WO2014168090A1 - Si-ALLOY POWDER FOR LITHIUM-ION SECONDARY BATTERY NEGATIVE ELECTRODE ACTIVE MATERIAL AND METHOD FOR MANUFACTURING SAME - Google Patents

Si-ALLOY POWDER FOR LITHIUM-ION SECONDARY BATTERY NEGATIVE ELECTRODE ACTIVE MATERIAL AND METHOD FOR MANUFACTURING SAME Download PDF

Info

Publication number
WO2014168090A1
WO2014168090A1 PCT/JP2014/059986 JP2014059986W WO2014168090A1 WO 2014168090 A1 WO2014168090 A1 WO 2014168090A1 JP 2014059986 W JP2014059986 W JP 2014059986W WO 2014168090 A1 WO2014168090 A1 WO 2014168090A1
Authority
WO
WIPO (PCT)
Prior art keywords
alloy powder
negative electrode
secondary battery
ion secondary
alloy
Prior art date
Application number
PCT/JP2014/059986
Other languages
French (fr)
Japanese (ja)
Inventor
澤田 俊之
Original Assignee
山陽特殊製鋼株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山陽特殊製鋼株式会社 filed Critical 山陽特殊製鋼株式会社
Priority to CN201480020027.5A priority Critical patent/CN105122511B/en
Priority to KR1020157028345A priority patent/KR102165659B1/en
Publication of WO2014168090A1 publication Critical patent/WO2014168090A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/06Metal silicides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C28/00Alloys based on a metal not provided for in groups C22C5/00 - C22C27/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a Si alloy powder for a negative electrode of a lithium ion secondary battery having excellent discharge capacity and cycle life, and a method for producing the same.
  • Patent Document 1 proposes to obtain a fine eutectic structure of Si phase and CrSi 2 phase by adding predetermined Cr, Ti, Al, Sn. .
  • the Si alloy powder used for the negative electrode of the lithium ion secondary battery is often used by being pulverized to a few ⁇ m or less by a ball mill or the like, or by reducing the crystallinity.
  • a carbon material or conductive powder is introduced at the time of processing by a ball mill. There has been proposed a method for realizing more excellent charge / discharge characteristics by combining Si alloy powder.
  • JP 2012-150910 A JP 2012-178344 A JP 2012-113945 A
  • Patent Document 1 excellent discharge capacity and cycle life are achieved by having a fine eutectic structure.
  • the present invention further improves this technique, and makes it necessary to add a small amount of C as an essential element. It has succeeded in greatly increasing the cycle life without substantially reducing the capacity. Further, if necessary, by adding a trace amount of any one or more of B, P, Zr, Hf, V, Nb, Ta, Mo, W, Mn, Fe, Co, Ni and Cu, It was possible to improve the cycle life.
  • the Si phase in the present invention is a phase having a diamond structure mainly composed of Si, and is a phase that occludes and releases Li. Therefore, a solution obtained by dissolving an additive element other than Si is also included.
  • CrSi 2 phase in the present invention has a Hexagonal structure, which space group belongs to P6 2 22, which suppresses phase volume change of the Si phase during charging and discharging. Accordingly, a part of which is replaced with an additive element other than Cr and Si is also included.
  • Patent Documents 1 to 3 as described above have been proposed, but the present invention further improves these techniques and makes it necessary to add a small amount of C, thereby reducing the cycle life without substantially reducing the discharge capacity. It has succeeded in greatly increasing it. Further, if necessary, by adding a trace amount of any one or more of B, P, Zr, Hf, V, Nb, Ta, Mo, W, Mn, Fe, Co, Ni and Cu, It was possible to improve the cycle life. As a result, a Si alloy powder for a negative electrode active material for a lithium ion secondary battery having a higher discharge capacity and an excellent cycle life and a method for producing the same are provided.
  • Atomic% C 0.01 to 0.5% Any one or more of Cr, Ti, Al and Sn: 10 to 25% in total, and the balance Si and unavoidable impurities, and the following formulas (1) and (2): 0.15 ⁇ Cr% / (Cr% + Ti% + Al% + Sn%) ⁇ 1.00 (1) (Al% + Sn%) / (Cr% + Ti% + Al% + Sn%) ⁇ 0.40 (2) An Si alloy powder for a negative electrode of a lithium ion secondary battery that satisfies the above requirements is provided.
  • C in atomic%, 0.01 to 0.5%, containing one or more of Cr, Ti, Al, Sn, or a total of 10 to 25%
  • Si alloy powder for a negative electrode of a lithium ion secondary battery wherein the balance is made of Si and inevitable impurities and satisfies both the following formulas (1) and (2). 0.15 ⁇ Cr% / (Cr% + Ti% + Al% + Sn%) ⁇ 1.00 (1) (Al% + Sn%) / (Cr% + Ti% + Al% + Sn%) ⁇ 0.40 (2)
  • one or two of B or P are added in total to 5% or less, and / or Zr, Hf, V, Nb, Ta, Mo, W, Mn, Fe, Co
  • a Si alloy powder for a negative electrode of a lithium ion secondary battery according to any one of the above aspects is provided, which contains one or more of Ni, Cu, or 2% or less in total.
  • the method includes a step of rapidly solidifying the molten alloy at a cooling rate of 100 ° C./s or more after melting a raw material having a predetermined composition.
  • a method for producing a Si alloy powder for a negative electrode of a lithium ion secondary battery is provided.
  • the lithium ion secondary battery includes a step of forcibly stirring the Si alloy powder and the hard sphere according to any one of the aspects in a container to pulverize the alloy powder.
  • a method for producing a Si alloy powder for a negative electrode is provided.
  • the present invention provides a Si alloy powder for a negative electrode active material for a lithium ion secondary battery having a higher discharge capacity and an excellent cycle life, and a method for producing the same.
  • % in this specification means atomic% (at%).
  • the Si alloy powder for a negative electrode of a lithium ion secondary battery according to the present invention is atomic%, C: 0.01 to 0.5%, any one or more of Cr, Ti, Al and Sn: in total 10 to 25%, and the balance Si and unavoidable impurities, preferably consisting essentially of these elements and unavoidable impurities, more preferably consisting of these elements and unavoidable impurities.
  • the first feature of the present invention is that the discharge capacity is substantially reduced by requiring the addition of a trace amount of C in addition to any one or more of a predetermined amount of Cr, Ti, Al and Sn.
  • the cycle life is greatly improved.
  • the detailed principle of this cycle life improving effect is unknown, but the following is presumed.
  • the Si—CrSi 2 eutectic alloy has a remarkable microstructure.
  • the inventor of the present invention in which a small amount of C is added to this alloy produces a very small amount of ultrafine Cr-based carbide and / or Ti-based carbide of about 10 nm or less in the fine Si phase, and is uniform in the Si phase. Found to be dispersed.
  • These carbides do not react with Li. Therefore, when Si atoms in the surrounding Si phase react with Li and the volume expands, the volume of these ultrafine carbides does not change, so that a fine crack is generated at the interface.
  • the normal Si phase generates cracks due to volume changes accompanying Li storage and release. Since the stress accompanying the subsequent volume change concentrates at the tip of the crack once generated, it progresses to a large crack, and a part of the Si alloy powder falls off from the current collector, thereby deteriorating the cycle life.
  • the cracks at the interface between the Si phase and the ultrafine carbide described above are generated as fine cracks everywhere in the Si phase because the ultrafine carbide is uniformly dispersed.
  • stress relaxation due to microcracks occurs everywhere in the Si phase, and it is considered that large cracks do not occur as a result. Therefore, it is presumed that the chipped Si alloy powder does not easily fall off from the current collector and has excellent cycle life.
  • the second feature of the present invention is that the cycle life is further improved by adding a small amount of B and / or P as necessary.
  • B or P has a solid solubility limit in the Si phase, albeit slightly.
  • these elements react with Li, the volume change at the time of reaction is small compared with Si. Therefore, B and / or P dissolved in the Si phase has an effect of reducing the volume change of the Si phase accompanying Li occlusion and release. Thereby, it is estimated that the big crack of Si alloy powder is suppressed and cycle life is improved.
  • the third feature of the present invention is that a small amount of one or more of Zr, Hf, V, Nb, Ta, Mo, W, Mn, Fe, Co, Ni and Cu is added as necessary.
  • these elements are elements that substitute for Cr in the CrSi 2 phase in the alloy of the present application, and have the effect of making the CrSi 2 phase fine.
  • the thus refined CrSi 2 phase is presumed to have an excellent cycle life because the volume change accompanying the Li storage and release of the Si phase can be uniformly suppressed as a whole particle.
  • the present alloy powder can have a finer structure by applying a conventionally proposed manufacturing method having a cooling rate of 100 ° C./s or higher, such as an atomizing method or a liquid quenching method. Further, it can be miniaturized by a pulverization method using various conventionally proposed ball mills. Furthermore, it can be used as a Si alloy powder to be combined with a conventionally proposed carbon material or conductive powder.
  • (A) C 0.01 to 0.5%
  • C is an essential element that produces ultrafine carbides in the Si phase and improves the cycle life without substantially reducing the discharge capacity. If the addition amount is less than 0.01%, the effect of improving the cycle life cannot be obtained. If the addition amount exceeds 0.5%, the carbide is coarsened, and on the contrary, the Si phase is easily cracked, and the cycle life is deteriorated.
  • the amount of C added is preferably 0.02 to 0.4%, more preferably 0.03 to 0.3%.
  • Cr is an essential element for realizing a fine eutectic structure of Si phase-CrSi 2 phase and achieving both excellent discharge capacity and cycle life.
  • this Cr can be substituted with Ti, Al, and Sn within a certain range. Therefore, in the present invention, the total amount of Cr and Ti, Al, and Sn and the ratio of the total amount and the added amount of Cr are defined.
  • Ti is substituted with Cr of CrSi 2 phases, increasing the lattice constant of CrSi 2 phases, it is believed to improve the cycle life by suppressing volume expansion by Li being diffused into the phase during. Therefore, it is preferable to add Ti as needed.
  • Some of the Al is replaced with Si of CrSi 2 phases, increasing the lattice constant of CrSi 2 phases, the other parts are present as soft Al phase.
  • the increase in the lattice constant of the CrSi 2 phase brings about the same effect as Ti, and the soft Al phase has the effect of relaxing the volume change of the Si phase accompanying Li occlusion and release, and is thought to improve the cycle life. Therefore, it is preferable to add Al as necessary.
  • Sn exists as a soft Sn phase, and is considered to improve the cycle life by the same effect as the soft Al phase. Therefore, it is preferable to add Sn as needed.
  • the total content of Cr, Ti, Al and Sn (Cr% + Ti% + Al% + Sn%) is less than 10%, sufficient cycle life cannot be obtained, and if it exceeds 25%, sufficient discharge capacity cannot be obtained.
  • the total content of Cr, Ti, Al and Sn is preferably in the range of 13 to 23%, more preferably 16 to 21%.
  • the total amount of Al and Sn needs to be constant or less than the total amount of Cr, Ti, Al and Sn. That is, if (Al% + Sn%) / (Cr% + Ti% + Al% + Sn%) exceeds 0.40, a fine eutectic structure cannot be obtained and the cycle life is deteriorated.
  • (Al% + Sn%) / (Cr% + Ti% + Al% + Sn%) is preferably in the range of 0.03 to 0.3, more preferably 0.05 to 0.25.
  • B or P is an element that is considered to be able to improve the cycle life by being dissolved in the Si phase. Can be added accordingly. However, if one or two of B or P exceeds 5% in total, a boride or a phosphide is generated and the cycle life is deteriorated.
  • the total of one or two of B or P is preferably in the range of 0.1 to 3.0%, more preferably 0.2 to 2.0%. Further, it is more preferable to add B as an element.
  • Zr, Hf, V, Nb, Ta, Mo, W, Mn, Fe, Co, Ni and Cu are elements that can be added as necessary to improve the cycle life, but Zr, Hf, V, Nb, Ta, Mo, W , Mn, Fe, Co, Ni and Cu (Zr% + Hf% + V% + Nb% + Ta% + Mo% + W% + Mn% + Fe% + Co% + Ni% + Cu%)
  • the main silicide is generated, the microstructure cannot be obtained, and the cycle life is deteriorated.
  • the total content of Zr, Hf, V, Nb, Ta, Mo, W, Mn, Fe, Co, Ni and Cu is preferably 0.02 to 1.50%, more preferably 0.05 to 1.00. % Range.
  • Fe and Mn are preferable, and adding together with B is more preferable.
  • the alloy of the present invention is a Si—CrSi 2 -based eutectic alloy.
  • the microstructure size of eutectic alloys is generally affected by the cooling rate.
  • As a method of solidifying at a cooling rate of 100 ° C./s or more there are an atomizing method, a single roll method, and the like.
  • a preferable step in the production process of the alloy of the present invention is a production by a gas atomizing method.
  • (H) Step of grinding alloy powder The negative electrode of a lithium ion secondary battery is usually used with a thickness of 100 ⁇ m or less, and is used with a thinner thickness depending on the use and design of the battery. Therefore, in order to use the alloy powder of the present invention for a negative electrode having a predetermined thickness, it is necessary to control the particle size to be equal to or less than the thickness, and for this purpose, a pulverization method can be applied. For this pulverization method, a method of forcibly stirring alloy powder and hard spheres (also called media) like a general ball mill can be applied. In this process, the structure is refined and the carbon material or conductive powder is mixed. Compounding is also possible.
  • Example powder preparation process Si alloy powders having compositions represented by Si-19% Cr-x% C and Si-9% Cr-6% Ti-2% Al-2% Sn-x% C were produced with a gas atomizer. Note that x was varied in the range of 0.005 to 0.8.
  • a base material having a dissolution amount of 1000 g was induction-melted in an Ar atmosphere in an alumina refractory crucible, and the molten metal was discharged from a pore nozzle at the bottom of the crucible. Immediately after the hot water was atomized with spray gas. The obtained powder was classified to 63 ⁇ m or less, and the charge / discharge characteristics were evaluated by the following method.
  • No. 2-9, no. Nos. 12 to 19 are examples of the present invention.
  • Reference numerals 1, 10 to 11 and 20 are comparative examples. Comparative Example No. 1 and 11 are inferior in the maintenance rate because the amount of C is low. Comparative Example No. 10 and 20 are inferior in maintenance rate because of the high amount of C.
  • Example powder preparation process Si alloy powders having the compositions shown in Table 2 were produced using a gas atomizer. A base material having a dissolution amount of 1000 g was induction-melted in an Ar atmosphere in an alumina refractory crucible, and the molten metal was discharged from a pore nozzle at the bottom of the crucible. Immediately after the hot water was atomized with spray gas. After classifying the obtained powder to 63 ⁇ m or less, the obtained alloy powder and chromium steel hard spheres were placed in a metal container of a vibration mill apparatus and processed for 30 hours. Thereafter, the charge / discharge characteristics were evaluated by the following method using the powder taken out from the container.
  • the charge / discharge characteristics were evaluated using this negative electrode and a coin-type cell using metal Li foil as a counter electrode and a reference electrode.
  • the electrolyte solution was a mixture of ethylene carbonate and dimethoxyethane in the same amount, and LiPF 6 was added as an electrolyte to a concentration of 1M.
  • Charging was performed at a current value of 150 mA / g up to 0 V (vs. reference electrode), and then discharged to 2 V (vs. reference electrode) at 150 mA / g. This was defined as one cycle and repeated 50 cycles.
  • No. 21 to 50 are examples of the present invention.
  • 51 to 59 are comparative examples.
  • Comparative Example No. 51 has a low C content. Since 52 has a high C content, it is inferior in maintenance rate. Comparative Example No. 53 is inferior in maintenance rate because the value of the total amount of one or more of Cr, Ti, Al, and Sn is low. Comparative Example No. 54 is inferior in discharge capacity because the total amount of any one or more of Cr, Ti, Al, and Sn is high. Comparative Example No. No. 55 is inferior in the maintenance rate because the formula (1) is low. Comparative Example No. 56 is inferior in maintenance rate because of high formula (2). Comparative Example No. 57 is inferior in maintenance rate because the value of the total amount of one or two of B or P is high. Comparative Example No. Nos. 58 and 59 are inferior in maintenance rate because the total amount of one or more of Zr, Hf, V, Nb, Ta, Mo, W, Mn, Fe, Co, Ni, and Cu is high.
  • Example powder preparation process No. in Experiment B 26 Si alloy powders were produced with a gas atomizer. A base material having a dissolution amount of 1000 g was induction-melted in an Ar atmosphere in an alumina refractory crucible, and the molten metal was discharged from a pore nozzle at the bottom of the crucible. Immediately after the hot water was atomized with spray gas. After the obtained powder was classified to 63 ⁇ m or less, the obtained alloy powder, natural graphite powder (80:20 by mass) and chromium steel spherical hard sphere (No. 26) were placed in a metal container of a vibration mill apparatus.
  • the cycle life can be significantly increased without substantially reducing the discharge capacity by making the small amount of C according to the present invention an essential addition.
  • the cycle life can be further improved by adding a small amount of B, P, Zr, Hf, V, Nb, Ta, Mo, W, Mn, Fe, Co, Ni and / or Cu. It was possible. As a result, an extremely excellent effect of providing a Si alloy powder for a negative electrode active material for a lithium ion secondary battery having a higher discharge capacity and excellent cycle life and a method for producing the same is achieved.

Abstract

Provided is Si-alloy powder for a lithium-ion secondary battery negative electrode active material having a higher discharging capacity and excellent in cycle life and also provided is a method for manufacturing the Si-alloy powder. The Si-alloy powder for the lithium-ion secondary battery negative electrode according to the present invention is formed by containing C of 0.01 to 0.5 at%, either one element or two or more elements of Cr, Ti, Al, and Sn having a total amount of 10 to 25 at%, the remaining Si, and unavoidable impurities and satisfies the following two equations (1), (2): 0.15 ≤ Cr at%/(Cr at% + Ti at% + Al at% + Sn at%) ≤ 1.00 … (1) (Al at% + Sn at%)/(Cr at% + Ti at% + Al at% + Sn at%) ≤ 0.40 … (2)

Description

リチウムイオン二次電池負極活物質用Si合金粉末およびその製造方法Si alloy powder for negative electrode active material of lithium ion secondary battery and method for producing the same 関連出願の相互参照Cross-reference of related applications
 この出願は、2013年4月9日に出願された日本国特許出願2013-81121号に基づく優先権を主張するものであり、これらの全体の開示内容が参照により本明細書に組み込まれる。 This application claims priority based on Japanese Patent Application No. 2013-81121 filed on Apr. 9, 2013, the entire disclosure of which is incorporated herein by reference.
 本発明は、放電容量、サイクル寿命に優れる、リチウムイオン二次電池負極用Si合金粉末およびその製造方法に関する。 The present invention relates to a Si alloy powder for a negative electrode of a lithium ion secondary battery having excellent discharge capacity and cycle life, and a method for producing the same.
 リチウム二次電池の負極活物質には従来より炭素材料からなる粉末が用いられているが、炭素材料は理論容量が372mAh/gと低く、更なる高容量化には限界がある。これに対し、近年ではSn、Al、Siなどの炭素材料よりも理論容量の高い金属材料の適用が検討、実用化されている。特に、Siは4000mAh/gを超える理論容量を有し、有望な材料である。しかし、炭素に代えてこれらの金属材料をリチウムイオン二次電池の負極活物質として適用した場合、高容量は得られるものの、サイクル寿命が短いという課題がある。 Conventionally, a powder made of a carbon material has been used for the negative electrode active material of a lithium secondary battery, but the carbon material has a low theoretical capacity of 372 mAh / g, and there is a limit to further increasing the capacity. On the other hand, in recent years, application of a metal material having a higher theoretical capacity than carbon materials such as Sn, Al, and Si has been studied and put into practical use. In particular, Si has a theoretical capacity exceeding 4000 mAh / g and is a promising material. However, when these metal materials are used as a negative electrode active material of a lithium ion secondary battery instead of carbon, there is a problem that cycle capacity is short although high capacity is obtained.
 この課題に対し、Siに種々の元素を添加し、純Si粉末ではなくSi合金粉末とし、微細組織を得ることで改善する方法が多く提案されている。例えば、特開2012-150910号公報(特許文献1)において、所定のCr、Ti、Al、Snを添加することで、Si相とCrSi2相の微細共晶組織を得ることが提案されている。 In response to this problem, many methods have been proposed in which various elements are added to Si to form a Si alloy powder instead of pure Si powder to obtain a fine structure. For example, JP 2012-150910 A (Patent Document 1) proposes to obtain a fine eutectic structure of Si phase and CrSi 2 phase by adding predetermined Cr, Ti, Al, Sn. .
 一方、リチウムイオン二次電池の負極に用いるSi合金粉末は、多くの場合、ボールミルなどにより数μm以下に粉砕加工されたり、結晶性を低下させて使用される。さらに、特開2012-178344号公報(特許文献2)や特開2012-113945号公報(特許文献3)のように、ボールミルによる加工の際に、炭素材料や導電性粉末を導入し、これらとSi合金粉末を複合化することにより、一段と優れた充放電特性を実現する方法が提案されている。 On the other hand, the Si alloy powder used for the negative electrode of the lithium ion secondary battery is often used by being pulverized to a few μm or less by a ball mill or the like, or by reducing the crystallinity. Further, as disclosed in JP 2012-178344 A (Patent Document 2) and JP 2012-113945 A (Patent Document 3), a carbon material or conductive powder is introduced at the time of processing by a ball mill. There has been proposed a method for realizing more excellent charge / discharge characteristics by combining Si alloy powder.
特開2012-150910号公報JP 2012-150910 A 特開2012-178344号公報JP 2012-178344 A 特開2012-113945号公報JP 2012-113945 A
 上記特許文献1では、微細共晶組織を有することにより優れた放電容量とサイクル寿命が両立されているが、本発明はこの技術を更に改良し、Cの微量な添加を必須とすることで放電容量をほとんど低下させることなく、サイクル寿命を大幅に増加させることに成功したものである。また、必要に応じ、B、P、Zr、Hf、V、Nb、Ta、Mo、W、Mn、Fe、Co、NiおよびCuのいずれか1種または2種以上を微量添加することにより、さらにサイクル寿命を改善することを可能とした。 In Patent Document 1 described above, excellent discharge capacity and cycle life are achieved by having a fine eutectic structure. However, the present invention further improves this technique, and makes it necessary to add a small amount of C as an essential element. It has succeeded in greatly increasing the cycle life without substantially reducing the capacity. Further, if necessary, by adding a trace amount of any one or more of B, P, Zr, Hf, V, Nb, Ta, Mo, W, Mn, Fe, Co, Ni and Cu, It was possible to improve the cycle life.
 また、本発明におけるSi相は、Siを主体としたDiamond構造の相であり、Liを吸蔵、放出する相である。したがって、Si以外の添加元素を固溶したものも含まれる。また、本発明におけるCrSi2相はHexagonal構造を持ち、空間群がP6222に属するものであり、充放電時のSi相の体積変化を抑制する相である。したがって、その一部がCr、Si以外の添加元素と置換されたものも含まれる。 The Si phase in the present invention is a phase having a diamond structure mainly composed of Si, and is a phase that occludes and releases Li. Therefore, a solution obtained by dissolving an additive element other than Si is also included. Further, CrSi 2 phase in the present invention has a Hexagonal structure, which space group belongs to P6 2 22, which suppresses phase volume change of the Si phase during charging and discharging. Accordingly, a part of which is replaced with an additive element other than Cr and Si is also included.
 上述したような特許文献1~3が提案されているが、本発明はこれらの技術を更に改良し、Cの微量な添加を必須とすることで放電容量をほとんど低下させることなく、サイクル寿命を大幅に増加させることに成功したものである。また、必要に応じ、B、P、Zr、Hf、V、Nb、Ta、Mo、W、Mn、Fe、Co、NiおよびCuのいずれか1種または2種以上を微量添加することにより、さらにサイクル寿命を改善することを可能とした。その結果、より放電容量が高く、サイクル寿命に優れるリチウムイオン二次電池負極活物質用Si合金粉末およびその製造方法が提供される。 Patent Documents 1 to 3 as described above have been proposed, but the present invention further improves these techniques and makes it necessary to add a small amount of C, thereby reducing the cycle life without substantially reducing the discharge capacity. It has succeeded in greatly increasing it. Further, if necessary, by adding a trace amount of any one or more of B, P, Zr, Hf, V, Nb, Ta, Mo, W, Mn, Fe, Co, Ni and Cu, It was possible to improve the cycle life. As a result, a Si alloy powder for a negative electrode active material for a lithium ion secondary battery having a higher discharge capacity and an excellent cycle life and a method for producing the same are provided.
 本発明の一態様によれば、
 原子%で、
 C:0.01~0.5%、
 Cr、Ti、AlおよびSnのいずれか1種または2種以上:合計で10~25%、ならびに
 残部Siおよび不可避的不純物
 を含んでなり、かつ、下記の式(1)および式(2): 
0.15≦Cr%/(Cr%+Ti%+Al%+Sn%)≦1.00   … (1)
(Al%+Sn%)/(Cr%+Ti%+Al%+Sn%)≦0.40  … (2)
 を共に満たす、リチウムイオン二次電池負極用のSi合金粉末が提供される。
According to one aspect of the invention,
Atomic%
C: 0.01 to 0.5%
Any one or more of Cr, Ti, Al and Sn: 10 to 25% in total, and the balance Si and unavoidable impurities, and the following formulas (1) and (2):
0.15 ≦ Cr% / (Cr% + Ti% + Al% + Sn%) ≦ 1.00 (1)
(Al% + Sn%) / (Cr% + Ti% + Al% + Sn%) ≦ 0.40 (2)
An Si alloy powder for a negative electrode of a lithium ion secondary battery that satisfies the above requirements is provided.
 本発明の他の一態様によれば、原子%で、C:0.01~0.5%、Cr、Ti、Al、Snのいずれか1種または2種以上を合計で10~25%含有し、残部がSiおよび不可避的不純物からなり、かつ、下記の式(1)および式(2)を共に満たすことを特徴とするリチウムイオン二次電池負極用Si合金粉末が提供される。
0.15≦Cr%/(Cr%+Ti%+Al%+Sn%)≦1.00   … (1)
(Al%+Sn%)/(Cr%+Ti%+Al%+Sn%)≦0.40  … (2)
According to another embodiment of the present invention, in atomic%, C: 0.01 to 0.5%, containing one or more of Cr, Ti, Al, Sn, or a total of 10 to 25% In addition, there is provided a Si alloy powder for a negative electrode of a lithium ion secondary battery, wherein the balance is made of Si and inevitable impurities and satisfies both the following formulas (1) and (2).
0.15 ≦ Cr% / (Cr% + Ti% + Al% + Sn%) ≦ 1.00 (1)
(Al% + Sn%) / (Cr% + Ti% + Al% + Sn%) ≦ 0.40 (2)
 本発明のさらに他の一態様によれば、BまたはPの1種または2種を合計で5%以下、および/またはZr、Hf、V、Nb、Ta、Mo、W、Mn、Fe、Co、Ni、Cuのいずれか1種または2種以上を合計で2%以下含むことを特徴とする上記いずれか1態様によるリチウムイオン二次電池負極用Si合金粉末が提供される。 According to still another aspect of the present invention, one or two of B or P are added in total to 5% or less, and / or Zr, Hf, V, Nb, Ta, Mo, W, Mn, Fe, Co A Si alloy powder for a negative electrode of a lithium ion secondary battery according to any one of the above aspects is provided, which contains one or more of Ni, Cu, or 2% or less in total.
 本発明のさらに他の一態様によれば、所定組成の原料を溶解した後、その合金溶湯を冷却速度100℃/s以上で急冷凝固させる工程を含むことを特徴とした上記いずれか1態様によるリチウムイオン二次電池負極用Si合金粉末の製造方法が提供される。 According to still another aspect of the present invention, according to any one of the above aspects, the method includes a step of rapidly solidifying the molten alloy at a cooling rate of 100 ° C./s or more after melting a raw material having a predetermined composition. A method for producing a Si alloy powder for a negative electrode of a lithium ion secondary battery is provided.
 本発明のさらに他の一態様によれば、上記いずれか1態様によるSi合金粉末と硬質球を容器内で強制攪拌し、合金粉末を粉砕する工程を含むことを特徴としたリチウムイオン二次電池負極用Si合金粉末の製造方法が提供される。 According to still another aspect of the present invention, the lithium ion secondary battery includes a step of forcibly stirring the Si alloy powder and the hard sphere according to any one of the aspects in a container to pulverize the alloy powder. A method for producing a Si alloy powder for a negative electrode is provided.
 上述したように、本発明は、より放電容量が高く、サイクル寿命に優れるリチウムイオン二次電池負極活物質用Si合金粉末およびその製造方法を提供する。 As described above, the present invention provides a Si alloy powder for a negative electrode active material for a lithium ion secondary battery having a higher discharge capacity and an excellent cycle life, and a method for producing the same.
 以下、本発明について詳細に説明する。特段の明示が無いかぎり、本明細書において「%」は原子%(at%)を意味するものとする。 Hereinafter, the present invention will be described in detail. Unless otherwise specified, “%” in this specification means atomic% (at%).
 本発明によるリチウムイオン二次電池負極用のSi合金粉末は、原子%で、C:0.01~0.5%、Cr、Ti、AlおよびSnのいずれか1種または2種以上:合計で10~25%、ならびに残部Siおよび不可避的不純物を含んでなり、好ましくはこれらの元素および不可避的不純物から実質的になり、より好ましくはこれらの元素および不可避的不純物からなる。 The Si alloy powder for a negative electrode of a lithium ion secondary battery according to the present invention is atomic%, C: 0.01 to 0.5%, any one or more of Cr, Ti, Al and Sn: in total 10 to 25%, and the balance Si and unavoidable impurities, preferably consisting essentially of these elements and unavoidable impurities, more preferably consisting of these elements and unavoidable impurities.
 本発明における第1の特徴は、所定量のCr、Ti、AlおよびSnのいずれか1種または2種以上に加え、Cの微量な添加を必須とすることで、放電容量をほぼ低下させることなく、サイクル寿命を大幅に改善したことである。このサイクル寿命改善効果について、詳細な原理は不明であるが、以下のことが推測される。 The first feature of the present invention is that the discharge capacity is substantially reduced by requiring the addition of a trace amount of C in addition to any one or more of a predetermined amount of Cr, Ti, Al and Sn. The cycle life is greatly improved. The detailed principle of this cycle life improving effect is unknown, but the following is presumed.
 特許文献1に記載されたとおり、Si-CrSi2系共晶合金は著しい微細組織を有する。本発明者は、この合金にCを微量添加した本発明合金において、微細なSi相中に10nm程度以下の超微細Cr系炭化物および/またはTi系炭化物が微量に生成し、Si相中に均一分散することを見出した。これら炭化物はLiとは反応しない。したがって、周囲のSi相中のSi原子がLiと反応して体積が膨張する際に、これら超微細炭化物の体積は変化しないため、その界面において微細なクラックを発生する。通常のSi相はLi吸蔵、放出にともなう体積変化により、クラックを発生する。一旦発生したクラックの先端には、その後の体積変化にともなう応力が集中するため、大きな割れに進展し、Si合金粉末の一部が集電体から脱落し、サイクル寿命が劣化する。 As described in Patent Document 1, the Si—CrSi 2 eutectic alloy has a remarkable microstructure. The inventor of the present invention in which a small amount of C is added to this alloy produces a very small amount of ultrafine Cr-based carbide and / or Ti-based carbide of about 10 nm or less in the fine Si phase, and is uniform in the Si phase. Found to be dispersed. These carbides do not react with Li. Therefore, when Si atoms in the surrounding Si phase react with Li and the volume expands, the volume of these ultrafine carbides does not change, so that a fine crack is generated at the interface. The normal Si phase generates cracks due to volume changes accompanying Li storage and release. Since the stress accompanying the subsequent volume change concentrates at the tip of the crack once generated, it progresses to a large crack, and a part of the Si alloy powder falls off from the current collector, thereby deteriorating the cycle life.
 これに対し、上述したSi相と超微細炭化物との界面におけるクラックは、この超微細炭化物が均一分散しているため、Si相中のいたるところで微細なクラックとして発生する。これによって、Si相中のいたるところで微細クラックによる応力緩和が起こり、結果的に大割れを発生しないと考えられる。したがって、欠けたSi合金粉末の集電体からの脱落が起こりにくく、サイクル寿命に優れるものと推測される。 On the other hand, the cracks at the interface between the Si phase and the ultrafine carbide described above are generated as fine cracks everywhere in the Si phase because the ultrafine carbide is uniformly dispersed. As a result, stress relaxation due to microcracks occurs everywhere in the Si phase, and it is considered that large cracks do not occur as a result. Therefore, it is presumed that the chipped Si alloy powder does not easily fall off from the current collector and has excellent cycle life.
 本発明における第2の特徴は、必要に応じ、Bおよび/またはPを微量添加することで、さらにサイクル寿命を改善することである。このサイクル寿命改善効果について、詳細は不明であるが、以下のように推測される。まず、BまたはPは、わずかではあるがSi相に固溶限を持つ。また、これら元素はLiと反応はするものの、Siと比較して反応時の体積変化が小さい。したがって、Si相に固溶したBおよび/またはPは、Li吸蔵、放出にともなうSi相の体積変化を低減する効果を有する。これにより、Si合金粉末の大きな割れを抑制し、サイクル寿命を改善すると推測される。 The second feature of the present invention is that the cycle life is further improved by adding a small amount of B and / or P as necessary. The details of this cycle life improvement effect are unknown, but are estimated as follows. First, B or P has a solid solubility limit in the Si phase, albeit slightly. Moreover, although these elements react with Li, the volume change at the time of reaction is small compared with Si. Therefore, B and / or P dissolved in the Si phase has an effect of reducing the volume change of the Si phase accompanying Li occlusion and release. Thereby, it is estimated that the big crack of Si alloy powder is suppressed and cycle life is improved.
 本発明における第3の特徴は、必要に応じ、Zr、Hf、V、Nb、Ta、Mo、W、Mn、Fe、Co、NiおよびCuのいずれか1種または2種以上を微量添加することで、さらにサイクル寿命を改善することである。このサイクル寿命改善効果について、詳細は不明であるが、以下のように推測される。まず、これら元素は、本願合金中において、いずれもCrSi2相のCrと置換する元素であり、CrSi2相を微細にする効果がある。このように微細化されたCrSi2相は、Si相のLi吸蔵、放出にともなう体積変化を粒子全体として均一に抑制できるため、サイクル寿命に優れると推測される。 The third feature of the present invention is that a small amount of one or more of Zr, Hf, V, Nb, Ta, Mo, W, Mn, Fe, Co, Ni and Cu is added as necessary. In order to further improve the cycle life. The details of this cycle life improvement effect are unknown, but are estimated as follows. First, these elements are elements that substitute for Cr in the CrSi 2 phase in the alloy of the present application, and have the effect of making the CrSi 2 phase fine. The thus refined CrSi 2 phase is presumed to have an excellent cycle life because the volume change accompanying the Li storage and release of the Si phase can be uniformly suppressed as a whole particle.
 一方、本合金粉末は、アトマイズ法や液体急冷法のような、従来より提案されている100℃/s以上の冷却速度を有する製法を適用することにより、より微細な組織を有することができる。また、従来より提案されている各種のボールミルなどによる粉砕法により微細化が可能である。さらに、従来より提案されている炭素材料や導電性粉末と複合化させるためのSi合金粉末として用いることが可能である。 On the other hand, the present alloy powder can have a finer structure by applying a conventionally proposed manufacturing method having a cooling rate of 100 ° C./s or higher, such as an atomizing method or a liquid quenching method. Further, it can be miniaturized by a pulverization method using various conventionally proposed ball mills. Furthermore, it can be used as a Si alloy powder to be combined with a conventionally proposed carbon material or conductive powder.
 以下、本発明に係る成分組成の限定した理由を説明する。 Hereinafter, the reason why the component composition according to the present invention is limited will be described.
(a)C:0.01~0.5%
 本発明合金において、CはSi相中に超微細炭化物を生成し、放電容量をほぼ低下させることなくサイクル寿命を改善する必須元素である。添加量が0.01%未満ではサイクル寿命改善効果が得られず、0.5%を超えると炭化物が粗大化し、逆にSi相が大割れしやすくなり、サイクル寿命を劣化させる。Cの添加量は、好ましくは0.02~0.4%、より好ましくは0.03~0.3%である。
(A) C: 0.01 to 0.5%
In the alloy of the present invention, C is an essential element that produces ultrafine carbides in the Si phase and improves the cycle life without substantially reducing the discharge capacity. If the addition amount is less than 0.01%, the effect of improving the cycle life cannot be obtained. If the addition amount exceeds 0.5%, the carbide is coarsened, and on the contrary, the Si phase is easily cracked, and the cycle life is deteriorated. The amount of C added is preferably 0.02 to 0.4%, more preferably 0.03 to 0.3%.
(b)Cr、Ti、AlおよびSnのいずれか1種または2種以上:合計で10~25%
 本発明合金において、CrはSi相-CrSi2相の微細共晶組織を実現し、優れた放電容量とサイクル寿命を両立させるための必須元素である。ところで、本発明者はこのCrが一定の範囲でTiやAl、Snと置換することが可能であることを見出した。そこで本発明ではCrとTi、AlおよびSnとの合計量と、この合計量とCrの添加量との比率を規定する。先ず、TiはCrSi2相のCrと置換されて、CrSi2相の格子定数を増加させ、この相中に拡散しているLiによる体積膨張を抑えることでサイクル寿命を改善させると考えられる。したがって、Tiを必要に応じて添加することが好ましい。
(B) One or more of Cr, Ti, Al, and Sn: 10 to 25% in total
In the alloy of the present invention, Cr is an essential element for realizing a fine eutectic structure of Si phase-CrSi 2 phase and achieving both excellent discharge capacity and cycle life. By the way, the present inventor has found that this Cr can be substituted with Ti, Al, and Sn within a certain range. Therefore, in the present invention, the total amount of Cr and Ti, Al, and Sn and the ratio of the total amount and the added amount of Cr are defined. First, Ti is substituted with Cr of CrSi 2 phases, increasing the lattice constant of CrSi 2 phases, it is believed to improve the cycle life by suppressing volume expansion by Li being diffused into the phase during. Therefore, it is preferable to add Ti as needed.
 Alの一部はCrSi2相のSiと置換して、CrSi2相の格子定数を増加させ、他の部分は軟質なAl相として存在する。CrSi2相の格子定数の増加についてはTiと同様の効果をもたらし、軟質なAl相はLi吸蔵、放出にともなうSi相の体積変化を緩和する効果があり、サイクル寿命を改善させると考えられる。したがって、Alを必要に応じて添加することが好ましい。Snは軟質なSn相として存在し、軟質なAl相と同様の効果により、サイクル寿命を改善させると考えられる。したがって、Snを必要に応じて添加することが好ましい。しかしながら、Cr、Ti、AlおよびSnの合計含有量(Cr%+Ti%+Al%+Sn%)が10%未満では十分なサイクル寿命が得られず、25%を超えると十分な放電容量が得られない。また、Cr、Ti、AlおよびSnの合計含有量は、好ましくは13~23%、より好ましくは16~21%の範囲である。 Some of the Al is replaced with Si of CrSi 2 phases, increasing the lattice constant of CrSi 2 phases, the other parts are present as soft Al phase. The increase in the lattice constant of the CrSi 2 phase brings about the same effect as Ti, and the soft Al phase has the effect of relaxing the volume change of the Si phase accompanying Li occlusion and release, and is thought to improve the cycle life. Therefore, it is preferable to add Al as necessary. Sn exists as a soft Sn phase, and is considered to improve the cycle life by the same effect as the soft Al phase. Therefore, it is preferable to add Sn as needed. However, if the total content of Cr, Ti, Al and Sn (Cr% + Ti% + Al% + Sn%) is less than 10%, sufficient cycle life cannot be obtained, and if it exceeds 25%, sufficient discharge capacity cannot be obtained. . Further, the total content of Cr, Ti, Al and Sn is preferably in the range of 13 to 23%, more preferably 16 to 21%.
(c)0.15≦Cr%/(Cr%+Ti%+Al%+Sn%)≦1.00
 本発明合金において、Si相-CrSi2 相の微細共晶組織を得るためには、添加するCr、Ti、AlおよびSnの合計量に対し、一定以上のCr比率が必要である。すなわち、Cr%/(Cr%+Ti%+Al%+Sn%)が0.15未満では微細共晶組織が得られず、サイクル寿命に劣る。なお、Ti、AlおよびSnは必要に応じて添加できる元素であるため、Cr%/(Cr%+Ti%+Al%+Sn%)の上限は1.00である。Cr%/(Cr%+Ti%+Al%+Sn%)は、好ましくは0.15~0.90、より好ましくは0.20~0.80の範囲である。
(C) 0.15 ≦ Cr% / (Cr% + Ti% + Al% + Sn%) ≦ 1.00
In the alloy of the present invention, in order to obtain a fine eutectic structure of Si phase-CrSi 2 phase, a Cr ratio of a certain level or more is necessary with respect to the total amount of Cr, Ti, Al and Sn to be added. That is, if Cr% / (Cr% + Ti% + Al% + Sn%) is less than 0.15, a fine eutectic structure cannot be obtained and cycle life is inferior. Since Ti, Al, and Sn are elements that can be added as necessary, the upper limit of Cr% / (Cr% + Ti% + Al% + Sn%) is 1.00. Cr% / (Cr% + Ti% + Al% + Sn%) is preferably in the range of 0.15 to 0.90, more preferably 0.20 to 0.80.
(d)(Al%+Sn%)/(Cr%+Ti%+Al%+Sn%)≦0.40
 本発明合金において、Cr、Ti、AlおよびSnの合計量に対し、AlとSnの合計量は一定以下にする必要がある。すなわち、(Al%+Sn%)/(Cr%+Ti%+Al%+Sn%)が0.40を超えると微細共晶組織が得られず、サイクル寿命が劣化する。(Al%+Sn%)/(Cr%+Ti%+Al%+Sn%)は、好ましくは0.03~0.3、より好ましくは0.05~0.25の範囲である。
(D) (Al% + Sn%) / (Cr% + Ti% + Al% + Sn%) ≦ 0.40
In the alloy of the present invention, the total amount of Al and Sn needs to be constant or less than the total amount of Cr, Ti, Al and Sn. That is, if (Al% + Sn%) / (Cr% + Ti% + Al% + Sn%) exceeds 0.40, a fine eutectic structure cannot be obtained and the cycle life is deteriorated. (Al% + Sn%) / (Cr% + Ti% + Al% + Sn%) is preferably in the range of 0.03 to 0.3, more preferably 0.05 to 0.25.
(e)BまたはPの1種または2種を合計で5%以下
 本発明合金において、BまたはPは、Si相中に固溶し、サイクル寿命を改善できると考えられる元素であり、必要に応じて添加できる。ただし、BまたはPの1種または2種が合計で5%を超えると、硼化物もしくは燐化物を生成し、サイクル寿命を劣化させる。BまたはPの1種または2種の合計は、好ましくは0.1~3.0%、より好ましくは0.2~2.0%の範囲である。また、元素としてはBを加えることがより好ましい。
(E) A total of 5% or less of one or two of B or P In the alloy of the present invention, B or P is an element that is considered to be able to improve the cycle life by being dissolved in the Si phase. Can be added accordingly. However, if one or two of B or P exceeds 5% in total, a boride or a phosphide is generated and the cycle life is deteriorated. The total of one or two of B or P is preferably in the range of 0.1 to 3.0%, more preferably 0.2 to 2.0%. Further, it is more preferable to add B as an element.
(f)Zr、Hf、V、Nb、Ta、Mo、W、Mn、Fe、Co、NiおよびCuのいずれか1種または2種以上を合計で2%以下
 本発明合金において、Zr、Hf、V、Nb、Ta、Mo、W、Mn、Fe、Co、NiおよびCuはサイクル寿命改善のために、必要に応じ添加できる元素であるが、Zr、Hf、V、Nb、Ta、Mo、W、Mn、Fe、Co、NiおよびCuの合計含有量(Zr%+Hf%+V%+Nb%+Ta%+Mo%+W%+Mn%+Fe%+Co%+Ni%+Cu%)が、2%を超えるとこれら元素を主とした珪化物が生成し、微細組織が得られなくなり、サイクル寿命を劣化させる。Zr、Hf、V、Nb、Ta、Mo、W、Mn、Fe、Co、NiおよびCuの合計含有量は、好ましくは0.02~1.50%、より好ましくは0.05~1.00%の範囲である。また、元素としてはFe、Mnが好ましく、Bと同時に添加することがより好ましい。
(F) One or more of Zr, Hf, V, Nb, Ta, Mo, W, Mn, Fe, Co, Ni and Cu in total 2% or less In the present invention alloy, Zr, Hf, V, Nb, Ta, Mo, W, Mn, Fe, Co, Ni, and Cu are elements that can be added as necessary to improve the cycle life, but Zr, Hf, V, Nb, Ta, Mo, W , Mn, Fe, Co, Ni and Cu (Zr% + Hf% + V% + Nb% + Ta% + Mo% + W% + Mn% + Fe% + Co% + Ni% + Cu%) The main silicide is generated, the microstructure cannot be obtained, and the cycle life is deteriorated. The total content of Zr, Hf, V, Nb, Ta, Mo, W, Mn, Fe, Co, Ni and Cu is preferably 0.02 to 1.50%, more preferably 0.05 to 1.00. % Range. Moreover, as an element, Fe and Mn are preferable, and adding together with B is more preferable.
(g)冷却速度100℃/s以上の凝固で作製する工程
 本発明合金はSi-CrSi2系の共晶合金である。共晶合金のミクロ組織サイズは、一般に冷却速度により影響を受ける。100℃/s以上の冷却速度で凝固する方法として、アトマイズ法、単ロール法などがあるが、本発明合金の製造工程において、好ましい工程はガスアトマイズ法による作製である。
(G) Step of producing by solidification at a cooling rate of 100 ° C./s or higher The alloy of the present invention is a Si—CrSi 2 -based eutectic alloy. The microstructure size of eutectic alloys is generally affected by the cooling rate. As a method of solidifying at a cooling rate of 100 ° C./s or more, there are an atomizing method, a single roll method, and the like. A preferable step in the production process of the alloy of the present invention is a production by a gas atomizing method.
(h)合金粉末を粉砕する工程
 リチウムイオン二次電池の負極は、通常は100μm以下の厚みで使用され、電池の用途や設計により、さらに薄い厚みで使用される。そのため、所定の厚みの負極に本発明合金粉末を使用するためには、その厚さ以下の粒径に制御することが必要であり、そのためには粉砕法を適用することが出来る。この粉砕法には、一般的なボールミルのように合金粉末と硬質球(メディアとも呼ばれる)を強制攪拌する方法が適用でき、また、この工程において組織の微細化や炭素材料、導電性粉末との複合化も可能である。
(H) Step of grinding alloy powder The negative electrode of a lithium ion secondary battery is usually used with a thickness of 100 μm or less, and is used with a thinner thickness depending on the use and design of the battery. Therefore, in order to use the alloy powder of the present invention for a negative electrode having a predetermined thickness, it is necessary to control the particle size to be equal to or less than the thickness, and for this purpose, a pulverization method can be applied. For this pulverization method, a method of forcibly stirring alloy powder and hard spheres (also called media) like a general ball mill can be applied. In this process, the structure is refined and the carbon material or conductive powder is mixed. Compounding is also possible.
 まず、放電容量とサイクル寿命に及ぼすC添加量の影響について検討するため、Si-19%Cr-x%C、および、Si-9%Cr-6%Ti-2%Al-2%Sn-x%Cについて評価した(実験A)。次に、各種添加元素の種類と量を変化させ、それぞれの添加量および因子の上下限について評価した(実験B)。最後に振動ミルでの処理時に天然黒鉛粉末または純Zn粉末も導入した複合化粉末を評価した(実験C)。 First, in order to examine the influence of the C addition amount on the discharge capacity and the cycle life, Si-19% Cr-x% C and Si-9% Cr-6% Ti-2% Al-2% Sn-x % C was evaluated (Experiment A). Next, the types and amounts of various additive elements were changed, and the upper and lower limits of each added amount and factor were evaluated (Experiment B). Finally, a composite powder into which natural graphite powder or pure Zn powder was also introduced during treatment with a vibration mill was evaluated (Experiment C).
 (実験A)
 [供試粉末作製工程]
 Si-19%Cr-x%C、および、Si-9%Cr-6%Ti-2%Al-2%Sn-x%Cで示される組成のSi合金粉末を、ガスアトマイズ装置にて作製した。なお、xは0.005~0.8の範囲で変化させた。溶解量1000gの母材を、アルミナ製耐火坩堝中でAr雰囲気にて誘導溶解し、坩堝下部の細孔ノズルより溶湯を出湯した。出湯直後に噴霧ガスによりアトマイズした。得られた粉末を63μm以下に分級し、以下の方法で充放電特性を評価した。
(Experiment A)
[Sample powder preparation process]
Si alloy powders having compositions represented by Si-19% Cr-x% C and Si-9% Cr-6% Ti-2% Al-2% Sn-x% C were produced with a gas atomizer. Note that x was varied in the range of 0.005 to 0.8. A base material having a dissolution amount of 1000 g was induction-melted in an Ar atmosphere in an alumina refractory crucible, and the molten metal was discharged from a pore nozzle at the bottom of the crucible. Immediately after the hot water was atomized with spray gas. The obtained powder was classified to 63 μm or less, and the charge / discharge characteristics were evaluated by the following method.
 [充放電特性]
 供試粉末に、ポリフッ化ビニリデン(結着材)を10mass%、N-メチルピロリドン(溶媒)を10mass%、アセチレンブラック(導電材)を10mass%添加し、これを乳鉢で混ぜ合わせてスラリー状とした。このスラリーを銅箔(集電体)に塗布し、乾燥させた後、ハンドプレス機にてプレスした。更にこれを直径10mmに打ち抜いて負極とした。この負極と、対極および参照極に金属Li箔を用いたコイン型セルにて充放電特性を評価した。電解液としてエチレンカーボネートにジメトキシエタンを同量混合したものを用い、電解質としてLiPF6を1Mの濃度となるように添加した。
[Charge / discharge characteristics]
To the sample powder, 10% by mass of polyvinylidene fluoride (binder), 10% by mass of N-methylpyrrolidone (solvent), and 10% by mass of acetylene black (conductive material) are added and mixed in a mortar to form a slurry. did. This slurry was applied to a copper foil (current collector), dried, and then pressed with a hand press. Further, this was punched out to a diameter of 10 mm to obtain a negative electrode. The charge / discharge characteristics were evaluated using this negative electrode and a coin-type cell using metal Li foil as a counter electrode and a reference electrode. The electrolyte solution was a mixture of ethylene carbonate and dimethoxyethane in the same amount, and LiPF 6 was added as an electrolyte to a concentration of 1M.
 充電は150mA/gの電流値で0V(対参照極)まで行い、その後150mA/gで2V(対参照極)まで放電した。これを1サイクルとし、50サイクル繰り返した。放電容量として、1サイクル目の放電容量を評価し、寿命特性として50サイクル目の放電容量を1サイクル目の放電容量で割り、100(%)をかけた放電容量の維持率で評価した。
 実験Aの結果を表1に示す。
Charging was performed at a current value of 150 mA / g up to 0 V (vs. reference electrode), and then discharged to 2 V (vs. reference electrode) at 150 mA / g. This was defined as one cycle and repeated 50 cycles. As the discharge capacity, the discharge capacity at the first cycle was evaluated, and as the life characteristics, the discharge capacity at the 50th cycle was divided by the discharge capacity at the first cycle, and the maintenance rate of the discharge capacity multiplied by 100 (%) was evaluated.
The results of Experiment A are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
 No.2~9、No.12~19は本発明例であり、No.1、10~11、20は比較例である。比較例No.1および11は、C量が低いため維持率に劣る。比較例No.10および20は、C量が高いため維持率に劣る。
Figure JPOXMLDOC01-appb-T000001
No. 2-9, no. Nos. 12 to 19 are examples of the present invention. Reference numerals 1, 10 to 11 and 20 are comparative examples. Comparative Example No. 1 and 11 are inferior in the maintenance rate because the amount of C is low. Comparative Example No. 10 and 20 are inferior in maintenance rate because of the high amount of C.
 (実験B)
[供試粉末作製工程]
 表2に示される組成のSi合金粉末を、ガスアトマイズ装置にて作製した。溶解量1000gの母材を、アルミナ製耐火坩堝中でAr雰囲気にて誘導溶解し、坩堝下部の細孔ノズルより溶湯を出湯した。出湯直後に噴霧ガスによりアトマイズした。得られた粉末を63μm以下に分級したのち、振動ミル装置の金属製容器に得られた合金粉末とクロム鋼製の硬質球を入れ、30時間加工した。その後、容器から取り出した粉末により、以下の方法で充放電特性を評価した。
(Experiment B)
[Sample powder preparation process]
Si alloy powders having the compositions shown in Table 2 were produced using a gas atomizer. A base material having a dissolution amount of 1000 g was induction-melted in an Ar atmosphere in an alumina refractory crucible, and the molten metal was discharged from a pore nozzle at the bottom of the crucible. Immediately after the hot water was atomized with spray gas. After classifying the obtained powder to 63 μm or less, the obtained alloy powder and chromium steel hard spheres were placed in a metal container of a vibration mill apparatus and processed for 30 hours. Thereafter, the charge / discharge characteristics were evaluated by the following method using the powder taken out from the container.
 [充放電特性]
 供試粉末に、ポリフッ化ビニリデン(結着材)を10mass%、N-メチルピロリドン(溶媒)を10mass%、アセチレンブラック(導電材)を10mass%添加し、これを乳鉢で混ぜ合わせてスラリー状とした。このスラリーを銅箔(集電体)に塗布し、乾燥させた後、ハンドプレス機にてプレスした。更にこれを直径10mmに打ち抜いて負極とした。
[Charge / discharge characteristics]
To the sample powder, 10% by mass of polyvinylidene fluoride (binder), 10% by mass of N-methylpyrrolidone (solvent), and 10% by mass of acetylene black (conductive material) are added and mixed in a mortar to form a slurry. did. This slurry was applied to a copper foil (current collector), dried, and then pressed with a hand press. Further, this was punched out to a diameter of 10 mm to obtain a negative electrode.
 この負極と、対極および参照極に金属Li箔を用いたコイン型セルにて充放電特性を評価した。電解液としてエチレンカーボネートにジメトキシエタンを同量混合したものを用い、電解質としてLiPF6を1Mの濃度となるように添加した。充電は150mA/gの電流値で0V(対参照極)まで行い、その後150mA/gで2V(対参照極)まで放電した。これを1サイクルとし、50サイクル繰り返した。放電容量として、1サイクル目の放電容量を評価し、寿命特性として50サイクル目の放電容量を1サイクル目の放電容量で割り、100(%)をかけた放電容量の維持率で評価した。実験Bの結果を表2に示す。 The charge / discharge characteristics were evaluated using this negative electrode and a coin-type cell using metal Li foil as a counter electrode and a reference electrode. The electrolyte solution was a mixture of ethylene carbonate and dimethoxyethane in the same amount, and LiPF 6 was added as an electrolyte to a concentration of 1M. Charging was performed at a current value of 150 mA / g up to 0 V (vs. reference electrode), and then discharged to 2 V (vs. reference electrode) at 150 mA / g. This was defined as one cycle and repeated 50 cycles. As the discharge capacity, the discharge capacity at the first cycle was evaluated, and as the life characteristics, the discharge capacity at the 50th cycle was divided by the discharge capacity at the first cycle, and the maintenance rate of the discharge capacity multiplied by 100 (%) was evaluated. The results of Experiment B are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
 No.21~50は本発明例であり、No.51~59は比較例である。
Figure JPOXMLDOC01-appb-T000002
No. 21 to 50 are examples of the present invention. 51 to 59 are comparative examples.
 比較例No.51はC量が低く、比較例No.52はC量が高いため、維持率に劣る。比較例No.53は、Cr、Ti、Al、Snのいずれか1種または2種以上の合計量の値が低いため維持率に劣る。比較例No.54は、Cr、Ti、Al、Snのいずれか1種または2種以上の合計量の値が高いため放電容量に劣る。比較例No.55は、式(1)が低いため維持率に劣る。比較例No.56は、式(2)が高いため維持率に劣る。比較例No.57は、BまたはPの1種または2種の合計量の値が高いため維持率に劣る。比較例No.58および59は、Zr、Hf、V、Nb、Ta、Mo、W、Mn、Fe、Co、NiおよびCuのいずれか1種または2種以上の合計量の値が高いため維持率に劣る。 Comparative Example No. No. 51 has a low C content. Since 52 has a high C content, it is inferior in maintenance rate. Comparative Example No. 53 is inferior in maintenance rate because the value of the total amount of one or more of Cr, Ti, Al, and Sn is low. Comparative Example No. No. 54 is inferior in discharge capacity because the total amount of any one or more of Cr, Ti, Al, and Sn is high. Comparative Example No. No. 55 is inferior in the maintenance rate because the formula (1) is low. Comparative Example No. 56 is inferior in maintenance rate because of high formula (2). Comparative Example No. 57 is inferior in maintenance rate because the value of the total amount of one or two of B or P is high. Comparative Example No. Nos. 58 and 59 are inferior in maintenance rate because the total amount of one or more of Zr, Hf, V, Nb, Ta, Mo, W, Mn, Fe, Co, Ni, and Cu is high.
 (実験C)
 [供試粉末作製工程]
 実験BにおけるNo.26のSi合金粉末を、ガスアトマイズ装置にて作製した。溶解量1000gの母材を、アルミナ製耐火坩堝中でAr雰囲気にて誘導溶解し、坩堝下部の細孔ノズルより溶湯を出湯した。出湯直後に噴霧ガスによりアトマイズした。得られた粉末を63μm以下に分級したのち、振動ミル装置の金属製容器に、「得られた合金粉末と天然黒鉛粉末(質量で80:20)とクロム鋼製の球状硬質球(No.26-1)」または「得られた合金粉末と純Zn粉末(質量で80:20)とクロム鋼製の球状硬質球(No.26-2)」を入れ、30時間加工した。その後、容器から取り出した粉末により、以下の方法で充放電特性を評価した。
(Experiment C)
[Sample powder preparation process]
No. in Experiment B 26 Si alloy powders were produced with a gas atomizer. A base material having a dissolution amount of 1000 g was induction-melted in an Ar atmosphere in an alumina refractory crucible, and the molten metal was discharged from a pore nozzle at the bottom of the crucible. Immediately after the hot water was atomized with spray gas. After the obtained powder was classified to 63 μm or less, the obtained alloy powder, natural graphite powder (80:20 by mass) and chromium steel spherical hard sphere (No. 26) were placed in a metal container of a vibration mill apparatus. -1) "or" the obtained alloy powder, pure Zn powder (80:20 by mass) and spherical hard sphere made of chromium steel (No. 26-2) "were added and processed for 30 hours. Thereafter, the charge / discharge characteristics were evaluated by the following method using the powder taken out from the container.
 [充放電特性]
 供試粉末に、ポリフッ化ビニリデン(結着材)を10mass%、N-メチルピロリドン(溶媒)を10mass%、アセチレンブラック(導電材)を10mass%添加し、これを乳鉢で混ぜ合わせてスラリー状とした。このスラリーを銅箔(集電体)に塗布し、乾燥させた後、ハンドプレス機にてプレスした。更にこれを直径10mmに打ち抜いて負極とした。この負極と、対極および参照極に金属Li箔を用いたコイン型セルにて充放電特性を評価した。電解液としてエチレンカーボネートにジメトキシエタンを同量混合したものを用い、電解質としてLiPF6を1Mの濃度となるように添加した。
[Charge / discharge characteristics]
To the sample powder, 10% by mass of polyvinylidene fluoride (binder), 10% by mass of N-methylpyrrolidone (solvent), and 10% by mass of acetylene black (conductive material) are added and mixed in a mortar to form a slurry. did. This slurry was applied to a copper foil (current collector), dried, and then pressed with a hand press. Further, this was punched out to a diameter of 10 mm to obtain a negative electrode. The charge / discharge characteristics were evaluated using this negative electrode and a coin-type cell using metal Li foil as a counter electrode and a reference electrode. The electrolyte solution was a mixture of ethylene carbonate and dimethoxyethane in the same amount, and LiPF 6 was added as an electrolyte to a concentration of 1M.
 充電は150mA/gの電流値で0V(対参照極)まで行い、その後150mA/gで2V(対参照極)まで放電した。これを1サイクルとし、50サイクル繰り返した。放電容量として、1サイクル目の放電容量を評価し、寿命特性として50サイクル目の放電容量を1サイクル目の放電容量で割り、100(%)をかけた放電容量の維持率で評価した。実験Cの結果、No.26-1は放電容量が1170mAh/g、維持率が97%と優れた。また、No.26-2は放電容量が1200mAh/g、維持率が97%と優れた。 Charging was performed at a current value of 150 mA / g up to 0 V (vs. reference electrode) and then discharged to 2 V (vs. reference electrode) at 150 mA / g. This was defined as one cycle and repeated 50 cycles. As the discharge capacity, the discharge capacity at the first cycle was evaluated, and as the life characteristics, the discharge capacity at the 50th cycle was divided by the discharge capacity at the first cycle, and the maintenance rate of the discharge capacity multiplied by 100 (%) was evaluated. As a result of Experiment C, no. 26-1 has an excellent discharge capacity of 1170 mAh / g and a maintenance rate of 97%. No. 26-2 was excellent with a discharge capacity of 1200 mAh / g and a maintenance rate of 97%.
 以上のように、本発明による微量なCを必須添加とすることで放電容量をほとんど低下させることなく、サイクル寿命を大幅に増加させることが出来た。また、必要に応じ、B、P、Zr、Hf、V、Nb、Ta、Mo、W、Mn、Fe、Co、Niおよび/またはCuを微量添加することにより、さらにサイクル寿命を改善することを可能とした。その結果、より放電容量が高く、サイクル寿命に優れるリチウムイオン二次電池負極活物質用Si合金粉末およびその製造方法を提供するという極めて優れた効果が奏される。 As described above, the cycle life can be significantly increased without substantially reducing the discharge capacity by making the small amount of C according to the present invention an essential addition. In addition, if necessary, the cycle life can be further improved by adding a small amount of B, P, Zr, Hf, V, Nb, Ta, Mo, W, Mn, Fe, Co, Ni and / or Cu. It was possible. As a result, an extremely excellent effect of providing a Si alloy powder for a negative electrode active material for a lithium ion secondary battery having a higher discharge capacity and excellent cycle life and a method for producing the same is achieved.

Claims (4)

  1.  原子%で、
     C:0.01~0.5%、
     Cr、Ti、AlおよびSnのいずれか1種または2種以上:合計で10~25%、ならびに
     残部Siおよび不可避的不純物
     を含んでなり、かつ、下記の式(1)および式(2): 
    0.15≦Cr%/(Cr%+Ti%+Al%+Sn%)≦1.00   … (1)
    (Al%+Sn%)/(Cr%+Ti%+Al%+Sn%)≦0.40  … (2)
     を共に満たす、リチウムイオン二次電池負極用のSi合金粉末。
    Atomic%
    C: 0.01 to 0.5%
    Any one or more of Cr, Ti, Al and Sn: 10 to 25% in total, and the balance Si and unavoidable impurities, and the following formulas (1) and (2):
    0.15 ≦ Cr% / (Cr% + Ti% + Al% + Sn%) ≦ 1.00 (1)
    (Al% + Sn%) / (Cr% + Ti% + Al% + Sn%) ≦ 0.40 (2)
    Si alloy powder for lithium ion secondary battery negative electrode satisfying both.
  2.  BまたはPの1種または2種を合計で5%以下と、
     Zr、Hf、V、Nb、Ta、Mo、W、Mn、Fe、Co、NiおよびCuのいずれか1種または2種以上を合計で2%以下と
     のいずれか一方または両方を含む、請求項1に記載のSi合金粉末。
    One or two of B or P in total 5% or less,
    One or both of Zr, Hf, V, Nb, Ta, Mo, W, Mn, Fe, Co, Ni, and Cu are included, and the total amount includes any one or both of 2% or less. 1. The Si alloy powder according to 1.
  3.  請求項1または2に記載のSi合金粉末の組成の原料を溶解して合金溶湯を得、該合金溶湯を100℃/s以上の冷却速度で急冷凝固させる工程を含む、リチウムイオン二次電池負極用Si合金粉末の製造方法。 A negative electrode for a lithium ion secondary battery comprising a step of melting a raw material having the composition of the Si alloy powder according to claim 1 or 2 to obtain a molten alloy, and rapidly solidifying the molten alloy at a cooling rate of 100 ° C / s or more. Method for manufacturing Si alloy powder.
  4.  請求項1または2に記載のSi合金粉末と硬質球とを容器内で強制攪拌し、前記Si合金粉末を粉砕する工程を含む、リチウムイオン二次電池負極用Si合金粉末の製造方法。 A method for producing a Si alloy powder for a negative electrode of a lithium ion secondary battery, comprising forcibly stirring the Si alloy powder and the hard sphere according to claim 1 or 2 in a container and pulverizing the Si alloy powder.
PCT/JP2014/059986 2013-04-09 2014-04-04 Si-ALLOY POWDER FOR LITHIUM-ION SECONDARY BATTERY NEGATIVE ELECTRODE ACTIVE MATERIAL AND METHOD FOR MANUFACTURING SAME WO2014168090A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201480020027.5A CN105122511B (en) 2013-04-09 2014-04-04 Active material for negative pole of Li-ion secondary battery Si alloy powders and its manufacture method
KR1020157028345A KR102165659B1 (en) 2013-04-09 2014-04-04 Si-ALLOY POWDER FOR LITHIUM-ION SECONDARY BATTERY NEGATIVE ELECTRODE ACTIVE MATERIAL AND METHOD FOR MANUFACTURING SAME

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013081121A JP6231760B2 (en) 2013-04-09 2013-04-09 Si alloy powder for negative electrode active material of lithium ion secondary battery and method for producing the same
JP2013-081121 2013-04-09

Publications (1)

Publication Number Publication Date
WO2014168090A1 true WO2014168090A1 (en) 2014-10-16

Family

ID=51689499

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/059986 WO2014168090A1 (en) 2013-04-09 2014-04-04 Si-ALLOY POWDER FOR LITHIUM-ION SECONDARY BATTERY NEGATIVE ELECTRODE ACTIVE MATERIAL AND METHOD FOR MANUFACTURING SAME

Country Status (5)

Country Link
JP (1) JP6231760B2 (en)
KR (1) KR102165659B1 (en)
CN (1) CN105122511B (en)
TW (1) TWI618284B (en)
WO (1) WO2014168090A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6445854B2 (en) * 2014-12-03 2018-12-26 山陽特殊製鋼株式会社 Conductive filler powder
JP6777144B2 (en) * 2016-05-18 2020-10-28 日本製鉄株式会社 Negative electrode active material, negative electrode and battery
CN107887582B (en) * 2017-10-31 2020-07-31 东莞市鸿德电池有限公司 Silicon/carbon powder composite material, preparation method thereof and battery cathode material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001291514A (en) * 2000-04-06 2001-10-19 Sumitomo Metal Ind Ltd Negative electrode material for nonaqueous electrolyte secondary battery and its manufacturing method
JP2005116390A (en) * 2003-10-09 2005-04-28 Samsung Sdi Co Ltd Electrode material for lithium secondary battery, lithium secondary battery, and manufacturing method of electrode material for lithium secondary battery
JP2011070779A (en) * 2009-09-24 2011-04-07 Sanyo Special Steel Co Ltd Si alloy for lithium secondary battery negative electrode material
JP2012142154A (en) * 2010-12-28 2012-07-26 Sony Corp Lithium ion secondary battery, power tool, electric vehicle and power storage system

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1573835B1 (en) * 2002-11-26 2017-05-03 Showa Denko K.K. Electrode material comprising silicon and/or tin particles and production method and use thereof
JP4051686B2 (en) * 2004-09-30 2008-02-27 ソニー株式会社 Negative electrode active material and battery using the same
US8951672B2 (en) * 2007-01-30 2015-02-10 Sony Corporation Anode, method of manufacturing it, battery, and method of manufacturing it
KR101063239B1 (en) * 2008-11-28 2011-09-07 금호석유화학 주식회사 Cathode active material for silicon-based lithium secondary battery
JP2012113945A (en) 2010-11-24 2012-06-14 Daido Steel Co Ltd Negative electrode material for lithium ion battery and method for producing the same
JP5766445B2 (en) 2011-01-17 2015-08-19 山陽特殊製鋼株式会社 Si alloy powder for negative electrode of lithium ion secondary battery and manufacturing method thereof
JP2012178344A (en) 2011-02-02 2012-09-13 Hitachi Chem Co Ltd Compound material and method for manufacturing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001291514A (en) * 2000-04-06 2001-10-19 Sumitomo Metal Ind Ltd Negative electrode material for nonaqueous electrolyte secondary battery and its manufacturing method
JP2005116390A (en) * 2003-10-09 2005-04-28 Samsung Sdi Co Ltd Electrode material for lithium secondary battery, lithium secondary battery, and manufacturing method of electrode material for lithium secondary battery
JP2011070779A (en) * 2009-09-24 2011-04-07 Sanyo Special Steel Co Ltd Si alloy for lithium secondary battery negative electrode material
JP2012142154A (en) * 2010-12-28 2012-07-26 Sony Corp Lithium ion secondary battery, power tool, electric vehicle and power storage system

Also Published As

Publication number Publication date
JP2014203768A (en) 2014-10-27
TWI618284B (en) 2018-03-11
KR20150142685A (en) 2015-12-22
CN105122511A (en) 2015-12-02
KR102165659B1 (en) 2020-10-14
CN105122511B (en) 2017-12-05
TW201448328A (en) 2014-12-16
JP6231760B2 (en) 2017-11-15

Similar Documents

Publication Publication Date Title
KR101884476B1 (en) Negative electrode material for lithium ion battery
KR101907491B1 (en) Si alloy powder for negative electrode of lithium-ion secondary cell, and method for manufacturing same
JP6211961B2 (en) Negative electrode materials for electricity storage devices
JP6371504B2 (en) Si-based alloy negative electrode material for power storage device and electrode using the same
JP2016062660A (en) Silicon-based alloy negative electrode material for power storage device, and electrode arranged by use thereof
WO2013118806A1 (en) Hydrogen absorption alloy powder, negative electrode, and nickel-hydrogen secondary cell
JP6231760B2 (en) Si alloy powder for negative electrode active material of lithium ion secondary battery and method for producing the same
KR101356988B1 (en) Negative active material and rechargeable lithium battery comprising same
WO2011037162A1 (en) Silicon alloy for use in materials for lithium secondary battery negative electrodes
JP4923877B2 (en) Anode material for non-aqueous electrolyte secondary battery and method for producing the same
US20160315318A1 (en) Negative active material for lithium secondary battery
JP5594731B2 (en) Sn alloy powder for negative electrode of lithium ion battery and method for producing the same
WO2018155399A1 (en) Alkaline storage battery negative electrode, production method for same, and alkaline storage battery
JP2011175945A (en) Negative electrode material for lithium ion secondary battery
JP6371635B2 (en) Si-based alloy negative electrode material for power storage device and electrode using the same
KR101820577B1 (en) Anode active material for secondary battery and method for preparing thereof
JP5913645B2 (en) Si alloy powder for negative electrode of lithium ion secondary battery and manufacturing method thereof
JPH04126361A (en) Manufacture of hydrogen absorbing alloy powder for storage battery and hydrogen absorbing electrode
JP6045879B2 (en) Sn alloy powder used as a raw material of the negative electrode active material of a lithium ion secondary battery, and its manufacturing method.
WO2011078344A1 (en) Negative electrode material for a nonaqueous electrolyte secondary battery, and manufacturing method therefor
JP2017188271A (en) Negative electrode active material for lithium ion battery, and method for manufacturing the same
JP2000096179A (en) Hydrogen storage alloy, hydrogen storage alloy electrode and production of hydrogen storage alloy

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14783335

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157028345

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14783335

Country of ref document: EP

Kind code of ref document: A1