WO2014167988A1 - Resin multilayer substrate and method for manufacturing same - Google Patents

Resin multilayer substrate and method for manufacturing same Download PDF

Info

Publication number
WO2014167988A1
WO2014167988A1 PCT/JP2014/058006 JP2014058006W WO2014167988A1 WO 2014167988 A1 WO2014167988 A1 WO 2014167988A1 JP 2014058006 W JP2014058006 W JP 2014058006W WO 2014167988 A1 WO2014167988 A1 WO 2014167988A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin layer
resin
component
multilayer substrate
layers
Prior art date
Application number
PCT/JP2014/058006
Other languages
French (fr)
Japanese (ja)
Inventor
喜人 大坪
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2015511187A priority Critical patent/JP5773105B2/en
Publication of WO2014167988A1 publication Critical patent/WO2014167988A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4611Manufacturing multilayer circuits by laminating two or more circuit boards
    • H05K3/4626Manufacturing multilayer circuits by laminating two or more circuit boards characterised by the insulating layers or materials
    • H05K3/4632Manufacturing multilayer circuits by laminating two or more circuit boards characterised by the insulating layers or materials laminating thermoplastic or uncured resin sheets comprising printed circuits without added adhesive materials between the sheets
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • H05K1/182Printed circuits structurally associated with non-printed electric components associated with components mounted in the printed circuit board, e.g. insert mounted components [IMC]
    • H05K1/185Components encapsulated in the insulating substrate of the printed circuit or incorporated in internal layers of a multilayer circuit
    • H05K1/186Components encapsulated in the insulating substrate of the printed circuit or incorporated in internal layers of a multilayer circuit manufactured by mounting on or connecting to patterned circuits before or during embedding
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10613Details of electrical connections of non-printed components, e.g. special leads
    • H05K2201/10621Components characterised by their electrical contacts
    • H05K2201/10636Leadless chip, e.g. chip capacitor or resistor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/06Lamination
    • H05K2203/063Lamination of preperforated insulating layer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings
    • H05K3/284Applying non-metallic protective coatings for encapsulating mounted components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4611Manufacturing multilayer circuits by laminating two or more circuit boards
    • H05K3/4614Manufacturing multilayer circuits by laminating two or more circuit boards the electrical connections between the circuit boards being made during lamination
    • H05K3/4617Manufacturing multilayer circuits by laminating two or more circuit boards the electrical connections between the circuit boards being made during lamination characterized by laminating only or mainly similar single-sided circuit boards
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a resin multilayer substrate and a method for producing the same.
  • Patent Document 1 An example of a resin multilayer substrate with a built-in component is described in Japanese Patent Application Laid-Open No. 2006-73763 (Patent Document 1).
  • Patent Document 1 through holes are provided in advance in some resin layers located in the middle of the thickness direction in order to form a cavity for housing components inside the laminate. By laminating these resin layers, a cavity is formed by a series of through holes arranged in the thickness direction.
  • Patent Document 1 after placing parts in a cavity and stacking predetermined resin layers so as to block the cavity, the whole resin layer is bonded to each other by heating while pressing the whole, and the resin multilayer A substrate is to be obtained.
  • connection conductor to the upper or lower surface of the component.
  • the connection conductor is formed in the resin layer adjacent to the upper side or the lower side of the component.
  • thermocompression step In the case where a resin multilayer substrate having a built-in component is produced by the manufacturing method described in Patent Document 1, at the time immediately before the step of heating the entire laminate (hereinafter referred to as “thermocompression step”) while applying pressure.
  • the side surface of the built-in component faces the cross section of the surrounding resin layer.
  • the cavity In order to ensure that the part is received in the cavity, the cavity is formed slightly larger than the outer shape of the part. Therefore, even when the component is placed in the cavity, there is a gap between the side surface of the component and the inner surface of the cavity.
  • several protrusions are provided on the inner surface of the cavity, and when the component is placed in the cavity, the component is pushed in such a manner that the tip of the protrusion is crushed. . Parts placed in the cavity are fixed by these protrusions.
  • the material of the resin layer exhibits fluidity and moves to flow into the gap around the part. This is called “resin flow”.
  • the gap around the part is scheduled to be filled with resin flow.
  • thermoplastic foils such as LCP (Liquid Crystal Polymer), PEEK (Polyether Ether Ketone), PEI (Polyetherimide), PPS (Polyphenylene Sulfide), Thermoplastic PI (Polyimide), etc. It is likely to occur in a resin multilayer substrate produced by laminating attached resin sheets.
  • an object of the present invention is to provide a resin multilayer substrate that can reduce the problem of poor connection between a component and a connection conductor caused by a resin flow generated in a thermocompression bonding process.
  • a resin multilayer board includes a laminate formed by laminating a plurality of resin layers including a first resin layer, and a component disposed inside the laminate.
  • the first resin layer from one side of the component to the other side of the component through the upper side or the lower side of the component. So as to extend.
  • the upper and lower surfaces, not the cross section of the resin layer, are exposed in at least a part of the portion where the cross section of the resin layer is exposed toward the side surface of the component in the related art.
  • production of the resin flow which pushes to a side can be suppressed, As a result, the problem of the connection failure between the components and connection conductor caused by the resin flow which arises in a thermocompression bonding process can be reduced.
  • Embodiment 1 (Constitution) With reference to FIG. 1, the resin multilayer substrate 101 in Embodiment 1 based on this invention is demonstrated.
  • the resin multilayer substrate 101 includes a laminate 1 formed by laminating a plurality of resin layers 2 including the first resin layer 2a, a component 3 disposed inside the laminate 1, And a connection conductor 6 electrically connected to the component 3.
  • Each of the plurality of resin layers 2 is a thermoplastic resin layer.
  • the first resin layer 2 a extends from one side of the component 3 so as to reach the other side of the component 3 through the upper side or the lower side of the component 3.
  • the first resin layer 2 a is one of the plurality of resin layers 2 constituting the laminate 1.
  • the connection conductor 6 is connected to the conductor pattern 7.
  • Each component 3 has a rectangular parallelepiped outer shape, and includes electrodes at both ends. The electrodes at both ends of the component 3 are electrically connected to the connection conductor 6 respectively.
  • the form of the component 3 is merely an example, and the outer shape of the component and the arrangement of the electrodes in the component are not limited thereto.
  • FIG. 1 shows an example in which two parts 3 are arranged, the number and arrangement of parts are not limited to this. The number of parts 3 may be one or plural. The same applies to the following embodiments.
  • An outer electrode 18 is provided on the lowermost surface of the laminate 1.
  • the external electrode 18 is basically a metal film equivalent to the conductor pattern 7 exposed to the outside.
  • a plating film may be appropriately formed on the external electrode 18.
  • FIG. 1 shows an example in which the external electrode is provided only on the lowermost surface, the external electrode may be provided on the uppermost surface of the laminate 1 and is provided on both the uppermost surface and the lowermost surface. Also good.
  • the first resin layer 2a is originally a flat resin layer 2 and is deformed in accordance with the shape of the component 3 by being laminated in combination with the component 3, resulting in the shape shown in FIG.
  • a minute gap 9 is generated in the vicinity of the lower end of the side surface of the component 3 at a position where the first resin layer 2 a is bent near the lower end of the side surface of the component 3.
  • a gap 9 may be completely filled and disappear through a thermocompression bonding process. If the void 9 can be eliminated, that is preferable.
  • the surface of the resin sheet is relatively harder than the other portions because the surface of the resin sheet is different from other portions in the orientation state of resin molecules. Therefore, when the resin sheet is exposed to high-temperature and high-pressure conditions such as thermocompression bonding for integrating the laminate, a resin flow is more likely to occur from the cross section than from the main surface.
  • the resin multilayer substrate 101 in the present embodiment includes a laminate 1 configured by laminating a plurality of resin layers 2. Since the resin layer 2 is originally formed as a separate resin sheet, if attention is paid to the individual resin layers 2, a resin flow is more likely to occur in the cross section than in the upper and lower surfaces of the resin layer 2 during thermocompression bonding. .
  • the cross section of the resin layer 2 When the cross section of the resin layer 2 is exposed at a position facing the side surface of the component 3, there is a possibility that a resin flow may be generated from the cross section and swept the component 3, but in the present embodiment, in the periphery of the component 3, Since the first resin layer 2a extends from one side of the component 3 so as to reach the other side of the component 3 through the upper side or the lower side of the component 3, the side surface of the component 3 is conventionally used.
  • the upper and lower surfaces, not the cross section of the resin layer 2, may be exposed in at least a part, preferably all, of the portion where the cross section of the resin layer 2 is exposed toward the surface. Therefore, generation
  • the resin multilayer substrate 101 exemplified in the present embodiment extends so that the first resin layer 2 a reaches from the one side of the component 3 to the other side of the component 3 through the upper side of the component 3.
  • the present embodiment is not limited to such a configuration.
  • the first resin layer 2 a extends from one side of the component 3 so as to reach the other side of the component 3 through the lower side of the component 3. It may be a configuration.
  • the void 9 is depicted as remaining in FIG. 2, but it is preferable if it can be completely eliminated by the thermocompression bonding process.
  • the situation regarding such a gap shown in FIGS. 1 and 2 is the same in the following drawings.
  • the connection between the component 3 and the connection conductor 6 can be performed in a state where the first resin layer 2a is flat, so that the component 3 can be easily mounted.
  • the cavity becomes smaller as the size of the component decreases.
  • the placement of parts became difficult and the bottom surface of the cavity raised, so when trying to mount the parts, the parts bounced back and caused a so-called bounce phenomenon.
  • the component 3 can be surface-mounted on the flat upper surface of the resin layer, mounting is easy even if the size of the component is small, and there is no fear of a bounce phenomenon.
  • the present embodiment even when the distance between the components 3 is narrow, it can be dealt with by reducing the thickness of the first resin layer. It is no longer necessary to accurately form a wall structure that separates parts.
  • a resin layer for example, a resin layer having a thickness of 12 ⁇ m can be generally procured. Therefore, by using such a thin resin layer, it is possible to sufficiently cope with a case where the distance between the parts 3 is narrow, and a wall structure is formed. Easier than to do. Therefore, it becomes easy to cope with a narrow gap.
  • components can be arranged even at a position close to the edge of the board, so that the component mountable area is widened and the degree of freedom in design is increased.
  • the present invention may have a configuration such as the resin multilayer substrate 103 shown in FIG. 3 or the resin multilayer substrate 104 shown in FIG.
  • the first resin layer 2 a is provided for each of the components 3 with respect to the plurality of components 3 arranged at the same height from one side of the components 3 above or below the components 3. Rather than extending to the other side of the part 3 through the side, the assembly of the parts 3 from one side of the assembly of the parts 3 in a lump for the assembly of the parts 3 Extends to the other side of the assembly of parts 3.
  • the resin layer 2 that is not the first resin layer 2 a is arranged in a state where one or more layers overlap each other.
  • the component 3 is one of a component group that is an assembly of a plurality of components 3, and the component group is formed on the first resin layer 2 a inside the laminate 1. They are arranged in contact with the same surface.
  • Embodiment 3 (Constitution) With reference to FIG. 5, the resin multilayer substrate 105 in Embodiment 3 based on this invention is demonstrated.
  • the basic structure of the resin multilayer substrate 105 is the same as that of the resin multilayer substrate described in the first embodiment, but differs from the first embodiment in the following points.
  • the first resin layer 2 a passes through the lower side of the component 3, and the plurality of resin layers 2 pass from one side of the component 3 to the upper side of the component 3 to the other side of the component 3.
  • the second resin layer 2b extending so as to reach the sides of the first resin layer 2b.
  • the component 3 is sandwiched between the first resin layer 2a covering from the lower side and the second resin layer 2b covering from the upper side.
  • the first resin layer 2a and the second resin layer 2b are in direct contact with each other.
  • the first resin layer 2a and the second resin layer 2b branch from one side of the component 3 to the bottom and top and cover the lower surface and the upper surface of the component 3, respectively. 3 are again in direct contact with each other on the other side.
  • the component 3 is one of a component group that is an assembly of a plurality of components 3, and the component group is disposed on the upper surface of the first resin layer 2 a inside the multilayer body 1. They are arranged so as to be in contact with and in contact with the lower surface of the second resin layer 2b.
  • the plurality of resin layers 2 include the third resin layer 2c above the second resin layer 2b, and the third resin layer 2c is in an area corresponding to the projection area of the component 3. It is preferable to have an opening 8c for accommodating at least a part of any one of the resin layers 2 below the third resin layer 2c.
  • the third resin layer 2c is preferably adjacent to the upper side of the second resin layer 2b.
  • a part of the second resin layer 2b is accommodated in the opening 8c of the third resin layer 2c adjacent immediately above the second resin layer 2b, so that the second resin layer 2b is a component. Steps caused by bypassing 3 can be absorbed.
  • the plurality of resin layers 2 include a fourth resin layer 2d below the first resin layer 2a, and the fourth resin layer 2d is located above the fourth resin layer 2d in an area corresponding to the projection area of the component 3. It is preferable to have an opening 8d for accommodating at least a part of any one of the resin layers 2.
  • the opening 8d of the fourth resin layer 2d By adopting this configuration, since the resin layer 2 located above the fourth resin layer 2d is accommodated by the opening 8d of the fourth resin layer 2d, the flatness of the entire laminate 1 can be improved. In the example shown in FIG. 5, a part of the first resin layer 2a is accommodated in the opening 8d of the fourth resin layer 2d.
  • the fourth resin layer 2d is preferably adjacent to the lower side of the first resin layer 2a.
  • a part of the first resin layer 2a is accommodated in the opening 8d of the fourth resin layer 2d adjacent to the lower side of the first resin layer 2a, so that the first resin layer 2a is A level difference caused by bypassing the component 3 can be absorbed.
  • connection conductor 6 is connected to the component 3 from the lower side, but the connection conductor 6 may be connected to the component 3 from the upper side. Further, it is not necessarily connected only from either the upper side or the lower side, and for example, as in the resin multilayer substrate 106 shown in FIG. 6, the component 3 is connected from the lower side or the upper side. Thus, the connection conductor 6 may be arranged.
  • Embodiment 4 (Constitution) With reference to FIG. 7, the resin multilayer substrate 107 in Embodiment 4 based on this invention is demonstrated.
  • the two resin layers 2 are detoured to the lower side of the component 3, and the two resin layers 2 are detoured to the upper side of the component 3, so that the component 3 is wrapped.
  • the component 3 has a large thickness, by wrapping the resin layer 2 in the upper and lower two layers in this way, the component 3 is wrapped without exposing the cross section of the resin layer 2 to the side surface of the component 3. Is done.
  • a configuration may be employed in which a plurality of resin layers are stacked on the lower side or the upper side of the component 3 to make a detour.
  • the opening that accommodates the resin layer that bypasses the part is provided not only in the resin layer adjacent to the first resin layer 2a or the second resin layer 2b that is in direct contact with the part, but also in a resin layer at a farther position.
  • the size of the opening may be set larger in the portion that accommodates the resin layer that is in direct contact with the component, and may be set smaller as the distance from the resin layer directly in contact with the component is increased.
  • the resin multilayer substrate 108 is common to the resin multilayer substrate 107 shown in FIG. 7 in the basic configuration, but is different in the following points.
  • the resin multilayer substrate 108 includes one or more intermediate resin layers 2i that are resin layers disposed so as to surround the component 3 between the first resin layer 2a and the second resin layer 2b.
  • the intermediate resin layer 2 i is one of the resin layers 2 constituting the laminated body 1 and has an opening corresponding to the component 3. Since the component 3 is disposed so as to penetrate the opening of the intermediate resin layer 2 i, the intermediate resin layer 2 i extends so as to surround the component 3. Although only one layer is displayed as the intermediate resin layer 2i in FIG. 8, this is only an example, and two or more intermediate resin layers 2i may be arranged in an overlapping manner.
  • the part 3 having a large dimension in the thickness direction can be dealt with by adjusting the number of intermediate resin layers 2i.
  • FIG. 9 shows a flowchart of the method for manufacturing the resin multilayer substrate in the present embodiment.
  • the manufacturing method of the resin multilayer substrate in the present embodiment is for obtaining the resin multilayer substrate described in any of Embodiments 2 to 5.
  • the method for manufacturing the resin multilayer substrate includes a step S1 for arranging the first resin layer 2a having a flat upper surface, a step S2 for arranging the component 3 on the upper surface of the first resin layer 2a, and a first step so as to cover the component.
  • the first resin layer 2a and the second resin layer 2b are deformed according to the shape of the component 3 by stacking the second resin layer 2b having a flat lower surface above the first resin layer 2a and by thermocompression bonding.
  • Step S1 and step S2 may be performed in this order, but may be performed in the reverse order.
  • a case where the resin multilayer substrate 105 shown in FIG. 5 is manufactured will be described as an example.
  • a resin sheet 12 having a metal foil 17 formed on one side is prepared.
  • the conductor pattern 7 is formed as shown in FIG.
  • a through hole is provided at a desired position by laser processing or the like, and the connecting conductor 6 is formed by filling the through hole with a conductive paste.
  • a resin layer as shown in FIG. 12 is prepared.
  • the image is displayed upside down compared to that shown in FIG.
  • the order demonstrated here is an example to the last, and is not restricted to this.
  • the conductor pattern 7 may be formed after the connection conductor 6 is formed first.
  • the structure shown in FIG. 13 is obtained by performing step S2.
  • the resin layer 2 included in this structure becomes the first resin layer 2a.
  • the structure shown in FIG. 13 is arranged on the lower resin layer 2 appropriately laminated. Since this is a step of arranging the first resin layer 2a, it corresponds to step S1.
  • the presence of the resin layer 2 below the first resin layer 2a is not essential, but it is preferable that one or more resin layers 2 are laminated below the first resin layer 2a.
  • the second resin layer 2b having a flat lower surface is stacked. Further, the upper resin layer 2 is appropriately laminated. As a whole, for example, the layers are stacked as shown in FIG. In FIG. 16, for convenience of explanation, the parts that are stacked and displayed in FIG. 15 are also disassembled and displayed.
  • the thermocompression bonding step S10 is performed. That is, as shown by arrows 91 and 92 in FIG. 16, heating is performed while applying pressure in the vertical direction. Alternatively, pressure is applied while heating. Thereby, the first resin layer 2a and the second resin layer 2b are deformed according to the shape of the component 3, and the component 3 is sealed. As a result, the resin multilayer substrate 105 shown in FIG. 5 is obtained.
  • FIG. 16 except that the component 3 is mounted on the upper surface of the first resin layer 2 a, all the resin layers 2 are separated and the state of performing the thermocompression bonding process is shown. Only the two resin layers 2 sandwiching the component 3 may be bonded together and integrated as shown in FIG. The first resin layer 2a and the second resin layer 2b are directly bonded together, and the component 3 is sealed between them. It is preferable to prepare the structure in this state first because the component 3 is securely held and protected by the resin layer 2. By preparing the structure in this state in advance, the risk of the component 3 falling off during the work can be reduced, so that it is easy to handle.
  • the convex portions 10a and 10b are formed at positions corresponding to the parts 3 on the upper surface and the lower surface, and the surface is not flat.
  • the protrusions 10a and 10b can be formed by laminating together with the other resin layers 2 including the third resin layer 2c, the fourth resin layer 2d, etc. as appropriate, and performing a thermocompression bonding process. It is possible to obtain the laminated body 1 that fits in the openings 8d and 8c of the resin layer 2 and has high flatness as a whole.
  • FIG. 18 shows a flowchart of a preferred first example of a method for producing a resin multilayer substrate in the present embodiment.
  • a preferable method of manufacturing a resin multilayer substrate as a first example is a method of manufacturing a resin multilayer substrate for obtaining a resin multilayer substrate such as the resin multilayer substrate 105, and includes a first resin layer 2a having a flat upper surface.
  • the first resin layer 2a is formed by thermocompression bonding with the step S3, the step S4 of stacking the third resin layer 2c provided with the opening 8c in advance in the region corresponding to the component 3, and the second resin layer 2b.
  • the second resin layer 2b is deformed according to the shape of the component 3 to seal the component 3, and any one of the resin layers 2 below the third resin layer 2c is formed in the opening 8c of the third resin layer 2c.
  • Thermocompression bonding step S11 in which at least a part is inserted Including the.
  • Step S1 and step S2 may be performed in this order, but may be performed in the reverse order.
  • FIG. 16 can be said to show the state of step S11.
  • the thermocompression bonding step S11 as compared with the thermocompression bonding step S10 shown in FIG. 9, at least a part of any one of the resin layers 2 below the third resin layer 2c is fitted into the opening 8c of the third resin layer 2c. It is different in that it is essential to do. However, it is not intended to limit that such insertion does not occur in the thermocompression bonding step S10.
  • the resin layer 2 below the third resin layer 2c is accommodated by the opening 8c of the third resin layer 2c, so that the laminate The flatness of 1 whole can be improved, and the resin multilayer substrate excellent in flatness can be obtained.
  • FIG. 19 shows a flowchart of a second preferred example of the method for producing a resin multilayer substrate in the present embodiment.
  • a preferred method of manufacturing a resin multilayer substrate as a second example is a method of manufacturing a resin multilayer substrate for obtaining a resin multilayer substrate such as the resin multilayer substrate 105, and includes an opening 8d in a region corresponding to the component 3.
  • thermocompression bonding step S12 in which the part is inserted Including. Step S6 and step S2 may be performed in this order, but may be performed in the reverse order. You may perform in order of process S2, process S5, and process S6. FIG. 16 can be said to show the state of the thermocompression bonding step S12.
  • thermocompression bonding step S12 as compared with the thermocompression bonding step S10 shown in FIG. 9, at least a part of any one of the resin layers 2 above the fourth resin layer 2d is fitted into the opening 8d of the fourth resin layer 2d. This is different in that it is essential. However, it is not intended to limit that such insertion does not occur in the thermocompression bonding step S10.
  • Embodiment 7 (Production method) With reference to FIG. 20, the manufacturing method of the resin multilayer substrate in Embodiment 7 based on this invention is demonstrated.
  • the manufacturing method of the resin multilayer substrate in the present embodiment is for obtaining the resin multilayer substrate 107 described in the fourth embodiment.
  • This structure includes a first resin layer 2a and a second resin layer 2b.
  • the first resin layer 2a and the second resin layer 2b are directly bonded together, and the component 3 is sealed between them.
  • Another resin layer 2 is also overlapped and joined so as to sandwich the first resin layer 2a and the second resin layer 2b from the outside.
  • a laminated body 1 having a high flatness as a whole can be obtained by laminating as shown in FIG. 20 together with the other resin layers including this structure and performing a thermocompression bonding process.
  • the resin multilayer described in the fourth embodiment can also be obtained by stacking all the resin layers 2 apart and thermocompression bonding.
  • the substrate 107 can be obtained.
  • FIG. 21 shows a flowchart of the method for manufacturing the resin multilayer substrate in the present embodiment.
  • the manufacturing method of the resin multilayer substrate in the present embodiment is for obtaining the resin multilayer substrate 108 described in the fifth embodiment.
  • the method for manufacturing the resin multilayer substrate includes a step S1 of arranging the first resin layer 2a having a flat upper surface, a step S2 of arranging the component 3 on the upper surface of the first resin layer S1, and an upper side of the first resin layer 2a.
  • step S7 one or more intermediate resin layers 2i are stacked so as to surround the component 3
  • a second resin layer 2b having a flat lower surface is stacked above the intermediate resin layer 2i so as to cover the component 3.
  • thermocompression bonding step S13 in which the first resin layer 2a and the second resin layer 2b are deformed in accordance with the shape of the component by thermocompression bonding, and the component 3 is sealed by combining with the intermediate resin layer 2i. Including. As a whole, they are stacked and thermocompression bonded as shown in FIG.
  • the resin multilayer substrate 108 described in Embodiment 5 with reference to FIG. 8 can be obtained.
  • the component 3 having a large dimension in the thickness direction can be sufficiently handled. .
  • FIG. 22 the state in which the resin layers 2 are stacked in a separated state is displayed. However, as described with reference to FIG. 20, several resin layers 2 sandwiching the component 3 are bonded together in advance to form a structure. It is good also as performing the whole lamination after producing.
  • another resin layer 2 is stacked on the upper side of the first resin layer 2a, and the uppermost surface is flat.
  • the first resin layer 2 is stacked. No other resin layer is stacked on the upper side of 2a, and the first resin layer 2a is the uppermost surface as it is. Therefore, the unevenness caused by the deformation of the first resin layer 2a along the outer shape of the component 3 appears to some extent on the outer shape.
  • the resin multilayer substrate 108 shown in the fifth embodiment may have a configuration in which the upper and lower resin layers are omitted. That is, as a modified example of the resin multilayer substrate 108, a shape having irregularities on the uppermost surface and the lowermost surface may be used.
  • the resin multilayer substrates 103 and 104 shown in the second embodiment may have a configuration in which an additional resin layer on the upper side or the lower side is omitted. That is, as a modification of the resin multilayer substrate 103, a shape having unevenness on the uppermost surface may be used. As a modified example of the resin multilayer substrate 104, a shape having irregularities on the lowermost surface may be used.
  • Embodiment 10 (Embodiment 10) (Constitution) With reference to FIG. 24, the resin multilayer substrate 110 in Embodiment 10 based on this invention is demonstrated.
  • the basic structure of the resin multilayer substrate 110 in this embodiment is the same as that of the resin multilayer substrate 107 described in Embodiment 4, but is different in the following points.
  • the uppermost surface and the lowermost surface are flattened by further overlapping other resin layers on the upper side and the lower side of the resin layer 2 deformed along the outer shape of the component 3, respectively.
  • the resin layer 2 deformed along the outer shape of the component 3 is the uppermost surface and the lowermost surface as it is. Therefore, the resin multilayer substrate 110 has a shape having irregularities on the uppermost surface and the lowermost surface.
  • the resin layer which becomes the uppermost surface and the lowermost surface is not necessarily the first resin layer 2a or the second resin layer 2b. In the example shown in FIG.
  • the resin layer 2 not the first resin layer 2 a and the second resin layer 2 b, but the resin layer 2 further layered on each of the upper and lower surfaces constitutes the uppermost surface and the lowermost surface.
  • the configuration shown in FIG. 24 is merely an example, and the first resin layer 2a may be the bottom surface.
  • the second resin layer 2b may be a top surface.
  • the resin multilayer substrate 108 shown in the fifth embodiment may have a configuration in which the upper and lower resin layers are omitted. That is, as a modified example of the resin multilayer substrate 108, a shape having irregularities on the uppermost surface and the lowermost surface may be used.

Abstract

A resin multilayer substrate (101) is provided with: a laminated body (1) formed by laminating a plurality of resin layers (2) including a first resin layer (2a); a component (3) disposed in the laminated body (1); and a connecting conductor (6) electrically connected to the component (3). Each of the resin layers (2) is a thermoplastic resin layer. The first resin layer (2a) extends from one side of the component (3) to the other side of the component (3) via the upper side or the lower side of the component (3).

Description

樹脂多層基板およびその製造方法Resin multilayer substrate and manufacturing method thereof
 本発明は、樹脂多層基板およびその製造方法に関するものである。 The present invention relates to a resin multilayer substrate and a method for producing the same.
 部品を内蔵した樹脂多層基板の一例が、特開2006-73763号公報(特許文献1)に記載されている。特許文献1に記載された樹脂多層基板では、積層体の内部に部品を収容するためのキャビティを形成するために、厚み方向の中間に位置するいくつかの樹脂層には予め貫通孔が設けられており、これらの樹脂層を積層することによって、厚み方向に並ぶ複数の貫通孔の連なりによってキャビティが形成されることとなっている。特許文献1によれば、部品をキャビティ内に配置し、さらにキャビティを塞ぐように所定の樹脂層を積み重ねた後に、全体を加圧しつつ加熱することによって、樹脂層同士が互いに接着し、樹脂多層基板が得られることとなっている。 An example of a resin multilayer substrate with a built-in component is described in Japanese Patent Application Laid-Open No. 2006-73763 (Patent Document 1). In the resin multilayer substrate described in Patent Document 1, through holes are provided in advance in some resin layers located in the middle of the thickness direction in order to form a cavity for housing components inside the laminate. By laminating these resin layers, a cavity is formed by a series of through holes arranged in the thickness direction. According to Patent Document 1, after placing parts in a cavity and stacking predetermined resin layers so as to block the cavity, the whole resin layer is bonded to each other by heating while pressing the whole, and the resin multilayer A substrate is to be obtained.
 部品に対する電気的接続は、通常、部品の上面または下面に対して何らかの接続導体を介して行なわれる。接続導体は、部品の上側または下側に隣接する樹脂層に形成されたものである。 電 気 Electrical connection to the component is usually made via some connection conductor to the upper or lower surface of the component. The connection conductor is formed in the resin layer adjacent to the upper side or the lower side of the component.
特開2006-73763号公報JP 2006-73763 A
 部品を内蔵した樹脂多層基板を、特許文献1に記載された製造方法によって作製する場合、積層体の全体を加圧しつつ加熱する工程(以下、「熱圧着工程」という。)の直前の時点では、内蔵された部品の側面は周辺の樹脂層の断面に対向することとなる。部品がキャビティ内に確実に収容されるようにするため、キャビティは部品の外形よりやや大きく形成されている。したがって、部品をキャビティ内に配置した状態でも、部品の側面とキャビティの内面との間には隙間がある。特許文献1に記載された製造方法では、キャビティの内面にいくつかの突起が設けられており、部品をキャビティ内に配置する際には、突起の先端をつぶすようにして部品を押し込むこととなる。キャビティ内に配置された部品は、これらの突起によって固定される。 In the case where a resin multilayer substrate having a built-in component is produced by the manufacturing method described in Patent Document 1, at the time immediately before the step of heating the entire laminate (hereinafter referred to as “thermocompression step”) while applying pressure. The side surface of the built-in component faces the cross section of the surrounding resin layer. In order to ensure that the part is received in the cavity, the cavity is formed slightly larger than the outer shape of the part. Therefore, even when the component is placed in the cavity, there is a gap between the side surface of the component and the inner surface of the cavity. In the manufacturing method described in Patent Document 1, several protrusions are provided on the inner surface of the cavity, and when the component is placed in the cavity, the component is pushed in such a manner that the tip of the protrusion is crushed. . Parts placed in the cavity are fixed by these protrusions.
 この状態で、熱圧着工程を行なうことにより、樹脂層の材料が流動性を呈し、部品の周辺の隙間に流入する動きが生じる。これを「樹脂流れ」という。部品の周辺の隙間は樹脂流れによって埋まることが予定されている。 In this state, when the thermocompression bonding process is performed, the material of the resin layer exhibits fluidity and moves to flow into the gap around the part. This is called “resin flow”. The gap around the part is scheduled to be filled with resin flow.
 熱圧着工程で生じる樹脂流れは、部品の周囲のいずれの側でも均一に生じるとは限らないので、樹脂流れによって部品が側方に押され、その結果、部品自体の位置ずれや回転が起こりやすい。このようにして部品の位置ずれや回転が起こると、部品と接続導体との間の接続不良が引き起こされるという問題があった。 Since the resin flow generated in the thermocompression process does not always occur uniformly on either side of the part, the part is pushed to the side by the resin flow, and as a result, the position of the part itself is likely to shift or rotate. . When the component is displaced or rotated in this way, there is a problem that a connection failure between the component and the connection conductor is caused.
 このような問題は、熱可塑性樹脂、たとえば、LCP(液晶ポリマー)、PEEK(ポリエーテルエーテルケトン)、PEI(ポリエーテルイミド)、PPS(ポリフェニレンスルファイド)、熱可塑性PI(ポリイミド)などの銅箔付き樹脂シートを積層して作製された樹脂多層基板で発生しやすい。 Such problems are caused by thermoplastic foils such as LCP (Liquid Crystal Polymer), PEEK (Polyether Ether Ketone), PEI (Polyetherimide), PPS (Polyphenylene Sulfide), Thermoplastic PI (Polyimide), etc. It is likely to occur in a resin multilayer substrate produced by laminating attached resin sheets.
 そこで、本発明は、熱圧着工程で生じる樹脂流れによって引き起こされる部品と接続導体との間の接続不良という問題を低減することができる樹脂多層基板を提供することを目的とする。 Therefore, an object of the present invention is to provide a resin multilayer substrate that can reduce the problem of poor connection between a component and a connection conductor caused by a resin flow generated in a thermocompression bonding process.
 上記目的を達成するため、本発明に基づく樹脂多層基板は、第1樹脂層を含む複数の樹脂層が積層されることによって形成された積層体と、上記積層体の内部に配置された部品と、上記部品に電気的に接続される接続導体とを備え、上記第1樹脂層は、上記部品の一方の側方から上記部品の上側または下側を通って上記部品の他方の側方に達するように延在している。 In order to achieve the above object, a resin multilayer board according to the present invention includes a laminate formed by laminating a plurality of resin layers including a first resin layer, and a component disposed inside the laminate. The first resin layer from one side of the component to the other side of the component through the upper side or the lower side of the component. So as to extend.
 本発明によれば、従来ならば部品の側面に向けて樹脂層の断面が露出していた部分のうち少なくとも一部において、樹脂層の断面ではなく上下面が露出することとなるので、部品を側方に押すような樹脂流れの発生を抑制することができ、その結果、熱圧着工程で生じる樹脂流れによって引き起こされる部品と接続導体との間の接続不良という問題を低減することができる。 According to the present invention, the upper and lower surfaces, not the cross section of the resin layer, are exposed in at least a part of the portion where the cross section of the resin layer is exposed toward the side surface of the component in the related art. Generation | occurrence | production of the resin flow which pushes to a side can be suppressed, As a result, the problem of the connection failure between the components and connection conductor caused by the resin flow which arises in a thermocompression bonding process can be reduced.
本発明に基づく実施の形態1における樹脂多層基板の断面図である。It is sectional drawing of the resin multilayer substrate in Embodiment 1 based on this invention. 本発明に基づく実施の形態1における樹脂多層基板の変形例の断面図である。It is sectional drawing of the modification of the resin multilayer substrate in Embodiment 1 based on this invention. 本発明に基づく実施の形態2における樹脂多層基板の第1の例の断面図である。It is sectional drawing of the 1st example of the resin multilayer substrate in Embodiment 2 based on this invention. 本発明に基づく実施の形態2における樹脂多層基板の第2の例の断面図である。It is sectional drawing of the 2nd example of the resin multilayer substrate in Embodiment 2 based on this invention. 本発明に基づく実施の形態3における樹脂多層基板の断面図である。It is sectional drawing of the resin multilayer substrate in Embodiment 3 based on this invention. 本発明に基づく実施の形態3における樹脂多層基板の変形例の断面図である。It is sectional drawing of the modification of the resin multilayer substrate in Embodiment 3 based on this invention. 本発明に基づく実施の形態4における樹脂多層基板の断面図である。It is sectional drawing of the resin multilayer substrate in Embodiment 4 based on this invention. 本発明に基づく実施の形態5における樹脂多層基板の断面図である。It is sectional drawing of the resin multilayer substrate in Embodiment 5 based on this invention. 本発明に基づく実施の形態6における樹脂多層基板の製造方法のフローチャートである。It is a flowchart of the manufacturing method of the resin multilayer substrate in Embodiment 6 based on this invention. 本発明に基づく実施の形態6における樹脂多層基板の製造方法の第1の工程の説明図である。It is explanatory drawing of the 1st process of the manufacturing method of the resin multilayer substrate in Embodiment 6 based on this invention. 本発明に基づく実施の形態6における樹脂多層基板の製造方法の第2の工程の説明図である。It is explanatory drawing of the 2nd process of the manufacturing method of the resin multilayer substrate in Embodiment 6 based on this invention. 本発明に基づく実施の形態6における樹脂多層基板の製造方法の第3の工程の説明図である。It is explanatory drawing of the 3rd process of the manufacturing method of the resin multilayer substrate in Embodiment 6 based on this invention. 本発明に基づく実施の形態6における樹脂多層基板の製造方法の第4の工程の説明図である。It is explanatory drawing of the 4th process of the manufacturing method of the resin multilayer substrate in Embodiment 6 based on this invention. 本発明に基づく実施の形態6における樹脂多層基板の製造方法の第5の工程の説明図である。It is explanatory drawing of the 5th process of the manufacturing method of the resin multilayer substrate in Embodiment 6 based on this invention. 本発明に基づく実施の形態6における樹脂多層基板の製造方法の第6の工程の説明図である。It is explanatory drawing of the 6th process of the manufacturing method of the resin multilayer substrate in Embodiment 6 based on this invention. 本発明に基づく実施の形態6における樹脂多層基板の製造方法の第7の工程の説明図である。It is explanatory drawing of the 7th process of the manufacturing method of the resin multilayer substrate in Embodiment 6 based on this invention. 本発明に基づく実施の形態6における樹脂多層基板の製造方法の変形例の説明図である。It is explanatory drawing of the modification of the manufacturing method of the resin multilayer substrate in Embodiment 6 based on this invention. 本発明に基づく実施の形態6における樹脂多層基板の製造方法の好ましい第1の例のフローチャートである。It is a flowchart of the preferable 1st example of the manufacturing method of the resin multilayer substrate in Embodiment 6 based on this invention. 本発明に基づく実施の形態6における樹脂多層基板の製造方法の好ましい第2の例のフローチャートである。It is a flowchart of the 2nd preferable example of the manufacturing method of the resin multilayer substrate in Embodiment 6 based on this invention. 本発明に基づく実施の形態7における樹脂多層基板の製造方法の説明図である。It is explanatory drawing of the manufacturing method of the resin multilayer substrate in Embodiment 7 based on this invention. 本発明に基づく実施の形態8における樹脂多層基板の製造方法のフローチャートである。It is a flowchart of the manufacturing method of the resin multilayer substrate in Embodiment 8 based on this invention. 本発明に基づく実施の形態8における樹脂多層基板の製造方法の説明図である。It is explanatory drawing of the manufacturing method of the resin multilayer substrate in Embodiment 8 based on this invention. 本発明に基づく実施の形態9における樹脂多層基板の断面図である。It is sectional drawing of the resin multilayer substrate in Embodiment 9 based on this invention. 本発明に基づく実施の形態10における樹脂多層基板の断面図である。It is sectional drawing of the resin multilayer substrate in Embodiment 10 based on this invention.
 (実施の形態1)
 (構成)
 図1を参照して、本発明に基づく実施の形態1における樹脂多層基板101について説明する。
(Embodiment 1)
(Constitution)
With reference to FIG. 1, the resin multilayer substrate 101 in Embodiment 1 based on this invention is demonstrated.
 本実施の形態における樹脂多層基板101は、第1樹脂層2aを含む複数の樹脂層2が積層されることによって形成された積層体1と、積層体1の内部に配置された部品3と、部品3に電気的に接続される接続導体6とを備える。複数の樹脂層2の各々は、熱可塑性樹脂層である。第1樹脂層2aは、部品3の一方の側方から部品3の上側または下側を通って部品3の他方の側方に達するように延在している。 The resin multilayer substrate 101 according to the present embodiment includes a laminate 1 formed by laminating a plurality of resin layers 2 including the first resin layer 2a, a component 3 disposed inside the laminate 1, And a connection conductor 6 electrically connected to the component 3. Each of the plurality of resin layers 2 is a thermoplastic resin layer. The first resin layer 2 a extends from one side of the component 3 so as to reach the other side of the component 3 through the upper side or the lower side of the component 3.
 第1樹脂層2aは、積層体1を構成する複数の樹脂層2のうちの1つである。接続導体6は導体パターン7に接続されている。各部品3は直方体の外形を有し、両端部にそれぞれ電極を備える。部品3の両端部の電極はそれぞれ接続導体6に電気的に接続されている。ただし、部品3の形態はあくまで一例であり、部品の外形や部品における電極の配置はこれに限らない。図1では、部品3が2個配置されている例を示したが、部品の個数や配置はこれに限らない。部品3は、1個であっても複数個であってもよい。以下の実施の形態においても同様である。 The first resin layer 2 a is one of the plurality of resin layers 2 constituting the laminate 1. The connection conductor 6 is connected to the conductor pattern 7. Each component 3 has a rectangular parallelepiped outer shape, and includes electrodes at both ends. The electrodes at both ends of the component 3 are electrically connected to the connection conductor 6 respectively. However, the form of the component 3 is merely an example, and the outer shape of the component and the arrangement of the electrodes in the component are not limited thereto. Although FIG. 1 shows an example in which two parts 3 are arranged, the number and arrangement of parts are not limited to this. The number of parts 3 may be one or plural. The same applies to the following embodiments.
 積層体1の最下面には外部電極18が設けられている。外部電極18は基本的には導体パターン7と同等の金属膜が外部に露出したものである。外部電極18には適宜めっき膜が形成されていてもよい。図1では、最下面のみに外部電極が設けられた例を示したが、外部電極は、積層体1の最上面に設けられていてもよく、最上面および最下面の両方に設けられていてもよい。 An outer electrode 18 is provided on the lowermost surface of the laminate 1. The external electrode 18 is basically a metal film equivalent to the conductor pattern 7 exposed to the outside. A plating film may be appropriately formed on the external electrode 18. Although FIG. 1 shows an example in which the external electrode is provided only on the lowermost surface, the external electrode may be provided on the uppermost surface of the laminate 1 and is provided on both the uppermost surface and the lowermost surface. Also good.
 第1樹脂層2aは元々平坦な樹脂層2であり、部品3と組み合わせて積層することにより部品3の形状にならって変形した結果、図1に示す形状になったものである。 The first resin layer 2a is originally a flat resin layer 2 and is deformed in accordance with the shape of the component 3 by being laminated in combination with the component 3, resulting in the shape shown in FIG.
 図1においては、部品3の側面下端付近で第1樹脂層2aが折れ曲がる箇所では、部品3の側面下端付近に微小な空隙9が生じている。熱圧着工程を経て作製される樹脂多層基板101の最終状態としてこのような空隙9があってもよい。ただし、熱圧着工程を経ることによってこのような空隙9が完全に埋まって消滅してもよい。空隙9をなくすことができるならば、その方が好ましい。 In FIG. 1, a minute gap 9 is generated in the vicinity of the lower end of the side surface of the component 3 at a position where the first resin layer 2 a is bent near the lower end of the side surface of the component 3. There may be such a gap 9 as the final state of the resin multilayer substrate 101 manufactured through the thermocompression bonding process. However, such a gap 9 may be completely filled and disappear through a thermocompression bonding process. If the void 9 can be eliminated, that is preferable.
 図1においては、部品3の側面上端付近で第1樹脂層2aが折れ曲がる箇所の周辺においては空隙を何も描いていないが、これは、積層直後には空隙があったとしても、熱圧着工程時に周辺の樹脂層2の断面から始まる樹脂流動によって空隙が埋まったからである。ただし、この箇所においても空隙が残っていてもよい。ただし、熱圧着工程を経ることによってこのような空隙をなくすことができれば、その方が好ましい。 In FIG. 1, no gap is drawn around the portion where the first resin layer 2 a bends in the vicinity of the upper end of the side surface of the component 3. This is because the gap is sometimes filled by resin flow starting from the cross section of the surrounding resin layer 2. However, voids may remain at this location. However, it is preferable if such voids can be eliminated through a thermocompression bonding process.
 (作用・効果)
 一般的に、樹脂シートの表面は、樹脂の分子の配向状態が他の部分と異なるので、樹脂シートの表層部は他の部分に比べて相対的に硬くなっている。したがって、樹脂シートは、積層体を一体化するための熱圧着のような高温高圧の条件にさらされた場合、主面からよりも相対的に断面からの方が樹脂流れが生じやすい。
(Action / Effect)
Generally, the surface of the resin sheet is relatively harder than the other portions because the surface of the resin sheet is different from other portions in the orientation state of resin molecules. Therefore, when the resin sheet is exposed to high-temperature and high-pressure conditions such as thermocompression bonding for integrating the laminate, a resin flow is more likely to occur from the cross section than from the main surface.
 本実施の形態における樹脂多層基板101は、複数の樹脂層2を積層することで構成された積層体1を備えている。樹脂層2は元々、別々の樹脂シートとして成形されたものであるので、個別の樹脂層2に注目すれば、熱圧着時には、樹脂層2の上下面よりも断面の方が樹脂流れを生じやすい。部品3の側面に対向する位置に樹脂層2の断面が露出している場合、その断面から樹脂流れが生じて部品3を押し流すおそれがあるが、本実施の形態では、部品3の周辺では、第1樹脂層2aが、部品3の一方の側方から部品3の上側または下側を通って部品3の他方の側方に達するように延在しているので、従来ならば部品3の側面に向けて樹脂層2の断面が露出していた部分のうち少なくとも一部、好ましくは全部において、樹脂層2の断面ではなく上下面が露出するように構成することができる。したがって、部品3を側方に押すような直接的な樹脂流れの発生を抑制することができる。本実施の形態では、そのような樹脂流れが抑えられるので、熱圧着工程で生じる樹脂流れによって引き起こされる部品3と接続導体6との間の接続不良という問題を低減することができる。その結果、部品と接続導体との間の電気的接続の信頼性を向上させることができる。 The resin multilayer substrate 101 in the present embodiment includes a laminate 1 configured by laminating a plurality of resin layers 2. Since the resin layer 2 is originally formed as a separate resin sheet, if attention is paid to the individual resin layers 2, a resin flow is more likely to occur in the cross section than in the upper and lower surfaces of the resin layer 2 during thermocompression bonding. . When the cross section of the resin layer 2 is exposed at a position facing the side surface of the component 3, there is a possibility that a resin flow may be generated from the cross section and swept the component 3, but in the present embodiment, in the periphery of the component 3, Since the first resin layer 2a extends from one side of the component 3 so as to reach the other side of the component 3 through the upper side or the lower side of the component 3, the side surface of the component 3 is conventionally used. The upper and lower surfaces, not the cross section of the resin layer 2, may be exposed in at least a part, preferably all, of the portion where the cross section of the resin layer 2 is exposed toward the surface. Therefore, generation | occurrence | production of the direct resin flow which pushes the components 3 to the side can be suppressed. In the present embodiment, such a resin flow is suppressed, so that the problem of poor connection between the component 3 and the connection conductor 6 caused by the resin flow generated in the thermocompression bonding process can be reduced. As a result, the reliability of the electrical connection between the component and the connection conductor can be improved.
 本実施の形態において例示した樹脂多層基板101は、第1樹脂層2aが部品3の一方の側方から部品3の上側を通って部品3の他方の側方に達するように延在している構成であったが、本実施の形態としては、このような構成に限らない。たとえば図2に示す樹脂多層基板102のように、第1樹脂層2aが部品3の一方の側方から部品3の下側を通って部品3の他方の側方に達するように延在している構成であってもよい。樹脂多層基板102においては、部品3の側面上端付近に空隙9がある。この空隙9については、図2では残存しているように描いているが、熱圧着工程によって完全に無くすことができるならばその方が好ましい。図1、図2に示したこのような空隙に関する事情は、以下の図においても同様である。 The resin multilayer substrate 101 exemplified in the present embodiment extends so that the first resin layer 2 a reaches from the one side of the component 3 to the other side of the component 3 through the upper side of the component 3. Although the configuration is described, the present embodiment is not limited to such a configuration. For example, like the resin multilayer substrate 102 shown in FIG. 2, the first resin layer 2 a extends from one side of the component 3 so as to reach the other side of the component 3 through the lower side of the component 3. It may be a configuration. In the resin multilayer substrate 102, there is a gap 9 near the upper end of the side surface of the component 3. The void 9 is depicted as remaining in FIG. 2, but it is preferable if it can be completely eliminated by the thermocompression bonding process. The situation regarding such a gap shown in FIGS. 1 and 2 is the same in the following drawings.
 本実施の形態では、部品3と接続導体6との間の接続は、第1樹脂層2aが平坦な状態で行なうことができるので、部品3の実装が容易となる。従来技術において行なわれていたように、予めキャビティを設けてキャビティの内部に部品を配置するようにして接続導体との接続を行なおうとする場合は、部品のサイズが小さくなるにつれてキャビティが微小となり、部品の配置が難しくなるという問題や、キャビティの底面が盛り上がることによって、部品を実装しようとした際に部品が跳ね返されて実装不良を起こすという、いわゆるバウンド現象が起こるという問題があったが、本実施の形態では、樹脂層の平坦な上面に対して部品3を表面実装することができるので、部品のサイズが小さくても実装が容易であり、バウンド現象のおそれもなくなる。 In the present embodiment, the connection between the component 3 and the connection conductor 6 can be performed in a state where the first resin layer 2a is flat, so that the component 3 can be easily mounted. As was done in the prior art, when a cavity is provided in advance and a component is placed inside the cavity to be connected to a connection conductor, the cavity becomes smaller as the size of the component decreases. There was a problem that the placement of parts became difficult and the bottom surface of the cavity raised, so when trying to mount the parts, the parts bounced back and caused a so-called bounce phenomenon, In the present embodiment, since the component 3 can be surface-mounted on the flat upper surface of the resin layer, mounting is easy even if the size of the component is small, and there is no fear of a bounce phenomenon.
 本実施の形態では、部品3間の距離が狭い場合にも、第1樹脂層の厚みを薄くすることにより対応可能である。部品同士を隔てる壁構造を予め正確に形成する必要がなくなる。樹脂層としては、たとえば厚み12μmのものも一般的に調達可能であるので、そのような薄い樹脂層を用いることによって部品3間の距離が狭い場合にも十分対応可能であり、壁構造を形成するよりも容易である。したがって、狭ギャップ化への対応も容易となる。本実施の形態によれば、基板の端に近い位置でも部品の配置が可能であるので、部品搭載可能領域が広くなり、設計の自由度が高くなる。 In the present embodiment, even when the distance between the components 3 is narrow, it can be dealt with by reducing the thickness of the first resin layer. It is no longer necessary to accurately form a wall structure that separates parts. As a resin layer, for example, a resin layer having a thickness of 12 μm can be generally procured. Therefore, by using such a thin resin layer, it is possible to sufficiently cope with a case where the distance between the parts 3 is narrow, and a wall structure is formed. Easier than to do. Therefore, it becomes easy to cope with a narrow gap. According to the present embodiment, components can be arranged even at a position close to the edge of the board, so that the component mountable area is widened and the degree of freedom in design is increased.
 (実施の形態2)
 (構成)
 図3、図4を参照して、本発明に基づく実施の形態2における樹脂多層基板103,104について説明する。
(Embodiment 2)
(Constitution)
With reference to FIG. 3 and FIG. 4, resin multilayer substrates 103 and 104 in the second embodiment based on the present invention will be described.
 本発明としては、図3に示す樹脂多層基板103や図4に示す樹脂多層基板104のような構成であってもよい。樹脂多層基板103,104では、同一高さに配置された複数の部品3に対して、第1樹脂層2aが個々の部品3ごとに、部品3の一方の側方から部品3の上側または下側を通って部品3の他方の側方へと延在するのではなく、複数の部品3の集合体に対して一括して、部品3の集合体の一方の側方から部品3の集合体の上側または下側を通って部品3の集合体の他方の側方へと延在している。複数の部品3の相互間には、第1樹脂層2aではない樹脂層2が1層または複数層重なった状態で配置されている。 The present invention may have a configuration such as the resin multilayer substrate 103 shown in FIG. 3 or the resin multilayer substrate 104 shown in FIG. In the resin multilayer substrates 103 and 104, the first resin layer 2 a is provided for each of the components 3 with respect to the plurality of components 3 arranged at the same height from one side of the components 3 above or below the components 3. Rather than extending to the other side of the part 3 through the side, the assembly of the parts 3 from one side of the assembly of the parts 3 in a lump for the assembly of the parts 3 Extends to the other side of the assembly of parts 3. Between the components 3, the resin layer 2 that is not the first resin layer 2 a is arranged in a state where one or more layers overlap each other.
 樹脂多層基板103,104においては、部品3は、複数の部品3の集合体である部品群のうちの1つであり、前記部品群は、積層体1の内部において、第1樹脂層2aの同一表面に接して配列されている。 In the resin multilayer substrates 103 and 104, the component 3 is one of a component group that is an assembly of a plurality of components 3, and the component group is formed on the first resin layer 2 a inside the laminate 1. They are arranged in contact with the same surface.
 (作用・効果)
 本実施の形態の場合、部品3の側面に対して樹脂層2の断面が近接して露出する部分があるので、この断面からの樹脂流れが生じるおそれがあるという意味で、樹脂多層基板101,102に比べて効果が劣るが、従来ならば部品3の側面に向けて樹脂層2の断面が露出していた部分のうち少なくとも一部において、樹脂層2の断面ではなく上面または下面が露出しているので、部品3を側方に押すような樹脂流れの発生を抑制することができる。したがって、熱圧着工程で生じる樹脂流れによって引き起こされる部品と接続導体との間の接続不良という問題を低減することに一定の効果を得ることはできる。
(Action / Effect)
In the case of the present embodiment, since there is a portion where the cross section of the resin layer 2 is exposed close to the side surface of the component 3, the resin multilayer substrate 101, Although the effect is inferior to that of 102, in the past, at least a portion of the portion where the cross section of the resin layer 2 was exposed toward the side surface of the component 3 is exposed, not the cross section of the resin layer 2, but the upper surface or the lower surface. Therefore, generation | occurrence | production of the resin flow which pushes the components 3 to the side can be suppressed. Therefore, it is possible to obtain a certain effect in reducing the problem of poor connection between the component and the connection conductor caused by the resin flow generated in the thermocompression bonding process.
 (実施の形態3)
 (構成)
 図5を参照して、本発明に基づく実施の形態3における樹脂多層基板105について説明する。樹脂多層基板105は、基本的な構成は実施の形態1で説明した樹脂多層基板と共通するが、以下の点で実施の形態1とは異なる。
(Embodiment 3)
(Constitution)
With reference to FIG. 5, the resin multilayer substrate 105 in Embodiment 3 based on this invention is demonstrated. The basic structure of the resin multilayer substrate 105 is the same as that of the resin multilayer substrate described in the first embodiment, but differs from the first embodiment in the following points.
 樹脂多層基板105においては、第1樹脂層2aは、部品3の下側を通っており、複数の樹脂層2は、部品3の一方の側方から部品3の上側を通って部品3の他方の側方に達するように延在する第2樹脂層2bを含む。 In the resin multilayer substrate 105, the first resin layer 2 a passes through the lower side of the component 3, and the plurality of resin layers 2 pass from one side of the component 3 to the upper side of the component 3 to the other side of the component 3. The second resin layer 2b extending so as to reach the sides of the first resin layer 2b.
 本実施の形態では、部品3は、下側から覆う第1樹脂層2aと上側から覆う第2樹脂層2bとによって挟み込まれている。部品3の側方においては、第1樹脂層2aと第2樹脂層2bとが互いに直接接している。断面図で見ると、第1樹脂層2aと第2樹脂層2bとは、部品3の一方の側方から下と上とに分岐して部品3の下面と上面とをそれぞれ覆った後に、部品3の他方の側方において再び互いに直接接している。 In the present embodiment, the component 3 is sandwiched between the first resin layer 2a covering from the lower side and the second resin layer 2b covering from the upper side. On the side of the component 3, the first resin layer 2a and the second resin layer 2b are in direct contact with each other. When viewed in a cross-sectional view, the first resin layer 2a and the second resin layer 2b branch from one side of the component 3 to the bottom and top and cover the lower surface and the upper surface of the component 3, respectively. 3 are again in direct contact with each other on the other side.
 樹脂多層基板105においては、部品3は、複数の部品3の集合体である部品群のうちの1つであり、前記部品群は、積層体1の内部において、第1樹脂層2aの上面に接しかつ第2樹脂層2bの下面に接するように配列されている。 In the resin multilayer substrate 105, the component 3 is one of a component group that is an assembly of a plurality of components 3, and the component group is disposed on the upper surface of the first resin layer 2 a inside the multilayer body 1. They are arranged so as to be in contact with and in contact with the lower surface of the second resin layer 2b.
 (作用・効果)
 本実施の形態では、部品3は、第1樹脂層2aと第2樹脂層2bとによって挟み込まれているので、従来ならば部品3の側面に向けて樹脂層2の断面が露出していた部分のうち少なくとも一部、好ましくは全部において、樹脂層2の断面ではなく上下面が露出するように構成することができる。したがって、部品3を側方に押すような樹脂流れを抑制することができる。よって、本実施の形態においても、熱圧着工程で生じる樹脂流れによって引き起こされる部品と接続導体との間の接続不良という問題を低減することができる。本実施の形態では上下2つの樹脂層を用いて部品を包み込むような構成となっているので、上下のうち一方の樹脂層のみを用いて部品を包み込む構成であった実施の形態1に比べて、部品の厚みが大きいものにも対応しやすい。
(Action / Effect)
In the present embodiment, since the component 3 is sandwiched between the first resin layer 2a and the second resin layer 2b, a portion where the cross section of the resin layer 2 is exposed toward the side surface of the component 3 in the past. Of these, at least a part, preferably all, of the resin layer 2 can be configured such that the upper and lower surfaces are exposed. Therefore, the resin flow which pushes the component 3 to the side can be suppressed. Therefore, also in this embodiment, the problem of poor connection between the component and the connection conductor caused by the resin flow generated in the thermocompression bonding process can be reduced. Since this embodiment is configured to wrap the component using two upper and lower resin layers, compared to the first embodiment, which is configured to wrap the component using only one of the upper and lower resin layers. It is easy to handle even thick parts.
 本実施の形態における樹脂多層基板105から読み取れる好ましい構成についてさらに説明する。本実施の形態で示したように、複数の樹脂層2は、第2樹脂層2bより上側に第3樹脂層2cを含み、第3樹脂層2cは、部品3の投影領域に対応する領域に、第3樹脂層2cより下側にあるいずれかの樹脂層2の少なくとも一部を収容するための開口部8cを有することが好ましい。この構成を採用することにより、第3樹脂層2cの開口部8cによって第3樹脂層2cより下側にある樹脂層2が収容されるので、積層体1全体の平坦度を向上させることができる。図5に示した例では、第2樹脂層2bの一部が第3樹脂層2cの開口部8cに収容されている。 A preferred configuration that can be read from the resin multilayer substrate 105 in the present embodiment will be further described. As shown in the present embodiment, the plurality of resin layers 2 include the third resin layer 2c above the second resin layer 2b, and the third resin layer 2c is in an area corresponding to the projection area of the component 3. It is preferable to have an opening 8c for accommodating at least a part of any one of the resin layers 2 below the third resin layer 2c. By adopting this configuration, since the resin layer 2 below the third resin layer 2c is accommodated by the opening 8c of the third resin layer 2c, the flatness of the entire laminate 1 can be improved. . In the example shown in FIG. 5, a part of the second resin layer 2b is accommodated in the opening 8c of the third resin layer 2c.
 第3樹脂層2cは第2樹脂層2bの上側に隣接していることが好ましい。この構成を採用することにより、第2樹脂層2bの一部は第2樹脂層2bのすぐ上側に隣接する第3樹脂層2cの開口部8cに収容されるので、第2樹脂層2bが部品3を迂回することによって生じる段差を吸収することができる。 The third resin layer 2c is preferably adjacent to the upper side of the second resin layer 2b. By adopting this configuration, a part of the second resin layer 2b is accommodated in the opening 8c of the third resin layer 2c adjacent immediately above the second resin layer 2b, so that the second resin layer 2b is a component. Steps caused by bypassing 3 can be absorbed.
 複数の樹脂層2は、第1樹脂層2aより下側に第4樹脂層2dを含み、第4樹脂層2dは、部品3の投影領域に対応する領域に、第4樹脂層2dより上側にあるいずれかの樹脂層2の少なくとも一部を収容するための開口部8dを有することが好ましい。この構成を採用することにより、第4樹脂層2dの開口部8dによって第4樹脂層2dより上側にある樹脂層2が収容されるので、積層体1全体の平坦度を向上させることができる。図5に示した例では、第1樹脂層2aの一部が第4樹脂層2dの開口部8dに収容されている。 The plurality of resin layers 2 include a fourth resin layer 2d below the first resin layer 2a, and the fourth resin layer 2d is located above the fourth resin layer 2d in an area corresponding to the projection area of the component 3. It is preferable to have an opening 8d for accommodating at least a part of any one of the resin layers 2. By adopting this configuration, since the resin layer 2 located above the fourth resin layer 2d is accommodated by the opening 8d of the fourth resin layer 2d, the flatness of the entire laminate 1 can be improved. In the example shown in FIG. 5, a part of the first resin layer 2a is accommodated in the opening 8d of the fourth resin layer 2d.
 第4樹脂層2dは第1樹脂層2aの下側に隣接していることが好ましい。この構成を採用することにより、第1樹脂層2aの一部は第1樹脂層2aのすぐ下側に隣接する第4樹脂層2dの開口部8dに収容されるので、第1樹脂層2aが部品3を迂回することによって生じる段差を吸収することができる。 The fourth resin layer 2d is preferably adjacent to the lower side of the first resin layer 2a. By adopting this configuration, a part of the first resin layer 2a is accommodated in the opening 8d of the fourth resin layer 2d adjacent to the lower side of the first resin layer 2a, so that the first resin layer 2a is A level difference caused by bypassing the component 3 can be absorbed.
 図5に示した樹脂多層基板105では、部品3に対して下側から接続導体6が接続されていたが、接続導体6は部品3に対して上側から接続されるものであってもよい。また、上側か下側かのいずれか一方からのみ接続されるものとは限らず、たとえば図6に示す樹脂多層基板106のように、部品3に対して下側からも上側からも接続されるように接続導体6が配置されていてもよい。 In the resin multilayer substrate 105 shown in FIG. 5, the connection conductor 6 is connected to the component 3 from the lower side, but the connection conductor 6 may be connected to the component 3 from the upper side. Further, it is not necessarily connected only from either the upper side or the lower side, and for example, as in the resin multilayer substrate 106 shown in FIG. 6, the component 3 is connected from the lower side or the upper side. Thus, the connection conductor 6 may be arranged.
 (実施の形態4)
 (構成)
 図7を参照して、本発明に基づく実施の形態4における樹脂多層基板107について説明する。樹脂多層基板107においては、2つの樹脂層2が部品3の下側に迂回し、2つの樹脂層2が部品3の上側に迂回するようにして、部品3を包み込んでいる。部品3は厚みが大きなものであるが、このように上下2層ずつの樹脂層2で包み込むことによって、部品3の側面に対して樹脂層2の断面が露出することなく、部品3を包み込むことができている。このように部品3の下側または上側において複数の樹脂層が積層した状態のまま迂回するような構成であってもよい。
(Embodiment 4)
(Constitution)
With reference to FIG. 7, the resin multilayer substrate 107 in Embodiment 4 based on this invention is demonstrated. In the resin multilayer substrate 107, the two resin layers 2 are detoured to the lower side of the component 3, and the two resin layers 2 are detoured to the upper side of the component 3, so that the component 3 is wrapped. Although the component 3 has a large thickness, by wrapping the resin layer 2 in the upper and lower two layers in this way, the component 3 is wrapped without exposing the cross section of the resin layer 2 to the side surface of the component 3. Is done. In this way, a configuration may be employed in which a plurality of resin layers are stacked on the lower side or the upper side of the component 3 to make a detour.
 部品を迂回する樹脂層を収容する開口部は、部品に直接接する第1樹脂層2aまたは第2樹脂層2bに隣接する樹脂層だけでなく、さらに遠い位置の樹脂層にも設けられている。開口部のサイズは部品に直接接する樹脂層を収容する部分では大きく設定し、部品に直接接する樹脂層から遠い層にいくにつれて小さく設定してもよい。 The opening that accommodates the resin layer that bypasses the part is provided not only in the resin layer adjacent to the first resin layer 2a or the second resin layer 2b that is in direct contact with the part, but also in a resin layer at a farther position. The size of the opening may be set larger in the portion that accommodates the resin layer that is in direct contact with the component, and may be set smaller as the distance from the resin layer directly in contact with the component is increased.
 (作用・効果)
 本実施の形態のような構成を採用することにより、厚み方向の寸法が大きな部品を容易に包み込むことができる。
(Action / Effect)
By adopting the configuration as in the present embodiment, it is possible to easily wrap a component having a large dimension in the thickness direction.
 (実施の形態5)
 (構成)
 実施の形態4からさらに部品3の厚み方向の寸法が大きくなった場合、図8に示すような構成も考えられる。図8を参照して、本発明に基づく実施の形態5における樹脂多層基板108について説明する。
(Embodiment 5)
(Constitution)
When the dimension in the thickness direction of the component 3 is further increased from the fourth embodiment, a configuration as shown in FIG. With reference to FIG. 8, resin multilayer substrate 108 according to the fifth embodiment of the present invention will be described.
 樹脂多層基板108は、基本的構成では図7に示した樹脂多層基板107と共通するが、以下の点で異なる。樹脂多層基板108においては、第1樹脂層2aと第2樹脂層2bとの間に、部品3を取り囲むように配置された樹脂層である1以上の中間樹脂層2iを備える。中間樹脂層2iは、積層体1を構成する樹脂層2のうちの1つであり、部品3に対応する開口部が設けられたものである。部品3は中間樹脂層2iの開口部を貫通するように配置されているので、中間樹脂層2iは部品3を取り囲むように延在している。図8では中間樹脂層2iとして1層のみを表示しているが、これは一例に過ぎず、中間樹脂層2iは2層以上重ねて配置されていてもよい。 The resin multilayer substrate 108 is common to the resin multilayer substrate 107 shown in FIG. 7 in the basic configuration, but is different in the following points. The resin multilayer substrate 108 includes one or more intermediate resin layers 2i that are resin layers disposed so as to surround the component 3 between the first resin layer 2a and the second resin layer 2b. The intermediate resin layer 2 i is one of the resin layers 2 constituting the laminated body 1 and has an opening corresponding to the component 3. Since the component 3 is disposed so as to penetrate the opening of the intermediate resin layer 2 i, the intermediate resin layer 2 i extends so as to surround the component 3. Although only one layer is displayed as the intermediate resin layer 2i in FIG. 8, this is only an example, and two or more intermediate resin layers 2i may be arranged in an overlapping manner.
 (作用・効果)
 本実施の形態では、厚み方向の寸法が大きい部品3についても、中間樹脂層2iの数を調整することによって、対応することができる。
(Action / Effect)
In the present embodiment, the part 3 having a large dimension in the thickness direction can be dealt with by adjusting the number of intermediate resin layers 2i.
 (実施の形態6)
 (製造方法)
 図9~図16を参照して、本発明に基づく実施の形態6における樹脂多層基板の製造方法について説明する。本実施の形態における樹脂多層基板の製造方法のフローチャートを図9に示す。
(Embodiment 6)
(Production method)
With reference to FIGS. 9 to 16, a method for manufacturing a resin multilayer substrate in accordance with the sixth embodiment of the present invention will be described. FIG. 9 shows a flowchart of the method for manufacturing the resin multilayer substrate in the present embodiment.
 本実施の形態における樹脂多層基板の製造方法は、実施の形態2~5のいずれかで説明した樹脂多層基板を得るためのものである。この樹脂多層基板の製造方法は、平坦な上面を有する第1樹脂層2aを配置する工程S1と、第1樹脂層2aの上面に部品3を配置する工程S2と、前記部品を覆うように第1樹脂層2aより上側に、平坦な下面を有する第2樹脂層2bを積み重ねる工程S3と、熱圧着することによって、第1樹脂層2aおよび第2樹脂層2bが部品3の形状に合わせて変形して部品3を封止する、熱圧着工程S10とを含む。工程S1と工程S2はこの順で行なってもよいが、逆の順に行なってもよい。ここでは、図5に示した樹脂多層基板105を作製する場合を例にとって説明する。 The manufacturing method of the resin multilayer substrate in the present embodiment is for obtaining the resin multilayer substrate described in any of Embodiments 2 to 5. The method for manufacturing the resin multilayer substrate includes a step S1 for arranging the first resin layer 2a having a flat upper surface, a step S2 for arranging the component 3 on the upper surface of the first resin layer 2a, and a first step so as to cover the component. The first resin layer 2a and the second resin layer 2b are deformed according to the shape of the component 3 by stacking the second resin layer 2b having a flat lower surface above the first resin layer 2a and by thermocompression bonding. And thermocompression bonding step S10 for sealing component 3. Step S1 and step S2 may be performed in this order, but may be performed in the reverse order. Here, a case where the resin multilayer substrate 105 shown in FIG. 5 is manufactured will be described as an example.
 まず、図10に示すように片面に金属箔17が形成された樹脂シート12を用意する。この樹脂シート12の金属箔17をパターニングすることによって、図11に示すように導体パターン7を形成する。さらに、レーザ加工などにより所望の位置に貫通孔を設け、この貫通孔に導体ペーストを充填することにより、接続導体6を形成する。このようにして、図12に示すような樹脂層を用意する。図12では、図11に示したものに比べて上下を逆にして表示している。なお、ここで説明した順序はあくまで一例であり、これに限らない。接続導体6を先に形成してから導体パターン7を形成してもよい。 First, as shown in FIG. 10, a resin sheet 12 having a metal foil 17 formed on one side is prepared. By patterning the metal foil 17 of the resin sheet 12, the conductor pattern 7 is formed as shown in FIG. Further, a through hole is provided at a desired position by laser processing or the like, and the connecting conductor 6 is formed by filling the through hole with a conductive paste. In this way, a resin layer as shown in FIG. 12 is prepared. In FIG. 12, the image is displayed upside down compared to that shown in FIG. In addition, the order demonstrated here is an example to the last, and is not restricted to this. The conductor pattern 7 may be formed after the connection conductor 6 is formed first.
 工程S2を行なうことによって、たとえば図13に示す構造体を得る。この構造体に含まれる樹脂層2は第1樹脂層2aとなる。 For example, the structure shown in FIG. 13 is obtained by performing step S2. The resin layer 2 included in this structure becomes the first resin layer 2a.
 図14に示すように、下側の樹脂層2を適宜積層した上に図13に示した構造体を配置する。これは第1樹脂層2aを配置する工程であるので、工程S1に相当する。第1樹脂層2aより下側の樹脂層2の存在は必須ではないが、第1樹脂層2aより下側に樹脂層2が1層以上積層されることが好ましい。 As shown in FIG. 14, the structure shown in FIG. 13 is arranged on the lower resin layer 2 appropriately laminated. Since this is a step of arranging the first resin layer 2a, it corresponds to step S1. The presence of the resin layer 2 below the first resin layer 2a is not essential, but it is preferable that one or more resin layers 2 are laminated below the first resin layer 2a.
 図15に示すように、工程S3として、平坦な下面を有する第2樹脂層2bを積み重ねる。さらに上側の樹脂層2を適宜積層する。全体としては、たとえば図16に示すように各層を積み重ねたこととなる。図16では、説明の便宜のため、図15で積み重ねて表示していた部分も分解して表示している。次に熱圧着工程S10を行なう。すなわち、図16に矢印91,92で示すように、上下方向に圧力をかけながら加熱する。あるいは、加熱しながら圧力をかける。これによって、第1樹脂層2aおよび第2樹脂層2bが部品3の形状に合わせて変形し、部品3が封止される。その結果、図5に示した樹脂多層基板105が得られる。 As shown in FIG. 15, as the step S3, the second resin layer 2b having a flat lower surface is stacked. Further, the upper resin layer 2 is appropriately laminated. As a whole, for example, the layers are stacked as shown in FIG. In FIG. 16, for convenience of explanation, the parts that are stacked and displayed in FIG. 15 are also disassembled and displayed. Next, the thermocompression bonding step S10 is performed. That is, as shown by arrows 91 and 92 in FIG. 16, heating is performed while applying pressure in the vertical direction. Alternatively, pressure is applied while heating. Thereby, the first resin layer 2a and the second resin layer 2b are deformed according to the shape of the component 3, and the component 3 is sealed. As a result, the resin multilayer substrate 105 shown in FIG. 5 is obtained.
 (作用・効果)
 本実施の形態では、熱圧着工程時に部品3を側方に押すような樹脂流れが発生することを抑制することができる。本実施の形態では、そのような樹脂流れが生じにくいので、熱圧着工程で生じる樹脂流れによって引き起こされる部品3と接続導体6との間の接続不良という問題を低減することができ、部品3と接続導体6との間の電気的接続の信頼性が向上した樹脂多層基板を得ることができる。
(Action / Effect)
In this Embodiment, it can suppress that the resin flow which pushes the component 3 to the side at the time of a thermocompression bonding process generate | occur | produces. In the present embodiment, since such a resin flow is unlikely to occur, the problem of poor connection between the component 3 and the connection conductor 6 caused by the resin flow generated in the thermocompression bonding process can be reduced. A resin multilayer substrate with improved reliability of electrical connection with the connection conductor 6 can be obtained.
 図16では、第1樹脂層2aの上面に部品3が搭載されている以外は、全ての樹脂層2がばらばらの状態で、積み重ねて熱圧着工程を行なう様子が示されていたが、図17に示すように部品3を挟み込む2つの樹脂層2のみを先に貼り合わせて一体化しておいてもよい。第1樹脂層2aと第2樹脂層2bとが直接貼り合わせられており、両者の間に部品3が封止されている。この状態の構造体を先に作製しておけば、部品3が確実に保持され、樹脂層2によって保護された状態となるので、好ましい。この状態の構造体を予め作製しておくことにより、作業中に部品3が脱落するリスクも低減することができるので、扱いやすい。なお、この状態の構造体では、上面および下面の部品3に対応する位置に凸部10a,10bが生じており、表面が平坦ではない。しかし、図17に示すように、第3樹脂層2c、第4樹脂層2dなどを適宜含む他の樹脂層2と合わせて積層し、熱圧着工程を行なうことにより、凸部10a,10bは他の樹脂層2の開口部8d,8cにそれぞれ収まり、全体として平坦度の高い積層体1を得ることができる。 In FIG. 16, except that the component 3 is mounted on the upper surface of the first resin layer 2 a, all the resin layers 2 are separated and the state of performing the thermocompression bonding process is shown. Only the two resin layers 2 sandwiching the component 3 may be bonded together and integrated as shown in FIG. The first resin layer 2a and the second resin layer 2b are directly bonded together, and the component 3 is sealed between them. It is preferable to prepare the structure in this state first because the component 3 is securely held and protected by the resin layer 2. By preparing the structure in this state in advance, the risk of the component 3 falling off during the work can be reduced, so that it is easy to handle. In the structure in this state, the convex portions 10a and 10b are formed at positions corresponding to the parts 3 on the upper surface and the lower surface, and the surface is not flat. However, as shown in FIG. 17, the protrusions 10a and 10b can be formed by laminating together with the other resin layers 2 including the third resin layer 2c, the fourth resin layer 2d, etc. as appropriate, and performing a thermocompression bonding process. It is possible to obtain the laminated body 1 that fits in the openings 8d and 8c of the resin layer 2 and has high flatness as a whole.
 なお、ここで説明した製造方法の好ましい形態について以下説明する。
 まず、本実施の形態における樹脂多層基板の製造方法の好ましい第1の例のフローチャートを図18に示す。好ましい第1の例としての樹脂多層基板の製造方法は、樹脂多層基板105のような樹脂多層基板を得るための樹脂多層基板の製造方法であって、平坦な上面を有する第1樹脂層2aを配置する工程S1と、第1樹脂層2aの上面に部品3を配置する工程S2と、部品3を覆うように第1樹脂層2aより上側に、平坦な下面を有する第2樹脂層2bを積み重ねる工程S3と、部品3に対応する領域に開口部8cを予め設けた第3樹脂層2cを、第2の樹脂層2bより上側に積み重ねる工程S4と、熱圧着することによって、第1樹脂層2aおよび第2樹脂層2bが部品3の形状に合わせて変形して部品3を封止し、第3樹脂層2cの開口部8cに第3樹脂層2cより下側のいずれかの樹脂層2の少なくとも一部が嵌入する、熱圧着工程S11とを含む。工程S1と工程S2はこの順で行なってもよいが、逆の順に行なってもよい。図16は、工程S11の様子を示しているともいえる。熱圧着工程S11は、図9に示した熱圧着工程S10に比べて、第3樹脂層2cの開口部8cに第3樹脂層2cより下側のいずれかの樹脂層2の少なくとも一部が嵌入するということが必須となっている点で異なる。ただし、熱圧着工程S10ではこのような嵌入が生じないと限定する趣旨ではない。樹脂多層基板の製造方法を図18に示したように実施することによって、第3樹脂層2cの開口部8cによって第3樹脂層2cより下側にある樹脂層2が収容されるので、積層体1全体の平坦度を向上させることができ、平坦度の優れた樹脂多層基板を得ることができる。
In addition, the preferable form of the manufacturing method demonstrated here is demonstrated below.
First, FIG. 18 shows a flowchart of a preferred first example of a method for producing a resin multilayer substrate in the present embodiment. A preferable method of manufacturing a resin multilayer substrate as a first example is a method of manufacturing a resin multilayer substrate for obtaining a resin multilayer substrate such as the resin multilayer substrate 105, and includes a first resin layer 2a having a flat upper surface. Step S1 of placing, step S2 of placing the component 3 on the upper surface of the first resin layer 2a, and stacking the second resin layer 2b having a flat lower surface above the first resin layer 2a so as to cover the component 3 The first resin layer 2a is formed by thermocompression bonding with the step S3, the step S4 of stacking the third resin layer 2c provided with the opening 8c in advance in the region corresponding to the component 3, and the second resin layer 2b. The second resin layer 2b is deformed according to the shape of the component 3 to seal the component 3, and any one of the resin layers 2 below the third resin layer 2c is formed in the opening 8c of the third resin layer 2c. Thermocompression bonding step S11 in which at least a part is inserted Including the. Step S1 and step S2 may be performed in this order, but may be performed in the reverse order. FIG. 16 can be said to show the state of step S11. In the thermocompression bonding step S11, as compared with the thermocompression bonding step S10 shown in FIG. 9, at least a part of any one of the resin layers 2 below the third resin layer 2c is fitted into the opening 8c of the third resin layer 2c. It is different in that it is essential to do. However, it is not intended to limit that such insertion does not occur in the thermocompression bonding step S10. By implementing the method for producing the resin multilayer substrate as shown in FIG. 18, the resin layer 2 below the third resin layer 2c is accommodated by the opening 8c of the third resin layer 2c, so that the laminate The flatness of 1 whole can be improved, and the resin multilayer substrate excellent in flatness can be obtained.
 本実施の形態における樹脂多層基板の製造方法の好ましい第2の例のフローチャートを図19に示す。好ましい第2の例としての樹脂多層基板の製造方法は、樹脂多層基板105のような樹脂多層基板を得るための樹脂多層基板の製造方法であって、部品3に対応する領域に開口部8dを予め設けた第4樹脂層2dを配置する工程S5と、第4樹脂層2dより上側に、平坦な上面を有する第1樹脂層2aを積み重ねる工程S6と、第1樹脂層2aの上面に部品3を配置する工程S2と、部品3を覆うように第1樹脂層2aより上側に、平坦な下面を有する第2樹脂層2bを積み重ねる工程S3と、熱圧着することによって、第1樹脂層2aおよび第2樹脂層2bが部品3の形状に合わせて変形して部品3を封止し、第4樹脂層2dの開口部8dに第4樹脂層2dより上側のいずれかの樹脂層2の少なくとも一部が嵌入する、熱圧着工程S12とを含む。工程S6と工程S2はこの順で行なってもよいが、逆の順に行なってもよい。工程S2、工程S5、工程S6の順に行なってもよい。図16は、熱圧着工程S12の様子を示しているともいえる。熱圧着工程S12は、図9に示した熱圧着工程S10に比べて、第4樹脂層2dの開口部8dに第4樹脂層2dより上側のいずれかの樹脂層2の少なくとも一部が嵌入するということが必須となっている点で異なる。ただし、熱圧着工程S10ではこのような嵌入が生じないと限定する趣旨ではない。 FIG. 19 shows a flowchart of a second preferred example of the method for producing a resin multilayer substrate in the present embodiment. A preferred method of manufacturing a resin multilayer substrate as a second example is a method of manufacturing a resin multilayer substrate for obtaining a resin multilayer substrate such as the resin multilayer substrate 105, and includes an opening 8d in a region corresponding to the component 3. The step S5 of disposing the fourth resin layer 2d provided in advance, the step S6 of stacking the first resin layer 2a having a flat upper surface above the fourth resin layer 2d, and the component 3 on the upper surface of the first resin layer 2a. By placing the second resin layer 2b having a flat lower surface on the upper side of the first resin layer 2a so as to cover the component 3, and by thermocompression bonding, the first resin layer 2a and The second resin layer 2b is deformed according to the shape of the component 3 to seal the component 3. At least one of the resin layers 2 above the fourth resin layer 2d is formed in the opening 8d of the fourth resin layer 2d. The thermocompression bonding step S12 in which the part is inserted Including. Step S6 and step S2 may be performed in this order, but may be performed in the reverse order. You may perform in order of process S2, process S5, and process S6. FIG. 16 can be said to show the state of the thermocompression bonding step S12. In the thermocompression bonding step S12, as compared with the thermocompression bonding step S10 shown in FIG. 9, at least a part of any one of the resin layers 2 above the fourth resin layer 2d is fitted into the opening 8d of the fourth resin layer 2d. This is different in that it is essential. However, it is not intended to limit that such insertion does not occur in the thermocompression bonding step S10.
 (実施の形態7)
 (製造方法)
 図20を参照して、本発明に基づく実施の形態7における樹脂多層基板の製造方法について説明する。本実施の形態における樹脂多層基板の製造方法は、実施の形態4で説明した樹脂多層基板107を得るためのものである。
(Embodiment 7)
(Production method)
With reference to FIG. 20, the manufacturing method of the resin multilayer substrate in Embodiment 7 based on this invention is demonstrated. The manufacturing method of the resin multilayer substrate in the present embodiment is for obtaining the resin multilayer substrate 107 described in the fourth embodiment.
 図20に示すように、部品3を挟み込むいくつかの樹脂層2のみが先に貼り合わせられている。この構造体の中には、第1樹脂層2aと第2樹脂層2bとが含まれている。第1樹脂層2aと第2樹脂層2bとが互いに直接貼り合わせられており、両者の間に部品3が封止されている。第1樹脂層2aと第2樹脂層2bとをさらに外側から挟み込むように他の樹脂層2も重ねられて接合されている。 As shown in FIG. 20, only some resin layers 2 sandwiching the component 3 are bonded together. This structure includes a first resin layer 2a and a second resin layer 2b. The first resin layer 2a and the second resin layer 2b are directly bonded together, and the component 3 is sealed between them. Another resin layer 2 is also overlapped and joined so as to sandwich the first resin layer 2a and the second resin layer 2b from the outside.
 (作用・効果)
 本実施の形態で示したように、部品3を封止する構造体を先に作製しておけば、部品3が確実に保持され、樹脂層2によって保護された状態となるので、好ましい。この状態の構造体を予め作製しておくことにより、作業中に部品3が脱落するリスクも低減することができるので、扱いやすい。この構造体を含めてさらに他の樹脂層と合わせて図20に示すように積層し、熱圧着工程を行なうことにより、全体として平坦度の高い積層体1を得ることができる。
(Action / Effect)
As shown in the present embodiment, it is preferable to prepare the structure for sealing the component 3 first because the component 3 is securely held and protected by the resin layer 2. By preparing the structure in this state in advance, the risk of the component 3 falling off during the work can be reduced, so that it is easy to handle. A laminated body 1 having a high flatness as a whole can be obtained by laminating as shown in FIG. 20 together with the other resin layers including this structure and performing a thermocompression bonding process.
 ここでは、先に部品3を封止する構造体を作製する例を示したが、全ての樹脂層2がばらばらの状態で積み重ねて熱圧着することによっても、実施の形態4で説明した樹脂多層基板107を得ることはできる。 Here, an example in which a structure that seals the component 3 is previously shown is shown, but the resin multilayer described in the fourth embodiment can also be obtained by stacking all the resin layers 2 apart and thermocompression bonding. The substrate 107 can be obtained.
 (実施の形態8)
 (製造方法)
 図21~図22を参照して、本発明に基づく実施の形態8における樹脂多層基板の製造方法について説明する。本実施の形態における樹脂多層基板の製造方法のフローチャートを図21に示す。
(Embodiment 8)
(Production method)
With reference to FIGS. 21 to 22, a method for manufacturing a resin multilayer substrate in accordance with the eighth embodiment of the present invention will be described. FIG. 21 shows a flowchart of the method for manufacturing the resin multilayer substrate in the present embodiment.
 本実施の形態における樹脂多層基板の製造方法は、実施の形態5で説明した樹脂多層基板108を得るためのものである。この樹脂多層基板の製造方法は、平坦な上面を有する第1樹脂層2aを配置する工程S1と、第1樹脂層S1の上面に部品3を配置する工程S2と、第1樹脂層2aより上側で部品3を取り囲むように1以上の中間樹脂層2iを積み重ねる工程S7と、部品3を覆うように中間樹脂層2iより上側に、平坦な下面を有する第2樹脂層2bを積み重ねる工程S8と、熱圧着することによって、第1樹脂層2aおよび第2樹脂層2bが前記部品の形状に合わせて変形して中間樹脂層2iと組み合わさることによって部品3を封止する、熱圧着工程S13とを含む。全体としては、図22に示すように積み重ねて熱圧着することとなる。この樹脂多層基板の製造方法により、実施の形態5で図8を参照して説明した樹脂多層基板108を得ることができる。 The manufacturing method of the resin multilayer substrate in the present embodiment is for obtaining the resin multilayer substrate 108 described in the fifth embodiment. The method for manufacturing the resin multilayer substrate includes a step S1 of arranging the first resin layer 2a having a flat upper surface, a step S2 of arranging the component 3 on the upper surface of the first resin layer S1, and an upper side of the first resin layer 2a. In step S7, one or more intermediate resin layers 2i are stacked so as to surround the component 3, and in step S8, a second resin layer 2b having a flat lower surface is stacked above the intermediate resin layer 2i so as to cover the component 3. A thermocompression bonding step S13 in which the first resin layer 2a and the second resin layer 2b are deformed in accordance with the shape of the component by thermocompression bonding, and the component 3 is sealed by combining with the intermediate resin layer 2i. Including. As a whole, they are stacked and thermocompression bonded as shown in FIG. By this method for producing a resin multilayer substrate, the resin multilayer substrate 108 described in Embodiment 5 with reference to FIG. 8 can be obtained.
 (作用・効果)
 本実施の形態では、従来ならば部品3の側面に向けて樹脂層2の断面が露出していた部分のうち少なくとも一部において、樹脂層2の断面ではなく上下面が露出するように構成することができる。したがって、部品3を側方に押すような樹脂流れの発生を抑制することができる。
(Action / Effect)
In the present embodiment, at least part of the portion where the cross section of the resin layer 2 has been exposed toward the side surface of the component 3 is exposed instead of the cross section of the resin layer 2. be able to. Therefore, generation | occurrence | production of the resin flow which pushes the components 3 to the side can be suppressed.
 本実施の形態では、第1樹脂層2aと第2樹脂層2bとの間において中間樹脂層2iを積み重ねることとしているので、厚み方向の寸法が大きい部品3についても、十分に対応することができる。 In the present embodiment, since the intermediate resin layer 2i is stacked between the first resin layer 2a and the second resin layer 2b, the component 3 having a large dimension in the thickness direction can be sufficiently handled. .
 図22では各樹脂層2がばらばらの状態で積み重ねる様子を表示したが、図20を参照して説明したように、部品3を挟み込むいくつかの樹脂層2を先に貼り合わせて構造体を予め作製してから全体の積層を行なうこととしてもよい。 In FIG. 22, the state in which the resin layers 2 are stacked in a separated state is displayed. However, as described with reference to FIG. 20, several resin layers 2 sandwiching the component 3 are bonded together in advance to form a structure. It is good also as performing the whole lamination after producing.
 (実施の形態9)
 (構成)
 図23を参照して、本発明に基づく実施の形態9における樹脂多層基板109について説明する。本実施の形態における樹脂多層基板109は、基本的な構成は実施の形態1で説明した樹脂多層基板101と共通するが、以下の点で異なる。
(Embodiment 9)
(Constitution)
With reference to FIG. 23, a resin multilayer substrate 109 according to the ninth embodiment of the present invention will be described. The basic structure of the resin multilayer substrate 109 in this embodiment is the same as that of the resin multilayer substrate 101 described in Embodiment 1, but is different in the following points.
 樹脂多層基板101では、第1樹脂層2aより上側にも他の樹脂層2が積み重ねられた形となっており、最上面は平坦となっていたが、本実施の形態では、第1樹脂層2aより上側には他の樹脂層が積み重ねられておらず、第1樹脂層2aがそのまま最上面となっている。したがって、第1樹脂層2aが部品3の外形に沿って変形したことによって生じている凹凸が外形にある程度表れている。 In the resin multilayer substrate 101, another resin layer 2 is stacked on the upper side of the first resin layer 2a, and the uppermost surface is flat. However, in the present embodiment, the first resin layer 2 is stacked. No other resin layer is stacked on the upper side of 2a, and the first resin layer 2a is the uppermost surface as it is. Therefore, the unevenness caused by the deformation of the first resin layer 2a along the outer shape of the component 3 appears to some extent on the outer shape.
 (作用・効果)
 本実施の形態においても、実施の形態1で説明したのと同様の効果を得ることができる。最上面を平坦にする必要がない場合は、本実施の形態で示した構成が有効である。本実施の形態では、上側に追加的な樹脂層2を積み重ねる工程を省くことができる。
(Action / Effect)
Also in the present embodiment, the same effect as described in the first embodiment can be obtained. In the case where it is not necessary to flatten the top surface, the configuration shown in this embodiment is effective. In the present embodiment, the step of stacking the additional resin layer 2 on the upper side can be omitted.
 実施の形態5で示した樹脂多層基板108についても、同様に、上側および下側にある樹脂層を省いた構成も考えられる。すなわち、樹脂多層基板108の変形例として、最上面および最下面に凹凸を有する形状としてもよい。 Similarly, the resin multilayer substrate 108 shown in the fifth embodiment may have a configuration in which the upper and lower resin layers are omitted. That is, as a modified example of the resin multilayer substrate 108, a shape having irregularities on the uppermost surface and the lowermost surface may be used.
 実施の形態2で示した樹脂多層基板103,104についても、同様に、上側または下側にある追加的な樹脂層を省いた構成も考えられる。すなわち、樹脂多層基板103の変形例として、最上面に凹凸を有する形状としてもよい。樹脂多層基板104の変形例として、最下面に凹凸を有する形状としてもよい。 Similarly, the resin multilayer substrates 103 and 104 shown in the second embodiment may have a configuration in which an additional resin layer on the upper side or the lower side is omitted. That is, as a modification of the resin multilayer substrate 103, a shape having unevenness on the uppermost surface may be used. As a modified example of the resin multilayer substrate 104, a shape having irregularities on the lowermost surface may be used.
 (実施の形態10)
 (構成)
 図24を参照して、本発明に基づく実施の形態10における樹脂多層基板110について説明する。本実施の形態における樹脂多層基板110は、基本的な構成は実施の形態4で説明した樹脂多層基板107と共通するが、以下の点で異なる。
(Embodiment 10)
(Constitution)
With reference to FIG. 24, the resin multilayer substrate 110 in Embodiment 10 based on this invention is demonstrated. The basic structure of the resin multilayer substrate 110 in this embodiment is the same as that of the resin multilayer substrate 107 described in Embodiment 4, but is different in the following points.
 樹脂多層基板107では、部品3の外形に沿って変形した樹脂層2の上側および下側にそれぞれ他の樹脂層をさらに重ねることによって、最上面および最下面は平坦となっていたが、本実施の形態では、部品3の外形に沿って変形した樹脂層2がそのまま最上面および最下面となっている。したがって、樹脂多層基板110は、最上面および最下面に凹凸を有する形状となっている。ただし、最上面および最下面となる樹脂層は、第1樹脂層2aまたは第2樹脂層2bとは限らない。図24に示した例では、第1樹脂層2aおよび第2樹脂層2bではなく、上下面それぞれにさらにもう1層重ねた樹脂層2が最上面および最下面を構成している。図24に示したのはあくまで一例であって、第1樹脂層2aが最下面となる構成であってもよい。第2樹脂層2bが最上面となる構成であってもよい。 In the resin multilayer substrate 107, the uppermost surface and the lowermost surface are flattened by further overlapping other resin layers on the upper side and the lower side of the resin layer 2 deformed along the outer shape of the component 3, respectively. In this form, the resin layer 2 deformed along the outer shape of the component 3 is the uppermost surface and the lowermost surface as it is. Therefore, the resin multilayer substrate 110 has a shape having irregularities on the uppermost surface and the lowermost surface. However, the resin layer which becomes the uppermost surface and the lowermost surface is not necessarily the first resin layer 2a or the second resin layer 2b. In the example shown in FIG. 24, not the first resin layer 2 a and the second resin layer 2 b, but the resin layer 2 further layered on each of the upper and lower surfaces constitutes the uppermost surface and the lowermost surface. The configuration shown in FIG. 24 is merely an example, and the first resin layer 2a may be the bottom surface. The second resin layer 2b may be a top surface.
 (作用・効果)
 本実施の形態においても、実施の形態4で説明したのと同様の効果を得ることができる。最上面および最下面を平坦にする必要がない場合は、本実施の形態で示した構成が有効である。本実施の形態では、上側および下側に追加的な樹脂層2を積み重ねる工程を省くことができる。
(Action / Effect)
Also in the present embodiment, the same effect as described in the fourth embodiment can be obtained. In the case where it is not necessary to flatten the uppermost surface and the lowermost surface, the configuration shown in this embodiment is effective. In the present embodiment, the step of stacking additional resin layers 2 on the upper side and the lower side can be omitted.
 実施の形態5で示した樹脂多層基板108についても、同様に、上側および下側にある樹脂層を省いた構成も考えられる。すなわち、樹脂多層基板108の変形例として、最上面および最下面に凹凸を有する形状としてもよい。 Similarly, the resin multilayer substrate 108 shown in the fifth embodiment may have a configuration in which the upper and lower resin layers are omitted. That is, as a modified example of the resin multilayer substrate 108, a shape having irregularities on the uppermost surface and the lowermost surface may be used.
 実施の形態3で示した樹脂多層基板105,106についても、同様である。
 なお、今回開示した上記実施の形態はすべての点で例示であって制限的なものではない。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更を含むものである。
The same applies to the resin multilayer substrates 105 and 106 shown in the third embodiment.
In addition, the said embodiment disclosed this time is an illustration in all the points, Comprising: It is not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 1 積層体、2 樹脂層、2a 第1樹脂層、2b 第2樹脂層、2c 第3樹脂層、2d 第4樹脂層、2i 中間樹脂層、3 部品、6 接続導体、7 導体パターン、8c,8d 開口部、9 空隙、91,92 矢印、101,102,103,104,105,106,107,108 樹脂多層基板。 1 laminate, 2 resin layer, 2a first resin layer, 2b second resin layer, 2c third resin layer, 2d fourth resin layer, 2i intermediate resin layer, 3 parts, 6 connection conductor, 7 conductor pattern, 8c, 8d opening, 9 gap, 91, 92 arrows, 101, 102, 103, 104, 105, 106, 107, 108 resin multilayer substrate.

Claims (13)

  1.  第1樹脂層を含む複数の樹脂層が積層されることによって形成された積層体と、
     前記積層体の内部に配置された部品と、
     前記部品に電気的に接続される接続導体とを備え、
     前記複数の樹脂層の各々は、熱可塑性樹脂層であり、
     前記第1樹脂層は、前記部品の一方の側方から前記部品の上側または下側を通って前記部品の他方の側方に達するように延在している、樹脂多層基板。
    A laminate formed by laminating a plurality of resin layers including the first resin layer;
    Components arranged inside the laminate;
    A connection conductor electrically connected to the component;
    Each of the plurality of resin layers is a thermoplastic resin layer,
    The first resin layer extends from one side of the component so as to reach the other side of the component through the upper side or the lower side of the component.
  2.  前記第1樹脂層は、前記部品の下側を通っており、
     前記複数の樹脂層は、前記部品の一方の側方から前記部品の上側を通って前記部品の他方の側方に達するように延在する第2樹脂層を含む、請求項1に記載の樹脂多層基板。
    The first resin layer passes under the component,
    2. The resin according to claim 1, wherein the plurality of resin layers include a second resin layer that extends from one side of the component through the upper side of the component to reach the other side of the component. Multilayer board.
  3.  前記複数の樹脂層は、前記第2樹脂層より上側に第3樹脂層を含み、
     前記第3樹脂層は、前記部品の投影領域に対応する領域に、前記第3樹脂層より下側にあるいずれかの樹脂層の少なくとも一部を収容するための開口部を有する、請求項2に記載の樹脂多層基板。
    The plurality of resin layers include a third resin layer above the second resin layer,
    The third resin layer has an opening for accommodating at least a part of any one of the resin layers below the third resin layer in a region corresponding to a projection region of the component. The resin multilayer substrate described in 1.
  4.  前記第3樹脂層は前記第2樹脂層の上側に隣接している、請求項3に記載の樹脂多層基板。 The resin multilayer substrate according to claim 3, wherein the third resin layer is adjacent to an upper side of the second resin layer.
  5.  前記複数の樹脂層は、前記第1樹脂層より下側に第4樹脂層を含み、
     前記第4樹脂層は、前記部品の投影領域に対応する領域に、前記第4樹脂層より上側にあるいずれかの樹脂層の少なくとも一部を収容するための開口部を有する、請求項2から4のいずれかに記載の樹脂多層基板。
    The plurality of resin layers include a fourth resin layer below the first resin layer,
    The said 4th resin layer has an opening part for accommodating at least one part of any resin layer above the said 4th resin layer in the area | region corresponding to the projection area | region of the said component. 4. The resin multilayer substrate according to any one of 4 above.
  6.  前記第4樹脂層は前記第1樹脂層の下側に隣接している、請求項5に記載の樹脂多層基板。 The resin multilayer substrate according to claim 5, wherein the fourth resin layer is adjacent to a lower side of the first resin layer.
  7.  前記第1樹脂層と前記第2樹脂層との間に、前記部品を取り囲むように配置された樹脂層である1以上の中間樹脂層を備える、請求項2から6のいずれかに記載の樹脂多層基板。 The resin according to any one of claims 2 to 6, comprising one or more intermediate resin layers that are resin layers arranged so as to surround the component between the first resin layer and the second resin layer. Multilayer board.
  8.  前記部品は、複数の部品の集合体である部品群のうちの1つであり、前記部品群は、前記積層体の内部において、前記第1樹脂層の同一表面に接して配列されている、請求項1から7のいずれかに記載の樹脂多層基板。 The component is one of a component group that is an aggregate of a plurality of components, and the component group is arranged in contact with the same surface of the first resin layer inside the laminate. The resin multilayer substrate according to claim 1.
  9.  前記部品は、複数の部品の集合体である部品群のうちの1つであり、前記部品群は、前記積層体の内部において、前記第1樹脂層の上面に接しかつ前記第2樹脂層の下面に接するように配列されている、請求項2から7のいずれかに記載の樹脂多層基板。 The component is one of a component group that is an aggregate of a plurality of components, and the component group is in contact with the upper surface of the first resin layer and the second resin layer inside the laminate. The resin multilayer substrate according to claim 2, wherein the resin multilayer substrate is arranged so as to be in contact with the lower surface.
  10.  請求項2から7のいずれかに記載の樹脂多層基板を得るための樹脂多層基板の製造方法であって、
     平坦な上面を有する前記第1樹脂層を配置する工程と、
     前記第1樹脂層の上面に前記部品を配置する工程と、
     前記部品を覆うように前記第1樹脂層より上側に、平坦な下面を有する第2樹脂層を積み重ねる工程と、
     熱圧着することによって、前記第1樹脂層および前記第2樹脂層が前記部品の形状に合わせて変形して前記部品を封止する、熱圧着工程とを含む、樹脂多層基板の製造方法。
    A method for producing a resin multilayer substrate for obtaining the resin multilayer substrate according to any one of claims 2 to 7,
    Disposing the first resin layer having a flat upper surface;
    Placing the component on the top surface of the first resin layer;
    Stacking a second resin layer having a flat lower surface above the first resin layer so as to cover the component;
    A method for manufacturing a resin multilayer substrate, comprising: a thermocompression bonding step in which the first resin layer and the second resin layer are deformed in accordance with a shape of the component to seal the component by thermocompression bonding.
  11.  請求項3または4に記載の樹脂多層基板を得るための樹脂多層基板の製造方法であって、
     平坦な上面を有する第1樹脂層を配置する工程と、
     前記第1樹脂層の上面に部品を配置する工程と、
     前記部品を覆うように前記第1樹脂層より上側に、平坦な下面を有する第2樹脂層を積み重ねる工程と、
     前記部品に対応する領域に開口部を予め設けた第3樹脂層を、前記第2の樹脂層より上側に積み重ねる工程と、
     熱圧着することによって、前記第1樹脂層および前記第2樹脂層が前記部品の形状に合わせて変形して前記部品を封止し、前記第3樹脂層の開口部に前記第3樹脂層より下側のいずれかの樹脂層の少なくとも一部が嵌入する、熱圧着工程とを含む、樹脂多層基板の製造方法。
    A method for producing a resin multilayer substrate for obtaining the resin multilayer substrate according to claim 3 or 4,
    Disposing a first resin layer having a flat upper surface;
    Placing a component on the top surface of the first resin layer;
    Stacking a second resin layer having a flat lower surface on the upper side of the first resin layer so as to cover the component;
    A step of stacking a third resin layer in which an opening is provided in advance in a region corresponding to the component above the second resin layer;
    By thermocompression bonding, the first resin layer and the second resin layer are deformed according to the shape of the component to seal the component, and the opening of the third resin layer is formed from the third resin layer. A method for producing a resin multilayer substrate, comprising: a thermocompression bonding step in which at least a part of any one of the lower resin layers is fitted.
  12.  請求項5または6に記載の樹脂多層基板を得るための樹脂多層基板の製造方法であって、
     前記部品に対応する領域に開口部を予め設けた前記第4樹脂層を配置する工程と、
     前記第4樹脂層より上側に、平坦な上面を有する前記第1樹脂層を積み重ねる工程と、
     前記第1樹脂層の上面に前記部品を配置する工程と、
     前記部品を覆うように前記第1樹脂層より上側に、平坦な下面を有する前記第2樹脂層を積み重ねる工程と、
     熱圧着することによって、前記第1樹脂層および前記第2樹脂層が前記部品の形状に合わせて変形して前記部品を封止し、前記第4樹脂層の開口部に前記第4樹脂層より上側のいずれかの樹脂層の少なくとも一部が嵌入する、熱圧着工程とを含む、樹脂多層基板の製造方法。
    A method for producing a resin multilayer substrate for obtaining the resin multilayer substrate according to claim 5,
    Disposing the fourth resin layer provided with an opening in a region corresponding to the component;
    Stacking the first resin layer having a flat upper surface above the fourth resin layer;
    Placing the component on the top surface of the first resin layer;
    Stacking the second resin layer having a flat lower surface above the first resin layer so as to cover the component;
    By thermocompression bonding, the first resin layer and the second resin layer are deformed according to the shape of the component to seal the component, and the opening of the fourth resin layer is more than the fourth resin layer. A method for producing a resin multilayer substrate, comprising: a thermocompression bonding step in which at least a part of any one of the upper resin layers is fitted.
  13.  請求項7に記載の樹脂多層基板を得るための樹脂多層基板の製造方法であって、
     平坦な上面を有する前記第1樹脂層を配置する工程と、
     前記第1樹脂層の上面に前記部品を配置する工程と、
     前記第1樹脂層より上側で前記部品を取り囲むように1以上の前記中間樹脂層を積み重ねる工程と、
     前記部品を覆うように前記中間樹脂層より上側に、平坦な下面を有する前記第2樹脂層を積み重ねる工程と、
     熱圧着することによって、前記第1樹脂層および前記第2樹脂層が前記部品の形状に合わせて変形して前記中間樹脂層と組み合わさることによって前記部品を封止する、熱圧着工程とを含む、樹脂多層基板の製造方法。
    A method for producing a resin multilayer substrate for obtaining the resin multilayer substrate according to claim 7,
    Disposing the first resin layer having a flat upper surface;
    Placing the component on the top surface of the first resin layer;
    Stacking one or more intermediate resin layers so as to surround the component above the first resin layer;
    Stacking the second resin layer having a flat lower surface on the upper side of the intermediate resin layer so as to cover the component;
    A thermocompression bonding step in which the first resin layer and the second resin layer are deformed according to the shape of the component by thermocompression bonding, and the component is sealed by combining with the intermediate resin layer. The manufacturing method of a resin multilayer substrate.
PCT/JP2014/058006 2013-04-10 2014-03-24 Resin multilayer substrate and method for manufacturing same WO2014167988A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015511187A JP5773105B2 (en) 2013-04-10 2014-03-24 Resin multilayer substrate and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-082107 2013-04-10
JP2013082107 2013-04-10

Publications (1)

Publication Number Publication Date
WO2014167988A1 true WO2014167988A1 (en) 2014-10-16

Family

ID=51689400

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/058006 WO2014167988A1 (en) 2013-04-10 2014-03-24 Resin multilayer substrate and method for manufacturing same

Country Status (2)

Country Link
JP (1) JP5773105B2 (en)
WO (1) WO2014167988A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05211275A (en) * 1991-02-18 1993-08-20 Toshiba Corp Semiconductor device and manufacture thereof
JP2005223183A (en) * 2004-02-06 2005-08-18 Matsushita Electric Ind Co Ltd Electronic component mounted board and method for manufacturing the same
JP2006222334A (en) * 2005-02-14 2006-08-24 Matsushita Electric Ind Co Ltd Component built-in module, component built-in wiring substrate, method of manufacturing them and electronic device employing them
JP2013020993A (en) * 2011-07-07 2013-01-31 Murata Mfg Co Ltd Manufacturing method of component built-in substrate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05211275A (en) * 1991-02-18 1993-08-20 Toshiba Corp Semiconductor device and manufacture thereof
JP2005223183A (en) * 2004-02-06 2005-08-18 Matsushita Electric Ind Co Ltd Electronic component mounted board and method for manufacturing the same
JP2006222334A (en) * 2005-02-14 2006-08-24 Matsushita Electric Ind Co Ltd Component built-in module, component built-in wiring substrate, method of manufacturing them and electronic device employing them
JP2013020993A (en) * 2011-07-07 2013-01-31 Murata Mfg Co Ltd Manufacturing method of component built-in substrate

Also Published As

Publication number Publication date
JPWO2014167988A1 (en) 2017-02-16
JP5773105B2 (en) 2015-09-02

Similar Documents

Publication Publication Date Title
JP5924456B2 (en) Multilayer board
JP2010171061A (en) Multilayer capacitor
JP2014107552A (en) Multilayer printed circuit board and method of manufacturing the same
JP5672091B2 (en) Multilayer board
JP6233524B2 (en) Component built-in board
WO2015156141A1 (en) Multilayer substrate with integrated components
JP5817954B1 (en) Component built-in board
JP6562076B2 (en) Resin substrate, component-mounted resin substrate, and manufacturing method thereof
JP5741975B2 (en) Resin multilayer board
JP2014225604A (en) Resin multilayer substrate and manufacturing method of the same
WO2015033705A1 (en) Multilayer substrate and multilayer substrate manufacturing method
JP5773105B2 (en) Resin multilayer substrate and manufacturing method thereof
WO2014054387A1 (en) Component-embedded substrate and method for producing same
WO2016047446A1 (en) Substrate for stacked module, stacked module, and method for manufacturing stacked module
JP6536751B2 (en) Laminated coil and method of manufacturing the same
JP5787021B2 (en) Resin multilayer board
WO2015194373A1 (en) Component embedded multi-layer substrate
WO2012132524A1 (en) Flexible multilayer substrate
JP6350758B2 (en) Resin multilayer substrate and manufacturing method thereof
WO2021025025A1 (en) Resin multilayer substrate and method for producing resin multilayer substrate
JP5516830B2 (en) Component built-in resin substrate
JP5618029B2 (en) Resin multilayer substrate and manufacturing method thereof
JP2012230954A (en) Printed wiring board and printed wiring board manufacturing method
WO2013054625A1 (en) Resin substrate having built-in component
WO2012124673A1 (en) Substrate with integrated component

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14782941

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015511187

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14782941

Country of ref document: EP

Kind code of ref document: A1