WO2014171309A1 - All-solid-state cell - Google Patents

All-solid-state cell Download PDF

Info

Publication number
WO2014171309A1
WO2014171309A1 PCT/JP2014/059288 JP2014059288W WO2014171309A1 WO 2014171309 A1 WO2014171309 A1 WO 2014171309A1 JP 2014059288 W JP2014059288 W JP 2014059288W WO 2014171309 A1 WO2014171309 A1 WO 2014171309A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid
negative electrode
state battery
positive electrode
electrode layer
Prior art date
Application number
PCT/JP2014/059288
Other languages
French (fr)
Japanese (ja)
Inventor
大塚春男
鬼頭賢信
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Publication of WO2014171309A1 publication Critical patent/WO2014171309A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an all-solid battery using a combination of an electrode active material and a solid electrolyte.
  • a liquid electrolyte such as an organic solvent using a flammable organic solvent as a diluent solvent has been conventionally used as a medium for moving ions.
  • a battery using such an electrolytic solution may cause problems such as leakage of the electrolytic solution, ignition, and explosion.
  • the electrode formed by coating on the current collector contains many organic binders that do not directly contribute to the battery characteristics, and a lot of electron conduction assistants that assist the electron conduction between the particles.
  • the active material filling rate in the electrode was lowered, resulting in a reduction in battery capacity and a decrease in energy density.
  • the filling rate of the active material forming the electrode must be increased. Therefore, the battery described in Japanese Patent Application Laid-Open No. 2002-42785 is a lithium battery in which an electrolyte is sandwiched between a pair of electrodes, and the electrode thickness is formed of a sintered body exceeding 20 ⁇ m and not more than 200 ⁇ m, and The filling rate of the active material in the electrode is 50 to 80%.
  • a solid electrolyte is sandwiched between a positive electrode and a negative electrode, a positive current collector is installed on the end face of the positive electrode, and a negative current collector is installed on the end face of the negative electrode. It is composed. Therefore, in order to increase energy, it is conceivable to stack a plurality of cells. In this case, it is easy to increase the energy by stacking a plurality of cells connected in series, but it is difficult to increase the energy by stacking a plurality of cells connected in parallel. is there. That is, the conventional all-solid-state battery has a problem that the degree of freedom is small when designing a laminated structure, and it cannot cope with various specifications.
  • An object of the present invention is to provide an all-solid-state battery that can improve the degree of freedom of design and can cope with various specifications.
  • An all solid state battery includes a solid electrolyte layer, a positive electrode side current collector, a positive electrode layer connected to the positive electrode side current collector, a negative electrode side current collector, and a negative electrode side current collector.
  • a positive electrode layer connected to an electric body, the positive electrode layer and the negative electrode layer are alternately stacked, and between the positive electrode layer and the negative electrode layer, between the positive electrode layer and the negative electrode side current collector.
  • the solid electrolyte layer is interposed between and between the negative electrode layer and the positive electrode side current collector.
  • the structure of a normal all-solid battery includes a laminate in which a negative electrode side current collector, a negative electrode layer, a solid electrolyte layer, a positive electrode layer, and a positive electrode side current collector are sequentially laminated.
  • a negative electrode side current collector a negative electrode layer
  • a solid electrolyte layer a positive electrode layer
  • a positive electrode side current collector a positive electrode side current collector
  • a plurality of all-solid-state batteries can be combined to freely connect a plurality of all-solid-state batteries in parallel, a series connection, and a combination thereof.
  • it can be easily configured, and the number of series and the number of parallel can be arbitrarily selected depending on the combination of all solid state batteries, and the degree of freedom in design can be improved.
  • the positive electrode side current collector and the negative electrode side current collector may face each other.
  • the negative electrode layer includes a first negative electrode layer and a second negative electrode layer, and the first negative electrode layer, the positive electrode layer, and the second negative electrode layer are alternately arranged.
  • the solid electrolyte layer is laminated, the first solid electrolyte layer interposed between the positive electrode side current collector and the first negative electrode layer, the positive electrode side current collector and the negative electrode side current collector And a third solid interposed between the second negative electrolyte layer interposed between the first negative electrode layer and the positive electrode layer, and between the positive electrode layer and the negative electrode side current collector.
  • the lithium ion conductive material constituting the solid electrolyte layer is composed of a garnet-based, nitride-based, perovskite-based, phosphate-based, sulfide-based, or polymer-based material. It may be.
  • the positive electrode layer may be composed of only a positive electrode active material in which a specific crystal plane is oriented in a lithium ion conduction direction.
  • the positive electrode active material may have a layered rock salt structure or a spinel structure.
  • the specific crystal plane may be a (003) plane.
  • the positive electrode layer may be configured by mixing a positive electrode active material, a solid electrolyte material, and a conductive additive and compacting the mixture.
  • the solid electrolyte material has a garnet-based crystal structure containing Li 7 La 3 Zr 2 O 12 (LLZ), and the conductive additive is acetylene black. Also good.
  • the negative electrode layer may be composed of only a negative electrode active material.
  • the negative electrode active material may be an oxide-based material.
  • the negative electrode active material may be Li 4 Ti 5 O 12 or TiO 2 .
  • the negative electrode active material may be a carbon-based material.
  • the negative electrode active material may be graphite, soft carbon, hard carbon, carbon nanotube, or graphene.
  • the negative electrode layer may be configured by mixing a negative electrode active material and a solid electrolyte material and compacting the mixture.
  • the negative electrode active material may be graphite
  • the solid electrolyte material may have a garnet-based crystal structure including Li 7 La 3 Zr 2 O 12 (LLZ).
  • An all solid state battery is an all solid state battery configured by laminating a plurality of single cells, the single cell comprising a solid electrolyte layer, a positive electrode side current collector, A positive electrode layer connected to the positive electrode side current collector, a negative electrode side current collector, and a negative electrode layer connected to the negative electrode side current collector, wherein the positive electrode layer and the negative electrode layer are alternately stacked;
  • the solid electrolyte layer is interposed between the positive electrode layer and the negative electrode layer, between the positive electrode layer and the negative electrode side current collector, and between the negative electrode layer and the positive electrode side current collector.
  • an insulating layer may be interposed between at least one adjacent single cell among the plurality of single cells arranged in the stacking direction.
  • an insulating layer may be interposed between at least one adjacent unit cell among the plurality of unit cells arranged in the lateral direction.
  • a current collector plate connected to the negative electrode side current collector or the positive electrode side current collector may be provided on both end faces of each single cell.
  • a current collector may be interposed between the single cells arranged in the lateral direction.
  • the all solid state battery of the present invention when stacking a plurality of single cells to increase energy, series connection, parallel connection, and a combination thereof can be easily realized.
  • the degree of freedom in design can be improved and various specifications can be accommodated.
  • FIG. 1A is a cross-sectional view showing the structure of a single cell of an all solid state battery according to the present embodiment
  • FIG. 1B is an exploded perspective view showing the structure of a single cell
  • FIG. 2A is a cross-sectional view showing the structure of a single cell of a general all solid state battery
  • FIG. 2B is an exploded perspective view showing the structure of a single cell
  • FIG. 3A is a cross-sectional view showing the structure of an all solid state battery (first all solid state battery) according to a first specific example
  • FIG. 3B is an equivalent circuit diagram showing the first all solid state battery.
  • FIG. 1A is a cross-sectional view showing the structure of a single cell of an all solid state battery according to the present embodiment
  • FIG. 1B is an exploded perspective view showing the structure of a single cell.
  • FIG. 2A is a cross-sectional view showing the structure of a single cell of a general all solid state battery
  • FIG. 2B is an exploded perspective view showing
  • FIG. 4A is a cross-sectional view showing the structure of an all solid state battery (second all solid state battery) according to a second specific example
  • FIG. 4B is an equivalent circuit diagram showing the second all solid state battery.
  • FIG. 5A is a cross-sectional view showing the structure of an all solid state battery (third all solid state battery) according to a third specific example
  • FIG. 5B is an equivalent circuit diagram showing the third all solid state battery.
  • FIG. 6A is a cross-sectional view showing the structure of an all solid state battery (fourth all solid state battery) according to a fourth specific example
  • FIG. 6B is an equivalent circuit diagram showing the fourth all solid state battery.
  • FIG. 7A is a sectional view showing the structure of an all solid state battery (fifth all solid state battery) according to a fifth specific example
  • FIG. 7B is an equivalent circuit diagram showing the fifth all solid state battery.
  • FIG. 8A is a sectional view showing the structure of an all solid state battery (sixth all solid state battery) according to a sixth specific example
  • FIG. 8B is an equivalent circuit diagram showing the sixth all solid state battery.
  • FIG. 9A is a sectional view showing the structure of an all solid state battery (seventh all solid state battery) according to a seventh example
  • FIG. 9B is an equivalent circuit diagram showing the seventh all solid state battery.
  • the structure of the single cell 12 of the all solid state battery 10 is connected to the solid electrolyte layer 14, the positive electrode side current collector 16, and the positive electrode side current collector 16.
  • the positive electrode layer 18, the negative electrode side current collector 20, and the negative electrode layer 22 connected to the negative electrode side current collector 20 are included.
  • the positive electrode side current collector 16 and the negative electrode side current collector 20 face each other.
  • the single cell 12 includes positive electrode layers 18 and negative electrode layers 22 that are alternately stacked, between the positive electrode layer 18 and the negative electrode layer 22, between the positive electrode layer 18 and the negative electrode side current collector 20, and the negative electrode layer 22.
  • Solid electrolyte layers 14 are interposed between the positive electrode side current collectors 16.
  • the negative electrode layer 22 includes a first negative electrode layer 22a and a second negative electrode layer 22b, and the first negative electrode layer 22a, the positive electrode layer 18, and the second negative electrode layer 22b are alternately stacked.
  • the solid electrolyte layer 14 is formed between the first solid electrolyte layer 14a interposed between the positive electrode side current collector 16 and the first negative electrode layer 22a, and between the positive electrode side current collector 16 and the negative electrode side current collector 20.
  • a fourth solid electrolyte layer 14d interposed between the second negative electrode layer 22b and the positive electrode layer 18 between the layer 14c and the positive electrode side current collector 16 and the negative electrode side current collector 20, It has the 5th solid electrolyte layer 14e interposed between the positive electrode side collector 16 and the 2nd negative electrode layer 22b.
  • each component material and manufacturing method of the positive electrode layer 18, the negative electrode layer 22, and the solid electrolyte layer 14 are mentioned later.
  • the structure of a single cell 102 of a normal all-solid-state battery 100 includes a negative electrode side current collector 104, a negative electrode layer 106, a solid electrolyte layer 108, a positive electrode layer 110, and a positive electrode side current collector.
  • a laminate 114 in which 112 are laminated in order is mentioned.
  • the energy of the single cell 102 is small, it is inevitably possible to increase the energy by stacking a plurality of stacked bodies 114.
  • the parallel connection of the several single cell 12 is carried out by combining the several single cell 12 so that it may mention later.
  • series connection and combinations thereof can be freely and easily configured, and the number of series and parallel can be arbitrarily selected depending on the combination of single cells 12 and the degree of design freedom is improved. Can be made.
  • the all solid state battery according to the first specific example (hereinafter referred to as the first all solid state battery 10A) is configured by stacking three single cells 12 as shown in FIG. 3A.
  • An insulating layer 24 is interposed between the single cells 12 adjacent to each other in the stacking direction.
  • Each of the positive electrode side current collector 16 and the negative electrode side current collector 20 is constituted by one current collector, and is common to the three single cells 12.
  • the first all-solid-state battery 10A as shown in FIG. 3B, a configuration in which three single cells 12 are connected in parallel can be realized.
  • the all-solid battery according to the second specific example (hereinafter referred to as the second all-solid battery 10B) has two first all-solid batteries 10A arranged in the horizontal direction.
  • a relay current collector 26 is interposed between the solid state batteries 10A.
  • the relay current collector 26 is common to the six single cells 12. According to the second all-solid-state battery 10B, as shown in FIG. 4B, it is possible to realize a configuration in which two parallel circuits 28 in which three single cells 12 are connected in parallel are connected in series.
  • the all-solid battery according to the third specific example (hereinafter referred to as the third all-solid battery 10C) has substantially the same configuration as the first all-solid battery 10A, but the insulating layer 24 is Instead, it differs in that each single cell 12 has current collector plates 30 connected to the negative electrode side current collector 20 or the positive electrode side current collector 16 on both end surfaces (upper surface and lower surface) of each unit cell 12.
  • the example which connected each current collecting plate 30 to the negative electrode side collector 20 is shown.
  • the third all solid state battery 10C as shown in FIG. 5B, a configuration in which three single cells 12 are connected in parallel can be realized.
  • an all-solid battery according to a fourth specific example (hereinafter referred to as a fourth all-solid battery 10D) has two third all-solid batteries 10C arranged in the horizontal direction.
  • a relay current collector 26 is interposed between the solid batteries 10C.
  • the relay current collector 26 is common to the six single cells 12.
  • the fourth all solid state battery 10D as shown in FIG. 6B, it is possible to realize a configuration in which two parallel circuits 28 in which three single cells 12 are connected in parallel are connected in series.
  • an all-solid battery according to a fifth specific example (hereinafter referred to as a fifth all-solid battery 10E) has two unit cells 12 arranged in the horizontal direction and an insulating layer 24 between the unit cells 12. Further, the positive electrode layer 18 of one unit cell 12 and the negative electrode layer 22 of the other unit cell 12 are connected by a relay current collector 26. According to the fifth all solid state battery 10E, as shown in FIG. 7B, a configuration in which two single cells 12 are connected in series can be realized.
  • an all-solid battery according to the sixth specific example (hereinafter referred to as a sixth all-solid battery 10F) includes three unit cells 12 (first unit cell 12A and second unit cell 12B from the top). And the third single cell 12C) is laminated.
  • the negative electrode side current collector 20 is located on the right side in FIG. 8A, and in the second single cell 12B, the negative electrode side current collector 20 is located on the left side in FIG. 8A. is doing.
  • current collecting plates 30 connected to the negative electrode current collector 20 are provided on both end surfaces (upper surface and lower surface) of the first single cell 12A to the third single cell 12C.
  • the first insulating layer 24a is interposed between the first single cell 12A and the second single cell 12B, and the positive current collector 16 of the first single cell 12A and the negative current collector 20 of the second single cell 12B.
  • the second insulating layer 24b is interposed between the second unit cell 12B and the third unit cell 12C, so that the positive electrode side current collector 16 of the second unit cell 12B and the third unit cell 12C
  • the negative electrode side current collector 20 is electrically insulated.
  • the negative electrode side current collector 20 of the first single cell 12A and the positive electrode side current collector 16 of the second single cell 12B are made common to form the first common electrode 32A, and the negative electrode side current collector of the second single cell 12B.
  • the electric current body 20 and the positive electrode side current collector 16 of the third single cell 12C are made common to form a second common electrode 32B.
  • a configuration in which the first single cell 12A, the second single cell 12B, and the third single cell 12C are connected in series can be realized.
  • an all-solid battery according to the seventh specific example includes four single cells 12 (first single cell 12A and second single cell 12B from the top).
  • the third unit cell 12C and the fourth unit cell 12D) are stacked.
  • the first single cell 12A and the second single cell 12B have the negative electrode current collector 20 positioned on the right side in FIG. 9A, and the third single cell 12C and the fourth single cell 12D have the negative electrode side on the left side in FIG. 9A.
  • the current collector 20 is located.
  • current collector plates 30 connected to the negative electrode current collector 20 are provided on both end surfaces (upper surface and lower surface) of the first unit cell 12A to the fourth unit cell 12D.
  • an insulating layer 24 is interposed between the second unit cell 12B and the third unit cell 12C, and the positive electrode side current collector 16 common to the first unit cell 12A and the second unit cell 12B, and the third unit cell 12C.
  • the common negative electrode side collector 20 of 4th single cell 12D is electrically insulated.
  • the negative electrode side current collectors 20 of the first single cell 12A and the second single cell 12B and the positive electrode side current collectors 16 of the third single cell 12C and the fourth single cell 12D are made common, respectively. 32.
  • the seventh all solid state battery 10G as shown in FIG. 9B, the first parallel circuit 28A, the third single cell 12C, and the fourth single cell in which the first single cell 12A and the second single cell 12B are connected in parallel.
  • the structure which connected in series with the 2nd parallel circuit 28B which connected 12D in parallel is realizable.
  • the all solid state battery 10 when a plurality of single cells 12 are combined to increase energy, series connection, parallel connection, and combinations thereof can be easily realized.
  • the degree of freedom in design can be improved and various specifications can be accommodated.
  • the number of series and the number of parallel can be arbitrarily selected, and the degree of freedom in design can be improved.
  • the positive electrode layer 18 is composed of a plurality of lithium transition metal oxide particles (positive electrode active material), and the lithium ion conduction direction of each particle is oriented in a fixed direction.
  • the certain direction is a direction perpendicular to the interface between the positive electrode layer 18 and the solid electrolyte layer 14.
  • the positive electrode layer 18 has a specific crystal plane of each particle from the positive electrode layer 18 toward the negative electrode layer 22. It is composed of layers oriented in the direction. That is, the positive electrode layer 18 is configured by sintering only particles (positive electrode active material) in which a specific crystal plane is oriented in the lithium ion conduction direction.
  • the positive electrode active material has a layered rock salt structure or a spinel structure.
  • particles having a composition represented by the following general formula and having a thickness of about 2 to 100 ⁇ m are preferable.
  • General formula: Li p (Ni x Co y Al z ) O 2 (In the above general formula, 0.9 ⁇ p ⁇ 1.3, 0.6 ⁇ x ⁇ 0.9, 0.1 ⁇ y ⁇ 0.3, 0 ⁇ z ⁇ 0.2, x + y + z 1)
  • the specific crystal plane described above is a (003) plane, and the (003) plane is oriented in a direction from the positive electrode layer 18 toward the negative electrode layer 22.
  • the (003) plane is oriented in a direction from the positive electrode layer 18 toward the negative electrode layer 22.
  • the negative electrode layer 22 is composed of only the negative electrode active material.
  • the negative electrode active material include oxide-based materials, such as Li 4 Ti 5 O 12 (simply referred to as LTO) or TiO 2 .
  • the negative electrode layer 22 can be formed by sintering only the negative electrode active material.
  • LTO has a low volume change of 0.2% due to insertion / desorption of lithium ions, so it can be said that LTO is an optimal material for all-solid-state batteries in which it is essential to maintain stable adhesion at the solid-solid interface.
  • LTO is an insulating material, practical battery performance cannot be obtained unless a conductive additive is mixed when used as an electrode material.
  • the battery since LTO has a high potential with respect to lithium ions of 1.5 V, when used as an electrode material, the battery has a low energy density. There is a problem that the energy density is further reduced by adding a material (conducting aid) other than the active material (substance involved in the electrochemical reaction in the battery).
  • the electrode material is only the negative electrode active material, the filling rate of the negative electrode active material is increased, and sintering is performed.
  • the generation of a neck (network) between particles can ensure electron conductivity without mixing a conductive additive, and can suppress a reduction in energy density.
  • negative electrode active material examples include graphite, soft carbon, hard carbon, carbon nanotube, and graphene.
  • a garnet-based, nitride-based, perovskite-based, phosphoric acid-based, sulfide-based or polymer-based material can be preferably used.
  • it has a garnet-based or garnet-like crystal structure containing Li (lithium), La (lanthanum), Zr (zirconium), and O (oxygen).
  • a garnet-type crystal structure containing, for example, Li 7 La 3 Zr 2 O 12 (LLZ) can be used as the lithium ion conductive material.
  • a green sheet having a thickness of 20 ⁇ m or less containing NiO powder, Co 3 O 4 powder, and Al 2 O 3 powder is formed, and this green sheet is formed at a temperature within the range of 1000 ° C. to 1400 ° C. in the atmosphere
  • an independent film-like sheet (self-supporting film) composed of a number of (h00) -oriented plate-like (Ni, Co, Al) O particles is formed.
  • MnO 2 , ZnO or the like as an auxiliary agent, grain growth is promoted, and as a result, the (h00) orientation of the plate-like crystal grains can be enhanced.
  • an “independent” sheet refers to a sheet that can be handled independently from another support after firing. That is, the “independent” sheet does not include a sheet that is fixed to another support (substrate or the like) by firing and integrated with the support (unseparable or difficult to separate).
  • the amount of material existing in the thickness direction is extremely small compared to the plate surface direction, that is, the in-plane direction (direction perpendicular to the thickness direction).
  • the grain growth direction is limited to the in-plane two-dimensional direction. This reliably promotes grain growth in the surface direction.
  • the green sheet as thin as possible (for example, several ⁇ m or less), or by promoting the grain growth as much as possible even if the thickness is about 100 ⁇ m (for example, about 20 ⁇ m).
  • the grain growth in the surface direction is more reliably promoted. That is, the grain growth in the plane direction of the grains parallel to the plate surface direction, that is, the in-plane direction (direction orthogonal to the thickness direction) is promoted preferentially.
  • a large number of thin plate-like particles oriented so that a specific crystal plane is parallel to the plate surface of the particles are formed at the grain boundary portion.
  • a free-standing film bonded in the plane direction can be obtained. That is, a self-supporting film is formed so that the number of crystal grains in the thickness direction is substantially one.
  • the meaning of “substantially one crystal grain in the thickness direction” does not exclude that a part (for example, end portions) of crystal grains adjacent in the plane direction overlap each other in the thickness direction.
  • This self-supporting film can be a dense ceramic sheet in which a large number of thin plate-like particles as described above are bonded without gaps.
  • the (h00) -oriented (Ni, Co, Al) O ceramic sheet obtained by the above-mentioned process and lithium nitrate (LiNO 3 ) are mixed and heated for a predetermined time, thereby (Ni, Co, Al). ) Lithium is introduced into the O particles.
  • An O 2 sheet is obtained.
  • a lithium titanium composite oxide (Li 4 Ti 5 O 12 ) is pulverized and classified so that the particle size is 1 ⁇ m or less.
  • a molding aid, a plasticizer, a dispersant, and a solvent are added to the pulverized powder and mixed to prepare a slurry.
  • This slurry is applied onto a polyethylene terephthalate (PET) film by a doctor blade method and then dried to produce a molded sheet (excluding the PET film) having a thickness of 62 ⁇ m.
  • PET polyethylene terephthalate
  • the negative electrode layer 22 can be produced by punching this molded sheet into a rectangular shape and performing a heat treatment at 780 ° C. in the atmosphere.
  • a raw material containing a Li component, a La component and a Zr component is fired to obtain a primary fired powder for ceramic synthesis containing Li, La, Zr and oxygen.
  • Li 2 CO 3 or LiOH can be used as the Li component
  • La (OH) 3 or La 2 O 3 can be used as the La component
  • ZrO 2 can be used as the Zr component.
  • the first firing step is a step of obtaining a primary fired powder for facilitating the thermal decomposition of at least the Li component and the La component to easily form the LLZ crystal structure in the second firing step.
  • the primary fired powder may already have an LLZ crystal structure.
  • the firing temperature is preferably 850 ° C. or higher and 1150 ° C. or lower.
  • the primary fired powder obtained in the first firing step is fired at a temperature of 950 ° C. to 1250 ° C., and a garnet-type or garnet-like crystal containing Li, La, Zr, and oxygen A ceramic powder having a structure is synthesized. Thereby, it is possible to easily obtain a ceramic powder or sintered body having a LLZ crystal structure and having sinterability (density) and conductivity that contains aluminum and can be handled.
  • the second firing step may be carried out after forming the primary fired powder into a molded body having a desired three-dimensional shape (for example, a shape and size that can be used as a solid electrolyte of an all-solid secondary battery). preferable.
  • the ceramic powder obtained in the second firing step may be used as a compact, and the compact may be separately subjected to a sintering step at a temperature similar to the heating temperature in the second firing step.
  • the solid electrolyte layer 14 having an LLZ crystal structure can be obtained.
  • various particle jet coating methods, solid phase methods, solution methods, gas phase methods, and direct bonding (direct bonding) methods can be used.
  • the particle jet coating method include an aerosol deposition (AD) method, a gas deposition (GD) method, a powder jet deposition (PJD) method, a cold spray (CS) method, and a thermal spraying method.
  • the aerosol deposition (AD) method is particularly preferable because it can form a film at room temperature, and does not cause a composition shift during the process or formation of a high resistance layer due to a reaction with the positive electrode plate.
  • the solid phase method include a tape lamination method and a printing method.
  • the tape lamination method is preferable because the solid electrolyte layer 14 can be formed thin and the thickness can be easily controlled.
  • the solution method include a hydrothermal synthesis method, a sol-gel method, a precipitation method, a microemulsion method, and a solvent evaporation method.
  • the hydrothermal synthesis method is particularly preferable in that it is easy to obtain crystal grains having high crystallinity at a low temperature.
  • microcrystals synthesized using these methods may be deposited on the positive electrode or may be directly deposited on the positive electrode.
  • the gas phase method examples include laser deposition (PLD) method, sputtering method, evaporation condensation (PVD) method, gas phase reaction method (CVD) method, vacuum deposition method, molecular beam epitaxy (MBE) method and the like.
  • the laser deposition (PLD) method is particularly preferable because there is little composition deviation and a film with relatively high crystallinity can be easily obtained.
  • the direct bonding (direct bonding) method is a method in which the solid electrolyte layer 14 and the positive electrode plate, which are formed in advance, are chemically activated and bonded at a low temperature. For activation of the interface, plasma or the like may be used, or chemical modification of a functional group such as a hydroxyl group may be used.
  • the example of the constituent material of the positive electrode layer 18 and the negative electrode layer 22 described above is a preferable aspect in which the energy density is suppressed, but other constituent materials shown below may be used.
  • the positive electrode layer 18 may be configured by mixing a positive electrode active material, a solid electrolyte material, and a conductive additive, and compacting them.
  • the solid electrolyte material has a garnet-type crystal structure including, for example, Li 7 La 3 Zr 2 O 12 (LLZ), and the conductive additive is, for example, acetylene black. Also good.
  • the negative electrode layer 22 may be configured by mixing a negative electrode active material and a solid electrolyte material and compacting them.
  • the negative electrode active material is, for example, graphite
  • the solid electrolyte material may have a garnet-type crystal structure including, for example, Li 7 La 3 Zr 2 O 12 (LLZ).
  • the all-solid-state battery according to the present invention is not limited to the above-described embodiment, and can of course have various configurations without departing from the gist of the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Secondary Cells (AREA)

Abstract

This all-solid-state cell comprises a solid electrolyte layer (14), a positive electrode-side collector (16), a positive electrode layer (18), a negative electrode-side collector (20), and a negative electrode layer (22). The positive electrode layer (18) is connected with the positive electrode-side collector (16). The negative electrode layer (22) is connected with the negative electrode-side collector (20). The positive electrode layer (18) and the negative electrode layer (22) are layered in an alternating fashion. The solid electrolyte layer (14) is interposed between the positive electrode layer (18) and the negative electrode layer (22), between the positive electrode layer (18) and the negative electrode-side collector (20), and between the negative electrode layer (22) and the positive electrode-side collector (16).

Description

全固体電池All solid battery
 本発明は、電極活物質と固体電解質との組み合わせによる全固体電池に関する。 The present invention relates to an all-solid battery using a combination of an electrode active material and a solid electrolyte.
 近年、パーソナルコンピュータ、携帯電話等のポータブル機器の開発に伴い、その電源としての電池の需要が大幅に拡大している。このような用途に用いられる電池においては、イオンを移動させる媒体として、希釈溶媒に可燃性の有機溶媒を用いた有機溶媒等の液体の電解質(電解液)が従来使用されている。このような電解液を用いた電池においては、電解液の漏液や、発火、爆発等の問題を生ずる可能性がある。 In recent years, with the development of portable devices such as personal computers and mobile phones, the demand for batteries as the power source has greatly increased. In a battery used for such an application, a liquid electrolyte (electrolytic solution) such as an organic solvent using a flammable organic solvent as a diluent solvent has been conventionally used as a medium for moving ions. A battery using such an electrolytic solution may cause problems such as leakage of the electrolytic solution, ignition, and explosion.
 このような問題を解消すべく、本質的な安全性確保のために、液体の電解質に代えて固体電解質を使用すると共に、その他の要素の全てを固体で構成した全固体電池の開発が進められている。このような全固体電池は、電解質が固体であることから、発火の心配が少なく、漏液せず、また、腐食による電池性能の劣化等の問題も生じ難い。 In order to solve these problems, in order to ensure essential safety, the development of an all-solid-state battery in which a solid electrolyte is used instead of a liquid electrolyte and all other elements are made of solid is being promoted. ing. Such an all-solid battery has a solid electrolyte, so there is little fear of ignition, no leakage, and problems such as deterioration of battery performance due to corrosion hardly occur.
 ところで、集電体上に塗布して形成された電極は、電池特性に直接寄与しない有機バインダーや、粒子間の電子伝導を補助する役目である電子伝導助剤が多く含まれており、そのため、電極内における活物質充填率が低くなり、その結果、電池容量が小さくなり、エネルギー密度が低下していた。エネルギー密度を向上させるためには、その電極を形成する活物質の充填率を高めなければならない。そこで、特開2002-42785号公報に記載の電池は、一対の電極間に電解質を挟持するリチウム電池において、この電極厚みが20μmを超え、且つ、200μm以下の焼結体で形成し、且つ、電極における活物質の充填率を50~80%としている。 By the way, the electrode formed by coating on the current collector contains many organic binders that do not directly contribute to the battery characteristics, and a lot of electron conduction assistants that assist the electron conduction between the particles. The active material filling rate in the electrode was lowered, resulting in a reduction in battery capacity and a decrease in energy density. In order to improve the energy density, the filling rate of the active material forming the electrode must be increased. Therefore, the battery described in Japanese Patent Application Laid-Open No. 2002-42785 is a lithium battery in which an electrolyte is sandwiched between a pair of electrodes, and the electrode thickness is formed of a sintered body exceeding 20 μm and not more than 200 μm, and The filling rate of the active material in the electrode is 50 to 80%.
 従来の全固体電池は、正極と負極との間に、固体電解質を挟み、正極の端面に正極側集電体を設置し、負極の端面に負極側集電体を設置して1つのセルを構成している。そのため、エネルギーを大きくするには、複数のセルを積層することが考えられる。この場合、複数のセルを直列に接続する形態で積層して、エネルギーを大きくすることは簡単であるが、複数のセルを並列に接続する形態で積層して、エネルギーを大きくすることは困難である。すなわち、従来の全固体電池は、積層構造を設計する場合に、自由度が小さく、様々な仕様に対応できないという問題がある。 In a conventional all-solid battery, a solid electrolyte is sandwiched between a positive electrode and a negative electrode, a positive current collector is installed on the end face of the positive electrode, and a negative current collector is installed on the end face of the negative electrode. It is composed. Therefore, in order to increase energy, it is conceivable to stack a plurality of cells. In this case, it is easy to increase the energy by stacking a plurality of cells connected in series, but it is difficult to increase the energy by stacking a plurality of cells connected in parallel. is there. That is, the conventional all-solid-state battery has a problem that the degree of freedom is small when designing a laminated structure, and it cannot cope with various specifications.
 本発明はこのような課題を考慮してなされたものであり、複数のセルを積層してエネルギーを大きくする場合に、直列接続、並列接続、並びにこれらの組み合わせを容易に実現することができ、設計の自由度の向上を図ることができると共に、様々な仕様に対応することができる全固体電池を提供することを目的とする。 The present invention has been made in view of such problems, and when stacking a plurality of cells to increase energy, series connection, parallel connection, and combinations thereof can be easily realized, An object of the present invention is to provide an all-solid-state battery that can improve the degree of freedom of design and can cope with various specifications.
[1] 第1の本発明に係る全固体電池は、固体電解質層と、正極側集電体と、正極側集電体に接続された正極層と、負極側集電体と、負極側集電体に接続された負極層とを有し、前記正極層と前記負極層とが互い違いに積層され、前記正極層と前記負極層との間、前記正極層と前記負極側集電体との間及び前記負極層と前記正極側集電体との間に前記固体電解質層が介在されていることを特徴とする。 [1] An all solid state battery according to the first aspect of the present invention includes a solid electrolyte layer, a positive electrode side current collector, a positive electrode layer connected to the positive electrode side current collector, a negative electrode side current collector, and a negative electrode side current collector. A positive electrode layer connected to an electric body, the positive electrode layer and the negative electrode layer are alternately stacked, and between the positive electrode layer and the negative electrode layer, between the positive electrode layer and the negative electrode side current collector The solid electrolyte layer is interposed between and between the negative electrode layer and the positive electrode side current collector.
 通常の全固体電池の構造は、負極側集電体、負極層、固体電解質層、正極層及び正極側集電体を順番に積層した積層体が挙げられる。この場合、全固体電池のエネルギーは小さいため、必然的に、複数の全固体電池を積層してエネルギーを大きくすることが考えられる。しかし、上述の積層体の構造では、直列にしてエネルギーを大きくすることは容易であるが、並列にしてエネルギーを向上させることは困難である。 The structure of a normal all-solid battery includes a laminate in which a negative electrode side current collector, a negative electrode layer, a solid electrolyte layer, a positive electrode layer, and a positive electrode side current collector are sequentially laminated. In this case, since the energy of the all solid state battery is small, it is inevitably possible to increase the energy by stacking a plurality of all solid state batteries. However, in the structure of the laminated body described above, it is easy to increase the energy in series, but it is difficult to improve the energy in parallel.
 これに対して、第1の本発明に係る全固体電池の構造であれば、複数の全固体電池を組み合わせることで、複数の全固体電池の並列接続、直列接続及びこれらの組み合わせを自由に、且つ、容易に構成することができ、しかも、全固体電池の組み合わせ方次第で、直列数、並列数が任意に選択可能となり、設計の自由度を向上させることができる。 On the other hand, if it is the structure of the all-solid-state battery according to the first aspect of the present invention, a plurality of all-solid-state batteries can be combined to freely connect a plurality of all-solid-state batteries in parallel, a series connection, and a combination thereof. In addition, it can be easily configured, and the number of series and the number of parallel can be arbitrarily selected depending on the combination of all solid state batteries, and the degree of freedom in design can be improved.
[2] 第1の本発明において、前記正極側集電体と前記負極側集電体とが互いに対向してもよい。 [2] In the first aspect of the present invention, the positive electrode side current collector and the negative electrode side current collector may face each other.
[3] 第1の本発明において、前記負極層は、第1負極層と第2負極層とを有し、前記第1負極層と、前記正極層と、前記第2負極層とが互い違いに積層され、前記固体電解質層は、前記正極側集電体と前記第1負極層との間に介在された第1固体電解質層と、前記正極側集電体と前記負極側集電体との間であって、且つ、前記第1負極層と前記正極層との間に介在された第2固体電解質層と、前記正極層と前記負極側集電体との間に介在された第3固体電解質層と、前記正極側集電体と前記負極側集電体との間であって、且つ、前記第2負極層と前記正極層との間に介在された第4固体電解質層と、前記正極側集電体と前記第2負極層との間に介在された第5固体電解質層とを有してもよい。 [3] In the first aspect of the present invention, the negative electrode layer includes a first negative electrode layer and a second negative electrode layer, and the first negative electrode layer, the positive electrode layer, and the second negative electrode layer are alternately arranged. The solid electrolyte layer is laminated, the first solid electrolyte layer interposed between the positive electrode side current collector and the first negative electrode layer, the positive electrode side current collector and the negative electrode side current collector And a third solid interposed between the second negative electrolyte layer interposed between the first negative electrode layer and the positive electrode layer, and between the positive electrode layer and the negative electrode side current collector. A fourth solid electrolyte layer interposed between the electrolyte layer, the positive electrode current collector and the negative electrode current collector, and interposed between the second negative electrode layer and the positive electrode layer; You may have the 5th solid electrolyte layer interposed between the positive electrode side electrical power collector and the said 2nd negative electrode layer.
[4] 第1の本発明において、前記固体電解質層を構成するリチウムイオン伝導材料は、ガーネット系、窒化物系、ペロブスカイト系、リン酸系、硫化物系又は高分子系の材料にて構成されていてもよい。 [4] In the first aspect of the present invention, the lithium ion conductive material constituting the solid electrolyte layer is composed of a garnet-based, nitride-based, perovskite-based, phosphate-based, sulfide-based, or polymer-based material. It may be.
[5] 第1の本発明において、前記正極層は、特定の結晶面がリチウムイオンの伝導方向に配向した正極活物質のみで構成されていてもよい。 [5] In the first aspect of the present invention, the positive electrode layer may be composed of only a positive electrode active material in which a specific crystal plane is oriented in a lithium ion conduction direction.
[6] この場合、前記正極活物質が、層状岩塩構造又はスピネル構造を有してもよい。 [6] In this case, the positive electrode active material may have a layered rock salt structure or a spinel structure.
[7] さらに、前記正極活物質は、
  一般式:Lip(NixCoyAlz)O2
  (上記一般式中、0.9≦p≦1.3、0.6<x<0.9、0.1<y≦0.3、0≦z≦0.2,x+y+z=1)
で表される層状岩塩構造を有し、前記特定の結晶面が(003)面であってもよい。
[7] Furthermore, the positive electrode active material includes:
General formula: Li p (Ni x Co y Al z ) O 2
(In the above general formula, 0.9 ≦ p ≦ 1.3, 0.6 <x <0.9, 0.1 <y ≦ 0.3, 0 ≦ z ≦ 0.2, x + y + z = 1)
The specific crystal plane may be a (003) plane.
[8] 第1の本発明において、前記正極層は、正極活物質と固体電解質材料と導電助剤とを混合し、圧粉成形して構成されていてもよい。 [8] In the first aspect of the present invention, the positive electrode layer may be configured by mixing a positive electrode active material, a solid electrolyte material, and a conductive additive and compacting the mixture.
[9] この場合、前記正極活物質は、
  一般式:Lip(NixCoyAlz)O2
  (上記一般式中、0.9≦p≦1.3、0.6<x<0.9、0.1<y≦0.3、0≦z≦0.2、x+y+z=1)
で表される層状岩塩構造を有し、前記固体電解質材料は、Li7La3Zr212(LLZ)を含むガーネット系の結晶構造を有し、前記導電助剤は、アセチレンブラックであってもよい。
[9] In this case, the positive electrode active material is
General formula: Li p (Ni x Co y Al z ) O 2
(In the above general formula, 0.9 ≦ p ≦ 1.3, 0.6 <x <0.9, 0.1 <y ≦ 0.3, 0 ≦ z ≦ 0.2, x + y + z = 1)
The solid electrolyte material has a garnet-based crystal structure containing Li 7 La 3 Zr 2 O 12 (LLZ), and the conductive additive is acetylene black. Also good.
[10] 第1の本発明において、前記負極層は、負極活物質のみで構成されていてもよい。 [10] In the first aspect of the present invention, the negative electrode layer may be composed of only a negative electrode active material.
[11] この場合、前記負極活物質が、酸化物系材料であってもよい。 [11] In this case, the negative electrode active material may be an oxide-based material.
[12] さらに、前記負極活物質が、Li4Ti512又はTiO2であってもよい。 [12] Further, the negative electrode active material may be Li 4 Ti 5 O 12 or TiO 2 .
[13] この場合、前記負極活物質が、炭素系材料であってもよい。 [13] In this case, the negative electrode active material may be a carbon-based material.
[14] さらに、前記負極活物質が、グラファイト又はソフトカーボン又はハードカーボン又はカーボンナノチューブ又はグラフェンであってもよい。 [14] Furthermore, the negative electrode active material may be graphite, soft carbon, hard carbon, carbon nanotube, or graphene.
[15] 第1の本発明において、前記負極層は、負極活物質と、固体電解質材料とを混合し、圧粉成形して構成されていてもよい。 [15] In the first aspect of the present invention, the negative electrode layer may be configured by mixing a negative electrode active material and a solid electrolyte material and compacting the mixture.
[16] この場合、前記負極活物質はグラファイトであり、前記固体電解質材料は、Li7La3Zr212(LLZ)を含むガーネット系の結晶構造を有してもよい。 [16] In this case, the negative electrode active material may be graphite, and the solid electrolyte material may have a garnet-based crystal structure including Li 7 La 3 Zr 2 O 12 (LLZ).
[17] 第2の本発明に係る全固体電池は、複数の単セルが積層されて構成された全固体電池であって、前記単セルは、固体電解質層と、正極側集電体と、正極側集電体に接続された正極層と、負極側集電体と、負極側集電体に接続された負極層とを有し、前記正極層と前記負極層とが互い違いに積層され、前記正極層と前記負極層との間、前記正極層と前記負極側集電体との間及び前記負極層と前記正極側集電体との間に前記固体電解質層が介在されていることを特徴とする。 [17] An all solid state battery according to a second aspect of the present invention is an all solid state battery configured by laminating a plurality of single cells, the single cell comprising a solid electrolyte layer, a positive electrode side current collector, A positive electrode layer connected to the positive electrode side current collector, a negative electrode side current collector, and a negative electrode layer connected to the negative electrode side current collector, wherein the positive electrode layer and the negative electrode layer are alternately stacked; The solid electrolyte layer is interposed between the positive electrode layer and the negative electrode layer, between the positive electrode layer and the negative electrode side current collector, and between the negative electrode layer and the positive electrode side current collector. Features.
 これにより、複数の単セルを組み合わせてエネルギーを大きくする場合に、直列接続、並列接続、並びにこれらの組み合わせを容易に実現することができ、設計の自由度の向上を図ることができると共に、様々な仕様に対応することができる。換言すれば、単セルの組み合わせ方次第で、直列数、並列数が任意に選択可能となり、設計の自由度を向上させることができる。 As a result, when a plurality of single cells are combined to increase energy, series connection, parallel connection, and combinations thereof can be easily realized, and design flexibility can be improved. It can cope with various specifications. In other words, depending on how the single cells are combined, the number of series and the number of parallel can be arbitrarily selected, and the degree of freedom in design can be improved.
[18] 第2の本発明において、積層方向に並ぶ複数の前記単セルのうち、少なくとも1つの隣接する前記単セル間に絶縁層が介在されていてもよい。 [18] In the second aspect of the present invention, an insulating layer may be interposed between at least one adjacent single cell among the plurality of single cells arranged in the stacking direction.
[19] 第2の本発明において、横方向に並ぶ複数の前記単セルのうち、少なくとも1つの隣接する前記単セル間に絶縁層が介在されていてもよい。 [19] In the second aspect of the present invention, an insulating layer may be interposed between at least one adjacent unit cell among the plurality of unit cells arranged in the lateral direction.
[20] 第2の本発明において、各前記単セルの両端面に、前記負極側集電体あるいは前記正極側集電体に接続された集電板を有してもよい。 [20] In the second aspect of the present invention, a current collector plate connected to the negative electrode side current collector or the positive electrode side current collector may be provided on both end faces of each single cell.
[21] 第2の本発明において、横方向に並ぶ前記単セル間に集電体が介在されていてもよい。 [21] In the second aspect of the present invention, a current collector may be interposed between the single cells arranged in the lateral direction.
 以上説明したように、本発明に係る全固体電池によれば、複数の単セルを積層してエネルギーを大きくする場合に、直列接続、並列接続、並びにこれらの組み合わせを容易に実現することができ、設計の自由度の向上を図ることができると共に、様々な仕様に対応することができる。 As described above, according to the all solid state battery of the present invention, when stacking a plurality of single cells to increase energy, series connection, parallel connection, and a combination thereof can be easily realized. Thus, the degree of freedom in design can be improved and various specifications can be accommodated.
図1Aは本実施の形態に係る全固体電池の単セルの構造を示す断面図であり、図1Bは単セルの構造を示す分解斜視図である。FIG. 1A is a cross-sectional view showing the structure of a single cell of an all solid state battery according to the present embodiment, and FIG. 1B is an exploded perspective view showing the structure of a single cell. 図2Aは通常の全固体電池の単セルの構造を示す断面図であり、図2Bは単セルの構造を示す分解斜視図である。FIG. 2A is a cross-sectional view showing the structure of a single cell of a general all solid state battery, and FIG. 2B is an exploded perspective view showing the structure of a single cell. 図3Aは第1の具体例に係る全固体電池(第1全固体電池)の構造を示す断面図であり、図3Bは第1全固体電池を示す等価回路図である。FIG. 3A is a cross-sectional view showing the structure of an all solid state battery (first all solid state battery) according to a first specific example, and FIG. 3B is an equivalent circuit diagram showing the first all solid state battery. 図4Aは第2の具体例に係る全固体電池(第2全固体電池)の構造を示す断面図であり、図4Bは第2全固体電池を示す等価回路図である。FIG. 4A is a cross-sectional view showing the structure of an all solid state battery (second all solid state battery) according to a second specific example, and FIG. 4B is an equivalent circuit diagram showing the second all solid state battery. 図5Aは第3の具体例に係る全固体電池(第3全固体電池)の構造を示す断面図であり、図5Bは第3全固体電池を示す等価回路図である。FIG. 5A is a cross-sectional view showing the structure of an all solid state battery (third all solid state battery) according to a third specific example, and FIG. 5B is an equivalent circuit diagram showing the third all solid state battery. 図6Aは第4の具体例に係る全固体電池(第4全固体電池)の構造を示す断面図であり、図6Bは第4全固体電池を示す等価回路図である。FIG. 6A is a cross-sectional view showing the structure of an all solid state battery (fourth all solid state battery) according to a fourth specific example, and FIG. 6B is an equivalent circuit diagram showing the fourth all solid state battery. 図7Aは第5の具体例に係る全固体電池(第5全固体電池)の構造を示す断面図であり、図7Bは第5全固体電池を示す等価回路図である。FIG. 7A is a sectional view showing the structure of an all solid state battery (fifth all solid state battery) according to a fifth specific example, and FIG. 7B is an equivalent circuit diagram showing the fifth all solid state battery. 図8Aは第6の具体例に係る全固体電池(第6全固体電池)の構造を示す断面図であり、図8Bは第6全固体電池を示す等価回路図である。FIG. 8A is a sectional view showing the structure of an all solid state battery (sixth all solid state battery) according to a sixth specific example, and FIG. 8B is an equivalent circuit diagram showing the sixth all solid state battery. 図9Aは第7の具体例に係る全固体電池(第7全固体電池)の構造を示す断面図であり、図9Bは第7全固体電池を示す等価回路図である。FIG. 9A is a sectional view showing the structure of an all solid state battery (seventh all solid state battery) according to a seventh example, and FIG. 9B is an equivalent circuit diagram showing the seventh all solid state battery.
 以下、本発明に係る全固体電池の実施の形態例を図1A~図9Bを参照しながら説明する。 Hereinafter, embodiments of the all-solid-state battery according to the present invention will be described with reference to FIGS. 1A to 9B.
 本実施の形態に係る全固体電池10の単セル12の構造は、図1A及び図1Bに示すように、固体電解質層14と、正極側集電体16と、正極側集電体16に接続された正極層18と、負極側集電体20と、負極側集電体20に接続された負極層22とを有する。正極側集電体16と負極側集電体20とは互いに対向している。 As shown in FIGS. 1A and 1B, the structure of the single cell 12 of the all solid state battery 10 according to the present embodiment is connected to the solid electrolyte layer 14, the positive electrode side current collector 16, and the positive electrode side current collector 16. The positive electrode layer 18, the negative electrode side current collector 20, and the negative electrode layer 22 connected to the negative electrode side current collector 20 are included. The positive electrode side current collector 16 and the negative electrode side current collector 20 face each other.
 また、単セル12は、正極層18と負極層22とが互い違いに積層され、正極層18と負極層22との間、正極層18と負極側集電体20との間及び負極層22と正極側集電体16との間にそれぞれ固体電解質層14が介在されている。 Further, the single cell 12 includes positive electrode layers 18 and negative electrode layers 22 that are alternately stacked, between the positive electrode layer 18 and the negative electrode layer 22, between the positive electrode layer 18 and the negative electrode side current collector 20, and the negative electrode layer 22. Solid electrolyte layers 14 are interposed between the positive electrode side current collectors 16.
 具体的には、負極層22は、第1負極層22aと第2負極層22bとを有し、第1負極層22aと正極層18と第2負極層22bとが互い違いに積層されている。 Specifically, the negative electrode layer 22 includes a first negative electrode layer 22a and a second negative electrode layer 22b, and the first negative electrode layer 22a, the positive electrode layer 18, and the second negative electrode layer 22b are alternately stacked.
 固体電解質層14は、正極側集電体16と第1負極層22aとの間に介在された第1固体電解質層14aと、正極側集電体16と負極側集電体20との間であって、且つ、第1負極層22aと正極層18との間に介在された第2固体電解質層14bと、正極層18と負極側集電体20との間に介在された第3固体電解質層14cと、正極側集電体16と負極側集電体20との間であって、且つ、第2負極層22bと正極層18との間に介在された第4固体電解質層14dと、正極側集電体16と第2負極層22bとの間に介在された第5固体電解質層14eとを有する。なお、正極層18、負極層22及び固体電解質層14の各構成材料並びに製造方法は、後述する。 The solid electrolyte layer 14 is formed between the first solid electrolyte layer 14a interposed between the positive electrode side current collector 16 and the first negative electrode layer 22a, and between the positive electrode side current collector 16 and the negative electrode side current collector 20. A third solid electrolyte interposed between the second solid electrolyte layer 14 b interposed between the first negative electrode layer 22 a and the positive electrode layer 18, and the positive electrode layer 18 and the negative electrode side current collector 20. A fourth solid electrolyte layer 14d interposed between the second negative electrode layer 22b and the positive electrode layer 18 between the layer 14c and the positive electrode side current collector 16 and the negative electrode side current collector 20, It has the 5th solid electrolyte layer 14e interposed between the positive electrode side collector 16 and the 2nd negative electrode layer 22b. In addition, each component material and manufacturing method of the positive electrode layer 18, the negative electrode layer 22, and the solid electrolyte layer 14 are mentioned later.
 通常の全固体電池100の単セル102の構造は、例えば図2A及び図2Bに示すように、負極側集電体104、負極層106、固体電解質層108、正極層110及び正極側集電体112を順番に積層した積層体114が挙げられる。この場合、単セル102のエネルギーは小さいため、必然的に、複数の積層体114を積層してエネルギーを大きくすることが考えられる。しかし、この積層体114の構造では、直列にしてエネルギーを大きくすることは容易であるが、並列にしてエネルギーを向上させることは困難である。 For example, as shown in FIGS. 2A and 2B, the structure of a single cell 102 of a normal all-solid-state battery 100 includes a negative electrode side current collector 104, a negative electrode layer 106, a solid electrolyte layer 108, a positive electrode layer 110, and a positive electrode side current collector. A laminate 114 in which 112 are laminated in order is mentioned. In this case, since the energy of the single cell 102 is small, it is inevitably possible to increase the energy by stacking a plurality of stacked bodies 114. However, in the structure of the stacked body 114, it is easy to increase the energy in series, but it is difficult to improve the energy in parallel.
 これに対して、上述した本実施の形態に係る全固体電池10の単セル12の構造であれば、後述するように、複数の単セル12を組み合わせることで、複数の単セル12の並列接続、直列接続及びこれらの組み合わせを自由に、且つ、容易に構成することができ、しかも、単セル12の組み合わせ方次第で、直列数、並列数が任意に選択可能となり、設計の自由度を向上させることができる。 On the other hand, if it is the structure of the single cell 12 of the all-solid-state battery 10 which concerns on this Embodiment mentioned above, the parallel connection of the several single cell 12 is carried out by combining the several single cell 12 so that it may mention later. In addition, series connection and combinations thereof can be freely and easily configured, and the number of series and parallel can be arbitrarily selected depending on the combination of single cells 12 and the degree of design freedom is improved. Can be made.
 ここで、複数の単セル12の組み合わせによる構造体(全固体電池)の具体例を図3A~図9Bを参照しながら説明する。 Here, a specific example of a structure (all solid state battery) composed of a combination of a plurality of single cells 12 will be described with reference to FIGS. 3A to 9B.
 第1の具体例に係る全固体電池(以下、第1全固体電池10Aと記す)は、図3Aに示すように、3つの単セル12が積層されて構成されている。積層方向に隣接する単セル12間にはそれぞれ絶縁層24が介在されている。なお、正極側集電体16及び負極側集電体20はそれぞれ1つの集電体にて構成され、3つの単セル12に対してそれぞれ共通とされている。この第1全固体電池10Aによれば、図3Bに示すように、3つの単セル12を並列に接続した構成を実現させることができる。 The all solid state battery according to the first specific example (hereinafter referred to as the first all solid state battery 10A) is configured by stacking three single cells 12 as shown in FIG. 3A. An insulating layer 24 is interposed between the single cells 12 adjacent to each other in the stacking direction. Each of the positive electrode side current collector 16 and the negative electrode side current collector 20 is constituted by one current collector, and is common to the three single cells 12. According to the first all-solid-state battery 10A, as shown in FIG. 3B, a configuration in which three single cells 12 are connected in parallel can be realized.
 第2の具体例に係る全固体電池(以下、第2全固体電池10Bと記す)は、図4Aに示すように、2つの第1全固体電池10Aを横方向に並べ、2つの第1全固体電池10A間に中継集電体26が介在されて構成されている。中継集電体26は、6つの単セル12に対してそれぞれ共通とされている。この第2全固体電池10Bによれば、図4Bに示すように、3つの単セル12を並列に接続した並列回路28を2つ直列に接続した構成を実現させることができる。 As shown in FIG. 4A, the all-solid battery according to the second specific example (hereinafter referred to as the second all-solid battery 10B) has two first all-solid batteries 10A arranged in the horizontal direction. A relay current collector 26 is interposed between the solid state batteries 10A. The relay current collector 26 is common to the six single cells 12. According to the second all-solid-state battery 10B, as shown in FIG. 4B, it is possible to realize a configuration in which two parallel circuits 28 in which three single cells 12 are connected in parallel are connected in series.
 第3の具体例に係る全固体電池(以下、第3全固体電池10Cと記す)は、図5Aに示すように、第1全固体電池10Aとほぼ同様の構成を有するが、絶縁層24が存在せず、代わりに、各単セル12の両端面(上面及び下面)にそれぞれ負極側集電体20あるいは正極側集電体16に接続された集電板30を有する点で異なる。図5Aの例では、各集電板30を負極側集電体20に接続した例を示している。この第3全固体電池10Cによれば、図5Bに示すように、3つの単セル12を並列に接続した構成を実現させることができる。 As shown in FIG. 5A, the all-solid battery according to the third specific example (hereinafter referred to as the third all-solid battery 10C) has substantially the same configuration as the first all-solid battery 10A, but the insulating layer 24 is Instead, it differs in that each single cell 12 has current collector plates 30 connected to the negative electrode side current collector 20 or the positive electrode side current collector 16 on both end surfaces (upper surface and lower surface) of each unit cell 12. In the example of FIG. 5A, the example which connected each current collecting plate 30 to the negative electrode side collector 20 is shown. According to the third all solid state battery 10C, as shown in FIG. 5B, a configuration in which three single cells 12 are connected in parallel can be realized.
 第4の具体例に係る全固体電池(以下、第4全固体電池10Dと記す)は、図6Aに示すように、2つの第3全固体電池10Cを横方向に並べ、2つの第3全固体電池10C間に中継集電体26が介在されて構成されている。中継集電体26は、6つの単セル12に対してそれぞれ共通とされている。この第4全固体電池10Dによれば、図6Bに示すように、3つの単セル12を並列に接続した並列回路28を2つ直列に接続した構成を実現させることができる。 As shown in FIG. 6A, an all-solid battery according to a fourth specific example (hereinafter referred to as a fourth all-solid battery 10D) has two third all-solid batteries 10C arranged in the horizontal direction. A relay current collector 26 is interposed between the solid batteries 10C. The relay current collector 26 is common to the six single cells 12. According to the fourth all solid state battery 10D, as shown in FIG. 6B, it is possible to realize a configuration in which two parallel circuits 28 in which three single cells 12 are connected in parallel are connected in series.
 第5の具体例に係る全固体電池(以下、第5全固体電池10Eと記す)は、図7Aに示すように、2つの単セル12を横方向に並べ、単セル12間に絶縁層24を介在させ、さらに、一方の単セル12の正極層18と他方の単セル12の負極層22とを中継集電体26で接続して構成されている。この第5全固体電池10Eによれば、図7Bに示すように、2つの単セル12を直列に接続した構成を実現させることができる。 As shown in FIG. 7A, an all-solid battery according to a fifth specific example (hereinafter referred to as a fifth all-solid battery 10E) has two unit cells 12 arranged in the horizontal direction and an insulating layer 24 between the unit cells 12. Further, the positive electrode layer 18 of one unit cell 12 and the negative electrode layer 22 of the other unit cell 12 are connected by a relay current collector 26. According to the fifth all solid state battery 10E, as shown in FIG. 7B, a configuration in which two single cells 12 are connected in series can be realized.
 第6の具体例に係る全固体電池(以下、第6全固体電池10Fと記す)は、図8Aに示すように、3つの単セル12(上から第1単セル12A、第2単セル12B及び第3単セル12C)が積層されて構成されている。第1単セル12A及び第3単セル12Cは、図8A上、右側に負極側集電体20が位置し、第2単セル12Bは、図8A上、左側に負極側集電体20が位置している。また、第1単セル12A~第3単セル12Cの両端面(上面及び下面)にはそれぞれ負極側集電体20に接続された集電板30が設けられている。さらに、第1単セル12Aと第2単セル12B間に第1絶縁層24aが介在されて、第1単セル12Aの正極側集電体16と第2単セル12Bの負極側集電体20とが電気的に絶縁され、第2単セル12Bと第3単セル12C間に第2絶縁層24bが介在されて、第2単セル12Bの正極側集電体16と第3単セル12Cの負極側集電体20とが電気的に絶縁されている。また、第1単セル12Aの負極側集電体20と第2単セル12Bの正極側集電体16とが共通とされて第1共通電極32Aとされ、第2単セル12Bの負極側集電体20と第3単セル12Cの正極側集電体16とが共通とされて第2共通電極32Bとされている。この第6全固体電池10Fによれば、図8Bに示すように、第1単セル12A、第2単セル12B及び第3単セル12Cを直列に接続した構成を実現させることができる。 As shown in FIG. 8A, an all-solid battery according to the sixth specific example (hereinafter referred to as a sixth all-solid battery 10F) includes three unit cells 12 (first unit cell 12A and second unit cell 12B from the top). And the third single cell 12C) is laminated. In the first single cell 12A and the third single cell 12C, the negative electrode side current collector 20 is located on the right side in FIG. 8A, and in the second single cell 12B, the negative electrode side current collector 20 is located on the left side in FIG. 8A. is doing. Further, current collecting plates 30 connected to the negative electrode current collector 20 are provided on both end surfaces (upper surface and lower surface) of the first single cell 12A to the third single cell 12C. Further, the first insulating layer 24a is interposed between the first single cell 12A and the second single cell 12B, and the positive current collector 16 of the first single cell 12A and the negative current collector 20 of the second single cell 12B. Are electrically insulated, and the second insulating layer 24b is interposed between the second unit cell 12B and the third unit cell 12C, so that the positive electrode side current collector 16 of the second unit cell 12B and the third unit cell 12C The negative electrode side current collector 20 is electrically insulated. Further, the negative electrode side current collector 20 of the first single cell 12A and the positive electrode side current collector 16 of the second single cell 12B are made common to form the first common electrode 32A, and the negative electrode side current collector of the second single cell 12B. The electric current body 20 and the positive electrode side current collector 16 of the third single cell 12C are made common to form a second common electrode 32B. According to the sixth all solid state battery 10F, as shown in FIG. 8B, a configuration in which the first single cell 12A, the second single cell 12B, and the third single cell 12C are connected in series can be realized.
 第7の具体例に係る全固体電池(以下、第7全固体電池10Gと記す)は、図9Aに示すように、4つの単セル12(上から第1単セル12A、第2単セル12B、第3単セル12C及び第4単セル12D)が積層されて構成されている。第1単セル12A及び第2単セル12Bは、図9A上、右側に負極側集電体20が位置し、第3単セル12C及び第4単セル12Dは、図9A上、左側に負極側集電体20が位置している。また、第1単セル12A~第4単セル12Dの両端面(上面及び下面)にはそれぞれ負極側集電体20に接続された集電板30が設けられている。さらに、第2単セル12Bと第3単セル12C間に絶縁層24が介在されて、第1単セル12A及び第2単セル12Bの共通の正極側集電体16と、第3単セル12C及び第4単セル12Dの共通の負極側集電体20とが電気的に絶縁されている。また、第1単セル12A及び第2単セル12Bの各負極側集電体20と第3単セル12C及び第4単セル12Dの各正極側集電体16とがそれぞれ共通とされて共通電極32とされている。この第7全固体電池10Gによれば、図9Bに示すように、第1単セル12Aと第2単セル12Bを並列に接続した第1並列回路28Aと第3単セル12Cと第4単セル12Dを並列に接続した第2並列回路28Bとを直列に接続した構成を実現させることができる。 As shown in FIG. 9A, an all-solid battery according to the seventh specific example (hereinafter referred to as a seventh all-solid battery 10G) includes four single cells 12 (first single cell 12A and second single cell 12B from the top). The third unit cell 12C and the fourth unit cell 12D) are stacked. The first single cell 12A and the second single cell 12B have the negative electrode current collector 20 positioned on the right side in FIG. 9A, and the third single cell 12C and the fourth single cell 12D have the negative electrode side on the left side in FIG. 9A. The current collector 20 is located. In addition, current collector plates 30 connected to the negative electrode current collector 20 are provided on both end surfaces (upper surface and lower surface) of the first unit cell 12A to the fourth unit cell 12D. Further, an insulating layer 24 is interposed between the second unit cell 12B and the third unit cell 12C, and the positive electrode side current collector 16 common to the first unit cell 12A and the second unit cell 12B, and the third unit cell 12C. And the common negative electrode side collector 20 of 4th single cell 12D is electrically insulated. Further, the negative electrode side current collectors 20 of the first single cell 12A and the second single cell 12B and the positive electrode side current collectors 16 of the third single cell 12C and the fourth single cell 12D are made common, respectively. 32. According to the seventh all solid state battery 10G, as shown in FIG. 9B, the first parallel circuit 28A, the third single cell 12C, and the fourth single cell in which the first single cell 12A and the second single cell 12B are connected in parallel. The structure which connected in series with the 2nd parallel circuit 28B which connected 12D in parallel is realizable.
 上述した例は、あくまでも一例であり、その他、様々な単セル12の組み合わせが考えられ、複数の単セル12の様々な並列・直列接続を構成することができることはもちろんである。 The above-described example is merely an example, and various other combinations of the single cells 12 are conceivable, and it is a matter of course that various parallel / series connections of the plurality of single cells 12 can be configured.
 このように、本実施の形態に係る全固体電池10においては、複数の単セル12を組み合わせてエネルギーを大きくする場合に、直列接続、並列接続、並びにこれらの組み合わせを容易に実現することができ、設計の自由度の向上を図ることができると共に、様々な仕様に対応することができる。換言すれば、単セル12の組み合わせ方次第で、直列数、並列数が任意に選択可能となり、設計の自由度を向上させることができる。 As described above, in the all solid state battery 10 according to the present embodiment, when a plurality of single cells 12 are combined to increase energy, series connection, parallel connection, and combinations thereof can be easily realized. Thus, the degree of freedom in design can be improved and various specifications can be accommodated. In other words, depending on how the single cells 12 are combined, the number of series and the number of parallel can be arbitrarily selected, and the degree of freedom in design can be improved.
 ここで、正極層18、負極層22及び固体電解質層14の各構成材料について説明する。 Here, each constituent material of the positive electrode layer 18, the negative electrode layer 22, and the solid electrolyte layer 14 will be described.
 先ず、正極層18は、リチウム遷移金属酸化物の複数の粒子(正極活物質)からなり、且つ、各粒子のリチウムイオン伝導方向が一定の方向に配向されている。一定の方向は、正極層18と固体電解質層14の界面と垂直な方向であり、本実施の形態では、正極層18は、各粒子の特定の結晶面が正極層18から負極層22に向かう方向に配向された層にて構成されている。すなわち、正極層18は、特定の結晶面がリチウムイオンの伝導方向に配向した粒子(正極活物質)のみを焼結して構成されている。正極活物質は、層状岩塩構造又はスピネル構造を有する。 First, the positive electrode layer 18 is composed of a plurality of lithium transition metal oxide particles (positive electrode active material), and the lithium ion conduction direction of each particle is oriented in a fixed direction. The certain direction is a direction perpendicular to the interface between the positive electrode layer 18 and the solid electrolyte layer 14. In this embodiment, the positive electrode layer 18 has a specific crystal plane of each particle from the positive electrode layer 18 toward the negative electrode layer 22. It is composed of layers oriented in the direction. That is, the positive electrode layer 18 is configured by sintering only particles (positive electrode active material) in which a specific crystal plane is oriented in the lithium ion conduction direction. The positive electrode active material has a layered rock salt structure or a spinel structure.
 具体的に、層状岩塩構造の正極活物質を用いる場合は、下記の一般式で表される組成の粒子であって、厚さが2~100μm程度の板状に形成された粒子が好ましい。
  一般式:Lip(NixCoyAlz)O2
  (上記一般式中、0.9≦p≦1.3、0.6<x<0.9、0.1<y≦0.3、0≦z≦0.2、x+y+z=1)
Specifically, when a positive electrode active material having a layered rock salt structure is used, particles having a composition represented by the following general formula and having a thickness of about 2 to 100 μm are preferable.
General formula: Li p (Ni x Co y Al z ) O 2
(In the above general formula, 0.9 ≦ p ≦ 1.3, 0.6 <x <0.9, 0.1 <y ≦ 0.3, 0 ≦ z ≦ 0.2, x + y + z = 1)
 特に、上述の特定の結晶面が(003)面であり、該(003)面が正極層18から負極層22に向かう方向に配向されていることが好ましい。これにより、リチウムイオンの正極層18に対する脱挿入の際の抵抗にならず、高入力時(充電時)に、多くのリチウムイオンを放出することができ、高出力時(放電時)に、多くのリチウムイオンを受け入れることができる。(003)面以外の例えば(101)面や(104)面は、正極層18の表面に沿うように配向させてもよい。上述の粒子の詳細については、特許第4745463号公報を参照されたい。 In particular, it is preferable that the specific crystal plane described above is a (003) plane, and the (003) plane is oriented in a direction from the positive electrode layer 18 toward the negative electrode layer 22. Thereby, it does not become resistance at the time of insertion / removal of the lithium ion to the positive electrode layer 18 but can release a lot of lithium ions at the time of high input (charge) and much at the time of high output (discharge). Can accept lithium ions. For example, the (101) plane or the (104) plane other than the (003) plane may be oriented along the surface of the positive electrode layer 18. For details of the above-mentioned particles, refer to Japanese Patent No. 4745463.
 負極層22は、負極活物質のみで構成されている。負極活物質は、酸化物系材料を挙げることができ、例えばLi4Ti512(単に、LTOと記す)又はTiO2を挙げることができる。この場合、負極層22を、負極活物質のみを焼結して構成することができる。 The negative electrode layer 22 is composed of only the negative electrode active material. Examples of the negative electrode active material include oxide-based materials, such as Li 4 Ti 5 O 12 (simply referred to as LTO) or TiO 2 . In this case, the negative electrode layer 22 can be formed by sintering only the negative electrode active material.
 通常、LTOは、リチウムイオンの挿入脱離に伴う体積変化が0.2%と低いため、固体と固体との界面の安定的な密着維持が必須の全固体電池において最適な材料といえる。その一方で、LTOは絶縁性の材料であるため、電極材料として使用する際には導電助剤を混合しなければ、実用的な電池性能が得られない。 In general, LTO has a low volume change of 0.2% due to insertion / desorption of lithium ions, so it can be said that LTO is an optimal material for all-solid-state batteries in which it is essential to maintain stable adhesion at the solid-solid interface. On the other hand, since LTO is an insulating material, practical battery performance cannot be obtained unless a conductive additive is mixed when used as an electrode material.
 また、LTOはリチウムイオンに対する電位が1.5Vと高いため、電極材料として使用すると、エネルギー密度が低い電池となってしまう。そこに、活物質(電池内で電気化学反応に関与する物質)以外の材料(導電助剤)を添加することで、さらにエネルギー密度が低下するという問題がある。 In addition, since LTO has a high potential with respect to lithium ions of 1.5 V, when used as an electrode material, the battery has a low energy density. There is a problem that the energy density is further reduced by adding a material (conducting aid) other than the active material (substance involved in the electrochemical reaction in the battery).
 これに対して、上述したように、本実施の形態では、LTOの焼結板を負極層22として用いることで、電極材料を負極活物質のみとし、負極活物質の充填率を高め、焼結による粒子間のネック(ネットワーク)の生成で、導電助剤を混合しなくても電子伝導性を確保することができ、エネルギー密度の低減を抑えることができる。 On the other hand, as described above, in the present embodiment, by using a sintered plate of LTO as the negative electrode layer 22, the electrode material is only the negative electrode active material, the filling rate of the negative electrode active material is increased, and sintering is performed. The generation of a neck (network) between particles can ensure electron conductivity without mixing a conductive additive, and can suppress a reduction in energy density.
 その他、負極活物質として、グラファイト又はソフトカーボン又はハードカーボン又はカーボンナノチューブ又はグラフェンを挙げることができる。 Other examples of the negative electrode active material include graphite, soft carbon, hard carbon, carbon nanotube, and graphene.
 固体電解質層14を構成するリチウムイオン伝導材料としては、ガーネット系、窒化物系、ペロブスカイト系、リン酸系、硫化物系又は高分子系の材料を好ましく用いることができる。本実施の形態では、Li(リチウム)とLa(ランタン)とZr(ジルコニウム)とO(酸素)を含むガーネット系又はガーネット系類似の結晶構造を有する。具体的には、リチウムイオン伝導材料として、例えばLi7La3Zr212(LLZ)を含むガーネット系の結晶構造を用いることができる。 As the lithium ion conductive material constituting the solid electrolyte layer 14, a garnet-based, nitride-based, perovskite-based, phosphoric acid-based, sulfide-based or polymer-based material can be preferably used. In this embodiment, it has a garnet-based or garnet-like crystal structure containing Li (lithium), La (lanthanum), Zr (zirconium), and O (oxygen). Specifically, a garnet-type crystal structure containing, for example, Li 7 La 3 Zr 2 O 12 (LLZ) can be used as the lithium ion conductive material.
 ここで、上述した正極層18、負極層22及び固体電解質層14の製造方法の一例について説明する。 Here, an example of the manufacturing method of the positive electrode layer 18, the negative electrode layer 22, and the solid electrolyte layer 14 mentioned above is demonstrated.
[正極層18]
 先ず、NiO粉末とCo34粉末とAl23粉末とを含有する20μm以下の厚さのグリーンシートを形成し、このグリーンシートを1000℃~1400℃の範囲内の温度で、大気雰囲気で所定時間焼成することで、(h00)配向した多数の板状の(Ni,Co,Al)O粒子からなる、独立した膜状のシート(自立膜)が形成される。ここで、助剤としてMnO2、ZnO等を添加することにより、粒成長が促進され、結果として板状結晶粒子の(h00)配向性を高めることができる。
[Positive electrode layer 18]
First, a green sheet having a thickness of 20 μm or less containing NiO powder, Co 3 O 4 powder, and Al 2 O 3 powder is formed, and this green sheet is formed at a temperature within the range of 1000 ° C. to 1400 ° C. in the atmosphere By firing for a predetermined time, an independent film-like sheet (self-supporting film) composed of a number of (h00) -oriented plate-like (Ni, Co, Al) O particles is formed. Here, by adding MnO 2 , ZnO or the like as an auxiliary agent, grain growth is promoted, and as a result, the (h00) orientation of the plate-like crystal grains can be enhanced.
 ここで、「独立した」シートとは、焼成後に他の支持体から独立して単体で取り扱い可能なシートのことをいう。すなわち、「独立した」シートには、焼成により他の支持体(基板等)に固着されて当該支持体と一体化された(分離不能あるいは分離困難となった)ものは含まれない。 Here, an “independent” sheet refers to a sheet that can be handled independently from another support after firing. That is, the “independent” sheet does not include a sheet that is fixed to another support (substrate or the like) by firing and integrated with the support (unseparable or difficult to separate).
 このように自立膜状に形成されたグリーンシートにおいては、板面方向、すなわち、面内方向(厚さ方向と直交する方向)に比べて、厚さ方向に存在する材料の量がきわめて少ない。 In the green sheet thus formed in a self-supporting film shape, the amount of material existing in the thickness direction is extremely small compared to the plate surface direction, that is, the in-plane direction (direction perpendicular to the thickness direction).
 このため、厚さ方向に複数個の粒子がある初期段階には、ランダムな方向に粒成長する。一方、粒成長が進み厚さ方向の材料が消費されると、粒成長方向は面内の二次元方向に制限される。これにより、面方向への粒成長が確実に促進される。 Therefore, in the initial stage where there are a plurality of grains in the thickness direction, grains grow in random directions. On the other hand, when the grain growth proceeds and the material in the thickness direction is consumed, the grain growth direction is limited to the in-plane two-dimensional direction. This reliably promotes grain growth in the surface direction.
 特に、グリーンシートを可能な限り薄く形成したり(例えば数μm以下)、厚さが100μm程度(例えば20μm程度)の比較的厚めであっても粒成長を可能な限り大きく促進したりすることで、面方向への粒成長がより確実に促進される。すなわち、表面エネルギーの低い面が板面方向、すなわち、面内方向(厚さ方向と直交する方向)と平行な粒子の面方向への粒成長が優先的に促進される。 In particular, by forming the green sheet as thin as possible (for example, several μm or less), or by promoting the grain growth as much as possible even if the thickness is about 100 μm (for example, about 20 μm). The grain growth in the surface direction is more reliably promoted. That is, the grain growth in the plane direction of the grains parallel to the plate surface direction, that is, the in-plane direction (direction orthogonal to the thickness direction) is promoted preferentially.
 従って、上述のように膜状に形成されたグリーンシートを焼成することで、特定の結晶面が粒子の板面と平行となるように配向した薄板状の多数の粒子が、粒界部にて面方向に結合した自立膜が得られる。すなわち、実質的に厚さ方向についての結晶粒子の個数が1個となるような自立膜が形成される。ここで、「実質的に厚さ方向についての結晶粒子の個数が1個」の意義は、面方向に隣り合う結晶粒子の一部分(例えば端部)が厚さ方向に互いに重なり合うことを排除しない。この自立膜は、上述のような薄板状の多数の粒子が隙間なく結合した、緻密なセラミックスシートとなり得る。 Therefore, by firing the green sheet formed in a film shape as described above, a large number of thin plate-like particles oriented so that a specific crystal plane is parallel to the plate surface of the particles are formed at the grain boundary portion. A free-standing film bonded in the plane direction can be obtained. That is, a self-supporting film is formed so that the number of crystal grains in the thickness direction is substantially one. Here, the meaning of “substantially one crystal grain in the thickness direction” does not exclude that a part (for example, end portions) of crystal grains adjacent in the plane direction overlap each other in the thickness direction. This self-supporting film can be a dense ceramic sheet in which a large number of thin plate-like particles as described above are bonded without gaps.
 上述の工程によって得られた、(h00)配向した(Ni,Co,Al)Oセラミックスシートと、硝酸リチウム(LiNO3)とを混合して、所定時間加熱することで、(Ni,Co,Al)O粒子にリチウムが導入される。これにより、(003)面が正極層18から負極層22の方向に配向し、(104)面が板面に沿って配向した膜状の正極層18用のLi(Ni0.75Co0.2Al0.05)O2シートが得られる。 The (h00) -oriented (Ni, Co, Al) O ceramic sheet obtained by the above-mentioned process and lithium nitrate (LiNO 3 ) are mixed and heated for a predetermined time, thereby (Ni, Co, Al). ) Lithium is introduced into the O particles. Thereby, the Li (Ni 0.75 Co 0.2 Al 0.05 ) for the film-like positive electrode layer 18 in which the (003) plane is oriented in the direction from the positive electrode layer 18 to the negative electrode layer 22 and the (104) plane is oriented along the plate surface. An O 2 sheet is obtained.
[負極層22]
 負極活物質として酸化物系材料を例にとると、リチウムチタン複合酸化物(Li4Ti512)を、粒径が1μm以下となるように、粉砕・分級する。次に、この粉砕粉末に成形助剤、可塑剤、分散剤、溶剤を加えて混合してスラリーを調製する。このスラリーをポリエチレンテレフタレート(PET)フィルム上にドクターブレード法にて塗布した後、乾燥させて厚さ62μmの成形体シート(PETフィルムを除く)を作製する。この成形体シートを矩形状に打ち抜き、大気中にて780℃で熱処理を行うことで負極層22を作製することができる。
[Negative electrode layer 22]
Taking an oxide-based material as an example of the negative electrode active material, a lithium titanium composite oxide (Li 4 Ti 5 O 12 ) is pulverized and classified so that the particle size is 1 μm or less. Next, a molding aid, a plasticizer, a dispersant, and a solvent are added to the pulverized powder and mixed to prepare a slurry. This slurry is applied onto a polyethylene terephthalate (PET) film by a doctor blade method and then dried to produce a molded sheet (excluding the PET film) having a thickness of 62 μm. The negative electrode layer 22 can be produced by punching this molded sheet into a rectangular shape and performing a heat treatment at 780 ° C. in the atmosphere.
[固体電解質層14のリチウムイオン伝導材料]
 先ず、第1焼成工程にて、Li成分、La成分及びZr成分を含む原料を焼成して、LiとLaとZrと酸素を含むセラミックス合成用の一次焼成粉末を得る。Li成分としてはLi2CO3又はLiOHを用い、La成分としてはLa(OH)3又はLa23を用い、Zr成分としてはZrO2を用いることができる。第1焼成工程は、少なくともLi成分やLa成分等の熱分解を行い第2焼成工程でLLZ結晶構造を形成しやくするための一次焼成粉末を得る工程である。一次焼成粉末は、LLZ結晶構造をすでに有している場合もある。焼成温度は、好ましくは、850℃以上1150℃以下の温度である。
[Lithium ion conductive material of solid electrolyte layer 14]
First, in the first firing step, a raw material containing a Li component, a La component and a Zr component is fired to obtain a primary fired powder for ceramic synthesis containing Li, La, Zr and oxygen. Li 2 CO 3 or LiOH can be used as the Li component, La (OH) 3 or La 2 O 3 can be used as the La component, and ZrO 2 can be used as the Zr component. The first firing step is a step of obtaining a primary fired powder for facilitating the thermal decomposition of at least the Li component and the La component to easily form the LLZ crystal structure in the second firing step. The primary fired powder may already have an LLZ crystal structure. The firing temperature is preferably 850 ° C. or higher and 1150 ° C. or lower.
 その後、第2焼成工程において、第1焼成工程で得られた一次焼成粉末を950℃以上1250℃以下の温度で焼成して、LiとLaとZrと酸素を含むガーネット型又はガーネット型類似の結晶構造を有するセラミックス粉末を合成する。これにより、LLZ結晶構造を有し、且つ、アルミニウムを含有してハンドリング可能な焼結性(密度)及び伝導性を備えるセラミックス粉末又は焼結体を容易に得ることができる。第2焼成工程は、一次焼成粉末を成形して所望の三次元形状(例えば、全固体二次電池の固体電解質として使用可能な形状及びサイズ)を付与した成形体とした上で実施することが好ましい。成形体とすることで固相反応が促進されるほか、焼結体を得ることができる。なお、第2焼成工程後に、第2焼成工程で得られたセラミックス粉末を成形体とし、この成形体を第2焼成工程における加熱温度と同様の温度で焼結工程を別途実施してもよい。これらの工程を経ることで、LLZ結晶構造を有する固体電解質層14を得ることができる。第1焼成工程及び第2焼成工程のいずれかあるいは双方の工程をアルミニウム(Al)含有化合物の存在下に実施することにより、ハンドリング可能な焼結性(密度)及び伝導性を備える固体電解質層14としてもよい。 Thereafter, in the second firing step, the primary fired powder obtained in the first firing step is fired at a temperature of 950 ° C. to 1250 ° C., and a garnet-type or garnet-like crystal containing Li, La, Zr, and oxygen A ceramic powder having a structure is synthesized. Thereby, it is possible to easily obtain a ceramic powder or sintered body having a LLZ crystal structure and having sinterability (density) and conductivity that contains aluminum and can be handled. The second firing step may be carried out after forming the primary fired powder into a molded body having a desired three-dimensional shape (for example, a shape and size that can be used as a solid electrolyte of an all-solid secondary battery). preferable. By using a molded body, a solid phase reaction is promoted and a sintered body can be obtained. In addition, after the second firing step, the ceramic powder obtained in the second firing step may be used as a compact, and the compact may be separately subjected to a sintering step at a temperature similar to the heating temperature in the second firing step. Through these steps, the solid electrolyte layer 14 having an LLZ crystal structure can be obtained. By performing one or both of the first firing step and the second firing step in the presence of the aluminum (Al) -containing compound, the solid electrolyte layer 14 having sinterability (density) and conductivity that can be handled. It is good.
 また、固体電解質層14の形成方法としては、各種パーティクルジェットコーティング法、固相法、溶液法、気相法、直接接合(ダイレクトボンディング)法を用いることができる。パーティクルジェットコーティング法の例としては、エアロゾルデポジション(AD)法、ガスデポジション(GD)法、パウダージェットデポジション(PJD)法、コールドスプレー(CS)法、溶射法等がある。中でも、エアロゾルデポジション(AD)法は、常温成膜が可能であることから、プロセス中の組成ズレや、正極板との反応による高抵抗層の形成がなく特に好ましい。固相法の例としては、テープ積層法、印刷法等がある。中でも、テープ積層法は固体電解質層14を薄く形成することが可能であり、また、厚さの制御が容易であることから好ましい。溶液法の例としては、水熱合成法、ゾルゲル法、沈殿法、マイクロエマルション法、溶媒蒸発法等がある。これらの方法の中でも、水熱合成法は、低温で結晶性の高い結晶粒を得やすい点で特に好ましい。また、これらの方法を用いて合成した微結晶を、正極上に堆積させてもよいし、正極上に直接析出させてもよい。気相法の例としては、レーザー堆積(PLD)法、スパッタ法、蒸発凝縮(PVD)法、気相反応法(CVD)法、真空蒸着法、分子線エピタキシ(MBE)法等がある。この中でも、レーザー堆積(PLD)法は組成ズレが少なく、比較的結晶性の高い膜を得られやすく特に好ましい。直接接合(ダイレクトボンディング)法は、予め形成した固体電解質層14と正極板、各々の表面を化学的に活性な状態して、低温で接合する方法である。界面の活性化については、プラズマ等を用いてもよいし、水酸基等の官能基の化学修飾を用いてもよい。 Further, as a method of forming the solid electrolyte layer 14, various particle jet coating methods, solid phase methods, solution methods, gas phase methods, and direct bonding (direct bonding) methods can be used. Examples of the particle jet coating method include an aerosol deposition (AD) method, a gas deposition (GD) method, a powder jet deposition (PJD) method, a cold spray (CS) method, and a thermal spraying method. Among these, the aerosol deposition (AD) method is particularly preferable because it can form a film at room temperature, and does not cause a composition shift during the process or formation of a high resistance layer due to a reaction with the positive electrode plate. Examples of the solid phase method include a tape lamination method and a printing method. Among these, the tape lamination method is preferable because the solid electrolyte layer 14 can be formed thin and the thickness can be easily controlled. Examples of the solution method include a hydrothermal synthesis method, a sol-gel method, a precipitation method, a microemulsion method, and a solvent evaporation method. Among these methods, the hydrothermal synthesis method is particularly preferable in that it is easy to obtain crystal grains having high crystallinity at a low temperature. In addition, microcrystals synthesized using these methods may be deposited on the positive electrode or may be directly deposited on the positive electrode. Examples of the gas phase method include laser deposition (PLD) method, sputtering method, evaporation condensation (PVD) method, gas phase reaction method (CVD) method, vacuum deposition method, molecular beam epitaxy (MBE) method and the like. Among these, the laser deposition (PLD) method is particularly preferable because there is little composition deviation and a film with relatively high crystallinity can be easily obtained. The direct bonding (direct bonding) method is a method in which the solid electrolyte layer 14 and the positive electrode plate, which are formed in advance, are chemically activated and bonded at a low temperature. For activation of the interface, plasma or the like may be used, or chemical modification of a functional group such as a hydroxyl group may be used.
 上述した正極層18及び負極層22の構成材料の例は、エネルギー密度を抑えた好ましい態様であるが、その他、以下に示す構成材料を使用してもよい。 The example of the constituent material of the positive electrode layer 18 and the negative electrode layer 22 described above is a preferable aspect in which the energy density is suppressed, but other constituent materials shown below may be used.
 すなわち、正極層18としては、正極活物質と固体電解質材料と導電助剤とを混合し、圧粉成形して構成してもよい。 That is, the positive electrode layer 18 may be configured by mixing a positive electrode active material, a solid electrolyte material, and a conductive additive, and compacting them.
 この場合、正極活物質は、例えば一般式:Lip(NixCoyAlz)O2
  (上記一般式中、0.9≦p≦1.3、0.6<x<0.9、0.1<y≦0.3、0≦z≦0.2、x+y+z=1)
で表される層状岩塩構造を有し、固体電解質材料は、例えばLi7La3Zr212(LLZ)を含むガーネット系の結晶構造を有し、導電助剤は、例えばアセチレンブラックであってもよい。
In this case, the positive electrode active material is, for example, a general formula: Li p (Ni x Co y Al z ) O 2
(In the above general formula, 0.9 ≦ p ≦ 1.3, 0.6 <x <0.9, 0.1 <y ≦ 0.3, 0 ≦ z ≦ 0.2, x + y + z = 1)
The solid electrolyte material has a garnet-type crystal structure including, for example, Li 7 La 3 Zr 2 O 12 (LLZ), and the conductive additive is, for example, acetylene black. Also good.
 負極層22としては、負極活物質と、固体電解質材料とを混合し、圧粉成形して構成してもよい。この場合、負極活物質は、例えばグラファイトであり、固体電解質材料は、例えばLi7La3Zr212(LLZ)を含むガーネット系の結晶構造を有するものであってもよい。 The negative electrode layer 22 may be configured by mixing a negative electrode active material and a solid electrolyte material and compacting them. In this case, the negative electrode active material is, for example, graphite, and the solid electrolyte material may have a garnet-type crystal structure including, for example, Li 7 La 3 Zr 2 O 12 (LLZ).
 なお、本発明に係る全固体電池は、上述の実施の形態に限らず、本発明の要旨を逸脱することなく、種々の構成を採り得ることはもちろんである。 The all-solid-state battery according to the present invention is not limited to the above-described embodiment, and can of course have various configurations without departing from the gist of the present invention.

Claims (21)

  1.  固体電解質層(14)と、正極側集電体(16)と、前記正極側集電体(16)に接続された正極層(18)と、負極側集電体(20)と、前記負極側集電体(20)に接続された負極層(22)とを有し、
     前記正極層(18)と前記負極層(22)とが互い違いに積層され、
     前記正極層(18)と前記負極層(22)との間、前記正極層(18)と前記負極側集電体(20)との間及び前記負極層(22)と前記正極側集電体(16)との間に前記固体電解質層(14)が介在されていることを特徴とする全固体電池。
    Solid electrolyte layer (14), positive electrode side current collector (16), positive electrode layer (18) connected to positive electrode side current collector (16), negative electrode side current collector (20), and negative electrode A negative electrode layer (22) connected to the side current collector (20),
    The positive electrode layer (18) and the negative electrode layer (22) are alternately stacked,
    Between the positive electrode layer (18) and the negative electrode layer (22), between the positive electrode layer (18) and the negative electrode side current collector (20), and between the negative electrode layer (22) and the positive electrode side current collector. The solid electrolyte layer (14) is interposed between the solid electrolyte layer (16) and the all solid state battery.
  2.  請求項1記載の全固体電池において、
     前記正極側集電体(16)と前記負極側集電体(20)とが互いに対向していることを特徴とする全固体電池。
    The all-solid-state battery according to claim 1,
    The all-solid-state battery, wherein the positive electrode side current collector (16) and the negative electrode side current collector (20) face each other.
  3.  請求項1又は2記載の全固体電池において、
     前記負極層(22)は、第1負極層(22a)と第2負極層(22b)とを有し、
     前記第1負極層(22a)と、前記正極層(18)と、前記第2負極層(22b)とが互い違いに積層され、
     前記固体電解質層(14)は、
     前記正極側集電体(16)と前記第1負極層(22a)との間に介在された第1固体電解質層(14a)と、
     前記正極側集電体(16)と前記負極側集電体(20)との間であって、且つ、前記第1負極層(22a)と前記正極層(18)との間に介在された第2固体電解質層(14b)と、
     前記正極層(18)と前記負極側集電体(20)との間に介在された第3固体電解質層(14c)と、
     前記正極側集電体(16)と前記負極側集電体(20)との間であって、且つ、前記第2負極層(22b)と前記正極層(18)との間に介在された第4固体電解質層(14d)と、
     前記正極側集電体(16)と前記第2負極層(22b)との間に介在された第5固体電解質層(14e)とを有することを特徴とする全固体電池。
    In the all-solid-state battery of Claim 1 or 2,
    The negative electrode layer (22) has a first negative electrode layer (22a) and a second negative electrode layer (22b),
    The first negative electrode layer (22a), the positive electrode layer (18), and the second negative electrode layer (22b) are alternately stacked,
    The solid electrolyte layer (14)
    A first solid electrolyte layer (14a) interposed between the positive current collector (16) and the first negative electrode layer (22a);
    Interposed between the positive electrode side current collector (16) and the negative electrode side current collector (20) and between the first negative electrode layer (22a) and the positive electrode layer (18). A second solid electrolyte layer (14b);
    A third solid electrolyte layer (14c) interposed between the positive electrode layer (18) and the negative electrode side current collector (20);
    Between the positive electrode side current collector (16) and the negative electrode side current collector (20), and interposed between the second negative electrode layer (22b) and the positive electrode layer (18). A fourth solid electrolyte layer (14d);
    An all solid state battery comprising a fifth solid electrolyte layer (14e) interposed between the positive electrode side current collector (16) and the second negative electrode layer (22b).
  4.  請求項1~3のいずれか1項に記載の全固体電池において、
     前記固体電解質層(14)を構成するリチウムイオン伝導材料は、ガーネット系、窒化物系、ペロブスカイト系、リン酸系、硫化物系又は高分子系の材料にて構成されていることを特徴とする全固体電池。
    The all solid state battery according to any one of claims 1 to 3,
    The lithium ion conductive material constituting the solid electrolyte layer (14) is composed of a garnet-based, nitride-based, perovskite-based, phosphoric acid-based, sulfide-based or polymer-based material. All solid battery.
  5.  請求項1~4のいずれか1項に記載の全固体電池において、
     前記正極層(18)は、特定の結晶面がリチウムイオンの伝導方向に配向した正極活物質のみで構成されていることを特徴とする全固体電池。
    The all solid state battery according to any one of claims 1 to 4,
    The all-solid-state battery, wherein the positive electrode layer (18) is composed of only a positive electrode active material having a specific crystal plane oriented in a lithium ion conduction direction.
  6.  請求項5記載の全固体電池において、
     前記正極活物質が、層状岩塩構造又はスピネル構造を有することを特徴とする全固体電池。
    The all-solid-state battery according to claim 5,
    The all-solid-state battery, wherein the positive electrode active material has a layered rock salt structure or a spinel structure.
  7.  請求項6記載の全固体電池において、
     前記正極活物質は、
      一般式:Lip(NixCoyAlz)O2
      (上記一般式中、0.9≦p≦1.3、0.6<x<0.9、0.1<y≦0.3、0≦z≦0.2、x+y+z=1)
    で表される層状岩塩構造を有し、
     前記特定の結晶面が(003)面であることを特徴とする全固体電池。
    The all-solid-state battery according to claim 6,
    The positive electrode active material is
    General formula: Li p (Ni x Co y Al z ) O 2
    (In the above general formula, 0.9 ≦ p ≦ 1.3, 0.6 <x <0.9, 0.1 <y ≦ 0.3, 0 ≦ z ≦ 0.2, x + y + z = 1)
    It has a layered rock salt structure represented by
    The all-solid-state battery, wherein the specific crystal plane is a (003) plane.
  8.  請求項1~4のいずれか1項に記載の全固体電池において、
     前記正極層(18)は、正極活物質と固体電解質材料と導電助剤とを混合し、圧粉成形して構成されていることを特徴とする全固体電池。
    The all solid state battery according to any one of claims 1 to 4,
    The positive electrode layer (18) is an all-solid battery characterized in that a positive electrode active material, a solid electrolyte material, and a conductive additive are mixed and compacted.
  9.  請求項8記載の全固体電池において、
     前記正極活物質は、
      一般式:Lip(NixCoyAlz)O2
      (上記一般式中、0.9≦p≦1.3、0.6<x<0.9、0.1<y≦0.3、0≦z≦0.2、x+y+z=1)
    で表される層状岩塩構造を有し、
     前記固体電解質材料は、Li7La3Zr212(LLZ)を含むガーネット系の結晶構造を有し、
     前記導電助剤は、アセチレンブラックであることを特徴とする全固体電池。
    The all-solid-state battery according to claim 8,
    The positive electrode active material is
    General formula: Li p (Ni x Co y Al z ) O 2
    (In the above general formula, 0.9 ≦ p ≦ 1.3, 0.6 <x <0.9, 0.1 <y ≦ 0.3, 0 ≦ z ≦ 0.2, x + y + z = 1)
    It has a layered rock salt structure represented by
    The solid electrolyte material has a garnet-based crystal structure including Li 7 La 3 Zr 2 O 12 (LLZ),
    The all-solid-state battery, wherein the conductive assistant is acetylene black.
  10.  請求項1~9のいずれか1項に記載の全固体電池において、
     前記負極層(22)は、負極活物質のみで構成されていることを特徴とする全固体電池。
    The all solid state battery according to any one of claims 1 to 9,
    The said negative electrode layer (22) is comprised only with the negative electrode active material, The all-solid-state battery characterized by the above-mentioned.
  11.  請求項10記載の全固体電池において、
     前記負極活物質が、酸化物系材料であることを特徴とする全固体電池。
    The all-solid-state battery according to claim 10,
    The all-solid-state battery, wherein the negative electrode active material is an oxide-based material.
  12.  請求項11記載の全固体電池において、
     前記負極活物質が、Li4Ti512又はTiO2であることを特徴とする全固体電池。
    The all-solid-state battery according to claim 11,
    The all-solid-state battery, wherein the negative electrode active material is Li 4 Ti 5 O 12 or TiO 2 .
  13.  請求項10記載の全固体電池において、
     前記負極活物質が、炭素系材料であることを特徴とする全固体電池。
    The all-solid-state battery according to claim 10,
    The all-solid-state battery, wherein the negative electrode active material is a carbon-based material.
  14.  請求項13記載の全固体電池において、
     前記負極活物質が、グラファイト又はソフトカーボン又はハードカーボン又はカーボンナノチューブ又はグラフェンであることを特徴とする全固体電池。
    The all-solid-state battery according to claim 13,
    The all-solid-state battery, wherein the negative electrode active material is graphite, soft carbon, hard carbon, carbon nanotube, or graphene.
  15.  請求項1~9のいずれか1項に記載の全固体電池において、
     前記負極層(22)は、負極活物質と、固体電解質材料とを混合し、圧粉成形して構成されていることを特徴とする全固体電池。
    The all solid state battery according to any one of claims 1 to 9,
    The said negative electrode layer (22) mixes a negative electrode active material and a solid electrolyte material, and is compacted and comprised, The all-solid-state battery characterized by the above-mentioned.
  16.  請求項15記載の全固体電池において、
     前記負極活物質はグラファイトであり、
     前記固体電解質材料は、Li7La3Zr212(LLZ)を含むガーネット系の結晶構造を有することを特徴とする全固体電池。
    The all-solid-state battery according to claim 15,
    The negative electrode active material is graphite,
    The all-solid-state battery, wherein the solid electrolyte material has a garnet-type crystal structure containing Li 7 La 3 Zr 2 O 12 (LLZ).
  17.  複数の単セル(12)が積層されて構成された全固体電池であって、
     前記単セル(12)は、
     固体電解質層(14)と、正極側集電体(16)と、前記正極側集電体(16)に接続された正極層(18)と、負極側集電体(20)と、前記負極側集電体(20)に接続された負極層(22)とを有し、
     前記正極層(18)と前記負極層(22)とが互い違いに積層され、
     前記正極層(18)と前記負極層(22)との間、前記正極層(18)と前記負極側集電体(20)との間及び前記負極層(22)と前記正極側集電体(16)との間に前記固体電解質層(14)が介在されていることを特徴とする全固体電池。
    An all-solid battery comprising a plurality of unit cells (12) laminated,
    The single cell (12)
    Solid electrolyte layer (14), positive electrode side current collector (16), positive electrode layer (18) connected to positive electrode side current collector (16), negative electrode side current collector (20), and negative electrode A negative electrode layer (22) connected to the side current collector (20),
    The positive electrode layer (18) and the negative electrode layer (22) are alternately stacked,
    Between the positive electrode layer (18) and the negative electrode layer (22), between the positive electrode layer (18) and the negative electrode side current collector (20), and between the negative electrode layer (22) and the positive electrode side current collector. The solid electrolyte layer (14) is interposed between the solid electrolyte layer (16) and the all solid state battery.
  18.  請求項17記載の全固体電池において、
     積層方向に並ぶ複数の前記単セル(12)のうち、少なくとも1つの隣接する前記単セル(12)間に絶縁層(24)が介在されていることを特徴とする全固体電池。
    The all-solid-state battery according to claim 17,
    An all-solid-state battery, wherein an insulating layer (24) is interposed between at least one adjacent single cell (12) among the plurality of single cells (12) arranged in the stacking direction.
  19.  請求項17記載の全固体電池において、
     横方向に並ぶ複数の前記単セル(12)のうち、少なくとも1つの隣接する前記単セル(12)間に絶縁層(24)が介在されていることを特徴とする全固体電池。
    The all-solid-state battery according to claim 17,
    An all-solid-state battery, wherein an insulating layer (24) is interposed between at least one adjacent single cell (12) among the plurality of single cells (12) arranged in the lateral direction.
  20.  請求項17記載の全固体電池において、
     各前記単セル(12)の両端面に、前記負極側集電体(20)あるいは前記正極側集電体(16)に接続された集電板(30)を有することを特徴とする全固体電池。
    The all-solid-state battery according to claim 17,
    All solids characterized by having current collector plates (30) connected to the negative electrode side current collector (20) or the positive electrode side current collector (16) on both end faces of each single cell (12). battery.
  21.  請求項17記載の全固体電池において、
     横方向に並ぶ前記単セル(12)間に集電体(26)が介在されていることを特徴とする全固体電池。
    The all-solid-state battery according to claim 17,
    An all-solid-state battery, wherein a current collector (26) is interposed between the single cells (12) arranged in the lateral direction.
PCT/JP2014/059288 2013-04-17 2014-03-28 All-solid-state cell WO2014171309A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013086555 2013-04-17
JP2013-086555 2013-04-17

Publications (1)

Publication Number Publication Date
WO2014171309A1 true WO2014171309A1 (en) 2014-10-23

Family

ID=51731261

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/059288 WO2014171309A1 (en) 2013-04-17 2014-03-28 All-solid-state cell

Country Status (1)

Country Link
WO (1) WO2014171309A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018219783A1 (en) * 2017-05-31 2018-12-06 Tdk Electronics Ag Stored energy source
JP2019192609A (en) * 2018-04-27 2019-10-31 日本碍子株式会社 All-solid lithium battery and method of manufacturing the same
WO2020100716A1 (en) * 2018-11-13 2020-05-22 株式会社村田製作所 Power storage device and power storage pack
CN112582663A (en) * 2019-09-12 2021-03-30 太阳诱电株式会社 All-solid-state battery and battery module
CN112786948A (en) * 2019-11-11 2021-05-11 三星Sdi株式会社 All-solid-state secondary battery
CN113013557A (en) * 2019-12-20 2021-06-22 位速科技股份有限公司 Power storage device and power storage device group structure
JPWO2021124809A1 (en) * 2019-12-19 2021-06-24
JP2022090838A (en) * 2020-12-08 2022-06-20 本田技研工業株式会社 Solid-state battery
WO2022145627A1 (en) * 2020-12-31 2022-07-07 Samsung Electro-Mechanics Co., Ltd. All solid state battery
EP4086983A3 (en) * 2021-05-04 2023-01-11 Samsung SDI Co., Ltd. All solid secondary battery and all solid secondary battery structure

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003317794A (en) * 2002-04-22 2003-11-07 Kawasaki Heavy Ind Ltd Fiber cell and its manufacturing method
JP2011146202A (en) * 2010-01-13 2011-07-28 Namics Corp Lithium ion secondary battery
JP2011198692A (en) * 2010-03-23 2011-10-06 Namics Corp Lithium ion secondary battery, and manufacturing method thereof
JP2011216235A (en) * 2010-03-31 2011-10-27 Namics Corp Lithium ion secondary battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003317794A (en) * 2002-04-22 2003-11-07 Kawasaki Heavy Ind Ltd Fiber cell and its manufacturing method
JP2011146202A (en) * 2010-01-13 2011-07-28 Namics Corp Lithium ion secondary battery
JP2011198692A (en) * 2010-03-23 2011-10-06 Namics Corp Lithium ion secondary battery, and manufacturing method thereof
JP2011216235A (en) * 2010-03-31 2011-10-27 Namics Corp Lithium ion secondary battery

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018219783A1 (en) * 2017-05-31 2018-12-06 Tdk Electronics Ag Stored energy source
CN110731020A (en) * 2017-05-31 2020-01-24 Tdk电子股份有限公司 Energy storage device
JP2020521286A (en) * 2017-05-31 2020-07-16 ティーディーケイ・エレクトロニクス・アクチェンゲゼルシャフトTdk Electronics Ag Energy storage
JP2019192609A (en) * 2018-04-27 2019-10-31 日本碍子株式会社 All-solid lithium battery and method of manufacturing the same
WO2020100716A1 (en) * 2018-11-13 2020-05-22 株式会社村田製作所 Power storage device and power storage pack
CN112582663A (en) * 2019-09-12 2021-03-30 太阳诱电株式会社 All-solid-state battery and battery module
CN112786948A (en) * 2019-11-11 2021-05-11 三星Sdi株式会社 All-solid-state secondary battery
EP3819973A3 (en) * 2019-11-11 2021-10-27 Samsung SDI Co., Ltd. All-solid-state secondary battery
JPWO2021124809A1 (en) * 2019-12-19 2021-06-24
JP7375832B2 (en) 2019-12-19 2023-11-08 株式会社村田製作所 solid state battery
CN113013557A (en) * 2019-12-20 2021-06-22 位速科技股份有限公司 Power storage device and power storage device group structure
JP2022090838A (en) * 2020-12-08 2022-06-20 本田技研工業株式会社 Solid-state battery
JP7236424B2 (en) 2020-12-08 2023-03-09 本田技研工業株式会社 solid state battery
WO2022145627A1 (en) * 2020-12-31 2022-07-07 Samsung Electro-Mechanics Co., Ltd. All solid state battery
EP4086983A3 (en) * 2021-05-04 2023-01-11 Samsung SDI Co., Ltd. All solid secondary battery and all solid secondary battery structure

Similar Documents

Publication Publication Date Title
WO2014171309A1 (en) All-solid-state cell
US9190652B2 (en) Layered solid-state battery
JP5644858B2 (en) Stacked solid battery
JP2014238925A (en) All-solid battery
CN109792079B (en) All-solid lithium ion secondary battery
JP6262129B2 (en) All-solid battery and method for manufacturing the same
US20190157724A1 (en) Process for producing an electrochemical cell, and electrochemical cell produced by the process
CN109792080B (en) All-solid lithium ion secondary battery
CN110235295B (en) Lithium ion solid storage battery and method for manufacturing same
CN110313038B (en) All-solid-state secondary battery
WO2013100000A1 (en) All-solid-state battery, and manufacturing method therefor
CN111868997A (en) All-solid-state battery
CN103518278B (en) Solid electrolyte battery and active positive electrode material
WO2014042083A1 (en) All-solid-state battery, green laminate for all-solid-state battery, and method for producing all-solid-state battery
WO2013100002A1 (en) All-solid-state battery, and manufacturing method therefor
JP6801778B2 (en) All solid state battery
JP6897760B2 (en) All solid state battery
WO2012060402A1 (en) All-solid-state battery and method for manufacturing same
WO2014038311A1 (en) All-solid cell
JP2020095776A (en) Solid electrolyte and all-solid type secondary battery
JP6213340B2 (en) Solid electrolyte and all-solid battery
WO2014050572A1 (en) Method for manufacturing all-solid-state lithium ion secondary battery
JP2014212010A (en) Solid electrolyte/electrode composite and battery using the same
WO2023013132A1 (en) Negative electrode active material and all-solid-state battery
JPWO2013035526A1 (en) Laminated molded body for all solid state battery, all solid state battery and method for producing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14785304

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14785304

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP