WO2014171317A1 - Photoirradiation device - Google Patents

Photoirradiation device Download PDF

Info

Publication number
WO2014171317A1
WO2014171317A1 PCT/JP2014/059461 JP2014059461W WO2014171317A1 WO 2014171317 A1 WO2014171317 A1 WO 2014171317A1 JP 2014059461 W JP2014059461 W JP 2014059461W WO 2014171317 A1 WO2014171317 A1 WO 2014171317A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
lens
irradiation
optical
led
Prior art date
Application number
PCT/JP2014/059461
Other languages
French (fr)
Japanese (ja)
Inventor
Tsutomu Kishine (岸根 努)
Original Assignee
Hoya Candeo Optronics株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Candeo Optronics株式会社 filed Critical Hoya Candeo Optronics株式会社
Priority to KR1020157030543A priority Critical patent/KR101930041B1/en
Priority to JP2015512433A priority patent/JP6360475B2/en
Priority to CN201480021182.9A priority patent/CN105229368B/en
Publication of WO2014171317A1 publication Critical patent/WO2014171317A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41FPRINTING MACHINES OR PRESSES
    • B41F23/00Devices for treating the surfaces of sheets, webs, or other articles in connection with printing
    • B41F23/04Devices for treating the surfaces of sheets, webs, or other articles in connection with printing by heat drying, by cooling, by applying powders
    • B41F23/0403Drying webs
    • B41F23/0406Drying webs by radiation
    • B41F23/0409Ultra-violet dryers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41FPRINTING MACHINES OR PRESSES
    • B41F23/00Devices for treating the surfaces of sheets, webs, or other articles in connection with printing
    • B41F23/04Devices for treating the surfaces of sheets, webs, or other articles in connection with printing by heat drying, by cooling, by applying powders
    • B41F23/0403Drying webs
    • B41F23/0406Drying webs by radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41FPRINTING MACHINES OR PRESSES
    • B41F23/00Devices for treating the surfaces of sheets, webs, or other articles in connection with printing
    • B41F23/04Devices for treating the surfaces of sheets, webs, or other articles in connection with printing by heat drying, by cooling, by applying powders
    • B41F23/044Drying sheets, e.g. between two printing stations
    • B41F23/045Drying sheets, e.g. between two printing stations by radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41FPRINTING MACHINES OR PRESSES
    • B41F23/00Devices for treating the surfaces of sheets, webs, or other articles in connection with printing
    • B41F23/04Devices for treating the surfaces of sheets, webs, or other articles in connection with printing by heat drying, by cooling, by applying powders
    • B41F23/044Drying sheets, e.g. between two printing stations
    • B41F23/045Drying sheets, e.g. between two printing stations by radiation
    • B41F23/0453Drying sheets, e.g. between two printing stations by radiation by ultraviolet dryers

Definitions

  • the present invention relates to a light irradiation device that emits line-shaped irradiation light, and more particularly to a light irradiation device including a plurality of light source modules arranged in a line on a substrate.
  • an ultraviolet curable ink that is cured by irradiation with ultraviolet light
  • an ultraviolet curable resin is used as a sealant for FPD (Flat Panel Display) such as a liquid crystal panel and an organic EL (Electro Luminescence) panel.
  • FPD Fluorescence Panel Display
  • an ultraviolet light irradiation device that irradiates ultraviolet light
  • a line light irradiation device that irradiates line-shaped irradiation light is used.
  • Such a line light irradiation apparatus is described in Patent Document 1, for example.
  • the line light irradiation device described in Patent Document 1 includes a long substrate, a plurality of LEDs (Light Emitting Diode) arranged at equal intervals along the longitudinal direction of the substrate, and light from the plurality of LEDs.
  • This is a so-called LED unit that includes a rod lens that collects light in the short direction of the substrate, and emits line light along the longitudinal direction of the substrate.
  • the light irradiation apparatus described in Patent Document 2 arranges a plurality of LED units radially (in an arc shape) with respect to an irradiation object, and superimposes line light emitted from each LED unit at a predetermined position on the irradiation object. By combining them, the irradiation object is irradiated with ultraviolet light having a high linear irradiation intensity.
  • the incident angles of the line light emitted from the LED units to the irradiation object are different.
  • the incident angle increases that is, when the incident light is obliquely incident on the irradiation object
  • the line width (thickness) of the line light on the irradiation object increases, and the irradiation intensity distribution in the line width direction also becomes gentle. Therefore, there is a problem that a desired irradiation intensity cannot be obtained.
  • Such a problem becomes more prominent as the number of radially arranged LED units increases. Therefore, there is a demand for reducing the number of LED units to be used from this viewpoint.
  • the present invention has been made in view of such circumstances, and its object is to increase the number of LED units (optical units) without increasing the number (that is, without increasing the size of the device). It is an object of the present invention to provide a light irradiation device capable of emitting intense line-shaped light.
  • a light irradiation apparatus of the present invention is a line that extends in a first direction at a predetermined irradiation position on an irradiation surface and has a predetermined line width in a second direction orthogonal to the first direction.
  • the light source module includes a light emitting unit extending along the first direction, and each optical element emits light emitted from the light emitting unit in the first direction. Is enlarged at a predetermined magnification, the first interval is a, and the length of the light emitting unit in the first direction is , The predetermined magnification when the alpha, and satisfies the following condition (1). ⁇ ⁇ b ⁇ a (1)
  • the light emitting unit can be configured to have at least one light emitting element that emits light.
  • the light emitting unit can be configured to have M (M is an integer of 2 or more) light emitting elements arranged at a second interval along the first direction.
  • the light emitting element is preferably an LED (Light Emitting Diode) having a substantially square light emitting surface.
  • the first interval a, the length b of the light emitting portion in the first direction, and the predetermined magnification ⁇ can be configured to satisfy the following conditional expressions (2) and (3). 0.30 ⁇ b / a ⁇ 0.42 (2) 3.3 ⁇ ⁇ (3)
  • Each optical element is emitted from the light emitting element in a third direction orthogonal to the direction of the optical axis and the first direction so that the light emitted from the light emitting element falls within a predetermined line width at the irradiation position. It can be configured to collect light.
  • Each optical element includes a first lens on which light from each light source module is incident and a second lens on which light transmitted through the first lens is incident.
  • the first lens is a flat surface, a convex surface, or a concave surface.
  • the second lens includes an incident surface formed with a cylindrical surface having a positive power in the third direction, a first direction and a third direction. It is desirable that the aspherical lens has an exit surface on which a toroidal surface having positive power in the direction is formed.
  • Each optical element includes a first lens on which light from each light source module is incident and a second lens on which light transmitted through the first lens is incident.
  • the first lens is a flat surface, a convex surface, or a concave surface.
  • the second lens has an incident surface formed as a plane, and a toroidal surface having positive power in the first direction and the third direction.
  • An aspherical lens having a formed exit surface is desirable.
  • Each optical element includes a first lens on which light from each light source module is incident and a second lens on which light transmitted through the first lens is incident.
  • the first lens is a flat surface, a convex surface, or a concave surface.
  • the second lens is a spherical biconvex lens having an incident surface formed by a convex surface and an output surface formed by a convex surface. Is desirable.
  • the second lens can be configured to have a rectangular outer shape when viewed from the optical axis direction. In this case, it is desirable that the second lens of each optical element is coupled along the first direction.
  • the light irradiation device includes a plurality of optical units, and the plurality of optical units are relative to the first optical unit in the first direction by a distance that is 1 ⁇ 2 of the first interval with respect to the first optical unit.
  • the first optical unit and the second optical unit are symmetrical with respect to the perpendicular line at the irradiation position when viewed from the first direction. It can be set as the structure arrange
  • the light from the first optical unit and the second optical unit having different irradiation intensity distributions overlap at the irradiation position, so that the line-shaped light having a uniform and higher irradiation intensity as a whole can be obtained. can get.
  • the light emitted from the plurality of light source modules arranged along the first direction overlaps in the first direction on the irradiation surface. Shaped light is emitted. For this reason, the light irradiation apparatus which can radiate
  • FIG. 4 is a cross-sectional view taken along line A-A ′ of FIG. 3.
  • FIG. 4 is a cross-sectional view taken along the line B-B ′ of FIG. 3. It is the A section (dotted line frame) enlarged view of FIG. It is a figure explaining the structure of the LED element of the LED unit mounted in the light irradiation apparatus which concerns on embodiment of this invention.
  • FIG. 1 is an external view of a light irradiation apparatus 1 according to an embodiment of the present invention.
  • the light irradiation device 1 of this embodiment is mounted on a light source device that cures an ultraviolet curable ink used as an ink for offset sheet-fed printing or an ultraviolet curable resin used as a sealant in FPD (Flat Panel Display) or the like.
  • FPD Fluorescence Panel Display
  • the apparatus is disposed above the irradiation object, and emits linear ultraviolet light to the irradiation object (FIG. 2B).
  • the longitudinal (line length) direction of the linear ultraviolet light emitted from the light irradiation device 1 is the X-axis direction (first direction), and the short (line width) direction is the Y-axis direction (second direction).
  • Direction a direction orthogonal to the X axis and the Y axis (that is, a vertical direction) is defined as a Z axis direction.
  • Fig.1 (a) is a front view of the light irradiation apparatus 1 when it sees from the Y-axis direction.
  • FIG. 1B is a bottom view of the light irradiation apparatus 1 when viewed from the Z-axis direction (when viewed from the lower side to the upper side of FIG. 1A).
  • FIG.1 (c) is a side view of the light irradiation apparatus 1 when it sees from the X-axis direction (when it sees from the right side of FIG. 1A to the left side).
  • the light irradiation device 1 includes a case 10, a base block 20, and five LED units 100a to 100e.
  • the case 10 is a case for housing the base block 20 and the LED units 100a to 100e.
  • the LED units 100a to 100e are units that emit line-shaped ultraviolet light parallel to the X axis. In the present specification, the LED units 100a to 100e are collectively referred to as an “optical unit 100”.
  • the base block 20 is a support member for fixing the optical unit 100, and is formed of a metal such as stainless steel. As shown in FIGS. 1B and 1C, the base block 20 is a substantially rectangular plate-like member extending in the X-axis direction, and the lower surface is a partial cylindrical surface recessed along the Y-axis direction. Yes. LED units 100a to 100e extending in the X-axis direction are arranged side by side along the Y-axis direction (that is, along the partial cylindrical surface) on the lower surface (that is, the partial cylindrical surface) of the base block 20, and screwed It is fixed by soldering.
  • the lower surface of the case 10 (the lower surface of the light irradiation apparatus 1) has an opening 10a, and ultraviolet light from each of the LED units 100a to 100e is emitted toward the irradiation object through the opening 10a. It is configured.
  • FIG. 2 is an enlarged view for explaining the configuration and arrangement of the optical unit 100 mounted on the light irradiation apparatus 1 according to this embodiment.
  • 2A is an enlarged view of FIG. 1B.
  • the base block 20 is omitted, and the optical unit 100 shown in FIG. 1B is rotated by 90 °.
  • the partial cylindrical surface of the base block 20 is shown in a flat plane (that is, extended to the left and right).
  • FIG. 2B is an enlarged cross-sectional view of FIG. 1C, and shows the arrangement of the LED units 100a to 100e when viewed from the X-axis direction.
  • a position 100 mm away from the lower end of the case 10 (in the Z-axis direction) that is, a position having a working distance of 100 mm (shown as “WD100” in FIG. 2B)).
  • the XY plane in FIG. 5 is used as a reference irradiation surface R, and the irradiation object is configured to be conveyed from right to left along the Y-axis direction on the irradiation surface R by a conveying device (not shown).
  • the ultraviolet light emitted from the LED units 100a to 100e sequentially moves (scans) on the irradiation object, and the irradiation object
  • the UV curable ink and UV curable resin are sequentially cured (fixed).
  • “F1” indicates a condensing position on the irradiation surface R where the ultraviolet light emitted from the LED units 100a to 100e is collected.
  • the perpendicular line of the irradiation surface R passing through the condensing position F1 is shown as the center line O of the optical path of the ultraviolet light emitted from the light irradiation device 1.
  • the LED units 100a to 100e are arranged in order from the right side to the left side (that is, along the Y-axis). Is arranged.
  • the LED units 100a, 100c, and 100e are arranged offset from the LED units 100b and 100d by a distance of P / 2 in the X-axis direction (that is, 1/2 of the arrangement interval P of the LED modules 110). (Details will be described later).
  • the LED units 100a to 100e of the present embodiment are arranged on a circular arc having a radius of 125 mm with the condensing position F1 as the center when viewed from the X-axis direction. They are arranged at an angular interval of 5 °.
  • the LED unit 100c is arranged vertically above the condensing position F1 so that the optical axis of the LED unit 100c substantially coincides with the center line O, and the LED units 100a to 100e are arranged from the X-axis direction. When viewed, they are arranged in line symmetry with the center line O as the axis of symmetry.
  • the ultraviolet light from each of the LED units 100a to 100e is emitted toward the condensing position F1 on the reference irradiation surface R, and the range of the line width LW centering on the condensing position F1 on the reference irradiation surface R. It is configured to irradiate.
  • the line width LW of the ultraviolet light is set to about ⁇ 20 mm with respect to the condensing position F1
  • the line length LL length in the X-axis direction
  • the ultraviolet light from the five LED units 100a to 100e is superposed at the condensing position F1 in this way, so that the irradiation object is irradiated with the ultraviolet light with high irradiation intensity.
  • FIG. 3 is a diagram illustrating the configuration of the LED units 100a to 100e, and is an enlarged view of FIG. 2 (a).
  • FIG. 5 and FIG. 6 are diagrams for explaining the internal configuration of the LED units 100a to 100e shown in FIG. 3.
  • FIG. 4 is a cross-sectional view taken along the line AA 'in FIG.
  • FIG. 6 is a cross-sectional view taken along the line BB ′ of FIG. 3
  • FIG. 6 is an enlarged view of a portion A (dotted line frame) of FIG. 4, 5, and 6, a part of the configuration is omitted for easy understanding of the drawings.
  • 4, 5, and 6, the optical axis of the ultraviolet light emitted from the LED modules 110 of the LED units 100a to 100e is indicated by a one-dot chain line, and the optical path OP of the ultraviolet light is indicated by a solid line.
  • the LED units 100a to 100e of the present embodiment differ only in the positions where they are arranged, and the internal configuration is the same. Therefore, the LED unit 100c will be described below as a representative.
  • the LED unit 100c includes a rectangular substrate 101 extending in the X-axis direction and ten LED modules 110.
  • the ten LED modules 110 are densely arranged on the substrate 101 along the center line CL (FIG. 3) of the substrate 101 extending in the X-axis direction, and are electrically connected to the substrate 101.
  • the substrate 101 of the LED unit 100c is connected to an LED drive circuit (not shown), and a drive current from the LED drive circuit is supplied to each LED module 110 via the substrate 101.
  • each LED module 110 emits ultraviolet light with a light amount corresponding to the driving current, and a linear ultraviolet light parallel to the X axis is emitted from the LED unit 100c.
  • each LED module 110 of the present embodiment includes an LED element 111 having four LED (Light Emitting Diode) dies 111a (FIG. 3), and substantially equal irradiation from each LED die 111a.
  • the drive current supplied to each LED module 110 (that is, each LED die 111a) is adjusted so that ultraviolet light having an intensity distribution is emitted.
  • the linear ultraviolet light emitted from the LED unit 100c has a predetermined irradiation intensity distribution in the X-axis direction on the irradiation surface R (details will be described later).
  • the arrangement interval P of the LED modules 110 of this embodiment is equal to the size of a package 111p of the LED element 111 described later, and is about 14 mm in this embodiment. Is set.
  • the LED unit 100a includes an LED element 111 (light source module), a lens 113, and a lens 115 (optical element).
  • the LED element 111 of the present embodiment includes a bowl-shaped package 111p, and includes four LED dies 111a (light emitting elements) therein.
  • the opening of the package 111p is sealed with a cover glass 111c.
  • the LED die 111a is a semiconductor element that has a substantially square light emitting surface and emits ultraviolet light having a wavelength of 365 nm upon receiving a drive current from the LED drive circuit.
  • each LED die 111a has a light emitting surface of 0.85 ⁇ 0.85 mm, and is 1.2 mm along the center line of the package 111p (that is, a center line parallel to a pair of opposing sides). They are arranged at intervals.
  • Each LED element 111 is attached to the substrate 101 so that the LED dies 111a are arranged along the X-axis direction.
  • the lens 113 is formed by, for example, injection molding of a silicone resin, for example, a spherical plano-convex lens having a flat LED element 111 side, and condenses the ultraviolet light that is incident while diffusing from each LED die 111a, and the subsequent lens 115. To guide the light.
  • the lens 115 is an aspherical lens formed by injection molding of, for example, silicone resin, and has an incident surface on which a cylindrical surface having power in the Y-axis direction is formed, and powers that are different in the Y-axis direction and the X-axis direction. And an exit surface on which a toroidal surface is formed.
  • the ultraviolet light incident from the lens 113 is condensed in the Y-axis direction and enlarged at a predetermined magnification (for example, about 10 times) in the X-axis direction. For this reason, as shown in FIG.
  • each LED element 111 that is, each LED die 111a
  • the ultraviolet light emitted from each LED element 111 passes through the lens 113 and the lens 115, and is in a condensing position F1.
  • the ultraviolet light emitted from each LED element 111 passes through the lens 113 and the lens 115, spreads in the X-axis direction, and is emitted from the other LED elements 111.
  • the ultraviolet light and the irradiation surface R are configured to overlap each other.
  • the lens 113 is a lens having a maximum diameter of ⁇ 13.5 mm in a direction orthogonal to the optical axis.
  • the lens 115 is a lens having a rectangular cross section in a direction perpendicular to the optical axis.
  • the lens 115 of each LED unit 100a is connected in the X-axis direction, and is configured as one member. Yes. With such a configuration, ultraviolet light incident from each LED die 111a is efficiently guided onto the irradiation surface R (that is, without vignetting by the lens 113 and the lens 115).
  • the ultraviolet light emitted from each LED element 111 is configured to overlap each other in the X-axis direction on the irradiation surface R, so that ultraviolet light with high irradiation intensity (peak intensity) is generated.
  • the LED units 100a to 100e are configured to emit light. That is, each LED unit 100a to 100e itself emits ultraviolet light having a peak intensity higher than that of a conventional LED unit (for example, one described in Patent Document 2). Further, the light irradiation device 1 of the present embodiment uses the five LED units 100a to 100e having such a configuration, and superimposes the ultraviolet light from the LED units 100a to 100e at the light condensing position F1, thereby further increasing the irradiation. Irradiate the object to be irradiated with intense ultraviolet light.
  • FIG. 8 is a diagram showing the irradiation intensity distribution in the Y-axis direction of the ultraviolet light emitted from the light irradiation apparatus 1 of the present embodiment, and the center position in the longitudinal direction of the light irradiation apparatus 1 (that is, the line length of the ultraviolet light).
  • the irradiation intensity distribution in the Y-axis direction at LL (1/2 position of the length in the X-axis direction) is shown.
  • FIG. 8A shows the irradiation intensity distribution of the ultraviolet light emitted from the LED units 100a to 100e
  • FIG. 8B shows the total irradiation of the ultraviolet light emitted from the five LED units 100a to 100e.
  • the intensity distribution is shown. As can be seen by comparing FIGS.
  • the ultraviolet light from the five LED units 100a to 100e is overlapped at the condensing position F1, so that the condensing position F1 (in FIG. 8, “ In the case of “0 mm”, ultraviolet light that is five times the peak intensity of the ultraviolet light emitted from each LED unit 100a to 100e (peak intensity of about 8000 mW / cm 2 ) is obtained.
  • FIG. 9 is a diagram showing an irradiation intensity distribution in the X-axis direction of the ultraviolet light emitted from the light irradiation apparatus 1 of the present embodiment, and the center position in the short direction of the light irradiation apparatus 1 (that is, the condensing position F1). ) Shows the irradiation intensity distribution in the X-axis direction.
  • FIG. 9A shows the irradiation intensity distribution of the ultraviolet light emitted from each of the LED units 100a, 100c, and 100e
  • FIG. 9B shows the ultraviolet light emitted from each of the LED units 100b and 100d. An irradiation intensity distribution is shown, and FIG.
  • 9C shows a total irradiation intensity distribution of ultraviolet light emitted from the five LED units 100a to 100e.
  • 9 (a) and 9 (b) for convenience of explanation, the irradiation intensity distribution of the ultraviolet light emitted from each LED element 111 of each LED unit 100a to 100e is shown by a solid line, and the LED unit The irradiation intensity distribution of the ultraviolet light emitted from the whole (that is, the total of ultraviolet light emitted from each LED element 111) is indicated by a dotted line.
  • the ultraviolet light emitted from each LED element 111 of the present embodiment is spread in the X-axis direction by the lens 113 and the lens 115 and is irradiated onto the irradiation surface R.
  • the ultraviolet light emitted from each LED element 111 is nothing but the ultraviolet light emitted from the four LED dies 111a arranged at equal intervals along the X-axis direction, it is emitted from each LED element 111.
  • the irradiation intensity distribution of the ultraviolet light in the X-axis direction is a discrete irradiation intensity distribution having four peaks.
  • the ultraviolet light having such a discrete irradiation intensity distribution is spread by the lens 113 and the lens 115 in the X-axis direction at a predetermined magnification and irradiated onto the irradiation surface R (FIG. 9A and FIG. 9). (A solid line part of Drawing 9 (b)).
  • the ultraviolet light from the plurality of LED elements 111 overlaps in the X-axis direction on the irradiation surface R, and the longitudinal position of the light irradiation device 1 (that is, the line length LL of the ultraviolet light (the length in the X-axis direction).
  • the irradiation intensity is increased within a predetermined range (in this embodiment, a range of about ⁇ 35 mm) centered at a position that is a half of (b)) (dotted line portions in FIGS. 9A and 9B). ).
  • a predetermined range in this embodiment, a range of about ⁇ 35 mm
  • ultraviolet light having a high peak intensity is obtained by superimposing ultraviolet light from the plurality of LED elements 111 arranged in the X-axis direction in the X-axis direction.
  • an effective irradiation area a portion where the ultraviolet light overlaps and the peak intensity is high.
  • the irradiation intensity distribution of the ultraviolet light emitted from each LED unit 100a to 100e is comb-toothed in some places although the peak intensity is increased in the effective irradiation area. It becomes a thing fluctuate
  • the LED units 100a, 100c, and 100 are compared with the LED units 100b and 100d so that the irradiation intensity distribution of the ultraviolet light emitted from the entire light irradiation device 1 is substantially uniform. They are arranged offset in the axial direction by a distance of P / 2 (that is, 1/2 of the arrangement interval P of the LED modules 110). When the LED units 100a to 100e are arranged in this way, the portions where the irradiation intensity of the ultraviolet light emitted from the LED units 100a to 100e is lowered cancel each other on the irradiation surface R.
  • the ultraviolet light irradiation intensity distribution of the entire light irradiation apparatus 1 (that is, the total irradiation intensity distribution of ultraviolet light emitted from the five LED units 100a to 100e) is substantially uniform in the X-axis direction.
  • the peak intensity is five times (about 8000 mW / cm 2 ) the peak intensity of the ultraviolet light emitted from each of the LED units 100a to 100e.
  • each of the LED units 100a to 100e of the present embodiment a plurality (10) of LED elements 111 including a plurality (four) of LED dies 111a are arranged in the X-axis direction, and emitted from each LED element 111.
  • the ultraviolet light having a high peak intensity is emitted by expanding the ultraviolet light in the X-axis direction. That is, high peak intensity ultraviolet light is emitted from the LED units 100a to 100e themselves.
  • the LED units 100a to 100e so that the ultraviolet light from the five LED units 100a to 100e is condensed at the condensing position F1 on the irradiation surface R, the peak intensity is further increased and uniform.
  • Ultraviolet light having an irradiation intensity distribution is emitted. Therefore, according to the light irradiation apparatus 1 having such a configuration, it is possible to stably cure (fix) the ultraviolet curable ink or the ultraviolet curable resin on the irradiation object.
  • the light irradiation apparatus 1 of the present embodiment has been described as including five LED units 100a to 100e, as described above, ultraviolet light having a high peak intensity is emitted from each of the LED units 100a to 100e. Since it is comprised, what is necessary is just to adjust the number of LED units to be used according to the desired peak intensity, and the light irradiation apparatus 1 should just be provided with one or more LED units.
  • the LED units 100a to 100e of the present embodiment have been described as including the ten LED modules 110.
  • the ultraviolet light emitted from the LED modules 110 is configured to overlap even slightly on the irradiation surface R. If this is done, the peak intensity of the ultraviolet light can be increased, so that each of the LED units 100a to 100e may include at least two LED modules 110 in the X-axis direction.
  • the LED element 111 of the present embodiment has been described as including four LED dies 111a having a light emitting surface of 0.85 ⁇ 0.85 mm and arranged at intervals of 1.2 mm in the X-axis direction.
  • the size, the number of LED dies 111a, and the distance between the LED dies 111a are not necessarily limited to such a configuration.
  • the ultraviolet light when the ultraviolet light emitted from the LED element 111 is expanded in the X-axis direction, the ultraviolet light is configured to overlap with ultraviolet light from other LED elements 111 (for example, adjacent LED elements 111) as much as possible. Since the peak intensity of light can be increased, the LED element 111 may be any element that can emit ultraviolet light extending in the X-axis direction.
  • the LED element 111 may be replaced with one having a plurality of LED dies 111a. It is possible to apply one provided with one light emitting surface (that is, one LED die 111a).
  • the size (length) of the light emitting surface is the length of the light emitting part constituted by the plurality of LED dies 111a of the present embodiment (that is, the X axis of the region where the plurality of LED dies 111a are arranged).
  • the distance between the LED elements 111 is a, and the X-axis direction of the light emitting surface
  • b is the length of the lens
  • is the magnification of the lens 113 and the lens 115 in the X-axis direction
  • FIGS. 10 to 13 are graphs showing the results of simulation performed by the inventor in order to obtain the length of the light emitting surface (light emitting portion) of the LED die 111a.
  • FIG. 10 shows the result of simulating the relationship between the length of the light emitting surface (light emission length) of the LED die 111a and the efficiency of the emitted ultraviolet light.
  • the efficiency of the emitted ultraviolet light refers to the efficiency of the ultraviolet light emitted from the LED die 111a.
  • the amount of ultraviolet light emitted from the light source The amount of ultraviolet light emitted from the light source).
  • FIG. 11 shows the result of simulating the relationship between the length of the light emitting surface of the LED die 111a and the length of the effective irradiation area.
  • FIG. 12 shows the result of simulating the relationship between the length of the light emitting surface of the LED die 111a and the peak intensity of the emitted ultraviolet light.
  • FIG. 13 shows the result of simulating the relationship between the length of the light emitting surface of the LED die 111a and the uniformity of the irradiation intensity distribution of the emitted ultraviolet light.
  • the uniformity of the irradiation intensity distribution of the emitted ultraviolet light refers to the variation in irradiation intensity within the effective irradiation area.
  • the efficiency of the emitted ultraviolet light gradually decreases. This is because vignetting is generated by the lens 113 and the lens 115 due to an increase in the length of the light emitting surface of the LED die 111a (that is, a part of the ultraviolet light emitted from the light emitting surface is generated in the lens 113 and the lens 115). Because it will not be captured). Therefore, when the efficiency ⁇ 75% is set as the target value, when the lens 113 and the lens 115 of the present embodiment are used, the length of the light emitting surface of the LED die 111a is preferably 5.8 mm or less.
  • the length of the light emitting surface (light emitting length) of the LED die 111a increases, the length of the effective irradiation area (effective irradiation area length) gradually decreases. This is because as the emission length increases, the peak intensity increases because the overlap of ultraviolet light increases at the center of the effective irradiation area length, but the irradiation intensity on both ends of the effective irradiation area length decreases relatively. It is. Therefore, when the effective irradiation area length ⁇ 70 mm is a target value, the length of the light emitting surface of the LED die 111a is preferably 5.8 mm or less.
  • the peak intensity of the emitted ultraviolet light gradually increases as the length of the light emitting surface (light emission length) of the LED die 111a increases. This is because the length of the ultraviolet light irradiated from each LED die 111a on the irradiation surface R is increased, and the length of the ultraviolet light superimposed in the X-axis direction is thereby increased. Therefore, when the peak value of ultraviolet light ⁇ 600 mW is set as a target value, the length of the light emitting surface of the LED die 111a is preferably set to 4.2 mm or more.
  • the uniformity of the emitted ultraviolet light changes according to the length (light emission length) of the light emitting surface of the LED die 111a. Therefore, when the uniformity of the irradiation intensity distribution of ultraviolet light ⁇ 7% is set as a target value, the length of the light emitting surface of the LED die 111a is preferably set to 4.2 mm or more.
  • the length (b) of the light emitting surface of the LED die 111a is It can be said that the thickness is preferably set in the range of 4.2 mm to 5.8 mm. Considering that the distance (a) between the LED elements 111 of this embodiment is 14 mm, the following conditional expression (2) is obtained from the conditional expression (1).
  • the length (b) of the light emitting surface of the LED die 111a is preferably set in the range of 0.30 to 0.42 with respect to the interval (a) of the LED elements 111.
  • conditional expressions (3) and (4) are obtained.
  • each LED unit 100a has been described as being connected in the X-axis direction. However, the lens 115 may be disposed independently of each LED unit 100a.
  • the lens 113 is a spherical plano-convex lens.
  • the present invention is not limited to such a configuration.
  • a biconvex lens or an uneven lens can be applied.
  • the lens 115 is an aspherical lens in which a cylindrical surface and a toroidal surface are formed.
  • the present invention is not limited to such a configuration.
  • a flat surface and a toroidal surface are formed. It is also possible to apply aspherical lenses and spherical biconvex lenses.
  • the lens 113 and the lens 115 are formed of silicone resin.
  • the lens 113 and the lens 115 are not limited to silicone resin, and other optical transparent resins and glass can be applied. It is.

Abstract

A photoirradiation device for irradiating a prescribed irradiation position on an irradiation surface with line-shaped light extending in a first direction and having a prescribed line width in a second direction perpendicular to the first direction is equipped with an optical unit for irradiating the irradiation surface with line-shaped light parallel to the first direction, and having: N number (N is an integer of 2 or higher) of light-source modules arranged in the first direction on a substrate with a first interval interposed therebetween, and positioned in a manner such that the optical axes thereof are oriented in a prescribed direction; and N number of optical elements for guiding the light from each of the light-source modules to a prescribed optical path, and positioned along the optical path of each of the light-source modules. Therein: each of the light-source modules has a light-emitting part extending in a first direction; and each of the optical elements magnifies the light emitted from the light-emitting parts at a prescribed magnification factor in the first direction, and satisfies conditional expression (1), given that the first interval is a, the length of the light-emitting parts in the first direction is b, and the prescribed magnification factor is α. α×b≥a ... (1)

Description

光照射装置Light irradiation device
 本発明は、ライン状の照射光を照射する光照射装置に関し、特に基板上に一列に並べられた複数の光源モジュールを備えた光照射装置に関する。 The present invention relates to a light irradiation device that emits line-shaped irradiation light, and more particularly to a light irradiation device including a plurality of light source modules arranged in a line on a substrate.
 従来、オフセット枚葉印刷用のインキとして、紫外光の照射により硬化する紫外線硬化型インキが用いられている。また、液晶パネルや有機EL(Electro Luminescence)パネル等、FPD(Flat Panel Display)のシール剤として、紫外線硬化樹脂が用いられている。このような紫外線硬化型インキや紫外線硬化樹脂の硬化には、一般に、紫外光を照射する紫外光照射装置が用いられるが、特にオフセット枚葉印刷やFPDの用途においては、幅広の照射領域を照射する必要があるため、ライン状の照射光を照射するライン光照射装置が用いられる。このようなライン光照射装置は、例えば、特許文献1に記載されている。 Conventionally, as an ink for offset sheet-fed printing, an ultraviolet curable ink that is cured by irradiation with ultraviolet light has been used. Further, an ultraviolet curable resin is used as a sealant for FPD (Flat Panel Display) such as a liquid crystal panel and an organic EL (Electro Luminescence) panel. For curing such UV-curable inks and UV-curable resins, generally, an ultraviolet light irradiation device that irradiates ultraviolet light is used. However, particularly in offset sheet-fed printing and FPD applications, a wide irradiation region is irradiated. Therefore, a line light irradiation device that irradiates line-shaped irradiation light is used. Such a line light irradiation apparatus is described in Patent Document 1, for example.
 特許文献1に記載のライン光照射装置は、長尺状の基板と、該基板の長手方向に沿って等間隔に並べられた複数のLED(Light Emitting Diode)と、複数のLEDからの光を基板の短手方向に集光するロッドレンズとを備えた、いわゆるLEDユニットであり、基板の長手方向に沿ったライン光を出射する。 The line light irradiation device described in Patent Document 1 includes a long substrate, a plurality of LEDs (Light Emitting Diode) arranged at equal intervals along the longitudinal direction of the substrate, and light from the plurality of LEDs. This is a so-called LED unit that includes a rod lens that collects light in the short direction of the substrate, and emits line light along the longitudinal direction of the substrate.
 また、紫外線硬化型インキや紫外線硬化樹脂を安定かつ確実に硬化させるためには、高い照射強度の紫外光が必要となるため、特許文献1に記載されたようなLEDユニットを複数用いることによって高い照射強度の紫外光を照射可能とした光照射装置も実用に供されている(例えば、特許文献2)。 In addition, in order to cure UV curable ink and UV curable resin stably and reliably, high irradiation intensity of UV light is required. Therefore, it is high by using a plurality of LED units as described in Patent Document 1. A light irradiation apparatus that can irradiate ultraviolet light having an irradiation intensity is also in practical use (for example, Patent Document 2).
 特許文献2に記載の光照射装置は、複数のLEDユニットを照射対象物に対して放射状に(円弧状に)並べ、各LEDユニットから出射されるライン光を照射対象物上の所定位置で重ね合わせることにより、ライン状の高い照射強度の紫外光を照射対象物に照射している。 The light irradiation apparatus described in Patent Document 2 arranges a plurality of LED units radially (in an arc shape) with respect to an irradiation object, and superimposes line light emitted from each LED unit at a predetermined position on the irradiation object. By combining them, the irradiation object is irradiated with ultraviolet light having a high linear irradiation intensity.
特開2012-186015号公報JP 2012-186015 A 特開2010-287547号公報JP 2010-287547 A
 特許文献2に記載の光照射装置によれば、LEDユニットの台数に比例した照射強度の紫外光を照射することができるため、高い照射強度の紫外光を得たければ、単純にLEDユニットの台数を増やせばよい。しかしながら、LEDユニットの物理的な大きさから、放射状に並べることができるLEDユニットの台数が制限されるといった問題がある。かかる問題を解決するためには、各LEDユニットを照射対象物から離して配置することが考えられるが、このような配置とすると、光照射装置全体が大型化してしまうといった問題が生ずる。 According to the light irradiation apparatus described in Patent Document 2, since it is possible to irradiate ultraviolet light having an irradiation intensity proportional to the number of LED units, if it is desired to obtain ultraviolet light having a high irradiation intensity, the number of LED units is simply set. You can increase it. However, there is a problem that the number of LED units that can be arranged radially is limited due to the physical size of the LED units. In order to solve such a problem, it is conceivable to dispose each LED unit away from the object to be irradiated. However, with such an arrangement, there arises a problem that the entire light irradiation device is enlarged.
 また、特許文献2に記載の光照射装置のように、複数のLEDユニットを放射状に並べた場合、各LEDユニットから出射されるライン光の照射対象物に対する入射角度がそれぞれ異なることとなる。入射角度が大きくなると(つまり、照射対象物に対して斜めに入射すると)、照射対象物上でのライン光の線幅(太さ)が太くなり、線幅方向の照射強度分布もなだらかなものとなるため、所望する照射強度が得られないといった問題もある。かかる問題は、放射状に配置されるLEDユニットの台数が増えるほど顕著となるため、このような観点からも使用するLEDユニットの台数を抑えたいとの要請がある。 Further, when a plurality of LED units are arranged in a radial manner as in the light irradiation device described in Patent Document 2, the incident angles of the line light emitted from the LED units to the irradiation object are different. When the incident angle increases (that is, when the incident light is obliquely incident on the irradiation object), the line width (thickness) of the line light on the irradiation object increases, and the irradiation intensity distribution in the line width direction also becomes gentle. Therefore, there is a problem that a desired irradiation intensity cannot be obtained. Such a problem becomes more prominent as the number of radially arranged LED units increases. Therefore, there is a demand for reducing the number of LED units to be used from this viewpoint.
 本発明は、このような事情に鑑みてなされたものであり、その目的とするところは、LEDユニット(光学ユニット)の数を増やすことなく(つまり、装置を大型化することなく)、高い照射強度のライン状の光を出射可能な光照射装置を提供することである。 The present invention has been made in view of such circumstances, and its object is to increase the number of LED units (optical units) without increasing the number (that is, without increasing the size of the device). It is an object of the present invention to provide a light irradiation device capable of emitting intense line-shaped light.
 上記目的を達成するため、本発明の光照射装置は、照射面上の所定の照射位置に、第1方向に延び、かつ、第1方向と直交する第2方向に所定の線幅を有するライン状の光を照射する光照射装置であって、基板上に第1方向に沿って第1の間隔をおいて並べられ、所定の方向に光軸の向きを揃えて配置されたN個(Nは2以上の整数)の光源モジュールと、各光源モジュールの光路上に配置され、各光源モジュールからの光を所定の光路に導くN個の光学素子とを有し、照射面に対して第1方向に平行なライン状の光を出射する光学ユニットを備え、各光源モジュールは、第1方向に沿って延びる発光部を有し、各光学素子は、発光部から出射される光を第1方向に所定の倍率で拡大し、第1の間隔をa、前記発光部の前記第1方向の長さをb、前記所定の倍率をαとしたときに、次の条件式(1)を満足することを特徴とする。
    α×b≧a ・・・(1)
In order to achieve the above object, a light irradiation apparatus of the present invention is a line that extends in a first direction at a predetermined irradiation position on an irradiation surface and has a predetermined line width in a second direction orthogonal to the first direction. Light irradiation device for irradiating a shaped light, and N pieces (N) arranged on a substrate at a first interval along the first direction and arranged with the direction of the optical axis aligned in a predetermined direction. Is an integer of 2 or more) and N optical elements that are arranged on the optical path of each light source module and guide light from each light source module to a predetermined optical path. The light source module includes a light emitting unit extending along the first direction, and each optical element emits light emitted from the light emitting unit in the first direction. Is enlarged at a predetermined magnification, the first interval is a, and the length of the light emitting unit in the first direction is , The predetermined magnification when the alpha, and satisfies the following condition (1).
α × b ≧ a (1)
 このような構成によれば、各光源モジュールから出射される光が第1方向に拡大されるため、照射面上の照射位置において、複数の光源モジュールから出射された光が互いに重なり合う部分ができる。このため、高いピーク強度を有するライン状の光が光学ユニットから出射される。 According to such a configuration, since the light emitted from each light source module is expanded in the first direction, a portion where the light emitted from the plurality of light source modules overlaps with each other at the irradiation position on the irradiation surface. For this reason, linear light having a high peak intensity is emitted from the optical unit.
 また、発光部は、光を発する少なくとも1個の発光素子を有するように構成することができる。 Also, the light emitting unit can be configured to have at least one light emitting element that emits light.
 また、発光部は、第1方向に沿って第2の間隔をおいて並べられたM個(Mは2以上の整数)の発光素子を有するように構成することができる。この場合、発光素子が、略正方形状の発光面を有するLED(Light Emitting Diode)であることが望ましい。 Further, the light emitting unit can be configured to have M (M is an integer of 2 or more) light emitting elements arranged at a second interval along the first direction. In this case, the light emitting element is preferably an LED (Light Emitting Diode) having a substantially square light emitting surface.
 また、第1の間隔a、発光部の第1方向の長さb、及び所定の倍率αが、次の条件式(2)及び(3)を満足するように構成することができる。
    0.30≦b/a≦0.42 ・・・(2)
        3.3≦α     ・・・(3)
Further, the first interval a, the length b of the light emitting portion in the first direction, and the predetermined magnification α can be configured to satisfy the following conditional expressions (2) and (3).
0.30 ≦ b / a ≦ 0.42 (2)
3.3 ≦ α (3)
 また、各光学素子は、発光素子から出射される光が照射位置において所定の線幅内となるように、光軸の方向及び第1方向のそれぞれと直交する第3方向に発光素子から出射される光を集光するように構成することができる。 Each optical element is emitted from the light emitting element in a third direction orthogonal to the direction of the optical axis and the first direction so that the light emitted from the light emitting element falls within a predetermined line width at the irradiation position. It can be configured to collect light.
 また、各光学素子は、各光源モジュールからの光が入射する第1レンズと、該第1レンズを透過した光が入射する第2レンズとを有し、第1レンズは、平面、凸面又は凹面で形成された入射面と、凸面で形成された出射面とを有し、第2レンズは、第3方向に正のパワーを有するシリンドリカル面が形成された入射面と、第1方向及び第3方向に正のパワーを有するトロイダル面が形成された出射面とを有する非球面レンズであることが望ましい。 Each optical element includes a first lens on which light from each light source module is incident and a second lens on which light transmitted through the first lens is incident. The first lens is a flat surface, a convex surface, or a concave surface. The second lens includes an incident surface formed with a cylindrical surface having a positive power in the third direction, a first direction and a third direction. It is desirable that the aspherical lens has an exit surface on which a toroidal surface having positive power in the direction is formed.
 また、各光学素子は、各光源モジュールからの光が入射する第1レンズと、該第1レンズを透過した光が入射する第2レンズとを有し、第1レンズは、平面、凸面又は凹面で形成された入射面と、凸面で形成された出射面とを有し、第2レンズは、平面で形成された入射面と、第1方向及び第3方向に正のパワーを有するトロイダル面が形成された出射面とを有する非球面レンズであることが望ましい。 Each optical element includes a first lens on which light from each light source module is incident and a second lens on which light transmitted through the first lens is incident. The first lens is a flat surface, a convex surface, or a concave surface. The second lens has an incident surface formed as a plane, and a toroidal surface having positive power in the first direction and the third direction. An aspherical lens having a formed exit surface is desirable.
 また、各光学素子は、各光源モジュールからの光が入射する第1レンズと、該第1レンズを透過した光が入射する第2レンズとを有し、第1レンズは、平面、凸面又は凹面で形成された入射面と、凸面で形成された出射面とを有し、第2レンズは、凸面で形成された入射面と、凸面で形成された出射面とを有する球面両凸レンズであることが望ましい。 Each optical element includes a first lens on which light from each light source module is incident and a second lens on which light transmitted through the first lens is incident. The first lens is a flat surface, a convex surface, or a concave surface. The second lens is a spherical biconvex lens having an incident surface formed by a convex surface and an output surface formed by a convex surface. Is desirable.
 また、第2レンズは、光軸方向から見たときに、矩形状の外形を有するように構成することができる。この場合、各光学素子の第2レンズが、第1方向に沿って連結していることが望ましい。 Also, the second lens can be configured to have a rectangular outer shape when viewed from the optical axis direction. In this case, it is desirable that the second lens of each optical element is coupled along the first direction.
 また、光照射装置は、光学ユニットを複数備え、複数の光学ユニットは、第1光学ユニットと、該第1光学ユニットに対して第1の間隔の1/2の距離だけ第1方向に相対的にずれて配置される第2光学ユニットから成り、第1光学ユニットと第2光学ユニットは、第1方向から見たときに、各光学ユニットから出射される光の光路が照射位置における垂線を対称軸として線対称となるように、照射位置を中心とする円周に沿って交互に配置される構成とすることができる。このような構成によれば、照射強度分布がそれぞれ異なる第1光学ユニットと第2光学ユニットからの光が照射位置で重なり合うため、全体として均一で、かつ、より高い照射強度のライン状の光が得られる。 The light irradiation device includes a plurality of optical units, and the plurality of optical units are relative to the first optical unit in the first direction by a distance that is ½ of the first interval with respect to the first optical unit. The first optical unit and the second optical unit are symmetrical with respect to the perpendicular line at the irradiation position when viewed from the first direction. It can be set as the structure arrange | positioned alternately along the periphery centering on an irradiation position so that it may become line symmetrical as an axis | shaft. According to such a configuration, the light from the first optical unit and the second optical unit having different irradiation intensity distributions overlap at the irradiation position, so that the line-shaped light having a uniform and higher irradiation intensity as a whole can be obtained. can get.
 以上のように、本発明によれば、第1方向に沿って並べられた複数の光源モジュールから出射された光が照射面上において第1方向に重なり合うため、光学ユニットからは高いピーク強度のライン状の光が出射される。このため、光学ユニットの数を増やすことなく(つまり、装置を大型化することなく)、高い照射強度のライン状の光を出射可能な光照射装置が提供される。 As described above, according to the present invention, the light emitted from the plurality of light source modules arranged along the first direction overlaps in the first direction on the irradiation surface. Shaped light is emitted. For this reason, the light irradiation apparatus which can radiate | emit the linear light of high irradiation intensity is provided, without increasing the number of optical units (that is, without enlarging an apparatus).
本発明の実施形態に係る光照射装置の外観図である。It is an external view of the light irradiation apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る光照射装置に搭載されるLEDユニットの構成及び配置を説明する拡大図である。It is an enlarged view explaining the structure and arrangement | positioning of the LED unit mounted in the light irradiation apparatus which concerns on embodiment of this invention. 図2(a)に示すLEDユニットの構成を説明する拡大図である。It is an enlarged view explaining the structure of the LED unit shown to Fig.2 (a). 図3のA-A’断面図である。FIG. 4 is a cross-sectional view taken along line A-A ′ of FIG. 3. 図3のB-B’断面図である。FIG. 4 is a cross-sectional view taken along the line B-B ′ of FIG. 3. 図5のA部(点線枠)拡大図である。It is the A section (dotted line frame) enlarged view of FIG. 本発明の実施形態に係る光照射装置に搭載されるLEDユニットのLED素子の構成を説明する図である。It is a figure explaining the structure of the LED element of the LED unit mounted in the light irradiation apparatus which concerns on embodiment of this invention. 本実施形態の光照射装置から出射される紫外光のY軸方向の照射強度分布を示す図である。It is a figure which shows the irradiation intensity distribution of the Y-axis direction of the ultraviolet light radiate | emitted from the light irradiation apparatus of this embodiment. 本実施形態の光照射装置から出射される紫外光のX軸方向の照射強度分布を示す図である。It is a figure which shows the irradiation intensity distribution of the X-axis direction of the ultraviolet light radiate | emitted from the light irradiation apparatus of this embodiment. 本発明の実施形態に係る光照射装置に搭載されるLEDダイの発光面の長さと、出射される紫外光の効率との関係を示す図である。It is a figure which shows the relationship between the length of the light emission surface of the LED die mounted in the light irradiation apparatus which concerns on embodiment of this invention, and the efficiency of the emitted ultraviolet light. 本発明の実施形態に係る光照射装置に搭載されるLEDダイの発光面の長さと、有効照射エリアの長さとの関係を示す図である。It is a figure which shows the relationship between the length of the light emission surface of the LED die mounted in the light irradiation apparatus which concerns on embodiment of this invention, and the length of an effective irradiation area. 本発明の実施形態に係る光照射装置に搭載されるLEDダイの発光面の長さと、出射される紫外光のピーク強度との関係を示す図である。It is a figure which shows the relationship between the length of the light emission surface of the LED die mounted in the light irradiation apparatus which concerns on embodiment of this invention, and the peak intensity of the emitted ultraviolet light. 本発明の実施形態に係る光照射装置に搭載されるLEDダイの発光面の長さと、出射される紫外光の照射強度分布の均一度との関係を示す図である。It is a figure which shows the relationship between the length of the light emission surface of the LED die mounted in the light irradiation apparatus which concerns on embodiment of this invention, and the uniformity of the irradiation intensity distribution of the emitted ultraviolet light.
 以下、本発明の実施の形態について図面を参照して詳細に説明する。なお、図中同一又は相当部分には同一の符号を付してその説明は繰り返さない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In addition, the same code | symbol is attached | subjected to the same or an equivalent part in a figure, and the description is not repeated.
 図1は、本発明の実施形態に係る光照射装置1の外観図である。本実施形態の光照射装置1は、オフセット枚葉印刷用のインキとして用いられる紫外線硬化型インキや、FPD(Flat Panel Display)等でシール剤として用いられる紫外線硬化樹脂を硬化させる光源装置に搭載される装置であり、後述するように照射対象物の上方に配置され、照射対象物に対してライン状の紫外光を出射する(図2(b))。本明細書においては、光照射装置1から出射されるライン状の紫外光の長手(線長)方向をX軸方向(第1方向)、短手(線幅)方向をY軸方向(第2方向)、X軸及びY軸と直交する方向(すなわち、鉛直方向)をZ軸方向と定義して説明する。図1(a)は、Y軸方向から見たときの光照射装置1の正面図である。図1(b)は、Z軸方向から見たとき(図1(a)の下側から上側に見たとき)の光照射装置1の底面図である。図1(c)は、X軸方向から見たとき(図1(a)の右側から左側に見たとき)の光照射装置1の側面図である。 FIG. 1 is an external view of a light irradiation apparatus 1 according to an embodiment of the present invention. The light irradiation device 1 of this embodiment is mounted on a light source device that cures an ultraviolet curable ink used as an ink for offset sheet-fed printing or an ultraviolet curable resin used as a sealant in FPD (Flat Panel Display) or the like. As will be described later, the apparatus is disposed above the irradiation object, and emits linear ultraviolet light to the irradiation object (FIG. 2B). In this specification, the longitudinal (line length) direction of the linear ultraviolet light emitted from the light irradiation device 1 is the X-axis direction (first direction), and the short (line width) direction is the Y-axis direction (second direction). Direction), a direction orthogonal to the X axis and the Y axis (that is, a vertical direction) is defined as a Z axis direction. Fig.1 (a) is a front view of the light irradiation apparatus 1 when it sees from the Y-axis direction. FIG. 1B is a bottom view of the light irradiation apparatus 1 when viewed from the Z-axis direction (when viewed from the lower side to the upper side of FIG. 1A). FIG.1 (c) is a side view of the light irradiation apparatus 1 when it sees from the X-axis direction (when it sees from the right side of FIG. 1A to the left side).
 図1に示すように、光照射装置1は、ケース10と、基台ブロック20と、5個のLEDユニット100a~100eとを備えている。ケース10は、基台ブロック20、LEDユニット100a~100eを収容するケースである。また、LEDユニット100a~100eは、共にX軸に平行なライン状の紫外光を出射するユニットであり、本明細書においては、LEDユニット100a~100eを総称して「光学ユニット100」ともいう。 As shown in FIG. 1, the light irradiation device 1 includes a case 10, a base block 20, and five LED units 100a to 100e. The case 10 is a case for housing the base block 20 and the LED units 100a to 100e. The LED units 100a to 100e are units that emit line-shaped ultraviolet light parallel to the X axis. In the present specification, the LED units 100a to 100e are collectively referred to as an “optical unit 100”.
 基台ブロック20は、光学ユニット100を固定するための支持部材であり、ステンレス鋼等の金属によって形成されている。図1(b)及び(c)に示すように、基台ブロック20は、X軸方向に延びる略矩形の板状の部材であり、下面はY軸方向に沿って凹む部分円筒面となっている。基台ブロック20の下面(すなわち、部分円筒面)には、X軸方向に延びるLEDユニット100a~100eがY軸方向に沿って(すなわち、部分円筒面に沿って)並んで配置され、ネジ止めやハンダ付け等によって固着されている。 The base block 20 is a support member for fixing the optical unit 100, and is formed of a metal such as stainless steel. As shown in FIGS. 1B and 1C, the base block 20 is a substantially rectangular plate-like member extending in the X-axis direction, and the lower surface is a partial cylindrical surface recessed along the Y-axis direction. Yes. LED units 100a to 100e extending in the X-axis direction are arranged side by side along the Y-axis direction (that is, along the partial cylindrical surface) on the lower surface (that is, the partial cylindrical surface) of the base block 20, and screwed It is fixed by soldering.
 ケース10の下面(光照射装置1の下面)は開口部10aを有しており、この開口部10aを通って、各LEDユニット100a~100eからの紫外光が照射対象物に向かって出射するように構成されている。 The lower surface of the case 10 (the lower surface of the light irradiation apparatus 1) has an opening 10a, and ultraviolet light from each of the LED units 100a to 100e is emitted toward the irradiation object through the opening 10a. It is configured.
 図2は、本実施形態に係る光照射装置1に搭載される光学ユニット100の構成及び配置を説明する拡大図である。図2(a)は、図1(b)の拡大図であり、説明の便宜のため、基台ブロック20を省略し、図1(b)に示す光学ユニット100を90°回転させた上で、基台ブロック20の部分円筒面を平面に展開して(つまり、左右に引き延ばして)示している。また、図2(b)は、図1(c)の拡大断面図であり、X軸方向から見たときのLEDユニット100a~100eの配置を示している。 FIG. 2 is an enlarged view for explaining the configuration and arrangement of the optical unit 100 mounted on the light irradiation apparatus 1 according to this embodiment. 2A is an enlarged view of FIG. 1B. For convenience of explanation, the base block 20 is omitted, and the optical unit 100 shown in FIG. 1B is rotated by 90 °. The partial cylindrical surface of the base block 20 is shown in a flat plane (that is, extended to the left and right). FIG. 2B is an enlarged cross-sectional view of FIG. 1C, and shows the arrangement of the LED units 100a to 100e when viewed from the X-axis direction.
 本実施形態の光照射装置1においては、ケース10の下端から下方(Z軸方向)に100mm離れた位置(すなわち、ワーキングディスタンス100mmの位置(図2(b)中、「WD100」と示す))におけるX-Y平面を基準の照射面Rとし、照射対象物は、不図示の搬送装置によって照射面R上をY軸方向に沿って右から左に搬送されるように構成されている。そして、照射対象物が照射面R上を右から左に順次搬送されることにより、LEDユニット100a~100eから出射される紫外光が照射対象物上を順次移動(走査)し、照射対象物上の紫外線硬化型インキや紫外線硬化樹脂を順次硬化(定着)させる。なお、図2(b)中、「F1」は、LEDユニット100a~100eから出射される紫外光が集光する照射面R上の集光位置を示している。また、図2(b)においては、説明の便宜のため、集光位置F1を通る照射面Rの垂線を光照射装置1から出射される紫外光の光路の中心線Oとして示している。 In the light irradiation device 1 of the present embodiment, a position 100 mm away from the lower end of the case 10 (in the Z-axis direction) (that is, a position having a working distance of 100 mm (shown as “WD100” in FIG. 2B)). The XY plane in FIG. 5 is used as a reference irradiation surface R, and the irradiation object is configured to be conveyed from right to left along the Y-axis direction on the irradiation surface R by a conveying device (not shown). Then, as the irradiation object is sequentially conveyed from right to left on the irradiation surface R, the ultraviolet light emitted from the LED units 100a to 100e sequentially moves (scans) on the irradiation object, and the irradiation object The UV curable ink and UV curable resin are sequentially cured (fixed). In FIG. 2B, “F1” indicates a condensing position on the irradiation surface R where the ultraviolet light emitted from the LED units 100a to 100e is collected. In FIG. 2B, for the convenience of explanation, the perpendicular line of the irradiation surface R passing through the condensing position F1 is shown as the center line O of the optical path of the ultraviolet light emitted from the light irradiation device 1.
 図2(a)に示すように、本実施形態の光照射装置1をZ軸方向から見たとき、右側から左側に向かって(つまり、Y軸に沿って)、LEDユニット100a~100eが順番に配置されている。そして、LEDユニット100a、100c、100eは、LEDユニット100b、100dに対して、X軸方向にP/2(すなわち、LEDモジュール110の配置間隔Pの1/2)の距離だけオフセットして配置されている(詳細は後述)。 As shown in FIG. 2A, when the light irradiation device 1 according to the present embodiment is viewed from the Z-axis direction, the LED units 100a to 100e are arranged in order from the right side to the left side (that is, along the Y-axis). Is arranged. The LED units 100a, 100c, and 100e are arranged offset from the LED units 100b and 100d by a distance of P / 2 in the X-axis direction (that is, 1/2 of the arrangement interval P of the LED modules 110). (Details will be described later).
 図2(b)に示すように、本実施形態のLEDユニット100a~100eは、X軸方向から見たときに、集光位置F1を中心とする半径125mmの円周の円弧上に、10.5°の角度間隔をおいて配置されている。なお、本実施形態においては、LEDユニット100cの光軸が中心線Oと略一致するように、LEDユニット100cが集光位置F1の鉛直上方に配置され、LEDユニット100a~100eはX軸方向から見たときに、中心線Oを対称軸として線対称に配置される。各LEDユニット100a~100eからの紫外光は、基準の照射面R上の集光位置F1に向かって出射され、基準の照射面R上において集光位置F1を中心とする線幅LWの範囲を照射するように構成されている。なお、本実施形態においては、紫外光の線幅LWは集光位置F1に対して±約20mmに設定されており、線長LL(X軸方向の長さ)は約100mmに設定されている。本実施形態においては、このように5つのLEDユニット100a~100eからの紫外光を集光位置F1で重ね合わせることにより、高い照射強度の紫外光を照射対象物に対して照射している。 As shown in FIG. 2B, the LED units 100a to 100e of the present embodiment are arranged on a circular arc having a radius of 125 mm with the condensing position F1 as the center when viewed from the X-axis direction. They are arranged at an angular interval of 5 °. In the present embodiment, the LED unit 100c is arranged vertically above the condensing position F1 so that the optical axis of the LED unit 100c substantially coincides with the center line O, and the LED units 100a to 100e are arranged from the X-axis direction. When viewed, they are arranged in line symmetry with the center line O as the axis of symmetry. The ultraviolet light from each of the LED units 100a to 100e is emitted toward the condensing position F1 on the reference irradiation surface R, and the range of the line width LW centering on the condensing position F1 on the reference irradiation surface R. It is configured to irradiate. In the present embodiment, the line width LW of the ultraviolet light is set to about ± 20 mm with respect to the condensing position F1, and the line length LL (length in the X-axis direction) is set to about 100 mm. . In the present embodiment, the ultraviolet light from the five LED units 100a to 100e is superposed at the condensing position F1 in this way, so that the irradiation object is irradiated with the ultraviolet light with high irradiation intensity.
 図3は、LEDユニット100a~100eの構成を説明する図であり、図2(a)の拡大図である。また、図4、図5及び図6は、図3に示すLEDユニット100a~100eの内部の構成を説明する図であり、図4は図3のA-A’断面図であり、図5は図3のB-B’断面図であり、図6は図5のA部(点線枠)拡大図である。なお、図4、図5及び図6においては、図面を見やすくするために一部の構成を省略して示している。また、図4、図5及び図6においては、LEDユニット100a~100eのLEDモジュール110から出射される紫外光の光軸を一点鎖線で示し、紫外光の光路OPを実線で示している。 FIG. 3 is a diagram illustrating the configuration of the LED units 100a to 100e, and is an enlarged view of FIG. 2 (a). 4, FIG. 5 and FIG. 6 are diagrams for explaining the internal configuration of the LED units 100a to 100e shown in FIG. 3. FIG. 4 is a cross-sectional view taken along the line AA 'in FIG. FIG. 6 is a cross-sectional view taken along the line BB ′ of FIG. 3, and FIG. 6 is an enlarged view of a portion A (dotted line frame) of FIG. 4, 5, and 6, a part of the configuration is omitted for easy understanding of the drawings. 4, 5, and 6, the optical axis of the ultraviolet light emitted from the LED modules 110 of the LED units 100a to 100e is indicated by a one-dot chain line, and the optical path OP of the ultraviolet light is indicated by a solid line.
 なお、本実施形態のLEDユニット100a~100eは、それぞれ配置される位置のみが異なり、内部の構成は同一であるため、以下、代表してLEDユニット100cについて説明する。 Note that the LED units 100a to 100e of the present embodiment differ only in the positions where they are arranged, and the internal configuration is the same. Therefore, the LED unit 100c will be described below as a representative.
 図2(a)及び図3に示すように、LEDユニット100cは、X軸方向に延びる矩形状の基板101と、10個のLEDモジュール110を備えている。10個のLEDモジュール110は、X軸方向に延びる基板101の中心線CL(図3)に沿って稠密に基板101上に配置され、基板101と電気的に接続されている。LEDユニット100cの基板101は、不図示のLED駆動回路に接続されており、各LEDモジュール110には、基板101を介してLED駆動回路からの駆動電流が供給されるようになっている。各LEDモジュール110に駆動電流が供給されると、各LEDモジュール110からは駆動電流に応じた光量の紫外光が出射され、LEDユニット100cからはX軸に平行なライン状の紫外光が出射される。なお、後述するように、本実施形態の各LEDモジュール110は、4つのLED(Light Emitting Diode)ダイ111aを内蔵したLED素子111を備えており(図3)、各LEDダイ111aから略等しい照射強度分布の紫外光が出射されるように各LEDモジュール110(すなわち、各LEDダイ111a)に供給される駆動電流が調整されている。そして、LEDユニット100cから出射されるライン状の紫外光は、照射面R上でX軸方向において所定の照射強度分布を有している(詳細は後述)。なお、図2(a)、図3に示すように、本実施形態の各LEDモジュール110の配置間隔Pは、後述するLED素子111のパッケージ111pのサイズに等しく、本実施形態においては約14mmに設定されている。 As shown in FIGS. 2A and 3, the LED unit 100c includes a rectangular substrate 101 extending in the X-axis direction and ten LED modules 110. The ten LED modules 110 are densely arranged on the substrate 101 along the center line CL (FIG. 3) of the substrate 101 extending in the X-axis direction, and are electrically connected to the substrate 101. The substrate 101 of the LED unit 100c is connected to an LED drive circuit (not shown), and a drive current from the LED drive circuit is supplied to each LED module 110 via the substrate 101. When a driving current is supplied to each LED module 110, each LED module 110 emits ultraviolet light with a light amount corresponding to the driving current, and a linear ultraviolet light parallel to the X axis is emitted from the LED unit 100c. The As will be described later, each LED module 110 of the present embodiment includes an LED element 111 having four LED (Light Emitting Diode) dies 111a (FIG. 3), and substantially equal irradiation from each LED die 111a. The drive current supplied to each LED module 110 (that is, each LED die 111a) is adjusted so that ultraviolet light having an intensity distribution is emitted. The linear ultraviolet light emitted from the LED unit 100c has a predetermined irradiation intensity distribution in the X-axis direction on the irradiation surface R (details will be described later). As shown in FIGS. 2A and 3, the arrangement interval P of the LED modules 110 of this embodiment is equal to the size of a package 111p of the LED element 111 described later, and is about 14 mm in this embodiment. Is set.
 図3~図6に示すように、LEDユニット100aは、LED素子111(光源モジュール)、レンズ113及びレンズ115(光学素子)を備えている。 As shown in FIGS. 3 to 6, the LED unit 100a includes an LED element 111 (light source module), a lens 113, and a lens 115 (optical element).
 図7は、LED素子111の構成を説明する図であり、図7(a)は平面図であり、図7(b)は、図7(a)のC-C’断面図である。図7に示すように、本実施形態のLED素子111は、枡形のパッケージ111pを備え、その内部に4つのLEDダイ111a(発光素子)を内蔵している。また、パッケージ111pの開口部は、カバーガラス111cで封止されている。LEDダイ111aは、略正方形の発光面を備え、LED駆動回路から駆動電流の供給を受けて、波長365nmの紫外光を出射する半導体素子である。本実施形態においては、各LEDダイ111aは、0.85×0.85mmの発光面を備え、パッケージ111pの中心線(つまり、1組の向かい合う辺に平行な中心線)に沿って1.2mm間隔で並べられている。そして、各LED素子111は、LEDダイ111aがX軸方向に沿って並ぶように基板101に取り付けられる。 7A and 7B are diagrams for explaining the configuration of the LED element 111, FIG. 7A is a plan view, and FIG. 7B is a cross-sectional view taken along the line C-C ′ of FIG. As shown in FIG. 7, the LED element 111 of the present embodiment includes a bowl-shaped package 111p, and includes four LED dies 111a (light emitting elements) therein. The opening of the package 111p is sealed with a cover glass 111c. The LED die 111a is a semiconductor element that has a substantially square light emitting surface and emits ultraviolet light having a wavelength of 365 nm upon receiving a drive current from the LED drive circuit. In the present embodiment, each LED die 111a has a light emitting surface of 0.85 × 0.85 mm, and is 1.2 mm along the center line of the package 111p (that is, a center line parallel to a pair of opposing sides). They are arranged at intervals. Each LED element 111 is attached to the substrate 101 so that the LED dies 111a are arranged along the X-axis direction.
 図3~図6に示すように、各LED素子111の光軸上には、不図示のレンズホルダに保持されたレンズ113及びレンズ115が配置されている。レンズ113は、例えばシリコーン樹脂の射出成形により形成された、例えば、LED素子111側が平面の球面平凸レンズであり、各LEDダイ111aから拡散しながら入射する紫外光を集光して後段のレンズ115に導光する。レンズ115は、例えばシリコーン樹脂の射出成形により形成された非球面レンズであり、Y軸方向にパワーを有するシリンドリカル面が形成された入射面と、Y軸方向とX軸方向とで異なるパワーを有するトロイダル面が形成された出射面とを備え、レンズ113から入射する紫外光をY軸方向に集光すると共に、X軸方向に所定の倍率(例えば、約10倍)で拡大する。このため、図4に示すように、X軸方向から見たとき、各LED素子111(つまり、各LEDダイ111a)から出射された紫外光は、レンズ113及びレンズ115を通り、集光位置F1に集光する。また、図5に示すように、Y軸方向から見たとき、各LED素子111から出射された紫外光は、レンズ113及びレンズ115を通り、X軸方向に拡がり、他のLED素子111からの紫外光と照射面R上で互いに重なり合うように構成されている。なお、本実施形態においては、レンズ113は光軸に直交する方向の最大径がφ13.5mmのレンズである。また、レンズ115は光軸に直交する方向の断面が矩形のレンズであり、本実施形態においては、各LEDユニット100aのレンズ115がX軸方向に連結されており、1つの部材として構成されている。このような構成により、各LEDダイ111aから入射する紫外光が効率よく(つまり、レンズ113及びレンズ115によるケラレが発生することなく)照射面R上に導かれる。 As shown in FIGS. 3 to 6, on the optical axis of each LED element 111, a lens 113 and a lens 115 held by a lens holder (not shown) are arranged. The lens 113 is formed by, for example, injection molding of a silicone resin, for example, a spherical plano-convex lens having a flat LED element 111 side, and condenses the ultraviolet light that is incident while diffusing from each LED die 111a, and the subsequent lens 115. To guide the light. The lens 115 is an aspherical lens formed by injection molding of, for example, silicone resin, and has an incident surface on which a cylindrical surface having power in the Y-axis direction is formed, and powers that are different in the Y-axis direction and the X-axis direction. And an exit surface on which a toroidal surface is formed. The ultraviolet light incident from the lens 113 is condensed in the Y-axis direction and enlarged at a predetermined magnification (for example, about 10 times) in the X-axis direction. For this reason, as shown in FIG. 4, when viewed from the X-axis direction, the ultraviolet light emitted from each LED element 111 (that is, each LED die 111a) passes through the lens 113 and the lens 115, and is in a condensing position F1. Condensed to Further, as shown in FIG. 5, when viewed from the Y-axis direction, the ultraviolet light emitted from each LED element 111 passes through the lens 113 and the lens 115, spreads in the X-axis direction, and is emitted from the other LED elements 111. The ultraviolet light and the irradiation surface R are configured to overlap each other. In the present embodiment, the lens 113 is a lens having a maximum diameter of φ13.5 mm in a direction orthogonal to the optical axis. The lens 115 is a lens having a rectangular cross section in a direction perpendicular to the optical axis. In this embodiment, the lens 115 of each LED unit 100a is connected in the X-axis direction, and is configured as one member. Yes. With such a configuration, ultraviolet light incident from each LED die 111a is efficiently guided onto the irradiation surface R (that is, without vignetting by the lens 113 and the lens 115).
 このように、本実施形態においては、各LED素子111から出射された紫外光が照射面R上でX軸方向に互いに重なり合うように構成することで、高い照射強度(ピーク強度)の紫外光が各LEDユニット100a~100eから出射されるように構成している。つまり、各LEDユニット100a~100eそれ自体で、従来のLEDユニット(例えば、特許文献2に記載のもの)よりも高いピーク強度の紫外光が出射されるようになっている。また、本実施形態の光照射装置1は、このような構成の5つのLEDユニット100a~100eを用い、LEDユニット100a~100eからの紫外光を集光位置F1で重ね合わせることにより、更に高い照射強度の紫外光を照射対象物に対して照射する。 As described above, in the present embodiment, the ultraviolet light emitted from each LED element 111 is configured to overlap each other in the X-axis direction on the irradiation surface R, so that ultraviolet light with high irradiation intensity (peak intensity) is generated. The LED units 100a to 100e are configured to emit light. That is, each LED unit 100a to 100e itself emits ultraviolet light having a peak intensity higher than that of a conventional LED unit (for example, one described in Patent Document 2). Further, the light irradiation device 1 of the present embodiment uses the five LED units 100a to 100e having such a configuration, and superimposes the ultraviolet light from the LED units 100a to 100e at the light condensing position F1, thereby further increasing the irradiation. Irradiate the object to be irradiated with intense ultraviolet light.
 図8は、本実施形態の光照射装置1から出射される紫外光のY軸方向の照射強度分布を示す図であり、光照射装置1の長手方向の中心位置(すなわち、紫外光の線長LL(X軸方向の長さ)の1/2の位置)でのY軸方向の照射強度分布を示している。図8(a)は、各LEDユニット100a~100eから出射される紫外光の照射強度分布を示し、図8(b)は、5つのLEDユニット100a~100eから出射される紫外光のトータルの照射強度分布を示している。図8(a)と(b)とを比較すると分かるように、5つのLEDユニット100a~100eからの紫外光が集光位置F1で重ね合わされることにより、集光位置F1(図8中、「0mm」で示す)では、各LEDユニット100a~100eから出射される紫外光のピーク強度の5倍(約8000mW/cmのピーク強度)の紫外光が得られる。 FIG. 8 is a diagram showing the irradiation intensity distribution in the Y-axis direction of the ultraviolet light emitted from the light irradiation apparatus 1 of the present embodiment, and the center position in the longitudinal direction of the light irradiation apparatus 1 (that is, the line length of the ultraviolet light). The irradiation intensity distribution in the Y-axis direction at LL (1/2 position of the length in the X-axis direction) is shown. FIG. 8A shows the irradiation intensity distribution of the ultraviolet light emitted from the LED units 100a to 100e, and FIG. 8B shows the total irradiation of the ultraviolet light emitted from the five LED units 100a to 100e. The intensity distribution is shown. As can be seen by comparing FIGS. 8A and 8B, the ultraviolet light from the five LED units 100a to 100e is overlapped at the condensing position F1, so that the condensing position F1 (in FIG. 8, “ In the case of “0 mm”, ultraviolet light that is five times the peak intensity of the ultraviolet light emitted from each LED unit 100a to 100e (peak intensity of about 8000 mW / cm 2 ) is obtained.
 図9は、本実施形態の光照射装置1から出射される紫外光のX軸方向の照射強度分布を示す図であり、光照射装置1の短手方向の中心位置(すなわち、集光位置F1)でのX軸方向の照射強度分布を示している。図9(a)は、LEDユニット100a、100c、100eのそれぞれから出射される紫外光の照射強度分布を示し、図9(b)は、LEDユニット100b、100dのそれぞれから出射される紫外光の照射強度分布を示し、図9(c)は、5つのLEDユニット100a~100eから出射される紫外光のトータルの照射強度分布を示している。なお、図9(a)及び図9(b)においては、説明の便宜のため、各LEDユニット100a~100eの各LED素子111から出射される紫外光の照射強度分布を実線で示し、LEDユニット全体から出射される紫外光(つまり、各LED素子111から出射される紫外光の総和)の照射強度分布を点線で示している。 FIG. 9 is a diagram showing an irradiation intensity distribution in the X-axis direction of the ultraviolet light emitted from the light irradiation apparatus 1 of the present embodiment, and the center position in the short direction of the light irradiation apparatus 1 (that is, the condensing position F1). ) Shows the irradiation intensity distribution in the X-axis direction. FIG. 9A shows the irradiation intensity distribution of the ultraviolet light emitted from each of the LED units 100a, 100c, and 100e, and FIG. 9B shows the ultraviolet light emitted from each of the LED units 100b and 100d. An irradiation intensity distribution is shown, and FIG. 9C shows a total irradiation intensity distribution of ultraviolet light emitted from the five LED units 100a to 100e. 9 (a) and 9 (b), for convenience of explanation, the irradiation intensity distribution of the ultraviolet light emitted from each LED element 111 of each LED unit 100a to 100e is shown by a solid line, and the LED unit The irradiation intensity distribution of the ultraviolet light emitted from the whole (that is, the total of ultraviolet light emitted from each LED element 111) is indicated by a dotted line.
 上述したように、本実施形態の各LED素子111から出射された紫外光は、レンズ113及びレンズ115によって、X軸方向に拡げられて、照射面R上に照射される。ここで、各LED素子111から出射される紫外光は、X軸方向に沿って等間隔に並べられた4つのLEDダイ111aから出射される紫外光に他ならないため、各LED素子111から出射される紫外光のX軸方向の照射強度分布は、4つのピークを有する離散的な照射強度分布となる。そして、このような離散的な照射強度分布を有する紫外光がレンズ113及びレンズ115によって、所定の倍率でX軸方向に拡げられて、照射面R上に照射される(図9(a)及び図9(b)の実線部)。その結果、照射面R上において、複数のLED素子111からの紫外光がX軸方向に重なり合い、光照射装置1の長手方向の中心位置(すなわち、紫外光の線長LL(X軸方向の長さ)の1/2の位置)を中心とする所定の範囲(本実施形態においては、±約35mmの範囲)で照射強度が高められる(図9(a)及び図9(b)の点線部)。このように、本実施形態においては、X軸方向に並ぶ複数のLED素子111からの紫外光をX軸方向に重ね合わせることにより、ピーク強度の高い紫外光を得ている。なお、本明細書においては、紫外光が重なり合い、ピーク強度が高くなる部分を「有効照射エリア」と称し、本実施形態においては、この部分に照射対象物が配置される。 As described above, the ultraviolet light emitted from each LED element 111 of the present embodiment is spread in the X-axis direction by the lens 113 and the lens 115 and is irradiated onto the irradiation surface R. Here, since the ultraviolet light emitted from each LED element 111 is nothing but the ultraviolet light emitted from the four LED dies 111a arranged at equal intervals along the X-axis direction, it is emitted from each LED element 111. The irradiation intensity distribution of the ultraviolet light in the X-axis direction is a discrete irradiation intensity distribution having four peaks. Then, the ultraviolet light having such a discrete irradiation intensity distribution is spread by the lens 113 and the lens 115 in the X-axis direction at a predetermined magnification and irradiated onto the irradiation surface R (FIG. 9A and FIG. 9). (A solid line part of Drawing 9 (b)). As a result, the ultraviolet light from the plurality of LED elements 111 overlaps in the X-axis direction on the irradiation surface R, and the longitudinal position of the light irradiation device 1 (that is, the line length LL of the ultraviolet light (the length in the X-axis direction). The irradiation intensity is increased within a predetermined range (in this embodiment, a range of about ± 35 mm) centered at a position that is a half of (b)) (dotted line portions in FIGS. 9A and 9B). ). Thus, in the present embodiment, ultraviolet light having a high peak intensity is obtained by superimposing ultraviolet light from the plurality of LED elements 111 arranged in the X-axis direction in the X-axis direction. In the present specification, a portion where the ultraviolet light overlaps and the peak intensity is high is referred to as an “effective irradiation area”, and in this embodiment, an irradiation object is arranged in this portion.
 なお、図9(a)及び図9(b)に示すように、各LEDユニット100a~100eから出射される紫外光の照射強度分布は、有効照射エリアでピーク強度が高められるものの、所々櫛歯状に変動したもの(つまり、不均一なもの)となる。これは、X軸方向に並ぶLEDダイ111aの密度が一定ではなく、各LED素子111間にLEDダイ111aが配置されない部分が存在するためである。そこで、本実施形態においては、光照射装置1全体から出射される紫外光の照射強度分布が略均一となるように、LEDユニット100a、100c、100を、LEDユニット100b、100dに対して、X軸方向にP/2(すなわち、LEDモジュール110の配置間隔Pの1/2)の距離だけオフセットして配置している。LEDユニット100a~100eをこのように配置すると、各LEDユニット100a~100eから出射される紫外光の照射強度の低くなる部分が照射面R上で互いに打ち消される。このため、光照射装置1全体の紫外光の照射強度分布(つまり、5つのLEDユニット100a~100eから出射される紫外光のトータルの照射強度分布)としては、X軸方向において略均一なものとなり、また各LEDユニット100a~100eから出射される紫外光のピーク強度の5倍(約8000mW/cm)のピーク強度となる。 As shown in FIGS. 9 (a) and 9 (b), the irradiation intensity distribution of the ultraviolet light emitted from each LED unit 100a to 100e is comb-toothed in some places although the peak intensity is increased in the effective irradiation area. It becomes a thing fluctuate | varied in shape (that is, a non-uniform thing). This is because the density of the LED dies 111 a arranged in the X-axis direction is not constant, and there is a portion where the LED dies 111 a are not arranged between the LED elements 111. Therefore, in the present embodiment, the LED units 100a, 100c, and 100 are compared with the LED units 100b and 100d so that the irradiation intensity distribution of the ultraviolet light emitted from the entire light irradiation device 1 is substantially uniform. They are arranged offset in the axial direction by a distance of P / 2 (that is, 1/2 of the arrangement interval P of the LED modules 110). When the LED units 100a to 100e are arranged in this way, the portions where the irradiation intensity of the ultraviolet light emitted from the LED units 100a to 100e is lowered cancel each other on the irradiation surface R. For this reason, the ultraviolet light irradiation intensity distribution of the entire light irradiation apparatus 1 (that is, the total irradiation intensity distribution of ultraviolet light emitted from the five LED units 100a to 100e) is substantially uniform in the X-axis direction. In addition, the peak intensity is five times (about 8000 mW / cm 2 ) the peak intensity of the ultraviolet light emitted from each of the LED units 100a to 100e.
 このように本実施形態の各LEDユニット100a~100eにおいては、X軸方向に複数(4つ)のLEDダイ111aを備えたLED素子111を複数(10個)並べ、各LED素子111から出射される紫外光をX軸方向に拡大することでピーク強度の高い紫外光が出射されるように構成されている。つまり、各LEDユニット100a~100eそれ自体から、高いピーク強度の紫外光が出射されるようになっている。また、5つのLEDユニット100a~100eからの紫外光が照射面R上の集光位置F1に集光するように、各LEDユニット100a~100eを配置することで、更にピーク強度が高く、均一な照射強度分布の紫外光が出射されるように構成されている。従って、このような構成の光照射装置1によれば、照射対象物上の紫外線硬化型インキや紫外線硬化樹脂を安定して硬化(定着)させることができる。 As described above, in each of the LED units 100a to 100e of the present embodiment, a plurality (10) of LED elements 111 including a plurality (four) of LED dies 111a are arranged in the X-axis direction, and emitted from each LED element 111. The ultraviolet light having a high peak intensity is emitted by expanding the ultraviolet light in the X-axis direction. That is, high peak intensity ultraviolet light is emitted from the LED units 100a to 100e themselves. Further, by arranging the LED units 100a to 100e so that the ultraviolet light from the five LED units 100a to 100e is condensed at the condensing position F1 on the irradiation surface R, the peak intensity is further increased and uniform. Ultraviolet light having an irradiation intensity distribution is emitted. Therefore, according to the light irradiation apparatus 1 having such a configuration, it is possible to stably cure (fix) the ultraviolet curable ink or the ultraviolet curable resin on the irradiation object.
 以上が本実施形態の説明であるが、本発明は、上記の構成に限定されるものではなく、本発明の技術的思想の範囲内において様々な変形が可能である。 The above is the description of the present embodiment, but the present invention is not limited to the above configuration, and various modifications are possible within the scope of the technical idea of the present invention.
 例えば、本実施形態の光照射装置1は、5つのLEDユニット100a~100eを備えるものとして説明したが、上述したように各LEDユニット100a~100eにおいてピーク強度の高い紫外光が出射されるように構成されているため、所望するピーク強度に応じて使用するLEDユニットの数を調整すればよく、光照射装置1は、1つ以上のLEDユニットを備えればよい。 For example, although the light irradiation apparatus 1 of the present embodiment has been described as including five LED units 100a to 100e, as described above, ultraviolet light having a high peak intensity is emitted from each of the LED units 100a to 100e. Since it is comprised, what is necessary is just to adjust the number of LED units to be used according to the desired peak intensity, and the light irradiation apparatus 1 should just be provided with one or more LED units.
 また、本実施形態の各LEDユニット100a~100eは、10個のLEDモジュール110を備えるものとして説明したが、各LEDモジュール110から出射される紫外光が照射面R上で少しでも重なるように構成すれば紫外光のピーク強度を高めることができるため、各LEDユニット100a~100eは、X軸方向に少なくとも2つ以上のLEDモジュール110を備えればよい。 Further, the LED units 100a to 100e of the present embodiment have been described as including the ten LED modules 110. However, the ultraviolet light emitted from the LED modules 110 is configured to overlap even slightly on the irradiation surface R. If this is done, the peak intensity of the ultraviolet light can be increased, so that each of the LED units 100a to 100e may include at least two LED modules 110 in the X-axis direction.
 また、本実施形態のLED素子111は、0.85×0.85mmの発光面を有し、X軸方向に1.2mm間隔で並ぶ4つのLEDダイ111aを備えるものとして説明したが、発光面のサイズ、LEDダイ111aの数、LEDダイ111aの間隔は、必ずしもこのような構成に限定されるものではない。つまり、LED素子111から出射される紫外光がX軸方向に拡大されたときに、他のLED素子111(例えば、隣接するLED素子111)からの紫外光と少しでも重なるように構成すれば紫外光のピーク強度を高めることができるため、LED素子111としては、X軸方向に延びる紫外光を出射できるものであればよく、複数のLEDダイ111aを備えるものに代えて、例えば、X軸方向に延びる1つの発光面(つまり、1つのLEDダイ111a)を備えたものを適用することができる。なお、この場合、発光面の大きさ(長さ)は、本実施形態の複数のLEDダイ111aによって構成される発光部の長さ(つまり、複数のLEDダイ111aが配置される領域のX軸方向の長さ)に相当し、使用するレンズ113及びレンズ115のサイズ、有効照射エリアの長さ、所望する紫外光のピーク強度、所望する紫外光の照射強度分布の均一度等を考慮して適宜設定される。しかし、1つのLED素子111から出射される紫外光がX軸方向に拡大され、他のLED素子111からの紫外光と重なるためには、LED素子111の間隔をa、発光面のX軸方向の長さをb、レンズ113及びレンズ115によるX軸方向の倍率をαとしたとき、以下の条件式(1)を満たすことが条件となる。
    α×b≧a ・・・(1)
In addition, the LED element 111 of the present embodiment has been described as including four LED dies 111a having a light emitting surface of 0.85 × 0.85 mm and arranged at intervals of 1.2 mm in the X-axis direction. The size, the number of LED dies 111a, and the distance between the LED dies 111a are not necessarily limited to such a configuration. In other words, when the ultraviolet light emitted from the LED element 111 is expanded in the X-axis direction, the ultraviolet light is configured to overlap with ultraviolet light from other LED elements 111 (for example, adjacent LED elements 111) as much as possible. Since the peak intensity of light can be increased, the LED element 111 may be any element that can emit ultraviolet light extending in the X-axis direction. For example, the LED element 111 may be replaced with one having a plurality of LED dies 111a. It is possible to apply one provided with one light emitting surface (that is, one LED die 111a). In this case, the size (length) of the light emitting surface is the length of the light emitting part constituted by the plurality of LED dies 111a of the present embodiment (that is, the X axis of the region where the plurality of LED dies 111a are arranged). The length of the lens 113 and the lens 115 to be used, the length of the effective irradiation area, the peak intensity of the desired ultraviolet light, the uniformity of the desired irradiation intensity distribution of the ultraviolet light, etc. Set as appropriate. However, in order for the ultraviolet light emitted from one LED element 111 to expand in the X-axis direction and overlap the ultraviolet light from the other LED elements 111, the distance between the LED elements 111 is a, and the X-axis direction of the light emitting surface Where b is the length of the lens and α is the magnification of the lens 113 and the lens 115 in the X-axis direction, the following conditional expression (1) is satisfied.
α × b ≧ a (1)
 図10~図13は、LEDダイ111aの発光面(発光部)の長さを求めるために発明者が行ったシミュレーション結果を示すグラフである。図10は、LEDダイ111aの発光面の長さ(発光長)と出射される紫外光の効率との関係をシミュレーションした結果である。ここで、出射される紫外光の効率とは、LEDダイ111aから出射される紫外光の効率をいい、本明細書においては、(照射面R上での紫外光の光量)/(LEDダイ111aから出射される紫外光の光量)と定義する。また、図11は、LEDダイ111aの発光面の長さと有効照射エリアの長さとの関係をシミュレーションした結果である。図12は、LEDダイ111aの発光面の長さと出射される紫外光のピーク強度との関係をシミュレーションした結果である。図13は、LEDダイ111aの発光面の長さと出射される紫外光の照射強度分布の均一度との関係をシミュレーションした結果である。出射される紫外光の照射強度分布の均一度とは、有効照射エリア内における照射強度のバラツキをいい、本明細書においては、((有効照射エリア内の最大強度)-(有効照射エリア内の最小強度))/((有効照射エリア内の最大強度)+(有効照射エリア内の最小強度))と定義する。なお、図10~図13に示すシミュレーションにおいては、本実施形態と同一のレンズ113及びレンズ115がLED素子111の光路上に配置され、各LEDモジュール110(つまり、LED素子111)の配置間隔Pも、本実施形態と同一の14mmであるものとして、シミュレーションを行った。 FIGS. 10 to 13 are graphs showing the results of simulation performed by the inventor in order to obtain the length of the light emitting surface (light emitting portion) of the LED die 111a. FIG. 10 shows the result of simulating the relationship between the length of the light emitting surface (light emission length) of the LED die 111a and the efficiency of the emitted ultraviolet light. Here, the efficiency of the emitted ultraviolet light refers to the efficiency of the ultraviolet light emitted from the LED die 111a. In this specification, (the amount of ultraviolet light on the irradiation surface R) / (the LED die 111a). The amount of ultraviolet light emitted from the light source). FIG. 11 shows the result of simulating the relationship between the length of the light emitting surface of the LED die 111a and the length of the effective irradiation area. FIG. 12 shows the result of simulating the relationship between the length of the light emitting surface of the LED die 111a and the peak intensity of the emitted ultraviolet light. FIG. 13 shows the result of simulating the relationship between the length of the light emitting surface of the LED die 111a and the uniformity of the irradiation intensity distribution of the emitted ultraviolet light. The uniformity of the irradiation intensity distribution of the emitted ultraviolet light refers to the variation in irradiation intensity within the effective irradiation area. In this specification, ((maximum intensity within the effective irradiation area)-(within the effective irradiation area) Minimum intensity)) / ((maximum intensity in effective irradiation area) + (minimum intensity in effective irradiation area)). In the simulations shown in FIGS. 10 to 13, the same lens 113 and lens 115 as those of the present embodiment are arranged on the optical path of the LED element 111, and the arrangement interval P of each LED module 110 (that is, the LED element 111) is set. Also, the simulation was performed assuming that the thickness is 14 mm, which is the same as that of the present embodiment.
 図10に示すように、LEDダイ111aの発光面の長さ(発光長)が長くなると、出射される紫外光の効率は徐々に低下する。これは、LEDダイ111aの発光面の長さが長くなることにより、レンズ113及びレンズ115によってケラレが発生するため(つまり、発光面から出射される紫外光の一部がレンズ113及びレンズ115に取り込まれなくなるため)である。従って、効率≧75%を目標値とすると、本実施形態のレンズ113及びレンズ115を用いる場合、LEDダイ111aの発光面の長さは、5.8mm以下とするのが好ましい。 As shown in FIG. 10, as the length of the light emitting surface (light emitting length) of the LED die 111a increases, the efficiency of the emitted ultraviolet light gradually decreases. This is because vignetting is generated by the lens 113 and the lens 115 due to an increase in the length of the light emitting surface of the LED die 111a (that is, a part of the ultraviolet light emitted from the light emitting surface is generated in the lens 113 and the lens 115). Because it will not be captured). Therefore, when the efficiency ≧ 75% is set as the target value, when the lens 113 and the lens 115 of the present embodiment are used, the length of the light emitting surface of the LED die 111a is preferably 5.8 mm or less.
 図11に示すように、LEDダイ111aの発光面の長さ(発光長)が長くなると、有効照射エリアの長さ(有効照射エリア長)が徐々に短くなる。これは、発光長が長くなると、有効照射エリア長の中心部で紫外光の重なりが多くなるためピーク強度は高くなるが、一方で有効照射エリア長の両端側の照射強度が相対的に下がるためである。従って、有効照射エリア長≧70mmを目標値とすると、LEDダイ111aの発光面の長さは、5.8mm以下とするのが好ましい。 As shown in FIG. 11, as the length of the light emitting surface (light emitting length) of the LED die 111a increases, the length of the effective irradiation area (effective irradiation area length) gradually decreases. This is because as the emission length increases, the peak intensity increases because the overlap of ultraviolet light increases at the center of the effective irradiation area length, but the irradiation intensity on both ends of the effective irradiation area length decreases relatively. It is. Therefore, when the effective irradiation area length ≧ 70 mm is a target value, the length of the light emitting surface of the LED die 111a is preferably 5.8 mm or less.
 図12に示すように、LEDダイ111aの発光面の長さ(発光長)が長くなると、出射される紫外光のピーク強度が徐々に大きくなる。これは、各LEDダイ111aから照射される紫外光の照射面R上での長さが長くなるため、これによってX軸方向に重ね合わせられる紫外光の長さも長くなるためである。従って、紫外光のピーク強度≧600mWを目標値とすると、LEDダイ111aの発光面の長さは、4.2mm以上とするのが好ましい。 As shown in FIG. 12, the peak intensity of the emitted ultraviolet light gradually increases as the length of the light emitting surface (light emission length) of the LED die 111a increases. This is because the length of the ultraviolet light irradiated from each LED die 111a on the irradiation surface R is increased, and the length of the ultraviolet light superimposed in the X-axis direction is thereby increased. Therefore, when the peak value of ultraviolet light ≧ 600 mW is set as a target value, the length of the light emitting surface of the LED die 111a is preferably set to 4.2 mm or more.
 図13に示すように、LEDダイ111aの発光面の長さ(発光長)に応じて、出射される紫外光の均一度が変化する。従って、紫外光の照射強度分布の均一度≦7%を目標値とすると、LEDダイ111aの発光面の長さは、4.2mm以上とするのが好ましい。 As shown in FIG. 13, the uniformity of the emitted ultraviolet light changes according to the length (light emission length) of the light emitting surface of the LED die 111a. Therefore, when the uniformity of the irradiation intensity distribution of ultraviolet light ≦ 7% is set as a target value, the length of the light emitting surface of the LED die 111a is preferably set to 4.2 mm or more.
 以上のシミュレーション結果から、紫外光の効率、有効照射エリアの長さ、紫外光のピーク強度、紫外光の照射強度分布の均一度を考慮すると、LEDダイ111aの発光面の長さ(b)は、4.2mm~5.8mmの範囲に設定するのが好ましいといえる。そして、本実施形態のLED素子111の間隔(a)が14mmであることを考慮すると、条件式(1)から以下の条件式(2)が得られる。
    0.30≦b/a≦0.42 ・・・(2)
 つまり、LEDダイ111aの発光面の長さ(b)は、LED素子111の間隔(a)に対して0.30~0.42の範囲で設定するのが好ましいことが分かる。
From the above simulation results, considering the efficiency of the ultraviolet light, the length of the effective irradiation area, the peak intensity of the ultraviolet light, and the uniformity of the irradiation intensity distribution of the ultraviolet light, the length (b) of the light emitting surface of the LED die 111a is It can be said that the thickness is preferably set in the range of 4.2 mm to 5.8 mm. Considering that the distance (a) between the LED elements 111 of this embodiment is 14 mm, the following conditional expression (2) is obtained from the conditional expression (1).
0.30 ≦ b / a ≦ 0.42 (2)
That is, it is understood that the length (b) of the light emitting surface of the LED die 111a is preferably set in the range of 0.30 to 0.42 with respect to the interval (a) of the LED elements 111.
 また、条件式(1)と条件式(2)から、以下の条件式(3)及び(4)が得られる。
    3.3≦α ・・・(3)
    2.3≦α ・・・(4)
 つまり、LED素子111の間隔(a)とLEDダイ111aの発光面の長さ(b)が条件式(2)を満たすとき、各LEDダイ111aから照射される紫外光が照射面R上で重なるためには、レンズ113及びレンズ115によるX軸方向の倍率(α)を3.3以上に設定すること(つまり、条件式(3)を満たすこと)が好ましいことが分かる。
Further, from the conditional expressions (1) and (2), the following conditional expressions (3) and (4) are obtained.
3.3 ≦ α (3)
2.3 ≦ α (4)
That is, when the distance (a) between the LED elements 111 and the length (b) of the light emitting surface of the LED die 111a satisfy the conditional expression (2), the ultraviolet light irradiated from each LED die 111a overlaps on the irradiation surface R. For this purpose, it can be seen that it is preferable to set the magnification (α) in the X-axis direction by the lens 113 and the lens 115 to 3.3 or more (that is, satisfy the conditional expression (3)).
 また、本実施形態においては、各LEDユニット100aのレンズ115がX軸方向に連結されているものとして説明したが、レンズ115は、各LEDユニット100aに独立して配置されてもよい。 In the present embodiment, the lens 115 of each LED unit 100a has been described as being connected in the X-axis direction. However, the lens 115 may be disposed independently of each LED unit 100a.
 また、本実施形態においては、レンズ113は、球面平凸レンズであるとしたが、このような構成に限定されるものではなく、例えば、両凸レンズ、凹凸レンズを適用することも可能である。 In the present embodiment, the lens 113 is a spherical plano-convex lens. However, the present invention is not limited to such a configuration. For example, a biconvex lens or an uneven lens can be applied.
 また、本実施形態においては、レンズ115は、シリンドリカル面とトロイダル面が形成された非球面レンズであるとしたが、このような構成に限定されるものではなく、例えば、平面とトロイダル面が形成された非球面レンズ、球面両凸レンズを適用することも可能である。 In this embodiment, the lens 115 is an aspherical lens in which a cylindrical surface and a toroidal surface are formed. However, the present invention is not limited to such a configuration. For example, a flat surface and a toroidal surface are formed. It is also possible to apply aspherical lenses and spherical biconvex lenses.
 また、本実施形態においては、レンズ113及びレンズ115は、シリコーン樹脂によって形成されるものとしたが、シリコーン樹脂に限定されるものではなく、他の光学用透明樹脂やガラスを適用することも可能である。 In the present embodiment, the lens 113 and the lens 115 are formed of silicone resin. However, the lens 113 and the lens 115 are not limited to silicone resin, and other optical transparent resins and glass can be applied. It is.
 なお、今回開示された実施の形態は、全ての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は、上記した説明ではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。 It should be noted that the embodiments disclosed this time are examples in all respects and are not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

Claims (12)

  1.  照射面上の所定の照射位置に、第1方向に延び、かつ、前記第1方向と直交する第2方向に所定の線幅を有するライン状の光を照射する光照射装置であって、
     基板上に前記第1方向に沿って第1の間隔をおいて並べられ、所定の方向に光軸の向きを揃えて配置されたN個(Nは2以上の整数)の光源モジュールと、前記各光源モジュールの光路上に配置され、前記各光源モジュールからの光を所定の光路に導くN個の光学素子とを有し、前記照射面に対して前記第1方向に平行なライン状の光を出射する光学ユニットを備え、
     前記各光源モジュールは、前記第1方向に沿って延びる発光部を有し、
     前記各光学素子は、前記発光部から出射される光を前記第1方向に所定の倍率で拡大し、
     前記第1の間隔をa、前記発光部の前記第1方向の長さをb、前記所定の倍率をαとしたときに、次の条件式(1)を満足することを特徴とする光照射装置。
        α×b≧a ・・・(1)
    A light irradiation apparatus that irradiates a line-shaped light that extends in a first direction and has a predetermined line width in a second direction orthogonal to the first direction at a predetermined irradiation position on an irradiation surface,
    N light source modules (N is an integer of 2 or more) light source modules arranged on the substrate at a first interval along the first direction and arranged with the direction of the optical axis aligned in a predetermined direction; Linear light that is arranged on the optical path of each light source module and has N optical elements that guide light from each of the light source modules to a predetermined optical path, and is parallel to the first direction with respect to the irradiation surface An optical unit that emits light,
    Each of the light source modules has a light emitting portion extending along the first direction,
    Each of the optical elements expands the light emitted from the light emitting unit in the first direction at a predetermined magnification,
    The light irradiation satisfying the following conditional expression (1), where a is the first interval, b is the length of the light emitting portion in the first direction, and α is the predetermined magnification: apparatus.
    α × b ≧ a (1)
  2.  前記発光部は、光を発する少なくとも1個の発光素子を有することを特徴とする請求項1に記載の光照射装置。 The light emitting device according to claim 1, wherein the light emitting unit includes at least one light emitting element that emits light.
  3.  前記発光部は、前記第1方向に沿って第2の間隔をおいて並べられたM個(Mは2以上の整数)の前記発光素子を有することを特徴とする請求項2に記載の光照射装置。 3. The light according to claim 2, wherein the light emitting unit includes M (M is an integer of 2 or more) the light emitting elements arranged at a second interval along the first direction. Irradiation device.
  4.  前記発光素子が、略正方形状の発光面を有するLED(Light Emitting Diode)であることを特徴とする請求項3に記載の光照射装置。 The light emitting device according to claim 3, wherein the light emitting element is an LED (Light Emitting Diode) having a substantially square light emitting surface.
  5.  前記第1の間隔a、前記発光部の前記第1方向の長さb及び前記所定の倍率αが、次の条件式(2)及び(3)を満足することを特徴とする請求項1から請求項4のいずれか一項に記載の光照射装置。
        0.30≦b/a≦0.42 ・・・(2)
            3.3≦α     ・・・(3)
    The first interval a, the length b of the light emitting unit in the first direction, and the predetermined magnification α satisfy the following conditional expressions (2) and (3): The light irradiation apparatus as described in any one of Claims 4.
    0.30 ≦ b / a ≦ 0.42 (2)
    3.3 ≦ α (3)
  6.  前記各光学素子は、前記発光素子から出射される光が前記照射位置において前記所定の線幅内となるように、前記光軸の方向及び前記第1方向のそれぞれと直交する第3方向に前記発光素子から出射される光を集光することを特徴とする請求項1から請求項5のいずれか一項に記載の光照射装置。 Each of the optical elements has the third direction orthogonal to the direction of the optical axis and the first direction so that the light emitted from the light emitting element falls within the predetermined line width at the irradiation position. The light irradiation apparatus according to claim 1, wherein the light emitted from the light emitting element is collected.
  7.  前記各光学素子は、前記各光源モジュールからの光が入射する第1レンズと、該第1レンズを透過した光が入射する第2レンズと、を有し、
     前記第1レンズは、平面、凸面又は凹面で形成された入射面と、凸面で形成された出射面とを有し、
     前記第2レンズは、前記第3方向に正のパワーを有するシリンドリカル面が形成された入射面と、前記第1方向及び前記第3方向に正のパワーを有するトロイダル面が形成された出射面とを有する非球面レンズである
    ことを特徴とする請求項6に記載の光照射装置。
    Each optical element includes a first lens on which light from each light source module is incident, and a second lens on which light transmitted through the first lens is incident,
    The first lens has an incident surface formed of a flat surface, a convex surface or a concave surface, and an output surface formed of a convex surface.
    The second lens includes an incident surface on which a cylindrical surface having positive power in the third direction is formed, and an exit surface on which toroidal surfaces having positive power in the first direction and the third direction are formed. The light irradiation device according to claim 6, wherein the light irradiation device is an aspherical lens.
  8.  前記各光学素子は、前記各光源モジュールからの光が入射する第1レンズと、該第1レンズを透過した光が入射する第2レンズと、を有し、
     前記第1レンズは、平面、凸面又は凹面で形成された入射面と、凸面で形成された出射面とを有し、
     前記第2レンズは、平面で形成された入射面と、前記第1方向及び前記第3方向に正のパワーを有するトロイダル面が形成された出射面とを有する非球面レンズである
    ことを特徴とする請求項6に記載の光照射装置。
    Each optical element includes a first lens on which light from each light source module is incident, and a second lens on which light transmitted through the first lens is incident,
    The first lens has an incident surface formed of a flat surface, a convex surface or a concave surface, and an output surface formed of a convex surface.
    The second lens is an aspherical lens having an entrance surface formed in a plane and an exit surface on which a toroidal surface having positive power in the first direction and the third direction is formed. The light irradiation apparatus according to claim 6.
  9.  前記各光学素子は、前記各光源モジュールからの光が入射する第1レンズと、該第1レンズを透過した光が入射する第2レンズと、を有し、
     前記第1レンズは、平面、凸面又は凹面で形成された入射面と、凸面で形成された出射面とを有し、
     前記第2レンズは、凸面で形成された入射面と、凸面で形成された出射面とを有する球面両凸レンズである
    ことを特徴とする請求項6に記載の光照射装置。
    Each optical element includes a first lens on which light from each light source module is incident, and a second lens on which light transmitted through the first lens is incident,
    The first lens has an incident surface formed of a flat surface, a convex surface or a concave surface, and an output surface formed of a convex surface.
    The light irradiation apparatus according to claim 6, wherein the second lens is a spherical biconvex lens having an incident surface formed of a convex surface and an output surface formed of a convex surface.
  10.  前記第2レンズは、光軸方向から見たときに、矩形状の外形を有することを特徴とする請求項7から請求項9のいずれか一項に記載の光照射装置。 The light irradiation apparatus according to any one of claims 7 to 9, wherein the second lens has a rectangular outer shape when viewed from the optical axis direction.
  11.  前記各光学素子の第2レンズが、前記第1方向に沿って連結していることを特徴とする請求項10に記載の光照射装置。 The light irradiation apparatus according to claim 10, wherein the second lens of each optical element is connected along the first direction.
  12.  前記光照射装置は、前記光学ユニットを複数備え、
     前記複数の光学ユニットは、第1光学ユニットと、該第1光学ユニットに対して前記第1の間隔の1/2の距離だけ前記第1方向に相対的にずれて配置される第2光学ユニットから成り、
     前記第1光学ユニットと前記第2光学ユニットは、前記第1方向から見たときに、前記各光学ユニットから出射される光の光路が前記照射位置における垂線を対称軸として線対称となるように、前記照射位置を中心とする円周に沿って交互に配置される
    ことを特徴とする請求項1から請求項11のいずれか一項に記載の光照射装置。
    The light irradiation device includes a plurality of the optical units,
    The plurality of optical units include a first optical unit and a second optical unit that is relatively shifted from the first optical unit by a distance of ½ of the first interval in the first direction. Consisting of
    When viewed from the first direction, the first optical unit and the second optical unit are configured such that the optical path of the light emitted from each optical unit is axisymmetric with respect to a perpendicular line at the irradiation position. The light irradiation device according to claim 1, wherein the light irradiation device is alternately arranged along a circumference centered on the irradiation position.
PCT/JP2014/059461 2013-04-15 2014-03-31 Photoirradiation device WO2014171317A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020157030543A KR101930041B1 (en) 2013-04-15 2014-03-31 Photoirradiation device
JP2015512433A JP6360475B2 (en) 2013-04-15 2014-03-31 Light irradiation device
CN201480021182.9A CN105229368B (en) 2013-04-15 2014-03-31 Light irradiation device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013085323 2013-04-15
JP2013-085323 2013-04-15

Publications (1)

Publication Number Publication Date
WO2014171317A1 true WO2014171317A1 (en) 2014-10-23

Family

ID=51731269

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/059461 WO2014171317A1 (en) 2013-04-15 2014-03-31 Photoirradiation device

Country Status (5)

Country Link
JP (1) JP6360475B2 (en)
KR (1) KR101930041B1 (en)
CN (1) CN105229368B (en)
TW (1) TWI620889B (en)
WO (1) WO2014171317A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017009099A1 (en) * 2015-07-15 2017-01-19 Heraeus Noblelight Gmbh Module-type led lamp unit and use thereof
JP2017170616A (en) * 2016-03-18 2017-09-28 Hoya Candeo Optronics株式会社 Light irradiation device
JP2018126692A (en) * 2017-02-09 2018-08-16 Hoya Candeo Optronics株式会社 Light irradiation device
JP2018205635A (en) * 2017-06-08 2018-12-27 ウシオ電機株式会社 Light source device
JP2019064055A (en) * 2017-09-29 2019-04-25 ウシオ電機株式会社 Light projection apparatus
JP2019121635A (en) * 2017-12-28 2019-07-22 Hoya Candeo Optronics株式会社 Light irradiation device
JP2020527481A (en) * 2017-07-14 2020-09-10 ストール マシーナリ カンパニー, エルエルシーStolle Machinery Company, LLC Post-processing assemblies and methods for processing workpieces

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6625901B2 (en) * 2016-02-29 2019-12-25 株式会社Screenホールディングス Lighting equipment and inspection equipment
JP6465828B2 (en) * 2016-03-30 2019-02-06 Hoya Candeo Optronics株式会社 Light irradiation device
CN106004030B (en) * 2016-05-26 2018-04-17 北京印刷学院 The complementary solidification equipment of the planar light source of label printing machine and reflective multiplication line source
CN105856832B (en) * 2016-05-26 2018-04-17 北京印刷学院 Label printing machine bireflectance ultraviolet multistage rapid solidification device
CN106004031B (en) * 2016-05-26 2018-04-17 北京印刷学院 The variable power ultra-violet light-emitting diode solidification equipment of label printing machine
CN105856831B (en) * 2016-05-26 2018-04-17 北京印刷学院 Label printing machine piano convex cylindrical lens multistage rapid ultraviolet line solidification equipment
CN106678625A (en) * 2017-03-06 2017-05-17 成都恒坤光电科技有限公司 Ultraviolet light source assembly, ultraviolet optical system and ultraviolet printing device
JP6659612B2 (en) * 2017-03-31 2020-03-04 Hoya Candeo Optronics株式会社 Light emitting device, light irradiation module, and light irradiation device
CN115674894B (en) * 2022-11-10 2024-01-30 广东科视光学技术股份有限公司 Condensing lens, offset printing light source and printer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5590912A (en) * 1978-12-28 1980-07-10 Canon Inc Projector
JPH01263541A (en) * 1988-04-15 1989-10-20 Hitachi Ltd Foreign matter detecting apparatus
JP2009148756A (en) * 2007-12-20 2009-07-09 Summit Business Products Inc Concentrated energy source
JP2011159424A (en) * 2010-01-29 2011-08-18 Toyoda Gosei Co Ltd Linear light source device
JP2011222239A (en) * 2010-04-08 2011-11-04 Dainippon Screen Mfg Co Ltd Lighting system and inspection device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2951452A1 (en) * 1978-12-28 1980-07-17 Canon Kk PROJECTION DEVICE
JP3987350B2 (en) * 2001-11-16 2007-10-10 株式会社リコー Laser illumination optical system and exposure apparatus, laser processing apparatus, and projection apparatus using the same
JP4234697B2 (en) * 2005-06-15 2009-03-04 浜松ホトニクス株式会社 Laser equipment
JP5407054B2 (en) * 2008-08-01 2014-02-05 日亜化学工業株式会社 Lighting device
JP5282669B2 (en) * 2009-06-12 2013-09-04 ウシオ電機株式会社 Light irradiation device
JP5457219B2 (en) * 2010-02-16 2014-04-02 株式会社小糸製作所 Optical unit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5590912A (en) * 1978-12-28 1980-07-10 Canon Inc Projector
JPH01263541A (en) * 1988-04-15 1989-10-20 Hitachi Ltd Foreign matter detecting apparatus
JP2009148756A (en) * 2007-12-20 2009-07-09 Summit Business Products Inc Concentrated energy source
JP2011159424A (en) * 2010-01-29 2011-08-18 Toyoda Gosei Co Ltd Linear light source device
JP2011222239A (en) * 2010-04-08 2011-11-04 Dainippon Screen Mfg Co Ltd Lighting system and inspection device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017009099A1 (en) * 2015-07-15 2017-01-19 Heraeus Noblelight Gmbh Module-type led lamp unit and use thereof
JP2017170616A (en) * 2016-03-18 2017-09-28 Hoya Candeo Optronics株式会社 Light irradiation device
JP2018126692A (en) * 2017-02-09 2018-08-16 Hoya Candeo Optronics株式会社 Light irradiation device
JP2018205635A (en) * 2017-06-08 2018-12-27 ウシオ電機株式会社 Light source device
JP2020527481A (en) * 2017-07-14 2020-09-10 ストール マシーナリ カンパニー, エルエルシーStolle Machinery Company, LLC Post-processing assemblies and methods for processing workpieces
JP7050895B2 (en) 2017-07-14 2022-04-08 ストール マシーナリ カンパニー,エルエルシー Post-processing assembly and method for processing workpieces
JP2022093336A (en) * 2017-07-14 2022-06-23 ストール マシーナリ カンパニー,エルエルシー Post-treatment assembly and method for treating workpieces
JP7322229B2 (en) 2017-07-14 2023-08-07 ストール マシーナリ カンパニー,エルエルシー PRODUCT SUPPORT ASSEMBLY, PRE-PROCESSING ASSEMBLY, POST PRINTING PROCESSING ASSEMBLY AND METHOD FOR PROCESSING WORKPIECE
JP2019064055A (en) * 2017-09-29 2019-04-25 ウシオ電機株式会社 Light projection apparatus
JP2019121635A (en) * 2017-12-28 2019-07-22 Hoya Candeo Optronics株式会社 Light irradiation device

Also Published As

Publication number Publication date
CN105229368A (en) 2016-01-06
JP6360475B2 (en) 2018-07-18
JPWO2014171317A1 (en) 2017-02-23
KR20150132880A (en) 2015-11-26
KR101930041B1 (en) 2018-12-17
TW201502424A (en) 2015-01-16
TWI620889B (en) 2018-04-11
CN105229368B (en) 2018-07-17

Similar Documents

Publication Publication Date Title
JP6360475B2 (en) Light irradiation device
JP6099212B2 (en) Light irradiation device
JP2018523923A (en) Ultraviolet irradiation assembly for radiation curing
JP5815888B2 (en) Light irradiation device
JP2014523650A (en) Optoelectronic module with lens system
JP2011060798A (en) Ultraviolet irradiation device
JP2015114633A (en) Light irradiation apparatus
TWI543228B (en) Light irradiation device
JP6379118B2 (en) Light irradiation device
JP6125456B2 (en) Light irradiation unit
KR102207297B1 (en) Light illuminating apparatus
JP2015191742A (en) Light irradiation unit and light irradiation device
JP5538467B2 (en) Lens unit, light irradiation unit and light irradiation device
JP2007057861A (en) Optical system for condensing light in square pattern and uv ray irradiation apparatus for liquid crystal panel
KR101595564B1 (en) Ultra violet cure apparatus using leds
JP6258713B2 (en) Light irradiation device
KR20180092871A (en) Light irradiating apparatus
KR20150121512A (en) Ultra violet cure apparatus using a leds
US20180075940A1 (en) Light source module

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480021182.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14784639

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2015512433

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157030543

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 14784639

Country of ref document: EP

Kind code of ref document: A1