WO2021026704A1 - 一种无线通信的方法和装置 - Google Patents

一种无线通信的方法和装置 Download PDF

Info

Publication number
WO2021026704A1
WO2021026704A1 PCT/CN2019/100092 CN2019100092W WO2021026704A1 WO 2021026704 A1 WO2021026704 A1 WO 2021026704A1 CN 2019100092 W CN2019100092 W CN 2019100092W WO 2021026704 A1 WO2021026704 A1 WO 2021026704A1
Authority
WO
WIPO (PCT)
Prior art keywords
node
iab
access
iab node
host
Prior art date
Application number
PCT/CN2019/100092
Other languages
English (en)
French (fr)
Inventor
刘菁
史玉龙
戴明增
曹振臻
朱元萍
卓义斌
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2019/100092 priority Critical patent/WO2021026704A1/zh
Priority to CN201980096793.2A priority patent/CN113875314A/zh
Publication of WO2021026704A1 publication Critical patent/WO2021026704A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/11Allocation or use of connection identifiers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • This application relates to the field of communications, and in particular to a method and device for wireless communication.
  • IAB Integrated access and backhaul
  • the present application provides a wireless communication method and device, which can reduce the power consumption of the IAB node while meeting communication requirements.
  • a wireless communication method including: a first access backhaul integrated IAB node determines that any one or more of the following trigger conditions are met: the first IAB node receives an access sent by a child node Request, the child node includes a second IAB node and/or user equipment UE, the first IAB node receives a paging message triggered by a host node, the first IAB node has data to be sent, and the first IAB node
  • the RRC layer or the F1AP layer of the IAB node receives the connection recovery instruction from the upper layer; the first IAB node triggers the wireless connection recovery with the host node.
  • the first IAB node When the first IAB node meets the trigger condition, it resumes the wireless connection with the host node, which reduces power consumption while meeting the communication requirements.
  • the method before the first IAB node triggers the restoration of the wireless connection with the host node, the method further includes: the first IAB node obtains according to the met trigger condition The access flag corresponding to the trigger condition; the first IAB node performs access control verification according to the access flag; the first IAB node triggers the restoration of the wireless connection with the host node, including: When the access control check passes, the first IAB node triggers the restoration of the wireless connection with the host node.
  • the first IAB node Before restoring the wireless connection, the first IAB node performs an access control check to determine whether access is allowed, that is, whether the wireless connection is allowed to be restored.
  • the access token is an access token associated with an IAB node.
  • Configuring an access mark for the IAB node that is different from that of the UE can perform different processing on the wireless connection recovery between the UE and the IAB node, thereby improving flexibility.
  • the first IAB node obtains the access token corresponding to the trigger condition according to the met trigger condition, including: according to the met trigger condition, the first IAB node
  • the non-access stratum NAS of the node obtains the access event corresponding to the met trigger condition, and the access event is an access event associated with an IAB node; the first IAB node according to the access event, Obtain the access token corresponding to the access event.
  • the IAB node is configured with different access events from the UE, and the wireless connection recovery between the UE and the IAB node can be processed the same or differently, which improves flexibility.
  • the method further includes: the first IAB node sends a wireless connection recovery request message to the host node, where the wireless connection recovery request message includes cause indication information, and the cause The indication information corresponds to the met trigger condition.
  • the host node can learn the reason for the wireless connection recovery of the first IAB node according to the reason indication information, and can perform the same or different processing for different reasons, thereby improving flexibility.
  • the method further includes: the first IAB node sends IAB node indication information to the host node, where the IAB node indication information is used to indicate that the wireless connection restoration is an IAB The wireless connection of the node is restored.
  • the host node can perform the same or different processing on the wireless connection recovery between the UE and the IAB node according to the IAB node indication information, thereby improving flexibility.
  • the met trigger condition includes that the first IAB node receives an access request sent by a child node, and the number of access requests is greater than or equal to a threshold, or The number of said child nodes is greater than or equal to the threshold.
  • the first IAB node can trigger the restoration of the wireless connection with the host node in the case of receiving a certain number of access requests or receiving access requests sent by a certain number of child nodes, thereby further reducing power consumption.
  • the method further includes: the first IAB node receives the threshold value sent by the host node .
  • the donor base station may configure the threshold value for the first IAB node.
  • the host node can configure the threshold value according to load conditions, etc., to improve flexibility.
  • the first IAB node is a relay device or a device that provides data backhaul
  • the donor node is a base station.
  • the paging message is when the host node is satisfied that the host node receives downlink data of an inactive UE and/or the host node receives an idle UE. Sent under the condition of the first paging message.
  • a wireless communication method which includes: a first donor node determines that any one or more of the following trigger conditions are met: the first donor node receives downlink data from a UE in an inactive state, and the first donor node The host node receives the first paging message of the idle UE; the first host node sends a second paging message to the first access backhaul integrated IAB node, and the second paging message is used to indicate the The first IAB node triggers the restoration of the wireless connection with the host node, and the host node is the first host node or the second host node.
  • the host node When the host node meets the trigger condition, it sends a paging message to the first IAB node to instruct the first IAB node to trigger the restoration of the wireless connection with the host node, which reduces power consumption while meeting the communication requirements.
  • the met trigger condition includes that the first donor node receives the downlink data of the inactive UE, and the first donor node sends a second page to the first IAB node Before the message, the method further includes: the first donor node determines the first IAB node according to the radio access network RAN notification area of the inactive UE.
  • the host node When the host node meets the trigger condition, it pages the IAB node in a specific range to instruct the IAB node to trigger the restoration of the wireless connection with the host node, which reduces power consumption while meeting the communication requirements.
  • the met trigger condition includes that the first host node receives the first paging message of the idle UE, and the first host node sends a second paging message to the first IAB node.
  • the method further includes: the first host node determines the first IAB node according to the tracking area identification TAI list of the first paging message.
  • the host node When the host node meets the trigger condition, it pages the IAB node in a specific range to instruct the IAB node to trigger the restoration of the wireless connection with the host node, which reduces power consumption while meeting the communication requirements.
  • the method further includes: the first host node receives a wireless connection recovery request message sent by the first IAB node; The node sends a context request, the context request is used to request the third host node to send the correspondence information between the distributed unit DU of the first IAB node and the mobile terminal MT of the first IAB node; the first host node Receiving the correspondence information sent by the third host node.
  • the correspondence information includes: the DU identifier of the DU of the first IAB node and the inactive wireless network temporary identifier of the MT of the first IAB node I- RNTI, and/or, the new radio cell global identity NR CGI of the first IAB node DU and the I-RNTI of the MT of the first IAB node.
  • the wireless connection recovery request message carries the identity of the first IAB node, and the identity of the first IAB node includes the identity of the third host node.
  • the first IAB node is a relay device or a device that provides data backhaul
  • the first donor node is a base station.
  • an integrated IAB device for access backhaul including: a determining module, configured to determine that any one or more of the following trigger conditions are met: the IAB device receives an access request sent by a child node, so The child node includes a second IAB node and/or user equipment UE, the IAB device receives a paging message triggered by the host node, the IAB device has data to be sent, and the RRC layer or F1AP layer of the IAB node receives Connection recovery indication to the upper layer; trigger module, used to trigger the wireless connection recovery with the host node.
  • the apparatus includes: an obtaining module, configured to obtain an access mark corresponding to the trigger condition according to the met trigger condition; and a verification module, configured to obtain an access mark corresponding to the trigger condition according to the The access flag performs access control verification; the trigger module is further configured to, when the access control verification passes, the IAB device triggers the restoration of the wireless connection with the host node.
  • the access token is an access token associated with an IAB node.
  • the non-access stratum NAS of the IAB device is used to obtain the access event corresponding to the met trigger condition according to the met trigger condition, and the access The event is an access event associated with the IAB node; the obtaining module is configured to obtain the access token corresponding to the access event according to the access event.
  • the device includes: a transceiver module, configured to send a wireless connection recovery request message to the host node, the wireless connection recovery request message including cause indication information, the cause indication information Corresponds to the met trigger condition.
  • the device includes: a transceiver module, configured to send IAB node indication information to the host node, where the IAB node indication information is used to indicate that the wireless connection is restored by the IAB node The wireless connection is restored.
  • the met trigger condition includes that the IAB device receives an access request sent by a child node, the number of access requests is greater than or equal to a threshold, or the child The number of nodes is greater than or equal to the threshold.
  • the apparatus includes: a transceiver module, configured to receive the threshold value sent by the host node.
  • the IAB device is a relay device or a device that provides data backhaul
  • the host node is a base station.
  • an access network device including: a determining module, configured to determine that any one or more of the following trigger conditions are met: the access network device receives downlink data from a UE in an inactive state, and the access network device The network access device receives the first paging message of the UE in the idle state; the transceiver module is configured to send a second paging message to the first access backhaul integrated IAB node, and the second paging message is used to indicate the The first IAB node triggers the restoration of the wireless connection with the host node, and the host node is the access network device or the second host node.
  • the met trigger condition includes that the access network device receives the downlink data of the inactive UE, and the determining module of the access network device is further configured to: The radio access network RAN notification area of the active UE determines the first IAB node.
  • the met trigger condition includes that the access network device receives the first paging message of the idle state UE, and the determining module of the access network device is further configured to: Determine the first IAB node according to the tracking area identifier TAI list of the first paging message.
  • the transceiver module is further configured to receive a wireless connection recovery request message sent by the first IAB node; the transceiver module is further configured to send to a third host node Context request, the context request is used to request the third host node to send the correspondence information between the distributed unit DU of the first IAB node and the mobile terminal MT of the first IAB node; the transceiver module is also used to: Receiving the correspondence information sent by the third host node.
  • the correspondence information includes: the DU identifier of the DU of the first IAB node and the inactive wireless network temporary identifier of the MT of the first IAB node I- RNTI, and/or, the new radio cell global identity NR CGI of the first IAB node DU and the I-RNTI of the MT of the first IAB node.
  • the wireless connection recovery request message carries the identity of the first IAB node, and the identity of the first IAB node includes the identity of the third host node.
  • the first IAB node is a relay device or a device that provides data backhaul
  • the access network device is a base station.
  • an integrated IAB device for access backhaul including: a processor, configured to determine that any one or more of the following trigger conditions are satisfied: the device receives an access request sent by a child node, and The child node includes a second IAB node and/or user equipment UE, the device receives a paging message triggered by the host node, and the device has data to be sent; the RRC layer or F1AP layer of the device receives the connection from the upper layer Recovery indication; communication interface, used to trigger the recovery of the wireless connection with the host node.
  • the processor is configured to obtain an access mark corresponding to the trigger condition according to the met trigger condition; the processor is configured to perform an access mark according to the access mark Access control verification; the processor is configured to, when the access control verification passes, the IAB device triggers the restoration of the wireless connection with the host node.
  • the access token is an access token associated with an IAB node.
  • the non-access stratum NAS of the IAB device is configured to obtain the access event corresponding to the met trigger condition according to the met trigger condition, and the access The incoming event is an access event associated with an IAB node; the processor is configured to obtain the access token corresponding to the access event according to the access event.
  • the communication interface is further configured to send a wireless connection recovery request message to the host node, where the wireless connection recovery request message includes reason indication information, and the reason indication information corresponds to Trigger conditions.
  • the communication interface is further used to send IAB node indication information to the host node, where the IAB node indication information is used to indicate that the wireless connection recovery is the wireless connection recovery of the IAB node
  • the IAB node indication information is carried in a wireless connection recovery request message or a wireless connection recovery complete message.
  • the met trigger condition includes that the IAB device receives an access request sent by a child node, the number of the access request is greater than or equal to a threshold, or the The number of child nodes is greater than or equal to the threshold.
  • the communication interface is further configured to receive the threshold value sent by the host node.
  • the IAB device is a relay device or a device that provides data backhaul
  • the donor node is a base station.
  • an access network device including the access network device including a processor and a communication interface.
  • the processor is configured to determine that any one or more of the following trigger conditions are met: the access network device receives the downlink data of the inactive state UE, and the access network device receives the first paging message of the idle state UE; a communication interface, Used to send a second paging message to the first access backhaul integrated IAB node, where the second paging message is used to instruct the first IAB node to trigger the restoration of the wireless connection with the host node, the host The node is the access network device or the second host node.
  • the met trigger condition includes that the access network device receives the downlink data of the inactive UE, and the processor is further configured to, according to the radio access network of the inactive UE The RAN notifies the area to determine the first IAB node.
  • the met trigger condition includes that the access network device receives the first paging message of the idle UE, and the processor is further configured to, according to the first paging message The tracking area identifies the TAI list to determine the first IAB node.
  • the communication interface is also used to receive the wireless connection recovery request message sent by the first IAB node; the communication interface is also used to send a context request to the third host node, so The context request is used to request the third host node to send the correspondence information between the distributed unit DU of the first IAB node and the mobile terminal MT of the first IAB node; the communication interface is also used to receive the third host The corresponding relationship information sent by the node.
  • the correspondence information includes: the DU identifier of the DU of the first IAB node and the inactive wireless network temporary identifier of the MT of the first IAB node I- RNTI, and/or, the new radio cell global identity NR CGI of the first IAB node DU and the I-RNTI of the MT of the first IAB node.
  • the wireless connection recovery request message carries the identity of the first IAB node, and the identity of the first IAB node includes the identity of the third host node.
  • the first IAB node is a relay device or a device that provides data backhaul
  • the access network device is a base station or a donor base station.
  • a wireless communication system including the first IAB node and the host node described above.
  • a wireless communication system including the first IAB node and the first host node described above.
  • a computer program storage medium characterized in that the computer program storage medium has program instructions, and when the program instructions are executed by a processor, the processor executes the wireless communication method described above .
  • a chip system characterized in that the chip system includes at least one processor, and when a program instruction is executed in the at least one processor, the at least one processor is caused to execute the aforementioned Method of wireless communication.
  • Figure 1 is an architecture diagram of an IAB system suitable for the technical solution of the present application.
  • Figure 2 is a schematic diagram of the composition of an IAB node.
  • (A) and (b) of FIG. 3 are examples of the protocol stack architecture of the intermediate IAB node.
  • Figure 4 is an example of the user plane protocol stack architecture of a multi-hop IAB network.
  • Figure 5 is an example of the control plane protocol stack architecture of a multi-hop IAB network.
  • Figure 6 is a schematic diagram of a UE connected state.
  • Figure 7 is a schematic diagram of a UE in an idle state.
  • Figure 8 is a schematic diagram of a UE in a deactivated state.
  • Figure 9 is a schematic diagram of an access network device.
  • Fig. 10 is a schematic flowchart of an RRC recovery process.
  • FIG. 11 is a schematic flowchart of a wireless communication method according to an embodiment of the present application.
  • FIG. 12 is a schematic flowchart of a wireless communication method according to another embodiment of the present application.
  • FIG. 13 is a schematic flowchart of a wireless communication method according to another embodiment of the present application.
  • FIG. 14 is a schematic flowchart of a wireless communication method according to another embodiment of the present application.
  • FIG. 15 is a schematic flowchart of a wireless communication method according to another embodiment of the present application.
  • FIG. 16 is a schematic flowchart of a wireless communication method according to another embodiment of the present application.
  • FIG. 17 is a schematic structural diagram of an IAB device according to another embodiment of the present application.
  • FIG. 18 is a schematic structural diagram of an access network device according to another embodiment of the present application.
  • FIG. 19 is a schematic structural diagram of an IAB device according to another embodiment of the present application.
  • FIG. 20 is a schematic structural diagram of an access network device according to another embodiment of the present application.
  • the communication systems mentioned in the embodiments of this application include, but are not limited to: narrowband-internet of things (NB-IoT) systems, wireless local access network (WLAN) systems, and long-term evolution (long term evolution, LTE) systems, the fifth generation (5th generation, 5G) mobile communication systems, or post-5G communication systems, such as new radio (NR), device to device (device to device, D2D) communication systems, etc.
  • NB-IoT narrowband-internet of things
  • WLAN wireless local access network
  • LTE long-term evolution
  • 5G fifth generation
  • post-5G communication systems such as new radio (NR), device to device (device to device, D2D) communication systems, etc.
  • the base stations mentioned in this application include but are not limited to: evolved node B (evolved node base, eNB), radio network controller (RNC), node B (node B, NB), base station controller (base station) controller, BSC), base transceiver station (base transceiver station, BTS), home base station (home evolved NodeB, or home node B, HNB), baseband unit (BBU), evolved (evolved LTE, eLTE) base station, NR base station (next generation node B, gNB), etc.
  • eNB evolved node B
  • RNC radio network controller
  • node B node B
  • base station controller base station controller
  • BSC base transceiver station
  • BTS home base station
  • home evolved NodeB home evolved NodeB, or home node B, HNB
  • BBU baseband unit
  • evolved LTE evolved LTE
  • eLTE eLTE
  • Terminal equipment includes but is not limited to: user equipment (UE), mobile station, access terminal, user unit, user station, mobile station, remote station, remote terminal, mobile equipment, terminal, wireless communication equipment, user agent, Station (ST), cell phone, cordless phone, session initiation protocol (SIP) phone, wireless local loop (wireless local loop, WLL) station in wireless local area network (wireless local access network, WLAN) Personal digital assistant (PDA), handheld devices with wireless communication functions, computing devices, other processing devices connected to wireless modems, in-vehicle devices, wearable devices, mobile stations in the future 5G network, and public Any one of terminal devices in a public land mobile network (PLMN) network.
  • PLMN public land mobile network
  • Wireless backhaul nodes are used to provide wireless backhaul services for nodes (for example, terminals) that wirelessly access wireless backhaul nodes .
  • the wireless backhaul service refers to the data and/or signaling backhaul service provided through the wireless backhaul link.
  • the IAB node is a specific name of a relay node, which does not limit the solution of the present application. It may be one of the aforementioned base stations or terminal devices with a forwarding function, or may be an independent device form.
  • the IAB nodes can provide wireless access services for terminals, and are connected to a donor base station (donor gNB) through a wireless backhaul link to transmit user service data.
  • donor gNB donor base station
  • the IAB node may also be equipment such as customer premises equipment (CPE for short) and residential gateway (RG for short).
  • CPE customer premises equipment
  • RG residential gateway
  • the method provided in the embodiment of the present application can also be applied to a home access scenario.
  • FIG. 1 is an architecture diagram of an IAB system suitable for the technical solution of the present application.
  • an IAB system includes at least one base station 100, and one or more terminal devices (terminal) 101 served by the base station 100, one or more relay nodes (that is, IAB nodes) 110, and IAB One or more terminal devices 111 served by the node 110.
  • the IAB node 110 is connected to the base station 100 through a wireless backhaul link 113.
  • the base station 100 is called a donor base station.
  • the donor base station is also referred to as a donor node or a donor node or an IAB donor (IAB donor) in this application.
  • the IAB system may also include one or more intermediate IAB nodes.
  • the IAB node 120 and the IAB node 130 the IAB node 120 provides services for the terminal device 121 through the wireless link 122
  • the IAB node 130 provides services for the terminal device 131 through the wireless link 132.
  • the wireless links 102, 112, 122, 132, 113, 123, 133, 134 can be bidirectional links, including uplink and downlink transmission links.
  • the wireless backhaul links 113, 123, 133, 134 can be used for
  • the upper-level node provides services for the lower-level nodes.
  • the upper-level node 100 provides wireless backhaul services for the lower-level node 110. It should be understood that the uplink and downlink of the backhaul link may be separated, that is, the uplink and the downlink are not transmitted through the same node.
  • the donor base station can be an access network element with complete base station functions, or it can be a form in which a centralized unit (centralized unit, referred to as CU) and a distributed unit (abbreviated as DU) are separated, that is, the host node is controlled by the donor base station.
  • the centralized unit and the distributed unit of the donor base station In this article, the centralized unit of the host node is also called IAB donor CU (also called donor CU, or directly called CU).
  • the distributed unit of the host node is also called IAB donor DU (or donor DU).
  • the donor CU may also be a form where the control plane (CP) (referred to as CU-CP in this article) and the user plane (UP) (referred to in this article as CU-UP) are separated.
  • CP control plane
  • UP user plane
  • a CU may be composed of one CU-CP and one or more CU-UPs.
  • the host node is composed of Donor-CU and Donor-DU as an example to illustrate the method provided in the embodiments of the present application.
  • Link Refers to the path between two adjacent nodes in a path.
  • Access link the link between the terminal device and the base station, or between the terminal device and the IAB node, or between the terminal device and the host node, or between the terminal device and the host DU.
  • the access link includes a wireless link used when a certain IAB node is in the role of a common terminal device to communicate with its parent node. When the IAB node acts as an ordinary terminal device, it does not provide backhaul services for any child nodes.
  • the access link includes an uplink access link and a downlink access link.
  • the access link of the terminal device is a wireless link, so the access link may also be called a wireless access link.
  • Backhaul link the link between the IAB node and the parent node when it is used as a wireless backhaul node.
  • the backhaul link includes an uplink backhaul link and a downlink backhaul link.
  • the backhaul link between the IAB node and the parent node is a wireless link, so the backhaul link can also be called a wireless backhaul link.
  • Each IAB node regards the neighboring node that provides wireless access service and/or wireless backhaul service for it as a parent node.
  • each IAB node can be regarded as a child node of its parent node.
  • the child node may also be called a lower-level node, and the parent node may also be called an upper-level node.
  • the last hop node of a node refers to the last node in the path containing the node that received the data packet before the node. It can be understood that the previous hop node of a node may include the previous hop node of the node in uplink transmission and the previous hop node of the node in downlink transmission.
  • the next hop node of a node refers to the node in the path containing the node that receives the data packet first after the node. It can be understood that the next hop node of a node may include the next hop node of the node in uplink transmission and the next hop node of the node in downlink transmission.
  • the entry link of a node refers to the link between the node and the previous hop node of the node, and can also be called the previous hop link of the node. It can be understood that the ingress link of the node may include the ingress link of the node in uplink transmission and the ingress link of the node in downlink transmission.
  • the exit link of a node refers to the link between the node and the next hop node of the node, and can also be called the next hop link of the node. It can be understood that the egress link of the node may include the egress link of the node in uplink transmission and the egress link of the node in downlink transmission.
  • Access IAB node refers to the IAB node that the terminal accesses, or the IAB node that provides access services for the terminal device.
  • Intermediate IAB node refers to an IAB node that provides wireless backhaul services for other IAB nodes (for example, access IAB nodes or other intermediate IAB nodes), or an intermediate IAB node refers to the connection between the IAB node and the host node IAB node.
  • the IAB node may have a mobile terminal (MT) part and a DU part.
  • the DU part of the IAB node has part of the functions of the gNB, and is used to provide services for its child nodes (the child node may be a terminal or another IAB node).
  • the MT part of the IAB node is similar to the UE and is used to provide data backhaul.
  • the IAB node uses the MT part to communicate with its parent node, and the IAB node uses the DU part to communicate with its child nodes.
  • An IAB node can establish a backhaul connection with at least one parent node of the IAB node through the MT part.
  • the DU part of an IAB node can provide access services for the terminal or the MT part of other IAB nodes.
  • BH two-hop backhaul
  • FIG. 2 is a schematic diagram of the composition of an IAB node.
  • the UE is connected to the host node through IAB node 2 and IAB node 1.
  • both the IAB node 1 and the IAB node 2 include a DU part and an MT part.
  • the DU part of IAB node 2 provides access services for the UE.
  • the DU part of the IAB node 1 provides access services for the MT part of the IAB node 2.
  • the DU part of the host node has similar functions to the DU part of the IAB node, and is used to provide access services for the MT part of the IAB node 1.
  • the CU part of the host node is used to control and manage all IAB nodes and UEs under it.
  • the CU part of the host node is connected to a core network (core network, CN) through an NG interface.
  • the core network may also be referred to as a 5G core network (5G core network, 5GC) or a new generation core network (NGC).
  • 5G core network 5GC
  • NGC new generation core network
  • the protocol stack of the IAB network includes the user plane protocol stack and the control plane protocol stack.
  • the intermediate IAB node has the same protocol stack on the user plane and the control plane.
  • Figure 3 (a) and (b) are examples of the protocol stack architecture of the intermediate IAB node.
  • the MT part and the DU part of the intermediate IAB node may not share an adaptation (adapt) layer or an adaptation layer entity, as shown in FIG. 3(a).
  • the adaptation layer may also be referred to as a backhaul adaptation protocol (BAP) layer.
  • BAP backhaul adaptation protocol
  • the MT part and the DU part of the intermediate IAB node can also share an adaptation layer or adaptation layer entity, as shown in Figure 3(b).
  • the protocol stacks for accessing the IAB node are different in the user plane and the control plane. Refer to IAB node 2 shown in Figure 4 and Figure 5 respectively.
  • each protocol layer is: Packet Data Convergence Protocol (PDCP) layer, General Packet Radio Service Tunnel Protocol user plane (general packet radio) service tunneling protocol user plane, GTP-U) layer, user datagram protocol (UDP) layer, internet protocol (IP) layer, L2 layer (layer 2), L1 layer (layer 1) , Radio link control (RLC) layer, medium access control (MAC) layer, physical (PHY) layer, radio resource control (Radio resource control, RRC) layer.
  • the L2 layer is the link layer.
  • the L2 layer may be the data link layer in the open systems interconnection (open systems interconnection, OSI) reference model.
  • the L1 layer can be a physical layer.
  • the L1 layer may be the physical layer in the OSI reference model.
  • the radio bearers include data radio bearer (DRB) and signaling radio bearer (signaling).
  • RRB data radio bearer
  • SRB signaling radio bearer
  • the RB can be considered as a logical channel for data transmission between the UE and the host node.
  • each protocol layer will be configured with a corresponding protocol layer entity, such as a PDCP entity, an RLC entity, and a MAC entity.
  • a protocol layer entity such as a PDCP entity, an RLC entity, and a MAC entity.
  • the data packets of the UE (such as IP data packets) are processed in the PDCP layer, and then passed through the RLC layer, the MAC layer and the PHY layer to the access backhaul node (such as the IAB node shown in Figure 4). 2) The PHY layer.
  • an IAB node can include a DU part and an MT part.
  • the MT part of the IAB node performs data forwarding on the backhaul link without the complete protocol stack of the terminal device on the wireless access link.
  • the IAB node 2 shown in FIG. 4 is for the IAB node 1, and the IAB node 2 is a child node of the IAB node 1.
  • the IAB node 2 sends the data packet from the UE to the IAB node 1
  • the MT of the IAB node 2 does not need the PDCP layer, and the data packet is forwarded under the adaptation layer (adapt layer). Therefore, in Figure 4, when an IAB node acts as a wireless backhaul node to send a data packet to its parent node, only the protocol layer below the adaptation layer is involved, which is applicable to all IAB nodes and will not be repeated.
  • the protocol stack of the communication link between it and the parent node is the same as the protocol stack of the wireless access link between the UE and the access IAB node.
  • the protocol stack is the same as the protocol stack between the UE and the host CU.
  • FIG. 4 also shows the user plane (F1-U) protocol stack of the F1 interface between the host CU and the access IAB node (IAB node 2 in FIG. 4).
  • the GTP-U tunnel established by the F1 interface through the GTP-U protocol layer corresponds to the data radio bearer DRB of the UE.
  • each radio bearer of a UE has a GTP tunnel corresponding to one of them.
  • FIG. 5 is an example of a control plane protocol stack architecture of a multi-hop IAB network.
  • the introduction of each protocol layer in Figure 4 is also applicable to Figure 5, but there are some differences.
  • the F1 interface between the access IAB node and the host CU uses the F1 control plane (F1-C) protocol stack, including: F1 application protocol (F1 application protocol, F1AP) layer, stream control transmission protocol (stream control transmission protocol, SCTP) layer.
  • F1-C F1 control plane
  • FIGS. 4 and 5 respectively show an example of an end-to-end user plane and control plane protocol stack architecture for transmitting the data service of the UE in the IAB network.
  • the protocol stack architecture may also have other possibilities. For example, if the F1 interface between IAB2 and the host CU introduces a protocol layer for security protection, the protocol stack architecture will change.
  • the IAB donor reserves the protocol stack of the donor DU and donor CU to the external node interface, and the protocol layer on the internal interface between the donor DU and the donor CU is not necessary. Similarly, the protocol stack of the IAB node does not distinguish between the DU part and the MT part to the outside, and only displays the protocol stack to the external node interface uniformly.
  • the donor DU is the proxy node of the F1 interface between the donor CU and the IAB node, the donor DU faces the user plane protocol stack for accessing the IAB node
  • the donor DU can include the UDP layer and the GTP-U layer, which are equivalent to the UDP layer and the GTP-U layer in the protocol stack architecture of the DU part of the IAB node.
  • the IPsec layer is the equivalent of the DU part of the IAB node; in the control plane protocol stack architecture of the Donor-DU facing the IAB node, above the IP layer, it can include the protocol stack architecture of the DU part of the IAB node
  • the SCTP layer and the F1AP layer are equivalent to the SCTP layer and the F1AP layer, respectively, and may also include an IPsec layer or a DTLS layer that is equivalent to the DU part accessing the IAB node.
  • the IAB node 2 can encapsulate the UE's RRC message in an F1AP message (for example: UE-related F1AP message, namely: UE-associated F1AP) and send it to the IAB donor CU.
  • F1AP message for example: UE-related F1AP message, namely: UE-associated F1AP
  • Figures 4 and 5 also involve the F1 interface.
  • the F1 interface refers to the logical interface between the DU part of the IAB node and the donor node (donor-CU), or refers to the logical interface between the donor node donor-CU and the donor-DU.
  • the F1 interface between the DU part of the IAB node and the donor node (donor-CU) may also be referred to as an F1* interface, which supports the user plane and the control plane.
  • the protocol layer of the F1 interface refers to the communication protocol layer on the F1 interface.
  • the UE peer PHY layer, MAC layer, and RLC layer are located on the IAB node 2DU (that is, access to the IAB node DU), while the UE peer PDCP layer, SDAP layer, and RRC layer are located on the IAB donor CU.
  • the UE in NR introduces a new state, that is, inactive mode.
  • Figure 6 is a schematic diagram of a UE in a connected state.
  • Figure 7 is a schematic diagram of a UE in an idle state.
  • the RRC connection between the UE and the gNB and the NG connection between the gNB and NGC are released, and the gNB deletes the UE context.
  • Fig. 8 is a schematic diagram of a UE in an inactive state.
  • the inactive state is a state between the idle state and the connected state, that is, the RRC connection between the UE and the gNB is released, but the NG connection between the gNB and NGC is retained, and the gNB retains the context of the UE.
  • Figure 9 is a schematic diagram of gNB in NR.
  • gNB can adopt a CU-DU separation architecture, that is, a gNB is composed of one gNB-CU and one or more gNB-DUs. Among them, gNB-CU and gNB-DU are connected through the F1 interface, and gNB-CU and The core network NGC is connected through the NG interface.
  • the UE accesses the gNB-CU through the gNB-DU, that is, the UE's corresponding PHY/MAC/RLC layer functions are located on the gNB-DU, and the UE's equivalent PDCP/SDAP/RRC layer functions are located on the gNB-CU.
  • both gNB-CU and gNB-DU store the context of the UE.
  • the gNB-CU retains the UE context, and the gNB-DU can delete the UE context.
  • the power consumption of the user equipment can be effectively reduced.
  • the RRC connection can be quickly restored to reduce the RRC recovery delay.
  • Fig. 10 is a schematic flowchart of RRC recovery between UE and gNB.
  • the trigger conditions for the inactive UE to perform the RRC recovery process include the following three:
  • Condition 1 Triggered by the upper layer of the UE. For example, when there is uplink (UL) data to be transmitted, the UE needs to enter the connected state from the inactive state, which will trigger the RRC recovery process.
  • UL uplink
  • RNA-based notification area may also be referred to as the RAN notification area.
  • the UE in an inactive state may periodically perform RNA update.
  • the UE in the inactive state discovers that it has moved out of the RAN notification area configured by the network to trigger an RNA update, thereby triggering the RRC recovery procedure.
  • RNA update that is, the host CU reconfigures a new RAN notification area for the UE.
  • the RAN notification area may be determined according to RAN area code (RAN area code) information, or it may be determined according to cell information (for example, NR CGI).
  • Condition 3 The UE receives a paging message based on the RAN notification area. For example, when the UE in the inactive state has a called service, the UE needs to enter the connected state from the inactive state, which will trigger the RRC recovery process.
  • the inactive UE will trigger the RRC recovery process, and perform RRC recovery through gNB DU and gNB CU.
  • step S1001 the UE sends a preamble sequence to the gNB-DU.
  • the preamble sequence is a physical signal sent by the UE on a physical random access channel (PRACH).
  • PRACH physical random access channel
  • the gNB-DU sends a random access response (random access response, RAR) message to the UE.
  • RAR random access response
  • the RAR message carries the gNB-DU as a radio network temporary identifier (cell-radio network tempory) allocated by the UE in the access cell.
  • identity, C-RNTI is the unique identifier of the connected UE in the access cell.
  • step S1003 the UE sends an RRC Resume Request (RRC Resume Request) message to the gNB-DU for requesting to resume the RRC connection.
  • RRC Resume Request RRC Resume Request
  • the gNB-DU forwards the RRC Resume Request message to the gNB-CU.
  • the gNB-DU encapsulates the RRC Resume Request message in an Initial UL RRC Information Transmission (Initial UL RRC Message Transfer) message and sends it to the gNB-CU.
  • the Initial UL RRC Message Transfer message may also carry the NR cell global identity (cell global identifier, CGI) of the gNB-DU that the UE accesses, and the C-RNTI of the UE in the cell.
  • CGI cell global identity
  • step S1005 the gNB-CU sends a UE context establishment request message to the gNB-DU to request the gNB-DU to establish the context of the UE.
  • step S1006 after the gNB-DU establishes the UE context, the gNB-DU sends a UE context establishment response message to the gNB-CU, and the UE context establishment response message is used by the gNB-DU to confirm the completion of the UE context establishment.
  • step S1007 the gNB-CU generates an RRC recovery message, and encapsulates the RRC recovery message in a DL RRC message transfer (DL RRC Message Transfer) message and sends it to the gNB-DU.
  • DL RRC message transfer DL RRC Message Transfer
  • step S1008 the gNB-DU receives the DL RRC Message Transfer message, extracts the RRC recovery message from the message, and sends it to the UE.
  • step S1009 the UE sends an RRC recovery complete message to the gNB-DU.
  • step S1010 the gNB-DU encapsulates the RRC recovery complete message in a UL RRC Message Transfer (UL RRC Message Transfer) message and sends it to the gNB-CU.
  • UL RRC Message Transfer UL RRC Message Transfer
  • the IAB node when the IAB node has energy saving requirements, or when the UEs served by the IAB node are in idle or inactive state, or when the number of UEs within the coverage of the IAB node or the amount of data provided by the service is low
  • the IAB node can disconnect/release the RRC connection with the host node, that is, the IAB node works in an inactive state.
  • the threshold may be preset by the IAB node, or configured by the host node as the IAB node.
  • FIG. 11 is a schematic flowchart of a communication method provided by an embodiment of the present application.
  • the first IAB node determines that the trigger condition is satisfied.
  • the trigger condition can include any one or more of the following:
  • the first IAB node receives an access request sent by a child node, and the child node includes a second IAB node and/or user equipment UE,
  • the first IAB node receives the paging message triggered by the host node
  • the first IAB node has data to be sent
  • the RRC layer or the F1AP layer of the first IAB node receives a connection recovery instruction from an upper layer, and the connection recovery instruction is used to instruct the first IAB node to recover the wireless connection with the host node.
  • the first IAB node is a relay device or a device that provides data backhaul, and the host node is a base station.
  • the child node of the first IAB node When the child node of the first IAB node has data to be sent, the wireless connection with the host node is restored.
  • the child node of the first IAB node sends an access request to the first IAB node.
  • the access request can be one or more of the preamble sequence, the RRC establishment request message, the RRC recovery request message, and the F1 connection recovery request message, or it can be Other access requests.
  • the satisfied trigger request may include that the first IAB node receives the access request sent by the child node.
  • the first IAB node may be set with a threshold for the number of child nodes or the number of access requests. When the threshold is reached or exceeded, step S1102 is performed. That is to say, the first IAB node can be in the case that the number of received access requests is greater than or equal to the threshold, or the first IAB node can be the number of child nodes corresponding to the received access requests is greater than or equal to the threshold In the case of the value, step S1102 is performed.
  • the threshold value may be preset by the first IAB node or configured by the host node.
  • the first IAB node may disconnect the RRC connection with the host node, or when the first IAB node enters the inactive state from the connected state, the host node may send the threshold value to the first IAB node through a connection release message.
  • the host node may configure the threshold value for the first IAB node according to the load capacity of the host node, the load capacity of the first IAB node, and so on.
  • the first IAB node triggers the restoration of the wireless connection with the host node.
  • the wireless connection may be, for example, RRC connection restoration, F1 connection restoration, and the like.
  • Triggering the recovery of the wireless connection with the host node can also be understood as sending a preamble sequence or a wireless connection recovery request to the host node.
  • the first IAB node can trigger the restoration of the wireless connection with the host node. Or, when the trigger condition is met, the first IAB node performs an access control check, and when the access control check passes, the first IAB node triggers the restoration of the wireless connection with the host node.
  • the first IAB node may perform an access control check to determine whether the current access attempt is allowed.
  • the first IAB node may obtain the access flag corresponding to the trigger condition according to the met trigger condition.
  • the first IAB node performs access control verification according to the access token. For the process of access control verification, refer to the description of FIG. 15.
  • the access tokens obtained by the first IAB node may be the same or different.
  • the first IAB node may store the corresponding relationship between the trigger condition and the access flag.
  • the first IAB node may determine the access flag according to the corresponding relationship.
  • the first IAB node may select the access flag according to other conditions, and the access flag selected by the first IAB node is the access flag corresponding to the trigger condition.
  • the access token obtained by the first IAB node may be an access token associated with the IAB node, that is, it may be an access token defined for the IAB node, or an access token corresponding to the IAB node.
  • the access tag may be an access category (Access Category) and/or an access identity (Access Identity).
  • the access category defined for the IAB node may be a reserved access category or other access categories.
  • the access category defined for the IAB node may be a reserved access identifier or other access identifiers.
  • the non-access stratum (NAS) of the first IAB node may be used to select the access flag according to the trigger condition.
  • the RRC layer of the first IAB node may also select the access flag according to the trigger condition.
  • the NAS layer of the first IAB node can obtain an access event corresponding to the met trigger condition.
  • the first IAB node may obtain the access flag corresponding to the access event according to the access event.
  • the access event determined by the NAS layer of the first IAB node may be an access event associated with the IAB node, that is, it may be an access event defined for the IAB node, or an access event corresponding to the IAB node.
  • the first IAB node triggers the restoration of the wireless connection with the host node, and the first IAB node sends a wireless connection restoration request message to the host node.
  • the wireless connection restoration request message includes cause indication information, which corresponds to the met trigger condition .
  • One type of cause indication information may indicate one type of trigger condition, or one type of cause indication information may correspond to multiple trigger conditions. That is, the trigger condition can correspond to the cause value in the cause indication information one-to-one, and one cause value can also correspond to multiple trigger conditions.
  • the host node can perform different processing. For example, the host node may determine whether to restore the wireless connection with the first IAB node according to load conditions and the like.
  • the first IAB node may send IAB node indication information to the host node, and the IAB node indication information may be used to indicate that the wireless connection recovery is the wireless connection recovery of the IAB node.
  • the AB node indication information can be used to indicate that the wireless connection recovery is triggered by the IAB node.
  • the IAB node indication information can be carried in the RRC recovery request message or the radio connection recovery complete message, or can be carried in other messages.
  • the host node can perform different processing according to whether the wireless connection is restored for the IAB node or for the UE.
  • the first IAB node is an IAB node.
  • the first IAB node may be an inactive IAB node.
  • the host node saves the context of the first IAB node.
  • the sub-nodes of the IAB of the first IAB node may include any one or more of an idle state UE, an inactive state UE, and an inactive state IAB node.
  • the first IAB node can restore the wireless connection with the host node. While meeting the communication requirements, the power consumption is reduced.
  • the wireless connection recovery is the RRC connection recovery as an example for description.
  • the wireless connection recovery request may be an RRC recovery request
  • the wireless connection recovery complete message may be an RRC recovery complete message.
  • FIG. 12 is a schematic flowchart of a communication method provided by an embodiment of the present application.
  • IAB nodes include IAB-DU and IAB-MT.
  • the IAB node in the figure can be an access IAB node or an intermediate IAB node.
  • the host node includes a host DU and a host CU.
  • the IAB node is in the inactive state, which means that the IAB MT is in the inactive state, and the IAB DU is in the inactive state.
  • the host CU saves the context of the inactive IAB node.
  • the context of the inactive IAB node can include one of the security algorithm and key used by IAB MT on the air interface, the air interface configuration of IAB MT, the identification of IAB DU, the cell identification of IAB DU, the correspondence between IAB MT and IAB DU Or multiple.
  • the correspondence between IAB MT and IAB DU may be, for example, the correspondence between the inactive-radio network temporary identifier (I-RNTI) of IAB MT and the DU identification (DU ID) of IAB DU. Or the correspondence between the I-RNTI of the IAB MT and the NR CGI of the IAB DU cell.
  • I-RNTI inactive-radio network temporary identifier
  • DU ID DU identification
  • I-RNTI is used to identify the inactive state IAB and MT, which can be a 24-bit short identifier or a 40-bit long identifier.
  • the host CU configures the I-RNTI (long ID or short ID) for the IAB node.
  • I-RNTI long ID or short ID
  • the IAB-DU is in the inactive state, which means that the IAB DU works in the discontinuous transmission (DTX) state and uses the long-period measurement timing configuration (MTC) configuration.
  • IAB DU only sends system information block (system information block, SIB)1, and sends synchronization signal block (synchronization signal block, SSB) for idle state UE or inactive state UE to access or inactive state Access to other IAB nodes.
  • SIB system information block
  • SSB synchronization signal block
  • the child node sends a request to the IAB-DU, for example: sending a preamble sequence.
  • the child node can be a UE in an inactive state or an idle state, or other IAB nodes in an inactive state.
  • the IAB-DU sends a RAR message to the child node.
  • the RAR message may carry the C-RNTI allocated by the IAB-DU for the child node.
  • step S1203 the child node sends an RRC establishment request to the IAB-DU. If the child node is a UE in an inactive state or another IAB node in an inactive state, in step S1203, the child node sends an RRC recovery request to the IAB-DU.
  • step S1204 the IAB-DU sends instruction information to the IAB-MT, where the instruction information is used to instruct the IAB MT to restore the RRC connection with the host CU.
  • This indication information may be called a connection recovery indication.
  • Step S1204 may be performed after step S1201.
  • the IAB-DU After receiving the preamble sequence sent by the child node, the IAB-DU sends indication information to the IAB-MT, triggering the IAB-MT to initiate an RRC recovery process to the host CU, and restore the RRC connection between the IAB-MT and the host CU as soon as possible.
  • step S1204 may be performed after step S1203.
  • the IAB-DU After receiving the RRC establishment request sent by the child node, the IAB-DU sends indication information to the IAB-MT, triggering the IAB-MT to initiate an RRC recovery process to the host CU, and restore the RRC connection between the IAB-MT and the host CU as soon as possible.
  • the IAB-DU sends indication information to the IAB-MT after receiving the RRC establishment request, the RRC recovery request or the preamble sequence sent by the N child nodes.
  • N is a positive integer.
  • N may be preset by the IAB-DU node or configured by the host node.
  • the host CU can configure N to the IAB-DU when the IAB node enters the inactive state. For example, the host node can flexibly configure N according to the load situation of the host node when the IAB node enters the disconnected state.
  • step S1205 after receiving the indication information, the IAB-MT starts the RRC recovery procedure.
  • indication information may also be sent to the IAB-MT.
  • the IAB-DU needs to send a service to the OAM server, it sends indication information to the IAB-MT to trigger the IAB-MT to initiate the RRC recovery process to the host CU.
  • FIG. 13 is a schematic flowchart of a communication method provided by an embodiment of the present application.
  • step S1601 the first host node determines that the trigger condition is satisfied.
  • the trigger condition includes that the first donor node receives the downlink data of the UE in the inactive state, and/or the first donor node receives the first paging message of the UE in the idle state.
  • the trigger condition may also include the first host node determining to resume the wireless connection with the first IAB node.
  • the first host node determines to restore the wireless connection with the first IAB node, and the wireless connection may be an RRC connection or an F1 connection.
  • the first donor node Before paging the UE, the first donor node may first determine whether there is an inactive IAB node in the paging area of the UE. If it exists, the first host node can first restore the wireless connection with the IAB node.
  • the first donor node When the first donor node receives the downlink data of the inactive UE, the first donor node determines the first IAB node according to the stored radio access network RAN notification area of the inactive UE.
  • the first host node stores the RAN notification area of the inactive UE.
  • the first donor node may determine one or more IAB nodes corresponding to the RAN notification area according to the RAN notification area of the inactive UE. If one or more IAB nodes corresponding to the RAN notification area include an IAB node that is disconnected from the host CU, that is, an inactive IAB node, the first host node determines the inactive IAB node as the first An IAB node.
  • the first host node may determine according to the tracking area identity (TAI) list (list) carried in the first paging message The first IAB node.
  • TAI tracking area identity
  • the core network stores a TAI list configured for idle state UEs, and the cells included in the paging range where the idle state UEs are located can be determined according to the TAI list.
  • the core network After the core network receives the downlink data of the UE in the idle state, the core network sends the first paging message to the donor node corresponding to the cell in the paging area determined by the TAI list.
  • the first paging message includes a TAI list.
  • the first donor node may determine one or more IAB nodes corresponding to the cells in the paging area of the idle UE according to the TAI list.
  • IAB nodes corresponding to the cells in the paging area of the idle UE include an IAB node that is disconnected from the host CU, that is, an inactive IAB node, the first host node will deactivate it
  • the IAB node in the state is determined as the first IAB node.
  • step S1602 the first host node sends a second paging message to the first IAB node, where the second paging message is used to instruct the first IAB node to trigger the restoration of the wireless connection with the host node.
  • the first IAB node receives the second paging message, it triggers the restoration of the wireless connection with the host node.
  • the host node that performs wireless connection recovery may be the first host node or other host nodes.
  • the host node After the first host node instructs the first IAB node to enter the inactive state from the connected state, due to the mobility of the first IAB node, or the IAB node needs to perform cell selection when returning from the inactive state to the connected state, the host to which it accesses The node may change.
  • the first host node receives the wireless connection recovery request message sent by the first IAB node, that is, the first host node is the target host node of the first IAB node.
  • the first donor node may determine the MT of the first IAB based on the DU cell contained in the paging area according to the correspondence relationship.
  • the third host node is the source host node of the first IAB node.
  • the first host node may send a context request to the third host node.
  • the context request is used to request the third host node to send the correspondence information between the distributed unit DU of the first IAB node and the mobile terminal MT of the first IAB node.
  • the first host node receives the correspondence information sent by the third host node.
  • the correspondence information may include the DU identifier of the DU of the first IAB node and the inactive wireless network temporary identifier I-RNTI of the MT of the first IAB node.
  • the correspondence information may also include the new radio cell global identity NR CGI of the first IAB node DU and the I-RNTI of the MT of the first IAB node.
  • the first host node may determine the third host node according to the wireless connection recovery request message.
  • the wireless connection connection recovery request message carries the identifier of the first IAB node, and the identifier of the first IAB node includes the identifier of the third host node.
  • FIG. 15 is a schematic flowchart of a communication method provided by an embodiment of the present application.
  • the inactive UE or the idle UE When the inactive UE or the idle UE has downlink data to be transmitted (that is, there is called service) within the coverage of the inactive IAB node, it may also trigger the inactive IAB node to initiate the RRC recovery process to the host node .
  • step S1301 the host CU receives the DL data or paging message sent by the core network element.
  • the host CU For an inactive UE, the host CU receives the DL data of the UE sent by the core network element. For the idle state UE, the host CU receives the paging message sent by the core network element.
  • step S1302 the host CU determines an IAB node in an inactive state.
  • the donor CU For the inactive UE, the donor CU first determines the inactive IAB node in the RAN notification area of the UE according to the RAN notification area information configured by the inactive UE. For idle UEs, the host CU first determines the inactive IAB nodes in the CN paging area according to the tracking area identity (TAI) list (list) carried in the received core network paging message.
  • TAI tracking area identity
  • step S1303 the host CU sends a paging message for IAB-MT.
  • the host CU first pages the inactive IAB node. After the IAB node changes from the inactive state to the connected state and restores the RRC connection with the host CU, the host CU then initiates paging to the UE through the connected IAB node.
  • DL data needs to be sent to idle or inactive UEs in the cell covered by IAB DU.
  • the host CU needs to first send the paging area or non-active UE corresponding to the idle UE.
  • the RAN of the active UE notifies the inactive IAB and MT in the area to wake up, and then page the UE.
  • the core network element For the UE in the idle state, when DL data arrives at the core network element, the core network element initiates core network paging (CN paging). The core network element sends a paging message to all gNBs including the host CU in the paging area of the UE in the idle state.
  • CN paging core network paging
  • the core network element sends a paging message to all gNBs including the host CU in the paging area of the UE in the idle state.
  • the host CU needs to wake up the inactive IAB node in the paging area before paging the idle UE, that is, restore the relationship between the host CU and IAB MT.
  • the F1 connection between the host CU and the IAB DU is restored, and then the host CU sends an F1 paging message to the IAB DU to request the IAB DU to page the UE.
  • the paging message sent by the core network element carries a tracking area identity (TAI) list, and all cell information contained in the tracking area can be determined according to the TAI list.
  • the cell information may be, for example, a cell identity, such as NR CGI.
  • the host node can determine IAB DU. That is to say, the donor CU can determine the cell information in the paging area (for example: cell identity NR CGI) according to the TAI list carried in the received CN paging message, and then determine the corresponding cell information according to the cell information.
  • IAB MT the donor CU may determine the relevant IAB DU according to the cell information, and determine the IAB MT according to the correspondence between the IAB DU and the IAB MT.
  • the IAB DU includes one or more cells.
  • the host CU can learn and save the relationship between the IAB DU and the IAB DU cell, such as the relationship between the DU ID of the IAB DU and the NR CGI of the IAB DU cell. That is: the host CU can determine the cell identity NR CGI of all IAB DUs in the paging area according to the TAI list, and then determine all inactive cells in the paging area according to the correspondence between the IAB DU cell identity NR CGI and the IAB MT identity I-RNTI State IAB MT.
  • the donor CU can determine the cell identity NR CGI of all IAB DUs in the paging area according to the TAI list, and then determine all IABs in the paging area according to the correspondence between the DU ID of the IAB DU and the cell identity NR CGI of the IAB DU. DU. Finally, according to the corresponding relationship between the DU ID of the IAB DU and the I-RNTI of the IAB MT, all the inactive IAB MTs in the paging area are determined.
  • the core network element can further send the DL data to Host CU.
  • the donor CU determines the cell information in the RAN notification area (for example, cell identity NR CGI) according to the RAN notification area information configured for the inactive UE, and then determines the corresponding IAB MT according to the cell information, or determines it according to the cell information For the related IAB DU, finally, the IAB MT is determined according to the corresponding relationship between IAB DU and IAB MT.
  • the IAB DU contains one or more cells.
  • the host CU can learn and save the relationship between the IAB DU and the IAB DU cell, for example: IAB DU’s identification DU ID and IAB DU cell identity NR CGI relationship. That is: the donor CU determines the cell identity NR CGI of all IAB DUs in the area according to the RAN notification area configured for the inactive UE, and then determines the corresponding relationship between the IAB DU cell identity NR CGI and the IAB MT identity I-RNTI The RAN notifies all inactive IAB MTs in the area.
  • the donor CU determines the cell identity NR CGI of all IAB DUs in the area according to the RAN notification area configured for the inactive UE, and then determines the corresponding relationship between the DU ID of the IAB DU and the cell identity NR CGI of the IAB DU. All IAB DUs in this area finally determine all the inactive IAB MTs in the RAN notification area based on the correspondence between the DU ID of the IAB DU and the I-RNTI of the IAB MT.
  • step S1304 the IAB node and the host CU perform an RRC recovery process.
  • step S1305 the F1 interface is restored.
  • the fast F1 interface restoration process between the IAB-DU and the host CU will be triggered.
  • the host CU saves the cell information of the IAB DU, once the host CU knows that the RRC connection with the IAB MT is restored, it will trigger the sending of an F1 interface recovery message to the IAB DU, which carries the activation indication information of the IAB DU cell , That is, indicate which IAB DU cells are activated.
  • the host CU sends a paging message to the IAB DU.
  • the donor CU sends a paging message to the IAB-DUs of the IAB nodes corresponding to all cells in the RAN notification area configured by the UE to find the UE.
  • the donor CU sends a paging message to the IAB-DUs of the IAB nodes corresponding to all cells in the paging area configured by the UE.
  • step S1307 the IAB-DU generates and sends a paging message of the RRC layer according to the paging message received from the F1 interface.
  • the authentication management function (AMF) network element of the core network For the idle UE, the authentication management function (AMF) network element of the core network generates an NG paging message and sends it to the host CU through the NG interface. Then the host CU generates an F1 paging message according to the received NG paging message, and sends the F1 paging message to the IAB DU through the F1 interface.
  • the IAB DU generates the final RRC layer paging message according to the F1 paging message and sends it to the UE.
  • the host CU For the inactive UE, the host CU generates an F1 paging message, and sends an F1 paging message to the IAB DU through the F1 interface.
  • the IAB DU generates the RRC layer paging message according to the F1 paging message and sends it to the UE.
  • the DL data may also be the data of the IAB node, that is, the data needs to be sent to the IAB node.
  • the data may be, for example, network management service data (such as data sent by the OAM server to IAB DU).
  • the OAM server sends the DL
  • the data is sent to the host CU, and the host CU determines that the IAB node is in the inactive state according to the context of the saved IAB node, so the host CU sends a RAN paging message to trigger the inactive IAB node to perform the RRC recovery process.
  • the host CU can send a RAN paging message in the RAN notification area of the inactive IAB node.
  • the RAN notification area of the IAB node can be configured by the host CU when the IAB node enters the inactive state. Once the IAB node restores the RRC connection with the host CU, the host CU can send the network management service data of the IAB node to the IAB node.
  • the host CU stores the corresponding relationship between IAB MT and IAB DU, or in other words, the host CU stores the corresponding relationship between the identifiers of IAB MT and IAB DU (for example: IAB MT's inactive wireless network temporary identifier (inactive- The corresponding relationship between the radio network temporary identifier (I-RNTI) and the IAB DU identifier DU ID), or in other words, the host CU stores the corresponding relationship between the IAB MT and the IAB DU cell identifier (for example: IAB MT identifier I-RNTI and IAB DU cell identity NR CGI correspondence).
  • the donor CU determines the IAB MT of the IAB node according to the identifier of the IAB DU or the cell identifier of the IAB DU.
  • the host CU sends a paging message for the IAB MT.
  • the IAB MT After the IAB MT receives the paging message, it proceeds to step S1304 to perform an RRC recovery process with the host CU.
  • step S1304 the host CU sends DL data to the IAB DU.
  • the user plane bearer corresponding to the DL data can be configured through the recovered RRC connection, such as a data radio bearer (DRB) or an RLC channel (RLC channel).
  • DRB data radio bearer
  • RLC channel RLC channel
  • the inactive IAB node is awakened, and the RRC connection with the host CU is established.
  • the host node After the host node instructs the IAB node to enter the inactive state from the connected state, due to the mobility of the IAB node, or the IAB node needs to perform cell selection when returning from the inactive state to the connected state, the host node it accesses may change.
  • the host node when the IAB node enters the inactive state from the connected state is called the original host node, and the host node where the inactive IAB node initiates the RRC recovery process is called the target host node.
  • an I-RNTI long identifier or short identifier
  • the I-RNTI is allocated by the original host node to the inactive IAB node, and the I-RNTI includes the information of the original host node.
  • Target host node According to I-RNTI, the original host node can be determined.
  • the target host node can obtain the context of the inactive IAB node from the original host node, including: the corresponding relationship between IAB MT and IAB DU, for example: the corresponding relationship between I-RNTI of IAB MT and DU ID of IAB DU, or IAB MT I -Correspondence between RNTI and NR CGI of IAB DU cell.
  • the DU identifier and I-RNTI correspond one-to-one.
  • Multiple NR CGIs can correspond to one I-RNTI.
  • the above correspondence can be sent in a list. For example, each row in the list includes an NR CGI and an I-RNTI corresponding to the NR CGI.
  • the target host node may send a context request to the original host node, and the context request is used to request the original host node to send the correspondence between the distributed unit DU of the first IAB node and the mobile terminal MT of the first IAB node. According to the received context request, the original host node can send the corresponding relationship to the target host node.
  • the original host node may send the downlink data of the inactive UE to the target host node.
  • the original host node may send the downlink data of the inactive UE to the target host node after receiving the context request sent by the target host node.
  • the original host node may receive the downlink data request sent by the target host node.
  • the original host node may send the UE's downlink data to the target host node according to the downlink data request.
  • FIG. 15 is a schematic flowchart of a communication method provided by an embodiment of the present application.
  • the UE in the inactive state enters the connected state through the RRC recovery process, thereby accessing the network.
  • a control check of the access cell needs to be performed to determine whether the current cell access attempt is allowed, that is, whether to allow the UE to access the current cell.
  • the inactive UE triggers an access attempt after determining that the access conditions are met.
  • the inactive UE configures an access category (access category) and an access identity (access identity) according to the access conditions.
  • the access condition may be triggered by the NAS layer of the UE, that is, the NAS layer of the UE determines the access category and the access identifier.
  • the NAS layer of the UE discovers an access event (for example, the NAS layer receives an upper layer sending request), and the NAS layer maps the access event to an access category and one or more access identifiers.
  • Access events include any one or more of the following events:
  • a session establishment request is received from the upper layer, and the session establishment request is used to request to send an uplink NAS transport (UL NAS Transport) message to establish a PDU session (session);
  • UL NAS Transport uplink NAS transport
  • the session modification request is received from the upper layer, and the session modification request is used to request to send an uplink NAS transport (UL NAS Transport) message to modify the PDU session;
  • UL NAS Transport uplink NAS transport
  • the PDU session notified that the user plane resource is suspended has UL data transmission, and so on.
  • the access condition may also be triggered by the RRC layer of the UE, that is, the RRC layer of the UE determines the access category, and the NAS layer of the UE determines the access identifier.
  • the RRC layer of the UE determines to perform an RNA update or receives a paging message, and determines the access category corresponding to an access attempt triggered by the RNA update or paging message, and the NAS layer determines the access Try the corresponding access ID.
  • the RRC layer of the UE determines that the access category is 8, and the NAS layer of the UE determines one or more access identifiers.
  • the RRC layer of the UE determines that the access category is 0, and the NAS layer of the UE determines one or more access identifiers.
  • Access category Type of access attempt 0 MO signal transmission caused by paging 1 UE configured as a multimedia priority service (MPS) 2 Emergencies 3 NAS layer MO signal transmission caused by reasons other than paging 4 Multimedia telephony (MMTEL) voice 5 Multimedia telephony (MMTEL) video 6 Short message service (short messaging service, SMS) 7 MO data that does not belong to other columns 8 RRC layer MO signal transmission caused by reasons other than paging 9-31 Standardized access category reservation in the future 32-63 Operator-based category
  • the value of the access category is 0-63.
  • the access category 0 indicates the access control triggered by paging
  • the access category 2 indicates the access control triggered by the emergency call
  • the RNA update indicated by the access category 8 Triggered access control, etc.
  • Access categories 9-31 are reserved for future standardized access categories
  • access categories 32-63 are reserved for operators.
  • Access ID UE configuration 0 UE in other configurations 1 UE configured as a multimedia priority service (MPS) 2 UE configured as mission critical service (MCS) 3-10 Reserved 11 UE configured as Access Class 11 12 UE configured as Access Class 12 13 UE configured as Access Class 13 14 UE configured as Access Class 14 15 UE configured as Access Class 15
  • MPS multimedia priority service
  • MCS mission critical service
  • the value of the access identifier is 0-15.
  • the value of the access identifier 11-15 is consistent with the value of the access class (Access Class) stored in the universal subscriber identity module (USIM) card of the UE. Used to indicate a special high-priority user whose access class is any one of 11-15. Access ID 3-10 is reserved for future use.
  • the access stratum (AS) of the UE such as the RRC layer of the UE, performs access control verification based on the access identifier and access type determined by the UE. After the access control check is passed, the RRC recovery process is performed,
  • an inactive IAB node can also perform access control verification before performing RRC recovery.
  • the IAB DU When the IAB DU receives the access request sent by the child node, the IAB DU sends instruction information to the upper layer of the IAB MT, for example, to the NAS layer of the IAB MT.
  • the instruction information is used to indicate that the NAS layer of the IAB MT discovers the connection. Enter the event, and determine the access category and access identifier corresponding to the access event.
  • the access request sent by the child node may be a preamble sequence, an RRC recovery request or an RRC establishment request.
  • the IAB DU When the IAB DU needs to transmit data (for example: OAM service), the IAB DU sends instructions to the upper layer of the IAB MT, for example, to the NAS layer of the IAB MT, so that the NAS layer of the IAB MT finds the access event and determines the connection.
  • the access category and access identifier corresponding to the incoming event For example: OAM service, the IAB DU sends instructions to the upper layer of the IAB MT, for example, to the NAS layer of the IAB MT, so that the NAS layer of the IAB MT finds the access event and determines the connection.
  • the access category and access identifier corresponding to the incoming event.
  • the above-mentioned access event is an access event newly defined for the IAB node, which may be an access request received from a child node or a UL transmission request received.
  • the NAS layer of IAB MT maps this event to an access category.
  • the standard defines that access attempts corresponding to certain specific access categories are allowed. Therefore, the RRC layer of IAB MT determines whether an access attempt is allowed according to the access category. Exemplarily, the standard defines that the access attempt corresponding to the access category corresponding to the IAB node is allowed. If the access attempt is allowed, the IAB MT resumes the RRC connection with the host CU.
  • the NAS layer can also map the above events to the same or different access identifiers.
  • the IAB DU When the IAB DU receives the access request sent by the child node, the IAB DU sends indication information to the RRC layer of the IAB MT, so that the RRC layer of the IAB MT determines the access category corresponding to the access attempt.
  • the RRC layer of the IAB MT determines the access category corresponding to the access attempt triggered by the paging message.
  • the RRC layer of the IAB MT determines the access category.
  • the RRC layer of IAB MT determines whether access is allowed according to the access category.
  • the standard defines that the access attempt corresponding to the access category corresponding to the IAB node is allowed.
  • the RRC layer can determine that the access identifier can be an access category reserved in Table 1.
  • the RRC layer can determine the same access category, or the RRC layer can determine to correspond to each of the two situations Of different access categories.
  • the Access Class of the IAB node can be configured for the USIM card of the IAB node.
  • the RRC layer of the IAB MT determines the access identifier corresponding to the IAB MT access attempt according to the Access Class configured in the USIM card.
  • the IAB DU receives the access request sent by the child node, the IAB DU sends indication information to the RRC layer of the IAB MT, so that the RRC layer of the IAB MT determines the access identifier corresponding to the access attempt.
  • the RRC layer of the IAB MT determines the access identifier corresponding to the access attempt triggered by the paging message.
  • the IAB DU When the IAB DU needs to transmit data (for example, OAM service), the IAB DU sends indication information to the RRC layer of the IAB MT, so that the RRC layer of the IAB MT determines the access identifier corresponding to the access attempt.
  • OAM service For example, OAM service
  • step S1401 the IAB-MT performs access control verification.
  • the IAB MT determines whether to allow access to the current cell according to the determined access category. If the access is allowed, it is considered that the verification is successful, and step S1402 is performed. Otherwise, the IAB MT determines whether to allow access to the current cell according to the determined access identifier, and if the access is allowed, step S1402 is performed.
  • the IAB MT checks the unified access control (unified access control) of the bearer access identifier carried in the system information block (system information block, SIB) 1 in the system broadcast message sent by the parent node according to the determined access identifier.
  • UAC information element
  • IE information element
  • uac-BarringForAccessIdentity IE uses a bitmap to indicate the correspondence between the access identifier and whether access is allowed, that is, each bit corresponds to an access identifier. If the bit is set to 0, it means The access attempt corresponding to the access identifier is allowed.
  • the parent node can be other IAB nodes or host nodes.
  • step S1402 is performed.
  • step S1402 if the access attempt of the IAB MT is allowed, step S1402 is performed; otherwise, the IAB MT can generate a random number between 0-1, if the random number is less than SIB1
  • the value of the uac-BarringFactor field in the middle indicates that the access attempt is allowed, and step S1402 is performed.
  • the IAB MT can start the timer. For example, IAB MT can generate a random number between 0-1 again, and start timer T390 for the access attempt corresponding to the access category (the timing of T390 is based on the random number generated by IAB MT, the value in SIB1 The parameters of the uac-Barring Time field are determined). Before the timer expires, the IAB MT can no longer initiate an access attempt.
  • step S1402 an RRC establishment process or an RRC recovery process is performed.
  • FIG. 16 is a schematic flowchart of a wireless communication method provided by an embodiment of the present application, and illustrates the RRC recovery process.
  • step S1501 the inactive IAB-MT sends a preamble sequence to the host DU.
  • step S1502 the donor DU sends a RAR message to the IAB-MT, and the RAR message carries the C-RNTI allocated by the donor DU in the access cell for the IAB-MT.
  • step S1503 the IAB-MT sends an RRC Resume Request (RRC Resume Request) message to the donor DU for requesting to resume the RRC connection.
  • RRC Resume Request RRC Resume Request
  • the sent RRC Resume Request message carries information with different reason indication information.
  • the trigger conditions for the inactive IAB node to perform the RRC recovery and the inactive UE to perform the RRC recovery are different.
  • New reason indication information can be defined for the IAB node.
  • the reason indication information sent by the IAB-MT to the host DU may be in a newly added field or an existing field in the RRC Resume Request message.
  • the RRC Resume Request message sent by the IAB-MT to the host DU may carry reason indication information.
  • the reason indication information may be used to indicate the reason for performing the RRC recovery procedure.
  • the reason may be the access request of the child node, the called request of the child node, or the wake-up request of the host node, etc. That is, the cause indication information is used to indicate the trigger condition for triggering the RRC recovery procedure.
  • the cause indication information may include a cause value corresponding to trigger conditions of all RRC recovery procedures, and the cause indication information may also include multiple cause values, and different cause values correspond to different trigger conditions of the RRC recovery process.
  • the trigger condition can correspond to the cause value one by one, and one cause value can also correspond to multiple trigger conditions.
  • the host node can learn the reason why the IAB node performs the RRC connection recovery according to the reason indication information, so that it can perform different processing for the RRC connection recovery process triggered by different reasons. For example, when the load of the parent node is high, RRC recovery caused by one or more reasons can be rejected, that is, the parent node can reject RRC recovery caused by one or more recovery conditions.
  • the RRC Resume Request message may carry IAB node indication information.
  • the IAB node indication information is used to indicate that the RRC connection is restored for the IAB node, or used to instruct the IAB node to trigger the RRC restoration process.
  • the host node may determine that the RRC recovery procedure is triggered by the IAB node instead of the ordinary UE according to the indication information of the IAB node.
  • the IAB node can indicate to the host node that the access process is initiated by the IAB node through a shorter field.
  • the host node can configure a higher priority for the RRC recovery process.
  • step S1504 the host DU forwards the RRC Resume Request message to the host CU.
  • the host DU encapsulates the RRC Resume Request message in an initial UL RRC information transmission (Initial UL RRC Message Transfer) message and sends it to the host CU.
  • the Initial UL RRC Message Transfer message also carries the NR CGI of the donor DU accessed by the IAB-MT and the C-RNTI of the IAB-MT in the cell.
  • step S1505 the host CU sends an IAB-MT context establishment request message to the host DU for requesting the host DU to establish an IAB-MT context.
  • the context of the IAB node includes the correspondence between IAB MT and IAB DU, such as the correspondence between I-RNTI of IAB MT and DU ID of IAB DU, or the correspondence between I-RNTI of IAB MT and NR CGI of IAB DU cell.
  • step S1506 after the host DU establishes the IAB-MT context, the host DU sends an IAB-MT context establishment response message to the host CU.
  • the IAB-MT context establishment response message is used by the host DU to confirm that the IAB-MT context establishment is complete.
  • step S1507 the host CU generates RRC recovery information and sends the RRC recovery information to the host DU.
  • step S1508 the donor DU sends the RRC recovery information to the IAB-MT.
  • step S1509 the IAB-MT sends RRC recovery complete information to the host DU.
  • step S1510 the host DU will send the RRC recovery complete message to the host CU.
  • RRC recovery procedure is only exemplary.
  • IAB node and the host node perform RRC recovery, more or fewer steps may be included.
  • FIG. 17 is a schematic structural diagram of an IAB node device according to another embodiment of the present application.
  • the device 1700 includes a determining module 1710 and a triggering module 1720.
  • the determining module 1710 is configured to determine that any one or more of the following trigger conditions are met:
  • the apparatus 1700 receives an access request sent by a child node, where the child node includes a second IAB node and/or user equipment UE,
  • the apparatus 1700 receives the paging message triggered by the host node,
  • the device 1700 has data to be sent
  • the RRC layer or F1AP layer of the device 1700 receives the connection recovery instruction from the upper layer;
  • the triggering module 1720 is used to trigger the restoration of the wireless connection with the host node.
  • the apparatus 1700 further includes:
  • An obtaining module configured to obtain an access mark corresponding to the trigger condition according to the met trigger condition
  • a verification module configured to perform access control verification according to the access mark
  • the triggering module 1720 is configured to trigger the restoration of the wireless connection with the host node when the access control check passes.
  • the access token is an access token associated with the IAB node.
  • the non-access stratum NAS of the apparatus 1700 is configured to obtain the access event corresponding to the met trigger condition according to the met trigger condition, and the access event is an access event associated with the IAB node ;
  • the obtaining module is configured to obtain the access mark corresponding to the access event according to the access event.
  • the apparatus 1700 further includes a transceiver module, configured to send a wireless connection recovery request message to the donor node, where the RRC recovery request message includes cause indication information, and the cause indication information corresponds to a met trigger condition.
  • a transceiver module configured to send a wireless connection recovery request message to the donor node, where the RRC recovery request message includes cause indication information, and the cause indication information corresponds to a met trigger condition.
  • the apparatus 1700 further includes a transceiving module, configured to send IAB node indication information to the host node, where the IAB node indication information is used to indicate that the wireless connection recovery is the wireless connection recovery of the IAB node.
  • a transceiving module configured to send IAB node indication information to the host node, where the IAB node indication information is used to indicate that the wireless connection recovery is the wireless connection recovery of the IAB node.
  • the met trigger condition includes that the apparatus 1700 receives an access request sent by a child node, the number of the access request is greater than or equal to a threshold, or the number of child nodes is greater than or equal to the threshold.
  • the apparatus 1700 further includes a transceiver module, configured to receive the threshold value sent by the host node.
  • the apparatus 1700 is a relay device, and the donor node is a base station.
  • the paging message is when the donor node meets the condition that the donor node receives the downlink data of the inactive UE and/or the donor node receives the first paging message of the idle UE Sent.
  • FIG. 18 is a schematic structural diagram of an access network device provided by an embodiment of the present application.
  • the access network device 1800 includes a determining module 1810 and a transceiver module 1820.
  • the determining module 1810 is used to determine that any one or more of the following trigger conditions are met:
  • the access network device receives the downlink data of the UE in the inactive state
  • the access network device receives the first paging message of the idle state UE;
  • the transceiver module 1820 is configured to send a second paging message to the first access backhaul integrated IAB node, where the second paging message is used to instruct the first IAB node to trigger wireless communication with the host node When the connection is restored, the host node is the access network device or the second host node.
  • the met trigger condition includes that the access network device receives the downlink data of the inactive UE, and the determining module 1810 is further configured to determine the first according to the radio access network RAN notification area of the inactive UE. IAB node.
  • the met trigger condition includes that the access network device receives the first paging message of the idle state UE,
  • the determining module 1810 is further configured to determine the first IAB node according to the tracking area identifier TAI list of the first paging message.
  • the transceiver module 1820 is further configured to receive a wireless connection connection recovery request message sent by the first IAB node;
  • the transceiver module 1820 is further configured to send a context request to a third host node, where the context request is used to request the third host node to send the distributed unit DU of the first IAB node and the mobile terminal MT of the first IAB node Correspondence information;
  • the transceiver module 1820 is further configured to receive the correspondence information sent by the third host node.
  • the correspondence information includes:
  • the wireless connection recovery request message carries an identifier of the first IAB node, and the identifier of the first IAB node includes the identifier of the third host node.
  • the first IAB node is a relay device or a device that provides data backhaul
  • the access network device is a base station.
  • FIG. 19 is a schematic structural diagram of an integrated IAB device for access and backhaul according to an embodiment of the present application.
  • the device 1900 includes a processor 1910 and a communication interface 1920.
  • the processor 1910 is configured to determine that any one or more of the following trigger conditions are met:
  • the apparatus 1900 receives an access request sent by a child node, where the child node includes a second IAB node and/or user equipment UE,
  • the device 1900 receives the paging message triggered by the host node,
  • the device 1900 has data to be sent
  • the RRC layer or F1AP layer of the device 190 receives the connection recovery instruction from the upper layer;
  • the communication interface 1920 is used to trigger the restoration of the wireless connection with the host node.
  • the processor 1910 is configured to obtain an access flag corresponding to the trigger condition according to the met trigger condition;
  • the processor 1910 is configured to perform access control verification according to the access token
  • the processor 1910 is configured to, when the access control check passes, the IAB device triggers the restoration of the wireless connection with the host node.
  • the access token is an access token associated with the IAB node.
  • the non-access stratum NAS of the IAB device is configured to obtain the access event corresponding to the met trigger condition according to the met trigger condition, and the access event is the access event associated with the IAB node.
  • the processor 1910 is configured to obtain the access token corresponding to the access event according to the access event.
  • the communication interface 1920 is further configured to send a wireless connection recovery request message to the host node, where the wireless connection recovery request message includes cause indication information, and the cause indication information corresponds to the met trigger condition.
  • the communication interface 1920 is further configured to send IAB node indication information to the host node, where the IAB node indication information is used to indicate that the wireless connection recovery is the wireless connection recovery of the IAB node, and the IAB node indication information is carried in Wireless connection recovery request message or wireless connection recovery complete message.
  • the met trigger condition includes that the IAB device receives an access request sent by a child node, and the number of access requests is greater than or equal to a threshold, or the number of child nodes is greater than or equal to a threshold .
  • the communication interface 1920 is further configured to receive the threshold value sent by the host node.
  • the IAB device is a relay device or a device that provides data backhaul, and the donor node is a base station.
  • FIG. 20 is a schematic structural diagram of an access network device provided by an embodiment of the present application.
  • the access network device 2000 includes a processor 2010 and a communication interface 2020.
  • the processor 2010 is configured to determine that any one or more of the following trigger conditions are met:
  • the access network device 2000 receives the downlink data of the UE in the inactive state
  • the access network device 2000 receives the first paging message of the UE in the idle state
  • the communication interface 2020 is configured to send a second paging message to the first access backhaul integrated IAB node, where the second paging message is used to instruct the first IAB node to trigger the restoration of the wireless connection with the host node ,
  • the host node is the access network device 2000 or a second host node.
  • the met trigger condition includes that the access network device 2000 receives the downlink data of the inactive UE, and the processor 2010 is further configured to determine the RAN notification area of the inactive UE according to the radio access network The first IAB node.
  • the met trigger condition includes that the access network device 2000 receives the first paging message of the idle state UE, and the processor 2010 is further configured to identify the TAI list according to the tracking area of the first paging message, Determine the first IAB node.
  • the communication interface 2020 is further configured to receive a wireless connection connection recovery request message sent by the first IAB node;
  • the communication interface 2020 is further configured to send a context request to a third host node, where the context request is used to request the third host node to send the distributed unit DU of the first IAB node and the mobile terminal MT of the first IAB node Correspondence information;
  • the communication interface 2020 is further configured to receive the correspondence information sent by the third host node.
  • the correspondence information includes:
  • the wireless connection recovery request message carries an identifier of the first IAB node, and the identifier of the first IAB node includes the identifier of the third host node.
  • the first IAB node is a relay device or a device that provides data backhaul
  • the access network device 2000 is a base station.
  • An embodiment of the present application also provides a communication system, including the above-mentioned first IAB node and the host node.
  • An embodiment of the present application further provides a computer program storage medium, which is characterized in that the computer program storage medium has program instructions, and when the program instructions are executed by a processor, the processor executes the wireless communication method described above.
  • An embodiment of the present application further provides a chip system, characterized in that the chip system includes at least one processor, and when the program instructions are executed in the at least one processor, the at least one processor is caused to execute the above Methods of wireless communication.
  • At least one refers to one or more
  • multiple refers to two or more.
  • And/or describes the association relationship of the associated objects, indicating that there can be three types of relationships, for example, A and/or B, which can mean that A exists alone, A and B exist at the same time, and B exists alone. Among them, A and B can be singular or plural.
  • the character “/” generally indicates that the associated objects are in an “or” relationship.
  • “The following at least one item” and similar expressions refer to any combination of these items, including any combination of single items or plural items.
  • At least one of a, b, and c can represent: a, b, c, a-b, a-c, b-c, or a-b-c, where a, b, and c can be single or multiple.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • each unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of this application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种无线通信的方法,包括:第一接入回传一体化IAB节点确定满足以下至少一种触发条件:所述第一IAB节点接收到子节点发送的接入请求,所述子节点包括第二IAB节点和/或用户设备UE,所述第一IAB节点接收到宿主节点触发的寻呼消息,所述第一IAB节点存在待发送的数据,所述第一IAB节点的RRC层或F1AP层收到上层的连接恢复指示;所述第一IAB节点触发与宿主节点之间的无线连接恢复。第一IAB节点在满足触发条件时,恢复与宿主节点的无线连接,在满足通信需求的同时,降低了功耗。

Description

一种无线通信的方法和装置 技术领域
本申请涉及通信领域,具体涉及一种无线通信的方法和装置。
背景技术
为满足第五代(the 5th generation,5G)移动通信系统的超高容量需求,高频小站组网成为主流。高频载波传播特性较差,受遮挡衰减严重,覆盖范围不广,故而需要大量、密集部署小站。相应地,为这些大量密集部署的小站提供光纤回传的代价很高,施工难度大,因此需要经济便捷的回传方案。另外,从广覆盖需求的角度出发,在一些偏远地区提供网络覆盖,光纤的部署难度大,成本高,也需要设计灵活便利的接入和回传方案。接入回传一体化(integrated access and backhaul,IAB)技术为解决上述问题提供了思路。IAB网络的接入链路(access link)和回传链路(backhaul link)皆采用无线传输方案,可以避免光纤部署。
在一些情况下,IAB节点覆盖的小区中不存在连接态的用户设备,此时保持与宿主节点的无线连接,功耗较大。
发明内容
本申请提供一种无线通信的方法和装置,在满足通信需求的同时,能够减小IAB节点的功耗。
第一方面,提供一种无线通信的方法,包括:第一接入回传一体化IAB节点确定满足以下任一种或多种触发条件:所述第一IAB节点接收到子节点发送的接入请求,所述子节点包括第二IAB节点和/或用户设备UE,所述第一IAB节点接收到宿主节点触发的寻呼消息,所述第一IAB节点存在待发送的数据,所述第一IAB节点的RRC层或F1AP层收到上层的连接恢复指示;所述第一IAB节点触发与宿主节点之间的无线连接恢复。
第一IAB节点在满足触发条件时,恢复与宿主节点的无线连接,在满足通信需求的同时,降低了功耗。
结合第一方面,在一些可能的实现方式中,所述第一IAB节点触发与宿主节点之间的无线连接恢复之前,所述方法还包括:所述第一IAB节点根据满足的触发条件,获得与所述触发条件对应的接入标记;所述第一IAB节点根据所述接入标记进行接入控制校验;所述第一IAB节点触发与宿主节点之间的无线连接恢复,包括:当所述接入控制校验通过时,所述第一IAB节点触发与宿主节点之间的无线连接恢复。
第一IAB节点在恢复无线连接之前,进行接入控制校验,确定是否允许接入,即无线连接是否允许恢复。
结合第一方面,在一些可能的实现方式中,所述接入标记是与IAB节点相关联的接入标记。
为IAB节点配置与UE不同的接入标记,可以对UE和IAB节点的无线连接恢复进行不同的处理,提高灵活性。
结合第一方面,在一些可能的实现方式中,所述第一IAB节点根据满足的触发条件,获得与所述触发条件对应的接入标记,包括:根据满足的触发条件,所述第一IAB节点的非接入层NAS获得与满足的触发条件对应的所述接入事件,所述接入事件是与IAB节点相关联的接入事件;所述第一IAB节点根据所述接入事件,获得与所述接入事件对应的所述接入标记。
为IAB节点配置与UE不同的接入事件,可以对UE和IAB节点的无线连接恢复进行相同或不同的处理,提高灵活性。
结合第一方面,在一些可能的实现方式中,所述方法还包括:所述第一IAB节点向宿主节点发送无线连接恢复请求消息,所述无线连接恢复请求消息包括原因指示信息,所述原因指示信息对应于满足的触发条件。
宿主节点可以根据原因指示信息获知所述第一IAB节点进行无线连接恢复的原因,可以对不同原因进行相同或不同的处理,提高灵活性。
结合第一方面,在一些可能的实现方式中,所述方法还包括:所述第一IAB节点向宿主节点发送IAB节点指示信息,所述IAB节点指示信息用于指示所述无线连接恢复是IAB节点的无线连接恢复。
宿主节点可以根据IAB节点指示信息对UE和IAB节点的无线连接恢复进行相同或不同的处理,提高灵活性。
结合第一方面,在一些可能的实现方式中,满足的触发条件包括所述第一IAB节点接收到子节点发送的接入请求,所述接入请求的数量大于或等于门限值,或所述子节点的数量大于或等于门限值。
第一IAB节点可以在接受一定数量的接入请求或接收一定数量的子节点发送的接入请求的情况下,触发与宿主节点之间的无线连接恢复,进一步降低功耗。
结合第一方面,在一些可能的实现方式中,在所述第一IAB节点确定满足触发条件之前,所述方法还包括:所述第一IAB节点接收所述宿主节点发送的所述门限值。
宿主基站可以为第一IAB节点配置门限值。宿主节点可以根据负载情况等进行门限值的配置,提高灵活性。
结合第一方面,在一些可能的实现方式中,所述第一IAB节点为中继设备或者提供数据回传的设备,所述宿主节点为基站。
结合第一方面,在一些可能的实现方式中,所述寻呼消息是所述宿主节点在满足所述宿主节点接收到非激活态UE的下行数据和/或所述宿主节点接收到空闲态UE的第一寻呼消息的条件下发送的。
第二方面,提供一种无线通信的方法,包括:第一宿主节点确定满足以下任一种或多种触发条件:所述第一宿主节点接收到非激活态UE的下行数据,所述第一宿主节点接收到空闲态UE的第一寻呼消息;所述第一宿主节点向第一接入回传一体化IAB节点发送第二寻呼消息,所述第二寻呼消息用于指示所述第一IAB节点触发与宿主节点之间的无线连接恢复,所述宿主节点为所述第一宿主节点或第二宿主节点。
宿主节点在满足触发条件时,向第一IAB节点发送寻呼消息,指示第一IAB节点触 发与宿主节点之间的无线连接恢复,在满足通信需求的同时,降低了功耗。
结合第二方面,在一些可能的实现方式中,满足的触发条件包括所述第一宿主节点接收到非激活态UE的下行数据,所述第一宿主节点向第一IAB节点发送第二寻呼消息之前,所述方法还包括:所述第一宿主节点根据非激活态UE的无线接入网RAN通知区域,确定所述第一IAB节点。
宿主节点在满足触发条件时,在特定的范围内寻呼IAB节点,以指示IAB节点触发与宿主节点之间的无线连接恢复,在满足通信需求的同时,降低了功耗。
结合第二方面,在一些可能的实现方式中,满足的触发条件包括所述第一宿主节点接收到空闲态UE的第一寻呼消息,所述第一宿主节点向第一IAB节点发送第二寻呼消息之前,所述方法还包括:所述第一宿主节点根据所述第一寻呼消息的追踪区域标识TAI列表,确定所述第一IAB节点。
宿主节点在满足触发条件时,在特定的范围内寻呼IAB节点,以指示IAB节点触发与宿主节点之间的无线连接恢复,在满足通信需求的同时,降低了功耗。
结合第二方面,在一些可能的实现方式中,所述方法还包括:所述第一宿主节点接收所述第一IAB节点发送的无线连接恢复请求消息;所述第一宿主节点向第三宿主节点发送上下文请求,所述上下文请求用于请求所述第三宿主节点发送第一IAB节点的分布式单元DU与所述第一IAB节点的移动终端MT的对应关系信息;所述第一宿主节点接收所述第三宿主节点发送的所述对应关系信息。
结合第二方面,在一些可能的实现方式中,所述对应关系信息包括:所述第一IAB节点的DU的DU标识和所述第一IAB节点的MT的非激活态无线网络临时标识I-RNTI,和/或,所述第一IAB节点DU的新无线小区全球标识NR CGI和所述第一IAB节点的MT的I-RNTI。
结合第二方面,在一些可能的实现方式中,所述无线连接恢复请求消息中携带有第一IAB节点的标识,所述第一IAB节点的标识中包含所述第三宿主节点的标识。
结合第二方面,在一些可能的实现方式中,所述第一IAB节点为中继设备或者提供数据回传的设备,所述第一宿主节点为基站。
第三方面,提供一种接入回传一体化IAB装置,包括:确定模块,用于确定满足以下任一种或多种触发条件:所述IAB装置接收到子节点发送的接入请求,所述子节点包括第二IAB节点和/或用户设备UE,所述IAB装置接收到宿主节点触发的寻呼消息,所述IAB装置存在待发送的数据,所述IAB节点的RRC层或F1AP层收到上层的连接恢复指示;触发模块,用于触发与宿主节点之间的无线连接恢复。
结合第三方面,在一些可能的实现方式中,所述装置包括:获得模块,用于根据满足的触发条件,获得与所述触发条件对应的接入标记;校验模块,用于根据所述接入标记进行接入控制校验;所述触发模块还用于,当所述接入控制校验通过时,所述IAB装置触发与宿主节点之间的无线连接恢复。
结合第三方面,在一些可能的实现方式中,所述接入标记是与IAB节点相关联的接入标记。
结合第三方面,在一些可能的实现方式中,所述IAB装置的非接入层NAS用于,根据满足的触发条件,获得与满足的触发条件对应的所述接入事件,所述接入事件是与IAB 节点相关联的接入事件;所述获得模块用于,根据所述接入事件,获得与所述接入事件对应的所述接入标记。
结合第三方面,在一些可能的实现方式中,所述装置包括:收发模块,用于向宿主节点发送无线连接恢复请求消息,所述无线连接恢复请求消息包括原因指示信息,所述原因指示信息对应于满足的触发条件。
结合第三方面,在一些可能的实现方式中,所述装置包括:收发模块,用于向宿主节点发送IAB节点指示信息,所述IAB节点指示信息用于指示所述无线连接恢复是IAB节点的无线连接恢复。
结合第三方面,在一些可能的实现方式中,满足的触发条件包括所述IAB装置接收到子节点发送的接入请求,所述接入请求的数量大于或等于门限值,或所述子节点的数量大于或等于门限值。
结合第三方面,在一些可能的实现方式中,所述装置包括:收发模块,用于接收所述宿主节点发送的所述门限值。
结合第三方面,在一些可能的实现方式中,所述IAB装置为中继设备或者提供数据回传的设备,所述宿主节点为基站。
第四方面,提供一种接入网设备,包括:确定模块,用于确定满足以下任一种或多种触发条件:所述接入网设备接收到非激活态UE的下行数据,所述接入网设备接收到空闲态UE的第一寻呼消息;收发模块,用于向第一接入回传一体化IAB节点发送第二寻呼消息,所述第二寻呼消息用于指示所述第一IAB节点触发与宿主节点之间的无线连接恢复,所述宿主节点为所述接入网设备或第二宿主节点。
结合第四方面,在一些可能的实现方式中,满足的触发条件包括所述接入网设备接收到非激活态UE的下行数据,所述接入网设备所述确定模块还用于,根据非激活态UE的无线接入网RAN通知区域,确定所述第一IAB节点。
结合第四方面,在一些可能的实现方式中,满足的触发条件包括所述接入网设备接收到空闲态UE的第一寻呼消息,所述接入网设备所述确定模块还用于,根据所述第一寻呼消息的追踪区域标识TAI列表,确定所述第一IAB节点。
结合第四方面,在一些可能的实现方式中,所述收发模块还用于,接收所述第一IAB节点发送的无线连接恢复请求消息;所述收发模块还用于,向第三宿主节点发送上下文请求,所述上下文请求用于请求所述第三宿主节点发送第一IAB节点的分布式单元DU与所述第一IAB节点的移动终端MT的对应关系信息;所述收发模块还用于,接收所述第三宿主节点发送的所述对应关系信息。
结合第四方面,在一些可能的实现方式中,所述对应关系信息包括:所述第一IAB节点的DU的DU标识和所述第一IAB节点的MT的非激活态无线网络临时标识I-RNTI,和/或,所述第一IAB节点DU的新无线小区全球标识NR CGI和所述第一IAB节点的MT的I-RNTI。
结合第四方面,在一些可能的实现方式中,所述无线连接恢复请求消息中携带有第一IAB节点的标识,所述第一IAB节点的标识中包含所述第三宿主节点的标识。
结合第四方面,在一些可能的实现方式中,所述第一IAB节点为中继设备或者提供数据回传的设备,所述接入网设备为基站。
第五方面,提供一种接入回传一体化IAB装置,包括:处理器,用于确定满足以下任一种或多种触发条件:所述装置接收到子节点发送的接入请求,所述子节点包括第二IAB节点和/或用户设备UE,所述装置接收到宿主节点触发的寻呼消息,所述装置存在待发送的数据;所述装置的RRC层或F1AP层收到上层的连接恢复指示;通信接口,用于触发与宿主节点之间的无线连接恢复。
结合第五方面,在一种可能的实现方式中,处理器,用于根据满足的触发条件,获得与所述触发条件对应的接入标记;处理器,用于根据所述接入标记进行接入控制校验;处理器用于,当所述接入控制校验通过时,所述IAB装置触发与宿主节点之间的无线连接恢复。
结合第五方面,在一种可能的实现方式中,所述接入标记是与IAB节点相关联的接入标记。
结合第五方面,在一种可能的实现方式中,所述IAB装置的非接入层NAS用于,根据满足的触发条件,获得与满足的触发条件对应的所述接入事件,所述接入事件是与IAB节点相关联的接入事件;处理器用于,根据所述接入事件,获得与所述接入事件对应的所述接入标记。
结合第五方面,在一种可能的实现方式中,通信接口还用于,向宿主节点发送无线连接恢复请求消息,所述无线连接恢复请求消息包括原因指示信息,所述原因指示信息对应于满足的触发条件。
结合第五方面,在一种可能的实现方式中,通信接口还用于,向宿主节点发送IAB节点指示信息,所述IAB节点指示信息用于指示所述无线连接恢复是IAB节点的无线连接恢复,所述IAB节点指示信息承载在无线连接恢复请求消息或者无线连接恢复完成消息中。
结合第五方面,在一种可能的实现方式中,满足的触发条件包括所述IAB装置接收到子节点发送的接入请求,所述接入请求的数量大于或等于门限值,或所述子节点的数量大于或等于门限值。
结合第五方面,在一种可能的实现方式中,通信接口还用于,接收所述宿主节点发送的所述门限值。
结合第五方面,在一种可能的实现方式中,所述IAB装置为中继设备或者提供数据回传的设备,所述宿主节点为基站。
第六方面,提供一种接入网设备,包括接入网设备包括处理器,通信接口。处理器,用于确定满足以下任一种或多种触发条件:接入网设备接收到非激活态UE的下行数据,接入网设备接收到空闲态UE的第一寻呼消息;通信接口,用于向第一接入回传一体化IAB节点发送第二寻呼消息,所述第二寻呼消息用于指示所述第一IAB节点触发与宿主节点之间的无线连接恢复,所述宿主节点为所述接入网设备或第二宿主节点。
结合第六方面,在一些可能的实现方式中,满足的触发条件包括所述接入网设备接收到非激活态UE的下行数据,处理器还用于,根据非激活态UE的无线接入网RAN通知区域,确定所述第一IAB节点。
结合第六方面,在一些可能的实现方式中,满足的触发条件包括所述接入网设备接收到空闲态UE的第一寻呼消息,处理器还用于,根据所述第一寻呼消息的追踪区域标识TAI 列表,确定所述第一IAB节点。
结合第六方面,在一些可能的实现方式中,通信接口还用于,接收所述第一IAB节点发送的无线连接恢复请求消息;通信接口还用于,向第三宿主节点发送上下文请求,所述上下文请求用于请求所述第三宿主节点发送第一IAB节点的分布式单元DU与所述第一IAB节点的移动终端MT的对应关系信息;通信接口还用于,接收所述第三宿主节点发送的所述对应关系信息。
结合第六方面,在一些可能的实现方式中,所述对应关系信息包括:所述第一IAB节点的DU的DU标识和所述第一IAB节点的MT的非激活态无线网络临时标识I-RNTI,和/或,所述第一IAB节点DU的新无线小区全球标识NR CGI和所述第一IAB节点的MT的I-RNTI。
结合第六方面,在一些可能的实现方式中,所述无线连接恢复请求消息中携带有第一IAB节点的标识,所述第一IAB节点的标识中包含所述第三宿主节点的标识。
结合第六方面,在一些可能的实现方式中,所述第一IAB节点为中继设备或者提供数据回传的设备,所述接入网设备为基站或者宿主基站。
第七方面,提供一种无线通信系统,包括前文所述的第一IAB节点和宿主节点。
第八方面,提供一种无线通信系统,包括前文所述的第一IAB节点和第一宿主节点。
第九方面,提供一种计算机程序存储介质,其特征在于,所述计算机程序存储介质具有程序指令,当所述程序指令被处理器执行时,使得处理器执行前文中所述的无线通信的方法。
第十方面,提供一种芯片系统,其特征在于,所述芯片系统包括至少一个处理器,当程序指令在所述至少一个处理器中执行时,使得所述至少一个处理器执行前文中所述的无线通信的方法。
附图说明
图1是适用于本申请的技术方案的IAB系统的架构图。
图2是IAB节点的组成的示意图。
图3的(a)和(b)是中间IAB节点的协议栈架构的示例。
图4是多跳IAB网络的用户面协议栈架构的一种示例。
图5是多跳IAB网络的控制面协议栈架构的一种示例。
图6是UE连接态的示意图。
图7是UE空闲态的示意图。
图8是UE去激活态的示意图。
图9是一种接入网设备的示意图。
图10是一种RRC恢复流程的示意性流程图。
图11是本申请一个实施例提供的一种无线通信的方法的示意性流程图。
图12是本申请另一个实施例提供的一种无线通信的方法的示意性流程图。
图13是本申请又一个实施例提供的一种无线通信的方法的示意性流程图。
图14是本申请又一个实施例提供的一种无线通信的方法的示意性流程图。
图15是本申请又一个实施例提供的一种无线通信的方法的示意性流程图。
图16是本申请又一个实施例提供的一种无线通信的方法的示意性流程图。
图17是本申请又一个实施例提供的一种IAB装置的示意性结构图。
图18是本申请又一个实施例提供的一种接入网设备的示意性结构图。
图19是本申请又一个实施例提供的一种IAB装置的示意性结构图。
图20是本申请又一个实施例提供的一种接入网设备的示意性结构图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例提及的通信系统包括但不限于:窄带物联网(narrow band-internet of things,NB-IoT)系统、无线局域网(wireless local access network,WLAN)系统、长期演进(long term evolution,LTE)系统、第五代(the 5th generation,5G)移动通信系统或者5G之后的通信系统,例如新无线(new radio,NR)、设备到设备(device to device,D2D)通信系统等。
本申请提及的基站包括但不限于:演进型节点B(evolved node base,eNB)、无线网络控制器(radio network controller,RNC)、节点B(node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(home evolved NodeB,或home node B,HNB)、基带单元(baseband Unit,BBU)、演进的(evolved LTE,eLTE)基站、NR基站(next generation node B,gNB)等。
终端设备包括但不限于:用户设备(user equipment,UE)、移动台、接入终端、用户单元、用户站、移动站、远方站、远程终端、移动设备、终端、无线通信设备、用户代理、无线局域网(wireless local access network,WLAN)中的站点(station,ST)、蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备、连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、未来5G网络中的移动台以及未来演进的公共陆地移动网络(public land mobile network,PLMN)网络中的终端设备等中的任意一种。
无线回传节点(也可以称为接入回传一体化(integrated access and backhaul,IAB)节点)用于为无线接入无线回传节点的节点(例如,终端)提供无线回传(backhaul)服务。其中,无线回传服务是指通过无线回传链路提供的数据和/或信令回传服务。IAB节点是中继节点的特定的名称,不对本申请的方案构成限定,可以是一种具有转发功能的上述基站或者终端设备中的一种,也可以是一种独立的设备形态。在包含IAB节点的网络(以下简称IAB网络)中,IAB节点可以为终端提供无线接入服务,并通过无线回传链路连接到宿主基站(donor gNB)传输用户的业务数据。
示例性的,IAB节点还可以是用户驻地设备(customer premises equipment,简称CPE)、家庭网关(residential gateway,简称RG)等设备。该情况下,本申请实施例提供的方法还可以应用于家庭连接(home access)的场景中。
图1是适用于本申请的技术方案的IAB系统的架构图。如图1所示,一个IAB系统至少包括一个基站100,以及基站100所服务的一个或多个终端设备(terminal)101,一个或多个中继节点(也即,IAB节点)110,以及IAB节点110所服务的一个或多个终端 设备111。IAB节点110通过无线回传链路113连接到基站100。通常,基站100被称为宿主基站。可替换地,宿主基站在本申请中也称为宿主节点或donor节点或IAB宿主(IAB donor)。除此之外,IAB系统还可以包括一个或多个中间IAB节点。例如,IAB节点120和IAB节点130,IAB节点120通过无线链路122为终端设备121提供服务,IAB节点130通过无线链路132为终端设备131提供服务。
无线链路102,112,122,132,113,123,133,134可以是双向链路,包括上行和下行传输链路,特别地,无线回传链路113,123,133,134可以用于上级节点为下级节点提供服务,如上级节点100为下级节点110提供无线回传服务。应理解,回传链路的上行和下行可以是分离的,即,上行链路和下行链路不是通过同一个节点进行传输的。
宿主基站可以是一个具有完整基站功能的接入网网元,还可以是集中式单元(centralized unit,简称CU)和分布式单元(distributed unit,简称DU)分离的形态,即宿主节点由宿主基站的集中式单元和宿主基站的分布式单元组成。本文中,宿主节点的集中式单元也称为IAB donor CU(也可称作donor CU,或直接称为CU)。宿主节点的分布式单元也称为IAB donor DU(或称作donor DU)。其中donor CU还有可能是控制面(control plane,CP)(本文中简称为CU-CP)和用户面(user plane,UP)(本文中简称为CU-UP)分离的形态。例如CU可由一个CU-CP和一个或多个CU-UP组成。
本申请实施例中以及附图中均以宿主节点由Donor-CU和Donor-DU组成为例对本申请实施例提供的方法作示例性说明。
下面结合图1对IAB系统中涉及到的概念作示例性介绍。
1、基本概念。
链路:是指一条路径中的两个相邻节点之间的路径。
接入链路:终端设备与基站之间,或者终端设备与IAB节点之间,或者终端设备与宿主节点之间,或者终端设备与宿主DU之间的链路。或者,接入链路包括某个IAB节点作为普通终端设备角色时和它的父节点进行通信时所使用的无线链路。IAB节点作为普通终端设备角色时,不为任何子节点提供回传服务。接入链路包括上行接入链路和下行接入链路。本申请中,终端设备的接入链路为无线链路,故接入链路也可被称为无线接入链路。
回传链路:IAB节点作为无线回传节点时与父节点之间的链路。IAB节点作为无线回传节点时,为子节点提供无线回传服务。回传链路包括上行回传链路,以及下行回传链路。本申请中,IAB节点与父节点之间的回传链路为无线链路,故回传链路也可被称为无线回传链路。
父节点与子节点:每个IAB节点将为其提供无线接入服务和/或无线回传服务的相邻节点视为父节点(parent node)。相应地,每个IAB节点可视为其父节点的子节点(child node)。
可替换地,子节点也可以称为下级节点,父节点也可以称为上级节点。
节点的上一跳节点:是指在包含该节点的路径中的、在该节点之前最后一个接收到数据包的节点。可以理解为,节点的上一跳节点可以包括上行传输中该节点的上一跳节点,和下行传输中该节点的上一跳节点。
节点的下一跳节点:是指在包含该节点的路径中的、在该节点之后第一个接收到数据包的节点。可以理解为,节点的下一跳节点可以包括上行传输中该节点的下一跳节点,和 下行传输中该节点的下一跳节点。
节点的入口链路:是指该节点与该节点的上一跳节点之间的链路,也可以称为节点的上一跳链路。可以理解为,节点的入口链路可以包括该节点在上行传输中的入口链路,和该节点在下行传输中的入口链路。
节点的出口链路:是指该节点与该节点的下一跳节点之间的链路,也可以称为节点的下一跳链路。可以理解为,节点的出口链路可以包括该节点在上行传输中的出口链路,和该节点在下行传输中的出口链路。
接入IAB节点:是指终端接入的IAB节点,或者说为终端设备提供接入服务的IAB节点。
中间IAB节点:是指为其它IAB节点(例如,接入IAB节点或其它中间IAB节点)提供无线回传服务的IAB节点,或者说中间IAB节点指的是接入IAB节点和宿主节点之间的IAB节点。
2、IAB节点的组成。
IAB节点可以具有移动终端(mobile terminal,简称MT)的部分以及DU的部分。IAB节点的DU部分具有gNB的部分功能,用于为其子节点(子节点可能是终端或另一IAB节点)提供服务。IAB节点的MT部分类似于UE,用于提供数据回传。IAB节点利用MT部分与其父节点进行通信,IAB节点利用DU部分与其子节点通信。一个IAB节点可以通过MT部分与该IAB节点的至少一个父节点之间建立回传连接。一个IAB节点的DU部分可以为终端或其他IAB节点的MT部分提供接入服务。下面结合图2对两跳回传(backhaul,BH)链路进行示例说明。
图2为IAB节点的组成的示意图。UE通过IAB节点2和IAB节点1连接到宿主节点。示例性的,IAB节点1和IAB节点2均包括DU部分和MT部分。IAB节点2的DU部分为UE提供接入服务。IAB节点1的DU部分为IAB节点2的MT部分提供接入服务。宿主节点的DU部分与IAB节点的DU部分功能类似,用于为IAB节点1的MT部分提供接入服务。宿主节点的CU部分用于控制和管理其下的所有IAB节点和UE。宿主节点的CU部分通过NG接口与核心网(core network,CN)连接。核心网也可以称为5G核心网(5G core network,5GC)或新一代核心网(new generation core network,NGC)。
为了便于理解,还需要对IAB网络的协议栈进行介绍。IAB网络的协议栈包括用户面协议栈和控制面协议栈。
3、接入IAB节点、中间IAB节点、Donor-DU、Donor-CU以及终端设备的协议栈架构。
中间IAB节点在用户面和控制面的协议栈相同。图3的(a)和(b)为中间IAB节点的协议栈架构的示例。示例性的,中间IAB节点的MT部分和DU部分可以不共用适配(adapt)层或适配层实体,如图3的(a)所示。在IAB情况下,适配层也可以称为回传适配协议(backhaul adaptation protocol,BAP)层。中间IAB节点的MT部分和DU部分也可以共用适配层或适配层实体,如图3的(b)所示。
接入IAB节点在用户面和控制面的协议栈不同,可分别参见4和图5所示中的IAB节点2。
参见图4,图4为多跳IAB网络的用户面协议栈架构的一种示例。如图4中所示,在 图4所示的协议架构中,各个协议层的含义为:分组数据汇聚协议(packet data convergence protocol,PDCP)层、通用分组无线服务隧道协议用户面(general packet radio service tunneling protocol user plane,GTP-U)层、用户数据报协议(user datagram protocol,UDP)层、网络互连协议(internet protocol,IP)层、L2层(layer 2)、L1层(layer 1)、无线链路控制(radio link control,RLC)层、媒介接入控制(medium access control,MAC)层、物理(physical,PHY)层、无线资源控制(radio resource control,RRC)层。其中,L2层为链路层。示例性的,L2层可以为开放式通信系统互联(open systems interconnection,OSI)参考模型中的数据链路层。L1层可以为物理层。示例性的,L1层可以为OSI参考模型中的物理层。
为了满足终端设备不同类型业务的业务质量要求,无线网络中引入了一个或多个无线承载(radio bearer,RB),无线承载包括数据无线承载(data radio bearer,DRB)和信令无线承载(signaling raido bearer,SRB),用于在UE和基站之间传输不同类型的业务数据(包括控制面信令以及用户面数据)。在IAB网络中,RB可以认为是UE和宿主节点之间传输数据的逻辑通道。
示例性的,每个协议层都会被配置与之对应的协议层实体,例如PDCP实体,RLC实体以及MAC实体等。在上行传输中,UE的数据包(例如IP数据包)在PDCP层经过相应处理之后,依次经过RLC层,MAC层和PHY层发送给接入回传节点(例如图4中所示的IAB节点2)的PHY层。
如上文所述,在IAB网络中,IAB节点可以包含DU部分和MT部分。在IAB节点作为无线回传节点时,IAB节点的MT部分在回传链路执行数据转发不需要终端设备在无线接入链路的完整协议栈。例如,图4中所示的IAB节点2对于IAB节点1而言,IAB节点2为IAB节点1的子节点。IAB节点2将来自UE的数据包发送给IAB节点1时,IAB节点2的MT不需要PDCP层,数据包的转发是在适配层(adapt层)之下作转发的。因此,在图4中,IAB节点作为无线回传节点向其父节点发送数据包时,只涉及到适配层以下的协议层,这对所有的IAB节点都是适用的,不再赘述。
当IAB节点作为无线终端的角色时,其与父节点之间的通信链路的协议栈与UE和接入IAB节点之间的无线接入链路的协议栈相同,其与宿主CU之间的协议栈与UE和宿主CU之间的协议栈相同。
另外,图4中还示出了宿主CU和接入IAB节点(如图4中的IAB节点2)之间的F1接口的用户面(F1-U)协议栈。F1接口通过GTP-U协议层建立的GTP-U隧道和UE的数据无线承载DRB是一一对应的。换句话说,一个UE的每个无线承载都有一个GTP隧道与之一一对应。
参见图5,图5为多跳IAB网络的控制面协议栈架构的一种示例。图4中对各协议层的介绍在图5中也是适用的,但是也存在一些区别。例如,图5中接入IAB节点和宿主CU之间的F1接口采用的是F1控制面(F1-C)协议栈,包括:F1应用协议(F1application protocol,F1AP)层、流控制传输协议(stream control transmission protocol,SCTP)层。
需要说明的是,图4和5分别示出了IAB网络中传输UE的数据业务的端到端用户面和控制面协议栈架构一种示例。可选地,协议栈架构还可以有其它的可能性。例如,在IAB2和宿主CU之间的F1接口引入用于安全保护的协议层,则协议栈架构会发生变化。
另外,若宿主节点是功能完整的实体,则IAB donor保留donor DU和donor CU对外部节点接口的协议栈即可,donor DU和donor CU之间的内部接口上的协议层不是必须的。类似地,IAB节点的协议栈,对外部而言,可以不区分DU部分和MT部分,只统一展示对外部节点接口的协议栈。
另外,不论是控制面的协议栈架构还是用户面的协议栈架构,若donor DU为donor CU和IAB节点之间的F1接口的代理节点时,donor DU中面向接入IAB节点的用户面协议栈架构中,在IP层之上,可以包括与接入IAB节点中的DU部分的协议栈架构中的UDP层和GTP-U层分别对等的UDP层和GTP-U层,还可以包含与接入IAB节点的DU部分对等的IPsec层;Donor-DU中面向接入IAB节点的控制面协议栈架构中,在IP层之上,可以包括与接入IAB节点中的DU部分的协议栈架构中的SCTP层和F1AP层分别对等的SCTP层和F1AP层,还可以包含与接入IAB节点的DU部分对等的IPsec层或DTLS层。
根据控制面协议栈,IAB节点2可以将UE的RRC消息封装在F1AP消息(例如:UE相关的F1AP消息,即:UE-associated F1AP)中发送给IAB donor CU。
此外,图4和图5中还涉及到F1接口。
4、F1接口、F1接口的协议层
示例性的,F1接口是指IAB节点的DU部分和宿主节点(donor-CU)之间的逻辑接口,或者,是指宿主节点donor-CU和donor-DU之间的逻辑接口。其中,IAB节点的DU部分和宿主节点(donor-CU)之间的F1接口也可以称为F1*接口,支持用户面以及控制面。F1接口的协议层是指在F1接口上的通信协议层。
UE对等的PHY层、MAC层和RLC层位于IAB节点2DU(即接入IAB节点DU)上,而UE对等的PDCP层、SDAP层和RRC层位于IAB donor CU上。
相较于LTE系统中UE只有空闲态(idle mode)和连接态(connected mode)两种状态,NR中的UE引入了一种新的状态,即非激活态(inactive mode)。
图6是UE处于连接态的示意图。
UE与gNB之间的RRC连接,以及gNB与NGC之间的NG连接都存在,gNB保留UE的上下文。
图7是UE处于空闲态的示意图。
UE与gNB之间的RRC连接,以及gNB与NGC之间的NG连接都被释放,gNB删除UE的上下文。
图8是UE处于非激活态的示意图。
非激活态是介于空闲态和连接态之间的一种状态,即:UE与gNB之间的RRC连接被释放,但是gNB与NGC之间的NG连接保留,gNB保留UE的上下文。
图9是NR中gNB的示意图。
NR中,gNB可以采用CU-DU分离架构,即一个gNB由一个gNB-CU和一个或者多个gNB-DU组成,其中,gNB-CU与gNB-DU之间通过F1接口相连,gNB-CU与核心网NGC之间通过NG接口相连。
UE通过gNB-DU接入gNB-CU,即UE对应的PHY/MAC/RLC层功能位于gNB-DU上,UE对等的PDCP/SDAP/RRC层功能位于gNB-CU上。
在连接态,gNB-CU与gNB-DU均保存有UE的上下文。在非激活态,gNB-CU保留 UE的上下文,gNB-DU可以删除UE的上下文。
通过UE非激活状态,可以有效的降低用户设备功耗,同时,一旦UE需要从非激活态进入连接态时,可以快速的恢复RRC连接,降低RRC恢复时延。
图10是UE与gNB之间的RRC恢复的示意性流程图。
NR中,非激活态UE执行RRC恢复流程的触发条件包含以下三种:
条件1:由UE的上层(upper layer)触发,例如:有上行链路(uplink,UL)数据待传输时,UE需要从非激活态进入连接态,将触发RRC恢复流程。
条件2:由UE的RRC层触发,例如:UE需要执行基于RAN的通知区域(RAN-based notification area,RNA)更新(update)。基于RAN的通知区域也可以称为RAN通知区域。示例性的,可以是处于非激活态的UE周期性进行RNA更新。或者,处于非激活态的UE发现其移动出网络配置的RAN通知区域外而触发的RNA更新,从而触发RRC恢复流程。RNA更新,即宿主CU重新为UE配置新的RAN通知区域。该RAN通知区域可以根据RAN区域编码(RAN area code)信息确定,也可以根据小区信息(例如:NR CGI)确定。
条件3:UE接收到基于RAN通知区域的寻呼消息。例如:非激活态UE存在被叫业务时,UE需要从非激活态进入连接态,将触发RRC恢复流程。
也就是说,只要三种触发条件中的任一种或多种条件满足,则非激活态UE将触发RRC恢复流程,通过gNB DU与gNB CU进行RRC恢复。
在步骤S1001,UE向gNB-DU发送前导(preamble)序列。前导序列是UE在物理随机接入信道(physical random access channel,PRACH)上发送的物理信号。当gNB在PRACH上接收到前导序列时,gNB认为有UE接入。
在步骤S1002,gNB-DU向UE发送随机接入响应(random access response,RAR)消息,该RAR消息中携带gNB-DU为UE在接入小区中分配的无线网络临时标识(cell-radio network tempory identity,C-RNTI)。C-RNTI是连接态UE在接入小区中的唯一标识。
在步骤S1003,UE向gNB-DU发送RRC恢复请求(RRC Resume Request)消息,用于请求恢复RRC连接。
在步骤S1004,gNB-DU向gNB-CU转发该RRC Resume Request消息。示例性的,gNB-DU将RRC Resume Request消息封装在初始UL RRC信息传输(Initial UL RRC Message Transfer)消息中发送到gNB-CU。可选的,Initial UL RRC Message Transfer消息中还可以携带UE接入的gNB-DU的NR小区全球标识(cell global identifier,CGI),以及UE在该小区的标识C-RNTI。
在步骤S1005,gNB-CU向gNB-DU发送UE上下文建立请求消息,用于请求gNB-DU建立UE的上下文。
在步骤S1006,在gNB-DU建立UE上下文后,gNB-DU向gNB-CU发送UE上下文建立响应消息,UE上下文建立响应消息用于gNB-DU确认UE的上下文建立完成。
在步骤S1007,gNB-CU生成RRC恢复消息,并该将RRC恢复消息封装在DL RRC信息传输(DL RRC Message Transfer)消息中发送到gNB-DU。
在步骤S1008,gNB-DU接收DL RRC Message Transfer消息,并从该消息中提取出RRC恢复消息发送给UE。
在步骤S1009,UE向gNB-DU发送RRC恢复完成消息。
在步骤S1010,gNB-DU将RRC恢复完成消息封装在UL RRC信息传输(UL RRC Message Transfer)消息中发送到gNB-CU。
在IAB场景下,当IAB节点有节能需求时,或者,当IAB节点提供服务的UE均处于空闲态或非激活态,或者,当IAB节点覆盖范围内的UE个数或者提供服务的数据量低于一个门限时,为了降低IAB节点的功耗,IAB节点可以断开/释放与宿主节点之间的RRC连接,即:IAB节点工作在非激活态。门限可以是IAB节点预设置的,或者由宿主节点配置为IAB节点的。
图11是本申请实施例提供的一种通信方法的示意性流程图。
在步骤S1101,第一IAB节点确定满足触发条件。触发条件可以包括以下任一种或多种:
所述第一IAB节点接收到子节点发送的接入请求,所述子节点包括第二IAB节点和/或用户设备UE,
所述第一IAB节点接收到宿主节点触发的寻呼消息,
所述第一IAB节点存在待发送的数据,
所述第一IAB节点的RRC层或F1AP层收到上层的连接恢复指示,所述连接恢复指示用于指示所述第一IAB节点恢复与宿主节点之间的无线连接。
第一IAB节点为中继设备或者提供数据回传的设备,宿主节点为基站。
第一IAB节点的子节点存在待发送的数据时,进行与宿主节点之间的无线连接恢复。第一IAB节点的子节点向第一IAB节点发送接入请求,接入请求可以是前导序列、RRC建立请求消息、RRC恢复请求消息、F1连接恢复请求消息中的一个或多个,也可以是其他接入请求。
满足的触发请求可以包括第一IAB节点接收到子节点发送的接入请求。第一IAB节点可以设置有子节点数量或接入请求数量的门限值。达到或超过门限值,进行步骤S1102。也就是说,第一IAB节点可以在接收的接入请求的数量大于或等于门限值的情况下,或者第一IAB节点可以在接收的接入请求对应的子节点的数量大于或等于门限值的情况下,进行步骤S1102。
门限值可以是第一IAB节点预先设置,也可以由宿主节点配置的。第一IAB节点可以在断开与宿主节点的RRC连接,或者,第一IAB节点从连接态进入非激活态时,宿主节点可以通过连接释放消息向第一IAB节点发送门限值。宿主节点可以根据宿主节点的负载能力、第一IAB节点的负载能力等,为第一IAB节点配置门限值。
在步骤S1102,第一IAB节点触发与宿主节点之间的无线连接的恢复。无线连接例如可以是RRC连接恢复、F1连接恢复等。
触发与宿主节点之间的无线连接的恢复,也可以理解为向宿主节点发送前导序列或无线连接恢复请求。
在满足触发条件的情况下,第一IAB节点可以触发与宿主节点之间的无线连接恢复。或者,在满足触发条件的情况下,第一IAB节点进行接入控制校验,在接入控制校验通过时,第一IAB节点触发与宿主节点之间的无线连接恢复。
在步骤S1102之前,第一IAB节点可以进行接入控制检验,以确定当前的接入尝试 是否被允许。
第一IAB节点可以根据满足的触发条件,获得与所述触发条件对应的接入标记。所述第一IAB节点根据所述接入标记进行接入控制校验。接入控制校验的过程可以参见图15的说明。
对于不同的触发条件,第一IAB节点获得的接入标记可以相同或不同。第一IAB节点可以保存有触发条件与接入标记之间的对应关系。第一IAB节点可以根据该对应关系确定接入标记。或者,第一IAB节点可以根据其他条件选择接入标记,第一IAB节点选择的接入标记即触发条件对应的接入标记。
可以为IAB节点定义与UE不同的接入标记。第一IAB节点获得的接入标记可以是与IAB节点相关联的接入标记,即可以是为IAB节点定义的接入标记,或者说是IAB节点对应的接入标记。
接入标记可以是接入类别(Access Category)和/或接入标识(Access Identity)。为IAB节点定义的接入类别可以是预留的接入类别,或其他接入类别。为IAB节点定义的接入类别可以是预留的接入标识,或其他接入标识。
第一IAB节点的非接入层(non-access stratum,NAS)可以用于根据触发条件选择接入标记。第一IAB节点的RRC层也可以根据触发条件选择接入标记。
根据满足的触发条件,所述第一IAB节点的NAS层可以获得与满足的触发条件对应的接入事件。第一IAB节点可以根据该接入事件,获得与该接入事件对应的接入标记。
可以为IAB节点定义与UE不同的接入事件。第一IAB节点NAS层确定的接入事件可以是与IAB节点相关联的接入事件,即可以是为IAB节点定义的接入事件,或者说是IAB节点对应的接入事件。
第一IAB节点触发与宿主节点之间的无线连接恢复,第一IAB节点向宿主节点发送无线连接恢复请求消息,无线连接恢复请求消息包括原因指示信息,所述原因指示信息对应于满足的触发条件。一种原因指示信息可以指示一种触发条件,或者,一种原因指示信息可以与多种触发条件相对应。即:触发条件可以与原因指示信息中的原因值一一对应,一个原因值也可以对应多个触发条件。
根据不同的触发条件,宿主节点可以进行不同的处理。例如,宿主节点可以根据负载情况等,确定是否恢复与第一IAB节点之间的无线连接。
第一IAB节点可以向宿主节点发送IAB节点指示信息,IAB节点指示信息可以用于指示无线连接恢复是IAB节点的无线连接恢复。或者说,AB节点指示信息可以用于指示无线连接恢复是IAB节点触发的。该IAB节点指示信息可以承载在RRC恢复请求消息或者无线连接恢复完成消息中,也可以承载在其他消息中。宿主节点可以根据无线连接恢复是为了IAB节点或为了UE进行不同的处理。第一IAB节点是一个IAB节点。
第一IAB节点可以是非激活态的IAB节点。宿主节点保存有第一IAB节点的上下文。第一IAB节点的IAB的子节点可以包括空闲态UE、非激活态的UE,非激活态IAB节点中的任一种或多种。
通过步骤S1101至S1102,第一IAB节点能够恢复与宿主节点之间的无线连接。在在满足通信需求的同时,降低了功耗。
下文中以无线连接恢复为RRC连接恢复为例进行说明。无线连接恢复请求可以是 RRC恢复请求,无线连接恢复完成消息可以是RRC恢复完成消息。
图12是本申请实施例提供的一种通信方法的示意性流程图。
IAB节点包括IAB-DU与IAB-MT。图中的IAB节点可以是接入IAB节点,也可以是中间IAB节点。
宿主节点包括宿主DU与宿主CU。IAB节点处于非激活状态,指的是IAB MT处于非激活状态,IAB DU处于非激活状态。非激活态的IAB MT与宿主节点之间不存在RRC连接。宿主CU保存有非激活态IAB节点的上下文。非激活态IAB节点的上下文可以包括IAB MT在空口使用的安全算法和密钥、IAB MT的空口配置、IAB DU的标识、IAB DU的小区标识、IAB MT和IAB DU的对应关系中的一种或多种。IAB MT和IAB DU的对应关系例如可以是IAB MT的非激活态无线网络临时标识(inactive-radio network temporary identifier,I-RNTI)和IAB DU的DU标识(DU identification,DU ID)的对应关系,或者IAB MT的I-RNTI和IAB DU小区的NR CGI的对应关系。
I-RNTI用于标识非激活态IAB MT,可以为24bit的短标识,也可以为40bit的长标识。在IAB节点从连接态进入非激活态时,宿主CU为IAB节点配置I-RNTI(为长标识或者为短标识)。应当理解,非激活态IAB节点中,IAB-DU与IAB-MT均为非激活态。示例性的,IAB-DU处于非激活态,指的是IAB DU工作在不连续发送(discontinuous transmission,DTX)态,使用长周期的测量定时配置(measurement timing configuration,MTC)配置。也就是说,为了节能,IAB DU仅发送系统信息块(system information block,SIB)1、发送同步信号块(synchronization signal block,SSB),供空闲态UE或非激活态UE接入或非激活态的其他IAB节点接入。
在步骤S1201,子节点向IAB-DU发送请求,例如:发送preamble序列。子节点可以是非激活态或空闲态的UE,也可以是处于非激活态的其他IAB节点。
在步骤S1202,IAB-DU向子节点发送RAR消息。该RAR消息中可以携带IAB-DU为子节点分配的C-RNTI。
如果子节点是空闲态的UE,在步骤S1203,子节点向IAB-DU发送RRC建立请求。如果子节点是非激活态的UE或非激活态的其他IAB节点,在步骤S1203,子节点向IAB-DU发送RRC恢复请求。
在步骤S1204,IAB-DU向IAB-MT发送指示信息,该指示信息用于指示IAB MT进行与宿主CU之间的RRC连接的恢复。该指示信息可以称为连接恢复指示。
步骤S1204可以在步骤S1201之后进行。IAB-DU在接收子节点发送的preamble序列之后,向IAB-MT发送指示信息,触发IAB-MT向宿主CU发起RRC恢复流程,尽快恢复IAB-MT与宿主CU之间的RRC连接。
或者,步骤S1204可以在步骤S1203之后进行。IAB-DU在接收子节点发送的RRC建立请求之后,向IAB-MT发送指示信息,触发IAB-MT向宿主CU发起RRC恢复流程,尽快恢复IAB-MT与宿主CU之间的RRC连接。
作为一种可选的方案,IAB-DU在接收N个子节点发送的RRC建立请求、RRC恢复请求或前导序列之后,向IAB-MT发送指示信息。N为正整数。N可以是IAB-DU节点预设的,也可以是由宿主节点配置的。宿主CU可以在IAB节点进入非激活态时,向IAB-DU配置N。例如,宿主节点可以根据IAB节点进入非连接态时宿主节点的负载情况等,灵活 配置N。
在步骤S1205,IAB-MT接收指示信息后,开始进行RRC恢复流程。
在IAB-DU存在待发送的上行数据时,也可以向IAB-MT发送指示信息。例如,IAB-DU需要向OAM服务器发送业务时,向IAB-MT发送指示信息,触发IAB-MT向宿主CU发起RRC恢复流程。
图13是本申请实施例提供的一种通信方法的示意性流程图。
在步骤S1601,第一宿主节点确定满足触发条件。
触发条件包括第一宿主节点接收到非激活态UE的下行数据,和/或第一宿主节点接收到空闲态UE的第一寻呼消息。
触发条件还可以包括第一宿主节点确定恢复与第一IAB节点之间的无线连接。例如,由于第一宿主节点的处理能力的限制,第一宿主节点确定恢复与第一IAB节点之间的无线连接,该无线连接可以是RRC连接,或者F1连接等。
第一宿主节点在寻呼UE之前,可以先确定在UE的寻呼区域内是否存在非激活态的IAB节点。如果存在,则第一宿主节点可以先与该IAB节点恢复无线连接。
第一宿主节点接收到非激活态UE的下行数据的情况下,第一宿主节点根据保存的非激活态UE的无线接入网RAN通知区域,确定第一IAB节点。
第一宿主节点保存有非激活态UE的RAN通知区域。第一宿主节点接收到非激活态UE的下行数据的情况下,第一宿主节点可以根据非激活态UE的RAN通知区域,确定RAN通知区域对应的一个或多个IAB节点。如果RAN通知区域对应的一个或多个IAB节点中包括与宿主CU之间无线连接断开的IAB节点,即非激活态的IAB节点,第一宿主节点将该非激活态的IAB节点确定为第一IAB节点。
第一宿主节点接收到空闲态UE的第一寻呼消息的情况下,所述第一宿主节点可以根据第一寻呼消息携带的追踪区域标识(tracking area identity,TAI)列表(list),确定第一IAB节点。
核心网保存有为空闲态UE配置的TAI列表,根据TAI列表可以确定空闲态UE所在寻呼范围内包含的小区。核心网接收到空闲态UE的下行数据后,核心网向TAI列表确定的寻呼区域中的小区对应的宿主节点发送第一寻呼消息。第一寻呼消息包括TAI列表。第一宿主节点可以根据TAI列表,确定空闲态UE的寻呼区域内的小区对应的一个或多个IAB节点。如果空闲态UE的寻呼区域内的小区对应的一个或多个IAB节点中包括与宿主CU之间无线连接断开的IAB节点,即非激活态的IAB节点,第一宿主节点将该非激活态的IAB节点确定为第一IAB节点。
在步骤S1602,第一宿主节点向第一IAB节点发送第二寻呼消息,第二寻呼消息用于指示第一IAB节点触发与宿主节点之间的无线连接恢复。第一IAB节点收到第二寻呼消息后,触发恢复与宿主节点之间的无线连接。进行无线连接恢复的宿主节点可以是第一宿主节点,也可以是其他宿主节点。
第一宿主节点指示第一IAB节点从连接态进入非激活态之后,由于第一IAB节点的移动性,或者IAB节点需要从非激活态回到连接态时进行小区选择,导致其接入的宿主节点可能改变。
第一宿主节点接收所述第一IAB节点发送的无线连接恢复请求消息,即第一宿主节点 是第一IAB节点的目标宿主节点。
如果第一宿主节点保存有第一IAB节点的DU与第一IAB的MT的对应关系,即第一IAB节点的源宿主节点与目标宿主节点相同。第一宿主节点可以根据该对应关系,基于寻呼区域中包含的DU小区确定第一IAB的MT。
如果第一宿主节点未保存第一IAB节点的DU与第一IAB的MT的对应关系,即第一IAB节点的源宿主节点与目标宿主节点不相同。第三宿主节点为第一IAB节点的源宿主节点。第一宿主节点可以向第三宿主节点发送上下文请求。上下文请求用于请求所述第三宿主节点发送第一IAB节点的分布式单元DU与所述第一IAB节点的移动终端MT的对应关系信息。所述第一宿主节点接收所述第三宿主节点发送的所述对应关系信息。
所述对应关系信息可以包括所述第一IAB节点的DU的DU标识和所述第一IAB节点的MT的非激活态无线网络临时标识I-RNTI。
所述对应关系信息也可以包括所述第一IAB节点DU的新无线小区全球标识NR CGI和所述第一IAB节点的MT的I-RNTI。
第一宿主节点可以根据无线连接恢复请求消息,确定第三宿主节点。无线连接连接恢复请求消息中携带有第一IAB节点的标识,所述第一IAB节点的标识中包含所述第三宿主节点的标识。
图15是本申请实施例提供的一种通信方法的示意性流程图。
当非激活态IAB节点覆盖范围内的非激活态UE或者空闲态UE存在下行数据待传输(即:存在被叫业务)时,也可能会触发非激活态的IAB节点向宿主节点发起RRC恢复流程。
在步骤S1301,宿主CU接收核心网网元发送的DL数据或寻呼消息。
对非激活态UE而言,宿主CU接收核心网网元发送的该UE的DL数据。对空闲态UE而言,宿主CU接收核心网网元发送的寻呼消息。
在步骤S1302,宿主CU确定非激活状态的IAB节点。
对非激活态UE而言,宿主CU根据非激活态UE配置的RAN通知区域信息,首先确定UE的RAN通知区域内的非激活态的IAB节点。对空闲UE而言,宿主CU根据收到的核心网寻呼消息中携带的追踪区域标识(tracking area identity,TAI)列表(list),首先确定CN寻呼区域内的非激活态的IAB节点。
在步骤S1303,宿主CU发送针对IAB-MT的寻呼消息。
宿主CU先寻呼非激活态IAB节点。在IAB节点从非激活态变为连接态,并恢复与宿主CU之间的RRC连接后,宿主CU再通过连接态IAB节点向UE发起寻呼。
DL数据需要发送至IAB DU覆盖的小区下的空闲态UE或者非激活态UE,当DL数据到达宿主CU或核心网网元时,则宿主CU需要先将空闲态UE对应的寻呼区域或者非激活态UE的RAN通知区域内的非激活态的IAB MT唤醒后,再寻呼该UE。
对于空闲态的UE,当有DL数据到达核心网网元时,核心网网元发起核心网寻呼(CN paging)。核心网网元在空闲态UE的寻呼区域内向包括宿主CU在内的所有gNB发送寻呼消息。当空闲态UE的寻呼区域内存在非激活态IAB节点时,宿主CU在寻呼空闲态UE之前,需要先在寻呼区域内将非激活态IAB节点唤醒,即恢复宿主CU与IAB MT之间的RRC连接,并恢复宿主CU和IAB DU之间的F1连接,然后宿主CU向IAB DU发 送F1寻呼消息,用于请求IAB DU寻呼UE。
示例性的,核心网网元发送的寻呼消息中携带追踪区域标识(tracking area identity,TAI)列表,根据TAI列表可以确定追踪区域内所有包含的小区信息。小区信息例如可以是小区标识,如NR CGI。
通过NR CGI,宿主节点可以确定IAB DU。也就是说,宿主CU根据收到的核心网寻呼(CN paging)消息中携带的TAI列表,可以确定寻呼区域内的小区信息(例如:小区标识NR CGI),再根据小区信息确定对应的IAB MT。例如,宿主CU可以根据小区信息确定相关的IAB DU,根据IAB DU和IAB MT的对应关系,确定IAB MT。示例性的,IAB DU包含一个或者多个小区。
在IAB DU和宿主CU建立F1连接的时候,宿主CU就可以获知并保存IAB DU和IAB DU小区的关系,例如:IAB DU的标识DU ID和IAB DU小区的标识NR CGI的关系。即:宿主CU可以根据TAI列表,确定寻呼区域内所有IAB DU的小区标识NR CGI,再根据IAB DU小区标识NR CGI和IAB MT标识I-RNTI的对应关系,确定寻呼区域内所有非激活态的IAB MT。或者,宿主CU可以根据TAI列表,确定寻呼区域内所有IAB DU的小区标识NR CGI,再根据IAB DU的标识DU ID和IAB DU的小区标识NR CGI的对应关系,确定寻呼区域内所有IAB DU,最后再根据IAB DU的标识DU ID和IAB MT标识I-RNTI的对应关系,确定寻呼区域内所有非激活态的IAB MT。
对于非激活态的UE,当有DL数据到达核心网网元时,由于非激活态UE在核心网网元和宿主CU之间的连接存在,因此核心网网元可以将该DL数据进一步发送到宿主CU。宿主CU根据为非激活态UE配置的RAN通知区域信息,确定该RAN通知区域内的小区信息(例如:小区标识NR CGI),再根据小区信息确定对应的IAB MT,或者,再根据小区信息确定相关的IAB DU,最后根据IAB DU和IAB MT的对应关系,确定IAB MT。示例性的,IAB DU包含一个或者多个小区,在IAB DU和宿主CU建立F1连接的时候,宿主CU就可以获知并保存IAB DU和IAB DU小区的关系,例如:IAB DU的标识DU ID和IAB DU小区的标识NR CGI的关系。即:宿主CU根据为非激活态UE配置的RAN通知区域,确定该区域内所有IAB DU的小区标识NR CGI,再根据IAB DU小区标识NR CGI和IAB MT标识I-RNTI的对应关系,确定该RAN通知区域内所有非激活态的IAB MT。或者,宿主CU根据为非激活态UE配置的RAN通知区域,确定该区域内所有IAB DU的小区标识NR CGI,再根据IAB DU的标识DU ID和IAB DU的小区标识NR CGI的对应关系,确定该区域内所有IAB DU,最后再根据IAB DU的标识DU ID和IAB MT标识I-RNTI的对应关系,确定该RAN通知区域内所有非激活态的IAB MT。
在步骤S1304,IAB节点与宿主CU进行RRC恢复流程。
在步骤S1305,F1接口恢复。
RRC连接恢复后,将触发IAB-DU和宿主CU之间的快速F1接口恢复过程。例如:宿主CU上保存IAB DU的小区信息,则一旦宿主CU获知与IAB MT之间的RRC连接恢复后,将触发向IAB DU发送F1接口恢复消息,该消息中携带IAB DU小区的激活指示信息,即:指示哪些IAB DU小区被激活。
在步骤S1306,宿主CU向IAB DU发送寻呼消息。对于非激活态UE,宿主CU向该UE配置的RAN通知区域内的所有小区对应的IAB节点的IAB-DU发送寻呼消息,以寻 找该UE。对于空闲态UE,宿主CU向该UE配置的寻呼区域内的所有小区对应的IAB节点的IAB-DU发送寻呼消息。
在步骤S1307,IAB-DU根据从F1接口收到的寻呼消息,生成RRC层的寻呼消息并发送。
对于空闲态UE,核心网的认证管理功能(authentication management function,AMF)网元生成NG寻呼消息通过NG接口发送到宿主CU。然后宿主CU根据接收的NG寻呼消息生成F1寻呼消息,通过F1接口向IAB DU发送F1寻呼消息。IAB DU根据F1寻呼消息,生成最终的RRC层的寻呼消息并向UE发送。
对于非激活态UE,宿主CU生成F1寻呼消息,通过F1接口向IAB DU发送F1寻呼消息。由IAB DU根据F1寻呼消息生成RRC层的寻呼消息并向UE发送。
在一些实施例中,DL数据还可以是IAB节点的数据,即该数据需要发送至IAB节点,该数据例如可以是网管业务数据(如OAM服务器发送给IAB DU的数据)等,OAM服务器将DL数据发送到宿主CU,宿主CU根据保存IAB节点的上下文,确定该IAB节点处于非激活态,于是宿主CU发送RAN寻呼消息,触发非激活态IAB节点执行RRC恢复流程。宿主CU可以在非激活态IAB节点的RAN通知区域内发送RAN寻呼消息。IAB节点的RAN通知区域可以在IAB节点进入非激活态时,由宿主CU配置。一旦IAB节点恢复与宿主CU之间的RRC连接,则宿主CU就可以将IAB节点的网管业务数据发送到IAB节点。
示例性的,宿主CU保存有IAB MT与IAB DU的对应关系,或者说,宿主CU保存有IAB MT与IAB DU的标识的对应关系(例如:IAB MT的非激活态无线网络临时标识(inactive-radio network temporary identifier,I-RNTI)与IAB DU的标识DU ID的对应关系),或者说,宿主CU保存有IAB MT与IAB DU小区的标识的对应关系(例如:IAB MT的标识I-RNTI与IAB DU小区的标识NR CGI的对应关系)。宿主CU根据IAB DU的标识或者IAB DU的小区标识,确定该IAB节点的IAB MT。宿主CU发送对该IAB MT的寻呼消息。
IAB MT收到寻呼消息后,进行步骤S1304,与宿主CU进行RRC恢复流程。
在步骤S1304之后,宿主CU向IAB DU发送DL数据。
IAB MT与宿主CU进行RRC恢复流程后,可以通过恢复的RRC连接,配置DL数据对应的用户面承载,例如:数据无线承载(data radio bearer,DRB)或者RLC信道(RLC channel)。宿主CU将DL数据通过对应的用户面承载发送到IAB MT,IAB MT通过内部接口发送到IAB DU。
通过步骤S1301-S1304,非激活态的IAB节点被唤醒,建立了与宿主CU之间的RRC连接。
宿主节点指示IAB节点从连接态进入非激活态之后,由于IAB节点的移动性,或者IAB节点需要从非激活态回到连接态时进行小区选择,导致其接入的宿主节点可能改变。IAB节点从连接态进入非激活态时的宿主节点称为原宿主节点,非激活态IAB节点发起RRC恢复流程的宿主节点称为目标宿主节点。非激活态IAB节点与目标宿主节点进行RRC恢复流程过程中,可以向目标宿主节点发送I-RNTI(为长标识或者短标识)。I-RNTI是由原宿主节点分配给非激活态IAB节点,I-RNTI包括原宿主节点的信息。目标宿主节点 根据I-RNTI,可以确定原宿主节点。
目标宿主节点可以向原宿主节点获取非激活态IAB节点的上下文,包括:IAB MT和IAB DU的对应关系,例如:IAB MT的I-RNTI和IAB DU的DU ID的对应关系,或者IAB MT的I-RNTI和IAB DU小区的NR CGI的对应关系。DU标识和I-RNTI一一对应。多个NR CGI可以对应于一个I-RNTI。可以通过列表的方式发送上述对应关系。例如,列表的中的每一行包括一个NR CGI和该NR CGI对应的I-RNTI。
目标宿主节点可以向原宿主节点发送上下文请求,上下文请求用于请求所述原宿主节点发送第一IAB节点的分布式单元DU与所述第一IAB节点的移动终端MT的对应关系。根据接收的上下文请求,原宿主节点可以向目标宿主节点发送该对应关系。
原宿主节点可以向目标宿主节点发送非激活态UE的下行数据。原宿主节点可以在接收目标宿主节点发送的上下文请求后,向目标宿主节点发送非激活态UE的下行数据。或者,原宿主节点可以接收目标宿主节点发送的下行数据请求。原宿主节点可以根据下行数据请求,向目标宿主节点发送该UE的下行数据。
图15是本申请实施例提供的一种通信方法的示意性流程图。
非激活态的UE通过进行RRC恢复流程,进入连接态,从而接入网络。在非激活态的UE进行RRC恢复流程之前,需要进行接入小区的控制校验,以确定当前接入小区的尝试是否被允许,即确定是否允许UE接入当前小区。
非激活态的UE在确定满足接入条件后,即触发接入尝试。非激活态的UE根据接入条件配置接入类别(access category)和接入标识(access identity)。
接入条件可以是由UE的NAS层触发,即由UE的NAS层确定接入类别和接入标识。示例性的,UE的NAS层发现接入事件(例如NAS层接收上层发送请求),NAS层将接入事件映射成一个接入类别以及一个或多个接入标识。接入事件包括以下事件中的任一种或多种:
从上层收到终端发起(mobile original,MO)语音呼叫启动指示、MO视频呼叫启动指示等;
从上层收到短消息请求,短消息请求用于请求通过NAS发送MO短消息;
从上层收到会话建立请求,会话建立请求用于请求发送上行NAS传输(UL NAS Transport)消息建立PDU会话(session);
从上层收到会话修改请求,会话修改请求用于请求发送上行NAS传输(UL NAS Transport)消息修改PDU会话;
收到为现有PDU会话重新建立用户面资源的请求;
被通知用户面资源被悬挂的PDU会话有UL数据发送,等等。
接入条件也可以是由UE的RRC层触发,即由UE的RRC层确定接入类别,UE的NAS层确定接入标识。示例性的,UE的RRC层确定进行RNA更新或接收到寻呼消息,并确定由RNA更新或寻呼消息触发接入尝试(access attempt)对应的接入类别,并由NAS层确定该接入尝试对应的接入标识。
如果UE确定进行RNA更新,则UE的RRC层确定接入类别为8,并UE的NAS层确定一个或者多个接入标识。
如果UE接收到寻呼消息,则UE的RRC层确定接入类别为0,并由UE的NAS层 确定一个或者多个接入标识。
接入类别与接入尝试类型的对应关系如表1所示。
表1
接入类别 接入尝试类型
0 寻呼引起的MO信号传输
1 配置为多媒体优先级业务(multimedia priority service,MPS)的UE
2 突发事件
3 除寻呼之外的原因引起的NAS层MO信号传输
4 多媒体电话(multimedia telephony,MMTEL)声音
5 多媒体电话(multimedia telephony,MMTEL)视频
6 短消息服务(short messaging service,SMS)
7 不属于其他列别的MO数据
8 除寻呼之外的原因引起的RRC层MO信号传输
9-31 将来标准化接入类别预留
32-63 基于运营商的类别
接入类别取值为0-63,示例性的,接入类别0指示针对寻呼触发的接入控制,接入类别2指示针对紧急呼叫触发的接入控制,接入类别8指示的RNA更新触发的接入控制等。接入类别9-31为将来标准化接入类别预留,接入类别32-63为运营商预留。
接入标识与UE的配置情况的对应关系如表2所示。
表2
接入标识 UE配置
0 其他配置情况的UE
1 配置为多媒体优先级业务(multimedia priority service,MPS)的UE
2 配置为关键任务服务(mission critical service,MCS)的UE
3-10 预留
11 配置为接入种类(Access Class)11的UE
12 配置为接入种类(Access Class)12的UE
13 配置为接入种类(Access Class)13的UE
14 配置为接入种类(Access Class)14的UE
15 配置为接入种类(Access Class)15的UE
接入标识取值为0-15,示例性的,接入标识11-15与UE的全球用户识别卡(universal subscriber identity module,USIM)卡中保存的接入种类(Access Class)取值一致,用于指示access class为11-15中任一个的特殊的高优先级用户。接入标识3-10预留将来使用。
UE的接入层(access stratum,AS),例如UE的RRC层,基于UE确定的接入标识、接入类型进行接入控制校验。在接入控制校验通过后,进行RRC恢复的流程,
类似的,非激活的IAB节点在进行RRC恢复之前,也可以进行接入控制校验。
IAB节点的接入控制校验存在下述几种可能。
作为一种可能的方式,为IAB MT定义一个新的事件和新的接入类别。
当IAB DU接收到子节点发送的接入请求时,IAB DU向IAB MT的上层(upper layer)例如:向IAB MT的NAS层,发送指示信息,指示信息用于指示IAB MT的NAS层发现接入事件,并确定该接入事件对应的接入类别和接入标识。子节点发送的接入请求,可以是前导序列,也可以是RRC恢复请求或者RRC建立请求。
当IAB DU有待传输数据(例如:OAM业务)时,IAB DU向IAB MT的上层,例如:向IAB MT的NAS层,发送指示信息,以便IAB MT的NAS层发现接入事件,并确定该接入事件对应的接入类别和接入标识。
示例性的,上述接入事件是为IAB节点新定义的接入事件,可以是收到子节点的接入请求,或者收到UL传输请求。
IAB MT的NAS层将该事件映射到一个接入类别上。该类别可以是已经定义的接入类别,如Access Category=0。该接入类别也可以是预留的接入类别,例如:Access Category=9。标准定义某些特定接入类别对应的接入尝试被允许,因此,IAB MT的RRC层根据接入类别,确定接入尝试是否被允许。示例性的,标准定义IAB节点对应的接入类别对应的接入尝试被允许。如果接入尝试被允许,IAB MT进行与宿主CU之间的RRC连接的恢复。
可选的,除了IAB MT从inactive态转换到connected态的接入事件,其他事件例如:IAB MT初始随机接入网络的接入事件、IAB MT进行RLF恢复的接入事件等,都可以被映射到该定义的接入类别上。
也可以定义多个事件,将多个事件中的每个事件映射在相同或不同的接入类别。例如,定义事件1为NAS层接收接入指示,事件1为NAS层接收传输请求。根据事件与类别的映射关系,可以将事件1和事件2映射在不同的接入类别上。
或者,NAS层也可以将上述事件中映射在相同或不同的接入标识。
作为另一种可能的方式,为IAB MT定义接入类别。
当IAB DU接收到子节点发送的接入请求时,IAB DU向IAB MT的RRC层发送指示信息,以使得IAB MT的RRC层确定该接入尝试对应的接入类别。
当IAB MT的RRC层接收到该IAB节点的寻呼消息时,IAB MT的RRC层确定由寻呼消息触发的接入尝试对应的接入类别。
IAB MT的RRC层确定接入类别。该类别可以是已经定义的接入类别,如Access Category=0。该接入类别也可以是预留的接入类别,例如:例如:Access Category=9。
IAB MT的RRC层根据接入类别确定接入是否被允许。示例性的,标准定义IAB节点对应的接入类别对应的接入尝试被允许。
RRC层可以确定接入标识可以是表1中预留的一个接入类别。
应当理解,对于RRC层可以根据子节点的接入请求、寻呼消息这两种不同的情况,RRC层可以确定相同的接入类别,或者,RRC层可以确定与两种情况中每种情况对应的不同的接入类别。
作为第三种可能的方式,为IAB MT定义一个新的Access Class。
可以为IAB节点的USIM卡配置IAB节点的Access Class。当满足上文所述的触发条件时,IAB MT的RRC层根据USIM卡中配置的Access Class,确定IAB MT接入尝试对应的接入标识。当IAB DU接收到子节点发送的接入请求时,IAB DU向IAB MT的RRC 层发送指示信息,以使得IAB MT的RRC层确定该接入尝试对应的接入标识。
当IAB MT的RRC层接收到该IAB节点的寻呼消息时,IAB MT的RRC层确定由寻呼消息触发的接入尝试对应的接入标识。
当IAB DU有待传输数据(例如:OAM业务)时,IAB DU向IAB MT的RRC层发送指示信息,以使得IAB MT的RRC层确定该接入尝试对应的接入标识。
在步骤S1401,IAB-MT进行接入控制校验。
IAB MT根据确定的接入类别,确定是否允许接入当前小区。如果允许接入,则认为校验成功,进行步骤S1402。否则,IAB MT根据确定的接入标识,确定是否允许接入当前小区,在允许接入的情况下,进行步骤S1402。
示例性的,IAB MT根据确定的接入标识,查看父节点发送的系统广播消息中系统信息块(system information block,SIB)1中携带的承载接入标识的统一接入控制(unified access control,UAC)信息单元(information element,IE)(uac-BarringForAccessIdentity IE)参数。其中,uac-BarringForAccessIdentity IE参数采用位图(bitmap)的方式表示接入标识与是否允许接入之间的对应关系,即每1bit对应于一种接入标识,如果该bit被置0,则说明该接入标识对应的接入尝试被允许。父节点可以是其他IAB节点或宿主节点。
根据接入标识和接入类别的判断可以同时进行或按照先后顺序进行。通过接入标识和接入类别的判断结果中,任意一个为允许接入,则进行步骤S1402。
通过上述根据接入标识和接入类别的判断,如果IAB MT的接入尝试被允许,则进行步骤S1402;否则,IAB MT可以在0-1之间生成一个随机数,如果该随机数小于SIB1中uac-BarringFactor字段的值,则表示接入尝试被允许,进行步骤S1402。
如果IAB MT通过随机数的接入尝试被禁止,则IAB MT可以开启定时器。例如,IAB MT可以再次在0-1之间生成一个随机数,并为该接入类别对应的接入尝试开启定时器T390(该T390的定时时间是根据IAB MT生成的随机数、SIB1中的uac-Barring Time字段的参数确定的)。在定时器超时之前,IAB MT不能再发起接入尝试。
在步骤S1402,进行RRC建立流程或者RRC恢复流程。
通过步骤S1401-S1402,实现了非激活态IAB MT在接入过程中的接入控制校验。
图16是本申请实施例提供的一种无线通信方法的示意性流程图,对RRC恢复流程进行说明。
在步骤S1501,非激活态IAB-MT向宿主DU发送前导(preamble)序列。
在步骤S1502,宿主DU向IAB-MT发送RAR消息,该RAR消息中携带宿主DU为IAB-MT在接入小区中分配的C-RNTI。
在步骤S1503,IAB-MT向宿主DU发送RRC恢复请求(RRC Resume Request)消息,用于请求恢复RRC连接。
非激活态UE进行RRC恢复时,发送的RRC Resume Request消息中携带原因指示信息不同的信息。
非激活态IAB节点进行RRC恢复与非激活态UE进行RRC恢复的触发条件不同。可以为IAB节点定义新的原因指示信息。IAB-MT向宿主DU发送的原因指示信息可以位于RRC Resume Request消息中新增的字段或已有的字段。
可选地,IAB-MT向宿主DU发送的RRC Resume Request消息中可以携带原因指示信 息。原因指示信息可以用于指示进行RRC恢复流程的原因。该原因可以是子节点的接入请求或者子节点的被叫请求或者宿主节点的唤醒请求等,也就是说,原因指示信息用于指示触发RRC恢复流程的触发条件。该原因指示信息可以包含一个原因值,该原因值对应所有的RRC恢复流程的触发条件,该原因指示信息也可以包含多个原因值,不同的原因值对应不同的RRC恢复流程的触发条件。触发条件可以与原因值一一对应,一个原因值也可以对应多个触发条件。宿主节点可以根据原因指示信息,获知IAB节点进行RRC连接恢复的原因,从而可以针对不同原因触发的RRC连接恢复流程进行不同的处理。例如,在父节点的负载较高时,可以拒绝一种或多种原因导致的RRC恢复,即父节点可以拒绝一种或多种恢复情况导致的RRC恢复。
可选地,RRC Resume Request消息中可以携带IAB节点指示信息,IAB节点指示信息用于指示RRC连接恢复是为了IAB节点,或者,用于指示IAB节点触发RRC恢复流程。宿主节点可以根据IAB节点指示信息,确定该RRC恢复流程是由IAB节点触发,而不是普通UE触发。通过IAB节点指示信息,IAB节点可以通过较短的字段向宿主节点指示该接入过程是由IAB节点发起的。宿主节点可以为该RRC恢复的过程配置较高的优先级。
在步骤S1504,宿主DU向宿主CU转发该RRC Resume Request消息。示例性的,宿主DU将RRC Resume Request消息封装在初始UL RRC信息传输(Initial UL RRC Message Transfer)消息中发送到宿主CU。示例性的,Initial UL RRC Message Transfer消息中还携带IAB-MT接入的宿主DU的NR CGI,以及IAB-MT在该小区的标识C-RNTI。
在步骤S1505,宿主CU向宿主DU发送IAB-MT上下文建立请求消息,用于请求宿主DU建立IAB-MT的上下文。
IAB节点的上下文包括IAB MT和IAB DU的对应关系,例如:IAB MT的I-RNTI和IAB DU的DU ID的对应关系,或者IAB MT的I-RNTI和IAB DU小区的NR CGI的对应关系。
在步骤S1506,在宿主DU建立IAB-MT上下文后,宿主DU向宿主CU发送IAB-MT上下文建立响应消息,IAB-MT上下文建立响应消息用于宿主DU确认IAB-MT的上下文建立完成。
在步骤S1507,宿主CU生成RRC恢复信息,并向宿主DU发送该RRC恢复信息。
在步骤S1508,宿主DU向IAB-MT发送该RRC恢复信息。
在步骤S1509,IAB-MT向宿主DU发送RRC恢复完成信息。
在步骤S1510,宿主DU将向宿主CU发送RRC恢复完成信息。
上述RRC恢复流程仅是示例性的。在IAB节点与宿主节点进行RRC恢复时,可以包括更多或更少的步骤。
图17是本申请又一个实施例提供的一种IAB节点的装置的示意性结构图。装置1700包括确定模块1710,触发模块1720。
确定模块1710用于确定满足以下任一种或多种触发条件:
装置1700接收到子节点发送的接入请求,所述子节点包括第二IAB节点和/或用户设备UE,
装置1700接收到宿主节点触发的寻呼消息,
装置1700存在待发送的数据;
装置1700的RRC层或F1AP层收到上层的连接恢复指示;
触发模块1720用于触发与宿主节点之间的无线连接恢复。
可选地,装置1700还包括:
获得模块,用于根据满足的触发条件,获得与所述触发条件对应的接入标记;
校验模块,用于根据所述接入标记进行接入控制校验;
触发模块1720用于,当所述接入控制校验通过时,触发与宿主节点之间的无线连接恢复。
可选地,所述接入标记是与IAB节点相关联的接入标记。
可选地,装置1700的非接入层NAS,用于根据满足的触发条件,获得与满足的触发条件对应的所述接入事件,所述接入事件是与IAB节点相关联的接入事件;
获得模块用于,根据所述接入事件,获得与所述接入事件对应的所述接入标记。
可选地,装置1700还包括收发模块,用于向宿主节点发送无线连接恢复请求消息,所述RRC恢复请求消息包括原因指示信息,所述原因指示信息对应于满足的触发条件。
可选地,装置1700还包括收发模块,用于向宿主节点发送IAB节点指示信息,所述IAB节点指示信息用于指示所述无线连接恢复是IAB节点的无线连接恢复。
可选地,满足的触发条件包括装置1700接收到子节点发送的接入请求,所述接入请求的数量大于或等于门限值,或所述子节点的数量大于或等于门限值。
可选地,装置1700还包括收发模块,用于接收所述宿主节点发送的所述门限值。
可选地,装置1700为中继设备,所述宿主节点为基站。
可选地,所述寻呼消息是所述宿主节点在满足所述宿主节点接收到非激活态UE的下行数据和/或所述宿主节点接收到空闲态UE的第一寻呼消息的条件下发送的。
图18是本申请实施例提供的一种接入网设备的示意性结构图。接入网设备1800包括确定模块1810,收发模块1820。
确定模块1810用于确定满足以下任一种或多种触发条件:
所述接入网设备接收到非激活态UE的下行数据,
所述接入网设备接收到空闲态UE的第一寻呼消息;
收发模块1820,用于向第一接入回传一体化IAB节点发送第二寻呼消息,所述第二寻呼消息用于指示所述第一IAB节点后,触发与宿主节点之间的无线连接恢复,所述宿主节点为所述接入网设备或第二宿主节点。
可选地,满足的触发条件包括所述接入网设备接收到非激活态UE的下行数据,确定模块1810还用于根据非激活态UE的无线接入网RAN通知区域,确定所述第一IAB节点。
可选地,满足的触发条件包括所述接入网设备接收到空闲态UE的第一寻呼消息,
确定模块1810还用于,根据所述第一寻呼消息的追踪区域标识TAI列表,确定所述第一IAB节点。
可选地,收发模块1820还用于,接收所述第一IAB节点发送的无线连接连接恢复请求消息;
收发模块1820还用于,向第三宿主节点发送上下文请求,所述上下文请求用于请求所述第三宿主节点发送第一IAB节点的分布式单元DU与所述第一IAB节点的移动终端 MT的对应关系信息;
收发模块1820还用于,接收所述第三宿主节点发送的所述对应关系信息。
可选地,所述对应关系信息包括:
所述第一IAB节点的DU的DU标识和所述第一IAB节点的MT的非激活态无线网络临时标识I-RNTI,和/或
所述第一IAB节点DU的新无线小区全球标识NR CGI和所述第一IAB节点的MT的I-RNTI。
可选地,所述无线连接恢复请求消息中携带有第一IAB节点的标识,所述第一IAB节点的标识中包含所述第三宿主节点的标识。
可选地,所述第一IAB节点为中继设备或者提供数据回传的设备,所述接入网设备为基站。
图19是本申请实施例提供的一种接入回传一体化IAB装置的示意性结构图。装置1900包括处理器1910,通信接口1920。
处理器1910,用于确定满足以下任一种或多种触发条件:
装置1900接收到子节点发送的接入请求,所述子节点包括第二IAB节点和/或用户设备UE,
装置1900接收到宿主节点触发的寻呼消息,
装置1900存在待发送的数据;
装置190的RRC层或F1AP层收到上层的连接恢复指示;
通信接口1920,用于触发与宿主节点之间的无线连接恢复。
可选地,处理器1910,用于根据满足的触发条件,获得与所述触发条件对应的接入标记;
处理器1910,用于根据所述接入标记进行接入控制校验;
处理器1910用于,当所述接入控制校验通过时,所述IAB装置触发与宿主节点之间的无线连接恢复。
可选地,所述接入标记是与IAB节点相关联的接入标记。
可选地,所述IAB装置的非接入层NAS用于,根据满足的触发条件,获得与满足的触发条件对应的所述接入事件,所述接入事件是与IAB节点相关联的接入事件;
处理器1910用于,根据所述接入事件,获得与所述接入事件对应的所述接入标记。
可选地,通信接口1920还用于,向宿主节点发送无线连接恢复请求消息,所述无线连接恢复请求消息包括原因指示信息,所述原因指示信息对应于满足的触发条件。
可选地,通信接口1920还用于,向宿主节点发送IAB节点指示信息,所述IAB节点指示信息用于指示所述无线连接恢复是IAB节点的无线连接恢复,所述IAB节点指示信息承载在无线连接恢复请求消息或者无线连接恢复完成消息中。
可选地,满足的触发条件包括所述IAB装置接收到子节点发送的接入请求,所述接入请求的数量大于或等于门限值,或所述子节点的数量大于或等于门限值。
可选地,通信接口1920还用于,接收所述宿主节点发送的所述门限值。
可选地,所述IAB装置为中继设备或者提供数据回传的设备,所述宿主节点为基站。
图20是本申请实施例提供的一种接入网设备的示意性结构图。接入网设备2000包括 处理器2010,通信接口2020。
处理器2010,用于确定满足以下任一种或多种触发条件:
接入网设备2000接收到非激活态UE的下行数据,
接入网设备2000接收到空闲态UE的第一寻呼消息;
通信接口2020,用于向第一接入回传一体化IAB节点发送第二寻呼消息,所述第二寻呼消息用于指示所述第一IAB节点触发与宿主节点之间的无线连接恢复,所述宿主节点为所述接入网设备2000或第二宿主节点。
可选地,满足的触发条件包括所述接入网设备2000接收到非激活态UE的下行数据,处理器2010还用于,根据非激活态UE的无线接入网RAN通知区域,确定所述第一IAB节点。
可选地,满足的触发条件包括所述接入网设备2000接收到空闲态UE的第一寻呼消息,处理器2010还用于,根据所述第一寻呼消息的追踪区域标识TAI列表,确定所述第一IAB节点。
可选地,通信接口2020还用于,接收所述第一IAB节点发送的无线连接连接恢复请求消息;
通信接口2020还用于,向第三宿主节点发送上下文请求,所述上下文请求用于请求所述第三宿主节点发送第一IAB节点的分布式单元DU与所述第一IAB节点的移动终端MT的对应关系信息;
通信接口2020还用于,接收所述第三宿主节点发送的所述对应关系信息。
可选地,所述对应关系信息包括:
所述第一IAB节点的DU的DU标识和所述第一IAB节点的MT的非激活态无线网络临时标识I-RNTI,和/或
所述第一IAB节点DU的新无线小区全球标识NR CGI和所述第一IAB节点的MT的I-RNTI。
可选地,所述无线连接恢复请求消息中携带有第一IAB节点的标识,所述第一IAB节点的标识中包含所述第三宿主节点的标识。
可选地,所述第一IAB节点为中继设备或者提供数据回传的设备,接入网设备2000为基站。
本申请实施例还提供一种通信系统,包括上文所述的第一IAB节点和所述宿主节点。
本申请实施例还提供一种计算机程序存储介质,其特征在于,所述计算机程序存储介质具有程序指令,当所述程序指令被处理器执行时,使得处理器执行前文中无线通信的方法。
本申请实施例还提供一种芯片系统,其特征在于,所述芯片系统包括至少一个处理器,当程序指令在所述至少一个处理器中执行时,使得所述至少一个处理器执行前文中的无线通信的方法。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本 申请的范围。
本申请中所有节点、消息的名称仅仅是为了描述方便而设定的名称,在实际网络中的名称可能不同,不应该理解本申请限定各种节点、消息的名称。相反,任何具有和本申请中用到的节点或消息具有相同或类似功能的名称都视作本申请的方法或等效替换,都在本申请的保护范围之内。
本申请实施例中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示单独存在A、同时存在A和B、单独存在B的情况。其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项”及其类似表达,是指的这些项中的任意组合,包括单项或复数项的任意组合。例如,a,b和c中的至少一项可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (29)

  1. 一种无线通信的方法,其特征在于,包括:
    第一接入回传一体化IAB节点确定满足以下任一种或多种触发条件:
    所述第一IAB节点接收到子节点发送的接入请求,所述子节点包括第二IAB节点和/或用户设备UE,
    所述第一IAB节点接收到宿主节点触发的寻呼消息,
    所述第一IAB节点存在待发送的数据,
    所述第一IAB节点的无线资源控制RRC层或F1应用协议F1AP层收到上层的连接恢复指示;
    所述第一IAB节点触发与宿主节点之间的无线连接恢复。
  2. 根据权利要求1所述的方法,其特征在于,所述第一IAB节点触发与宿主节点之间的无线连接恢复之前,所述方法还包括:
    所述第一IAB节点根据满足的触发条件,获得与所述触发条件对应的接入标记;
    所述第一IAB节点根据所述接入标记进行接入控制校验;
    所述第一IAB节点触发与宿主节点之间的无线资源控制无线连接恢复,包括:
    当所述接入控制校验通过时,所述第一IAB节点触发与宿主节点之间的无线连接恢复。
  3. 根据权利要求2所述的方法,其特征在于,所述接入标记是与IAB节点相关联的接入标记。
  4. 根据权利要求2或3所述的方法,其特征在于,所述第一IAB节点根据满足的触发条件,获得与所述触发条件对应的接入标记,包括:
    根据满足的触发条件,所述第一IAB节点的非接入层NAS获得与满足的触发条件对应的所述接入事件,所述接入事件是与IAB节点相关联的接入事件;
    所述第一IAB节点根据所述接入事件,获得与所述接入事件对应的所述接入标记。
  5. 根据权利要求1-4中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一IAB节点向所述宿主节点发送无线连接恢复请求消息,所述无线连接恢复请求消息包括原因指示信息,所述原因指示信息对应于满足的触发条件。
  6. 根据权利要求1-5中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一IAB节点向所述宿主节点发送IAB节点指示信息,所述IAB节点指示信息用于指示所述无线连接恢复是IAB节点的无线连接恢复。
  7. 根据权利要求1-6中任一项所述的方法,其特征在于,满足的触发条件包括所述第一IAB节点接收到子节点发送的接入请求,所述接入请求的数量大于或等于门限值,或所述子节点的数量大于或等于门限值。
  8. 根据权利要求7所述的方法,其特征在于,在所述第一IAB节点确定满足触发条件之前,所述方法还包括:
    所述第一IAB节点接收所述宿主节点发送的所述门限值。
  9. 根据权利要求1-8中任一项所述的方法,其特征在于,所述第一IAB节点为中继 设备或者提供数据回传的设备,所述宿主节点为基站。
  10. 一种无线通信的方法,其特征在于,包括:
    第一宿主节点确定满足以下任一种或多种触发条件:
    所述第一宿主节点接收到非激活态UE的下行数据,
    所述第一宿主节点接收到空闲态UE的第一寻呼消息;
    所述第一宿主节点向第一接入回传一体化IAB节点发送第二寻呼消息,所述第二寻呼消息用于指示第一IAB节点触发与宿主节点之间的无线连接恢复,所述宿主节点为所述第一宿主节点或第二宿主节点。
  11. 根据权利要求10所述的方法,其特征在于,满足的触发条件包括所述第一宿主节点接收到非激活态UE的下行数据,
    所述第一宿主节点向第一IAB节点发送第二寻呼消息之前,所述方法还包括:所述第一宿主节点根据非激活态UE的无线接入网RAN通知区域,确定所述第一IAB节点。
  12. 根据权利要求10所述的方法,其特征在于,满足的触发条件包括所述第一宿主节点接收到空闲态UE的第一寻呼消息,
    所述第一宿主节点向第一IAB节点发送第二寻呼消息之前,所述方法还包括:
    所述第一宿主节点根据所述第一寻呼消息的追踪区域标识TAI列表,确定所述第一IAB节点。
  13. 根据权利要求10-12中任一项所述的方法,其特征在于,所述第一IAB节点为中继设备或者提供数据回传的设备,所述第一宿主节点为基站。
  14. 一种接入回传一体化IAB装置,其特征在于,包括:
    确定模块,用于确定满足以下任一种或多种触发条件:
    所述IAB装置接收到子节点发送的接入请求,所述子节点包括第二IAB节点和/或用户设备UE,
    所述IAB装置接收到宿主节点触发的寻呼消息,
    所述IAB装置存在待发送的数据,
    所述IAB节点的无线资源控制RRC层或F1应用协议F1AP层收到上层的连接恢复指示;
    触发模块,用于触发与宿主节点之间的无线连接恢复。
  15. 根据权利要求14所述的装置,其特征在于,包括:
    获得模块,用于根据满足的触发条件,获得与所述触发条件对应的接入标记;
    校验模块,用于根据所述接入标记进行接入控制校验;
    所述触发模块用于,当所述接入控制校验通过时,所述IAB装置触发与宿主节点之间的无线连接恢复。
  16. 根据权利要求15所述的装置,其特征在于,所述接入标记是与IAB节点相关联的接入标记。
  17. 根据权利要求15或16所述的装置,其特征在于,所述IAB装置的非接入层NAS用于,根据满足的触发条件,获得与满足的触发条件对应的所述接入事件,所述接入事件是与IAB节点相关联的接入事件;
    所述获得模块用于,根据所述接入事件,获得与所述接入事件对应的所述接入标记。
  18. 根据权利要求14-17中任一项所述的装置,其特征在于,包括:
    收发模块,用于向所述宿主节点发送无线连接恢复请求消息,所述无线连接恢复请求消息包括原因指示信息,所述原因指示信息对应于满足的触发条件。
  19. 根据权利要求14-18中任一项所述的装置,其特征在于,包括:
    收发模块,用于向所述宿主节点发送IAB节点指示信息,所述IAB节点指示信息用于指示所述无线连接恢复是IAB节点的无线连接恢复。
  20. 根据权利要求14-19中任一项所述的装置,其特征在于,满足的触发条件包括所述IAB装置接收到子节点发送的接入请求,所述接入请求的数量大于或等于门限值,或所述子节点的数量大于或等于门限值。
  21. 根据权利要求20所述的装置,其特征在于,包括:
    收发模块,用于接收所述宿主节点发送的所述门限值。
  22. 根据权利要求14-21中任一项所述的装置,其特征在于,所述IAB装置为中继设备或者提供数据回传的设备,所述宿主节点为基站。
  23. 一种接入网设备,其特征在于,包括:
    确定模块,用于确定满足以下任一种或多种触发条件:
    所述接入网设备接收到非激活态UE的下行数据,
    所述接入网设备接收到空闲态UE的第一寻呼消息;
    收发模块,用于向第一接入回传一体化IAB节点发送第二寻呼消息,所述第二寻呼消息用于指示所述第一IAB节点触发与宿主节点之间的无线连接恢复,所述宿主节点为所述接入网设备或第二宿主节点。
  24. 根据权利要求23所述的接入网设备,其特征在于,满足的触发条件包括所述接入网设备接收到非激活态UE的下行数据,
    所述接入网设备所述确定模块还用于,根据非激活态UE的无线接入网RAN通知区域,确定所述第一IAB节点。
  25. 根据权利要求23所述的接入网设备,其特征在于,满足的触发条件包括所述接入网设备接收到空闲态UE的第一寻呼消息,
    所述接入网设备所述确定模块还用于,根据所述第一寻呼消息的追踪区域标识TAI列表,确定所述第一IAB节点。
  26. 根据权利要求23-25中任一项所述的接入网设备,其特征在于,所述第一IAB节点为中继设备或者提供数据回传的设备,所述接入网设备为基站。
  27. 一种无线通信设备,其特征在于,包括:至少一个处理器和通信接口,所述通信接口用于所述通信装置与其他通信装置进行信息交互,当程序指令在所述至少一个处理器中执行时,使得所述通信装置执行如权利要求1至13中任一项所述的方法。
  28. 一种计算机程序存储介质,其特征在于,所述计算机程序存储介质具有程序指令,当所述程序指令被处理器执行时,使得处理器执行权利要求1-13中任一项所述的无线通信的方法。
  29. 一种芯片系统,其特征在于,所述芯片系统包括至少一个处理器,当程序指令在所述至少一个处理器中执行时,使得所述至少一个处理器执行权利要求1-13中任一项所述的无线通信的方法。
PCT/CN2019/100092 2019-08-09 2019-08-09 一种无线通信的方法和装置 WO2021026704A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/100092 WO2021026704A1 (zh) 2019-08-09 2019-08-09 一种无线通信的方法和装置
CN201980096793.2A CN113875314A (zh) 2019-08-09 2019-08-09 一种无线通信的方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/100092 WO2021026704A1 (zh) 2019-08-09 2019-08-09 一种无线通信的方法和装置

Publications (1)

Publication Number Publication Date
WO2021026704A1 true WO2021026704A1 (zh) 2021-02-18

Family

ID=74570824

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/100092 WO2021026704A1 (zh) 2019-08-09 2019-08-09 一种无线通信的方法和装置

Country Status (2)

Country Link
CN (1) CN113875314A (zh)
WO (1) WO2021026704A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115150965A (zh) * 2021-03-31 2022-10-04 维沃移动通信有限公司 数据调度方法、装置及设备
WO2022206317A1 (zh) * 2021-04-02 2022-10-06 华为技术有限公司 一种通信方法以及通信设备
US20220417875A1 (en) * 2021-06-29 2022-12-29 Qualcomm Incorporated Sparse transmission of discovery signals for network energy saving
WO2023001022A1 (zh) * 2021-07-19 2023-01-26 维沃移动通信有限公司 节点状态控制方法、装置及相关设备
CN117156490A (zh) * 2023-10-31 2023-12-01 深圳市佳贤通信科技股份有限公司 基于cpe的5g网络回传装置及方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117835263A (zh) * 2022-09-27 2024-04-05 华为技术有限公司 标识配置方法及通信装置
CN117793814A (zh) * 2022-09-27 2024-03-29 华为技术有限公司 一种通信方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101965035A (zh) * 2010-09-09 2011-02-02 西安电子科技大学 中继系统中Backhaul链路失败后小区的选择方法
US20190182875A1 (en) * 2017-12-08 2019-06-13 Comcast Cable Communications, Llc User Plane Function Selection For Isolated Network Slice
WO2019137505A1 (zh) * 2018-01-12 2019-07-18 华为技术有限公司 一种数据传输方法及装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101965035A (zh) * 2010-09-09 2011-02-02 西安电子科技大学 中继系统中Backhaul链路失败后小区的选择方法
US20190182875A1 (en) * 2017-12-08 2019-06-13 Comcast Cable Communications, Llc User Plane Function Selection For Isolated Network Slice
WO2019137505A1 (zh) * 2018-01-12 2019-07-18 华为技术有限公司 一种数据传输方法及装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "IAB architecture", 3GPP DRAFT; R3-190351 - IAB CR TO TS 38.401, vol. RAN WG3, 15 February 2019 (2019-02-15), Athens, Greece, pages 1 - 13, XP051604292 *
QUALCOMM INCORPORATED; AT&T; ERICSSON: "Introduction of the IAB support in 5GS", 3GPP DRAFT; S2-1907204 TS 23.501 CR1522_INTRODUCTION OF IAB_R1, vol. SA WG2, 18 June 2019 (2019-06-18), Sapporo, Japan, pages 1 - 17, XP051752173 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115150965A (zh) * 2021-03-31 2022-10-04 维沃移动通信有限公司 数据调度方法、装置及设备
CN115150965B (zh) * 2021-03-31 2023-06-23 维沃移动通信有限公司 数据调度方法、装置及设备
WO2022206317A1 (zh) * 2021-04-02 2022-10-06 华为技术有限公司 一种通信方法以及通信设备
US20220417875A1 (en) * 2021-06-29 2022-12-29 Qualcomm Incorporated Sparse transmission of discovery signals for network energy saving
WO2023001022A1 (zh) * 2021-07-19 2023-01-26 维沃移动通信有限公司 节点状态控制方法、装置及相关设备
CN117156490A (zh) * 2023-10-31 2023-12-01 深圳市佳贤通信科技股份有限公司 基于cpe的5g网络回传装置及方法
CN117156490B (zh) * 2023-10-31 2024-01-30 深圳市佳贤通信科技股份有限公司 基于cpe的5g网络回传装置及方法

Also Published As

Publication number Publication date
CN113875314A (zh) 2021-12-31

Similar Documents

Publication Publication Date Title
WO2021026704A1 (zh) 一种无线通信的方法和装置
CN108307472B (zh) 设备直通系统的通信方法及装置、通信系统
JP6587001B2 (ja) 無線端末及びその方法
EP3598840B1 (en) Relay communication method and apparatus
WO2018027988A1 (zh) 网络切片的选择方法、无线接入设备和终端
EP3749046B1 (en) Processing methods for wireless backhaul communication, related devices and computer readable storage media
US10986576B2 (en) Method and apparatus for transmitting and receiving data in wireless communication system
EP3512275B1 (en) Data transmission method, device and system
WO2014169748A1 (zh) 一种双连接的实现方法及基站
JP7399318B2 (ja) 状態指示方法、機器及びシステム
WO2019105378A1 (zh) 通信方法和通信装置
JP2014511168A (ja) 移動体通信ネットワークおよび方法
CN113873478B (zh) 通信方法及装置
WO2017118191A1 (zh) 一种控制面信息的传输方法及装置
WO2022036555A1 (zh) 中继传输的方法、中继终端和远端终端
US20230142993A1 (en) Method for sidelink relay communication under dual connectivity
CN108781403B (zh) 终端设备、接入网设备、空口配置方法和无线通信系统
WO2011160455A1 (zh) 一种集群业务处理方法和系统
US20230354136A1 (en) Integrated access and backhaul communication method and apparatus
US20230254729A1 (en) Migration method and apparatus for iab-node
CN115804201A (zh) 集中式单元和分布式单元分离架构中的数据转发
CN107548166B (zh) 配置多连接信令的方法、主基站、用户设备及通信系统
WO2022021165A1 (zh) 中继发现方法和终端
WO2019232683A1 (zh) 小区建立的方法和装置
WO2020008963A1 (en) Sharing access resources by base stations for both user equipment and backhaul nodes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19941085

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19941085

Country of ref document: EP

Kind code of ref document: A1