WO2014170573A1 - Dispositif et procede d'acquisition d'une information biologique au moyen d'un courant intracorporel - Google Patents

Dispositif et procede d'acquisition d'une information biologique au moyen d'un courant intracorporel Download PDF

Info

Publication number
WO2014170573A1
WO2014170573A1 PCT/FR2014/050745 FR2014050745W WO2014170573A1 WO 2014170573 A1 WO2014170573 A1 WO 2014170573A1 FR 2014050745 W FR2014050745 W FR 2014050745W WO 2014170573 A1 WO2014170573 A1 WO 2014170573A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
biological
subject
data
alternating
Prior art date
Application number
PCT/FR2014/050745
Other languages
English (en)
Inventor
Bruno Charrat
Georges Gagnerot
Original Assignee
Inside Secure
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inside Secure filed Critical Inside Secure
Priority to CN201480033733.3A priority Critical patent/CN105307560B/zh
Priority to EP14720182.6A priority patent/EP2986201A1/fr
Priority to US14/784,785 priority patent/US20160073883A1/en
Publication of WO2014170573A1 publication Critical patent/WO2014170573A1/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • A61B5/0026Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network characterised by the transmission medium
    • A61B5/0028Body tissue as transmission medium, i.e. transmission systems where the medium is the human body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/02438Detecting, measuring or recording pulse rate or heart rate with portable devices, e.g. worn by the patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7228Signal modulation applied to the input signal sent to patient or subject; demodulation to recover the physiological signal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7271Specific aspects of physiological measurement analysis
    • A61B5/7278Artificial waveform generation or derivation, e.g. synthesising signals from measured signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B13/00Transmission systems characterised by the medium used for transmission, not provided for in groups H04B3/00 - H04B11/00
    • H04B13/005Transmission systems in which the medium consists of the human body

Definitions

  • the present invention relates to a method and a device for acquiring a biological signal.
  • the present invention also relates to IBAN ("Intra Body Area Network") data transmission techniques of the type described in European patent EP 0 824 799 and in the document "Personal Area Networks (PAN) - Near-Field Intra-Body Communication” , by Thomas Guthrie Zimmerman, Massachusetts Institute of Technology, September 1995.
  • IBAN Intra Body Area Network
  • FIG. 1 schematically illustrates an IBAN system comprising a transmitter D1, a receiver D2, and the body HB of a subject as a transmission medium.
  • the transmitter D1 comprises an external electrode OE1, or an environment electrode, an internal electrode IE1, or body electrode, and a voltage generator SG connected to the two electrodes.
  • the receiver D2 also comprises an external electrode OE2 and an internal electrode IE2.
  • the generator SG of the transmitter D1 creates an oscillating potential VI between the electrodes 0E1, IE1.
  • An electric field EF is formed between the internal electrode IE1 and the body HB of the subject, and between the external electrode 0E1 and the environment.
  • the body HB is considered as a large capacitor plate that can be charged and discharged by the transmitter D1.
  • the environment is schematized by the ground, and has a reference potential considered to form the GND mass of the IBAN system.
  • the electrical charge applied to the body of the subject gives it a potential different from that of the environment, resulting in the appearance of an electric field EF between the body and the environment and between the body and the receiver D2.
  • a voltage V2 appears on the electrode IE2 of the receiver D2.
  • FIG. 2 is a representation of the IBAN network of FIG. 1 in the form of a capacitive and resistive electrical network.
  • a capacitor C1 represents the capacitive coupling between the internal electrode IE1 of the device D1 and a zone of the body closest to this electrode, represented schematically by a point PHI.
  • a capacitor C2 represents the capacitive coupling between the internal electrode IE2 of the device D2 and a zone of the body closest to this electrode, schematized by a point P2.
  • a capacitor C3 represents the capacitive coupling between the external electrode OE1 of the device D1 and the environment.
  • a capacitor C4 represents the capacitive coupling between the external electrode OE2 of the device D2 and the environment.
  • a capacitor C5 represents the capacitive coupling between the electrodes 0E1 and IE1.
  • a capacitor C6 represents the capacitive coupling between the electrodes 0E2 and IE2, and a capacitor C7 represents the capacitive coupling between the feet and the environment.
  • Other coupling capabilities in the Massachusetts Institute of Technology model are not represented here for the sake of simplicity.
  • the body is also considered as a purely resistive node schematized by resistors RI, R2, R3, R4, R5.
  • the resistors R1 and R2 are in series and pass through a fictitious midpoint P3. They illustrate the total electrical resistance of the body between points PI and P2. Assuming, for example, that the user capacitively couples the devices D1 and D2 by means of his right and left hands, the resistance R1 is the resistance of the right arm and the right shoulder, and the resistance R2 is the resistance of the left shoulder and left arm, the midpoint P3 lying between the two shoulders.
  • the resistance R3 connects the point P3 to a fictitious point P4 near the basin and represents the resistance of the thorax.
  • the resistors R4 and R5 are in parallel each connect the point P4 to a hypothetical point P5 coupled to the environment by the capacitor C7, and represent the series resistances of the left and right legs.
  • Another fraction Id of the current Ib passes through the resistors R1, R2 and the capacitor C1 to reach the internal electrode IE2 of the device D2, then passes through the device D2 and joins the external electrode OE1 of the device D1, passing through the environment and the capacitance C3, as also represented by dashed lines.
  • the resistors R3 + R4 or R3 + R5 can be much greater than the resistor R2, and the current is much lower than the current Id.
  • the intracorporeal current Id generates the voltage V2 across the electrodes IE2, OE2, and this is measured by the reception circuit RC.
  • the amplitude of the voltage V1 is modulated by a data carrier signal. The amplitude modulation is found in the current Id and in the voltage V2.
  • the device D2 demodulates the current Id or the voltage V2 and extracts the data signal.
  • the current Id is of very low value, as well as the voltage V2, generally of the order of millivolt to a few millivolts. Thanks to the progress made in the field of microelectronics, semiconductor chip integrated circuits are nowadays capable of detecting a very low value AC signal and extracting a data carrier modulation signal, in order to implementation of IBAN applications.
  • the integrated circuits MCP2030 and MCP2035 "Analog Front-End Device for BodyCom Applications" marketed by the company Microchip are specifically designed for IBAN applications.
  • An IBAN network allows devices close to the body to exchange data. It is known in particular to use an IBAN network to convey a biological parameter measured by means of a sensor, for example a heart rate sensor, to an information collection device.
  • the cardiac sensor is equipped with a transmitter D1 and the collection device is equipped with a receiver D2.
  • An IBAN data link is established between the sensor and the collection device.
  • the latter is equipped with storage means, analysis, and / or heart rate display, or transmission thereof to a remote device.
  • the present invention is based on the discovery that it is possible to use an intracorporeal current implemented for IBAN data transmission, to capture biological information.
  • the present invention more particularly relates to an intracorporeal current receiver device comprising means for collecting, by capacitive coupling, an alternating signal depending on a current that has passed through all or part of the body of a subject, and means for extracting data from the AC signal collected, the device comprising further comprises means for extracting from the AC signal a biological signal generated by the body of the subject and modulating the amplitude of the AC signal.
  • the device is configured to extract or extrapolate from the biological signal at least one biological parameter or biological information.
  • the biological parameter is a parameter involved in the transformation of the cardiac signal into a biological signal.
  • the biological parameter consists in the variations of the arterial pressure of the subject.
  • the biological parameter is the subject's heart rate.
  • the biological information comprises at least one variation of the signal BS at a given moment in the cardiac cycle.
  • the device is configured to develop a biometric identification data of the subject from one or more biological parameters and / or one or more biological information.
  • the device comprises means for transmitting data by applying to the body of the subject, by capacitive coupling, an alternating signal modulated by a data signal.
  • Embodiments of the invention also relate to an intracorporeal current system comprising: an emitter device comprising means for applying to the body of a subject, by capacitive coupling, a first alternating signal, and means for transmitting data by means of intermediate of the first alternating signal, and a receiver device according to the invention, for collecting, by capacitive coupling, a second alternating signal, and extracting from the second alternating signal data transmitted by the transmitting device, wherein the receiving device is configured for during an initialization phase, exchanging data with the transmitting device, and during an acquisition phase, extracting the biological signal from the second AC signal.
  • Embodiments of the invention also relate to a method of acquiring a biological signal generated by the body of a subject, comprising the steps of: applying to the body of the subject a first AC electrical signal, by means of a transmitter device comprising means for applying the first AC signal to the subject body by capacitive coupling, and means for transmitting data via the first AC signal; collecting a second alternating signal according to a current that has passed through all or part of the body of the subject, by means of a receiver device comprising means for collecting, by capacitive coupling, the second alternating signal, and means for extracting data from the AC signal collected; and extracting the biological signal from the second AC signal as a signal modulating the amplitude of the second AC signal.
  • the method comprises the steps of: during an initialization phase, exchanging data with the transmitting device, by means of the receiving device, and during an acquisition phase, extracting the biological signal of the second alternating signal, by means of the receiver device, as a signal modulating the amplitude of the second alternating signal.
  • the method comprises a step of extracting or extrapolating from the biological signal at least one biological parameter or biological information.
  • the biological parameter is a parameter involved in the transformation of the cardiac signal into a biological signal.
  • the biological parameter is changes in the subject's blood pressure or the subject's heart rate.
  • FIG. 1 previously described schematically represents an IBAN network
  • FIG. 2 previously described is the electrical diagram of the IBAN network of FIG. 1,
  • FIG. 3 is the electrical diagram of an embodiment of an IBAN system according to the invention.
  • FIG. 4a represents a curve of the variations of arterial pressure as a function of the cardiac cycle
  • FIG. 4b represents an alternating voltage applied at a point on the body of a subject
  • FIG. 4c represents an alternating voltage collected at another point of the body of the subject
  • FIG. 4d is an expanded view of a biological signal present in the alternating voltage of FIG. 4c
  • FIGS. 6 and 7 show embodiments of a transmitter and a receiver of the device of FIG. 3,
  • FIG. 8 represents another embodiment of an IBAN system according to the invention.
  • FIGS. 9 and 10 show embodiments of a transmitter and a receiver of the system of FIG. 7,
  • FIG. 11 is a timing diagram illustrating the operation of the IBAN system of FIG. 8, and Figure 12 illustrates an application of an IBAN system according to the invention.
  • FIG. 3 is a simplified electrical diagram of an embodiment of an IBAN system according to the invention.
  • the system includes a transmitter device D3 and a receiver device D4.
  • the transmitter D3 comprises an internal electrode IE1, an external electrode OE1, and a voltage generator SG.
  • the generator SG applies to the electrodes IE1, 0E1 an alternating voltage VI whose oscillation frequency Fc may preferably be between 100 KHz and 20 MHz, for example the normalized frequency of 13.56 MHz used in the NFC communications ("Near Field Communication ").
  • the receiver D4 comprises an internal electrode IE2, an external electrode OE2 and a reception circuit 10 according to the invention.
  • the reception circuit 10 comprises an input connected to the electrode IE2 and a reference potential terminal connected to the electrode OE2, and is configured to extract a biological signal BS from a voltage V2 appearing between the electrodes IE2 and OE2 when the voltage VI is emitted by the transmitter D3.
  • the surface of the electrodes may vary according to the intended application and the conditions of implementation of the system, from a few square millimeters to a few square centimeters. In embodiments, these electrodes may be associated with antenna coils to form resonant circuits. In other embodiments, these electrodes may be replaced by antennas and generally by any means for emitting or sensing an electric field.
  • this conduction loop can comprise:
  • the environment is for example the floor, if the subject is standing without touching objects in his environment, or any element of the environment providing a path of conduction between the external electrodes OE1, OE2.
  • a current Ib is injected at the point PI of the body.
  • the electrode IE2 collects a current Id representing a fraction of the current Ib, because of current leaks in other conduction loops.
  • the current Id is a function of the resistance R of the body and generates the voltage V2 between the electrodes IE2 and OE2 of the receiver D4.
  • An Idl part of the current Id passes through the capacitor C6 and a part Id2 of the current Id passes through the reception circuit 10.
  • the current Id then joins the electrode OE1 via the capacitor C4, the environment (path represented by dashed lines ) and the capacity C3.
  • the current Id collected by the electrode IE2 has an amplitude modulation related to the variations of the resistance R of the body between the points P1 and P2, and these variations of resistance are a function of the variations in the subject's blood pressure.
  • the resistance R of the body between the points P1 and P2 is therefore represented as a variable resistor whose value fluctuates with the arterial pressure. Then there is a corresponding modulation of the current Id2 and the voltage V2.
  • FIGS. 4a to 4B Embodiments of the invention are based on this technical effect of biological origin, which is illustrated schematically in FIGS. 4a to 4B.
  • Figure 4a is a graph showing the changes in BP blood pressure of the subject as a function of his cardiac cycle.
  • the BP curve has a H1 peak during the systole phase followed by a H 2 trough during the diastole phase, the H1 peak and the H2 trough as shown may have various shapes depending on the subject.
  • Figure 4b shows the shape of the AC voltage VI generated by the device IE1. It is assumed here that the voltage V V is not amplitude modulated, and therefore has a constant amplitude.
  • FIG. 4a is a graph showing the changes in BP blood pressure of the subject as a function of his cardiac cycle.
  • the BP curve has a H1 peak during the systole phase followed by a H 2 trough during the diastole phase, the H1 peak and the H
  • the envelope of the signal V2 has an amplitude modulation of low value, generally of the order of a few microvolts, which can be embedded in background noise.
  • This background noise not shown in the figure, can be random or synchronous, it can in particular be generated by electrical equipment 50 or 60 Hz located in the environment of the subject.
  • the signal V2 appears as the result of an amplitude modulation of the signal VI by a biological signal BS, which therefore forms a signal envelope signal V2.
  • the signal BS reflects the variations of the current Id as a function of the variations of the resistance R of the body, which itself varies as a function of the arterial pressure.
  • the biological signal BS is generated by the body of the subject and exhibits inverse variations from those of the BP blood pressure, indicating that the body resistance R decreases as the blood pressure increases.
  • the receiving circuit 10 of the device D4 is configured to extract the signal BS from the signal V2, using any appropriate envelope extraction technique, including the deletion of the carrier Fc and the elimination of the random or synchronous noise hide the BS signal.
  • FIG. 5 represents schematically and without limitation a possible example of a relationship between the biological signal BS, the variations in BP blood pressure, and various biological parameters Bi (B1, B2, B3,...) Which contribute to the existence and the shape of the signal BS.
  • B0 is the cardiac signal CS (or electrocardiogram)
  • B1 is the heart rate Fcd, equal to the inverse of the cardiac period Tcd.
  • a modeling of the biological system represented by the body in which the body is considered to comprise a set of "transfer functions" FT (Bi) (or transformation functions) each of which is considered to be a function, is proposed in a non-limiting and experimental way.
  • FT transfer functions
  • Biological parameter Bi which, from the two basic biological parameters B0 and B1, lead to obtaining the biological signal BS measurable with the aforementioned extraction technique.
  • FT (B2), FT (B3), FT (B5), FT (B6) transformation functions have been shown.
  • the FT (B2), FT (B3) functions are cumulative and transform the cardiac signal CS into changes in BP blood pressure.
  • the BP changes in blood pressure are themselves considered as an intermediate biological parameter B5.
  • the FT (B5), FT (B6) functions are also cumulative and transform the changes in BP BP into a measurable BS biological signal.
  • the biological parameters Bi are considered as extractable or extrapolated from the signal BS. In some cases, the extraction or extrapolation of a biological parameter Bi may require knowledge of all or part of the other biological parameters.
  • the biological parameter B2 represents, for example, the shape of the heart, its tone, the quality of the cardiac muscles, and indirectly the age of the subject.
  • the FT (B2) function generally represents the ability of the heart to transform the cardiac signal into changes in arterial pressure.
  • the parameter B3 represents, for example, the activity of the subject at the time when the biological signal BS is measured, and the function FT (B3) represents, for example, the influence of the subject's activity on the variations of his arterial pressure.
  • the BP blood pressure signal may differ depending on whether the subject is at rest, jumping on the right leg or left leg, walking, running, etc.
  • the parameter B5 represents, for example, the irrigating of the tissues of the body in the region through which the current Ib passes
  • the function FT (B5) represents, for example, a function of transforming the variations of arterial pressure into variations of the resistivity of the tissue in the region crossed by the current Ib, which can vary depending on the tissue and well irrigated or not.
  • the parameter B6 represents for example the state of hydration of the subject
  • the function FT (B6) represents for example a function of transformation of the variations of arterial pressure into variations of the resistivity of the tissue in the region crossed by the current Ib, which may vary according to whether the tissue is well hydrated or not.
  • the knowledge of the signal BS can make it possible to extract or extrapolate some of the biological parameters, in a simple or more complex manner depending on the parameter sought.
  • the knowledge of the signal BS can firstly be used to determine the heart rate Fcd, which is also the frequency of the signal BS.
  • the transformation functions FT (B5), FT (B6) are not active, the signal BS makes it possible to find the BP blood pressure signal, one being the inverse of the other.
  • the FT (B5), FT (B6) functions can be calibrated by BP BP measurements using a suitable instrument, while measuring the BS signal, and by correlation between the shape BS signal and measured changes in blood pressure.
  • a measurement of the cardiac signal CS by means of a suitable instrument can make it possible to establish a relation between the precise form of the cardiac signal CS and that of the signal BS, or between the precise form of the cardiac signal CS and the shape of the the curve of changes in BP blood pressure, which can then be used to extrapolate the cardiac signal CS of the biological signal BS.
  • the knowledge of the signal BS can also make it possible to extract or extrapolate from this signal biological information Ii, which is directly or indirectly representative of biological parameters Bi.
  • the slope of the variation of the signal BS at a first point of the curve of the signal BS, or the local derivative of the signal BS may constitute a first biological information II
  • the local derivative of the signal BS at the second point of the curve of the signal BS can constitute a second biological information 12
  • These various points of Measurement of the derivative can be easily spotted on the BS signal curve with reference to the cardiac cycle, which is also the BS signal cycle.
  • the information Ii extracted in this way from the signal BS is representative of the changes in the BP blood pressure, as seen in FIG.
  • the variations of the information II to 14 in time can themselves constitute other biological information.
  • representative of an evolution of the biological parameters B2, B3, B5, B6 in other words, for the same subject, the same cardiac signal can be translated, at different times, by different variations of the arterial pressure depending on the state of the subject's heart (parameter B2) or the the activity of the subject (parameter B3), and the same variation in blood pressure may result, at different times, in different variations in the tissue conductivity depending on the tissue irrigation (parameter B5) or the tissue hydration (parameter B6).
  • Figures 6 and 7 respectively show an embodiment of the transmitter D3 and the receiver D4.
  • the transmitter D3 comprises a control circuit CNT ensuring the activation and deactivation of the generator SG and optionally the adjustment of the amplitude of the signal VI.
  • the receiving circuit 10 of the device D4 comprises a biological signal acquisition circuit BS, a CPU processor and a program memory MEM.
  • the memory MEM comprises the operating system of the processor CPU and a BEPG program for extracting the signal BS.
  • the acquisition chain 20 comprises a DC decoupling capacitor, a low noise amplifier LNA ("Low Noise Amplifier"), an FM band-pass filter and an ADC analog / digital converter whose output is connected to a port of the CPU.
  • the amplifier LNA is connected to the electrode IE2 via the decoupling capacitor CC.
  • the output of the amplifier is connected to the input of the ADC converter via the FM bandpass filter.
  • the LNA amplifier can be an amplifier of voltage and amplify the voltage V2, or a current amplifier and amplify the Id2 fraction of the current Id which passes through it, the signal at the output of the acquisition chain being in all cases a signal S (BS) which is the image of the current Id as well as the image of the voltage V2.
  • the FM filter has a bandwidth centered on the carrier frequency Fc to eliminate noise outside the IBAN frequency band, such as noise at 50 Hz or 60 Hz generated by electrical equipment and random noise, and leave pass that the Fc carrier and the biological signal BS.
  • Fc carrier frequency
  • the FM filter is centered on 10 Mhz with a bandwidth ranging from 9 to 11 MHz, to provide the ADC converter with a "clean" signal S (BS) having a central band at 10 MHz and sidebands carrying the biological signal BS.
  • the BEPG program executed by the CPU processor then provides the demodulation and low-pass filtering of the signal S (BS), the demodulation for suppressing the carrier Fc and the filtering for extracting the biological signal BS from the demodulated signal.
  • these steps of demodulation and low-pass filtering can be performed with an analog demodulator and a low-pass filter arranged between the FM filter and the ADC converter.
  • the memory MEM furthermore comprises a biological analysis program BAPG enabling the processor CPU to extract or extrapolate from the biological signal BS a biological parameter Bi or a biological information item Ii of the type previously described, or any another parameter or biological information that can be subsequently highlighted, that the processor can optionally provide on an output port.
  • a biological analysis program BAPG enabling the processor CPU to extract or extrapolate from the biological signal BS a biological parameter Bi or a biological information item Ii of the type previously described, or any another parameter or biological information that can be subsequently highlighted, that the processor can optionally provide on an output port.
  • the biological analysis program BAPG is configured to extract the heart rate Fcd from the signal BS, by measurement of the frequency of this signal.
  • the BAPG program can also use a database stored in the MEM memory, developed during a calibration phase, or an extrapolation function developed by experiments, to reconstitute the subject's CS signal signal from the signal BS. .
  • the BAPG program can also search in the biological signal BS for one of the other Bi biological parameters described above.
  • the memory MEM also comprises a biological application program APG that uses the biological signal BS, the biological parameter Bi or the biological information Ii provided by the BAPG program, to obtain a result R (Bi, Ii ) that the CPU can possibly supply on an output port.
  • APG application program can for example be:
  • a subject health monitoring program which compares the curve of the signal BS at a given instant with a curve of the signal BS stored at a previous instant, or which compares a biological parameter Bi or a biological information Ii provided by the program BAPG, biological parameter Bi or biological information Ii measured previously, or biological reference parameter or information relating to the state of health of the subject.
  • the result R can then consist in information on the state of health of the subject;
  • the program can use a combination of biological parameters Bi and biological information Ii that can be extracted from the signal BS, for example the heart rate Fcd and local derivatives of the signal BS.
  • the result R (Bi, Ii) can then consist of an alert, which can be sent to an external device in order to generate a visual or audible alarm;
  • the program APG generates from the signal BS biometric identification data of the subject.
  • This identification data is for example a template or template ("template") which defines the general form of the signal BS, considered as unique and specific to the subject, like the variations of the cardiac signal CS, already used in the state of the art as a biometric identification signal.
  • the APG program can use any known method to define this template, for example using a set of local derivatives of the signal BS to define the model.
  • the APG program compares this signature with a previously memorized signature, and provides a positive or negative result (success or failure).
  • the result R can then be the result of the transformation of a data item or a message by the cryptography function.
  • FIG 8 schematically shows another embodiment of an IBAN system according to the invention.
  • the transmitter device D3 is replaced by a transceiver device D5 and the receiver device D4 is replaced by a transceiver device D6.
  • the devices D5, D6 are configured to exchange data via the body HB, by means of an IBAN signal, in a conventional manner.
  • the device D6 is further configured to extract the biological signal BS from the signal IBAN emitted by the device D5.
  • the system preferably operates in two phases PHI and PH2, the phase PHI being an initialization phase and PH2 a phase of acquisition of the biological signal BS by the device D6.
  • the device D5 is "initiator” and the device D6 is "target”.
  • the device D5 is placed in transmitter mode and transmits an alternating voltage Vl (SDT1) of frequency Fc which is modulated in amplitude by a data signal SDT1.
  • the signal SDT1 is preferably an alternating signal with a frequency lower than that of the carrier Fc, for example a signal of a few hundred kilohertz if the carrier Fc is the order of a few megahertz.
  • the device D6 by default in receiver mode, receives an alternating voltage V2 (SDT1, BS) which is modulated by the data signal SDT1.
  • the device D6 extracts the data signal SDT1 from the voltage V2, and then extracts the data DT1 included in the signal SDT1.
  • the voltage V2 is a function of an IBAN current having passed through the body HB of the subject, whose resistance R varies with the arterial pressure, it is also and necessarily amplitude-modulated by the biological signal BS.
  • the device D6 does not extract the signal BS from the voltage V2 during the phase PHI. Since the signal BS is a low frequency signal, its extraction would considerably slow the execution of the PHI phase.
  • the device D5 When the device D5 has sent the data DT1, it stops supplying the voltage VI, switches to the receiver mode and waits for a response from the device D6. After extracting the data DT1, the device D6 in turn transmits an alternating voltage V1 (SDT2), of frequency Fc, modulated in amplitude by a data signal SDT2.
  • the device D5 receives an alternating voltage V2 (SDT2, BS) which is modulated by the data signal SDT2.
  • the device D5 extracts the data signal SDT2 from the voltage V2, and then extracts the data DT2 from the data signal SDT2. It will be noted that the voltage V2 is also amplitude modulated by the biological signal BS, but that the device D5 does not include means for extracting this signal.
  • the devices D5 and D6 exchange data DT1, DT2 until the beginning of the acquisition phase PH2.
  • the device D5 goes into transmitter mode and transmits the alternating voltage VI without modulating its amplitude.
  • the device D6 is placed in receiver mode and receives a voltage V2 (BS) modulated in amplitude by the biological signal BS, from which it extracts the signal BS.
  • FIG. 9 shows an exemplary embodiment of the device D5.
  • This comprises a processor CPU1 coupled to a memory MEM1, data transmission means and data receiving means.
  • the memory MEM1 comprises a program DEPG1 for extracting data and an initialization program INIT1.
  • the data transmission means comprise the processor CPU1, a coding circuit CCT1 having an input connected to a port of the processor, a mixing amplifier MD1 having a first input connected to the output of the coding circuit CCT1 and a second input connected to a voltage generator SGI, and a switch SW1 controlled by the processor, connecting the output of the amplifier MD1 to the electrode IE1.
  • the receiving means comprises the CPU1 processor and a data acquisition chain.
  • the acquisition chain 30 comprises a decoupling capacitor CCI, a low noise amplifier LNA1, a band-pass filter FMI and an ADC1 analog / digital converter whose output is connected to a port of the processor CPU1.
  • the amplifier LNA1 has an input connected to the electrode IE1 via the decoupling capacitor CCI.
  • the output of the amplifier is connected to the input of the ADC1 converter via the FMI bandpass filter.
  • the FMI filter is centered on the transmission frequency of the SDT2 data signal transmitted by the device D6.
  • phase PHI when the device D5 is in the receiver mode, the switch SW1 is open, the acquisition chain 30 receives the voltage V2 (SDT2, BS) or a corresponding current and supplies the processor CPU1 with a signal S ( DT2, BS) filtered and digitized.
  • the processor demodulates the signal S (DT2, BS), extracts the data signal SDT2 and then the data DT2 that it comprises.
  • the processor supplies the data DT1 to the coding circuit CCT1, which supplies the data signal SDT1.
  • the amplifier MD1 modulates the amplitude of the voltage VI, supplied by the generator SGI, with the signal SDT1, and applies to the electrode IE1, via the switch SW1, the modulated voltage Vl (SDT1).
  • the initialization program INIT1 exchanges the data DT1, DT2 with the device D6 to determine the start time of the acquisition phase PH2.
  • the switch SW1 is closed, the coding circuit CCT1 is inactive, the amplifier MD1 receives the voltage V1 and applies it to the electrode IE1 without modulating its amplitude .
  • Figure 10 shows an exemplary embodiment of the device D6.
  • This comprises a processor CPU2 coupled to a memory MEM2, data transmission means and a reception circuit 100 configured to allow both the reception of the data DT1 sent by the device D5 during the phase PHI, and the extraction of the biological signal BS during phase PH2.
  • the memory MEM2 comprises the program BEPG for extracting the signal BS, a program DEPG2 for extracting data, and an initialization program INIT2. It may also include the previously described BAPG biological analysis program and APG application program.
  • the data transmission means comprise the processor CPU2, a coding circuit CCT2 having an input connected to a port of the processor, a mixing amplifier MD2 having a first input connected to the output of the coding circuit CCT2 and a second input connected to a voltage generator SG2, and a switch SW2 controlled by the processor, connecting the output of the amplifier MD2 to the electrode IE2.
  • the receiving circuit 100 comprises the CPU2 processor and a data acquisition and biological signal acquisition chain 40, the configuration of which is modified by the processor during the transition from the PHI phase to the PH2 phase.
  • the acquisition chain 40 includes a decoupling capacitor CC2, a low noise amplifier LNA2, a bandpass filter FM2, and an analog / digital converter ADC2 whose output is connected to a CPU2 processor port.
  • the amplifier LNA2 has an input connected to the electrode IE2 through the decoupling capacitor CC2.
  • the output of the amplifier is connected to the input of the ADC2 converter via the bandpass filter FM2.
  • the filter FM2 is centered on the transmission frequency of the data signal SDT1 transmitted by the device D6.
  • phase PHI when the device D6 is in the receiver mode, the switch SW2 is open, the acquisition chain 40 receives the voltage V2 (SDT1, BS) or the current Id2 that it supplies to the processor CPU2 under the form of a signal S (DT1, BS) filtered and digitized.
  • the processor demodulates the signal S (DT1, BS), extracts the data signal SDT1 and then the data DT1.
  • the switch SW2 is closed, the processor supplies the data DT2 to the coding circuit CCT2, which supplies the data signal SDT2.
  • the amplifier MD2 modulates the amplitude of the voltage VI supplied by the generator SG2 by means of the signal SDT2, and applies to the electrode IE2, via the switch SW2, the modulated voltage V1 (SDT2).
  • the initialization program INIT2 communicates with the program INIT1 of the device D5 using the data DT1, DT2, to determine the beginning of the phase PH2.
  • the PHI phase may also enable the device D6 to send to the device D5 the biological signal BS or the biological parameter Bi that it has extracted during a previous acquisition phase PH2.
  • the acquisition chain 40 receives the voltage V2 (BS) or the signal Id2 and supplies the signal S (BS) to the processor CPU2 in digital form after eliminating the noise in the received signal.
  • the processor demodulates and filters the signal S (BS) using the BEPG program, as already described, to extract the biological signal BS.
  • the device D6 comprises two separate acquisition chains for respectively to receive the DT1 data during the PHI phase and the biological signal BS during the PH2 phase.
  • the device D6 may optionally comprise the BAPG program, for analyzing the biological signal BS and extracting a biological parameter Bi or biological information Ii, and / or the biological application program APG, for exploiting the biological signal BS, the biological parameter Bi or biological information Ii.
  • FIG. 11 is a timing diagram illustrating the unfolding of the PHI, PH2 phases.
  • the programs INIT1, INIT2, BAPG, APG are represented as software entities separate from the devices D5, D6, considered here as physical layer means in the service of these software entities.
  • the body HB of the subject is considered as a modulation means which transforms the signals VI into V2 signals modulated by the biological signal BS.
  • the programs INIT1, INIT2 interact via the data DT1, DT2 during the PHI phase.
  • the program INIT1 supplies the data DT1 to the device D5 which transmits them in the form of the modulated voltage Vl (SDT1).
  • the body HB transfers the signal V2 (SDT1, BS) to the device D6 (or the signal Id (SDT1, BS) by current reasoning), which extracts the data DT1 from this signal and supplies them to the program INIT2.
  • the program INIT2 supplies the data DT2 to the device D6 which transmits them in the form of the modulated voltage V1 (SDT2).
  • the body HB transfers the signal V2 (SDT2, BS) to the device D5, which extracts the data DT2 from this signal and supplies them to the program INIT1.
  • the device D5 emits the signal VI
  • the body HB transfers the signal V2 (BS) to the device D6, which extracts the biological signal BS.
  • the BAPG analysis program extracts at least one biological parameter Bi or biological information Ii from the biological signal.
  • the APG application program can provide a result depending on the biological signal BS, biological parameter Bi or biological information Ii, and implement applications such as cardiac monitoring, biometric identification, detection falling asleep, etc.
  • the present invention is susceptible of various applications.
  • at least one of the devices D3 and D4, or D5 and D6, can be embedded in an object that a user often wears on him.
  • the device D4 or D6 can be embedded in a watch, or in a mobile phone MP, as shown in FIG. 12.
  • the device D3 or D5 can be fixed and placed at a determined location, for example a table or a chair, close to the user.
  • the biological signal BS can be detected as soon as the device D4 or D6 is close to the user, for example when the MP phone is held by the user or is in one of his pockets. Conversely, embodiments may provide that voluntary movement of the user is required to trigger acquisition of the biological signal BS. For example, if the device D3 or D5 is placed on a table, it can be provided that the user, to trigger the acquisition of the biological signal BS, must approach the hand on an area of the device where the electrode IE1 is located , or approach it from this area. In embodiments, the BAPG and / or APG programs may be executed by the device D5 instead of by the device D6, the latter then transmitting to the device D5 the biological signal BS or the biological parameter Bi during the phase PHI.
  • the devices D3 to D5 described in the foregoing are capable of various variants.
  • the FM, FMI, FM2 filters of the acquisition chains 20, 30, 40 could be digital filtering programs executed by the processor and applied to the digitized signal supplied by the converters ADC, ADC1, ADC2.
  • the amplitude modulations of the IBAN signal representative of the biological signal BS are related to the heart rate
  • other cyclic factors influencing the electrical resistivity of the body are likely to be evidenced by subsequent studies, including the respiratory rate that acts on the oxygenation of the blood and could also modulate the electrical resistivity of the body at a different rhythm of the heart rate, resulting in additional modulation of the IBAN signal which can allow the extraction of another biological signal.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Cardiology (AREA)
  • Physiology (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Psychiatry (AREA)
  • Vascular Medicine (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)

Abstract

L'invention concerne un dispositif récepteur (D6) à courant intracorporel (Id) comprenant des moyens (IE2, 0E2) pour collecter, par couplage capacitif, un signal alternatif fonction d'un courant ayant traversé tout ou partie du corps d'un sujet, des moyens (40, 100) pour extraire des données du signal alternatif collecté, et des moyens (40, 100) pour extraire du signal alternatif un signal biologique (BS) généré par le corps du sujet et modulant l'amplitude du signal alternatif.

Description

DISPOSITIF ET PROCEDE D'ACQUISITION D'UNE INFORMATION BIOLOGIQUE AU MOYEN D'UN
COURANT INTRACORPOREL
La présente invention concerne un procédé et un dispositif d'acquisition d'un signal biologique. La présente invention concerne également les techniques de transmission de données IBAN ("Intra Body Area Network)" du type décrit dans brevet européen EP 0 824 799 et dans le document "Personal Area Networks (PAN) - Near-Field Intra-Body Communication", de Thomas Guthrie Zimmerman, Massachusetts Institute of Technology, septembre 1995.
La figure 1 illustre schématiquement un système IBAN comprenant un émetteur Dl, un récepteur D2 , et le corps HB d'un sujet comme support de transmission. L'émetteur Dl comprend une électrode externe 0E1, ou électrode d'environnement, une électrode interne IE1, ou électrode de corps, et un générateur de tension SG relié aux deux électrodes . Le récepteur D2 comprend également une électrode externe 0E2 et une électrode interne IE2.
Le générateur SG de l'émetteur Dl crée un potentiel oscillant VI entre les électrodes 0E1, IE1. Un champ électrique EF se forme entre l'électrode interne IE1 et le corps HB du sujet, et entre l'électrode externe 0E1 et l'environnement. Le corps HB est considéré comme une grande plaque de condensateur pouvant être chargée et déchargée par l'émetteur Dl . L'environnement est schématisé par le sol, et présente un potentiel de référence considéré comme formant la masse GND du système IBAN. La charge électrique appliquée au corps du sujet lui confère un potentiel différent de celui de l'environnement, ce qui entraîne l'apparition d'un champ électrique EF entre le corps et l'environnement et entre le corps et le récepteur D2. Une tension V2 apparaît sur l'électrode IE2 du récepteur D2. Un circuit de réception RCT mesure la tension V2 , relativement au potentiel de l'électrode externe 0E2. La figure 2 est une représentation du réseau IBAN de la figure 1 sous forme de réseau électrique capacitif et résistif. Une capacité Cl représente le couplage capacitif entre l'électrode interne IE1 du dispositif Dl et une zone du corps la plus proche de cette électrode, schématisée par un point PHI. Une capacité C2 représente le couplage capacitif entre l'électrode interne IE2 du dispositif D2 et une zone du corps la plus proche de cette électrode, schématisée par un point P2. Une capacité C3 représente le couplage capacitif entre l'électrode externe 0E1 du dispositif Dl et l'environnement. Une capacité C4 représente le couplage capacitif entre l'électrode externe 0E2 du dispositif D2 et l'environnement. Une capacité C5 représente le couplage capacitif entre les électrodes 0E1 et IE1. Une capacité C6 représente le couplage capacitif entre les électrodes 0E2 et IE2, et une capacité C7 représente le couplage capacitif entre les pieds et l'environnement. D'autres capacités de couplage figurant dans le modèle du Massachusetts Institute of Technology ne sont pas représentées ici dans un souci de simplicité.
Le corps est par ailleurs considéré comme un nœud purement résistif schématisé par des résistances RI, R2, R3, R4, R5. Les résistances RI et R2 sont en série et passent par un point milieu fictif P3. Elles illustrent la résistance électrique totale du corps entre les points PI et P2. En supposant par exemple que l'utilisateur couple capacitivement les dispositifs Dl et D2 au moyen de ses mains droite et gauche, la résistance RI est la résistance du bras droit et de l'épaule droite, et la résistance R2 est la résistance de l'épaule gauche et du bras gauche, le point milieu P3 se situant entre les deux épaules. La résistance R3 relie le point P3 à un point fictif P4 au voisinage du bassin et représente la résistance du thorax. Les résistances R4 et R5 sont en parallèle relient chacune le point P4 à un point fictif P5 couplé à l'environnement par la capacité C7, et représentent les résistances séries des jambes gauche et droite.
Lorsque la tension VI est appliquée aux électrodes IE1, 0E1, un courant est émis par le générateur de tension SG. Une première fraction la de ce courant traverse la capacité C5 pour atteindre l'électrode externe 0E1, et une seconde fraction Ib de ce courant est injectée dans le corps à travers la capacité Cl, pour former un courant intracorporel . Une fraction le du courant Ib traverse la résistance RI, la résistance R3 du thorax et les résistances R4, R5 des jambes, puis la capacité Cl, pour ensuite rejoindre l'électrode externe 0E1 du dispositif Dl en passant par l'environnement et la capacité C3, l'environnement étant représenté par des traits pointillés. Une autre fraction Id du courant Ib traverse les résistances RI, R2 et la capacité Cl pour atteindre l'électrode interne IE2 du dispositif D2, puis traverse le dispositif D2 et rejoint l'électrode externe 0E1 du dispositif Dl en passant par l'environnement et la capacité C3, comme également représenté par des traits pointillés. Les résistances R3+R4 ou R3+R5 peuvent être très supérieures à la résistance R2, et le courant le très inférieur au courant Id. Le courant intracorporel Id génère la tension V2 aux bornes des électrodes IE2, OE2, et celle-ci est mesurée par le circuit de réception RC . Pour transférer des données du dispositif Dl au dispositif D2 , l'amplitude de la tension VI est modulée par un signal porteur de données. La modulation d'amplitude se retrouve dans le courant Id et dans la tension V2. Le dispositif D2 démodule le courant Id ou la tension V2 et en extrait le signal de données.
Le courant Id est de très faible valeur, ainsi que la tension V2 , généralement de l'ordre du millivolt à quelques millivolts. Grâce aux progrès réalisés dans le domaine de la microélectronique, on réalise aujourd'hui des circuits intégrés sur microplaquette de semi-conducteur capables de détecter un signal alternatif de très faible valeur et d'en extraire un signal de modulation porteur de données, pour mettre en œuvre des applications IBAN. A titre d'exemple, les circuits intégrés MCP2030 et MCP2035 "Analog Front- End Device for BodyCom Applications" commercialisés par la société Microchip sont spécifiquement conçus pour des applications IBAN. Un réseau IBAN permet à des dispositifs proches du corps d'échanger des données. Il est connu notamment d'utiliser un réseau IBAN pour véhiculer un paramètre biologique mesuré au moyen d'un capteur, par exemple un capteur de rythme cardiaque, jusqu'à un dispositif de collecte d'information. Dans ce cas, le capteur cardiaque est équipé d'un émetteur Dl et le dispositif de collecte est équipé d'un récepteur D2. Une liaison de données IBAN est établie entre capteur et le dispositif de collecte. Ce dernier est équipé de moyens de mémorisation, d'analyse, et/ou d'affichage du rythme cardiaque, ou de transmission de celui-ci à un dispositif distant.
Il est également connu d'utiliser le signal cardiaque comme moyen d'identification d'une personne. Notamment, la société Bionym basée à Toronto a développé un produit appelé "HeartID", comprenant des moyens d'identification biométrique basés sur l'analyse du signal cardiaque. Un tel procédé est mis en œuvre au moyen d'un capteur de signal cardiaque dédié, se présentant sous la forme d'un périphérique d'ordinateur personnel.
La présente invention repose sur la découverte qu'il est possible d'utiliser un courant intracorporel mis en œuvre pour une transmission de données IBAN, pour capturer une information biologique .
La présente invention concerne plus particulièrement un dispositif récepteur à courant intracorporel comprenant des moyens pour collecter, par couplage capacitif, un signal alternatif fonction d'un courant ayant traversé tout ou partie du corps d'un sujet, et des moyens pour extraire des données du signal alternatif collecté, le dispositif comprenant comprend en outre des moyens pour extraire du signal alternatif un signal biologique généré par le corps du sujet et modulant l'amplitude du signal alternatif. Selon un mode de réalisation, le dispositif est configuré pour extraire ou extrapoler du signal biologique au moins un paramètre biologique ou une information biologique. Selon un mode de réalisation, le paramètre biologique est un paramètre intervenant dans la transformation du signal cardiaque en signal biologique.
Selon un mode de réalisation, le paramètre biologique consiste dans les variations de la pression artérielle du sujet.
Selon un mode de réalisation, le paramètre biologique est le rythme cardiaque du sujet. Selon un mode de réalisation, l'information biologique comprend au moins une variation du signal BS à un instant déterminé du cycle cardiaque .
Selon un mode de réalisation, le dispositif est configuré pour élaborer une donnée d'identification biométrique du sujet à partir d'un ou plusieurs paramètres biologiques et/ou une ou plusieurs informations biologiques .
Selon un mode de réalisation, le dispositif comprend des moyens pour émettre des données en appliquant au corps du sujet, par couplage capacitif, un signal alternatif modulé par un signal de données.
Des modes de réalisation de l'invention concernent également un système à courant intracorporel comprenant : un dispositif émetteur comprenant des moyens pour appliquer au corps d'un sujet, par couplage capacitif, un premier signal alternatif, et des moyens pour émettre des données par l'intermédiaire du premier signal alternatif, et un dispositif récepteur selon l'invention, pour collecter, par couplage capacitif, un second signal alternatif, et extraire du second signal alternatif des données émises par le dispositif émetteur, dans lequel le dispositif récepteur est configuré pour au cours d'une phase d'initialisation, échanger des données avec le dispositif émetteur, et au cours d'une phase d'acquisition, extraire le signal biologique du second signal alternatif.
Selon un mode de réalisation, au moins l'un des deux dispositifs est agencé dans un objet portatif. Des modes de réalisation de l'invention concernent également un procédé d'acquisition d'un signal biologique généré par le corps d'un sujet, comprenant les étapes consistant à : appliquer au corps du sujet un premier signal électrique alternatif, au moyen d'un dispositif émetteur comprenant des moyens pour appliquer le premier signal alternatif au corps du sujet par couplage capacitif, et des moyens pour émettre des données par l'intermédiaire du premier signal alternatif ; collecter un second signal alternatif fonction d'un courant ayant traversé tout ou partie du corps du sujet, au moyen d'un dispositif récepteur comprenant des moyens pour collecter, par couplage capacitif, le second signal alternatif, et des moyens pour extraire des données du signal alternatif collecté ; et extraire le signal biologique du second signal alternatif, en tant que signal modulant l'amplitude du second signal alternatif. Selon un mode de réalisation, le procédé comprend les étapes consistant à : au cours d'une phase d'initialisation, échanger des données avec le dispositif émetteur, au moyen du dispositif récepteur, et au cours d'une phase d'acquisition, extraire le signal biologique du second signal alternatif, au moyen du dispositif récepteur, en tant que signal modulant l'amplitude du second signal alternatif .
Selon un mode de réalisation, le procédé comprend une étape consistant à extraire ou extrapoler du signal biologique au moins un paramètre biologique ou une information biologique. Selon un mode de réalisation, le paramètre biologique est un paramètre intervenant dans la transformation du signal cardiaque en signal biologique.
Selon un mode de réalisation, le paramètre biologique consiste dans les variations de la pression artérielle du sujet ou le rythme cardiaque du sujet. Des modes de réalisation du procédé d'acquisition de signal biologique et de dispositifs selon l'invention seront décrits dans ce qui suit, à titre non limitatif, en relation avec les figures jointes parmi lesquelles :
la figure 1 précédemment décrite représente schématiquement un réseau IBAN,
la figure 2 précédemment décrite est le schéma électrique du réseau IBAN de la figure 1,
- la figure 3 est le schéma électrique d'un mode de réalisation d'un système IBAN selon l'invention,
- la figure 4a représente une courbe des variations de pression artérielle en fonction du cycle cardiaque,
- la figure 4b représente une tension alternative appliquée en un point du corps d'un sujet,
- la figure 4c représente une tension alternative collectée en un autre point du corps du sujet,
- la figure 4d est une vue dilatée d'un signal biologique présent dans la tension alternative de la figure 4c,
- les figures 6 et 7 représentent des modes de réalisation d'un émetteur et d'un récepteur du dispositif de la figure 3,
- la figure 8 représente un autre mode de réalisation d'un système IBAN selon l'invention,
- les figures 9 et 10 représentent des modes de réalisation d'un émetteur et d'un récepteur du système de la figure 7,
- la figure 11 est un chronogramme illustrant le fonctionnement du système IBAN de la figure 8, et la figure 12 illustre une application d'un système IBAN selon 1 ' invention .
La figure 3 est un schéma électrique simplifié d'un mode de réalisation d'un système IBAN selon l'invention. Le système comprend un dispositif émetteur D3 et un dispositif récepteur D4. L'émetteur D3 comprend une électrode interne IE1, une électrode externe 0E1, et un générateur de tension SG. Le générateur SG applique aux électrodes IE1, 0E1 une tension alternative VI dont la fréquence d'oscillation Fc peut être de préférence comprise entre 100 KHz et 20 MHz, par exemple la fréquence normalisée de 13,56 MHz utilisée dans les communications NFC ("Near Field Communication") .
Le récepteur D4 comprend une électrode interne IE2, une électrode externe OE2 et un circuit de réception 10 selon l'invention. Le circuit de réception 10 comprend une entrée reliée à l'électrode IE2 et une borne de potentiel de référence reliée à l'électrode OE2, et est configuré pour extraire un signal biologique BS d'une tension V2 apparaissant entre les électrodes IE2 et OE2 lorsque la tension VI est émise par l'émetteur D3. La surface des électrodes peut varier selon l'application visée et les conditions de mise en œuvre du système, de quelques millimètres carrés à quelques centimètres carrés. Dans des modes de réalisation, ces électrodes peuvent être associées à des bobines d'antenne pour former des circuits résonnants. Dans d'autres modes de réalisations, ces électrodes peuvent être remplacées par des antennes et de façon générale par tout moyen permettant d'émettre ou de capter un champ électrique.
On suppose ici que l'électrode IE1 est couplée capacitivement à un point PI du corps HB d'un sujet, et que l'électrode IE2 est couplée capacitivement à un point P2 du corps. Les points PI, P2 sont fictifs et modélisent des zones de couplage inductif entre chacune des électrodes IE1, IE2 et le corps du sujet. Sous l'effet du champ électrique généré par la tension VI, une boucle de conduction traversant le corps du sujet est créée. Comme décrit plus haut en relation avec la figure 2, cette boucle de conduction peut comprendre :
- une capacité de couplage Cl entre l'électrode IE1 et le point PI, une résistance R entre les points PI et P2, représentant la résistance électrique du corps (équivalente à la somme des résistances RI et R2 de la figure 2),
- une capacité C2 entre le point P2 et l'électrode IE2,
- une capacité C6 entre l'électrode IE2 et l'électrode 0E2,
- une capacité C4 entre l'électrode 0E2 et l'environnement,
- un chemin de conduction passant par l'environnement, schématisé par des traits pointillés, et
- une capacité C3 entre l'environnement et l'électrode OE1.
L'environnement est par exemple le sol, si le sujet se tient debout sans toucher des objets se trouvant dans son environnement, ou tout élément de l'environnement offrant un chemin de conduction entre les électrodes externes OE1, OE2. D'autres chemins de conduction ou "chemins de fuite" passant ou non par le corps, tels que les chemins de conduction passant par les jambes et des capacités C5 et Cl montrées sur la figure 2, n'ont pas été représentés sur la figure 3 dans un souci de simplicité.
Sous l'effet de la tension VI et du champ électrostatique que celle- ci génère autour du sujet, relativement au potentiel électrique de l'environnement, un courant Ib est injecté au point PI du corps. L'électrode IE2 collecte alors un courant Id représentant une fraction du courant Ib, en raison des fuites de courant dans d'autres boucles de conduction. Le courant Id est fonction de la résistance R du corps et génère la tension V2 entre les électrodes IE2 et OE2 du récepteur D4. Une partie Idl du courant Id traverse la capacité C6 et une partie Id2 du courant Id traverse le circuit de réception 10. Le courant Id rejoint ensuite l'électrode OE1 en passant par la capacité C4, l'environnement (chemin représenté par des traits pointillés) et la capacité C3. Selon les constatations sur lesquelles se fonde l'invention, le courant Id collecté par l'électrode IE2 présente une modulation d'amplitude liée aux variations de la résistance R du corps entre les points PI et P2, et ces variations de résistance sont fonction des variations de la pression artérielle du sujet. Sur le schéma de la figure 3, la résistance R du corps entre les points PI et P2 est donc représentée comme une résistance variable dont la valeur fluctue avec la pression artérielle. Il s 'ensuite une modulation correspondante du courant Id2 et de la tension V2.
Des modes de réalisation de l'invention se fondent sur cet effet technique d'origine biologique, qui est illustré schématiquement sur les figures 4a à 4B. La figure 4a est une courbe représentant les variations de pression artérielle BP du sujet en fonction de son cycle cardiaque. La courbe BP présente un pic Hl pendant la phase de systole suivi d'un creux H2 pendant la phase de diastole, le pic Hl et le creux H2 tels que représentés pouvant avoir des formes diverses en fonction du sujet. La figure 4b montre la forme de la tension alternative VI générée par le dispositif IE1. On suppose ici que la tension VI n'est pas modulée en amplitude, et présente donc une amplitude constante. La figure 4c montre la forme de la tension alternative V2 détectée par le circuit 10 sur l'électrode IE2 du récepteur D4. L'enveloppe du signal V2 présente une modulation d'amplitude de faible valeur, généralement de l'ordre de quelques microvolts, qui peut être noyée dans du bruit de fond. Ce bruit de fond, non représenté sur la figure, peut être aléatoire ou synchrone, il peut notamment être généré par des équipements électriques 50 ou 60 Hz se trouvant dans l'environnement du sujet. Après suppression du bruit, le signal V2 apparaît comme le résultat d'une modulation d'amplitude du signal VI par un signal biologique BS, qui forme donc un signal d'enveloppe du signal V2. Le signal BS reflète les variations du courant Id en fonction des variations de la résistance R du corps, elle-même variant en fonction de la pression artérielle. La figure 4d est une vue dilatée des variations de l'amplitude de la tension V2 au voisinage de sa valeur maximale. Le signal biologique BS est généré par le corps du sujet et présente des variations inverses de celles de la pression artérielle BP, ce qui indique que la résistance R du corps diminue lorsque la tension artérielle augmente .
Ainsi, le circuit de réception 10 du dispositif D4 est configuré pour extraire le signal BS du signal V2, en utilisant toute technique appropriée d'extraction d'enveloppe, incluant la suppression de la porteuse Fc et l'élimination du bruit aléatoire ou synchrone pouvant masquer le signal BS .
La figure 5 représente schématiquement et à titre non limitatif un exemple possible de relation entre le signal biologique BS, les variations de pression artérielle BP, et divers paramètres biologiques Bi (Bl, B2 , B3,...) qui contribuent à l'existence et à la forme du signal BS . On distingue à l'origine du signal BS deux paramètres de base B0 et Bl . B0 est le signal cardiaque CS (ou électrocardiogramme) et Bl est la fréquence cardiaque Fcd, égale à l'inverse de la période cardiaque Tcd.
On propose ici à titre non limitatif et expérimental une modélisation du système biologique que représente le corps, dans laquelle le corps est considéré comme comprenant un ensemble de "fonctions de transfert" FT(Bi) (ou fonctions de transformation) fonction chacune d'un paramètre biologique Bi et qui, à partir des deux paramètres biologiques de base B0 et Bl, conduisent à l'obtention du signal biologique BS mesurable avec la technique d'extraction précitée. Il sera noté que ce qui est exposé ici en relation avec la figure 5 ne concerne que certains aspects de certains modes de réalisation de l'invention et repose sur des hypothèses nécessitant des travaux de recherches et de développements ultérieurs pour leur exploitation à des fins applicatives. La présente invention ouvre donc un large domaine d'exploration et des possibilités applicatives étendues nécessitant des études complémentaires.
On a représenté dans un souci de simplicité seulement quatre fonctions de transformation FT(B2), FT(B3), FT(B5), FT(B6) . Les fonctions FT(B2), FT(B3)) sont cumulatives et transforment le signal cardiaque CS en variations de pression artérielle BP. Les variations BP de la pression artérielle sont elles-mêmes considérées comme un paramètre biologique intermédiaire B5. Les fonctions FT(B5), FT(B6) sont également cumulatives et transforment les variations de pression artérielle BP en signal biologique BS mesurable. Les paramètres biologiques Bi sont considérés comme pouvant être extraits ou extrapolés du signal BS. Dans certains cas, l'extraction ou l'extrapolation d'un paramètre biologique Bi peut nécessiter la connaissance de toute ou partie des autres paramètres biologiques.
Le paramètre biologique B2 représente par exemple la forme du cœur, sa tonicité, la qualité des muscles cardiaques, et indirectement l'âge du sujet. La fonction FT(B2) représente par exemple de façon générale l'aptitude du cœur à transformer le signal cardiaque en variations de pression artérielle. Le paramètre B3 représente par exemple l'activité du sujet au moment où le signal biologique BS est mesuré, et la fonction FT(B3) représente par exemple l'influence de l'activité du sujet sur les variations de sa pression artérielle. Par exemple, le signal de pression artérielle BP peut varier différent selon que le sujet est au repos, lorsqu'il saute sur la jambe droite ou la jambe gauche, lorsqu'il marche, lorsqu'il court, etc. Le paramètre B5 représente par exemple l'irrigation des tissus du corps dans la région par laquelle passe le courant Ib, et la fonction FT(B5) représente par exemple une fonction de transformation des variations de pression artérielle en variations de la résistivité du tissu dans la région traversée par le courant Ib, qui peut varier selon que le tissu et bien irrigué ou non. Le paramètre B6 représente par exemple l'état d'hydratation du sujet, et la fonction FT(B6) représente par exemple une fonction de transformation des variations de pression artérielle en variations de la résistivité du tissu dans la région traversée par le courant Ib, qui peut varier selon que le tissu et bien hydraté ou non. La connaissance du signal BS peut permettre d'extraire ou d'extrapoler certains des paramètres biologique, de manière simple ou plus complexe selon le paramètre recherché. Par exemple, la connaissance du signal BS peut tout d'abord permettre de déterminer la fréquence cardiaque Fcd, qui est également la fréquence du signal BS . Par ailleurs, en supposant que les fonctions de transformation FT(B5), FT(B6) ne sont pas actives, le signal BS permet de retrouver le signal de pression artérielle BP, l'un étant l'inverse de l'autre. De façon plus complexe, les fonctions FT(B5), FT(B6) peuvent être étalonnées par des mesures des variations de la pression artérielle BP au moyen d'un instrument approprié, tout en mesurant le signal BS, et par corrélation entre la forme du signal BS et les variations mesurées de la pression artérielle. De même, une mesure du signal cardiaque CS au moyen d'un instrument approprié peut permettre d'établir une relation entre la forme précise du signal cardiaque CS et celle du signal BS, ou entre la forme précise du signal cardiaque CS et la forme de la courbe des variations de pression artérielle BP, ce qui peut ensuite permettre d'extrapoler le signal cardiaque CS du signal biologique BS . La connaissance du signal BS peut également permettre d'extraire ou d'extrapoler de ce signal des informations biologiques Ii, qui sont directement ou indirectement représentatives de paramètres biologiques Bi . Par exemple, la pente de la variation du signal BS en un premier point de la courbe du signal BS, ou dérivée locale du signal BS, peut constituer une première information biologique II, la dérivée locale du signal BS en second point de la courbe du signal BS peut constituer une seconde information biologique 12, la dérivée en un troisième point de la courbe une troisième information biologique 13, la dérivée en un quatrième point de la courbe une quatrième information biologique 14, etc.. Ces divers points de mesure de la dérivée peuvent être aisément repérés sur la courbe du signal BS en se référant au cycle cardiaque, qui est également le cycle du signal BS . Les informations Ii extraites de cette manière du signal BS sont représentatives des variations de la pression artérielle BP, comme on le voit sur la figure 5, mais les variations des informations II à 14 dans le temps peuvent elles-mêmes constituer d'autres informations biologiques représentatives d'une évolution des paramètres biologiques B2, B3, B5, B6. En d'autres termes, pour le même sujet, le même signal cardiaque peut se traduire, à des instants différents, par des variations différentes de la pression artérielle en fonction de l'état du cœur du sujet (paramètre B2) ou de l'activité du sujet (paramètre B3) , et une même variation de la pression artérielle peut se traduire, à des instants différents, par des variations différentes de la conductivité du tissu en fonction de l'irrigation du tissu (paramètre B5) ou de l'hydratation du tissu (paramètre B6) . Les figures 6 et 7 représentent respectivement un mode de réalisation du émetteur D3 et du récepteur D4. L'émetteur D3 comprend un circuit de contrôle CNT assurant l'activation et la désactivation du générateur SG et optionnellement le réglage de l'amplitude du signal VI. Le circuit de réception 10 du dispositif D4 comprend une chaîne 20 d'acquisition du signal biologique BS, un processeur CPU et une mémoire programme MEM. La mémoire MEM comprend le système d'exploitation du processeur CPU et un programme BEPG d'extraction du signal BS . La chaîne d'acquisition 20 comprend une capacité de découplage CC, un amplificateur faible bruit LNA ("Low Noise Amplifier"), un filtre passe-bande FM et un convertisseur analogique/numérique ADC dont la sortie est relié à un port du CPU. L'amplificateur LNA est relié à l'électrode IE2 par l'intermédiaire de la capacité de découplage CC. La sortie de l'amplificateur est reliée à l'entrée du convertisseur ADC par l'intermédiaire du filtre passe-bande FM. L'amplificateur LNA peut être un amplificateur de tension et amplifier la tension V2, ou un amplificateur de courant et amplifier la fraction Id2 du courant Id qui le traverse, le signal en sortie de la chaîne d'acquisition étant dans tous les cas un signal S(BS) qui est l'image du courant Id ainsi que l'image de la tension V2.
Le filtre FM présente une bande passante centrée sur la fréquence porteuse Fc pour éliminer les bruits situés en dehors de la bande de fréquences IBAN, tel que le bruit à 50 Hz ou 60 Hz généré par des équipements électriques et le bruit aléatoire, et ne laisser passer que la porteuses Fc et le signal biologique BS . Par exemple, si la fréquence Fc est de 10 MHz, le filtre FM est centré sur 10 Mhz avec une bande passante allant de 9 à 11 Mhz, pour fournir au convertisseur ADC un signal "propre" S(BS) ayant une bande centrale à 10 MHz et des bandes latérales portant le signal biologique BS .
Le programme BEPG exécuté par le processeur CPU assure ensuite la démodulation et le filtrage passe-bas du signal S(BS), la démodulation permettant de supprimer la porteuse Fc et le filtrage permettant d'extraire le signal biologique BS du signal démodulé. Dans une variante de réalisation, ces étapes de démodulation et de filtrage passe-bas peuvent être réalisées avec un démodulateur analogique et un filtre passe-bas agencés entre le filtre FM et le convertisseur ADC.
Dans un mode de réalisation, la mémoire MEM comporte en outre un programme d'analyse biologique BAPG permettant au processeur CPU d'extraire ou d'extrapoler du signal biologique BS un paramètre biologique Bi ou une information biologique Ii du type précédemment décrit, ou tout autre paramètre ou information biologique susceptible d'être ultérieurement mis en évidence, que le processeur peut éventuellement fournir sur un port de sortie.
Le programme d'analyse biologique BAPG est par exemple configuré pour extraire la fréquence cardiaque Fcd du signal BS, par mesure de la fréquence de ce signal. Le programme BAPG peut aussi utiliser une base de données stockée dans la mémoire MEM, élaborée pendant une phase d'étalonnage, ou une fonction d'extrapolation mise au point par des expérimentations, pour reconstituer le signal cardiaque CS du sujet à partir du signal BS . Le programme BAPG peut aussi rechercher dans le signal biologique BS l'un des autres paramètres biologiques Bi décrits plus haut.
Dans un mode de réalisation, la mémoire MEM comporte également un programme d'application biologique APG qui utilise le signal biologique BS, le paramètre biologique Bi ou l'information biologique Ii fourni par le programme BAPG, pour obtenir un résultat R(Bi, Ii) que le processeur CPU peut éventuellement fournir sur un port de sortie. Le programme d'application APG peut par exemple être :
- un programme de surveillance de la santé du sujet, qui compare la courbe du signal BS à un instant donné avec une courbe du signal BS mémorisée à un instant antérieur, ou qui compare un paramètre biologique Bi ou une information biologique Ii fourni par le programme BAPG, à un paramètre biologique Bi ou une information biologique Ii mesuré antérieurement, ou un paramètre ou information biologique de référence relatif à l'état de santé du sujet. Le résultat R peut alors consister dans une information sur l'état de santé du sujet ;
- un programme de détection d'endormissement, qui supervise le signal BS . A cet effet, le programme peut utiliser une combinaison de paramètres biologiques Bi et d'information biologiques Ii pouvant être extraits du signal BS, par exemple la fréquence cardiaque Fcd et des dérivées locales du signal BS . Le résultat R(Bi, Ii) peut alors consister dans une alerte, pouvant être envoyée à un dispositif externe afin de générer une alarme visuelle ou sonore ;
- un programme exécutant des étapes d'identification biométrique du sujet. Dans ce cas, le programme APG génère à partir du signal BS une donnée d'identification biométrique du sujet. Cette donnée d'identification est par exemple un modèle ou gabarit ("template") qui définit la forme générale du signal BS, considérée comme unique et propre au sujet, à l'instar des variations du signal cardiaque CS, déjà utilisées dans l'état de la technique comme signal d'identification biométrique. Le programme APG peut utiliser toute méthode connue pour définir ce gabarit, par exemple utiliser un ensemble de dérivées locales du signal BS permettant de définir le modèle. Le programme APG compare ensuite cette signature avec une signature précédemment mémorisée, et fournit un résultat positif ou négatif (succès ou échec) .
- un programme de cryptographie utilisant comme clé de cryptage une ou plusieurs informations biologiques Ii obtenues à partir du signal BS, par exemple une ou plusieurs dérivées locales du signal BS. Le résultat R peut alors être le résultat de la transformation d'une donnée ou d'un message par la fonction de cryptographie.
La figure 8 représente schématiquement un autre mode de réalisation d'un système IBAN selon l'invention. Le dispositif émetteur D3 est remplacé par un dispositif émetteur-récepteur D5 et le dispositif récepteur D4 est remplacé par un dispositif émetteur-récepteur D6. Les dispositifs D5, D6 sont configurés pour échanger des données par l'intermédiaire du corps HB, au moyen d'un signal IBAN, de manière en soi classique. Le dispositif D6 est en outre configuré pour extraire le signal biologique BS du signal IBAN émis par le dispositif D5. Le système fonctionne de préférence en deux phases PHI et PH2, la phase PHI étant une phase d'initialisation et PH2 une phase d'acquisition du signal biologique BS par le dispositif D6.
Au cours de la phase PHI, les deux dispositifs échangent des données et définissent le commencement de la phase PH2. Le dispositif D5 est "initiateur" et le dispositif D6 est "cible". Le dispositif D5 se place en mode émetteur et émet une tension alternative Vl(SDTl) de fréquence Fc qui est modulée en amplitude par un signal de donnée SDT1. Le signal SDT1 est de préférence un signal alternatif de fréquence inférieure à celle de la porteuse Fc, par exemple un signal de quelques centaines de kilohertz si la porteuse Fc est de l'ordre de quelques mégahertz. Le dispositif D6, par défaut en mode récepteur, reçoit une tension alternative V2(SDT1, BS) qui est modulée par le signal de données SDT1. Le dispositif D6 extrait le signal de données SDT1 de la tension V2, puis extrait les données DT1 incluses dans le signal SDT1.
La tension V2 étant fonction d'un courant IBAN ayant traversé le corps HB du sujet, dont la résistance R varie avec la pression artérielle, elle est également et nécessairement modulée en amplitude par le signal biologique BS . Toutefois, de préférence, le dispositif D6 n'extrait pas le signal BS de la tension V2 pendant la phase PHI. Le signal BS étant un signal basse fréquence, son extraction ralentirait considérablement l'exécution de la phase PHI.
Lorsque le dispositif D5 a émis les données DT1, il cesse de fournir la tension VI, bascule en mode récepteur et attend une réponse du dispositif D6. Après avoir extrait les données DT1, le dispositif D6 émet à son tour une tension alternative V1(SDT2), de fréquence Fc, modulée en amplitude par un signal de données SDT2. Le dispositif D5 reçoit une tension alternative V2(SDT2, BS) qui est modulée par le signal de données SDT2. Le dispositif D5 extrait le signal de données SDT2 de la tension V2, puis extrait les données DT2 du signal de données SDT2. Il sera noté que la tension V2 est également modulée en amplitude par le signal biologique BS, mais que le dispositif D5 ne comporte pas ici de moyens d'extraction de ce signal .
Les dispositifs D5 et D6 échangent des données DT1, DT2 jusqu'au commencement de la phase d'acquisition PH2. Pendant la phase PH2, le dispositif D5 se place en mode émetteur et émet la tension alternative VI sans moduler son amplitude. Le dispositif D6 se place en mode récepteur et reçoit une tension V2 (BS) modulée en amplitude par le signal biologique BS, d'où il extrait le signal BS . La figure 9 montre un exemple de réalisation du dispositif D5. Celui-ci comprend un processeur CPU1 couplé à une mémoire MEM1, des moyens d'émission de données et des moyens de réception de données. La mémoire MEM1 comprend un programme DEPG1 d'extraction de données et un programme d'initialisation INIT1. Les moyens d'émission de données comprennent le processeur CPU1, un circuit de codage CCT1 ayant une entrée reliée à un port du processeur, un amplificateur mélangeur MD1 ayant une première entrée reliée à la sortie du circuit de codage CCT1 et une seconde entrée reliée à un générateur de tension SGI, et un interrupteur SWl commandé par le processeur, reliant la sortie de l'amplificateur MD1 à l'électrode IE1. Les moyens de réception comprennent le processeur CPU1 et une chaîne 30 d'acquisition de données. La chaîne d'acquisition 30 comprend une capacité de découplage CCI, un amplificateur faible bruit LNA1, un filtre passe-bande FMI et un convertisseur analogique/numérique ADC1 dont la sortie est reliée à un port du processeur CPU1. L'amplificateur LNA1 a une entrée reliée à l'électrode IE1 par l'intermédiaire de la capacité de découplage CCI. La sortie de l'amplificateur est reliée à l'entrée du convertisseur ADC1 par l'intermédiaire du filtre passe-bande FMI. Le filtre FMI est centré sur la fréquence d'émission du signal de données SDT2 émis par le dispositif D6.
Pendant la phase PHI, lorsque le dispositif D5 est dans le mode récepteur, l'interrupteur SWl est ouvert, la chaîne d'acquisition 30 reçoit la tension V2(SDT2, BS) ou un courant correspondant et fournit au processeur CPU1 un signal S(DT2, BS) filtré et numérisée. Au moyen du programme DEPG1, le processeur démodule le signal S(DT2, BS) , en extrait le signal de données SDT2 puis les données DT2 qu'il comporte .
Lorsque le dispositif D5 est dans le mode émetteur, l'interrupteur SWl est fermé, le processeur fournit les données DT1 au circuit de codage CCT1, qui fournit le signal de donnée SDT1. L'amplificateur MD1 module l'amplitude de la tension VI, fournie par le générateur SGI, avec le signal SDT1, et applique à l'électrode IE1, via l'interrupteur SW1, la tension modulée Vl(SDTl) . Le programme d'initialisation INIT1 échange les données DT1, DT2 avec le dispositif D6 pour déterminer l'instant de déclenchement de la phase d'acquisition PH2. Pendant la phase PH2 , le dispositif D5 est dans le mode émetteur, l'interrupteur SW1 est fermé, le circuit de codage CCT1 est inactif, l'amplificateur MD1 reçoit la tension VI et l'applique à l'électrode IE1 sans moduler son amplitude.
La figure 10 montre un exemple de réalisation du dispositif D6. Celui-ci comprend un processeur CPU2 couplé à une mémoire MEM2 , des moyens d'émission de données et un circuit de réception 100 configuré pour permettre à la fois la réception des données DT1 envoyées par le dispositif D5 pendant la phase PHI, et l'extraction du signal biologique BS pendant la phase PH2. La mémoire MEM2 comprend le programme BEPG d'extraction du signal BS, un programme DEPG2 d'extraction de données, et un programme d'initialisation INIT2. Elle peut également comprendre le programme d'analyse biologique BAPG et le programme d'application APG précédemment décrits .
Les moyens d'émission de données comprennent le processeur CPU2, un circuit de codage CCT2 ayant une entrée reliée à un port du processeur, un amplificateur mélangeur MD2 ayant une première entrée reliée à la sortie du circuit de codage CCT2 et une seconde entrée reliée à un générateur de tension SG2, et un interrupteur SW2 commandé par le processeur, reliant la sortie de l'amplificateur MD2 à l'électrode IE2.
Le circuit de réception 100 comprend le processeur CPU2 et une chaîne 40 d'acquisition de données et de signal biologique, dont la configuration est modifiée par le processeur lors du passage de la phase PHI à la phase PH2. La chaîne d'acquisition 40 comprend une capacité de découplage CC2, un amplificateur faible bruit LNA2, un filtre passe-bande FM2, et un convertisseur analogique/numérique ADC2 dont la sortie est reliée à un port du processeur CPU2. L'amplificateur LNA2 a une entrée reliée à l'électrode IE2 par l'intermédiaire de la capacité de découplage CC2. La sortie de l'amplificateur est reliée à l'entrée du convertisseur ADC2 par l'intermédiaire du filtre passe-bande FM2. Le filtre FM2 est centré sur la fréquence d'émission du signal de données SDT1 émis par le dispositif D6.
Pendant la phase PHI, lorsque le dispositif D6 est dans le mode récepteur, l'interrupteur SW2 est ouvert, la chaîne d'acquisition 40 reçoit la tension V2(SDT1, BS) ou le courant Id2 qu'elle fournit au processeur CPU2 sous la forme d'un signal S(DT1, BS) filtré et numérisé. Au moyen du programme DEPG2, le processeur démodule le signal S(DT1, BS) , en extrait le signal de données SDT1 puis les données DT1. Lorsque le dispositif D5 est dans le mode émetteur, l'interrupteur SW2 est fermé, le processeur fournit les données DT2 au circuit de codage CCT2, qui fournit le signal de donnée SDT2. L'amplificateur MD2 module l'amplitude de la tension VI fournie par le générateur SG2 au moyen du signal SDT2, et applique à l'électrode IE2, via l'interrupteur SW2 , la tension modulée V1(SDT2) . Pendant la phase PHI, le programme d'initialisation INIT2 dialogue avec le programme INIT1 du dispositif D5 au moyen des données DT1, DT2, pour déterminer le commencement de la phase PH2. Dans un mode de réalisation, la phase PHI peut aussi permettre au dispositif D6 d'envoyer au dispositif D5 le signal biologique BS ou le paramètre biologique Bi qu'il a extrait lors d'une phase d'acquisition PH2 précédente .
Au commencement de la phase PH2, la chaîne d'acquisition 40 reçoit la tension V2 (BS) ou le signal Id2 et fournit le signal S(BS) au processeur CPU2 sous forme numérique après avoir éliminé le bruit dans le signal reçu. Le processeur démodule et filtre le signal S(BS) au moyen du programme BEPG, de la manière déjà décrite, pour extraire le signal biologique BS . Dans une variante, le dispositif D6 comprend deux chaînes d'acquisition distinctes pour respectivement recevoir les données DT1 pendant la phase PHI et le signal biologique BS pendant la phase PH2. Le dispositif D6 peut optionnellement comprendre le programme BAPG, pour analyser le signal biologique BS et en extraire un paramètre biologique Bi ou une information biologique Ii, et/ou le programme d'application biologique APG, pour exploiter le signal biologique BS, le paramètre biologique Bi ou l'information biologique Ii.
La figure 11 est un chronogramme illustrant le déroulement des phases PHI, PH2. Pour la clarté du schéma, les programmes INIT1, INIT2, BAPG, APG sont représentés comme des entités logicielles distinctes des dispositifs D5, D6, considérés ici comme des moyens de couche physique au service de ces entités logicielles. De même, le corps HB du sujet est considéré comme un moyen de modulation qui transforme les signaux VI en signaux V2 modulés par le signal biologique BS . On voit que les programmes INIT1, INIT2 dialoguent par l'intermédiaire des données DT1, DT2 pendant la phase PHI. Le programme INIT1 fournit les données DT1 au dispositif D5 qui les émet sous la forme de la tension modulée Vl(SDTl) . Le corps HB transfère le signal V2(SDT1, BS) au dispositif D6 (ou le signal Id(SDTl, BS) en raisonnant en courant), qui extrait les données DT1 de ce signal et les fournit au programme INIT2. De même, le programme INIT2 fournit les données DT2 au dispositif D6 qui les émet sous la forme de la tension modulée V1(SDT2) . Le corps HB transfère le signal V2(SDT2, BS) au dispositif D5, qui extrait les données DT2 de ce signal et les fournit au programme INIT1. Pendant la phase PH2, le dispositif D5 émet le signal VI, le corps HB transfère le signal V2 (BS) au dispositif D6, qui extrait le signal biologique BS . Le programme d'analyse BAPG extrait au moins un paramètre biologique Bi ou une information biologique Ii du signal biologique. Le programme d'application APG peut fournir un résultat en fonction du signal biologique BS, du paramètre biologique Bi ou de l'information biologique Ii, et mettre en œuvre des applications telles que du monitoring cardiaque, de l'identification biométrique, de la détection d'endormissement, etc. La présente invention est susceptible de diverses applications. En pratique, au moins l'un des dispositifs D3 et D4, ou D5 et D6, peut être embarqué dans un objet qu'un utilisateur porte souvent sur lui. Par exemple, le dispositif D4 ou D6 peut être embarqué dans une montre, ou dans un téléphone mobile MP, comme montré sur la figure 12. Le dispositif D3 ou D5 peut être fixe et placé à un endroit déterminé, par exemple une table ou une chaise, proche de l'utilisateur. Le signal biologique BS peut être détecté dès que le dispositif D4 ou D6 est proche de l'utilisateur, par exemple lorsque le téléphone MP est tenu par l'utilisateur ou se trouve dans une de ses poches. Inversement, des modes de réalisation peuvent prévoir qu'un mouvement volontaire de l'utilisateur soit nécessaire pour déclencher l'acquisition du signal biologique BS . Par exemple, si le dispositif D3 ou D5 est posé sur une table, il peut être prévu que l'utilisateur, pour déclencher l'acquisition du signal biologique BS, doive approcher la main sur une zone du dispositif où se trouve l'électrode IE1, ou l'approcher de cette zone. Dans des modes de réalisation, les programmes BAPG et/ou APG peuvent être exécutés par le dispositif D5 au lieu de l'être par le dispositif D6, ce dernier transmettant alors au dispositif D5 le signal biologique BS ou le paramètre biologique Bi pendant la phase PHI .
Par ailleurs, les dispositifs D3 à D5 décrits dans ce qui précède sont susceptibles de diverses variantes. Les filtres FM, FMI, FM2 des chaînes d'acquisition 20, 30, 40 pourraient être des programmes de filtrage numérique exécutés par le processeur et appliqués au signal numérisé fourni par les convertisseurs ADC, ADC1, ADC2.
Enfin, bien que l'on ait indiqué dans ce qui précède que les modulations d'amplitude du signal IBAN représentatives du signal biologique BS sont liées au rythme cardiaque, d'autres facteurs cycliques influençant la résistivité électrique du corps sont susceptibles d'être mis en évidence par des études ultérieures, notamment le rythme respiratoire qui agit sur l'oxygénation du sang et pourrait moduler également la résistivité électrique du corps selon un rythme différent du rythme cardiaque, se traduisant par une modulation supplémentaire du signal IBAN pouvant permettre l'extraction d'un autre signal biologique.

Claims

REVENDICATIONS
1. Dispositif récepteur (D6) à courant intracorporel (Id) comprenant des moyens (IE2, OE2) pour collecter, par couplage capacitif, un signal alternatif (V2, Id2) fonction d'un courant (Id) ayant traversé tout ou partie du corps (HB) d'un sujet, et des moyens (40, 100) pour extraire des données du signal alternatif collecté,
caractérisé en ce qu'il comprend en outre des moyens (40, 100) pour extraire du signal alternatif un signal biologique (BS) généré par le corps du sujet et modulant l'amplitude du signal alternatif.
2. Dispositif selon la revendication 1, configuré pour extraire ou extrapoler du signal biologique (BS) au moins un paramètre biologique (Bi) ou une information biologique (Ii) .
3. Dispositif selon la revendication 2, dans lequel le paramètre biologique (Bi) est un paramètre (Bl, B2, B3, B4, B5, B6) intervenant dans la transformation du signal cardiaque (CS, B0) en signal biologique (BS) .
4. Dispositif selon l'une des revendications 2 et 3, dans lequel le paramètre biologique (Bi) consiste dans les variations (B5) de la pression artérielle du sujet (BP) .
5. Dispositif selon l'une des revendications 2 à 4, dans lequel le paramètre biologique (Bi) est le rythme cardiaque du sujet (Fcd, Bl) .
6. Dispositif selon l'une des revendications 2 à 5, dans lequel l'information biologique (Ii) comprend au moins une variation (II, 12, 13, 14) du signal BS à un instant déterminé du cycle cardiaque.
7. Dispositif selon l'une des revendications 2 à 6, configuré pour élaborer une donnée d'identification biométrique du sujet à partir d'un ou plusieurs paramètres biologiques (Bi) et/ou une ou plusieurs informations biologiques .
8. Dispositif selon l'une des revendications 1 à 7, comprenant des moyens (CCT2, MD2 , SG2, IE2) pour émettre des données en appliquant au corps (HB) du sujet, par couplage capacitif, un signal alternatif (VI) modulé par un signal de données (SDT2) .
9. Système à courant intracorporel comprenant :
- un dispositif émetteur (D5) comprenant des moyens (IE1, 0E1, CCT1, MD1, SGI, IE1) pour appliquer au corps (HB) d'un sujet, par couplage capacitif, un premier signal alternatif (VI, Ib) , et des moyens (CCT1, CPU1, MEM1) pour émettre des données par l'intermédiaire du premier signal alternatif, et
- un dispositif récepteur (D6) selon l'une des revendications 1 à 8, pour collecter, par couplage capacitif, un second signal alternatif (V2, Id2), et extraire du second signal alternatif des données émises par le dispositif émetteur,
dans lequel le dispositif récepteur (D6) est configuré pour : - au cours d'une phase d'initialisation (PHI), échanger des données avec le dispositif émetteur (D5) , et
- au cours d'une phase d'acquisition, extraire le signal biologique (BS) du second signal alternatif (V2, Id2) .
10. Système selon la revendication 9, dans lequel au moins l'un des deux dispositifs est agencé dans un objet portatif (MP) .
11. Procédé d'acquisition d'un signal biologique (BS) généré par le corps d'un sujet, comprenant les étapes consistant à :
- appliquer au corps (HB) du sujet un premier signal électrique alternatif (VI, Ib) , au moyen d'un dispositif émetteur (D5) comprenant des moyens (IE1, OE1, CCT1, MD1, SGI, IE1) pour appliquer le premier signal alternatif (VI, Ib) au corps (HB) du sujet par couplage capacitif, et des moyens (CCT1, CPU1, MEM1) pour émettre des données par l'intermédiaire du premier signal alternatif, collecter un second signal alternatif (V2, Id2) fonction d'un courant (Id) ayant traversé tout ou partie du corps du sujet, au moyen d'un dispositif récepteur (D6) comprenant des moyens (IE2, 0E2) pour collecter, par couplage capacitif, le second signal alternatif (V2, Id2), et des moyens (40, 100) pour extraire des données du signal alternatif collecté, et
- extraire le signal biologique (BS) du second signal alternatif, en tant que signal modulant l'amplitude du second signal alternatif.
12. procédé selon la revendication 11, caractérisé en ce qu'il comprend les étapes consistant à :
- au cours d'une phase d'initialisation (PHI), échanger des données avec le dispositif émetteur (D5) , au moyen du dispositif récepteur (D6) , et
- au cours d'une phase d'acquisition, extraire le signal biologique (BS) du second signal alternatif, au moyen du dispositif récepteur (D6) , en tant que signal modulant l'amplitude du second signal alternatif .
13. Procédé selon l'une des revendications 11 et 12, comprenant une étape consistant à extraire ou extrapoler du signal biologique (BS) au moins un paramètre biologique (Bi) ou une information biologique (Ii) .
14. Procédé selon la revendication 13, dans lequel le paramètre biologique (Bi) est un paramètre (Bl, B2, B3, B4, B5, B6) intervenant dans la transformation du signal cardiaque (CS, B0) en signal biologique (BS) .
15. Procédé selon l'une des revendications 13 et 14, dans lequel le paramètre biologique (Bi) consiste dans les variations (B5) de la pression artérielle du sujet (BP) ou le rythme cardiaque du sujet (Fcd, Bl) .
PCT/FR2014/050745 2013-04-15 2014-03-28 Dispositif et procede d'acquisition d'une information biologique au moyen d'un courant intracorporel WO2014170573A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201480033733.3A CN105307560B (zh) 2013-04-15 2014-03-28 用于通过体内电流获取生物信息的设备和方法
EP14720182.6A EP2986201A1 (fr) 2013-04-15 2014-03-28 Dispositif et procede d'acquisition d'une information biologique au moyen d'un courant intracorporel
US14/784,785 US20160073883A1 (en) 2013-04-15 2014-03-28 Device and method for acquiring biological information by means of an intracorporeal current

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1353384 2013-04-15
FR1353384A FR3004563A1 (fr) 2013-04-15 2013-04-15 Procede d'acquisition d'une information biologique au moyen d'un courant intracorporel

Publications (1)

Publication Number Publication Date
WO2014170573A1 true WO2014170573A1 (fr) 2014-10-23

Family

ID=48856827

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2014/050745 WO2014170573A1 (fr) 2013-04-15 2014-03-28 Dispositif et procede d'acquisition d'une information biologique au moyen d'un courant intracorporel

Country Status (5)

Country Link
US (1) US20160073883A1 (fr)
EP (1) EP2986201A1 (fr)
CN (1) CN105307560B (fr)
FR (1) FR3004563A1 (fr)
WO (1) WO2014170573A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015126182A1 (fr) * 2014-02-21 2015-08-27 삼성전자 주식회사 Procédé d'affichage de contenu et dispositif électronique correspondant
US9906272B2 (en) * 2016-04-05 2018-02-27 Nxp B.V. Communications device
US10966668B2 (en) * 2017-12-31 2021-04-06 Msheaf Health Management Technologies Limited Method and apparatus to measure bodily fluid and its change, and blood volume change

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2930977A (en) * 1955-06-02 1960-03-29 Machts Ludwig Method of and device for detecting differences and changes in bodies
EP0824799A1 (fr) 1995-05-08 1998-02-25 Massachusetts Institute Of Technology Dispositif de detection sans contact et de signalisation par courants intra-corporels induits par une source exterieure
US20050251232A1 (en) * 2004-05-10 2005-11-10 Hartley Craig J Apparatus and methods for monitoring heart rate and respiration rate and for monitoring and maintaining body temperature in anesthetized mammals undergoing diagnostic or surgical procedures
JP2006271798A (ja) * 2005-03-30 2006-10-12 Tokyo Medical & Dental Univ 生体情報処理システム。
EP1821432A1 (fr) * 2004-12-08 2007-08-22 Seiko Instruments Inc. Systeme de transmission d'informations par le corps humain et emetteur/recepteur
WO2010131267A1 (fr) * 2009-05-15 2010-11-18 Nox Medical Système et procédés utilisant des électrodes capacitives flexibles pour mesurer des biosignaux
WO2012110042A1 (fr) * 2011-02-17 2012-08-23 Sense A/S Procédé et système pour déterminer une grandeur cardiovasculaire d'un mammifère

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080262376A1 (en) * 2007-04-17 2008-10-23 Proactive Health Devices, Inc. Wireless sensor system for monitoring skin condition using the body as communication conduit

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2930977A (en) * 1955-06-02 1960-03-29 Machts Ludwig Method of and device for detecting differences and changes in bodies
EP0824799A1 (fr) 1995-05-08 1998-02-25 Massachusetts Institute Of Technology Dispositif de detection sans contact et de signalisation par courants intra-corporels induits par une source exterieure
US5914701A (en) * 1995-05-08 1999-06-22 Massachusetts Institute Of Technology Non-contact system for sensing and signalling by externally induced intra-body currents
US20050251232A1 (en) * 2004-05-10 2005-11-10 Hartley Craig J Apparatus and methods for monitoring heart rate and respiration rate and for monitoring and maintaining body temperature in anesthetized mammals undergoing diagnostic or surgical procedures
EP1821432A1 (fr) * 2004-12-08 2007-08-22 Seiko Instruments Inc. Systeme de transmission d'informations par le corps humain et emetteur/recepteur
JP2006271798A (ja) * 2005-03-30 2006-10-12 Tokyo Medical & Dental Univ 生体情報処理システム。
WO2010131267A1 (fr) * 2009-05-15 2010-11-18 Nox Medical Système et procédés utilisant des électrodes capacitives flexibles pour mesurer des biosignaux
WO2012110042A1 (fr) * 2011-02-17 2012-08-23 Sense A/S Procédé et système pour déterminer une grandeur cardiovasculaire d'un mammifère

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP2986201A1 *
THOMAS GUTHRIE ZIMMERMAN: "Personal Area Networks (PAN) - Near-Field Intra-Body Communication", MASSACHUSETTS INSTITUTE OF TECHNOLOGY, September 1995 (1995-09-01)

Also Published As

Publication number Publication date
CN105307560A (zh) 2016-02-03
CN105307560B (zh) 2019-08-30
FR3004563A1 (fr) 2014-10-17
US20160073883A1 (en) 2016-03-17
EP2986201A1 (fr) 2016-02-24

Similar Documents

Publication Publication Date Title
US20220409069A1 (en) Methods and systems for detecting physiology for monitoring cardiac health
US20230293028A1 (en) Calibration of Pulse-Transit-Time to Blood Pressure Model Using Multiple Physiological Sensors and Various Methods for Blood Pressure Variation
US10277386B2 (en) System, devices, and method for on-body data and power transmission
US9662053B2 (en) Physiological data collection
US9198604B2 (en) GPS power conservation using environmental data
US9492099B2 (en) System and method for facilitating reflectometric detection of physiologic activity
WO2017034666A1 (fr) Utilisation de mesures de résistance cutanée pour déterminer la synchronisation de mesures de bio-télémétrie
KR20140144173A (ko) 이카드 심전도 모니터
KR101964025B1 (ko) 비침습적 혈당측정기
EP1716387B1 (fr) Dispositif de mesure de distance.
JP6127602B2 (ja) 状態認識装置、状態認識方法及びコンピュータプログラム
CN105726004A (zh) 生物体信息测定装置及生物体信息测定装置的驱动控制方法
EP2400889A1 (fr) Systeme et procede de detection de marche d'une personne
CN106028923A (zh) 心电图监测系统和方法
EP2986201A1 (fr) Dispositif et procede d'acquisition d'une information biologique au moyen d'un courant intracorporel
CN104257205A (zh) 基于人体生理信号健康监测的智能水杯
CN107028600A (zh) 一种测量血压与心率的智能手环
Shaji et al. Real-time processing and analysis for activity classification to enhance wearable wireless ECG
EP0681447A1 (fr) Dispositif de determination d'informations physiologiques, et utilisation correspondante
Conchell et al. Design Development and Evaluation of a System to Obtain Electrodermal Activity
EP0681448A1 (fr) Tensiometre a mesure en continu, et procede correspondant
CN209203240U (zh) 一种心率检测装置、智能袜子及检测人体心率的系统
CN114124996A (zh) 健康看护系统和方法
Trobec et al. Software for an mHealth System
EP3893727A1 (fr) Dispositif de mesure de l'observance thérapeutique du porte d'un article textile par un patient, article instrumente comprenant un tel dispositif, et méthode de mesure

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480033733.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14720182

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2014720182

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14784785

Country of ref document: US