, or 360 to 830 nm.
  • any white light source can be used as long as the method and structure of the white light source having a continuous and broad emission spectrum are not particularly limited and the generation of rainbow spots can be suppressed, but the preferred light source is a white light emitting diode.
  • LED white light emitting diode.
  • White LEDs include phosphor-type LEDs (that is, elements that emit white light by combining phosphors with light emitting diodes that emit blue light or ultraviolet light using compound semiconductors) and organic light-emitting diodes (Organic light-emitting diodes). : OLED) and the like.
  • the preferred white LED is a phosphor-type white LED, more preferably a white LED comprising a light emitting element in which a blue light emitting diode using a compound semiconductor and a yttrium, aluminum, garnet yellow phosphor are combined. It is.
  • the liquid crystal cell any liquid crystal cell that can be used in a liquid crystal display device can be appropriately selected and used, and the method and structure thereof are not particularly limited.
  • a liquid crystal cell such as a VA mode, an IPS mode, a TN mode, an STN mode, or a bend alignment ( ⁇ type) can be appropriately selected and used. Therefore, the liquid crystal cell can be used by appropriately selecting a known liquid crystal material and a liquid crystal made of a liquid crystal material that can be developed in the future.
  • a preferred liquid crystal cell is a transmissive liquid crystal cell.
  • the polarizing plate has a structure in which both sides of a film-like polarizer are sandwiched between two protective films (also referred to as “polarizer protective film”).
  • polarizer protective film any polarizer (or polarizing film) used in the technical field can be appropriately selected and used.
  • Representative polarizers include those obtained by dyeing a dichroic material such as iodine on a polyvinyl alcohol (PVA) film or the like, but are not limited to this, and are known and will be developed in the future. A polarizer to be obtained can be appropriately selected and used.
  • PVA film used as the polarizer Commercially available products can be used as the PVA film used as the polarizer.
  • PVA film used as the polarizer for example, “Kuraray Vinylon (manufactured by Kuraray Co., Ltd.)”, “Tosero Vinylon (manufactured by Toh Cello Co., Ltd.)”, “Nichigo Vinylon (Nihon Gosei) Chemical Co., Ltd.) etc.
  • dichroic materials include iodine, diazo compounds, and polymethine dyes.
  • the liquid crystal display device usually includes two polarizing plates, and the polarizing plate is usually composed of two polarizers and a polarizer protective film laminated on both sides thereof.
  • a sheet of polarizer protective film may be included.
  • at least one of the four polarizer protective films is preferably a polyester film satisfying the following physical properties (a) to (c).
  • Retardation (Re) which is 3000 nm or more and 30000 nm or less
  • B Ratio (Re / Rth) of retardation (Re) and thickness direction retardation (Rth) being 1.0 or more
  • C Plane orientation degree ( ⁇ P) of 0.12 or less
  • the retardation of the polyester film used as a polarizer protective film is 3000 nm or more and 30000 nm or less from a viewpoint of reducing iridescence.
  • the lower limit of retardation is preferably 4500 nm or more, more preferably 5000 nm or more, further preferably 6000 nm or more, still more preferably 8000 nm or more, and still more preferably 10,000 nm or more.
  • the upper limit of the retardation is substantially not improved even if the retardation is further increased, and the thickness of the oriented film tends to increase depending on the height of the retardation. From the viewpoint that it may be contrary to the demand for thinning, the thickness is set to 30000 nm, but it can be set to a higher value. In this document, when simply described as “retardation”, it means in-plane retardation.
  • Retardation is represented by the product of birefringence ( ⁇ Nxy) caused by light incident on the film surface (xy plane) and thickness (d). Therefore, higher retardation is obtained as the value of ⁇ Nxy increases.
  • ⁇ Nxy birefringence
  • the value of ⁇ Nxy is larger in order to maintain the retardation value above a certain level while reducing the thickness.
  • the value of ⁇ Nxy of the polyester film is preferably 0.1 or more and less than 0.3.
  • the value of ⁇ Nxy is preferably 0.1 or more and 0.16 or less, more preferably 0.105 or more and 0.15 or less, and further preferably 0.11 or more and 0.145 or less. It is. In the case of a polyethylene naphthalate film, the value of ⁇ Nxy is preferably less than 0.3, more preferably less than 0.27, still more preferably less than 0.25, and still more preferably less than 0.24. On the other hand, if the birefringence index ⁇ Nxy is low, it is necessary to increase the film thickness in order to increase the retardation.
  • the birefringence index ⁇ Nxy is preferably 0.15 or more, more preferably It is 0.16 or more, more preferably 0.17 or more, still more preferably 0.18 or more, and particularly preferably 0.20 or more.
  • the retardation value of the polyester film changes depending on the observation angle.
  • the observation angle means a deviation ( ⁇ ) between the direction perpendicular to the plane of the polyester film (zero degree) and the direction in which the observer views the polyester film (FIG. 1).
  • the larger the observation angle the lower the retardation value at that angle. For this reason, even when rainbow spots are not observed when viewed from the front (that is, in the vertical direction) of the display device, rainbow spots may be observed when observed from an oblique direction. Therefore, in order to ensure good visibility even when the display device is observed from an oblique direction, it is preferable to consider a decrease in retardation due to an increase in observation angle.
  • the ratio (Re / Rth) of the retardation (Re) and the thickness direction retardation (Rth) of the polyester film is used as an index representing the degree of retardation reduction accompanying the increase in the observation angle. It is considered that as the Re / Rth increases, the birefringence action becomes more isotropic, and the degree of retardation decrease due to the increase in the observation angle becomes smaller, so that rainbow spots due to the observation angle are less likely to occur.
  • Re / Rth is preferably 1.0 or more, more preferably 1.1 or more, still more preferably 1.2 or more, still more preferably 1.25 or more, and still more preferably 1. 3 or more.
  • Thickness direction retardation means an average value of retardation obtained by multiplying two birefringences ⁇ Nxz and ⁇ Nyz, respectively, when viewed from a cross section in the film thickness direction, with the film thickness (d).
  • the maximum value of the Re / Rth ratio is 2.0 (that is, a complete uniaxial symmetry film), but the machine is in a direction orthogonal to the orientation main axis direction as it approaches 1.0 and a complete uniaxial symmetry film. In such a case, it is preferable to adjust the degree of plane orientation described below to be a specific numerical value or less.
  • the Re / Rth ratio is preferably as high as possible from the viewpoint of thin film formation and improved viewing angle characteristics, but the upper limit is not required up to the maximum value of 2.0, preferably 1.9 or less, more preferably 1.8. It is as follows. *
  • the retardation of the oriented film can be measured according to a known method. Specifically, it can be determined by measuring the refractive index and thickness in the biaxial direction. It can also be determined using a commercially available automatic birefringence measuring apparatus (for example, KOBRA-21ADH: manufactured by Oji Scientific Instruments). In any measurement, the measurement wavelength is 589 nm which is the wavelength of the sodium D line.
  • the film thickness is made thinner while satisfying the retardation and Re / Rth ratio for suppressing rainbow spots and maintaining the mechanical strength (tear strength) that can withstand the production of industrial liquid crystal display devices.
  • the degree of plane orientation ( ⁇ P) is preferably 0.12 or less.
  • the degree of plane orientation is the difference between the average value of the refractive index (Nx) in the longitudinal direction and the refractive index (Ny) in the width direction of the film and the value of the refractive index (Nz) in the thickness direction.
  • ⁇ P ((Nx + Ny) / 2) ⁇ Nz.
  • the upper limit of the degree of plane orientation is more preferably 0.11 or less, still more preferably 0.102 or less, still more preferably 0.1 or less, still more preferably 0.098 or less, and much more. Preferably it is 0.095 or less, More preferably, it is 0.09 or less.
  • the lower limit of the degree of plane orientation is preferably 0.04 or more, more preferably 0.05 or more, and still more preferably 0.06 or more.
  • the degree of plane orientation is less than 0.04, the mechanical strength of the film is too low, which is not preferable in terms of workability.
  • the degree of plane orientation exceeds 0.12, it is difficult to achieve both retardation and mechanical strength under the thin film condition, and any one of the problems may occur.
  • the thickness (d) of the polyester film used as the polarizer protective film is not particularly limited, but is preferably 300 ⁇ m or less from the viewpoint of providing a thinner polarizer protective film, a polarizing plate, and a liquid crystal display device. Is not more than 100 ⁇ m, more preferably not more than 90 ⁇ m, still more preferably not more than 80 ⁇ m, still more preferably not more than 60 ⁇ m, still more preferably not more than 50 ⁇ m, still more preferably not more than 45 ⁇ m, particularly preferably not more than 40 ⁇ m, most preferably not more than 35 ⁇ m. It is as follows.
  • the lower limit of the thickness of the polyester film is 10 ⁇ m or more, preferably 15 ⁇ m or more, more preferably 20 ⁇ m or more, and further preferably 25 ⁇ m or more, from the viewpoint that it is difficult to maintain sufficient tear strength.
  • the polyester film used as the polarizer protective film preferably has a mechanical strength that can withstand handling in the production of an industrial liquid crystal display device even when the thickness is small. From this viewpoint, the polyester film preferably has a tear strength of 50 mN or more. Preferably, the tear strength is 100 mN or more, more preferably 130 mN or more. The tear strength of the film can be measured according to the method of JIS P-8116 as shown in the examples described later.
  • the polyester film used as the polarizer protective film preferably has heat resistance that can withstand handling of an industrial liquid crystal display device. From this viewpoint, the polyester film preferably has a heat shrinkage of ⁇ 5.0% to 5.0%, more preferably ⁇ 3.0% to 3.0%, and still more preferably ⁇ 2.0% to 2.0%.
  • the heat shrinkage rate of the film can be measured according to the method of JIS C-2318 as shown in the examples described later.
  • the polyester film used as the polarizer protective film has a light transmittance of 20% or less at a wavelength of 380 nm.
  • the light transmittance at 380 nm is more preferably 15% or less, further preferably 10% or less, and particularly preferably 5% or less. If the light transmittance is 20% or less, the optical functional dye can be prevented from being deteriorated by ultraviolet rays.
  • the transmittance is measured in a method perpendicular to the plane of the film, and can be measured using a spectrophotometer (for example, Hitachi U-3500 type).
  • inorganic particles, heat-resistant polymer particles, alkali metal compounds, alkaline earth metal compounds, phosphorus compounds, antistatic agents, light proofing agents, flame retardants, thermal stabilizers, antioxidants, antigelling agents, interfaces An activator or the like can be added within a range that does not impair the effects of the present invention and does not impair the transparency.
  • a polyester film satisfying the above physical properties can be obtained by controlling stretching conditions and the like in general polyester film production conditions.
  • a polyester film is generally produced by the following procedure. That is, the polyester resin is melted, and the non-oriented polyester extruded and formed into a sheet shape is stretched in the machine direction at a temperature equal to or higher than the glass transition temperature, and then stretched in the transverse direction by a tenter. Obtained by heat treatment. Stretching in the machine direction and the transverse direction can be performed separately for each direction, and by extending the clip width while guiding the tenter and changing the speed of the roll to stretch the machine direction and the transverse direction simultaneously. is there.
  • a polyester film satisfying the above-described physical properties it is preferable to perform simple uniaxial stretching, and it is more preferable to perform relaxation (relaxation) treatment in a direction perpendicular to the stretching direction simultaneously with stretching in any direction. More specifically, an equipment generally called a simultaneous biaxial stretching machine is used, and the heat treatment is performed after the longitudinal stretching and the transverse relaxation treatment, or the transverse stretching and the longitudinal relaxation treatment.
  • a method can be exemplified.
  • the order of stretching and relaxation treatment is preferably performed at the same time, but it may be performed in the order of relaxing after stretching or stretching after relaxing.
  • a more preferable method is a method in which the stretching in the transverse direction and the relaxation treatment in the longitudinal direction are simultaneously performed.
  • the roll after stretching is slower than the roll before stretching while being heated by an external heater or the like, and then relaxed in the longitudinal direction and then guided to the tenter and stretched in the lateral direction.
  • it can be carried out by gradually narrowing the lateral clip width while heating in the tenter after performing longitudinal stretching by the method used in normal biaxial stretching.
  • the direction of uniaxial stretching is preferably stretching in the transverse direction.
  • the film can be stretched in the machine direction, there are problems such as the occurrence of minute flaws on the film surface and the occurrence of stretching unevenness during the longitudinal stretching, and attention should be paid. Furthermore, using the same principle as described above, the uniaxially stretched film can be subjected to a relaxation treatment with any one of a simultaneous biaxial stretching machine, a tenter, and a roll.
  • the film forming conditions (particularly stretching conditions) of the polyester film will be described more specifically.
  • the stretching temperature is preferably from 80 to 130 ° C, particularly preferably from 90 to 120 ° C.
  • the draw ratio is preferably 0.4 to 6 times, particularly preferably 0.6 to 5 times. It is preferable to set the stretching ratio in the direction perpendicular to the relaxing direction to 3 to 6 times so that the stretching ratio in the relaxing direction is 0.4 to 0.97 times. Furthermore, it is more preferable that one direction is relaxed by 0.6 to 0.9 times and the film is stretched by 3.5 to 5.5 times in the direction perpendicular thereto.
  • the magnification in the direction of relaxation and the direction of stretching can be arbitrarily set as long as it is within the above range, but uniaxiality increases as the stretching ratio increases, so that the degree of relaxation can be increased. preferable.
  • the draw ratio is lowered, if the effect is greatly relaxed, the effect of wrinkles cannot be ignored. Therefore, it is preferable to lower the relaxation rate.
  • the ratio of the longitudinal draw ratio and the transverse draw ratio In order to control the retardation within the above range, it is preferable to control the ratio of the longitudinal draw ratio and the transverse draw ratio. If the difference between the vertical and horizontal draw ratios is too small, it is difficult to increase the retardation, which is not preferable. Moreover, if the magnification in the relaxing direction is too low, generation of wrinkles cannot be avoided, which is not preferable. Furthermore, if the magnification in the extending direction is too high, breakage tends to occur, which is not preferable. Setting the stretching temperature low is also a preferable measure for increasing the retardation. In the subsequent heat treatment, the treatment temperature is preferably from 100 to 250 ° C., particularly preferably from 180 to 245 ° C.
  • the fluctuation of retardation on the film is preferably small, and in order to suppress the fluctuation, it is preferable to control the thickness variation of the film. Since the stretching temperature and the stretching ratio greatly affect the thickness variation of the film, it is preferable to optimize the film forming conditions from the viewpoint of suppressing the thickness variation. In particular, if the longitudinal stretching ratio is lowered to increase the retardation, the longitudinal thickness unevenness may be deteriorated. Since the vertical thickness unevenness may deteriorate in a specific range of the draw ratio, it is desirable to set the film forming conditions outside such a range.
  • the thickness unevenness of the polyester film is preferably 5.0% or less, more preferably 4.5% or less, still more preferably 4.0% or less, and 3.0% % Or less is particularly preferable.
  • the stretching ratio, the stretching temperature, and the thickness of the film can be appropriately set.
  • the higher the stretching ratio, the lower the stretching temperature, and the thicker the film the higher the retardation.
  • the lower the stretching ratio, the higher the stretching temperature, and the thinner the film the lower the retardation.
  • the polyester resin for obtaining a polyester film satisfying the above physical properties can be any polyester resin used in the field. That is, it can be obtained by condensing an arbitrary dicarboxylic acid and a diol.
  • the dicarboxylic acid include terephthalic acid, isophthalic acid, orthophthalic acid, 2,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, and diphenylcarboxylic acid.
  • Acid diphenoxyethanedicarboxylic acid, diphenylsulfonecarboxylic acid, anthracenedicarboxylic acid, 1,3-cyclopentanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, hexahydroterephthalic acid, hexahydroisophthalate Acid, malonic acid, dimethylmalonic acid, succinic acid, 3,3-diethylsuccinic acid, glutaric acid, 2,2-dimethylglutaric acid, adipic acid, 2-methyladipic acid, trimethyladipic acid, pimelic acid, azelaic acid, Dimer , It may be mentioned sebacic acid, suberic acid, dodecamethylene dicarboxylic acid.
  • diol examples include ethylene glycol, propylene glycol, hexamethylene glycol, neopentyl glycol, 1,2-cyclohexanedimethanol, 1,4-cyclohexanedimethanol, decamethylene glycol, 1,3-propanediol, 1,4 -Butanediol, 1,5-pentanediol, 1,6-hexadiol, 2,2-bis (4-hydroxyphenyl) propane, bis (4-hydroxyphenyl) sulfone and the like.
  • the dicarboxylic acid component and the diol component constituting the polyester film may each be used alone or in combination of two or more.
  • Specific polyester resins constituting the polyester film include, for example, polyethylene terephthalate, polypropylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, etc., preferably polyethylene terephthalate and polyethylene naphthalate, preferably polyethylene terephthalate.
  • the polyester resin may contain other copolymer components. From the viewpoint of mechanical strength, the proportion of the copolymer components is preferably 3 mol% or less, preferably 2 mol% or less, more preferably 1.5 mol% or less. .
  • the polyester film satisfying the above physical properties can be used as an arbitrary polarizer protective film among the four polarizer protective films used in the liquid crystal display device.
  • the polyester film is used as a light source side polarizer protective film constituting the light source side polarizing plate and / or a visual recognition side polarizer protective film constituting the visual recognition side polarizing plate.
  • the said polyester film is a polarizer protective film arrange
  • Any film conventionally used as a polarizer protective film can be used as a polarizer protective film that does not use a polyester film that satisfies the above physical properties.
  • a film having no retardation such as a TAC film, an acrylic film, and a norbornene resin film.
  • the film without retardation can be used as, for example, a viewing-side polarizer protective film constituting the light source-side polarizing plate and / or a light source-side polarizer protecting film constituting the viewing-side polarizing plate.
  • the polarizing plate composed of the polarizer and the polarizer protective film described above has various functional layers (for example, a hard coat layer) on the surface for the purpose of preventing reflection, suppressing glare, and / or suppressing scratches. May be.
  • the polarizer protective film preferably has an easy-adhesion layer mainly composed of at least one of a polyester resin, a polyurethane resin, or a polyacrylic resin on at least one surface in order to improve the adhesion with the polarizer.
  • the “main component” refers to a component that is 50% by mass or more of the solid components constituting the easy-adhesion layer.
  • the coating liquid for the easy-adhesion layer formed on the polarizer protective film is preferably an aqueous coating liquid containing at least one of water-soluble or water-dispersible copolymer polyester resin, acrylic resin, and polyurethane resin.
  • These coating liquids are water-soluble or water-dispersible as disclosed in Japanese Patent No. 3567927, Japanese Patent No. 3589232, Japanese Patent No. 3589233, Japanese Patent No. 3900191, Japanese Patent No. 4150982, and the like. Examples thereof include a copolymerized polyester resin solution, an acrylic resin solution, and a polyurethane resin solution.
  • the easy adhesion layer formed on the polarizer protective film is a reverse roll coating method, a gravure coating method, a kiss coating method, a roll brush method, a spray coating method, an air knife coating method, a wire bar coating method, a pipe doctor method, It can apply
  • Examples of the functional layer laminated at an arbitrary position on the viewing side of the polarizer protective film include, for example, an antiglare layer, an antireflection layer, a low reflection layer, a low reflection antiglare layer, an antireflection antiglare layer, an antistatic layer, and silicone.
  • an antiglare layer an antireflection layer, a low reflection layer, a low reflection antiglare layer, an antireflection antiglare layer, an antistatic layer, and silicone.
  • One or more selected from the group consisting of a layer, an adhesive layer, an antifouling layer, a water repellent layer, a blue cut layer, and the like can be used.
  • the refractive index of the easy-adhesion layer can be adjusted by a known method.
  • the refractive index of the easy-adhesion layer can be easily adjusted by adding titanium, zirconium, or other metal species to the binder resin.
  • the hard coat layer only needs to be a layer having hardness and transparency.
  • various curable properties such as an ionizing radiation curable resin typically cured by ultraviolet rays or an electron beam, and a thermosetting resin cured by heat. What was formed as a cured resin layer of resin is used.
  • thermoplastic resins and the like may be added as appropriate.
  • ionizing radiation curable resins are preferable because they are representative and an excellent hard coating film can be obtained.
  • ionizing radiation curable resin a conventionally known resin may be appropriately employed.
  • a radical polymerizable compound having an ethylenic double bond, a cationic polymerizable compound such as an epoxy compound, and the like are typically used. These compounds include monomers, oligomers, prepolymers, and the like. These can be used alone or in appropriate combination of two or more. Typical compounds are various (meth) acrylate compounds that are radical polymerizable compounds.
  • compounds used at a relatively low molecular weight include, for example, polyester (meth) acrylate, polyether (meth) acrylate, acrylic (meth) acrylate, epoxy (meth) acrylate, urethane (meth) ) Acrylate, etc.
  • the monomer examples include monofunctional monomers such as ethyl (meth) acrylate, ethylhexyl (meth) acrylate, styrene, methylstyrene, and N-vinylpyrrolidone; or, for example, trimethylolpropane tri (meth) acrylate, tripropylene glycol diester (Meth) acrylate, diethylene glycol di (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol hexa (meth) acrylate, 1,6-hexanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, etc. These polyfunctional monomers are also used as appropriate.
  • (Meth) acrylate means acrylate or methacrylate.
  • a photopolymerization initiator When the ionizing radiation curable resin is cured with an electron beam, a photopolymerization initiator is not required, but when it is cured with ultraviolet rays, a known photopolymerization initiator is used.
  • a photopolymerization initiator For example, in the case of a radical polymerization system, acetophenones, benzophenones, thioxanthones, benzoin, benzoin methyl ether, or the like can be used alone or in combination as a photopolymerization initiator.
  • an aromatic diazonium salt, aromatic sulfonium salt, aromatic iodonium salt, metatheron compound, benzoin sulfonate, or the like can be used alone or in combination as a photopolymerization initiator.
  • the thickness of the hard coat layer may be an appropriate thickness, for example, 0.1 to 100 ⁇ m, but usually 1 to 30 ⁇ m.
  • the hard coat layer can be formed by appropriately adopting various known coating methods.
  • thermoplastic resin In the ionizing radiation curable resin, a thermoplastic resin, a thermosetting resin, or the like can be appropriately added for the purpose of adjusting physical properties as appropriate.
  • thermoplastic resin or thermosetting resin include an acrylic resin, a urethane resin, and a polyester resin, respectively.
  • an ultraviolet absorber in the ionizing radiation curable resin.
  • the ionizing radiation curable resin is preferably cured with an electron beam in order to reliably prevent the ultraviolet coater from inhibiting the curing of the hard coat layer.
  • the ultraviolet absorber include organic ultraviolet absorbers such as benzotriazole compounds and benzophenone compounds, or inorganic ultraviolet absorbers such as fine particles of zinc oxide, titanium oxide, and cerium oxide having a particle size of 0.2 ⁇ m or less, What is necessary is just to select and use from well-known things.
  • the addition amount of the ultraviolet absorber is about 0.01 to 5% by mass in the ionizing radiation curable resin composition.
  • a radical scavenger such as a hindered amine radical scavenger in combination with an ultraviolet absorber.
  • the electron beam irradiation has an acceleration voltage of 70 kV to 1 MV and an irradiation dose of about 5 to 100 kGy (0.5 to 10 Mrad).
  • an antiglare layer is provided on the most visible side of the image display device.
  • a conventionally known layer may be appropriately employed, and it is generally formed as a layer in which an antiglare agent is dispersed in a resin.
  • an antiglare agent inorganic or organic fine particles are used. These fine particles have a spherical shape, an elliptical shape, or the like. The fine particles are preferably transparent. Examples of such fine particles include silica beads as inorganic fine particles and resin beads as organic fine particles.
  • the resin beads include styrene beads, melamine beads, acrylic beads, acrylic-styrene beads, polycarbonate beads, polyethylene beads, and benzoguanamine-formaldehyde beads.
  • the fine particles can be usually added in an amount of about 2 to 30 parts by mass, preferably about 10 to 25 parts by mass with respect to 100 parts by mass of the resin.
  • the resin for dispersing and holding the antiglare agent is preferably as hard as possible as in the hard coat layer. Therefore, as the resin, for example, a curable resin such as an ionizing radiation curable resin or a thermosetting resin described in the hard coat layer can be used.
  • the thickness of the antiglare layer may be an appropriate thickness, and is usually about 1 to 20 ⁇ m.
  • the antiglare layer can be formed by appropriately adopting various known coating methods.
  • an antireflection layer is provided on the outermost surface side of the image display device and the interface of each film with air.
  • the antireflection layer a conventionally known layer may be appropriately employed.
  • the antireflection layer is composed of at least a low refractive index layer, and a low refractive index layer and a high refractive index layer (having a higher refractive index than the low refractive index layer) are alternately stacked adjacent to each other and the surface side has a low refractive index. It consists of multiple layers as the rate layer.
  • Each thickness of the low refractive index layer and the high refractive index layer may be appropriately determined according to the application, and is about 0.1 ⁇ m when adjacent layers are stacked, and about 0.1 to 1 ⁇ m when the low refractive index layer alone is used. It is preferable.
  • a layer containing a low refractive index material such as silica or magnesium fluoride in a resin a layer of a low refractive index resin such as a fluorine-based resin, or a low refractive index material in a low refractive index resin
  • a thin film formed by a thin film forming method for example, physical or chemical vapor deposition such as vapor deposition, sputtering, CVD, or the like), an oxidation layer, or a layer made of a low refractive index material such as silica or magnesium fluoride.
  • a film formed by a sol-gel method in which a silicon oxide gel film is formed from a silicon sol solution, or a layer in which void-containing fine particles are contained in a resin as a low refractive index substance.
  • the void-containing fine particles are fine particles containing gas inside, fine particles having a porous structure containing gas, etc., and with respect to the original refractive index of the fine particle solid portion, It means fine particles whose refractive index is apparently lowered.
  • void-containing fine particles include silica fine particles disclosed in JP-A No. 2001-233611.
  • the void-containing fine particles include hollow polymer fine particles disclosed in JP-A No. 2002-805031, in addition to inorganic substances such as silica.
  • the particle diameter of the void-containing fine particles is, for example, about 5 to 300 nm.
  • a layer containing a high refractive index material such as titanium oxide, zirconium oxide or zinc oxide in a resin, a layer of a high refractive index resin such as a fluorine-free resin, or a high refractive index material is highly refracted.
  • a layer formed of a high-refractive-index material such as titanium oxide, zirconium oxide, or zinc oxide in a thin film forming method for example, vapor deposition, sputtering, CVD, etc., physical or chemical vapor deposition) Method).
  • Anti-fouling layer As the antifouling layer, a conventionally known layer may be appropriately employed. Generally, in the resin, a silicon compound such as silicone oil or silicone resin; a fluorine compound such as fluorine surfactant or fluorine resin. It can be formed by a known coating method using a paint containing a stain-proofing agent such as wax. The thickness of the antifouling layer may be set appropriately, and can usually be about 1 to 10 ⁇ m.
  • the antistatic layer As the antistatic layer, a conventionally known layer may be appropriately employed, and it is generally formed as a layer containing an antistatic layer in a resin.
  • an organic or inorganic compound is used.
  • the antistatic layer of an organic compound includes a cationic antistatic agent, an anionic antistatic agent, an amphoteric antistatic agent, a nonionic antistatic agent, an organometallic antistatic agent, and the like.
  • the inhibitor is used not only as a low molecular compound but also as a high molecular compound.
  • conductive polymers such as polythiophene and polyaniline are also used.
  • the antistatic agent for example, conductive fine particles made of a metal oxide are used.
  • the particle diameter of the conductive fine particles is, for example, about 0.1 nm to 0.1 ⁇ m in average particle diameter in terms of transparency.
  • the metal oxide include ZnO, CeO 2 , Sb 2 O 2 , SnO 2 , ITO (indium doped tin oxide), In 2 O 3 , Al 2 O 3 , ATO (antimony doped tin oxide), AZO (aluminum doped zinc oxide) etc. are mentioned.
  • the resin containing the antistatic layer examples include curable resins such as ionizing radiation curable resins and thermosetting resins as described in the hard coat layer.
  • curable resins such as ionizing radiation curable resins and thermosetting resins as described in the hard coat layer.
  • thermoplastic resin or the like is also used.
  • the thickness of the antistatic layer may be set appropriately, and is usually about 0.01 to 5 ⁇ m.
  • the antistatic layer can be formed by appropriately adopting various known coating methods.
  • the liquid crystal display device of the present invention includes the above-described backlight light source, two polarizing plates, and a liquid crystal cell disposed between the two polarizing plates, but may optionally further include other members. .
  • a color filter, a lens film, a diffusion sheet, an antireflection film, and the like may be further provided.
  • Thickness (d) The thickness (d) was determined in accordance with JIS K 7130 “Plastic Film and Sheet Thickness Measurement Method (Method A)”.
  • Refractive index (Nx, Ny, Nz) Based on JIS K 7142 “Plastic Refractive Index Measurement Method (Method A)”, MD refractive index (Nx), TD refractive index (Ny), and thickness direction refractive index (Nz) were determined. It was measured using a sodium D line with a normal wavelength of 589 nm.
  • Birefringence ( ⁇ Nxy) and retardation (Re) Retardation is the direction of each axis when the thickness direction is the z-axis with respect to the film surface, and the two axis directions perpendicular to the z-axis and perpendicular to each other are the x-axis and the y-axis.
  • the in-plane retardation which is is defined as retardation (Re). Accordingly, the birefringence ( ⁇ xy) and retardation (Re) were determined by the following formulas for each. Each refractive index was measured using an Abbe refractometer. The unit of retardation is nm.
  • Thickness direction retardation indicates retardation generated by light incident from the thickness direction.
  • the product of the average of the two birefringences in the xz plane and the yz plane and the film thickness (d) was obtained from the following equation. The unit is nm.
  • the said polarizing plate was installed so that the polarizer protective film at the side of visual recognition of the produced polarizing plate might turn into a film of an Example or a comparative example.
  • a white image was displayed on the liquid crystal display device thus fabricated, and visual observation was performed from the front of the display and from an oblique direction, and the occurrence of rainbow spots was determined as follows.
  • the observation angle is an angle formed by a line drawn in the normal direction (vertical) from the center of the display screen and a line connecting the display center and the eye position at the time of observation.
  • B No generation of rainbow spots when the observation angle is in the range of 0 ° to 55 °.
  • a very thin rainbow is observed in part in the range where the observation angle exceeds 55 °.
  • X Iridescents are observed when the observation angle is in the range of 0 ° to 55 °.
  • Tear Strength The tear strength of each film was measured according to JIS P-8116 using an Elmendorf tear tester manufactured by Toyo Seiki Seisakusho. The tearing direction was performed so as to be parallel to the orientation main axis direction of the film, and evaluated according to the following criteria. The measurement in the orientation main axis direction was performed with a molecular orientation meter (MOA-6004 type molecular orientation meter, manufactured by Oji Scientific Instruments).
  • Tear strength is 50 mN or more ⁇ : Tear strength is less than 50 mN
  • the polyethylene terephthalate resin thus obtained is abbreviated as PET (A).
  • PET (B) 10 parts by weight of a dried UV absorber (2,2 ′-(1,4-phenylene) bis (4H-3,1-benzoxazinon-4-one), PET (A) containing no particles (inherent viscosity 0.62 dl / g) was mixed with 90 parts by mass, and a kneading extruder was used to obtain a resin containing an ultraviolet absorber, and the polyethylene terephthalate resin thus obtained is abbreviated as PET (B).
  • a dried UV absorber (2,2 ′-(1,4-phenylene) bis (4H-3,1-benzoxazinon-4-one)
  • PET (A) containing no particles inherent viscosity 0.62 dl / g) was mixed with 90 parts by mass, and a kneading extruder was used to obtain a resin containing an ultraviolet absorber, and the polyethylene terephthalate resin thus obtained is abbreviated as PET (B).
  • the dicarboxylic acid component (based on the total dicarboxylic acid component) is 46 mol% terephthalic acid, 46 mol% isophthalic acid and 8 mol% sodium 5-sulfonatoisophthalate.
  • Example 1 90 parts by mass of PET (A) resin pellets containing no particles as a raw material for a base film intermediate layer having a three-layer structure and 10 parts by mass of PET (B) resin pellets containing an ultraviolet absorber were dried under reduced pressure at 135 ° C. for 6 hours. (1 Torr), and then supplied to the extruder 2 (for the intermediate layer II layer). Moreover, PET (A) was dried by a conventional method, supplied to the extruder 1 (for the outer layer I layer and outer layer III), and melted at 285 ° C.
  • the above-mentioned adhesive property-modified coating solution was applied on both sides of this unstretched PET film by a reverse roll method so that the coating amount after drying was 0.08 g / m 2, and then dried at 80 ° C. for 20 seconds. did.
  • the unstretched film on which this coating layer is formed is guided to a simultaneous biaxial stretching machine, and the end of the film is held by a clip while being guided to a hot air zone at a temperature of 90 ° C. so that the magnification is 0.8 times in the vertical direction. It was relaxed and simultaneously stretched 4.0 times in the transverse direction. Next, it was treated at a temperature of 170 ° C. for 30 seconds and further subjected to a relaxation treatment of 3% in the width direction to obtain a uniaxially oriented PET film having a film thickness of about 50 ⁇ m.
  • Example 2 A uniaxially oriented PET film was obtained in the same manner as in Example 1 except that the thickness of the unstretched film was changed to about 58 ⁇ m and relaxed at a magnification of 0.9 times in the longitudinal direction.
  • Example 3 By changing the thickness of the unstretched film, the thickness was about 38 ⁇ m, the thickness was relaxed at a magnification of 0.7 times, and the heat treatment was performed at a temperature of 180 ° C. for 30 seconds, as in Example 1. A uniaxially oriented PET film was obtained.
  • Example 4 By changing the thickness of the unstretched film, the thickness was about 25 ⁇ m, the transverse stretch ratio was 5.0 times, and uniaxial in the same manner as in Example 1 except that the heat treatment was performed at a temperature of 180 ° C. for 30 seconds. An oriented PET film was obtained.
  • Example 5 By changing the thickness of the unstretched film, the thickness was about 80 ⁇ m, relaxed at a magnification of 0.85 times in the longitudinal direction, the stretching temperature was 95 ° C., and heat treatment was performed at a temperature of 180 ° C. for 30 seconds. A uniaxially oriented PET film was obtained in the same manner as Example 1 except for the above.
  • Example 6 A uniaxially oriented PET film was obtained in the same manner as in Example 1 except that the thickness of the unstretched film was changed to about 38 ⁇ m and relaxed at a magnification of 0.6 times in the longitudinal direction.
  • Example 1 The unstretched film produced by the same method as in Example 1 was guided to a tenter stretching machine, and the end of the film was guided with a clip while being guided to a hot air zone at a temperature of 125 ° C., and stretched 4.0 times in the width direction. . Next, while maintaining the width stretched in the width direction, the film was treated at a temperature of 225 ° C. for 30 seconds and further subjected to a relaxation treatment of 3% in the width direction to obtain a uniaxially oriented PET film having a film thickness of about 25 ⁇ m.
  • Comparative Example 2 In the same manner as in Example 1, the film was stretched 3.4 times in the running direction and 4.0 times in the width direction to obtain a biaxially oriented PET film having a film thickness of about 38 ⁇ m.
  • Comparative Example 3 In the same manner as in Comparative Example 1, the film was stretched 4.0 times in the running direction and 1.0 times in the width direction to obtain a uniaxially oriented PET film having a film thickness of about 100 ⁇ m. Due to the uniaxially stretched film, minute scratches were observed on the film surface.
  • Example 4 A uniaxially oriented PET film was obtained in the same manner as in Example 1 except that the thickness of the unstretched film was changed to about 38 ⁇ m and the longitudinal relaxation treatment was not performed.
  • Example 5 A uniaxially oriented PET film was obtained in the same manner as in Example 3 except that the thickness of the unstretched film was changed to about 38 ⁇ m and the longitudinal relaxation treatment was not performed.
  • Example 6 A uniaxially oriented PET film was obtained in the same manner as in Example 4 except that the thickness of the unstretched film was changed to about 25 ⁇ m and the longitudinal relaxation treatment was not performed.
  • the films of Examples 1 to 6 were used as a polarizer protective film, it was confirmed that the generation of rainbow spots was significantly suppressed and a liquid crystal display device having excellent visibility was obtained. Further, the films of Examples 1 to 6 not only make it possible to provide an image display device with excellent visibility, but also have a sufficient tear strength despite being relatively thin, It has been confirmed that it is suitable for use in the manufacture of typical image display devices. On the other hand, when the films of Comparative Examples 1, 2, and 6 were used as polarizer protective films, rainbow spots were produced when observed from the front, and good visibility could not be obtained.
  • the film of Comparative Example 3 has no problem in visibility when used as a polarizer protective film, but is not suitable for the production of an industrial and stable liquid crystal display device because of insufficient tear strength. Not found out. This is considered to be because the film of Comparative Example 3 has a relatively high Re value and Re / Rth ratio but a high ⁇ P value.
  • the generation of rainbow spots was not observed when the observation angle was observed in the range of 0 ° to 55 °, but it was extremely thin in part in the range where the observation angle exceeded 55 °. Iridae was observed. This is presumably because the films of Comparative Examples 4 and 5 have a relatively high Re but a low Re / Rth ratio.
  • the tear strength was insufficient due to the high ⁇ P value.
  • the polarizing plate and the polarizer protective film of the present invention By using the liquid crystal display device, the polarizing plate and the polarizer protective film of the present invention, it is possible to provide a thin liquid crystal display device with excellent visibility. Therefore, the industrial applicability of the present invention is extremely high.

Abstract

To provide the following: a polarizer-protecting film and polarizing plate that make it possible to further reduce the thickness of a liquid-crystal display while maintaining good visibility; and such a liquid-crystal display. A liquid-crystal display that has a backlight light source, two polarizing plates, and liquid-crystal cells laid out between said polarizing plates. The backlight light source is a white light source that has a continuous emission spectrum. Each of the polarizing plates has a structure wherein a polarizer-protecting film is laminated to each side of a polarizer, with at least one of said polarizer-protecting films being a polyester film with the following properties: (a) a retardation (Re) between 3,000 and 30,000 nm, inclusive; (b) a ratio (Re/Rth) between retardation (Re) and thickness-direction retardation (Rth) of at least 1.0; and (c) a degree of planar orientation (ΔP) of at most 0.12.

Description

液晶表示装置、偏光板及び偏光子保護フィルムLiquid crystal display device, polarizing plate and polarizer protective film
 本発明は、液晶表示装置、偏光板及び偏光子保護フィルムに関する。より具体的には、視認性が良好で、薄型化に適した液晶表示装置、偏光板及び偏光子保護フィルムに関する。 The present invention relates to a liquid crystal display device, a polarizing plate and a polarizer protective film. More specifically, the present invention relates to a liquid crystal display device, a polarizing plate, and a polarizer protective film that have good visibility and are suitable for thinning.
 液晶表示装置は、携帯電話、タブレット端末、パーソナルコンピューター、テレビ、PDA、電子辞書、カーナビゲーション、音楽プレーヤー、デジタルカメラ、デジタルビデオカメラ等において幅広く実用化されている。液晶表示装置の小型化、軽量化が進むについて、その利用はもはやオフィスや屋内に限られず、屋外及び車や電車等での移動中の利用も拡大している。 Liquid crystal display devices are widely used in mobile phones, tablet terminals, personal computers, televisions, PDAs, electronic dictionaries, car navigation systems, music players, digital cameras, digital video cameras, and the like. As liquid crystal display devices become smaller and lighter, their use is no longer limited to offices and indoors, but is also being used outdoors and while moving by car or train.
 特許文献1には、液晶表示装置を眺めた場合に、眺める角度に依存して生じ得る虹斑等に起因した画質の低下を抑制する目的で、リタデーションが3000~30000nmのポリエステルフィルムを偏光子保護フィルムとして用いることが開示されている。 Patent Document 1 discloses that a polyester film having a retardation of 3000 to 30000 nm is protected by a polarizer for the purpose of suppressing deterioration in image quality caused by rainbow spots or the like that may occur depending on the viewing angle when the liquid crystal display device is viewed. Use as a film is disclosed.
WO2011/162198WO2011 / 162198
 しかしながら、市場においては、液晶表示装置の一層の薄型が求められており、単に、リタデーションを3000~30000nmに制御しただけでは、虹斑の発生により視認性の悪化は解消できるものの、フィルムの厚みを薄くすると機械的強度が顕著に低下するため、薄型化の要望への対応することが困難であった。そこで、本発明は、良好な視認性を維持しつつ、液晶表示装置の更なる薄型化を可能にする、偏光子保護フィルム、偏光板、及びそれが実現された液晶表示装置を提供することを1つの目的とする。 However, in the market, liquid crystal display devices are required to be thinner, and by simply controlling the retardation to 3000 to 30000 nm, the deterioration of visibility due to the occurrence of rainbow spots can be eliminated, but the thickness of the film is reduced. When the thickness is reduced, the mechanical strength is remarkably lowered, so that it is difficult to meet the demand for thickness reduction. Therefore, the present invention provides a polarizer protective film, a polarizing plate, and a liquid crystal display device in which the liquid crystal display device is realized that enables further thinning of the liquid crystal display device while maintaining good visibility. One purpose.
 本発明者等は、上記の課題を解決すべく鋭意検討を重ねたところ、ポリエステルフィルムの面配向度を一定以下に制御することにより、リタデーションの値を3000以上30000以下に維持し、良好な視認性を保ちながら、フィルムの機械的強度を高め、フィルムの厚みをより薄くすることが可能であることを見出した。斯かる知見に基づき、更なる検討と改良を重ね、本発明者等は、本発明を完成するに至った。 The inventors of the present invention have made extensive studies in order to solve the above-mentioned problems. By controlling the degree of surface orientation of the polyester film to a certain level or less, the retardation value is maintained at 3000 or more and 30000 or less, and good visual recognition is achieved. The present inventors have found that it is possible to increase the mechanical strength of the film and reduce the thickness of the film while maintaining the properties. Based on such knowledge, the inventors have further studied and improved, and have completed the present invention.
 代表的な本発明は、以下の通りである。
項1.
バックライト光源、2枚の偏光板、前記2枚の偏光板の間に配置される液晶セルを有し、前記バックライト光源は、連続的な発光スペクトルを有する白色光源であり、
前記偏光板は、偏光子の両側に偏光子保護フィルムが積層された構造を有し、
前記偏光子保護フィルムのうち、少なくとも1枚は、下記の物性(a)~(c):
(a)3000nm以上30000nm以下であるリタデーション(Re);
(b)1.0以上であるリタデーション(Re)と厚さ方向リタデーション(Rth)との比(Re/Rth);及び
(c)0.12以下である面配向度(ΔP);
を満たすポリエステルフィルムである、
液晶表示装置。
項2.
前記ポリエステルフィルムが下記の物性(d):
(d)0.1以上である複屈折率(ΔNxy)
を満たす、項1に記載の液晶表示装置
項3.
前記ポリエステルフィルムが、前記液晶セルよりも視認側に位置する偏光板を構成する偏光子保護フィルムである、項1又は2に記載の液晶表示装置。
項4.
前記ポリエステルフィルムの厚みが、20μm以上90μm以下である、項1~3のいずれかに記載の液晶表示装置。
項5.
前記ポリエステルフィルムの引裂強度が、50mN以上である、項1~4のいずれかに記載の液晶表示装置。
項6.
下記の物性(a)~(c):
(a)3000nm以上30000nm以下であるリタデーション(Re);
(b)1.0以上であるリタデーション(Re)と厚さ方向リタデーション(Rth)との比(Re/Rth);及び
(c)0.12以下である面配向度(ΔP);
を満たすポリエステルフィルムが偏光子の少なくとも1つの面に積層された構造を有する、偏光板。
項7.
前記ポリエステルフィルムが下記の物性(d):
(d)0.1以上である複屈折率(ΔNxy)
を満たす、項6に記載の偏光板。
項8.
前記ポリエステルフィルムの厚みが、20μm以上90μm以下である、項6又は7に記載の偏光板。
項9.
前記ポリエステルフィルムの引裂強度が、50mN以上である、項6~8のいずれかに記載の偏光板。
項10.
下記の物性(a)~(c):
(a)3000nm以上30000nm以下であるリタデーション(Re);
(b)1.0以上であるリタデーション(Re)と厚さ方向リタデーション(Rth)との比(Re/Rth);及び
(c)0.12以下である面配向度(ΔP);
を満たすポリエステルフィルムである、偏光子保護フィルム。
項11.
前記ポリエステルフィルムが下記の物性(d):
(d)0.1以上である複屈折率(ΔNxy)
を満たす、項10に記載の偏光子保護フィルム。
項12.
前記ポリエステルフィルムの厚みが、20μm以上90μm以下である、項10又は11に記載の偏光子保護フィルム。
項13.
前記ポリエステルフィルムの引裂強度が、50mN以上である、項10~12のいずれかに記載の偏光子保護フィルム。
項14.
ポリエステルフィルムを、延伸方向と直交する方向に対して緩和処理を行いながら、同時に延伸する工程を含む、
下記の物性(a)~(c):
(a)3000nm以上30000nm以下であるリタデーション(Re);
(b)1.0以上であるリタデーション(Re)と厚さ方向リタデーション(Rth)との比(Re/Rth);及び
(c)0.12以下である面配向度(ΔP);
を満たすポリエステルフィルムである、偏光子保護フィルムの製造方法。
項15.
連続的な発光スペクトルを有する白色光源を有する液晶表示装置用である、項6~9のいずれかに記載の偏光板。
項16.
連続的な発光スペクトルを有する白色光源を有する液晶表示装置用である、項10~13のいずれかに記載の偏光子保護フィルム。
項17.
偏光子保護フィルムが、連続的な発光スペクトルを有する白色光源を有する液晶表示装置用である、項14に記載の方法。
The representative present invention is as follows.
Item 1.
A backlight light source, two polarizing plates, a liquid crystal cell disposed between the two polarizing plates, the backlight light source is a white light source having a continuous emission spectrum;
The polarizing plate has a structure in which a polarizer protective film is laminated on both sides of a polarizer,
At least one of the polarizer protective films has the following physical properties (a) to (c):
(A) Retardation (Re) which is 3000 nm or more and 30000 nm or less;
(B) ratio (Re / Rth) of retardation (Re) and thickness direction retardation (Rth) which is 1.0 or more; and (c) degree of plane orientation (ΔP) which is 0.12 or less;
It is a polyester film that satisfies
Liquid crystal display device.
Item 2.
The polyester film has the following physical properties (d):
(D) Birefringence index (ΔNxy) of 0.1 or more
2. The liquid crystal display device according to item 1, wherein
Item 3. The liquid crystal display device according to item 1 or 2, wherein the polyester film is a polarizer protective film constituting a polarizing plate located closer to the viewing side than the liquid crystal cell.
Item 4.
Item 4. The liquid crystal display device according to any one of Items 1 to 3, wherein the polyester film has a thickness of 20 μm to 90 μm.
Item 5.
Item 5. The liquid crystal display device according to any one of Items 1 to 4, wherein the polyester film has a tear strength of 50 mN or more.
Item 6.
The following physical properties (a) to (c):
(A) Retardation (Re) which is 3000 nm or more and 30000 nm or less;
(B) ratio (Re / Rth) of retardation (Re) and thickness direction retardation (Rth) which is 1.0 or more; and (c) degree of plane orientation (ΔP) which is 0.12 or less;
The polarizing plate which has the structure where the polyester film which satisfy | fills was laminated | stacked on the at least 1 surface of the polarizer.
Item 7.
The polyester film has the following physical properties (d):
(D) Birefringence index (ΔNxy) of 0.1 or more
Item 7. The polarizing plate according to Item 6, wherein
Item 8.
Item 8. The polarizing plate according to Item 6 or 7, wherein the polyester film has a thickness of 20 μm or more and 90 μm or less.
Item 9.
Item 9. The polarizing plate according to any one of Items 6 to 8, wherein the polyester film has a tear strength of 50 mN or more.
Item 10.
The following physical properties (a) to (c):
(A) Retardation (Re) which is 3000 nm or more and 30000 nm or less;
(B) ratio (Re / Rth) of retardation (Re) and thickness direction retardation (Rth) which is 1.0 or more; and (c) degree of plane orientation (ΔP) which is 0.12 or less;
A polarizer protective film, which is a polyester film satisfying the requirements.
Item 11.
The polyester film has the following physical properties (d):
(D) Birefringence index (ΔNxy) of 0.1 or more
Item 11. The polarizer protective film according to Item 10, wherein
Item 12.
Item 12. The polarizer protective film according to Item 10 or 11, wherein the polyester film has a thickness of 20 μm or more and 90 μm or less.
Item 13.
Item 13. The polarizer protective film according to any one of Items 10 to 12, wherein the polyester film has a tear strength of 50 mN or more.
Item 14.
Including a step of simultaneously stretching the polyester film while performing relaxation treatment on the direction orthogonal to the stretching direction,
The following physical properties (a) to (c):
(A) Retardation (Re) which is 3000 nm or more and 30000 nm or less;
(B) ratio (Re / Rth) of retardation (Re) and thickness direction retardation (Rth) which is 1.0 or more; and (c) degree of plane orientation (ΔP) which is 0.12 or less;
The manufacturing method of the polarizer protective film which is a polyester film which satisfy | fills.
Item 15.
Item 10. The polarizing plate according to any one of Items 6 to 9, which is for a liquid crystal display device having a white light source having a continuous emission spectrum.
Item 16.
Item 14. The polarizer protective film according to any one of Items 10 to 13, which is for a liquid crystal display device having a white light source having a continuous emission spectrum.
Item 17.
Item 15. The method according to Item 14, wherein the polarizer protective film is for a liquid crystal display device having a white light source having a continuous emission spectrum.
 本発明の偏光子保護フィルムは、機械的強度(引裂強度)に優れているため、薄型化に適している。また、本発明の偏光子保護フィルム及びそれを積層した偏光板は、それを用いて液晶表示装置を作製することにより、画像を眺めた場合に、画像を眺める角度に依存して生じ得る虹斑の発生を抑制することができる。従って、本発明により、視認性に優れ、且つ、より薄型の液晶表示装置を提供することが可能となる。尚、本書において、「虹斑」とは、「色斑」、「色ずれ」及び「干渉色」を含む概念である。 The polarizer protective film of the present invention is suitable for thinning because it is excellent in mechanical strength (tear strength). In addition, the polarizer protective film of the present invention and the polarizing plate laminated with the polarizer film can be produced by producing a liquid crystal display device using the same, and when the image is viewed, rainbow spots can occur depending on the angle at which the image is viewed. Can be suppressed. Therefore, according to the present invention, it is possible to provide a liquid crystal display device that is excellent in visibility and thinner. In this document, “rainbow spot” is a concept including “color spot”, “color shift”, and “interference color”.
観察角度(θ)の模式図である。It is a schematic diagram of an observation angle ((theta)).
 液晶表示装置は、バックライト光源、2枚の偏光板、及び前記2枚の偏光板の間に配置される液晶セルを含む。本書では、液晶表示装置のバックライト光源が位置する側を人が画像を視認する側に対して「光源側」と称し、人が画像を視認する側を「視認側」と称する。前記液晶表示装置の構成部材の配置順序は、通常、光源側から視認側に向かって、バックライト光源、偏光板(「光源側偏光板」とも称する)、液晶セル、及び偏光板(「視認側偏光板」とも称する)の順である。 The liquid crystal display device includes a backlight light source, two polarizing plates, and a liquid crystal cell disposed between the two polarizing plates. In this document, the side where the backlight light source of the liquid crystal display device is located is referred to as the “light source side” with respect to the side where the person views the image, and the side where the person views the image is referred to as the “viewing side”. The arrangement order of the constituent members of the liquid crystal display device is usually from a light source side to a viewing side, a backlight source, a polarizing plate (also referred to as “light source side polarizing plate”), a liquid crystal cell, and a polarizing plate (“viewing side”). Also referred to as “polarizing plate”.
 バックライト光源は、画像を視認した場合に虹斑が生じることを抑制するという観点から、連続的で幅広い発光スペクトルを有する白色光源であることが好ましい。「連続的で幅広い発光スペクトル」とは、少なくとも450~650nmの波長領域、好ましくは可視光の領域において光の強度がゼロになる波長領域が存在しない発光スペクトルを意味する。可視光領域とは、例えば、400~760nmの波長領域であり、360~760nm、400~830nm、又は360~830nmであり得る。 The backlight light source is preferably a white light source having a continuous and broad emission spectrum from the viewpoint of suppressing the occurrence of rainbow spots when an image is visually recognized. “Continuous and broad emission spectrum” means an emission spectrum in which there is no wavelength region where the light intensity is zero in the wavelength region of at least 450 to 650 nm, preferably in the visible light region. The visible light region is, for example, a wavelength region of 400 to 760 nm, and may be 360 to 760 nm, 400 to 830 nm, or 360 to 830 nm.
 連続的で幅広い発光スペクトルを有する白色光源の方式や構造を特に制限されず、虹斑の発生を抑制可能である限り、任意の白色光源を使用することができるが、好ましい光源は、白色発光ダイオード(LED)である。白色LEDには、蛍光体方式のもの(即ち、化合物半導体を使用した青色光、もしくは紫外光を発する発光ダイオードと蛍光体を組み合わせることにより白色を発する素子)及び有機発光ダイオード(Organic light-emitting diode:OLED)等が含まれる。一実施形態において、好ましい白色LEDは、蛍光体方式の白色LEDであり、より好ましくは化合物半導体を使用した青色発光ダイオードとイットリウム・アルミニウム・ガーネット系黄色蛍光体とを組み合わせた発光素子からなる白色LEDである。
液晶セルは、液晶表示装置において使用され得る任意の液晶セルを適宜選択して使用することができ、その方式や構造は特に制限されない。例えば、VAモード、IPSモード、TNモード、STNモードやベンド配向(π型)等の液晶セルを適宜選択して使用できる。よって、液晶セルは、公知の液晶材料及び今後開発され得る液晶材料で作製された液晶を適宜選択して使用することができる。一実施形態において好ましい液晶セルは、透過型の液晶セルである。
Any white light source can be used as long as the method and structure of the white light source having a continuous and broad emission spectrum are not particularly limited and the generation of rainbow spots can be suppressed, but the preferred light source is a white light emitting diode. (LED). White LEDs include phosphor-type LEDs (that is, elements that emit white light by combining phosphors with light emitting diodes that emit blue light or ultraviolet light using compound semiconductors) and organic light-emitting diodes (Organic light-emitting diodes). : OLED) and the like. In one embodiment, the preferred white LED is a phosphor-type white LED, more preferably a white LED comprising a light emitting element in which a blue light emitting diode using a compound semiconductor and a yttrium, aluminum, garnet yellow phosphor are combined. It is.
As the liquid crystal cell, any liquid crystal cell that can be used in a liquid crystal display device can be appropriately selected and used, and the method and structure thereof are not particularly limited. For example, a liquid crystal cell such as a VA mode, an IPS mode, a TN mode, an STN mode, or a bend alignment (π type) can be appropriately selected and used. Therefore, the liquid crystal cell can be used by appropriately selecting a known liquid crystal material and a liquid crystal made of a liquid crystal material that can be developed in the future. In one embodiment, a preferred liquid crystal cell is a transmissive liquid crystal cell.
 偏光板は、フィルム状の偏光子の両側を2枚の保護フィルム(「偏光子保護フィルム」とも称する)で挟んだ構造を有する。偏光子は、当該技術分野において使用される任意の偏光子(又は偏光フィルム)を適宜選択して使用することができる。代表的な偏光子としては、ポリビニルアルコール(PVA)フィルム等にヨウ素等の二色性材料を染着させたものを挙げることができるが、これに限定されるものではなく、公知及び今後開発され得る偏光子を適宜選択して用いることができる。 The polarizing plate has a structure in which both sides of a film-like polarizer are sandwiched between two protective films (also referred to as “polarizer protective film”). As the polarizer, any polarizer (or polarizing film) used in the technical field can be appropriately selected and used. Representative polarizers include those obtained by dyeing a dichroic material such as iodine on a polyvinyl alcohol (PVA) film or the like, but are not limited to this, and are known and will be developed in the future. A polarizer to be obtained can be appropriately selected and used.
 偏光子として用いるPVAフィルムは、市販品を用いることができ、例えば、「クラレビニロン((株)クラレ製)」、「トーセロビニロン(東セロ(株)製)]、「日合ビニロン(日本合成化学(株)製)]等を用いることができる。二色性材料としてはヨウ素、ジアゾ化合物、ポリメチン染料等を挙げることができる。 Commercially available products can be used as the PVA film used as the polarizer. For example, “Kuraray Vinylon (manufactured by Kuraray Co., Ltd.)”, “Tosero Vinylon (manufactured by Toh Cello Co., Ltd.)”, “Nichigo Vinylon (Nihon Gosei) Chemical Co., Ltd.) etc. Examples of dichroic materials include iodine, diazo compounds, and polymethine dyes.
 液晶表示装置には、通常2枚の偏光板が含まれ、偏光板は、通常2枚の偏光子とその両側に積層された偏光子保護フィルムで構成されるため、液晶表示装置には、4枚の偏光子保護フィルムが含まれ得る。本発明において、4枚の偏光子保護フィルムのうち、少なくとも1枚が下記の(a)~(c)の物性を満たすポリエステルフィルムであることが好ましい。
(a)3000nm以上30000nm以下であるリタデーション(Re)
(b)1.0以上であるリタデーション(Re)と厚さ方向リタデーション(Rth)との比(Re/Rth)
(c)0.12以下である面配向度(ΔP)
The liquid crystal display device usually includes two polarizing plates, and the polarizing plate is usually composed of two polarizers and a polarizer protective film laminated on both sides thereof. A sheet of polarizer protective film may be included. In the present invention, at least one of the four polarizer protective films is preferably a polyester film satisfying the following physical properties (a) to (c).
(A) Retardation (Re) which is 3000 nm or more and 30000 nm or less
(B) Ratio (Re / Rth) of retardation (Re) and thickness direction retardation (Rth) being 1.0 or more
(C) Plane orientation degree (ΔP) of 0.12 or less
 偏光子保護フィルムとして用いるポリエステルフィルムのリタデーションは、虹斑を低減するという観点から、3000nm以上30000nm以下であることが好ましい。リタデーションの下限値は、好ましくは4500nm以上、より好ましくは5000nm以上、更に好ましくは6000nm以上、より更に好ましくは8000nm以上、一層好ましくは10000nm以上である。一方、リタデーションの上限は、それ以上リタデーションを高くしても更なる視認性の改善効果は実質的に得られず、またリタデーションの高さに応じては配向フィルムの厚みも上昇する傾向があるため、薄型化への要請に反し得るという観点から、30000nmと設定されるが、更に高い値とすることもできる。尚、本書において、単に「リタデーション」と記載する場合は、面内リタデーションを意味する。 It is preferable that the retardation of the polyester film used as a polarizer protective film is 3000 nm or more and 30000 nm or less from a viewpoint of reducing iridescence. The lower limit of retardation is preferably 4500 nm or more, more preferably 5000 nm or more, further preferably 6000 nm or more, still more preferably 8000 nm or more, and still more preferably 10,000 nm or more. On the other hand, the upper limit of the retardation is substantially not improved even if the retardation is further increased, and the thickness of the oriented film tends to increase depending on the height of the retardation. From the viewpoint that it may be contrary to the demand for thinning, the thickness is set to 30000 nm, but it can be set to a higher value. In this document, when simply described as “retardation”, it means in-plane retardation.
 リタデーションは、フィルム面(x-y平面)に入射する光によって生じる複屈折(ΔNxy)と厚み(d)との積で表される。よって、ΔNxyの値が大きくなるほど高いリタデーションが得られる。一方、フィルムの厚みが薄くなるほど相対的にリタデーションは小さくなるため、厚みを薄くしつつ、一定以上のリタデーションの値を維持するためには、ΔNxyの値は大きいことが望ましい。しかしながら、ΔNxyの値を大きくし過ぎると、フィルムの引裂強度が低下する傾向にある。よって、ポリエステルフィルムのΔNxyの値は、好ましくは0.1以上0.3未満である。より具体的には、ポリエチレンテレフタレートフィルムの場合、ΔNxyの値は0.1以上0.16以下が好ましく、より好ましくは0.105以上0.15以下、更に好ましくは0.11以上0.145以下である。また、ポリエチレンナフタレートフィルムの場合、ΔNxyの値は0.3未満が好ましく、より好ましくは0.27未満、更に好ましくは0.25未満、より更に好ましくは0.24未満である。一方、複屈折率ΔNxyが低いとリタデーションを大きくするためにフィルム厚さを大きくする必要性が生じるので、ポリエチレンナフタレートフィルムの場合、複屈折率ΔNxyは、0.15以上が好ましく、より好ましくは0.16以上、更に好ましくは0.17以上、より更に好ましくは0.18以上、特に好ましくは0.20以上である。 Retardation is represented by the product of birefringence (ΔNxy) caused by light incident on the film surface (xy plane) and thickness (d). Therefore, higher retardation is obtained as the value of ΔNxy increases. On the other hand, since the retardation becomes relatively smaller as the film becomes thinner, it is desirable that the value of ΔNxy is larger in order to maintain the retardation value above a certain level while reducing the thickness. However, if the value of ΔNxy is excessively increased, the tear strength of the film tends to decrease. Therefore, the value of ΔNxy of the polyester film is preferably 0.1 or more and less than 0.3. More specifically, in the case of a polyethylene terephthalate film, the value of ΔNxy is preferably 0.1 or more and 0.16 or less, more preferably 0.105 or more and 0.15 or less, and further preferably 0.11 or more and 0.145 or less. It is. In the case of a polyethylene naphthalate film, the value of ΔNxy is preferably less than 0.3, more preferably less than 0.27, still more preferably less than 0.25, and still more preferably less than 0.24. On the other hand, if the birefringence index ΔNxy is low, it is necessary to increase the film thickness in order to increase the retardation. Therefore, in the case of a polyethylene naphthalate film, the birefringence index ΔNxy is preferably 0.15 or more, more preferably It is 0.16 or more, more preferably 0.17 or more, still more preferably 0.18 or more, and particularly preferably 0.20 or more.
 ポリエステルフィルムのリタデーションの値は観察角度に依存して変化する。ここで、観察角度とはポリエステルフィルムの平面に対して垂直方向を基準(ゼロ度)とし、その方向と観察者がポリエステルフィルムを眺める方向とのズレ(θ)を意味する(図1)。観察角度が大きくなるほど、その角度におけるリタデーションの値は低くなる。そのため、表示装置の正面(即ち、垂直方向)から観察すると虹斑が認められない場合でも、斜め方向から観察すると虹斑が認められることがあり得る。よって、斜め方向から表示装置を観察した場合にも良好な視認性を確保するためには、観察角度の増大によるリタデーションの低下を考慮することが好ましい。特に、厚みが薄いポリエステルフィルムの場合は、比較的リタデーションが低いため、観察角度の増大に伴ったリタデーションの低下による視認性への影響が比較的大きい。観察角度の増大に伴うリタデーションの低下度合いを表す指標として、ポリエステルフィルムのリタデーション(Re)と厚さ方向リタデーション(Rth)の比(Re/Rth)が用いられる。Re/Rthが大きくなるほど、複屈折の作用は等方性を増し、観察角度の増大によるリタデーションの低下度合が小さくなるため、観察角度による虹斑は発生し難くなると考えられる。このような観点から、Re/Rthは、1.0以上であることが好ましく、より好ましくは1.1以上、更に好ましくは1.2以上、更に好ましくは1.25以上、更に好ましくは1.3以上である。厚さ方向リタデーションとは、フィルム厚さ方向断面から見たときの2つの複屈折△Nxz及び△Nyzにそれぞれフィルム厚み(d)を掛けて得られるリタデーションの平均値を意味する。 The retardation value of the polyester film changes depending on the observation angle. Here, the observation angle means a deviation (θ) between the direction perpendicular to the plane of the polyester film (zero degree) and the direction in which the observer views the polyester film (FIG. 1). The larger the observation angle, the lower the retardation value at that angle. For this reason, even when rainbow spots are not observed when viewed from the front (that is, in the vertical direction) of the display device, rainbow spots may be observed when observed from an oblique direction. Therefore, in order to ensure good visibility even when the display device is observed from an oblique direction, it is preferable to consider a decrease in retardation due to an increase in observation angle. In particular, in the case of a polyester film having a small thickness, since the retardation is relatively low, the influence on the visibility due to a decrease in retardation accompanying an increase in observation angle is relatively large. The ratio (Re / Rth) of the retardation (Re) and the thickness direction retardation (Rth) of the polyester film is used as an index representing the degree of retardation reduction accompanying the increase in the observation angle. It is considered that as the Re / Rth increases, the birefringence action becomes more isotropic, and the degree of retardation decrease due to the increase in the observation angle becomes smaller, so that rainbow spots due to the observation angle are less likely to occur. From such a viewpoint, Re / Rth is preferably 1.0 or more, more preferably 1.1 or more, still more preferably 1.2 or more, still more preferably 1.25 or more, and still more preferably 1. 3 or more. Thickness direction retardation means an average value of retardation obtained by multiplying two birefringences ΔNxz and ΔNyz, respectively, when viewed from a cross section in the film thickness direction, with the film thickness (d).
 Re/Rth比の最大値は2.0(即ち、完全な1軸対称性フィルム)であるが、1.0を超え完全な1軸対称性フィルムに近づくにつれて配向主軸方向と直交する方向の機械的強度が低下する場合があり、その場合には後述する面配向度が特定数値以下になるよう調整することが好ましい。Re/Rth比は、薄膜化、視野角特性向上の観点から高いほうが好ましいが、その上限値は、最大値の2.0まで必要ではなく、好ましくは1.9以下、より好ましくは1.8以下である。  The maximum value of the Re / Rth ratio is 2.0 (that is, a complete uniaxial symmetry film), but the machine is in a direction orthogonal to the orientation main axis direction as it approaches 1.0 and a complete uniaxial symmetry film. In such a case, it is preferable to adjust the degree of plane orientation described below to be a specific numerical value or less. The Re / Rth ratio is preferably as high as possible from the viewpoint of thin film formation and improved viewing angle characteristics, but the upper limit is not required up to the maximum value of 2.0, preferably 1.9 or less, more preferably 1.8. It is as follows. *
 配向フィルムのリタデーションは、公知の手法に従って測定することができる。具体的には、2軸方向の屈折率と厚みを測定して求めることができる。また、商業的に入手可能な自動複屈折測定装置(例えば、KOBRA-21ADH:王子計測機器株式会社製)を用いて求めることもできる。いずれの測定においても、測定波長をナトリウムD線の波長である589nmとして行う。 The retardation of the oriented film can be measured according to a known method. Specifically, it can be determined by measuring the refractive index and thickness in the biaxial direction. It can also be determined using a commercially available automatic birefringence measuring apparatus (for example, KOBRA-21ADH: manufactured by Oji Scientific Instruments). In any measurement, the measurement wavelength is 589 nm which is the wavelength of the sodium D line.
 虹斑を抑制するためのリタデーション及びRe/Rth比を満たしつつ、且つ、工業的な液晶表示装置の製造に耐え得る機械的強度(引裂強度)を維持しながら、フィルムの厚みをより薄くするという観点から、面配向度(ΔP)は、0.12以下であることが好ましい。面配向度は、フィルムの縦方向の屈折率(Nx)と幅方向の屈折率(Ny)との平均値と、厚み方向の屈折率(Nz)の値との差であり、次の式で表すことができる:ΔP=((Nx+Ny)/2)-Nz。 The film thickness is made thinner while satisfying the retardation and Re / Rth ratio for suppressing rainbow spots and maintaining the mechanical strength (tear strength) that can withstand the production of industrial liquid crystal display devices. From the viewpoint, the degree of plane orientation (ΔP) is preferably 0.12 or less. The degree of plane orientation is the difference between the average value of the refractive index (Nx) in the longitudinal direction and the refractive index (Ny) in the width direction of the film and the value of the refractive index (Nz) in the thickness direction. Can be represented: ΔP = ((Nx + Ny) / 2) −Nz.
 面配向度の上限は、より好ましくは0.11以下であり、更に好ましくは0.102以下であり、より更に好ましくは0.1以下であり、一層好ましくは0.098以下であり、より一層好ましくは0.095以下であり、更に一層好ましくは0.09以下である。一方、面配向度の下限は、好ましくは0.04以上であり、より好ましくは0.05以上であり、更に好ましくは0.06以上である。 The upper limit of the degree of plane orientation is more preferably 0.11 or less, still more preferably 0.102 or less, still more preferably 0.1 or less, still more preferably 0.098 or less, and much more. Preferably it is 0.095 or less, More preferably, it is 0.09 or less. On the other hand, the lower limit of the degree of plane orientation is preferably 0.04 or more, more preferably 0.05 or more, and still more preferably 0.06 or more.
 面配向度が0.04未満の場合は、フィルムの機械強度が低すぎるため加工性などの点で好ましくない。また、面配向度が0.12を超える場合、薄膜条件においてリタデーションと機械強度との両立が難しくなり、いずれか一方で不具合が生じる場合が出てくるため好ましくない。 When the degree of plane orientation is less than 0.04, the mechanical strength of the film is too low, which is not preferable in terms of workability. In addition, when the degree of plane orientation exceeds 0.12, it is difficult to achieve both retardation and mechanical strength under the thin film condition, and any one of the problems may occur.
 偏光子保護フィルムとして用いるポリエステルフィルムの厚み(d)は、特に制限されないが、より薄い偏光子保護フィルム、偏光板、及び液晶表示装置を提供するという観点から、好ましくは300μm以下であり、より好ましくは100μm以下、更に好ましくは90μm以下、より更に好ましくは80μm以下、一層好ましくは60μm以下、より一層好ましくは50μm以下、更により一層好ましくは45μm以下、特に好ましくは40μm以下である、最も好ましくは35μm以下である。ポリエステルフィルムの厚みの下限値は、十分な引裂強度を維持することが困難であるという観点から、10μm以上、好ましくは15μm以上、より好ましくは20μm以上、更に好ましくは25μm以上である。 The thickness (d) of the polyester film used as the polarizer protective film is not particularly limited, but is preferably 300 μm or less from the viewpoint of providing a thinner polarizer protective film, a polarizing plate, and a liquid crystal display device. Is not more than 100 μm, more preferably not more than 90 μm, still more preferably not more than 80 μm, still more preferably not more than 60 μm, still more preferably not more than 50 μm, still more preferably not more than 45 μm, particularly preferably not more than 40 μm, most preferably not more than 35 μm. It is as follows. The lower limit of the thickness of the polyester film is 10 μm or more, preferably 15 μm or more, more preferably 20 μm or more, and further preferably 25 μm or more, from the viewpoint that it is difficult to maintain sufficient tear strength.
 偏光子保護フィルムとして用いるポリエステルフィルムは、厚みが薄い場合であっても工業的な液晶表示装置の製造において取り扱いに耐え得る機械的強度を保持していることが好ましい。この観点から、当該ポリエステルフィルムは、50mN以上の引裂強度を有することが好ましい。好ましくは、引裂強度は、100mN以上であり、より好ましくは130mN以上である。フィルムの引裂強度は、後述する実施例に示す通り、JIS P-8116の方法に従って測定することが出来る。 The polyester film used as the polarizer protective film preferably has a mechanical strength that can withstand handling in the production of an industrial liquid crystal display device even when the thickness is small. From this viewpoint, the polyester film preferably has a tear strength of 50 mN or more. Preferably, the tear strength is 100 mN or more, more preferably 130 mN or more. The tear strength of the film can be measured according to the method of JIS P-8116 as shown in the examples described later.
 偏光子保護フィルムとして用いるポリエステルフィルムは、工業的な液晶表示装置の取り扱いに耐え得る耐熱性を有していることが好ましい。この観点から、当該ポリエステルフィルムは、-5.0%~5.0%の熱収縮率を有することが好ましく、より好ましくは-3.0%~3.0%であり、さらにより好ましくは-2.0%~2.0%である。フィルムの熱収縮率は、後述する実施例に示す通り、JIS C-2318の方法に従って測定することが出来る。 The polyester film used as the polarizer protective film preferably has heat resistance that can withstand handling of an industrial liquid crystal display device. From this viewpoint, the polyester film preferably has a heat shrinkage of −5.0% to 5.0%, more preferably −3.0% to 3.0%, and still more preferably − 2.0% to 2.0%. The heat shrinkage rate of the film can be measured according to the method of JIS C-2318 as shown in the examples described later.
 ヨウ素色素などの光学機能性色素の劣化を抑制することを目的として、偏光子保護フィルムとして用いるポリエステルフィルムは、波長380nmの光線透過率が20%以下であることが望ましい。380nmの光線透過率は15%以下がより好ましく、10%以下がさらに好ましく、5%以下が特に好ましい。前記光線透過率が20%以下であれば、光学機能性色素の紫外線による変質を抑制することができる。本書において、透過率は、フィルムの平面に対して垂直方法に測定したものであり、分光光度計(例えば、日立U-3500型)を用いて測定することができる。更に、例えば、無機粒子、耐熱性高分子粒子、アルカリ金属化合物、アルカリ土類金属化合物、リン化合物、帯電防止剤、耐光剤、難燃剤、熱安定剤、酸化防止剤、ゲル化防止剤、界面活性剤等も本発明の効果を妨げず、かつ、透明性を損なわない範囲で添加することが可能である。 For the purpose of suppressing deterioration of optical functional dyes such as iodine dyes, it is desirable that the polyester film used as the polarizer protective film has a light transmittance of 20% or less at a wavelength of 380 nm. The light transmittance at 380 nm is more preferably 15% or less, further preferably 10% or less, and particularly preferably 5% or less. If the light transmittance is 20% or less, the optical functional dye can be prevented from being deteriorated by ultraviolet rays. In this document, the transmittance is measured in a method perpendicular to the plane of the film, and can be measured using a spectrophotometer (for example, Hitachi U-3500 type). Further, for example, inorganic particles, heat-resistant polymer particles, alkali metal compounds, alkaline earth metal compounds, phosphorus compounds, antistatic agents, light proofing agents, flame retardants, thermal stabilizers, antioxidants, antigelling agents, interfaces An activator or the like can be added within a range that does not impair the effects of the present invention and does not impair the transparency.
 上記のような物性を満たすポリエステルフィルムは、一般的なポリエステルフィルムの製造条件において、延伸条件等を制御することによって得ることが出来る。ポリエステルフィルムは、一般的に、次の手順で製造される。即ち、ポリエステル樹脂を溶融し、シート状に押出し成形された無配向ポリエステルをガラス転移温度以上の温度で、ロールの速度差を利用して縦方向に延伸した後、テンターにより横方向に延伸し、熱処理を施すて得られる。縦方向及び横方向への延伸は、各方向について別個に行う方法と、テンターに導いた後にクリップ幅を拡げながらロールの速度を変更することにより、縦方向と横方向を同時に延伸する方法とがある。 A polyester film satisfying the above physical properties can be obtained by controlling stretching conditions and the like in general polyester film production conditions. A polyester film is generally produced by the following procedure. That is, the polyester resin is melted, and the non-oriented polyester extruded and formed into a sheet shape is stretched in the machine direction at a temperature equal to or higher than the glass transition temperature, and then stretched in the transverse direction by a tenter. Obtained by heat treatment. Stretching in the machine direction and the transverse direction can be performed separately for each direction, and by extending the clip width while guiding the tenter and changing the speed of the roll to stretch the machine direction and the transverse direction simultaneously. is there.
 上述する物性を満たすポリエステルフィルムを得るためには、単純な一軸延伸を行うことが好ましく、任意の方向への延伸と同時に延伸方向と垂直な方向にリラックス(緩和)処理を行なうことがより好ましい。より具体的には、一般に同時二軸延伸機と呼称される設備を使用し、縦方向の延伸と横方向のリラックス処理、又は横方向の延伸と縦方向のリラックス処理を行なってから熱処理を施す方法が例示できる。延伸とリラックス処理の順序は同時に行うことが好ましいが、延伸後にリラックス、もしくはリラックスの後に延伸という順序でも実施しても良い。より好ましい方法は、横方向の延伸と縦方向のリラックス処理を同時に行う方法である。熱処理の過程でリラックスを施すことも可能ではあるが、リラックス率が大きくなると熱シワが発生するため留意すべきである。 In order to obtain a polyester film satisfying the above-described physical properties, it is preferable to perform simple uniaxial stretching, and it is more preferable to perform relaxation (relaxation) treatment in a direction perpendicular to the stretching direction simultaneously with stretching in any direction. More specifically, an equipment generally called a simultaneous biaxial stretching machine is used, and the heat treatment is performed after the longitudinal stretching and the transverse relaxation treatment, or the transverse stretching and the longitudinal relaxation treatment. A method can be exemplified. The order of stretching and relaxation treatment is preferably performed at the same time, but it may be performed in the order of relaxing after stretching or stretching after relaxing. A more preferable method is a method in which the stretching in the transverse direction and the relaxation treatment in the longitudinal direction are simultaneously performed. Although it is possible to relax during the heat treatment, it should be noted that heat wrinkles occur when the relaxation rate increases.
 逐次二軸延伸機を用いて製造することも可能である。その場合は、縦方向へ緩和する際に、外部ヒーター等により加熱しながら延伸前のロールより延伸後のロールを遅くすることにより縦方向にリラックスを施した後にテンターに導いて横方向に延伸することにより実施することができる。また、横方向へ緩和する場合、通常の二軸延伸で用いる方式により縦延伸を施した後に、テンター内で加熱しながら横方向のクリップ幅を徐々に狭めていくことにより実施すことができる。尚、逐次二軸延伸機を用いる場合、一軸延伸の方向は横方向への延伸が好ましい。縦方向への延伸も可能であるが、縦延伸の際にフィルム表面に微小なキズが発生しやすい、延伸ムラが生じやすいなどの課題があり、留意が必要である。更に、上記と同様の原理を用いて、一軸延伸フィルムを同時二軸延伸機、テンター、ロールのいずれかの設備により、リラックス処理を加えて実施することも可能である。 It is also possible to manufacture using a sequential biaxial stretching machine. In that case, when relaxing in the longitudinal direction, the roll after stretching is slower than the roll before stretching while being heated by an external heater or the like, and then relaxed in the longitudinal direction and then guided to the tenter and stretched in the lateral direction. Can be implemented. Moreover, when relaxing in the lateral direction, it can be carried out by gradually narrowing the lateral clip width while heating in the tenter after performing longitudinal stretching by the method used in normal biaxial stretching. When a sequential biaxial stretching machine is used, the direction of uniaxial stretching is preferably stretching in the transverse direction. Although the film can be stretched in the machine direction, there are problems such as the occurrence of minute flaws on the film surface and the occurrence of stretching unevenness during the longitudinal stretching, and attention should be paid. Furthermore, using the same principle as described above, the uniaxially stretched film can be subjected to a relaxation treatment with any one of a simultaneous biaxial stretching machine, a tenter, and a roll.
 ポリエステルフィルムの製膜条件(特に、延伸条件)をより具体的に説明する。延伸温度は、80~130℃が好ましく、特に好ましくは90~120℃である。延伸倍率は0.4~6倍が好ましく、特に好ましくは0.6倍~5倍である。緩和する方向の延伸倍率は0.4~0.97倍となるように、緩和する方向に対して垂直な方向の延伸倍率は3~6倍となるように設定することが好ましい。更に、一方向を0.6~0.9倍に緩和し、それと垂直方向について3.5~5.5倍に延伸することがより好ましい。 The film forming conditions (particularly stretching conditions) of the polyester film will be described more specifically. The stretching temperature is preferably from 80 to 130 ° C, particularly preferably from 90 to 120 ° C. The draw ratio is preferably 0.4 to 6 times, particularly preferably 0.6 to 5 times. It is preferable to set the stretching ratio in the direction perpendicular to the relaxing direction to 3 to 6 times so that the stretching ratio in the relaxing direction is 0.4 to 0.97 times. Furthermore, it is more preferable that one direction is relaxed by 0.6 to 0.9 times and the film is stretched by 3.5 to 5.5 times in the direction perpendicular thereto.
 緩和する方向と延伸する方向の倍率に関しては、上記の範囲内であれば任意に設定することができるが、延伸倍率を高くするほど一軸性が高くなるため、より緩和の程度を大きくすることが好ましい。一方で、延伸倍率を低くする場合、大きく緩和させると皺の影響が無視できなくなることから、緩和率を下げることが好ましい。 The magnification in the direction of relaxation and the direction of stretching can be arbitrarily set as long as it is within the above range, but uniaxiality increases as the stretching ratio increases, so that the degree of relaxation can be increased. preferable. On the other hand, when the draw ratio is lowered, if the effect is greatly relaxed, the effect of wrinkles cannot be ignored. Therefore, it is preferable to lower the relaxation rate.
 リタデーションを上記範囲に制御するためには、縦延伸倍率と横延伸倍率の比率を制御することが好ましい。縦横の延伸倍率の差が小さすぎるとリタデーション高くすることが難しくなり好ましくない。また、緩和する方向の倍率が低すぎると皺などの発生が避けられず好ましくない。更に、延伸する方向の倍率が高すぎると破断が生じ易くなるため好ましくない。延伸温度を低く設定することもリタデーションを高くする上では好ましい対応である。続く熱処理においては、処理温度は100~250℃が好ましく、特に好ましくは180~245℃である。 In order to control the retardation within the above range, it is preferable to control the ratio of the longitudinal draw ratio and the transverse draw ratio. If the difference between the vertical and horizontal draw ratios is too small, it is difficult to increase the retardation, which is not preferable. Moreover, if the magnification in the relaxing direction is too low, generation of wrinkles cannot be avoided, which is not preferable. Furthermore, if the magnification in the extending direction is too high, breakage tends to occur, which is not preferable. Setting the stretching temperature low is also a preferable measure for increasing the retardation. In the subsequent heat treatment, the treatment temperature is preferably from 100 to 250 ° C., particularly preferably from 180 to 245 ° C.
 フィルム上でのリタデーションの変動は、小さいことが好ましく、変動を抑制する為には、フィルムの厚み斑を制御することが好ましい。延伸温度、延伸倍率はフィルムの厚み斑に大きな影響を与えることから、厚み斑を抑える観点から製膜条件の最適化を行うことが好ましい。特にリタデーションを高くするために縦延伸倍率を低くすると、縦厚み斑が悪くなることがある。縦厚み斑は延伸倍率のある特定の範囲で悪化する場合があることから、そのような範囲を外したところで製膜条件を設定することが望ましい。 The fluctuation of retardation on the film is preferably small, and in order to suppress the fluctuation, it is preferable to control the thickness variation of the film. Since the stretching temperature and the stretching ratio greatly affect the thickness variation of the film, it is preferable to optimize the film forming conditions from the viewpoint of suppressing the thickness variation. In particular, if the longitudinal stretching ratio is lowered to increase the retardation, the longitudinal thickness unevenness may be deteriorated. Since the vertical thickness unevenness may deteriorate in a specific range of the draw ratio, it is desirable to set the film forming conditions outside such a range.
 上記の観点から、ポリエステルフィルムの厚み斑は5.0%以下であることが好ましく、4.5%以下であることがさらに好ましく、4.0%以下であることがよりさらに好ましく、3.0%以下であることが特に好ましい。 From the above viewpoint, the thickness unevenness of the polyester film is preferably 5.0% or less, more preferably 4.5% or less, still more preferably 4.0% or less, and 3.0% % Or less is particularly preferable.
 ポリエステルフィルムのリタデーションを特定範囲に制御する為には、延伸倍率や延伸温度、フィルムの厚みを適宜設定することにより行なうことができる。例えば、延伸倍率が高いほど、延伸温度が低いほど、フィルムの厚みが厚いほど高いリタデーションを得やすくなる。逆に、延伸倍率が低いほど、延伸温度が高いほど、フィルムの厚みが薄いほど低いリタデーションを得やすくなる。但し、フィルムの厚みを厚くすると、厚さ方向位相差が大きくなりやすい。そのため、フィルム厚みは後述の範囲に適宜設定することが望ましい。また、リタデーションの制御に加えて、加工に必要な物性等を勘案して最終的な製膜条件を設定する必要がある。 In order to control the retardation of the polyester film within a specific range, the stretching ratio, the stretching temperature, and the thickness of the film can be appropriately set. For example, the higher the stretching ratio, the lower the stretching temperature, and the thicker the film, the higher the retardation. Conversely, the lower the stretching ratio, the higher the stretching temperature, and the thinner the film, the lower the retardation. However, when the thickness of the film is increased, the thickness direction retardation tends to increase. Therefore, it is desirable to set the film thickness appropriately within the range described below. In addition to controlling the retardation, it is necessary to set final film forming conditions in consideration of physical properties necessary for processing.
 上記の物性を満たすポリエステルフィルムを得るためのポリエステル樹脂は、当該分野で使用される任意のポリエステル樹脂であり得る。即ち、任意のジカルボン酸とジオールとを縮合させて得ることができる。ジカルボン酸としては、例えば、テレフタル酸、イソフタル酸、オルトフタル酸、2,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、1,4-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸、ジフェニルカルボン酸、ジフェノキシエタンジカルボン酸、ジフェニルスルホンカルボン酸、アントラセンジカルボン酸、1,3-シクロペンタンジカルボン酸、1,3-シクロヘキサンジカルボン酸、1,4-シクロヘキサンジカルボン酸、ヘキサヒドロテレフタル酸、ヘキサヒドロイソフタル酸、マロン酸、ジメチルマロン酸、コハク酸、3,3-ジエチルコハク酸、グルタル酸、2,2-ジメチルグルタル酸、アジピン酸、2-メチルアジピン酸、トリメチルアジピン酸、ピメリン酸、アゼライン酸、ダイマー酸、セバシン酸、スベリン酸、ドデカジカルボン酸等を挙げることができる。 The polyester resin for obtaining a polyester film satisfying the above physical properties can be any polyester resin used in the field. That is, it can be obtained by condensing an arbitrary dicarboxylic acid and a diol. Examples of the dicarboxylic acid include terephthalic acid, isophthalic acid, orthophthalic acid, 2,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, and diphenylcarboxylic acid. Acid, diphenoxyethanedicarboxylic acid, diphenylsulfonecarboxylic acid, anthracenedicarboxylic acid, 1,3-cyclopentanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, hexahydroterephthalic acid, hexahydroisophthalate Acid, malonic acid, dimethylmalonic acid, succinic acid, 3,3-diethylsuccinic acid, glutaric acid, 2,2-dimethylglutaric acid, adipic acid, 2-methyladipic acid, trimethyladipic acid, pimelic acid, azelaic acid, Dimer , It may be mentioned sebacic acid, suberic acid, dodecamethylene dicarboxylic acid.
 ジオールとしては、例えば、エチレングリコール、プロピレングリコール、ヘキサメチレングリコール、ネオペンチルグリコール、1,2-シクロヘキサンジメタノール、1,4-シクロヘキサンジメタノール、デカメチレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサジオール、2,2-ビス(4-ヒドロキシフェニル)プロパン、ビス(4-ヒドロキシフェニル)スルホン等を挙げることができる。 Examples of the diol include ethylene glycol, propylene glycol, hexamethylene glycol, neopentyl glycol, 1,2-cyclohexanedimethanol, 1,4-cyclohexanedimethanol, decamethylene glycol, 1,3-propanediol, 1,4 -Butanediol, 1,5-pentanediol, 1,6-hexadiol, 2,2-bis (4-hydroxyphenyl) propane, bis (4-hydroxyphenyl) sulfone and the like.
 ポリエステルフィルムを構成するジカルボン酸成分とジオール成分はそれぞれ1種又は2種以上を用いても良い。ポリエステルフィルムを構成する具体的なポリエステル樹脂としては、例えば、ポリエチレンテレフタレート、ポリプロピレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等が挙げられ、好ましくはポリエチレンテレフタレート及びポリエチレンナフタレートであり、好ましくはポリエチレンテレフタレートである。ポリエステル樹脂は他の共重合成分を含んでも良く、機械強度の点からは共重合成分の割合は3モル%以下が好ましく、好ましくは2モル%以下、更に好ましくは1.5モル%以下である。 The dicarboxylic acid component and the diol component constituting the polyester film may each be used alone or in combination of two or more. Specific polyester resins constituting the polyester film include, for example, polyethylene terephthalate, polypropylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, etc., preferably polyethylene terephthalate and polyethylene naphthalate, preferably polyethylene terephthalate. . The polyester resin may contain other copolymer components. From the viewpoint of mechanical strength, the proportion of the copolymer components is preferably 3 mol% or less, preferably 2 mol% or less, more preferably 1.5 mol% or less. .
 上記の物性を満たすポリエステルフィルムは、液晶表示装置で使用される4つの偏光子保護フィルムのうちの任意の偏光子保護フィルムとして使用することができる。好ましくは、当該ポリエステルフィルムは、光源側偏光板を構成する光源側の偏光子保護フィルム、及び/又は視認側偏光板を構成する視認側偏光子保護フィルムとして用いられる。より好ましくは、当該ポリエステルフィルムは、視認側偏光板の視認側に配置される偏光子保護フィルムである。 The polyester film satisfying the above physical properties can be used as an arbitrary polarizer protective film among the four polarizer protective films used in the liquid crystal display device. Preferably, the polyester film is used as a light source side polarizer protective film constituting the light source side polarizing plate and / or a visual recognition side polarizer protective film constituting the visual recognition side polarizing plate. More preferably, the said polyester film is a polarizer protective film arrange | positioned at the visual recognition side of the visual recognition side polarizing plate.
 上記の物性を満たすポリエステルフィルムを使用しない偏光子保護フィルムには、従来から偏光子保護フィルムとして使用される任意のフィルムを使用することができる。好ましくは、TACフィルム、アクリルフィルム、ノルボルネン系樹脂フィルム等に代表されるリタデーションが無いフィルムを用いることが好ましい。リタデーションが無いフィルムは、例えば、光源側偏光板を構成する視認側の偏光子保護フィルム及び/又は視認側偏光板を構成する光源側の偏光子保護フィルムとして使用され得る。 Any film conventionally used as a polarizer protective film can be used as a polarizer protective film that does not use a polyester film that satisfies the above physical properties. Preferably, it is preferable to use a film having no retardation, such as a TAC film, an acrylic film, and a norbornene resin film. The film without retardation can be used as, for example, a viewing-side polarizer protective film constituting the light source-side polarizing plate and / or a light source-side polarizer protecting film constituting the viewing-side polarizing plate.
 上述する偏光子及び偏光子保護フィルムによって構成される偏光板は、写り込み防止、ギラツキ抑制、及び/又はキズ抑制等を目的として、種々の機能層(例えば、ハードコート層)を表面に有していても良い。 The polarizing plate composed of the polarizer and the polarizer protective film described above has various functional layers (for example, a hard coat layer) on the surface for the purpose of preventing reflection, suppressing glare, and / or suppressing scratches. May be.
 偏光子保護フィルムは、偏光子との接着性を良好にするため、少なくとも片面に、ポリエステル樹脂、ポリウレタン樹脂、又は、ポリアクリル樹脂の少なくとも1種類を主成分とする易接着層を有することが好ましい。ここで、「主成分」とは易接着層を構成する固形成分のうち50質量%以上である成分をいう。 The polarizer protective film preferably has an easy-adhesion layer mainly composed of at least one of a polyester resin, a polyurethane resin, or a polyacrylic resin on at least one surface in order to improve the adhesion with the polarizer. . Here, the “main component” refers to a component that is 50% by mass or more of the solid components constituting the easy-adhesion layer.
 偏光子保護フィルムに形成される易接着層の塗布液は、水溶性、または、水分散性の共重合ポリエステル樹脂、アクリル樹脂、及び、ポリウレタン樹脂の内、少なくとも1種を含む水性塗布液が好ましく、これらの塗布液としては、特許第3567927号公報、特許第3589232号公報、特許第3589233号公報、特許第3900191号公報、特許第4150982号公報等に開示された水溶性、または、水分散性共重合ポリエステル樹脂溶液、アクリル樹脂溶液、ポリウレタン樹脂溶液等が例示される。 The coating liquid for the easy-adhesion layer formed on the polarizer protective film is preferably an aqueous coating liquid containing at least one of water-soluble or water-dispersible copolymer polyester resin, acrylic resin, and polyurethane resin. These coating liquids are water-soluble or water-dispersible as disclosed in Japanese Patent No. 3567927, Japanese Patent No. 3589232, Japanese Patent No. 3589233, Japanese Patent No. 3900191, Japanese Patent No. 4150982, and the like. Examples thereof include a copolymerized polyester resin solution, an acrylic resin solution, and a polyurethane resin solution.
 偏光子保護フィルムに形成される易接着層は、リバースロール・コート法、グラビア・コート法、キス・コート法、ロールブラッシュ法、スプレーコート法、エアナイフコート法、ワイヤーバーコート法、パイプドクター法、などの公知の方法を単独、又は組み合わせて塗布することができる。 The easy adhesion layer formed on the polarizer protective film is a reverse roll coating method, a gravure coating method, a kiss coating method, a roll brush method, a spray coating method, an air knife coating method, a wire bar coating method, a pipe doctor method, It can apply | coat by well-known methods, such as these individually or in combination.
 偏光子保護フィルムの視認側の任意の位置に積層する機能層としては、例えば、防眩層、反射防止層、低反射層、低反射防眩層、反射防止防眩層、帯電防止層、シリコーン層、粘着層、防汚層、撥水層、及びブルーカット層等からなる群より選択される1種以上を用いることができる。 Examples of the functional layer laminated at an arbitrary position on the viewing side of the polarizer protective film include, for example, an antiglare layer, an antireflection layer, a low reflection layer, a low reflection antiglare layer, an antireflection antiglare layer, an antistatic layer, and silicone. One or more selected from the group consisting of a layer, an adhesive layer, an antifouling layer, a water repellent layer, a blue cut layer, and the like can be used.
 種々の機能層を設けるに際して、偏光子保護フィルムの表面に易接着層を有することが好ましい。その際、反射光による干渉を抑える観点から、易接着層の屈折率を、機能層の屈折率と基本フィルムの屈折率の相乗平均近傍になるように調整することが好ましい。易接着層の屈折率の調整は、公知の方法を採用することができ、例えば、バインダー樹脂に、チタンやジルコニウム、その他の金属種を含有させることで容易に調整することができる。 When providing various functional layers, it is preferable to have an easy-adhesion layer on the surface of the polarizer protective film. At this time, from the viewpoint of suppressing interference due to reflected light, it is preferable to adjust the refractive index of the easy-adhesion layer so that it is close to the geometric mean of the refractive index of the functional layer and the refractive index of the basic film. The refractive index of the easy-adhesion layer can be adjusted by a known method. For example, the refractive index of the easy-adhesion layer can be easily adjusted by adding titanium, zirconium, or other metal species to the binder resin.
(ハードコート層)
 ハードコート層は、硬度及び透明性を有する層であれば良く、通常、紫外線又は電子線で代表的には硬化させる電離放射線硬化性樹脂、熱で硬化させる熱硬化性樹脂等の各種の硬化性樹脂の硬化樹脂層として形成されたものが利用される。これら硬化性樹脂に、適宜柔軟性、その他物性等を付加する為に、熱可塑性樹脂等も適宜添加してもよい。硬化性樹脂のなかでも、代表的であり且つ優れた硬質塗膜が得られる点で好ましいのが電離放射線硬化性樹脂である。
(Hard coat layer)
The hard coat layer only needs to be a layer having hardness and transparency. Usually, various curable properties such as an ionizing radiation curable resin typically cured by ultraviolet rays or an electron beam, and a thermosetting resin cured by heat. What was formed as a cured resin layer of resin is used. In order to appropriately add flexibility and other physical properties to these curable resins, thermoplastic resins and the like may be added as appropriate. Among the curable resins, ionizing radiation curable resins are preferable because they are representative and an excellent hard coating film can be obtained.
 上記電離放射線硬化性樹脂としては、従来公知の樹脂を適宜採用すれば良い。なお、電離放射線硬化性樹脂としては、エチレン性二重結合を有するラジカル重合性化合物、エポキシ化合物等の様なカチオン重合性化合物等が代表的に用いられ、これら化合物はモノマー、オリゴマー、プレポリマー等としてこれらを単独で、或いは2種以上を適宜組み合わせて用いることができる。代表的な化合物は、ラジカル重合性化合物である各種(メタ)アクリレート系化合物である。(メタ)アクリレート系化合物の中で、比較的低分子量で用いる化合物としては、例えば、ポリエステル(メタ)アクリレート、ポリエーテル(メタ)アクリレート、アクリル(メタ)アクリレート、エポキシ(メタ)アクリレート、ウレタン(メタ)アクリレート、等が挙げられる。 As the ionizing radiation curable resin, a conventionally known resin may be appropriately employed. As the ionizing radiation curable resin, a radical polymerizable compound having an ethylenic double bond, a cationic polymerizable compound such as an epoxy compound, and the like are typically used. These compounds include monomers, oligomers, prepolymers, and the like. These can be used alone or in appropriate combination of two or more. Typical compounds are various (meth) acrylate compounds that are radical polymerizable compounds. Among the (meth) acrylate compounds, compounds used at a relatively low molecular weight include, for example, polyester (meth) acrylate, polyether (meth) acrylate, acrylic (meth) acrylate, epoxy (meth) acrylate, urethane (meth) ) Acrylate, etc.
 モノマーとしては、例えば、エチル(メタ)アクリレート、エチルヘキシル(メタ)アクリレート、スチレン、メチルスチレン、N-ビニルピロリドン等の単官能モノマー;或いは、例えば、トリメチロールプロパントリ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、1,6‐ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート等の多官能モノマー等も適宜用いられる。(メタ)アクリレートとは、アクリレート或いはメタクリレートを意味する。 Examples of the monomer include monofunctional monomers such as ethyl (meth) acrylate, ethylhexyl (meth) acrylate, styrene, methylstyrene, and N-vinylpyrrolidone; or, for example, trimethylolpropane tri (meth) acrylate, tripropylene glycol diester (Meth) acrylate, diethylene glycol di (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol hexa (meth) acrylate, 1,6-hexanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, etc. These polyfunctional monomers are also used as appropriate. (Meth) acrylate means acrylate or methacrylate.
 電離放射線硬化性樹脂を電子線で硬化させる場合、光重合開始剤は不要であるが、紫外線で硬化させる場合は、公知の光重合開始剤を用いる。例えば、ラジカル重合系の場合は、光重合開始剤として、アセトフェノン類、ベンゾフェノン類、チオキサントン類、ベンゾイン、ベンゾインメチルエーテル等を単独又は混合して用いることができる。カチオン重合系の場合は、光重合開始剤として、芳香族ジアゾニウム塩、芳香族スルホニウム塩、芳香族ヨードニウム塩、メタセロン化合物、ベンゾインスルホン酸エステル等を単独又は混合して用いることができる。 When the ionizing radiation curable resin is cured with an electron beam, a photopolymerization initiator is not required, but when it is cured with ultraviolet rays, a known photopolymerization initiator is used. For example, in the case of a radical polymerization system, acetophenones, benzophenones, thioxanthones, benzoin, benzoin methyl ether, or the like can be used alone or in combination as a photopolymerization initiator. In the case of a cationic polymerization system, an aromatic diazonium salt, aromatic sulfonium salt, aromatic iodonium salt, metatheron compound, benzoin sulfonate, or the like can be used alone or in combination as a photopolymerization initiator.
 ハードコート層の厚みは、適宜の厚さとすればよく、例えば0.1~100μmであるが、通常は1~30μmとする。また、ハードコート層は公知の各種塗工法を適宜採用して形成することができる。 The thickness of the hard coat layer may be an appropriate thickness, for example, 0.1 to 100 μm, but usually 1 to 30 μm. The hard coat layer can be formed by appropriately adopting various known coating methods.
 電離放射線硬化性樹脂には、適宜物性調整等の為に、熱可塑性樹脂又は熱硬化性樹脂等も適宜添加することができる。熱可塑性樹脂又は熱硬化性樹脂としては、各々、例えば、アクリル樹脂、ウレタン樹脂、ポリエステル樹脂等が挙げられる。 In the ionizing radiation curable resin, a thermoplastic resin, a thermosetting resin, or the like can be appropriately added for the purpose of adjusting physical properties as appropriate. Examples of the thermoplastic resin or thermosetting resin include an acrylic resin, a urethane resin, and a polyester resin, respectively.
 ハードコート層に耐光性を付与し、日光等に含まれる紫外線による変色、強度劣化、亀裂発生等を防止する為には、電離放射線硬化性樹脂中に紫外線吸収剤を添加することも好ましい。紫外線吸収剤を添加する場合、該紫外線吸収剤によってハードコート層の硬化が阻害されることを確実に防ぐ為、電離放射線硬化性樹脂は電子線で硬化させることが好ましい。紫外線吸収剤としては、ベンゾトリアゾール系化合物、ベンゾフェノン系化合物等の有機系紫外線吸収剤、或いは粒径0.2μm以下の微粒子状の酸化亜鉛、酸化チタン、酸化セリウム等の無機系紫外線吸収剤等、公知の物の中から選択して用いれば良い。紫外線吸収剤の添加量は、電離放射線硬化性樹脂組成物中に0.01~5質量%程度である。耐光性をより向上させる為に、紫外線吸収剤と併用して、ヒンダードアミン系ラジカル捕捉剤等のラジカル捕捉剤を添加するのが好ましい。なお、電子線照射は加速電圧70kV~1MV、照射線量5~100kGy(0.5~10Mrad)程度である。 In order to impart light resistance to the hard coat layer and prevent discoloration, strength deterioration, cracking, and the like due to ultraviolet rays contained in sunlight, it is also preferable to add an ultraviolet absorber in the ionizing radiation curable resin. When an ultraviolet absorber is added, the ionizing radiation curable resin is preferably cured with an electron beam in order to reliably prevent the ultraviolet coater from inhibiting the curing of the hard coat layer. Examples of the ultraviolet absorber include organic ultraviolet absorbers such as benzotriazole compounds and benzophenone compounds, or inorganic ultraviolet absorbers such as fine particles of zinc oxide, titanium oxide, and cerium oxide having a particle size of 0.2 μm or less, What is necessary is just to select and use from well-known things. The addition amount of the ultraviolet absorber is about 0.01 to 5% by mass in the ionizing radiation curable resin composition. In order to further improve the light resistance, it is preferable to add a radical scavenger such as a hindered amine radical scavenger in combination with an ultraviolet absorber. The electron beam irradiation has an acceleration voltage of 70 kV to 1 MV and an irradiation dose of about 5 to 100 kGy (0.5 to 10 Mrad).
(防眩層)
画像表示装置の最視認側には防眩層が設けられていることが好ましい形態の一つである。防眩層としては、従来公知のものを適宜採用すれば良く、一般的に、樹脂中に防眩剤を分散した層として形成される。防眩剤としては、無機系又は有機系の微粒子が用いられる。これら微粒子の形状は、真球状、楕円状等である。微粒子は、好ましくは透明性のものが良い。この様な微粒子は、例えば、無機系微粒子としてはシリカビーズ、有機系微粒子としては樹脂ビーズが挙げられる。樹脂ビーズとしては、例えば、スチレンビーズ、メラミンビーズ、アクリルビーズ、アクリルースチレンビーズ、ポリカーボネートビーズ、ポリエチレンビーズ、ベンゾグアナミン-ホルムアルデヒドビーズなどが挙げられる。微粒子は、通常、樹脂分100質量部に対し、2~30質量部、好ましくは10~25質量部程度添加することができる。
(Anti-glare layer)
It is one of the preferred embodiments that an antiglare layer is provided on the most visible side of the image display device. As the antiglare layer, a conventionally known layer may be appropriately employed, and it is generally formed as a layer in which an antiglare agent is dispersed in a resin. As the antiglare agent, inorganic or organic fine particles are used. These fine particles have a spherical shape, an elliptical shape, or the like. The fine particles are preferably transparent. Examples of such fine particles include silica beads as inorganic fine particles and resin beads as organic fine particles. Examples of the resin beads include styrene beads, melamine beads, acrylic beads, acrylic-styrene beads, polycarbonate beads, polyethylene beads, and benzoguanamine-formaldehyde beads. The fine particles can be usually added in an amount of about 2 to 30 parts by mass, preferably about 10 to 25 parts by mass with respect to 100 parts by mass of the resin.
 防眩剤を分散保持する上記樹脂は、ハードコート層と同じ様に、なるべく硬度が高い方が好ましい。よって、上記樹脂として、例えば、上記ハードコート層で述べた電離放射線硬化性樹脂、熱硬化性樹脂等の硬化性樹脂等を用いることができる。 The resin for dispersing and holding the antiglare agent is preferably as hard as possible as in the hard coat layer. Therefore, as the resin, for example, a curable resin such as an ionizing radiation curable resin or a thermosetting resin described in the hard coat layer can be used.
 防眩層の厚みは、適宜の厚さとすればよく、通常は1~20μm程度とする。防眩層は公知の各種塗工法を適宜採用して形成することができる。なお、防眩層を形成する為の塗液中には、防眩剤の沈殿を防ぐ為に、シリカ等の公知の沈降防止剤を適宜添加することが好ましい。 The thickness of the antiglare layer may be an appropriate thickness, and is usually about 1 to 20 μm. The antiglare layer can be formed by appropriately adopting various known coating methods. In addition, it is preferable to add well-known anti-settling agents such as silica to the coating liquid for forming the anti-glare layer in order to prevent precipitation of the anti-glare agent.
(反射防止層)
画像表示装置の最表面側、各フィルムの空気との界面には反射防止層が設けられていることも好ましい形態の一つである。反射防止層としては、従来公知のものを適宜採用すれば良い。一般に、反射防止層は少なくとも低屈折率層からなり、更に低屈折率層と(該低屈折率層よりも屈折率が高い)高屈折率層とを交互に隣接積層し且つ表面側を低屈折率層とした多層の層からなる。低屈折率層及び高屈折率層の各厚みは、用途に応じた適宜厚みとすれば良く、隣接積層時は各々0.1μm前後、低屈折率層単独時は0.1~1μm程度であることが好ましい。
(Antireflection layer)
It is also one of preferable modes that an antireflection layer is provided on the outermost surface side of the image display device and the interface of each film with air. As the antireflection layer, a conventionally known layer may be appropriately employed. In general, the antireflection layer is composed of at least a low refractive index layer, and a low refractive index layer and a high refractive index layer (having a higher refractive index than the low refractive index layer) are alternately stacked adjacent to each other and the surface side has a low refractive index. It consists of multiple layers as the rate layer. Each thickness of the low refractive index layer and the high refractive index layer may be appropriately determined according to the application, and is about 0.1 μm when adjacent layers are stacked, and about 0.1 to 1 μm when the low refractive index layer alone is used. It is preferable.
 低屈折率層としては、シリカ、フッ化マグネシウム等の低屈折率物質を樹脂中に含有させた層、フッ素系樹脂等の低屈折率樹脂の層、低屈折率物質を低屈折率樹脂中に含有させた層、シリカ、フッ化マグネシウム等の低屈折率物質からなる層を薄膜形成法(例えば、蒸着、スパッタ、CVD、等の物理的又は化学的気相成長法)で形成した薄膜、酸化ケイ素のゾル液から酸化ケイ素ゲル膜を形成するゾルゲル法で形成した膜、或いは、低屈折率物質として空隙含有微粒子を樹脂中に含有させた層等が挙げられる。 As a low refractive index layer, a layer containing a low refractive index material such as silica or magnesium fluoride in a resin, a layer of a low refractive index resin such as a fluorine-based resin, or a low refractive index material in a low refractive index resin A thin film formed by a thin film forming method (for example, physical or chemical vapor deposition such as vapor deposition, sputtering, CVD, or the like), an oxidation layer, or a layer made of a low refractive index material such as silica or magnesium fluoride. Examples thereof include a film formed by a sol-gel method in which a silicon oxide gel film is formed from a silicon sol solution, or a layer in which void-containing fine particles are contained in a resin as a low refractive index substance.
 上記空隙含有微粒子とは、内部に気体を含む微粒子、気体を含む多孔質構造の微粒子等のことであり、微粒子固体部分の本来の屈折率に対して、該気体による空隙によって微粒子全体としては、見かけ上屈折率が低下した微粒子を意味する。この様な空隙含有微粒子としては、特開2001-233611号公報に開示のシリカ微粒子等が挙げられる。また、空隙含有微粒子としては、シリカの様な無機物以外に、特開2002-805031号公報等に開示の中空ポリマー微粒子も挙げられる。空隙含有微粒子の粒径は、例えば5~300nm程度である。 The void-containing fine particles are fine particles containing gas inside, fine particles having a porous structure containing gas, etc., and with respect to the original refractive index of the fine particle solid portion, It means fine particles whose refractive index is apparently lowered. Examples of such void-containing fine particles include silica fine particles disclosed in JP-A No. 2001-233611. Examples of the void-containing fine particles include hollow polymer fine particles disclosed in JP-A No. 2002-805031, in addition to inorganic substances such as silica. The particle diameter of the void-containing fine particles is, for example, about 5 to 300 nm.
 高屈折率層としては、酸化チタン、酸化ジルコニウム、酸化亜鉛等の高屈折率物質を樹脂中に含有させた層、フッ素非含有樹脂等の高屈折率樹脂の層、高屈折率物質を高屈折率樹脂中に含有させた層、酸化チタン、酸化ジルコニウム、酸化亜鉛等の高屈折率物質からなる層を薄膜形成法(例えば、蒸着、スパッタ、CVD、等の物理的乃至は化学的気相成長法)で形成した薄膜等が挙げられる。 As the high refractive index layer, a layer containing a high refractive index material such as titanium oxide, zirconium oxide or zinc oxide in a resin, a layer of a high refractive index resin such as a fluorine-free resin, or a high refractive index material is highly refracted. A layer formed of a high-refractive-index material such as titanium oxide, zirconium oxide, or zinc oxide in a thin film forming method (for example, vapor deposition, sputtering, CVD, etc., physical or chemical vapor deposition) Method).
(防汚層)
 防汚層としては、従来公知のものを適宜採用すれば良く、一般的に、樹脂中に、シリコーンオイル、シリコーン樹脂等の珪素系化合物;フッ素系界面活性剤、フッ素系樹脂等のフッ素系化合物;ワックス等の防汚染剤を含む塗料を用いて公知の塗工法で形成することができる。防汚層の厚みは、適宜厚さとすればよく、通常は1~10μm程度とすることが出来る。
(Anti-fouling layer)
As the antifouling layer, a conventionally known layer may be appropriately employed. Generally, in the resin, a silicon compound such as silicone oil or silicone resin; a fluorine compound such as fluorine surfactant or fluorine resin. It can be formed by a known coating method using a paint containing a stain-proofing agent such as wax. The thickness of the antifouling layer may be set appropriately, and can usually be about 1 to 10 μm.
(帯電防止層)
 帯電防止層としては、従来公知のものを適宜採用すれば良く、一般的に、樹脂中に帯電防止層を含有させた層として形成される。帯電防止層としては、有機系や無機系の化合物が用いられる。例えば、有機系化合物の帯電防止層としては、カチオン系帯電防止剤、アニオン系帯電防止剤、両性系帯電防止剤、ノニオン系帯電防止剤、有機金属系帯電防止剤等が挙げられ、またこれら帯電防止剤は低分子化合物として用いられるほか、高分子化合物としても用いられる。また、帯電防止剤としては、ポリチオフェン、ポリアニリン等の導電性ポリマー等も用いられる。また、帯電防止剤として例えば金属酸化物からなる導電性微粒子等も用いられる。導電性微粒子の粒径は透明性の点で、例えば平均粒径0.1nm~0.1μm程度である。なお、該金属酸化物としては、例えば、ZnO、CeO、Sb、SnO、ITO(インジウムドープ酸化錫)、In、Al、ATO(アンチモンドープ酸化錫)、AZO(アルミニウムドープ酸化亜鉛)等が挙げられる。
(Antistatic layer)
As the antistatic layer, a conventionally known layer may be appropriately employed, and it is generally formed as a layer containing an antistatic layer in a resin. As the antistatic layer, an organic or inorganic compound is used. For example, the antistatic layer of an organic compound includes a cationic antistatic agent, an anionic antistatic agent, an amphoteric antistatic agent, a nonionic antistatic agent, an organometallic antistatic agent, and the like. The inhibitor is used not only as a low molecular compound but also as a high molecular compound. As the antistatic agent, conductive polymers such as polythiophene and polyaniline are also used. Further, as the antistatic agent, for example, conductive fine particles made of a metal oxide are used. The particle diameter of the conductive fine particles is, for example, about 0.1 nm to 0.1 μm in average particle diameter in terms of transparency. Examples of the metal oxide include ZnO, CeO 2 , Sb 2 O 2 , SnO 2 , ITO (indium doped tin oxide), In 2 O 3 , Al 2 O 3 , ATO (antimony doped tin oxide), AZO (aluminum doped zinc oxide) etc. are mentioned.
 帯電防止層を含有させる上記樹脂としては、例えば、上記ハードコート層で述べた様な、電離放射線硬化性樹脂、熱硬化性樹脂等の硬化性樹脂等が使用される他、帯電防止層を中間層として形成して帯電防止層自体の表面強度が不要な場合には、熱可塑性樹脂等も使用される。帯電防止層の厚みは、適宜厚さとすればよく、通常は0.01~5μm程度とする。帯電防止層は公知の各種塗工法を適宜採用して形成することができる。 Examples of the resin containing the antistatic layer include curable resins such as ionizing radiation curable resins and thermosetting resins as described in the hard coat layer. When the layer is formed as a layer and the surface strength of the antistatic layer itself is unnecessary, a thermoplastic resin or the like is also used. The thickness of the antistatic layer may be set appropriately, and is usually about 0.01 to 5 μm. The antistatic layer can be formed by appropriately adopting various known coating methods.
 本発明の液晶表示装置は、上述するバックライト光源、2枚の偏光板、及び前記2枚の偏光板の間に配置される液晶セルを有するが、任意に他の部材を更に有していても良い。例えば、カラーフィルター、レンズフィルム、拡散シート、反射防止フィルム等を更に備えていても良い。 The liquid crystal display device of the present invention includes the above-described backlight light source, two polarizing plates, and a liquid crystal cell disposed between the two polarizing plates, but may optionally further include other members. . For example, a color filter, a lens film, a diffusion sheet, an antireflection film, and the like may be further provided.
 以下、実施例を挙げて本発明をより具体的に説明するが、本発明は、下記実施例によって制限されるものではなく、本発明の趣旨に適合する範囲で適宜変更を加えることが可能であり、それらは、いずれも本発明の技術的範囲に含まれる。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples, and can be appropriately modified within a scope that fits the gist of the present invention. They are all included in the technical scope of the present invention.
以下に、実施例において採用した物性の測定方法を示す。
(1)厚み(d)
 JIS K 7130「プラスチックフィルム及びシートの厚さ測定方法(A法)」に準拠して、厚み(d)を求めた。
The physical property measurement methods employed in the examples are shown below.
(1) Thickness (d)
The thickness (d) was determined in accordance with JIS K 7130 “Plastic Film and Sheet Thickness Measurement Method (Method A)”.
(2)屈折率(Nx、Ny、Nz)
 JIS K 7142「プラスチックの屈折率測定方法(A法)」に準拠して、MDの屈折率(Nx)、TDの屈折率(Ny)、厚み方向の屈折率(Nz)を求めた。通常波長589nmのナトリウムD線を用いて測定した。
(2) Refractive index (Nx, Ny, Nz)
Based on JIS K 7142 “Plastic Refractive Index Measurement Method (Method A)”, MD refractive index (Nx), TD refractive index (Ny), and thickness direction refractive index (Nz) were determined. It was measured using a sodium D line with a normal wavelength of 589 nm.
(3)複屈折率(ΔNxy)及びリタデーション(Re)
 リタデーションとは、フィルム面に対して厚さ方向をz軸とし、z軸と直行し、且つ、相互にも直行する2つの軸方向をx軸及びy軸とした場合に、これらの各軸方向の屈折率(Nx、Ny、Nz)によって生じる複屈折とフィルム厚みdの積で示される位相差である。ここでは、縦方向(MD)をx軸、幅方向(TD)をy軸とし、フィルム面(x-y平面)に入射する光によって生じる複屈折率(ΔNxy)と厚み(d)との積である面内リタデーションをリタデーション(Re)とした。従って、複屈折率(Δxy)及びリタデーション(Re)は、それぞれについて下記の式で求めた。各屈折率は、アッベ屈折率計を用いて測定した。リタデーションの単位はnmである。
(3) Birefringence (ΔNxy) and retardation (Re)
Retardation is the direction of each axis when the thickness direction is the z-axis with respect to the film surface, and the two axis directions perpendicular to the z-axis and perpendicular to each other are the x-axis and the y-axis. Is a phase difference represented by the product of birefringence caused by the refractive index (Nx, Ny, Nz) and the film thickness d. Here, the product of birefringence (ΔNxy) and thickness (d) generated by light incident on the film surface (xy plane), where the vertical direction (MD) is the x-axis and the width direction (TD) is the y-axis. The in-plane retardation which is is defined as retardation (Re). Accordingly, the birefringence (Δxy) and retardation (Re) were determined by the following formulas for each. Each refractive index was measured using an Abbe refractometer. The unit of retardation is nm.
 ΔNxy =|Nx-Ny|
 Re   =ΔNxy×d
ΔNxy = | Nx−Ny |
Re = ΔNxy × d
(4)厚さ方向リタデーション(Rth)
 厚さ方向リタデーションは、厚さ方向から入射する光よって生じるリタデーションを示すものである。ここでは、x-z平面とy-z平面の2つの複屈折率の平均とフィルム厚み(d)の積として、次式より求めた。単位はnmである。
(4) Thickness direction retardation (Rth)
Thickness direction retardation indicates retardation generated by light incident from the thickness direction. Here, the product of the average of the two birefringences in the xz plane and the yz plane and the film thickness (d) was obtained from the following equation. The unit is nm.
 Rth =(|Nx-Nz|+|Ny-Nz|)/2×d Rth = (| Nx−Nz | + | Ny−Nz |) / 2 × d
(5)面配向度(ΔP)
 フィルムの縦方向の屈折率(Nx)、幅方向の屈折率(Ny)、厚み方向の屈折率(Nz)の値を用いて、下記式に従って面配向度(ΔP)を算出した。
(5) Degree of plane orientation (ΔP)
Using the values of the refractive index (Nx) in the longitudinal direction, the refractive index (Ny) in the width direction, and the refractive index (Nz) in the thickness direction of the film, the degree of plane orientation (ΔP) was calculated according to the following formula.
 ΔP =((Nx+Ny)/2)-Nz ΔP = ((Nx + Ny) / 2) −Nz
(6)虹斑観察
 市販の偏光子フィルムの片面に、後述する各実施例及び比較例のフィルムを偏光子の吸収軸とフィルムの配向主軸(NxとNyの高い方)とが垂直になるように貼り付け、その反対の面に市販のTACフィルムを貼り付けて偏光板を作製した。次に、白色LEDをバックライトとして有し、2枚のTACフィルムを偏光子保護フィルムとする2つの偏光板、及び液晶セルを有する市販の液晶表示装置の視認側の偏光板を取り外し、前記の通り作製した偏光板を交換した。この際、作製した偏光板の視認側の偏光子保護フィルムが、実施例又は比較例のフィルムとなるように当該偏光板を設置した。このようにして作製した液晶表示装置に白色画像を表示させ、ディスプレイの正面、及び、斜め方向から目視観察を行なって、虹斑の発生について、以下のように判定した。なお、観察角度は、ディスプレイの画面の中心から法線方向(垂直)に引いた線と、ディスプレイ中心と観察時の眼の位置とを結ぶ線とで成す角である。 ◎:いずれの方向からも虹斑の発生無し ○:観察角度が0°から55°の範囲の時場合に、虹斑の発生無し。観察角度が55°を超えた範囲で一部に極薄い虹斑が観察される。 ×:観察角度が0°から55°の範囲で虹斑が観察される。
(6) Iridescent observation On one side of a commercially available polarizer film, the film of each example and comparative example described later is perpendicular to the absorption axis of the polarizer and the orientation axis of the film (the higher of Nx and Ny). A polarizing plate was prepared by attaching a commercially available TAC film to the opposite surface. Next, two polarizing plates having a white LED as a backlight and two TAC films as a polarizer protective film and a polarizing plate on the viewing side of a commercially available liquid crystal display device having a liquid crystal cell are removed, The polarizing plate produced as described above was replaced. Under the present circumstances, the said polarizing plate was installed so that the polarizer protective film at the side of visual recognition of the produced polarizing plate might turn into a film of an Example or a comparative example. A white image was displayed on the liquid crystal display device thus fabricated, and visual observation was performed from the front of the display and from an oblique direction, and the occurrence of rainbow spots was determined as follows. The observation angle is an angle formed by a line drawn in the normal direction (vertical) from the center of the display screen and a line connecting the display center and the eye position at the time of observation. A: No occurrence of rainbow spots from any direction B: No generation of rainbow spots when the observation angle is in the range of 0 ° to 55 °. A very thin rainbow is observed in part in the range where the observation angle exceeds 55 °. X: Iridescents are observed when the observation angle is in the range of 0 ° to 55 °.
(7)引裂き強度
 東洋精機製作所製エレメンドルフ引裂試験機を用いて、JIS P-8116に従い、各フィルムの引裂き強度を測定した。引裂き方向はフィルムの配向主軸方向と平行となるように行い、下記の基準に従って評価した。配向主軸方向の測定は分子配向計(王子計測器株式会社製、MOA-6004型分子配向計)で測定した。
(7) Tear Strength The tear strength of each film was measured according to JIS P-8116 using an Elmendorf tear tester manufactured by Toyo Seiki Seisakusho. The tearing direction was performed so as to be parallel to the orientation main axis direction of the film, and evaluated according to the following criteria. The measurement in the orientation main axis direction was performed with a molecular orientation meter (MOA-6004 type molecular orientation meter, manufactured by Oji Scientific Instruments).
 ○:引裂き強度が50mN以上
 ×:引裂き強度が50mN未満
○: Tear strength is 50 mN or more ×: Tear strength is less than 50 mN
(8)透過率
 分光光度計(日立製作所製、U-3500型)を用い、空気層を標準として各フィルムの波長300~500nm領域の光線透過率を測定し、波長380nmにおける光線透過率を求めた。
(8) Transmittance Using a spectrophotometer (U-3500, manufactured by Hitachi, Ltd.), the light transmittance in the wavelength region of 300 to 500 nm of each film is measured using the air layer as a standard, and the light transmittance at a wavelength of 380 nm is obtained. It was.
(9)150℃における熱収縮率
JISC2318-19975.3.4(寸法変化)に準拠し、長手方向及び幅方向の寸法変化率(%)を測定した。測定すべき方向に対し、フィルムを幅10mm、長さ250mmに切り取り、200mm間隔で印を付け、5gfの一定張力下で印の間隔(A)を測定した。次いで、フィルムを150℃の雰囲気中のオーブンに入れ、無荷重下で150±3℃で30分間加熱処理した後、5gfの一定張力下で印の間隔(B)を測定した。これらの測定値を用いて、以下の式より熱収縮率を求めた。
熱収縮率(%)=(A-B)/A×100
(9) Thermal contraction rate at 150 ° C. The dimensional change rate (%) in the longitudinal direction and the width direction was measured in accordance with JIS C2318-19975.3.4 (dimensional change). With respect to the direction to be measured, the film was cut into a width of 10 mm and a length of 250 mm, marked at intervals of 200 mm, and the distance (A) between the marks was measured under a constant tension of 5 gf. The film was then placed in an oven at 150 ° C. and heat-treated at 150 ± 3 ° C. for 30 minutes under no load, and the mark interval (B) was measured under a constant tension of 5 gf. Using these measured values, the heat shrinkage rate was obtained from the following equation.
Thermal shrinkage (%) = (AB) / A × 100
(製造例1-ポリエステル樹脂A)
 エステル化反応缶を昇温し200℃に到達した時点で、テレフタル酸を86.4質量部及びエチレングリコール64.6質量部を仕込み、撹拌しながら触媒として三酸化アンチモンを0.017質量部、酢酸マグネシウム4水和物を0.064質量部、トリエチルアミン0.16質量部を仕込んだ。ついで、加圧昇温を行いゲージ圧0.34MPa、240℃の条件で加圧エステル化反応を行った後、エステル化反応缶を常圧に戻し、リン酸0.014質量部を添加した。更に、15分かけて260℃に昇温し、リン酸トリメチル0.012質量部を添加した。次いで15分後に、高圧分散機で分散処理を行い、15分後、得られたエステル化反応生成物を重縮合反応缶に移送し、280℃で減圧下重縮合反応を行った。
(Production Example 1—Polyester resin A)
When the temperature of the esterification reactor was raised to 200 ° C., 86.4 parts by mass of terephthalic acid and 64.6 parts by mass of ethylene glycol were charged and 0.017 parts by mass of antimony trioxide as a catalyst while stirring. 0.064 parts by mass of magnesium acetate tetrahydrate and 0.16 parts by mass of triethylamine were charged. Subsequently, the pressure was raised and the esterification reaction was performed under the conditions of a gauge pressure of 0.34 MPa and 240 ° C., and then the esterification reaction vessel was returned to normal pressure, and 0.014 parts by mass of phosphoric acid was added. Furthermore, it heated up to 260 degreeC over 15 minutes, and 0.012 mass part of trimethyl phosphate was added. Then, after 15 minutes, dispersion treatment was performed with a high-pressure disperser, and after 15 minutes, the obtained esterification reaction product was transferred to a polycondensation reaction can and subjected to polycondensation reaction at 280 ° C. under reduced pressure.
 重縮合反応終了後、95%カット径が5μmのナスロン製フィルタで濾過処理を行い、ノズルからストランド状に押出し、予め濾過処理(孔径:1μm以下)を行った冷却水を用いて冷却、固化させ、ペレット状にカットした。得られた樹脂の固有粘度は0.62dl/gであり、不活性粒子及び内部析出粒子は実質上含有していなかった。以下、このようにして得られたポリエチレンテレフタレート樹脂をPET(A)と略す。 After completion of the polycondensation reaction, it is filtered through a NASRON filter with a 95% cut diameter of 5 μm, extruded into a strand from a nozzle, and cooled and solidified using cooling water that has been filtered (pore diameter: 1 μm or less) in advance. And cut into pellets. The obtained resin had an intrinsic viscosity of 0.62 dl / g and contained substantially no inert particles and internally precipitated particles. Hereinafter, the polyethylene terephthalate resin thus obtained is abbreviated as PET (A).
(製造例2-ポリエステル樹脂B)
 乾燥させた紫外線吸収剤(2,2’-(1,4-フェニレン)ビス(4H-3,1-ベンズオキサジノン-4-オン)10質量部、粒子を含有しないPET(A)(固有粘度が0.62dl/g)90質量部を混合し、混練押出機を用い、紫外線吸収剤含有する樹脂を得た。このようにして得られたポリエチレンテレフタレート樹脂をPET(B)と略す。
(Production Example 2-Polyester resin B)
10 parts by weight of a dried UV absorber (2,2 ′-(1,4-phenylene) bis (4H-3,1-benzoxazinon-4-one), PET (A) containing no particles (inherent viscosity 0.62 dl / g) was mixed with 90 parts by mass, and a kneading extruder was used to obtain a resin containing an ultraviolet absorber, and the polyethylene terephthalate resin thus obtained is abbreviated as PET (B).
(製造例3-接着性改質塗布液の調整)
 常法によりエステル交換反応及び重縮合反応を利用して、ジカルボン酸成分として(ジカルボン酸成分全体に対して)テレフタル酸46モル%、イソフタル酸46モル%及び5-スルホナトイソフタル酸ナトリウム8モル%、グリコール成分として(グリコール成分全体に対して)エチレングリコール50モル%及びネオペンチルグリコール50モル%の組成の水分散性スルホン酸金属塩基含有共重合ポリエステル樹脂を調製した。次いで、水51.4質量部、イソプロピルアルコール38質量部、n-ブチルセルソルブ5質量部、ノニオン系界面活性剤0.06質量部を混合した。そして、加熱撹拌し、77℃に達した時点で、上記水分散性スルホン酸金属塩基含有共重合ポリエステル樹脂5質量部を加え、樹脂の固まりが無くなるまで撹拌し続けた。その後、樹脂水分散液を常温まで冷却して、固形分濃度5.0質量%の均一な水分散性共重合ポリエステル樹脂液を得た。さらに、凝集体シリカ粒子(富士シリシア(株)社製、サイリシア310)3質量部を水50質量部に分散させた後、上記水分散性共重合ポリエステル樹脂液99.46質量部にサイリシア310の水分散液0.54質量部を加えて、撹拌しながら水20質量部を加えて、接着性改質塗布液を得た。
(Production Example 3-Adjustment of Adhesive Modification Coating Solution)
Using a transesterification reaction and a polycondensation reaction in a conventional manner, the dicarboxylic acid component (based on the total dicarboxylic acid component) is 46 mol% terephthalic acid, 46 mol% isophthalic acid and 8 mol% sodium 5-sulfonatoisophthalate. A water-dispersible sulfonic acid metal group-containing copolymer polyester resin having a composition of 50 mol% ethylene glycol and 50 mol% neopentyl glycol as a glycol component (based on the entire glycol component) was prepared. Next, 51.4 parts by mass of water, 38 parts by mass of isopropyl alcohol, 5 parts by mass of n-butyl cellosolve, and 0.06 parts by mass of a nonionic surfactant were mixed. Then, the mixture was heated and stirred, and when the temperature reached 77 ° C., 5 parts by mass of the water-dispersible sulfonic acid metal base-containing copolymer polyester resin was added, and stirring was continued until the resin no longer solidified. Thereafter, the resin water dispersion was cooled to room temperature to obtain a uniform water dispersible copolyester resin liquid having a solid concentration of 5.0% by mass. Furthermore, after dispersing 3 parts by mass of aggregated silica particles (Silicia 310, manufactured by Fuji Silysia Co., Ltd.) in 50 parts by mass of water, 99.46 parts by mass of the water-dispersible copolyester resin solution was mixed with 99.46 parts by mass of the silicia 310. 0.54 parts by mass of the aqueous dispersion was added, and 20 parts by mass of water was added with stirring to obtain an adhesive modified coating solution.
(実施例1)
 3層構造からなる基材フィルム中間層用原料として粒子を含有しないPET(A)樹脂ペレット90質量部と紫外線吸収剤を含有したPET(B)樹脂ペレット10質量部を135℃で6時間減圧乾燥(1Torr)した後、押出機2(中間層II層用)に供給した。また、PET(A)を常法により乾燥して押出機1(外層I層および外層III用)にそれぞれ供給し、285℃で溶解した。この2種のポリマーを、それぞれステンレス焼結体の濾材(公称濾過精度10μm粒子95%カット)で濾過し、2種3層合流ブロックにて、積層し、口金よりシート状にして押し出した後、静電印加キャスト法を用いて表面温度30℃のキャスティングドラムに巻きつけて冷却固化し、未延伸フィルムを作った。この時、I層、II層、III層の厚みの比は10:80:10となるように各押し出し機の吐出量を調整した。
(Example 1)
90 parts by mass of PET (A) resin pellets containing no particles as a raw material for a base film intermediate layer having a three-layer structure and 10 parts by mass of PET (B) resin pellets containing an ultraviolet absorber were dried under reduced pressure at 135 ° C. for 6 hours. (1 Torr), and then supplied to the extruder 2 (for the intermediate layer II layer). Moreover, PET (A) was dried by a conventional method, supplied to the extruder 1 (for the outer layer I layer and outer layer III), and melted at 285 ° C. After filtering these two kinds of polymers with a filter medium made of a sintered stainless steel (nominal filtration accuracy of 10 μm particles 95% cut), laminating them in a two-kind / three-layer confluence block, and extruding them into a sheet form from a die, The film was wound around a casting drum having a surface temperature of 30 ° C. using an electrostatic application casting method, and then cooled and solidified to produce an unstretched film. At this time, the discharge amount of each extruder was adjusted so that the ratio of the thicknesses of the I layer, the II layer, and the III layer was 10:80:10.
 次いで、リバースロール法により、この未延伸PETフィルムの両面に乾燥後の塗布量が0.08g/mになるように、上記接着性改質塗布液を塗布した後、80℃で20秒間乾燥した。 Next, the above-mentioned adhesive property-modified coating solution was applied on both sides of this unstretched PET film by a reverse roll method so that the coating amount after drying was 0.08 g / m 2, and then dried at 80 ° C. for 20 seconds. did.
 この塗布層を形成した未延伸フィルムを同時二軸延伸機に導き、フィルムの端部をクリップで把持しながら、温度90℃の熱風ゾーンに導き、縦方向に倍率0.8倍となるように緩和させ、同時に横方向に4.0倍延伸した。次に、温度170℃、30秒間で処理し、さらに幅方向に3%の緩和処理を行い、フィルム厚み約50μmの一軸配向PETフィルムを得た。 The unstretched film on which this coating layer is formed is guided to a simultaneous biaxial stretching machine, and the end of the film is held by a clip while being guided to a hot air zone at a temperature of 90 ° C. so that the magnification is 0.8 times in the vertical direction. It was relaxed and simultaneously stretched 4.0 times in the transverse direction. Next, it was treated at a temperature of 170 ° C. for 30 seconds and further subjected to a relaxation treatment of 3% in the width direction to obtain a uniaxially oriented PET film having a film thickness of about 50 μm.
(実施例2)
 未延伸フィルムの厚みを変更することにより、厚みを約58μmとし、縦方向に0.9倍の倍率で緩和させたこと以外は実施例1と同様にして一軸配向PETフィルムを得た。
(Example 2)
A uniaxially oriented PET film was obtained in the same manner as in Example 1 except that the thickness of the unstretched film was changed to about 58 μm and relaxed at a magnification of 0.9 times in the longitudinal direction.
(実施例3)
 未延伸フィルムの厚みを変更することにより、厚みを約38μmとし、縦方向に0.7倍の倍率で緩和させ、180℃の温度で30秒間熱処理を施した以外は実施例1と同様にして一軸配向PETフィルムを得た。
(Example 3)
By changing the thickness of the unstretched film, the thickness was about 38 μm, the thickness was relaxed at a magnification of 0.7 times, and the heat treatment was performed at a temperature of 180 ° C. for 30 seconds, as in Example 1. A uniaxially oriented PET film was obtained.
(実施例4)
 未延伸フィルムの厚みを変更することにより、厚みを約25μmとし、横方向の延伸倍率を5.0倍とし、180℃の温度で30秒間で熱処理したこと以外は実施例1と同様にして一軸配向PETフィルムを得た。
Example 4
By changing the thickness of the unstretched film, the thickness was about 25 μm, the transverse stretch ratio was 5.0 times, and uniaxial in the same manner as in Example 1 except that the heat treatment was performed at a temperature of 180 ° C. for 30 seconds. An oriented PET film was obtained.
(実施例5)
 未延伸フィルムの厚みを変更することにより、厚みを約80μmとし、縦方向に0.85倍の倍率で緩和させ、延伸時の温度を95℃とし、180℃の温度で30秒間熱処理を施した以外は実施例1と同様にして一軸配向PETフィルムを得た。
(Example 5)
By changing the thickness of the unstretched film, the thickness was about 80 μm, relaxed at a magnification of 0.85 times in the longitudinal direction, the stretching temperature was 95 ° C., and heat treatment was performed at a temperature of 180 ° C. for 30 seconds. A uniaxially oriented PET film was obtained in the same manner as Example 1 except for the above.
(実施例6)
 未延伸フィルムの厚みを変更することにより、厚みを約38μmとし、縦方向に0.6倍の倍率で緩和させたこと以外は実施例1と同様にして一軸配向PETフィルムを得た。
(Example 6)
A uniaxially oriented PET film was obtained in the same manner as in Example 1 except that the thickness of the unstretched film was changed to about 38 μm and relaxed at a magnification of 0.6 times in the longitudinal direction.
(比較例1)
 実施例1と同様の方法で作製した未延伸フィルムをテンター延伸機に導き、フィルムの端部をクリップで把持しながら、温度125℃の熱風ゾーンに導き、幅方向に4.0倍に延伸した。次に、幅方向に延伸された幅を保ったまま、温度225℃、30秒間で処理し、さらに幅方向に3%の緩和処理を行い、フィルム厚み約25μmの一軸配向PETフィルムを得た。
(Comparative Example 1)
The unstretched film produced by the same method as in Example 1 was guided to a tenter stretching machine, and the end of the film was guided with a clip while being guided to a hot air zone at a temperature of 125 ° C., and stretched 4.0 times in the width direction. . Next, while maintaining the width stretched in the width direction, the film was treated at a temperature of 225 ° C. for 30 seconds and further subjected to a relaxation treatment of 3% in the width direction to obtain a uniaxially oriented PET film having a film thickness of about 25 μm.
(比較例2)
 実施例1と同様の方法で、走行方向に3.4倍、幅方向に4.0倍延伸して、フィルム厚み約38μmの二軸配向PETフィルムを得た。
(Comparative Example 2)
In the same manner as in Example 1, the film was stretched 3.4 times in the running direction and 4.0 times in the width direction to obtain a biaxially oriented PET film having a film thickness of about 38 μm.
(比較例3)
 比較例1と同様の方法で、走行方向に4.0倍、幅方向に1.0倍延伸して、フィルム厚み約100μmの一軸配向PETフィルムを得た。縦一軸延伸フィルムのため、フィルム表面に微小なキズが観察された。
(Comparative Example 3)
In the same manner as in Comparative Example 1, the film was stretched 4.0 times in the running direction and 1.0 times in the width direction to obtain a uniaxially oriented PET film having a film thickness of about 100 μm. Due to the uniaxially stretched film, minute scratches were observed on the film surface.
(比較例4)
 未延伸フィルムの厚みを変更することにより、厚みを約38μmとし、縦方向の緩和処理を行わなかったこと以外は実施例1と同様にして一軸配向PETフィルムを得た。
(Comparative Example 4)
A uniaxially oriented PET film was obtained in the same manner as in Example 1 except that the thickness of the unstretched film was changed to about 38 μm and the longitudinal relaxation treatment was not performed.
(比較例5)
 未延伸フィルムの厚みを変更することにより、厚みを約38μmとし、縦方向の緩和処理を行わなかったこと以外は実施例3と同様にして一軸配向PETフィルムを得た。
(Comparative Example 5)
A uniaxially oriented PET film was obtained in the same manner as in Example 3 except that the thickness of the unstretched film was changed to about 38 μm and the longitudinal relaxation treatment was not performed.
(比較例6)
 未延伸フィルムの厚みを変更することにより、厚みを約25μmとし、縦方向の緩和処理を行わなかったこと以外は実施例4と同様にして一軸配向PETフィルムを得た。
(Comparative Example 6)
A uniaxially oriented PET film was obtained in the same manner as in Example 4 except that the thickness of the unstretched film was changed to about 25 μm and the longitudinal relaxation treatment was not performed.
 以上の実施例及び比較例のフィルムについて評価した結果を下記の表1に示す。 The results of evaluating the films of the above Examples and Comparative Examples are shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 上記の通り、実施例1~6のフィルムを偏光子保護フィルムとして用いた場合、虹斑の発生が有意に抑制され、視認性に優れた液晶表示装置が得られることが確認された。また、実施例1~6のフィルムは、視認性に優れた画像表示装置の提供を可能にするだけでなく、比較的厚みが薄いにも関わらず、十分な引裂強度を備えているため、工業的な画像表示装置の製造における使用に適していることが確認された。一方、比較例1、2及び6のフィルムは、偏光子保護フィルムとして用いた場合に、正面から観察した際に虹斑を生じてしまい、良好な視認性を得ることは出来なかった。また、比較例3のフィルムは、偏光子保護フィルムとして用いた場合の視認性には問題ないものの、引裂強度が不十分であるため、工業的且つ安定的な液晶表示装置の製造には適していないことが判明した。これは、比較例3のフィルムは、Re値及びRe/Rth比は比較的高いものの、ΔPの値が高いことが原因であると考えられる。比較例4及び5のフィルムは、観察角度が0°から55°の範囲で観察したときに虹斑の発生は観察されなかったが、観察角度が55°を超えた範囲で一部に極薄い虹斑が観察された。これは、比較例4及び5のフィルムは、Reが比較的高いものの、Re/Rth比が低いことが原因であると考えられる。また、比較例6はΔPの値が高いことから引裂強度も不十分であった。 As described above, when the films of Examples 1 to 6 were used as a polarizer protective film, it was confirmed that the generation of rainbow spots was significantly suppressed and a liquid crystal display device having excellent visibility was obtained. Further, the films of Examples 1 to 6 not only make it possible to provide an image display device with excellent visibility, but also have a sufficient tear strength despite being relatively thin, It has been confirmed that it is suitable for use in the manufacture of typical image display devices. On the other hand, when the films of Comparative Examples 1, 2, and 6 were used as polarizer protective films, rainbow spots were produced when observed from the front, and good visibility could not be obtained. In addition, the film of Comparative Example 3 has no problem in visibility when used as a polarizer protective film, but is not suitable for the production of an industrial and stable liquid crystal display device because of insufficient tear strength. Not found out. This is considered to be because the film of Comparative Example 3 has a relatively high Re value and Re / Rth ratio but a high ΔP value. In the films of Comparative Examples 4 and 5, the generation of rainbow spots was not observed when the observation angle was observed in the range of 0 ° to 55 °, but it was extremely thin in part in the range where the observation angle exceeded 55 °. Iridae was observed. This is presumably because the films of Comparative Examples 4 and 5 have a relatively high Re but a low Re / Rth ratio. In Comparative Example 6, the tear strength was insufficient due to the high ΔP value.
 本発明の液晶表示装置、偏光板及び偏光子保護フィルムを用いることで、視認性に優れ、且つ、薄型の液晶表示装置の提供が可能となる。従って、本発明の産業上の利用可能性は極めて高い。 By using the liquid crystal display device, the polarizing plate and the polarizer protective film of the present invention, it is possible to provide a thin liquid crystal display device with excellent visibility. Therefore, the industrial applicability of the present invention is extremely high.
1 ポリエステルフィルム
2 ポリエステルフィルムの面に対する垂直方向を示す線
3 観察者の目の位置とフィルム面(の中心)を結ぶ線
4 観察者の目の位置
DESCRIPTION OF SYMBOLS 1 Polyester film 2 Line | wire which shows the orthogonal | vertical direction with respect to the surface of a polyester film 3 Line | wire which connects the position of an observer's eye and film surface (center) 4 Position of an observer's eye

Claims (14)

  1. バックライト光源、2枚の偏光板、前記2枚の偏光板の間に配置される液晶セルを有し、前記バックライト光源は、連続的な発光スペクトルを有する白色光源であり、
    前記偏光板は、偏光子の両側に偏光子保護フィルムが積層された構造を有し、
    前記偏光子保護フィルムのうち、少なくとも1枚は、下記の物性(a)~(c):
    (a)3000nm以上30000nm以下であるリタデーション(Re);
    (b)1.0以上であるリタデーション(Re)と厚さ方向リタデーション(Rth)との比(Re/Rth);及び
    (c)0.12以下である面配向度(ΔP);
    を満たすポリエステルフィルムである、
    液晶表示装置。
    A backlight light source, two polarizing plates, a liquid crystal cell disposed between the two polarizing plates, the backlight light source is a white light source having a continuous emission spectrum;
    The polarizing plate has a structure in which a polarizer protective film is laminated on both sides of a polarizer,
    At least one of the polarizer protective films has the following physical properties (a) to (c):
    (A) Retardation (Re) which is 3000 nm or more and 30000 nm or less;
    (B) ratio (Re / Rth) of retardation (Re) and thickness direction retardation (Rth) which is 1.0 or more; and (c) degree of plane orientation (ΔP) which is 0.12 or less;
    It is a polyester film that satisfies
    Liquid crystal display device.
  2. 前記ポリエステルフィルムが下記の物性(d):
    (d)0.1以上である複屈折率(ΔNxy)
    を満たす、請求項1に記載の液晶表示装置
    The polyester film has the following physical properties (d):
    (D) Birefringence index (ΔNxy) of 0.1 or more
    The liquid crystal display device according to claim 1, wherein
  3. 前記ポリエステルフィルムが、前記液晶セルよりも視認側に位置する偏光板を構成する偏光子保護フィルムである、請求項1又は2に記載の液晶表示装置。 The liquid crystal display device of Claim 1 or 2 whose said polyester film is a polarizer protective film which comprises the polarizing plate located in the visual recognition side rather than the said liquid crystal cell.
  4. 前記ポリエステルフィルムの厚みが、20μm以上90μm以下である、請求項1~3のいずれかに記載の液晶表示装置。 The liquid crystal display device according to claim 1, wherein the polyester film has a thickness of 20 袖 m to 90 袖 m.
  5. 前記ポリエステルフィルムの引裂強度が、50mN以上である、請求項1~4のいずれかに記載の液晶表示装置。 The liquid crystal display device according to any one of claims 1 to 4, wherein the tear strength of the polyester film is 50 mN or more.
  6. 下記の物性(a)~(c):
    (a)3000nm以上30000nm以下であるリタデーション(Re);
    (b)1.0以上であるリタデーション(Re)と厚さ方向リタデーション(Rth)との比(Re/Rth);及び
    (c)0.12以下である面配向度(ΔP);
    を満たすポリエステルフィルムが偏光子の少なくとも1つの面に積層された構造を有する、偏光板。
    The following physical properties (a) to (c):
    (A) Retardation (Re) which is 3000 nm or more and 30000 nm or less;
    (B) ratio (Re / Rth) of retardation (Re) and thickness direction retardation (Rth) which is 1.0 or more; and (c) degree of plane orientation (ΔP) which is 0.12 or less;
    The polarizing plate which has the structure where the polyester film which satisfy | fills was laminated | stacked on the at least 1 surface of the polarizer.
  7. 前記ポリエステルフィルムが下記の物性(d):
    (d)0.1以上である複屈折率(ΔNxy)
    を満たす、請求項6に記載の偏光板。
    The polyester film has the following physical properties (d):
    (D) Birefringence index (ΔNxy) of 0.1 or more
    The polarizing plate of Claim 6 which satisfy | fills.
  8. 前記ポリエステルフィルムの厚みが、20μm以上90μm以下である、請求項6又は7に記載の偏光板。 The polarizing plate of Claim 6 or 7 whose thickness of the said polyester film is 20 micrometers or more and 90 micrometers or less.
  9. 前記ポリエステルフィルムの引裂強度が、50mN以上である、請求項6~8のいずれかに記載の偏光板。 The polarizing plate according to any one of claims 6 to 8, wherein the tear strength of the polyester film is 50 mN or more.
  10. 下記の物性(a)~(c):
    (a)3000nm以上30000nm以下であるリタデーション(Re);
    (b)1.0以上であるリタデーション(Re)と厚さ方向リタデーション(Rth)との比(Re/Rth);及び
    (c)0.12以下である面配向度(ΔP);
    を満たすポリエステルフィルムである、偏光子保護フィルム。
    The following physical properties (a) to (c):
    (A) Retardation (Re) which is 3000 nm or more and 30000 nm or less;
    (B) ratio (Re / Rth) of retardation (Re) and thickness direction retardation (Rth) which is 1.0 or more; and (c) degree of plane orientation (ΔP) which is 0.12 or less;
    A polarizer protective film, which is a polyester film satisfying the requirements.
  11. 前記ポリエステルフィルムが下記の物性(d):
    (d)0.1以上である複屈折率(ΔNxy)
    を満たす、請求項10に記載の偏光子保護フィルム。
    The polyester film has the following physical properties (d):
    (D) Birefringence index (ΔNxy) of 0.1 or more
    The polarizer protective film of Claim 10 which satisfy | fills.
  12. 前記ポリエステルフィルムの厚みが、20μm以上90μm以下である、請求項10又は11に記載の偏光子保護フィルム。 The polarizer protective film according to claim 10 or 11 whose thickness of said polyester film is 20 micrometers or more and 90 micrometers or less.
  13. 前記ポリエステルフィルムの引裂強度が、50mN以上である、請求項10~12のいずれかに記載の偏光子保護フィルム。 The polarizer protective film according to any one of claims 10 to 12, wherein the tear strength of the polyester film is 50 mN or more.
  14. ポリエステルフィルムを、延伸方向と直交する方向に対して緩和処理を行いながら、同時に延伸する工程を含む、
    下記の物性(a)~(c):
    (a)3000nm以上30000nm以下であるリタデーション(Re);
    (b)1.0以上であるリタデーション(Re)と厚さ方向リタデーション(Rth)との比(Re/Rth);及び
    (c)0.12以下である面配向度(ΔP);
    を満たすポリエステルフィルムである、偏光子保護フィルムの製造方法。
    Including a step of simultaneously stretching the polyester film while performing relaxation treatment on the direction orthogonal to the stretching direction,
    The following physical properties (a) to (c):
    (A) Retardation (Re) which is 3000 nm or more and 30000 nm or less;
    (B) ratio (Re / Rth) of retardation (Re) and thickness direction retardation (Rth) which is 1.0 or more; and (c) degree of plane orientation (ΔP) which is 0.12 or less;
    The manufacturing method of the polarizer protective film which is a polyester film which satisfy | fills.
PCT/JP2014/060377 2013-04-19 2014-04-10 Liquid-crystal display, polarizing plate, and polarizer-protecting film WO2014171386A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201480022354.4A CN105143967B (en) 2013-04-19 2014-04-10 Liquid crystal display device, polarizer and polaroid protective film
KR1020217023849A KR102505572B1 (en) 2013-04-19 2014-04-10 Liquid-crystal display, polarizing plate, and polarizer-protecting film
KR1020157031897A KR102285068B1 (en) 2013-04-19 2014-04-10 Liquid-crystal display, polarizing plate, and polarizer-protecting film
JP2014525240A JP6586727B2 (en) 2013-04-19 2014-04-10 Liquid crystal display device, polarizing plate and polarizer protective film

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2013-088438 2013-04-19
JP2013-088463 2013-04-19
JP2013088438 2013-04-19
JP2013088463 2013-04-19
JP2013-195549 2013-09-20
JP2013195549 2013-09-20
JP2013195557 2013-09-20
JP2013-195557 2013-09-20

Publications (1)

Publication Number Publication Date
WO2014171386A1 true WO2014171386A1 (en) 2014-10-23

Family

ID=51731329

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/060377 WO2014171386A1 (en) 2013-04-19 2014-04-10 Liquid-crystal display, polarizing plate, and polarizer-protecting film

Country Status (5)

Country Link
JP (2) JP6586727B2 (en)
KR (2) KR102505572B1 (en)
CN (1) CN105143967B (en)
TW (1) TWI557447B (en)
WO (1) WO2014171386A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016090968A (en) * 2014-11-11 2016-05-23 東洋紡株式会社 Polarizer protection film, polarizing plate, liquid crystal display device having the same
CN108292058A (en) * 2015-11-30 2018-07-17 东洋纺株式会社 Liquid crystal display device
US10175494B2 (en) 2011-05-18 2019-01-08 Toyobo Co., Ltd. Polarizing plate suitable for liquid crystal display device capable of displaying three-dimensional images, and liquid crystal display device
CN110383122A (en) * 2017-03-31 2019-10-25 东洋纺株式会社 Polaroid protective film, polarizer and image display device
US10503016B2 (en) 2010-06-22 2019-12-10 Toyobo Co., Ltd. Liquid crystal display device, polarizer and protective film
KR20200046111A (en) * 2017-09-15 2020-05-06 도요보 가부시키가이샤 Polarizer protective film, polarizing plate, and liquid crystal display device
US10948764B2 (en) 2009-11-12 2021-03-16 Keio University Method for improving visibility of liquid crystal display device, and liquid crystal display device using the same
WO2021137479A1 (en) * 2019-12-31 2021-07-08 삼성에스디아이 주식회사 Polarizer protective film, polarizing plate comprising same, and optical display device comprising same
JP2022008869A (en) * 2017-04-28 2022-01-14 エルジー・ケム・リミテッド Light modulation device
WO2022118807A1 (en) * 2020-12-02 2022-06-09 大日本印刷株式会社 Polyester film, polarizing plate and image display device
WO2023248877A1 (en) * 2022-06-22 2023-12-28 東洋紡株式会社 Polyester film for protecting polarizer, polarizing plate, and liquid crystal display device

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106094233A (en) * 2015-12-02 2016-11-09 派尼尔科技(天津)有限公司 A kind of display eye screen
TW201736141A (en) * 2015-12-28 2017-10-16 東洋紡股份有限公司 Laminated polyester film
AU2016381909B2 (en) * 2015-12-28 2020-10-15 Furanix Technologies B.V. Layered Polyester Film
TWI751868B (en) * 2016-03-30 2022-01-01 日商東洋紡股份有限公司 Polyester film, manufacturing method thereof, and polyester film roll
CN110382232B (en) * 2017-03-01 2021-09-28 东洋纺株式会社 Laminate comprising polyester film having furandicarboxylic acid unit and heat-sealable resin layer, and packaging bag
KR102425314B1 (en) 2017-03-01 2022-07-27 도요보 가부시키가이샤 Method for producing a polyester film having furandicarboxylic acid units
JP6863530B2 (en) * 2018-09-28 2021-04-21 東洋紡株式会社 Image display device with fingerprint authentication sensor
CN115427875B (en) * 2020-07-07 2023-11-24 东洋纺株式会社 Liquid crystal display device having a light shielding layer
CN112164324B (en) * 2020-09-04 2022-07-15 中国科学技术大学 Organic light emitting display device with changing polarization state of emergent light
CN116264843A (en) * 2021-03-24 2023-06-16 东洋纺株式会社 Image display device and method for selecting combination of backlight light source and polarizing plate in liquid crystal display device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009006543A (en) * 2007-06-27 2009-01-15 Toyobo Co Ltd Biaxially oriented polyester film
JP2012256014A (en) * 2010-06-22 2012-12-27 Toyobo Co Ltd Liquid crystal display device, polarizing plate, and polarizer protective film
JP2013054207A (en) * 2011-09-05 2013-03-21 Mitsubishi Plastics Inc Polyester film for protecting polarizing plate and method for manufacturing the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5977401A (en) * 1982-09-22 1984-05-02 Nitto Electric Ind Co Ltd Polarizing plate
CN101006370A (en) * 2005-07-04 2007-07-25 日东电工株式会社 Method for producing optically functional film, optically functional film, polarizing plate, optical device and image display
JP5811431B2 (en) * 2009-09-11 2015-11-11 住友化学株式会社 Polarizing plate and liquid crystal display device
US10175494B2 (en) * 2011-05-18 2019-01-08 Toyobo Co., Ltd. Polarizing plate suitable for liquid crystal display device capable of displaying three-dimensional images, and liquid crystal display device
CN103959148B (en) * 2011-11-29 2016-08-17 东洋纺株式会社 Liquid crystal indicator, Polarizer and polaroid protective film
KR102149433B1 (en) * 2012-07-30 2020-10-14 도요보 가부시키가이샤 Liquid crystal display device, polarizing plates, and polarizer protection film

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009006543A (en) * 2007-06-27 2009-01-15 Toyobo Co Ltd Biaxially oriented polyester film
JP2012256014A (en) * 2010-06-22 2012-12-27 Toyobo Co Ltd Liquid crystal display device, polarizing plate, and polarizer protective film
JP2013054207A (en) * 2011-09-05 2013-03-21 Mitsubishi Plastics Inc Polyester film for protecting polarizing plate and method for manufacturing the same

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10948764B2 (en) 2009-11-12 2021-03-16 Keio University Method for improving visibility of liquid crystal display device, and liquid crystal display device using the same
US10503016B2 (en) 2010-06-22 2019-12-10 Toyobo Co., Ltd. Liquid crystal display device, polarizer and protective film
US10175494B2 (en) 2011-05-18 2019-01-08 Toyobo Co., Ltd. Polarizing plate suitable for liquid crystal display device capable of displaying three-dimensional images, and liquid crystal display device
JP2016090968A (en) * 2014-11-11 2016-05-23 東洋紡株式会社 Polarizer protection film, polarizing plate, liquid crystal display device having the same
CN108292058A (en) * 2015-11-30 2018-07-17 东洋纺株式会社 Liquid crystal display device
CN110383122A (en) * 2017-03-31 2019-10-25 东洋纺株式会社 Polaroid protective film, polarizer and image display device
US11506915B2 (en) 2017-04-28 2022-11-22 Lg Chem, Ltd. Light modulation device
JP2022008869A (en) * 2017-04-28 2022-01-14 エルジー・ケム・リミテッド Light modulation device
US11536987B2 (en) 2017-04-28 2022-12-27 Lg Chem, Ltd. Light modulation device
JP7225508B2 (en) 2017-04-28 2023-02-21 エルジー・ケム・リミテッド Optical modulation device
JP2020144376A (en) * 2017-09-15 2020-09-10 東洋紡株式会社 Polarizer protective film, polarizing plate and liquid crystal display device
KR20200054241A (en) * 2017-09-15 2020-05-19 도요보 가부시키가이샤 Polarizer protective film, polarizer and liquid crystal display
KR20200046111A (en) * 2017-09-15 2020-05-06 도요보 가부시키가이샤 Polarizer protective film, polarizing plate, and liquid crystal display device
KR102453214B1 (en) * 2017-09-15 2022-10-11 도요보 가부시키가이샤 Polarizer protective film, polarizer and liquid crystal display
KR102468284B1 (en) * 2017-09-15 2022-11-17 도요보 가부시키가이샤 Polarizer protective film, polarizing plate, and liquid crystal display device
JP7288878B2 (en) 2017-09-15 2023-06-08 東洋紡株式会社 Polarizer protective film, polarizing plate and liquid crystal display device
WO2021137479A1 (en) * 2019-12-31 2021-07-08 삼성에스디아이 주식회사 Polarizer protective film, polarizing plate comprising same, and optical display device comprising same
WO2022118807A1 (en) * 2020-12-02 2022-06-09 大日本印刷株式会社 Polyester film, polarizing plate and image display device
WO2023248877A1 (en) * 2022-06-22 2023-12-28 東洋紡株式会社 Polyester film for protecting polarizer, polarizing plate, and liquid crystal display device

Also Published As

Publication number Publication date
CN105143967A (en) 2015-12-09
JP6586727B2 (en) 2019-10-09
TWI557447B (en) 2016-11-11
KR102505572B1 (en) 2023-03-02
KR20210095974A (en) 2021-08-03
CN105143967B (en) 2019-02-19
TW201441679A (en) 2014-11-01
KR20150143590A (en) 2015-12-23
JP2020073951A (en) 2020-05-14
JPWO2014171386A1 (en) 2017-02-23
KR102285068B1 (en) 2021-08-02
JP6658954B1 (en) 2020-03-04

Similar Documents

Publication Publication Date Title
JP6658954B1 (en) Liquid crystal display, polarizing plate and polarizer protective film
JP6146008B2 (en) Liquid crystal display device, polarizing plate and polarizer protective film
JP5614506B2 (en) Liquid crystal display device, polarizing plate and polarizer protective film
JP6414380B2 (en) Polarizer protective film, polarizing plate using the same, and liquid crystal display device
JP6354410B2 (en) Polarizer protective film, polarizing plate, and liquid crystal display device using the same
JP2015111208A (en) Polarizer protective film, polarizing plate, and liquid crystal display device
JP6880548B2 (en) Liquid crystal display device
JP2022153484A (en) Liquid crystal display device, polarization plate and polarizer protective film
JP6439445B2 (en) Image display device
JP2022173328A (en) Liquid crystal display device and polarizer
JP2015143778A (en) Polarizer protection film, polarizing plate, liquid crystal display device having the same
JP2016200716A (en) Liquid crystal display
JP6337481B2 (en) Polarizer protective film, polarizing plate and liquid crystal display device
JP6212906B2 (en) Liquid crystal display device, polarizing plate, and polarizer protective film
JP6256721B2 (en) Polarizer protective film, polarizing plate, and liquid crystal display device using the same
KR102532754B1 (en) liquid crystal display
JP6459176B2 (en) Liquid crystal display device and polarizing plate
JP6688447B2 (en) Polarizer protective film, polarizing plate, and liquid crystal display device using the same
JP2015079129A (en) Liquid crystal display device, polarizing plate, and polarizer protective film
JP6521216B2 (en) Liquid crystal display device and polarizing plate
JP6337474B2 (en) Polarizer protective film, polarizing plate, and liquid crystal display device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480022354.4

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2014525240

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14785261

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157031897

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 14785261

Country of ref document: EP

Kind code of ref document: A1