WO2014169748A1 - 一种双连接的实现方法及基站 - Google Patents

一种双连接的实现方法及基站 Download PDF

Info

Publication number
WO2014169748A1
WO2014169748A1 PCT/CN2014/073635 CN2014073635W WO2014169748A1 WO 2014169748 A1 WO2014169748 A1 WO 2014169748A1 CN 2014073635 W CN2014073635 W CN 2014073635W WO 2014169748 A1 WO2014169748 A1 WO 2014169748A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
user equipment
connection
data
management
Prior art date
Application number
PCT/CN2014/073635
Other languages
English (en)
French (fr)
Inventor
和峰
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP14785499.6A priority Critical patent/EP2947951B1/en
Priority to US14/776,704 priority patent/US9986462B2/en
Publication of WO2014169748A1 publication Critical patent/WO2014169748A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/08Load balancing or load distribution
    • H04W28/082Load balancing or load distribution among bearers or channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/30Connection release
    • H04W76/34Selective release of ongoing connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/20Interfaces between hierarchically similar devices between access points

Definitions

  • the present invention relates to a method for implementing dual connectivity data transmission in a mobile communication system, and more particularly to a dual connectivity implementation method and base station. Background technique
  • LTE Long Term Evolution
  • LTE Advanced enhanced LTE
  • the user plane data protocol stack of LTE is as shown in FIG. 1.
  • the downlink data received by the evolved base station (Evolved eNB) from the core network via the GPRS Tunnelling Protocol for the User Plane (GTP-U) is After the unpacking, the Packet Data Convergence Protocol (PDCP) sublayer, the Radio Link Control (RLC) protocol sublayer, and the Medium Access Control (MAC) protocol are used.
  • the sub-layer and the physical layer (PHY) are processed and sent to the user equipment (User Equipment, UE for short); the uplink data is transmitted in the opposite direction to the downlink.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Medium Access Control
  • the user plane GTP-U data of different services on the connection between the Evolved eNB and the core network is carried by an E-UTRAN Radio Access Bearer (EBB).
  • EBB E-UTRAN Radio Access Bearer
  • DRBs Data Radio Bearers
  • the data transmission connection between the network side and the UE is a one-to-one dedicated connection, so the signal quality of the connection link and the resource size used determine the data transmission performance between the two. If the resources used by the link are limited or the signal quality is poor, the user experience of the UE will decrease. This is a huge challenge for mobile operators. Although the network capacity is expanding year by year, it still cannot keep up with the increase in the number of user terminals. The user's demand for data traffic has increased.
  • LPN next-generation communication networks
  • Pico eNB small base station
  • hotspot enhancement As the number of LPN cells increases, the network deployment environment becomes more complex and brings some problems. First, because the coverage of the LPN cell is much smaller than that of the Macro Cell, and the capacity is relatively small, some LPN cells may be easily occupied by users and cause excessive load, thus affecting user data. Throughput, while other LPN cells or macro cells are at relatively low load levels.
  • the network side needs to perform load balancing operations, but the process is not flexible enough, especially when there are many cells, the load unevenness caused by the lack of flexibility will be more serious; in addition, due to the LPN community
  • the number is relatively large. Therefore, when a user equipment or a terminal moves within the network, frequent inter-cell handover (Handover) is caused, which causes frequent data service interruption or even dropped calls, which also leads to user data throughput. And the decline in user experience. At the same time, such frequent handovers may also cause a large number of signaling attacks on the terminal and the network, especially the core network, which may cause system resources to be congested or even paralyzed.
  • Dual Connectivity is one of them.
  • the dual-connected terminal can maintain connection with more than two network nodes at the same time, for example, the UE maintains connection with the macro cell and the LPN cell at the same time.
  • the network side can adjust the amount of data transmitted by the terminal on the two nodes in real time.
  • the UE moves or the LPN cell changes due to other reasons another cell can remain connected, and this change does not cause excessive signaling impact.
  • the present invention provides a dual connectivity implementation method, including: a first base station accessed by a user equipment, and a dual connectivity management interface between the base station and the second base station, completing the user equipment
  • the related management of the connection of the second base station implements dual connectivity of the user equipment with the first base station and the second base station.
  • the connection of the user equipment on the first base station and the second base station respectively carries more than one radio bearer (RB) data and/or evolved radio access bearer data.
  • RB radio bearer
  • the RB data includes control plane data and/or user plane data
  • the control plane data is signaling radio bearer data
  • the user plane data is data radio bearer data
  • the performing related management of the connection of the user equipment at the second base station includes: adding, modifying, or deleting a connection bearer of the user equipment at the second base station.
  • the performing related management of the connection of the user equipment at the second base station includes: establishing, modifying, or deleting, by the user equipment, a context of the second base station.
  • the performing related management of the connection of the user equipment at the second base station includes: routing data received and sent by the user equipment by using the second base station.
  • the routing, by the user equipment, the data received and sent by the second base station includes: the first base station corresponding to part or all of the radio bearers received from the core network for the received downlink data.
  • Data is sent to the second base station through the dual connectivity management interface of the base station and the second base station, and finally sent to the user equipment;
  • the second base station For the uplink data sent by the user equipment by using the second base station, the second base station will be delivered to the first base station through the dual connectivity management interface, and the uplink data is routed by the first base station to the core network.
  • the management of the connection bearer and the context of the user equipment in the second base station by the first base station is implemented by a dual-connection management interface control plane signaling flow between the first base station and the second base station.
  • the present invention also provides a base station, including:
  • the management module is configured to: when the base station is the first base station accessed by the user equipment, complete the connection of the user equipment to the second base station by using a dual connectivity management interface between the base station and the second base station Corresponding management, implementing dual connectivity of the user equipment with the first base station and the second base station;
  • the acceptance module is set to: when the second base station is used, the pair between the base station and the first base station
  • the connection management interface accepts related management of the connection of the user equipment to the local base station by the first base station.
  • the management module is configured to: complete management related to the connection of the user equipment in the second base station, where: the management module adds the connection bearer of the user equipment in the second base station , modify or delete.
  • the management module is configured to: complete management related to the connection of the user equipment in the second base station, where: the management module establishes, in the context of the second base station, the user equipment, Modify or delete.
  • the management module is configured to: complete management related to the connection of the user equipment at the second base station, where: the management module routes data received and sent by the user equipment by using the second base station .
  • the management module is configured to: route data received and sent by the user equipment by using the second base station, where: the management module receives part or all of the received downlink data from the core network.
  • the data corresponding to the radio bearer is sent to the second base station by using the dual connectivity management interface of the base station and the second base station, and finally sent to the user equipment; and the user equipment is also used by the user equipment on the second base station.
  • the uplink data sent by the dual connectivity management interface to the base station is routed to the core network.
  • the connection between the network side and the terminal may not be separately limited by the transmission performance of one link, and the network side and the UE may flexibly schedule the distributed distribution of data according to the network environment or resource status. the way.
  • the UE frequently switches between small cells, user data can be offloaded to another connection, thus ensuring the continuity of data services and improving the performance and user experience of user data services.
  • service switching between service flows between multiple flows can be implemented through user plane connection changes, thereby reducing the signaling impact on the control plane of the network.
  • the embodiments of the present invention can fully guarantee the backward compatibility of the network.
  • FIG. 1 is a schematic diagram of an LTE user plane protocol stack in related art
  • FIG. 2 is a schematic diagram of a method for implementing a dual connectivity network according to an embodiment of the present invention
  • 3 (a) - (b) are schematic diagrams of a user plane routing protocol stack of a second base station in a dual connectivity scenario in an embodiment of the present invention
  • FIG. 4 is a schematic diagram of an interface stack of a first base station and a second base station according to an embodiment of the present invention
  • FIG. 5 is a schematic flowchart of an application example of the present invention
  • FIG. 6 is a schematic flow chart of an application example 2 of the present invention.
  • Figure 10 is a schematic diagram of a base station of the present invention. Preferred embodiment of the invention
  • a dual-connection implementation method is applied to the case where the terminal accesses two or more wireless access network nodes at the same time, as shown in FIG. 2, including:
  • the first base station that is accessed by the user equipment completes the related management of the connection of the user equipment to the second base station by using the dual-connection management interface between the first base station and the second base station, and implements the user equipment and the first base station and the first Dual connection of two base stations.
  • the related management of the connection of the user equipment to the second base station by the first base station includes one or more of the following:
  • connection bearer of the user equipment at the second base station which may include one or more of the following:
  • the connection bearer of the user equipment on the second base station includes a radio bearer (Radio Bearer, RB for short) and/or an E-UTRAN Radio Access Bearer (EBB), and the RB includes Signaling Radio Bearer (SRB) data and/or Data Radio Bearer (DRB).
  • Radio Bearer Radio Bearer, RB for short
  • EBB E-UTRAN Radio Access Bearer
  • SRB Signaling Radio Bearer
  • DRB Data Radio Bearer
  • the connection between the first base station and the second base station of the user equipment may respectively carry more than one radio bearer (Radio Bearer, RB for short) data and/or an evolved radio access bearer (E-UTRAN Radio Access Bearer, Referred to as ERAB) data.
  • Radio Bearer Radio Bearer, RB for short
  • E-UTRAN Radio Access Bearer Referred to as ERAB
  • the data that the first base station routes the user equipment to receive and send through the second base station refers to:
  • the first base station will be the core network (specifically, the S-GW (System Gate Way)
  • the data corresponding to the part or all of the radio bearers received by the first base station and the second base station are sent to the second base station, and finally sent to the UE; correspondingly, the uplink sent by the UE through the second base station Data, the second base station will be delivered to the first base station through the dual connectivity management interface, and the uplink data is routed by the first base station to the S-GW.
  • the delivery of the uplink and downlink data on the dual connectivity management interface may be performed using any existing protocol stack, for example, using the GTP-U tunneling protocol, as shown in Figure 3a.
  • the data that is received and sent by the user equipment by using the second base station may also be directly sent to the core network without passing through the route of the first base station, as shown in FIG. 3b. Whether or not to use the routing function of the first base station to the second base station may be determined by a specific implementation.
  • connection of the user equipment at the second base station and the management of the context by the first base station may be implemented by a dual-connection management interface control plane signaling flow between the first base station and the second base station, as shown in FIG.
  • the protocol stack of the connection interface can also use the existing S1 interface protocol or other protocol stack.
  • first base station and the second base station are collectively referred to as radio access network elements in the LTE system, and may be a macro base station (Macro), a micro base station (Pico), a low power node (LPN), and a small cell.
  • a base station (Small Cell) or a home base station (HeNB). Deployed by network in a specific implementation And set.
  • the core network control plane entity that is, the Mobility Management Entity (MME)
  • MME Mobility Management Entity
  • the UE has a service connection bearer on the first base station, that is, Macro.
  • the macro side user plane endpoint is at the core network gateway (S/P-GW).
  • S/P-GW core network gateway
  • the handover request also needs to carry the context information (Context) of the UE.
  • the signaling of the existing S1 interface can be multiplexed, for example, by using a handover request (handover request), or by other existing signaling or new signaling.
  • condition for triggering the macro to initiate the foregoing process may be implemented by the Macro internal algorithm, or may be triggered by the core network or the UE side, for example, the MME initiates a new bearer establishment.
  • connection bearer information carried in the foregoing handover request includes at least: identifier information of the ERAB, a bearer address of the ERAB, and a port identifier.
  • the bearer address is an uplink data transmission address, which can be set to the address of the Macro or the address of the core network gateway S/P-GW, depending on the implementation.
  • the UE context information carried in the foregoing handover request includes at least identifier information of the UE, UE capability information, security context information, and the like.
  • Step 2 Pico performs admission, resource allocation, and other internal processing according to the handover request, and saves and establishes the context information of the UE in the Pico according to the handover request, and then sends a handover response to the Macro, which carries the identifier and resources allocated by the Pico to the UE. Connect to the user plane to carry information.
  • the step can multiplex the handover request response message (Handover Request) of the existing S1 interface. Acknowledge ) , or through other existing signaling or new signaling.
  • the user plane connection bearer information includes DRB (Data Radio Bearer) bearer information of air interface bearer information, and ERAB bearer connection information on the ground.
  • DRB Data Radio Bearer
  • Step 3 The Macro sends the relevant information in the handover response of the Pico reply to the UE, instructing the UE to establish a connection bearer in the Pico.
  • the related information may be carried by an existing RRC connection reconfiguration message, or may be carried by other newly added messages. To distinguish between normal signaling for a single connection, special flags or specific fields can be added to the message.
  • Step 4 The UE synchronizes with the Pico, and the step is optional according to the actual situation.
  • Step 5 The UE completes the context establishment according to the Macro command message, and after synchronizing with Pico, sends a reply message to the Macro.
  • step 2 Because Pico does not assign control plane bearer information in step 2, the UE and Pico only establish user plane DRB bearers, and no control plane connection is established. Therefore, in this step, the UE can only send a reply message to the Macro.
  • the UE may directly send a reply message on the control plane connection between the UE and the Pico.
  • Step 6 The Macro forwards the reply message of the UE to the Pico, and notifies the Pico that the bearer is established.
  • the connection bearer establishment of the UE on the Pico base station is completed.
  • the data corresponding to the load can be sent and received from the Pico, and the other part of the bearer remains on the Macro, thereby realizing the splitting of the data on the Macro side, or realizing the dual-connected data transmission.
  • the Macro can manage the connection bearer in real time according to the actual situation of the network (such as network load) or other algorithms. From the perspective of the core network, it still only cares about the connection and management of the Macro. Therefore, the solution not only solves the management of the UE dual connection, but also ensures the backward compatibility of the core network.
  • the UE has dual connectivity between Macro and Pico.
  • the UE has only user plane connections on the Pico.
  • the network side access layer and the non-access layer control plane are respectively terminated in Macro.
  • the MME the core network user plane node is a core network gateway. This embodiment is described by taking a method of adding a connection of a UE to a second base station, that is, a Pico base station, as an example, including Next steps:
  • Step 601. The MME sends an ERAB setup request message to the Macro, which carries the ERAB bearer information to be established.
  • Step 602. After receiving the message, the Macro determines to establish the newly created ERAB to the Pico according to the base station and the Pico base station load information, or according to other established algorithms. Therefore, the Macro forwards the above ERAB setup request message to Pico.
  • the UE may not carry other context information of the UE, or may carry modification information to the UE context.
  • the specific implementation depends on the implementation.
  • the ERAB bearer information carried in the ERAB setup request message includes at least information such as the identifier information of the ERAB, the bearer address of the ERAB, and the port identifier.
  • the address is the address of the core network gateway S/P-GW.
  • Macro wants to be the routing node of Pico, set the address of ERAB to the address of Macro. Macro needs to do the conversion of ERAB's address in S/P-GW and its macro address.
  • Step 603. The Pico performs the admission, the resource allocation, and other internal processing according to the request message. After successful, the Pico sends the new bearer information to the Macro by sending a handover response, which carries the information that the Pico is configured for the new bearer and the user plane connection bearer information.
  • the handover request response message (Handover Request Acknowledge) of the existing S1 interface may be multiplexed, or implemented by other existing signaling or new signaling.
  • the user plane connection bearer information includes DRB bearer information of the air interface bearer information, and address and port information carried by the ERAB 7 on the Pico side allocated by the Pico.
  • Step 604. The Macro sends the related information in the handover response of the Pico reply to the UE, and instructs the UE to establish a connection bearer in the Pico.
  • the foregoing related information may be carried by an existing RRC connection reconfiguration message, or may be carried by other newly added messages. In order to distinguish between normal signaling with a single connection, special flags or specific fields can be added to the message.
  • Step 605. The UE completes the new bearer establishment according to the macro command message, and sends a reply message to the Macro.
  • Pico can only interact with the UE through the forwarding of the Macro.
  • the UE may send a reply message directly on the control plane connection between the UE and the Pico.
  • Pico may also directly send a message to the UE.
  • Step 606 The Macro forwards the reply message of the UE to the Pico, and notifies the Pico that the bearer establishment is completed. Step 607.
  • the Macro sends an ERAB setup response message to the MME, where the address and port information of the ERAB on the access network side is the ERAB bearer information allocated by the Pico in step 603.
  • connection bearer establishment of the UE on the Pico is completed.
  • the Macro manages the connection bearer of the UE on the Pico, and the Macro can manage the connection bearer in real time according to the actual situation of the network (such as network load) or other algorithms. From the core network, it still only cares about the connection and management of the Macro. Therefore, this solution not only solves the management of the UE dual connection, but also ensures the backward compatibility of the core network.
  • the Macro decides to migrate the bearer on the Macro to the Pico according to its specific implementation algorithm, it can also send an ERAB bearer setup message to the Pico.
  • the steps are similar to the above process, except that the process is not triggered by the core network. Therefore, at the end of the process, the Macro determines whether to notify the core network to migrate the bearer information according to the routing information of the user plane.
  • the UE has dual connectivity between Macro and Pico, and there are control plane and user plane connections on both nodes.
  • the faces are terminated in Macro and MME respectively, and the core network user plane node is the core network gateway.
  • a method for releasing a connection of a UE on a second base station, that is, a Pico is taken as an example, and the following steps are included:
  • Step 701. The MME sends an ERAB release command message to the Macro, which carries the ERAB 7 information to be released.
  • Step 702. After receiving the foregoing message, the macro determines that the connection corresponding to the ERAB bearer to be released exists on the Pico. Therefore, the Macro forwards the ERAB release command message to the Pico, where the carried ERAB bearer information includes at least the identifier information of the ERAB. Step 703. The Pico initiates an RRC connection reconfiguration to the UE according to the received ERAB release command message, where the DRB information that needs to be released is indicated.
  • Step 704. After receiving the UE, release the corresponding DRB bearer on the Pico, and return the RRC connection reconfiguration complete message to the Pico.
  • steps 703 and 704 can be directly performed by Pico.
  • Step 705. After receiving the response from the UE and releasing the local resource, the Pico replies to the Macro with an ERAB release response message.
  • Step 706 The Macro sends an ERAB release response message to the MME.
  • the UE releases the connection bearer on the Pico.
  • the MME initiates the ERAB modification process, it can also be completed in a manner similar to the above, except that the message flow becomes the ERAB modification process. Therefore, it will not be repeated here.
  • the UE has dual connectivity between Macro and Pico, and there are control plane and user plane connections on both nodes.
  • the faces are terminated in Macro and MME respectively, and the core network user plane node is the core network gateway.
  • This embodiment is described by taking the example of releasing all connection bearers and contexts of the UE on the second base station, that is, Pico, including the following steps:
  • Step 801. The Macro determines, according to information such as the base station load or the UE measurement, or according to other internal algorithms, that the connection bearer corresponding to the ERAB bearer of the UE on the Pico is to be released and migrated to the Macro. Therefore, the Macro sends a bearer migration indication to the Pico, which carries the identification information of the target base station to be migrated, that is, the identification information of the Macro.
  • the message also needs to carry the bearer bearer information to be changed, where at least the identifier information of the ERAB is included; if all the bearers on the Pico are to be released, the message may only carry An indication can be.
  • Step 802. The Pico initiates a handover request to the Macro according to the received bearer migration indication, where the bearer information to be migrated is carried.
  • Pico also initiates data pre-transmission to Macro (Data Forwarding) process, sending cached data on Pico to Macro.
  • the above process can be completed by multiplexing the S1 information handover requirement (Handover Required) message.
  • Step 803. The Macro allocates resources for the migrated bearer according to the handover requirement received from the Pico, and sends an RRC connection reconfiguration message to the UE, instructing the UE to release the corresponding connection on the Pico, and establishing a corresponding connection bearer in the Macro.
  • Step 805. After receiving the macro, the macro indicates to Pico to release the corresponding connection bearer.
  • Step 806 Pico releases the corresponding connection bearer and local resources as directed.
  • the Macro finally indicates to the MME that the local address and port of the involved ERAB bearer are updated. Assign addresses and ports to Macro.
  • connection bearer release of the UE on the Pico base station is completed, and the corresponding connection bearer is established on the Macro, which realizes flexible control of the host to the UE on the dual connection.
  • the above process can also be decided by Pico and initiated actively, and the process is the same as the process of the above process Pico and macro, so it will not be described here.
  • the UE has dual connectivity between Macro and Pico, and there are control plane and user plane connections on both nodes.
  • the faces are terminated in Macro and MME respectively, and the core network user plane node is the core network gateway.
  • the context of the macro management UE in the second base station, that is, the Pico base station is taken as an example, and the following steps are included:
  • Step 901. The Macro determines, according to information such as base station load or UE measurement, or according to other internal algorithms, that the ERAB bearer corresponding context of the UE on the Pico is to be modified. Therefore, the Macro sends a UE context modification message to the Pico, which carries any one or any combination of the following: UE identity information, UE security context information, UE capability information, and other context information that may be modified. Further, the step may also be initiated by the MME. For example, the MME initiates a UE context modification message to the Macro, and the Macro determines that the corresponding modification involves the context information of the UE on the Pico, so the Macro initiates a context modification message to the pico.
  • Step 902. The Pico saves the UE context modification message, and determines whether the modified context information affects the air interface DRB bearer. If the DRB is affected, it needs to be directly through the Macro or Pico (depending on whether there is a control plane connection on the Pico, If there is, Pico can send the message directly, otherwise it needs to be forwarded by Macro.)
  • the RRC connection reconfiguration process is initiated to the UE, instructing the UE to modify the context. After ensuring that the UE and Pico local UE context information is modified, the UE context tampering response is initiated to the Macro.
  • the Macro completes the context modification of the UE on the Pico base station.
  • the macro can also complete the context release of the UE on the Pico by the similar process described above, except that the release process is simpler, and the Pico receives the connection bearer and context resources of the UE on the Pico, and then returns the Macro. can. I won't go into details here.
  • the first base station can flexibly implement management control of the second base station.
  • the existing message flow can be reused to the utmost extent, and the modification of the core network and the second base station can be minimized, and the backward compatibility with the standard protocol is ensured.
  • a base station includes:
  • a management module configured to complete, by using a dual connectivity management interface between the base station and the second base station, a connection between the user equipment and the second base station when the base station is the first base station that is accessed by the user equipment Management, implementing dual connectivity of the user equipment with the first base station and the second base station Connect
  • the receiving module when used as the second base station, accepts the related management of the connection of the user equipment to the local base station by using the dual connectivity management interface between the base station and the first base station.
  • the management module is configured to complete related management of the connection of the user equipment to the second base station, and specifically includes:
  • the management module is configured to add, modify, or delete the connection bearer of the user equipment at the second base station.
  • the management module is configured to complete related management of the connection of the user equipment to the second base station, and specifically includes:
  • the management module is configured to establish, modify, or delete the user equipment in a context of the second base station.
  • the management module is configured to complete related management of the connection of the user equipment to the second base station, and specifically includes:
  • the management module is configured to route data received and sent by the user equipment by using the second base station.
  • the management module is configured to route data that is received and sent by the user equipment by using the second base station, and specifically includes:
  • the management module is configured to send, by using the dual-connection management interface of the local base station and the second base station, data corresponding to part or all of the radio bearers received by the core network to the second base station, for the received downlink data, And finally sent to the user equipment; and is further configured to route uplink data sent by the user equipment to the local base station by using the dual connectivity management interface on the second base station to the core network.
  • a program to instruct the associated hardware such as a read only memory, a magnetic disk, or an optical disk.
  • all or part of the steps of the above embodiments may also be implemented using one or more integrated circuits.
  • each module/unit in the foregoing embodiment may be implemented in the form of hardware, or may be implemented in the form of a software function module. The invention is not limited to any specific form of combination of hardware and software.
  • the connection between the network side and the terminal may not be separately limited by the transmission performance of one link, and the network side and the UE may flexibly schedule the distributed distribution of data according to the network environment or resource status. the way.
  • the UE frequently switches between small cells, user data can be offloaded to another connection, thus ensuring the continuity of data services and improving the performance and user experience of user data services.
  • service switching between service flows between multiple flows can be implemented through user plane connection changes, thereby reducing the signaling impact on the control plane of the network.
  • the embodiments of the present invention can fully guarantee the backward compatibility of the network.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种双连接的实现方法及基站,所述方法包括:用户设备接入的第一基站,通过本基站与第二基站之间的双连接管理接口,完成对所述用户设备在所述第二基站的连接的相关管理,实现所述用户设备与所述第一基站和所述第二基站的双连接。所述基站包括:管理模块,设置为:在本基站作为用户设备接入的第一基站时,通过本基站与第二基站之间的双连接管理接口,完成对所述用户设备在所述第二基站的连接的相关管理;接受模块,设置为:作为第二基站时,通过本基站与第一基站之间的双连接管理接口,接受所述第一基站对用户设备在本基站的连接的相关管理。采用本发明实施例后,网络侧和用户设备之间可以根据网络环境或资源状况灵活调度数据的分流分发方式。

Description

一种双连接的实现方法及基站
技术领域
本发明涉及在移动通信系统中实现双连接数据传输的方法, 尤其涉及一 种双连接的实现方法及基站。 背景技术
随着无线通信技术和标准的不断演进,移动分组业务得到了巨大的发展, 单终端的数据吞吐能力不断在提升。 以长期演进(Long Term Evolution, 简 称为 LTE ) 系统为例, 在 20M带宽内可以支持下行最大速率 100Mbps的数 据传输, 在后续增强的 LTE ( LTE Advanced ) 网络中, 数据的传输速率将进 一步提升, 甚至可以达到 lGbps。
LTE的用户面数据协议栈如图 1所示, 演进基站( Evolved eNB )从核心 网经用户层面 GPRS隧道协议( GPRS Tunnelling Protocol for the User Plane, 简称为 GTP-U ) 收到的下行数据, 经解包后通过分组数据汇聚协议(Packet Data Convergence Protocol, 简称为 PDCP )子层、 无线链路控制( Radio Link Control,简称为 RLC )协议子层、媒体接入控制( MAC , Medium Access Control ) 协议子层和物理层 (PHY )处理后发送给用户设备 ( User Equipment, 简称 为 UE ); 上行数据的发送与下行正好相反。 其中, Evolved eNB与核心网的 连接上的不同业务的用户面 GTP-U数据釆用演进无线接入承载( E-UTRAN Radio Access Bearer, 简称为 ERAB )来承载。 而 Evolved eNB与 UE之间的 用户面的连接釆用若干数据无线承载 ( Data Radio Bearer, DRB )来承载。
目前网络侧与 UE之间的数据传输连接是一对一的专用连接, 因此这条 连接链路的信号质量和使用的资源大小决定了两者间的数据传输性能。 如果 链路使用的资源受到限制或者信号质量比较差,则 UE的用户体验就会下降, 这是现在移动运营商面临的巨大挑战, 虽然网络容量逐年扩增, 但仍赶不上 用户终端数量的增加和用户对数据业务量需求的提高。
为了满足数据业务量的增长需求以及业务在地域上不平均的特点, 运营 商在部署新一代通信网络 (比如 LTE )的过程中,也在增加低功率节点 ( Low Power Node, 简称为 LPN )或称小小区 ( Small Cell )或微基站 ( Pico eNB ) 来进行热点增强。 随着 LPN小区的增加, 网络部署环境变得更加复杂, 同时 也带来了一些问题。 首先, 因为 LPN小区的覆盖范围相比于宏小区 (Macro Cell )要小得多, 容量也相对较小, 某些 LPN小区可能会轻易被用户占满而 导致负荷过高,从而影响用户数据的吞吐量, 而另外一些 LPN小区或宏小区 却处于相对较低的负荷水平上。 如果要平衡负荷, 需要网络侧执行负荷均衡 操作, 但该过程不够灵活, 尤其当小区较多时, 这种由于灵活性的缺乏而导 致的负荷不均的现象就会更加严重; 另外, 由于 LPN小区数量比较多, 因此 用户设备或称终端在网络内发生移动时, 会导致频繁的进行小区间切换 ( Handover ) , 从而引起频繁的数据业务中断甚至掉话等, 这也会导致用户 的数据吞吐量和用户体验的下降。 同时这种频繁的切换也会导致终端与网络 尤其是核心网会收到大量的信令冲击,从而可能导致系统资源拥塞甚至瘫痪。
随着将来运营商以及个人部署的 LPN小区数量的增加,上述情况会愈来 愈严重, 因此目前不少公司和运营商都倾向于寻求一种新的增强方案, 双连 接( Dual Connectivity )就是其中之一。 双连接下终端可以同时与两个以上的 网络节点保持连接, 比如 UE同时与宏小区和 LPN小区保持连接。 在网络负 荷不均衡时, 网络侧可以实时调控终端在两个节点上的传输数据量。 同时如 果 UE发生移动或由其他原因导致 LPN小区发生变更时, 另外一个小区还可 以保持连接, 且这种变更不会导致过多的信令冲击。
但是上述的双连接方式目前只是处在需求论证阶段, 在目前的网络架构 和流程下还无法实现上述的增强方案。 发明内容
本发明的目的是提供一种双连接的实现方法及基站, 以克服在现有网络 架构和流程下还无法实现双连接的增强方案的缺陷。
为解决上述问题, 本发明提供了一种双连接的实现方法, 包括: 用户设备接入的第一基站, 通过本基站与第二基站之间的双连接管理接 口, 完成对所述用户设备在所述第二基站的连接的相关管理, 实现所述用户 设备与所述第一基站和所述第二基站的双连接。 优选地, 所述用户设备在所述第一基站和第二基站上的连接分别承载一 条以上的无线承载(RB )数据和 /或演进无线接入承载数据。
优选地, 所述 RB数据包括控制面数据和 /或用户面数据;
其中, 所述控制面数据为信令无线承载数据, 所述用户面数据为数据无 线承载数据。
优选地, 所述完成对所述用户设备在所述第二基站的连接的相关管理, 包括:对所述用户设备在所述第二基站的连接承载进行添加、修改或者删除。
优选地, 所述完成对所述用户设备在所述第二基站的连接的相关管理, 包括: 对所述用户设备在所述第二基站的上下文进行建立、 修改或删除。
优选地, 所述完成对所述用户设备在所述第二基站的连接的相关管理, 包括: 路由所述用户设备通过所述第二基站接收和发送的数据。
优选地, 所述路由所述用户设备通过所述第二基站接收和发送的数据, 包括: 所述第一基站对于接收的下行数据, 将从核心网处接收到的部分或全 部无线承载对应的数据通过本基站和所述第二基站的双连接管理接口发送给 所述第二基站, 并最终发送给所述用户设备;
对于所述用户设备通过所述第二基站发送的上行数据, 所述第二基站将 通过双连接管理接口传递给第一基站, 并由所述第一基站将上行数据路由到 所述核心网。
优选地, 所述第一基站对所述用户设备在第二基站的连接承载以及上下 文的管理通过所述第一基站与所述第二基站间的双连接管理接口控制面信令 流程实现。
相应地, 本发明还提供了一种基站, 包括:
管理模块, 设置为: 在本基站作为用户设备接入的第一基站时, 通过本 基站与第二基站之间的双连接管理接口, 完成对所述用户设备在所述第二基 站的连接的相关管理, 实现所述用户设备与所述第一基站和所述第二基站的 双连接;
接受模块, 设置为: 作为第二基站时, 通过本基站与第一基站之间的双 连接管理接口, 接受所述第一基站对用户设备在本基站的连接的相关管理。 优选地, 所述管理模块设置为: 完成对所述用户设备在所述第二基站的 连接的相关管理, 包括: 所述管理模块对所述用户设备在所述第二基站的连 接承载进行添加、 修改或者删除。
优选地, 所述管理模块设置为: 完成对所述用户设备在所述第二基站的 连接的相关管理, 包括: 所述管理模块对所述用户设备在所述第二基站的上 下文进行建立、 修改或删除。
优选地, 所述管理模块设置为: 完成对所述用户设备在所述第二基站的 连接的相关管理, 包括: 所述管理模块路由所述用户设备通过所述第二基站 接收和发送的数据。
优选地, 所述管理模块设置为: 路由所述用户设备通过所述第二基站接 收和发送的数据, 包括: 所述管理模块对于接收的下行数据, 将从核心网处 接收到的部分或全部无线承载对应的数据通过本基站和所述第二基站的双连 接管理接口发送给所述第二基站, 并最终发送给所述用户设备; 还对于所述 用户设备通过所述第二基站上的双连接管理接口发送到本基站的上行数据路 由到所述核心网。
釆用本发明实施例后, 可以使网络侧和终端之间的连接不再单独受限于 一条链路的传输性能, 网络侧和 UE之间可以根据网络环境或资源状况灵活 调度数据的分流分发方式。 在 UE发生小小区间的频繁切换时, 用户数据可 以被分流到另外一条连接上, 因而可以保证数据业务的连续性, 提升了用户 数据业务的性能和用户体验。 同时, 业务连接在多流之间的业务切换可以通 过用户面连接变更实现, 从而减少了对于网络的控制面的信令冲击。 此外本 发明实施例还可以充分保证网络的后向兼容性。 附图概述
图 1 是相关技术中 LTE用户面协议栈示意图;
图 2 是本发明实施例中双连接网络实现方法示意图; 图 3 ( a ) - ( b )是本发明实施例中双连接场景下第二基站的用户面路 由协议栈示意图;
图 4 是本发明实施例中第一基站与第二基站接口协议栈示意图; 图 5是本发明应用示例一流程示意图;
图 6是本发明应用示例二流程示意图;
图 7是本发明应用示例三流程示意图;
图 8是本发明应用示例四流程示意图;
图 9是本发明应用示例五流程示意图;
图 10是本发明基站示意图。 本发明的较佳实施方式
下文中将结合附图对本发明的实施例进行详细说明。 需要说明的是, 在 不冲突的情况下, 本申请中的实施例及实施例中的特征可以相互任意组合。
本实施例中, 一种双连接的实现方法, 应用在终端同时接入两个以上无 线接入网节点的情形下, 如图 2所示, 包括:
用户设备接入的第一基站, 通过该第一基站与第二基站之间的双连接管 理接口, 完成对该用户设备在第二基站的连接的相关管理, 实现用户设备与 第一基站和第二基站的双连接。 其中, 所述第一基站对用户设备在第二基站 的连接的相关管理包括如下一项或多项:
1 )对用户设备在第二基站的连接承载的管理,其中可以包括如下一项或 多项:
A ) 添加用户设备在第二基站的连接承载;
B )修改用户设备在第二基站的连接承载;
C )删除用户设备在第二基站的连接承载。
2 )对用户设备在第二基站的上下文的管理, 其中包括如下一项或多项:
A )用户设备上下文的建立
B )用户设备上下文的修改 C )用户设备上下文的删除
3 )路由用户设备通过第二基站接收和发送的数据。
其中, 所述用户设备在第二基站上的连接承载包括无线承载 (Radio Bearer,简称为 RB )和/或演进无线接入承载( E-UTRAN Radio Access Bearer, 简称为 ERAB ) , 所述 RB包括信令无线承载( Signaling Radio Bearer, 简称 为 SRB )数据和 /或数据无线承载( Data Radio Bearer, 简称 DRB ) 。
其中, 所述用户设备在第一基站和第二基站上的连接分别可以承载一条 以上的无线承载 (Radio Bearer, 简称为 RB )数据和 /或演进无线接入承载 ( E-UTRAN Radio Access Bearer, 简称为 ERAB )数据。
进一步地,第一基站路由用户设备通过第二基站接收和发送的数据是指: 对于接收的下行数据, 第一基站将从核心网 (具体的是指 S-GW ( System Gate Way, 系统网关) )处接收到的部分或全部无线承载对应的数 据通过第一基站和第二基站的双连接管理接口发送给第二基站, 并最终发送 给 UE; 相应的, 对于 UE通过第二基站发送的上行数据, 第二基站将通过上 述双连接管理接口传递给第一基站, 并由第一基站将该上行数据路由到 S-GW。 其中, 上述上下行数据在双连接管理接口上的传递可以使用现有的 任何协议栈完成, 比如使用 GTP-U隧道协议完成, 如图 3a所示。
进一步地, 所述用户设备通过第二基站接收和发送的数据也可以不经过 第一基站的路由, 而直接发送给核心网, 如图 3b所示。 至于是否使用第一基 站对第二基站的路由功能, 可以由具体实现而定。
进一步地, 所述第一基站对用户设备在第二基站的连接承载以及上下文 的管理可以通过第一基站与第二基站间的双连接管理接口控制面信令流程实 现, 如图 4所示, 连接接口的协议栈也可以釆用现有 S1接口协议或其他协 议栈。
进一步地,所述的第一基站和第二基站是 LTE系统中的无线接入网网元 的统称, 可以是宏基站 (Macro ) 、 微基站(Pico ) 、 低功率节点 ( LPN ) 、 小小区基站(Small Cell )或家庭基站( HeNB ) 。 在具体实现中依网络部署 而定。
进一步的, 对于核心网控制面实体, 即移动管理实体 ( Mobility Management Entity,简称为 MME )与第一基站通过 S1接口协议栈进行交互。
下面结合不同的应用示例对本发明进行进一步的说明。
应用示例一
如图 5所示, 部署网络中存在 Macro和 Pico, 其中 UE在第一基站即 Macro存在业务连接承载, 其中网络侧接入层( Access Stratum )和非接入层 ( Non- Access Statum )控制面分别终结于 Macro和 MME, Macro侧用户面 终结点在核心网网关( S/P-GW )。 本实施例以添加 UE在第二基站(即 Pico 基站) 的连接以及建立 UE上下文的方法为例进行说明, 包括以下步骤: 步骤 1 , Macro向 Pico发送切换请求, 其中携带了需要在 Pico建立的连 接承载信息。 因为 UE之前在 Pico上不存在连接, 所以切换请求中还需要携 带该 UE的上下文信息 (Context ) 。 其中该步骤可以复用现有 S1接口的信 令, 比如通过切换请求( Handover request ) 实现, 也可以通过其他既有信令 或新增信令实现。
进一步地, 触发 Macro发起上述流程的条件, 可以是由 Macro内部算法 实现, 也可以是由核心网或 UE侧触发, 比如 MME主动发起新承载建立。
进一步地, 上述切换请求中携带的连接承载信息至少包括: ERAB的标 识信息、 ERAB的承载地址和端口标识等信息。 其中承载地址为上行数据传 输地址, 可以设置为 Macro的地址或核心网网关 S/P-GW的地址, 依具体实 现而定。
进一步地, 上述切换请求中携带的 UE上下文信息至少包括 UE的标识 信息、 UE能力信息以及安全上下文信息等。
步骤 2. Pico根据切换请求进行接纳、 资源分配以及其他内部处理, 并根 据切换请求保存且建立 UE在 Pico的上下文信息,成功后向 Macro发送切换 响应, 其中携带了 Pico为 UE分配的标识以及资源和用户面连接承载信息。 其中该步骤可以复用现有 S1 接口的切换请求响应消息 (Handover Request Acknowledge ) , 或通过其他既有信令或新增信令实现。
其中用户面连接承载信息包括空口承载信息的 DRB ( Data Radio Bearer , 数据无线承载)承载信息, 以及在地面的 ERAB承载连接信息。
步骤 3. Macro将 Pico回复的切换响应中的相关信息发送给 UE,指示 UE 在 Pico建立连接承载。 其中上述相关信息可以通过现有 RRC连接重配置消 息来携带, 也可以通过其他新增消息携带。 为了区别于单连接的正常信令, 可以在消息中增加特殊标志或特定字段。
步骤 4. UE与 Pico取得同步, 其中该步骤根据实际情况可选执行。
步骤 5. UE根据 Macro的命令消息完成上下文建立, 以及与 Pico取得同 步后, 向 Macro发送回复消息。
因为 Pico在步骤 2中没有分配控制面承载信息,所以 UE与 Pico只建立 用户面 DRB承载, 不建立控制面连接。 因此在本步骤中, UE只能向 Macro 发送回复消息。
如果 Pico在步骤 2中为 UE分配了控制面 SRB承载信息,则在本步骤中, UE可以直接在 UE与 Pico的控制面连接上发送回复消息。
步骤 6. Macro向 Pico转发 UE的回复消息, 通知 Pico承载建立完成。 经过上述步骤, 完成了 UE在 Pico基站上的连接承载建立。 其中对应承 载的数据可以从 Pico上进行收发, 而另一部分承载仍留在 Macro上,从而实 现了数据在 Macro侧的分流, 或者说实现了双连接的数据传输。 在上述步骤 中, Macro可以根据网络的实际情况(比如网络负荷)或其他算法实时管理 连接承载。 而从核心网看仍然只关心 Macro的连接和管理, 因此该方案既解 决了 UE双连接的管理, 又保证了对核心网的后向兼容性。
应用示例二
如图 6所示, 部署网络中存在 Macro和 Pico , UE在 Macro和 Pico存在 双连接, 其中 UE在 Pico只存在用户面连接, 其中网络侧接入层和非接入层 控制面分别终结于 Macro和 MME, 核心网用户面节点为核心网网关。 本实 施例以添加 UE在第二基站即 Pico基站的连接的方法为例进行说明, 包括以 下步骤:
步骤 601. MME向 Macro发送 ERAB建立请求消息, 其中携带要建立的 ERAB承载信息。
步骤 602. Macro收到消息后,根据本基站以及 Pico基站负荷信息, 或根 据其他既定算法决定将新建的 ERAB建立到 Pico上去。 因此 Macro向 Pico 转发上述 ERAB建立请求消息。
因为 UE在 Pico上已经有连接, 即已经有上下文, 因此本步骤中可以不 携带 UE的其他上下文信息, 或者可以携带对 UE上下文的修改信息。 具体 实施依实现而定。
上述 ERAB建立请求消息中携带的 ERAB承载信息至少包括 ERAB的标 识信息、 ERAB的 载地址和端口标识等信息。 其中 载地址为核心网网关 S/P-GW的地址。
如果 Macro想作为 Pico的路由节点, 则将 ERAB的地址设置为 Macro 的地址, Macro需要做 ERAB在 S/P-GW的地址与其在 Macro地址的转换。
步骤 603. Pico根据请求消息进行接纳、 资源分配以及其他内部处理, 成 功后 Pico通过发送切换响应将新建承载信息发送给 Macro, 其中携带了 Pico 为新建承载配置的信息和用户面连接承载信息。
其中该步骤可以复用现有 S1 接口的切换请求响应消息 (Handover Request Acknowledge ) , 或通过其他既有信令或新增信令实现。
上述用户面连接承载信息包括空口承载信息的 DRB承载信息,以及 Pico 分配的 Pico侧的 ERAB 7 载的地址和端口信息。
步骤 604. Macro将 Pico回复的切换响应中的相关信息发送给 UE, 指示 UE在 Pico建立连接承载。其中上述相关信息可以通过现有 RRC连接重配置 消息来携带,也可以通过其他新增消息携带。为了区别与单连接的正常信令, 可以在消息中增加特殊标志或特定字段。
步骤 605. UE根据 Macro的命令消息完成新承载建立, 向 Macro发送回 复消息。
因为 UE在 Pico中没有控制面承载, 所以 UE只能向 Macro发送回复消 息。 步骤 603中也是因为这个原因, Pico只能通过 Macro的转发与 UE发生 交互。
如果 UE在 Pico存在控制面连接, 则 UE可以直接在 UE与 Pico的控制 面连接上发送回复消息。此时,步骤 603中 Pico也可以直接向 UE发送消息。
步骤 606. Macro向 Pico转发 UE的回复消息, 通知 Pico承载建立完成。 步骤 607. Macro向 MME发送 ERAB建立响应消息,其中 ERAB在接入 网侧的地址和端口信息为 Pico在步骤 603中所分配的 ERAB 载信息。
经过上述步骤, 完成了 UE在 Pico上的连接承载建立。
在上述步骤中, Macro管理 UE在 Pico上的连接承载, 且 Macro可以根 据网络的实际情况(比如网络负荷)或其他算法实时管理连接承载。 而从核 心网看仍然只关心 Macro的连接和管理, 因此该方案既解决了 UE双连接的 管理, 又保证了对核心网的后向兼容性。
进一步地,如果 Macro根据其具体实现算法决定要把 Macro上的承载迁 移到 Pico上去, 也可以向 Pico发送 ERAB承载建立消息。 其步骤与上述过 程类似, 只是此过程由于不是由核心网触发的, 所以在流程最后 Macro根据 用户面的路由信息决定是否要通知核心网所迁移的承载信息。
应用示例三
如图 7所示, 部署网络中存在 Macro和 Pico , UE在 Macro和 Pico存在 双连接, 且在两个节点上都存在控制面和用户面连接, 其中网络侧接入层和 非接入层控制面分别终结于 Macro和 MME , 核心网用户面节点为核心网网 关。 本实施例以释放 UE在第二基站即 Pico上的连接的方法为例进行说明, 包括以下步骤:
步骤 701. MME向 Macro发送 ERAB释放命令消息, 其中携带要释放的 ERAB 7 载信息。
步骤 702. Macro收到上述消息后,判断要释放的 ERAB承载对应的连接 存在于 Pico上, 因此 Macro向 Pico转发 ERAB释放命令消息, 其中携带的 ERAB承载信息至少包括 ERAB的标识信息。 步骤 703. Pico根据接收到的 ERAB释放命令消息向 UE发起 RRC连接 重配, 其中指示需要释放的 DRB信息;
步骤 704. UE收到后, 释放在 Pico上的对应的 DRB承载, 并向 Pico回 复 RRC连接重配完成消息。
因为 UE在 Pico上存在控制面,所以步骤 703和 704可以由 Pico直接与
UE交互。 否则, 上述消息只能通过 Macro转发。
步骤 705. Pico收到 UE的回复并释放本地资源后, 向 Macro回复 ERAB 释放响应消息。
步骤 706. Macro向 MME发送 ERAB释放响应消息。
经过上述步骤, 完成了 UE在 Pico上的连接承载释放。
进一步地, 如果 MME发起的是 ERAB修改过程, 也可以通过类似上述 方式完成, 只是消息流程变成了 ERAB修改流程。 因此这里不再赘述。
应用示例四
如图 8所示, 部署网络中存在 Macro和 Pico , UE在 Macro和 Pico存在 双连接, 且在两个节点上都存在控制面和用户面连接, 其中网络侧接入层和 非接入层控制面分别终结于 Macro和 MME , 核心网用户面节点为核心网网 关。 本实施例以释放 UE在第二基站即 Pico上的所有连接承载和上下文为例 进行说明, 包括以下步骤:
步骤 801. Macro根据基站负荷或 UE测量等信息,或根据其他内部算法, 判断要释放 UE在 Pico上的 ERAB承载对应的连接承载 ,并将其迁移到 Macro 上。 因此 Macro向 Pico发送承载迁移指示, 其中携带要迁移的目标基站的标 识信息, 即 Macro的标识信息。
进一步地, 如果只释放 Pico上的部分承载连接, 则该消息中还需要携带 要变更的连接承载信息, 其中至少包括 ERAB的标识信息; 如果要释放 Pico 上的所有承载, 则该消息可以只携带一个指示信息即可。
步骤 802. Pico根据接收到的承载迁移指示向 Macro发起切换需求,其中 携带要迁移的承载信息。 可选的, Pico 同时向 Macro发起数据前传 (Data Forwarding )过程, 将 Pico上的緩存数据发送给 Macro。
其中, 上述过程可以通过复用 S1信息切换需求(Handover Required )消 息完成。
步骤 803. Macro根据从 Pico收到的切换需求, 为迁移的承载分配资源, 并向 UE发送 RRC连接重配置消息,指示 UE释放在 Pico上的相应连接,并 在 Macro建立对应连接承载。
步骤 804. UE完成连接建立后, 向 Macro回复完成消息。
步骤 805. Macro收到后, 向 Pico指示释放对应的连接承载。
步骤 806. Pico按照指示释放相应的连接承载和本地资源。
可选的, 如果之前 Pico上的用户面承载数据是直接发送给 S/P-GW的, 如图 3b所示, 则 Macro最终还要向 MME指示将所涉及的 ERAB承载的本 地地址和端口更新为 Macro分配地址和端口。
经过上述步骤, 完成了 UE在 Pico基站上的连接承载释放, 并在 Macro 上建立了对应的连接承载, 实现了 Macro对 UE在双连接上的承载的灵活控 制。
进一步地, 上述过程也可以由 Pico做决策, 并主动发起, 此后过程同上 述流程 Pico与 macro的交互过程 , 因此这里不再赘述。
应用示例五
如图 9所示, 部署网络中存在 Macro和 Pico , UE在 Macro和 Pico存在 双连接, 且在两个节点上都存在控制面和用户面连接, 其中网络侧接入层和 非接入层控制面分别终结于 Macro和 MME , 核心网用户面节点为核心网网 关。本实施例以 Macro管理 UE在第二基站即 Pico基站的上下文为例进行说 明, 包括以下步骤:
步骤 901. Macro根据基站负荷或 UE测量等信息,或根据其他内部算法, 判断要修改 UE在 Pico上的 ERAB承载对应上下文。 因此 Macro向 Pico发 送 UE上下文修改消息,其中携带如下的任意一项或任意组合: UE标识信息、 UE安全上下文信息、 UE能力信息, 以及其他可能修改的上下文信息。 进一步地, 该步骤也可以由 MME发起, 比如 MME向 Macro发起 UE 上下文修改消息, Macro判断对应修改涉及到了 UE在 Pico上的上下文信息, 因此 Macro向 pico发起上下文修改消息。
步骤 902. Pico保存该 UE上下文修改消息, 并判断修改的上下文信息是 否会影响到空口 DRB承载, 如果影响到 DRB , 则需要通过 Macro或者 Pico 直接(具体依 Pico上是否有控制面连接而定, 如果有则 Pico可以直接发送 消息, 否则需要通过 Macro转发 ) 向 UE发起 RRC连接重配置过程, 指示 UE修改上下文。 在确保 UE以及 Pico本地的 UE上下文信息修改完成后, 向 Macro发起 UE上下文爹改响应。
经过上述步骤, Macro完成了 UE在 Pico基站上的上下文修改。
进一步地, Macro也可以通过上述类似过程完成 Macro对 UE在 Pico上 的上下文释放, 区别在于,释放过程会更加简单, Pico收到后释放 UE在 Pico 上的连接承载和上下文资源, 然后回复 Macro即可。 这里不再赘述。
通过上述实施例, 可以看出, 通过本发明所述方法, 第一基站可以灵活 实现对第二基站的管理控制。 并可以最大限度的复用现有的消息流程, 且可 以做到对核心网和第二基站的修改的最小化, 同时保证了对标准协议的后向 兼容性。
需要说明的是, 本发明的上述实施例只是对 Macro和 Pico部署场景, 的 一些典型流程提出了可行的实施方案, 但同样适用于其他的部署场景, 比如 Macro与 Macro, Pico与 Pico, Macro与 HeNB或 LPN, 以及 HeNB与 Pico 等等任意组合场景, 另外本发明所述流程也不限制还有其他的消息流程, 但 都可以通过本发明所述方法解决。
此外, 在本实施, 如图 10所示, 一种基站, 包括:
管理模块, 用于在本基站作为用户设备接入的第一基站时, 通过本基站 与第二基站之间的双连接管理接口, 完成对所述用户设备在所述第二基站的 连接的相关管理, 实现所述用户设备与所述第一基站和所述第二基站的双连 接;
接受模块, 用于作为第二基站时, 通过本基站与第一基站之间的双连接 管理接口, 接受所述第一基站对用户设备在本基站的连接的相关管理。
进一步地,
所述管理模块用于完成对所述用户设备在所述第二基站的连接的相关管 理, 具体包括:
所述管理模块用于对所述用户设备在所述第二基站的连接承载进行添加、 修改或者删除。
进一步地,
所述管理模块用于完成对所述用户设备在所述第二基站的连接的相关管 理, 具体包括:
所述管理模块用于对所述用户设备在所述第二基站的上下文进行建立、 修改或删除。
进一步地,
所述管理模块用于完成对所述用户设备在所述第二基站的连接的相关管 理, 具体包括:
所述管理模块用于路由所述用户设备通过所述第二基站接收和发送的数 据。
进一步地,
所述管理模块用于路由所述用户设备通过所述第二基站接收和发送的数 据, 具体包括:
所述管理模块用于对于接收的下行数据, 将从核心网处接收到的部分或 全部无线承载对应的数据通过本基站和所述第二基站的双连接管理接口发送 给所述第二基站, 并最终发送给所述用户设备; 还用于对于所述用户设备通 过所述第二基站上的双连接管理接口发送到本基站的上行数据路由到所述核 心网。 本领域普通技术人员可以理解上述方法中的全部或部分步骤可通过程序 来指令相关硬件完成, 所述程序可以存储于计算机可读存储介质中, 如只读 存储器、 磁盘或光盘等。 可选地, 上述实施例的全部或部分步骤也可以使用 一个或多个集成电路来实现。 相应地, 上述实施例中的各模块 /单元可以釆用 硬件的形式实现, 也可以釆用软件功能模块的形式实现。 本发明不限制于任 何特定形式的硬件和软件的结合。
以上所述仅为本发明的优选实施例而已, 并非用于限定本发明的保护范 围。 根据本发明的发明内容, 还可有其他多种实施例, 在不背离本发明精神 改变和变形, 凡在本发明的精神和原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。
工业实用性
釆用本发明实施例后, 可以使网络侧和终端之间的连接不再单独受限于 一条链路的传输性能, 网络侧和 UE之间可以根据网络环境或资源状况灵活 调度数据的分流分发方式。 在 UE发生小小区间的频繁切换时, 用户数据可 以被分流到另外一条连接上, 因而可以保证数据业务的连续性, 提升了用户 数据业务的性能和用户体验。 同时, 业务连接在多流之间的业务切换可以通 过用户面连接变更实现, 从而减少了对于网络的控制面的信令冲击。 此外本 发明实施例还可以充分保证网络的后向兼容性。

Claims

权 利 要 求 书
1、 一种双连接的实现方法, 包括:
用户设备接入的第一基站, 通过本基站与第二基站之间的双连接管理接 口, 完成对所述用户设备在所述第二基站的连接的相关管理, 实现所述用户 设备与所述第一基站和所述第二基站的双连接。
2、 如权利要求 1所述的方法, 其中,
所述用户设备在所述第一基站和第二基站上的连接分别承载一条以上的 无线承载 (RB )数据和 /或演进无线接入承载数据。
3、 如权利要求 2所述的方法, 其中,
所述 RB数据包括控制面数据和 /或用户面数据;
其中, 所述控制面数据为信令无线承载数据, 所述用户面数据为数据无 线承载数据。
4、 如权利要求 1所述的方法, 其中,
所述完成对所述用户设备在所述第二基站的连接的相关管理, 包括: 对所述用户设备在所述第二基站的连接承载进行添加、 修改或者删除。
5、 如权利要求 1所述的方法, 其中,
所述完成对所述用户设备在所述第二基站的连接的相关管理, 包括: 对所述用户设备在所述第二基站的上下文进行建立、 修改或删除。
6、 如权利要求 1、 4或 5所述的方法, 其中,
所述完成对所述用户设备在所述第二基站的连接的相关管理, 包括: 路由所述用户设备通过所述第二基站接收和发送的数据。
7、 如权利要求 6所述的方法, 其中,
所述路由所述用户设备通过所述第二基站接收和发送的数据, 包括: 所述第一基站对于接收的下行数据, 将从核心网处接收到的部分或全部 无线承载对应的数据通过本基站和所述第二基站的双连接管理接口发送给所 述第二基站, 并最终发送给所述用户设备; 对于所述用户设备通过所述第二基站发送的上行数据, 所述第二基站将 通过双连接管理接口传递给第一基站, 并由所述第一基站将上行数据路由到 所述核心网。
8、 如权利要求 4或 5所述的方法, 其中,
所述第一基站对所述用户设备在第二基站的连接承载以及上下文的管理 通过所述第一基站与所述第二基站间的双连接管理接口控制面信令流程实现。
9、 一种基站, 包括:
管理模块, 设置为: 在本基站作为用户设备接入的第一基站时, 通过本 基站与第二基站之间的双连接管理接口, 完成对所述用户设备在所述第二基 站的连接的相关管理, 实现所述用户设备与所述第一基站和所述第二基站的 双连接;
接受模块, 设置为: 作为第二基站时, 通过本基站与第一基站之间的双 连接管理接口, 接受所述第一基站对用户设备在本基站的连接的相关管理。
10、 如权利要求 9所述的基站, 其中,
所述管理模块设置为: 完成对所述用户设备在所述第二基站的连接的相 关管理, 包括:
所述管理模块对所述用户设备在所述第二基站的连接承载进行添加、 修 改或者删除。
11、 如权利要求 9所述的基站, 其中,
所述管理模块设置为: 完成对所述用户设备在所述第二基站的连接的相 关管理, 包括:
所述管理模块对所述用户设备在所述第二基站的上下文进行建立、 修改 或删除。
12、 如权利要求 9~11中任意一项所述的基站, 其中,
所述管理模块设置为: 完成对所述用户设备在所述第二基站的连接的相 关管理, 包括:
所述管理模块路由所述用户设备通过所述第二基站接收和发送的数据。
13、 如权利要求 12所述的基站, 其中,
所述管理模块设置为: 路由所述用户设备通过所述第二基站接收和发送 的数据, 包括:
所述管理模块对于接收的下行数据, 将从核心网处接收到的部分或全部 无线承载对应的数据通过本基站和所述第二基站的双连接管理接口发送给所 述第二基站, 并最终发送给所述用户设备; 还对于所述用户设备通过所述第 二基站上的双连接管理接口发送到本基站的上行数据路由到所述核心网。
PCT/CN2014/073635 2013-04-15 2014-03-18 一种双连接的实现方法及基站 WO2014169748A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP14785499.6A EP2947951B1 (en) 2013-04-15 2014-03-18 Double-connection implementation method and base station
US14/776,704 US9986462B2 (en) 2013-04-15 2014-03-18 Double-connection implementation method and base station

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310130364.7A CN104105221B (zh) 2013-04-15 2013-04-15 一种双连接的实现方法及基站
CN201310130364.7 2013-04-15

Publications (1)

Publication Number Publication Date
WO2014169748A1 true WO2014169748A1 (zh) 2014-10-23

Family

ID=51672916

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/073635 WO2014169748A1 (zh) 2013-04-15 2014-03-18 一种双连接的实现方法及基站

Country Status (4)

Country Link
US (1) US9986462B2 (zh)
EP (1) EP2947951B1 (zh)
CN (1) CN104105221B (zh)
WO (1) WO2014169748A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019080137A1 (zh) * 2017-10-28 2019-05-02 Oppo广东移动通信有限公司 传输数据的方法、网络设备和终端设备

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014206445A1 (en) * 2013-06-25 2014-12-31 Nokia Solutions And Networks Oy Control of resources
JP2015012418A (ja) * 2013-06-28 2015-01-19 株式会社Nttドコモ 移動通信システム
EP2919519B1 (en) * 2014-03-14 2022-07-06 HTC Corporation Connection modification method applicable to user equipment and base station
KR101953204B1 (ko) 2014-06-11 2019-02-28 콘비다 와이어리스, 엘엘씨 로컬 콘텐츠 리다이렉션을 위한 매핑 서비스
CN105813091B (zh) * 2014-12-30 2019-07-23 中国电信股份有限公司 信息收发方法和系统、虚拟宏基站控制装置、微基站
CN105813098B (zh) * 2014-12-30 2019-06-07 中国电信股份有限公司 双连接通信系统和方法
CN105813052A (zh) * 2014-12-31 2016-07-27 中兴通讯股份有限公司 用户面路径的更新方法、装置及系统
CN105873133B (zh) 2015-01-23 2021-10-29 北京三星通信技术研究有限公司 双连接架构下支持业务本地分流的方法及设备
CN106454946A (zh) * 2015-08-12 2017-02-22 中兴通讯股份有限公司 一种数据承载的迁移方法、装置和演进型节点
CN106572479B (zh) * 2015-10-10 2020-02-14 中国移动通信集团公司 一种无线数据承载的选择方法、触发方法、装置及基站
CN106658425B (zh) * 2015-11-03 2020-05-05 普天信息技术有限公司 适用于分层异构组网的e-MBMS配置方法及微基站
US10064098B2 (en) * 2015-12-07 2018-08-28 Google Llc Dual connectivity and carrier aggregation at an IP layer
WO2018018621A1 (zh) * 2016-07-29 2018-02-01 广东欧珀移动通信有限公司 建立辅连接的方法和装置
WO2018023726A1 (en) * 2016-08-05 2018-02-08 Nokia Technologies Oy Method and apparatus for signaling transmission/processing in a wireless communication system
WO2018027987A1 (zh) * 2016-08-12 2018-02-15 华为技术有限公司 双连接方法和装置
US10582523B2 (en) * 2016-08-13 2020-03-03 Qualcomm Incorporated Method and apparatus for secondary base station mobility
CN110248382B (zh) * 2017-01-05 2020-09-08 华为技术有限公司 信息传输的方法和装置
WO2018126462A1 (zh) * 2017-01-06 2018-07-12 华为技术有限公司 一种通信方法、相关设备及系统
CN108924941B (zh) * 2017-03-24 2023-09-08 中兴通讯股份有限公司 信息传输方法和基站
US10485048B2 (en) 2017-06-15 2019-11-19 Apple Inc. TDM transmission for inter-RAT dual connectivity UE
CN109788577A (zh) * 2017-11-10 2019-05-21 华为技术有限公司 双连接通信方法、装置、基站以及用户面节点
CN109802982B (zh) * 2017-11-17 2021-04-20 中兴通讯股份有限公司 一种双连接实现方法、装置及系统
AU2018404377B2 (en) 2018-01-24 2022-02-17 Zte Corporation Methods and computing device for splitting traffic across multiple accesses
CN110139324B (zh) * 2018-02-08 2022-07-12 大唐移动通信设备有限公司 消息传输方法及装置、计算机存储介质
CN113923799A (zh) 2018-02-14 2022-01-11 华为技术有限公司 一种无线回传通信处理方法和相关设备
WO2020150997A1 (en) * 2019-01-25 2020-07-30 Mediatek Singapore Pte. Ltd. Apparatus and methods to support dual-protocol for mobility enhancement
EP3918832A4 (en) 2019-01-31 2022-02-23 ZTE Corporation METHOD AND DEVICE FOR CARRIER TRAFFIC MIGRATION IN SYSTEMS WITH MULTICONNECTIVITY
CN112788650B (zh) * 2019-11-07 2022-10-21 Oppo(重庆)智能科技有限公司 一种网络连接方法、终端设备及存储介质
US11329710B2 (en) * 2019-11-08 2022-05-10 At&T Intellectual Property I, L.P. Facilitation of beam failure indication for multiple transmission points for 5G or other next generation network
CN113784391B (zh) * 2020-06-09 2023-08-15 中国移动通信集团设计院有限公司 自适应数据分流方法及装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1235744A (zh) * 1996-08-30 1999-11-17 艾利森电话股份有限公司 在专用网络和公共移动网络之间用于移动辅助切换的无线通信系统和方法
CN102265671A (zh) * 2008-12-23 2011-11-30 高通股份有限公司 基于封闭用户组订阅信息的切换控制

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9072020B2 (en) * 2009-08-26 2015-06-30 Samsung Electronics Co., Ltd. Methods and apparatus to support coordinated interference mitigation in multi-tier networks
WO2011137932A1 (en) * 2010-05-06 2011-11-10 Nokia Siemens Networks Oy Method and device for data processing in a wireless network
KR101724371B1 (ko) * 2010-05-28 2017-04-10 삼성전자주식회사 셀들이 중첩되는 무선통신 시스템에서 이동성을 지원하기 위한 장치 및 방법
CN102348244B (zh) * 2010-08-03 2014-11-05 华为技术有限公司 蜂窝通信系统、终端在小区间切换的方法及宏基站
EP2807859B1 (en) * 2012-01-25 2019-02-20 Telefonaktiebolaget LM Ericsson (publ) Methods and apparatus for hetergeneous network handover
US20150009923A1 (en) * 2012-02-07 2015-01-08 Nokia Corporation Method and Apparatus to Report and Handle Buffer Status for User Equipment Working in Inter-Site Carrier Aggregation Mode
WO2014036734A1 (en) * 2012-09-10 2014-03-13 Broadcom Corporation Uplink configuration and transmission control in inter-site carrier aggregation
EP4075714A1 (en) * 2012-09-28 2022-10-19 BlackBerry Limited Method for enabling further l1 enhancements in lte heterogeneous networks
DE112012006984B4 (de) * 2012-10-08 2023-09-14 Avago Technologies International Sales Pte. Ltd. Verfahren und Vorrichtung zur Verwaltung von Dualverbindungserrichtung
US20150131535A1 (en) * 2012-12-14 2015-05-14 Telefonaktiebolaget L M Ericsson (pulb) Node and Method for Establishing Auxiliary Bearers
US9807654B2 (en) * 2013-02-08 2017-10-31 Nokia Solutions And Networks Oy Mobility in heterogeneous network environments
EP2982198B1 (en) * 2013-04-02 2020-11-18 Nokia Technologies Oy Method and apparatus for data radio bearer configuration in a heterogeneous network
CN105230077B (zh) * 2013-04-12 2020-02-21 诺基亚通信公司 用于pdcp操作的装置、方法以及用户设备

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1235744A (zh) * 1996-08-30 1999-11-17 艾利森电话股份有限公司 在专用网络和公共移动网络之间用于移动辅助切换的无线通信系统和方法
CN102265671A (zh) * 2008-12-23 2011-11-30 高通股份有限公司 基于封闭用户组订阅信息的切换控制

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
NTT DOCOMO, INC.: "Discussion on U-plane architecture for dual connectivity", 3GPP TSG-RAN WG2 #81, 28 January 2013 (2013-01-28) - 1 February 2013 (2013-02-01), ST. JULIAN'S, MALTA, pages 1 - 5, XP050668065 *
NTT DOCOMO, INC.: "Necessity of C-plane Architecture Enhancements for Dual Connectivity", 3GPP TSG-RAN2# 81, 28 January 2013 (2013-01-28) - 1 February 2013 (2013-02-01), ST. JULIAN'S, MALTA, pages 1 - 4, XP050668107 *
See also references of EP2947951A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019080137A1 (zh) * 2017-10-28 2019-05-02 Oppo广东移动通信有限公司 传输数据的方法、网络设备和终端设备
US11039348B2 (en) 2017-10-28 2021-06-15 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method for transmitting data, network device and terminal device
TWI779122B (zh) * 2017-10-28 2022-10-01 大陸商Oppo廣東移動通信有限公司 傳輸資料的方法、網路設備和終端設備
US11638183B2 (en) 2017-10-28 2023-04-25 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method for transmitting data, network device and terminal device

Also Published As

Publication number Publication date
CN104105221B (zh) 2019-05-21
US9986462B2 (en) 2018-05-29
EP2947951A4 (en) 2016-03-23
EP2947951A1 (en) 2015-11-25
US20160044540A1 (en) 2016-02-11
EP2947951B1 (en) 2021-03-03
CN104105221A (zh) 2014-10-15

Similar Documents

Publication Publication Date Title
WO2014169748A1 (zh) 一种双连接的实现方法及基站
JP7318779B2 (ja) マスター無線アクセスネットワークノード、amf、及びこれらの方法
US9906994B2 (en) Handover method, master base station and slave base station
WO2015176462A1 (zh) 双连接无线承载的迁移处理、迁移方法及装置
US11129054B2 (en) Methods, systems and devices for supporting local breakout in small cell architecture
US11412563B2 (en) Multi-connectivity communication method and device
JP6567686B2 (ja) データ・オフロードのためのパスを確立する方法及び装置
EP3461216B1 (en) Multi-connection communication method and device
CN106941700B (zh) 一种数据传输方法及装置和基站及ue
WO2017201722A1 (zh) 一种通信控制的方法及相关网元
US9538438B2 (en) Method and apparatus for transferring bearing in layered network
EP2475142A1 (en) Method and system for acquiring route strategies
TWI503016B (zh) A method for performing handover, the system and apparatus
WO2015089791A1 (zh) 一种载波聚合的实现方法和装置及系统
US9668244B2 (en) Radio resource management method, macro base station, and low-power node
WO2021026704A1 (zh) 一种无线通信的方法和装置
WO2014032311A1 (zh) 回程链路的信息传输方法及系统、代理设备、接入设备
WO2011020413A1 (zh) 一种应用于无线中继的传输系统及传输方法
WO2016101586A1 (zh) 一种基站切换方法、系统及相关装置、存储介质
WO2014177107A1 (zh) 一种pdcp计数值的处理方法、装置和计算机存储介质
WO2016145979A1 (zh) 一种数据转发方法、移动锚点及计算机存储介质
WO2016101617A1 (zh) 一种切换流程中安全信息的处理方法、接入网关及基站

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14785499

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2014785499

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14776704

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE