WO2014167409A1 - Inoculante biológico para promoción de crecimiento de las especies forestales y método para su obtención - Google Patents

Inoculante biológico para promoción de crecimiento de las especies forestales y método para su obtención Download PDF

Info

Publication number
WO2014167409A1
WO2014167409A1 PCT/IB2014/000527 IB2014000527W WO2014167409A1 WO 2014167409 A1 WO2014167409 A1 WO 2014167409A1 IB 2014000527 W IB2014000527 W IB 2014000527W WO 2014167409 A1 WO2014167409 A1 WO 2014167409A1
Authority
WO
WIPO (PCT)
Prior art keywords
teak
support
sawdust
plant growth
inoculant
Prior art date
Application number
PCT/IB2014/000527
Other languages
English (en)
French (fr)
Inventor
Lucia Ana DIAZ
Lina Marcela MORALES PALENCIA
Juan Sebastian P. BELTRAN ACOSTA
Original Assignee
Pontificia Universidad Javeriana
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pontificia Universidad Javeriana filed Critical Pontificia Universidad Javeriana
Priority to BR112015025912-0A priority Critical patent/BR112015025912B1/pt
Priority to US14/783,393 priority patent/US10368548B2/en
Publication of WO2014167409A1 publication Critical patent/WO2014167409A1/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05FORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C, e.g. FERTILISERS FROM WASTE OR REFUSE
    • C05F11/00Other organic fertilisers
    • C05F11/08Organic fertilisers containing added bacterial cultures, mycelia or the like
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N63/00Biocides, pest repellants or attractants, or plant growth regulators containing microorganisms, viruses, microbial fungi, animals or substances produced by, or obtained from, microorganisms, viruses, microbial fungi or animals, e.g. enzymes or fermentates
    • A01N63/20Bacteria; Substances produced thereby or obtained therefrom
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N63/00Biocides, pest repellants or attractants, or plant growth regulators containing microorganisms, viruses, microbial fungi, animals or substances produced by, or obtained from, microorganisms, viruses, microbial fungi or animals, e.g. enzymes or fermentates
    • A01N63/20Bacteria; Substances produced thereby or obtained therefrom
    • A01N63/27Pseudomonas
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05BPHOSPHATIC FERTILISERS
    • C05B17/00Other phosphatic fertilisers, e.g. soft rock phosphates, bone meal
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor

Definitions

  • the present invention relates to the field of agricultural biotechnology and the application of biological inoculants for the promotion of plant growth without affecting the environment.
  • the main input for obtaining wood are forest species such as oak, pine, eucalyptus, cypress or walnut.
  • forest species such as oak, pine, eucalyptus, cypress or walnut.
  • bio-fortified substrates and biological inoculants which are understood as products that contain viable beneficial microorganisms, used in agriculture to fix nitrogen, solubilization of nutrient carrying materials, promotion of plant growth, mycorrhization or transformation of organic matter; the product must not contain pathogenic microorganisms to humans, plants or animals (Pardo, 2002; Soroaef al., 2006; NTC 5842, 201 1).
  • microorganisms for the development of these products is important, since they are the most important components of the soil, responsible for the dynamics of transformation and plant development.
  • the presence of these microorganisms in the soil makes it fertile, that is, it increases the concentration of nutritional elements available to the plant - or of microbial populations that release nutrients that allow a good development of the plants.
  • bacteria and arbuscular mycorrhizal fungi have been recognized by the Food and Agriculture Organization of the United Nations - FAO, as an important tool to increase agricultural production and provide benefits to plants in protection and in obtaining nutrients (Ocampo ef a /., 2001).
  • Some characteristics of these microorganisms are the fact that they do not require internal colonization of tissues in plants to act, to have the ability to increase their population density in the rhizosphere in a short time after inoculation and to effectively colonize the surface of the root (Jiménez et al., 2001).
  • microbial supports The passage of nutrients, the transfer of oxygen and the adhesion of a microbial population to plants is favored with the use of microbial supports.
  • the use of supports is important because at the time of introducing microorganisms to different environments without a support, low survival rates of the former and low efficiency can occur due to the low number of colony forming units per gram of soil.
  • the use of the support allows a greater degree of survival in the inoculation processes and also does not cause contamination in the environment in which it is applied.
  • These microbial supports are also known as microbial carriers.
  • the state of the art discloses different types, according to those composed of porous materials such as polyurethane, cellulose, polypropylene and ceramics. These supports are characterized in that they allow the immobilization of cells of animals, plants, microorganisms and protozoa. Cellulose supports are susceptible to erosion, therefore their duration is shorter and ceramic supports have several limitations due to their high specific gravity that prevents them from being fluid in water.
  • Another type of supports are those composed of gels, which include those composed of polyacrylamide, polyethylene glycol and alginic acid.
  • the gel supports can contain a large amount of water, so they have greater biocompatibility with the cells of microorganisms, human and plant.
  • JP2000016889 refers to a process for the production of fertilizer as a fermentation fertilizer that uses bacteria Photosynthetic of the genera Rhodopseudomonas, Rhodospirillum and Éctothiorhodospira and of the families Ectothiorhodospiraceae and Chloroflexaceae, with acetic acid or a material containing it, and in which the mixture is used as adsorbent on a porous material (30% p / po less) produced by carbonization of wood, sawdust, coconut husks, bagasse, wheat hulls, cottonseed hulls, coffee sediments or the like, a zeolite, etc.
  • this document is limited to disclosing the requirement of 30% (w / w) or less of the microbial culture with respect to the porous material, this formulation also includes the requirement of acetic acid or a source thereof in a proportion up to eight times with respect to the volume of the crop. However, it does not establish a concentration of particular microorganisms per gram, which makes it impossible to precisely dose the components of the product.
  • Patent KR920003238 discloses an agent for soil improvement that is obtained by mixing 94-97% (w / w) organic waste material with 2-5% (w / w) sawdust, 0.2-0.5% of Lime grout and 0.2-0.5% of wood ashes and adjust the pH to a value between 6.5 and 7.5.
  • JP11029384 reports an organic fertilizer that promotes plant growth that effectively improves soil quality and allows the reuse of industrial waste.
  • This fertilizer is obtained by mixing rice bran, sawdust from a foliage or wood tree, liquid soy sediments, straw cut from rice plants, garbage residues or granular charcoal, with a material comprising bacterial residues from a mushroom crop (for example Shiitake, Maitake and Shimeji) and ferment the resulting material.
  • JP4122788 refers to a soil activator and plant growth promoter obtained by aerobic fermentation of a fiber-rich vegetable source mixed with cereal bran, crustacean fossils, among others and an enzymatic complex, which is mixed with sawdust. or wood chips treated enzymatically.
  • Patents KR960002627 and JP11029384 report separate stages such as support enlistment (heating and carbonization) and inoculation and incubation stages, respectively.
  • An object of the invention is a biological inoculant plant growth stimulator comprising a support derived from the process of industrial transformation of teak wood, and one or more bacterial strains promoting plant growth, preferably bacterial strains isolated from teak roots.
  • This biological inoculant can be combined with suitable excipients to form a product to be applied to the plant material before planting.
  • Another object of the present invention is to provide a process of immobilization of strains in a support characterized by the time of cultivation, the realization of a secondary culture, the storage method of the inoculant and the application on plant materials from clonal propagation by stakes, pseudo-stakes or mini-stakes or from seedlings.
  • Still another object of the invention is a product characterized in that it comprises the biological inoculant together with excipients suitable for the stimulation of plant growth when the product is applied to seeds, seedlings, stakes, pseudo-stakes or mini-stakes. DESCRIPTION OF THE FIGURES
  • Figure 1 shows the results in the radical length of teak plants inoculated with different bacteria immobilized in the teak sawdust support.
  • the plants were planted in a mixture of quartzitic sand, nursery soil and rice husk in a 1: 1: 1 ratio. Root length was determined 30 days after sowing.
  • Figure 2 shows the effect of the biological inoculant using two supports (alginate and teak sawdust) or carriers on the root length of teak plants planted in peat for 50 days, using different plant growth promoting microorganisms and a commercial phytohormone.
  • Figure 3 shows the effect of the biological inoculant using two supports or carriers on the root length of teak plants planted for 25 days, using different plant growth promoting microorganisms and different planting substrates: peat and sand mixture, soil and husk
  • Figure 4 shows the effect on biomass obtained after 50 days of cultivation using a commercial phytohormone and different plant growth promoting microorganisms immobilized in teak sawdust and planted on peat as a substrate.
  • Figure 5 shows the effect of the biological inoculant on the stem diameter in teak plants planted in peat for 25 days, using different plant growth promoting microorganisms and two different supports for their immobilization: sodium alginate and teak sawdust.
  • the immobilization process to obtain a biological inoculant plant growth stimulator of the present invention includes the following steps: Forming a support, from teak sawdust in a size between 400-1000 pm, subjected to a heat treatment so that the sawdust burns homogeneously, does not generate ash, has an apparent density of 0.1 g / 0.2 g / l, preferably 0.167 g / l. that its color is between categories 7.5R2 / 4 and 10YR2 / 4 with the presence of 10Y1 / 2 color particles according to Munsell's color chart and has the following composition i. Total organic carbon between 20% and 40%
  • Phosphorus available between 400 and 750 ppm Cultivate one or more plant growth promoting strains of the group of Gram-negative bacteria in a fermentation system until the end of their exponential or logarithmic phase, at which point they reach the maximum production of cellular biomass and They produce secondary metabolites of agroindustrial interest such as acids and plant growth regulating compounds, separate the supernatant and resuspend in 0.85% saline solution to a final cell concentration of 10 12 CFU / mL.
  • a biological inoculant comprising: a. a culture of the strain TgLGBR285 of the genus Stenotrophomonas deposited in the collection of the Department of Biology of the Pontificia Universidad Javeriana with the number No BIO-PUJ-146, the collection of the Department of Microbiology with the number CM-PUJ-148, which a It is also registered in the World Federation of Crop Collections (WFCC) under number 857-CM-DM-PUJ; b.
  • WFCC World Federation of Crop Collections
  • the determination of the supports or carriers is one of the critical stages in the formulation of the product, because they have to keep the viable microorganisms active and in a concentration greater than 10 6 (preferably between 10 6 and 10 9 CFU / mL) .
  • microbial bioinoculants Among the characteristics that must have a support to be used in the formulation of microbial bioinoculants are the retention capacity of water, porosity, absence of toxic and volatile compounds that affect microbial growth, which are easy to sterilize and handle due to the homogeneity of their particles.
  • Kostov and Lynch used composted sawdust as a support for inoculants based on Gram-negative nitrogen-fixing bacteria of the Rhizobium, Bradyrhizobium and Azospirillum genera with good results on the growth of the plant and that of the inoculated microorganisms.
  • the composting process is slow (it takes more than 40 days) and the effect on growth can be masked by the materials that are added in the composting process.
  • De Brito-Alvarez (1995) used as a support for bacteria the mixture of compost, sawdust, rice husk and bagasse, but the tomato plants presented phytotoxicity.
  • an initial decrease in populations of Gram-negative bacteria such as Bulkholderia sp. 10 9 CFU / g to 10 7 CFU / g (Pandey and Maheshwari, 2007).
  • Teak sawdust As a support in the formulation of bioinoculants.
  • One of the reasons is related to its antimicrobial effect.
  • the natural durability of Teak wood is high, it is resistant to the degradation of chromogenic and rot fungi (Peraza, 2002).
  • This durability in its heartwood, the main constituent of sawdust has been conferred on the proportion of tectoquinone and naphthoquinone, aromatic compounds of the anthroquinone group (Thulasidas and Bhat, 2007), used as antimicrobial compounds of non-generalized effect.
  • Thulasidas and Bhat Although for other plant species no negative effects of their anthraquinones on Gram negative bacteria such as Pseudomonas sp. (Chukwujekwu et al., 2006), for Teca wood extracts there are studies of their harmful effect on some genera of this bacterial group (Thulasidas and Bhat, 2007; Krishna & Jayakumaran, 2010).
  • the support derived from the process of industrial transformation of teak wood for the biological inoculant according to the invention can be sawdust from the industrial transformation of teak wood and can have a particle size between 400 to 1000 microns.
  • Sawdust can also be obtained through a combustion process, for example in a Neycraft JFF2000® muffle.
  • the fresh sawdust with a humidity percentage between 50% and 60% is placed on a tray forming a layer preferably 1.5 cm thick and introduced into the muffle previously heated to 250 ° C. After 60 minutes in the muffle, it is temporarily removed to make a first homogenization process of the material, then it is introduced back into the muffle and left for an additional 30 minutes. At the end of this time, the material is removed from the flask and a second homogenization process is performed to prevent the upper layer from calcining.
  • This sawdust obtained from the combustion process is moistened with saline solution and autoclaved at 121 ° C and 0.72 KPa (15 psi) in three cycles each with a duration between 50 minutes and 100 minutes with a rest period of the material between 20 and 25 hours between each cycle.
  • the product obtained is a support of burnt and sterilized teak sawdust.
  • the bacterial strain TgLGBR250 is characterized by being a short Gram negative bacillus, its most important biological activity is to solubilize phosphorus, in relation to the reference strain, Pseudomonas fluorescens ATCC BAA 477, solubilizing said element to a greater extent and reaching halos of 8 mm in Pikovskaya agar and concentrations of indole derivatives of 75.73 mg / L in nutrient broth supplemented with 0.2% tryptophan (w / v).
  • the bacterial strain Tgl_GBR285 is characterized by being a short Gram-negative bacillus, producing inorganic derivatives in a concentration of 195.83 mg / L in culture in nutrient broth supplemented with 0.2% tryptophan (w / v), comparable with the strain Reference Azospirillum brasilense ATCC 29145 that produces 247 mg / L.
  • the method of isolation of the TgLGBR285 and TgLGBR250 strains from Teak root is performed on the King B ® culture medium, phosphorus solubilization is evaluated in Picovskaya medium (Pikovskaya, 1948) and the production of indolacetic acid is evaluated in nutritional broth supplemented with 0.2% tryptophan (w / v).
  • the immobilization process starts with 'from a batch fermentation culture in nutrient broth Difco ® bacterial isolates.
  • strain TgLGBR285 it is cultivated over a period of 8 to 24 hours, where it reaches a concentration greater than 10 9 CFU / mL and in the case of strain Tgl_GBR250 it is grown over a period of 3 to 15 hours and reaches a concentration greater than 10 9 CFU / mL.
  • This procedure is carried out in a batch fermentation system, for example in a scale bioreactor with an effective working volume of 1 liter, at a stirring speed between 1 10 rpm and 150 rpm and a temperature between 28 ° C and 35 ° C.
  • centrifugation is performed at 4500 rpm for 15 minutes and the cell precipitate is re-suspended in 1 I of saline solution.
  • the centrifugation process is repeated and washed twice more.
  • the precipitate of the last centrifugation is re-suspended in 8.5 g / L saline solution by adjusting a concentration of 10 12 CFU / mL for each of the two strains.
  • the resulting inoculum for each strain is mixed with the burnt and sterile teak sawdust support.
  • the sawdust support Prior to the mixing, the sawdust support is moistened with a salt solution of 8.5g / l concentration (ratio between 0.5: 5 ml / g and 2.5: 5 ml / g) and then mixed with the inoculum resulting from each strain in a proportion between 3 and 5 ml of inoculum for every 5 to 7 g of sawdust support.
  • the mixture is left growing for a period of 24 to 72 hours at a temperature between 29 ° C and 35 ° C, which is known as a secondary crop.
  • the product obtained at the end of this secondary culture is the biological inoculant, which comprises a teak sawdust support and one or more strains bacterial plant growth promoters.
  • the bacteria included in this patent document are mesophilic and therefore their growth temperature is between 25 ° C and 42 ° C with an optimum between 28 and 32 ° C
  • the biological inoculant maintains its viability and biological activity up to 120 days at a concentration greater than 10 10 CFU / mL in the case of strain Tgl_GBR285 and greater than 10 11 CFU / mL in the case of strain TgLGBR250. Both values are comparable with those of the control strain of Azospirillum brasilense ATCC 29145, which obtained a concentration of 10x10 1 1 CFU / g. Likewise, under these conditions 100% purity is achieved.
  • a pasty product can be prepared with the biological inoculant obtained by mixing 720 mL of carboxymethyl cellulose having a concentration of 4g / L previously autoclaved and 180 g of the biological inoculant. This obtained mixture is applied to the plant material allowing a contact time between the mixture and the plant material at least 15 minutes before sowing without the material becoming dehydrated.
  • the concentration of the inoculum at the time of application of the mixture on the plant material is greater than or equal to 10 11 CFU / g biological inoculant mixture + carboxymethyl cellulose complying with the established minimum limit (10 7 CFU / g).
  • the pasty product obtained has a final volume of 900ml whose yield is: 2200 miniestacas or 1220 stakes or 459 inoculated seedlings.
  • the ratio between grams of inoculant and carboxymethylcellulose solution is 4:20, that is, 4 grams of inoculant per 20 mL of carboxymethylcellulose solution.
  • the process of immobilization of the strains to obtain the biological stimulator inoculant can be condensed in the following stages in accordance with the above:
  • cultivate the strain TgLGBR285 for a period of 8 to 24 hours in a batch fermentation system with a stirring speed between 1 10 rpm and 150 rpm and a temperature between 28 ° C and 35 ° C; b. cultivate the strain TgLGBR250 for a period of 3 to 15 hours in a batch fermentation system with a stirring speed between 1 10 rpm and 150 rpm and a temperature between 28 ° C and 35 ° C;
  • the process of immobilization of one or more bacterial strains promoting plant growth to obtain the stimulating biological inoculant according to the invention is characterized in that the process comprises the steps of: a. cultivate each strain to be used in a batch fermentation system for a period of 8 to 24 hours with stirring between 110 and 150 rpm and a temperature between 28 ° C and 35 ° C;
  • the burnt sawdust support is previously moistened with a solution of sodium chloride (NaCI) of 8.5g / L at a rate of 0.5 to 2.5 milliliters of solution per 5 grams of support.
  • NaCI sodium chloride
  • the biological inoculant in its two formulations with the strain TgLGBR285 and the other formulation TgLGBR250 were compared with the phytohormone AIB (indolbutyric acid) and with the strain Azospirillum brasilense ATCC 29145, which is used in a known commercial formulation.
  • Figure 3 shows the effect of the inoculant using two supports or carriers on the root length of teak plants planted for 25 days by using the two different substrates. This is how the effect of the use of the biological inoculant on the root length was evaluated.
  • the biological inoculants were obtained using the strains Tgl_GBR285, Tgl_GBR250 and Azospirillum brasilense (Control strain) and the immobilization procedure described in the present invention using both supports: teak sawdust support and sodium alginate.
  • the diameter of the plants is substantially greater when using the phytohormone and the three strains evaluated immobilized in the teak sawdust support compared to the results of the immobilized in alginate, which evidences that the teak sawdust support improves the effect of these strains, particularly strain TgLGBR285, obtaining a diameter similar to that obtained with phytohormone but without the effects of using a chemical. Ratifying the above, it can be seen in Figure 5 that for the control strain comparable results are obtained between the teak sawdust support and the alginate, which evidences that the teak sawdust support according to the invention is favorable and convenient. compared to conventionally known media in the state of the art.
  • Tests were carried out to verify the property of the teak sawdust support according to the invention against one of the carriers or carriers widely reported for the formulation of plant growth promoting bacteria: sodium alginate.
  • the viability and stability of biological activity were evaluated until day 120 after the immobilization of different bacteria isolated from teak.
  • the inoculated supports were maintained at 19 ⁇ 2 ° C.
  • the biological activity evaluated corresponds to the activity of the nitrogenase enzyme present in these nitrogen fixing bacteria.
  • Example 4 tests were carried out to assess the viability of isolated teak bacteria and the reference strain Azospirillum brasilense ATCC 29145 immobilized in burned teak sawdust and in solinate alginate, stored at 4 ° C for 120 days. The results are presented in table 2 below. Table 2
  • the burned teak sawdust maintains the viability of different teak isolates at values higher than those of the mentioned technical standard, and also maintains the viability of bacteria isolated from other plant species, as is the case of the strain A. brasilense.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Virology (AREA)
  • Microbiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • Pest Control & Pesticides (AREA)
  • Environmental Sciences (AREA)
  • Dentistry (AREA)
  • Plant Pathology (AREA)
  • Agronomy & Crop Science (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • General Engineering & Computer Science (AREA)
  • Fertilizers (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Cultivation Of Plants (AREA)
  • Toxicology (AREA)

Abstract

La presente invención hace referencia a la obtención y aplicación de un inoculante biológico para empleo en material vegetal sembrado en vivero. Además, la presente invención proporciona un proceso de inmovilización de cepas bacterianas en un soporte y la aplicación sobre materiales vegetales. Así mismo, la invención hace referencia al uso de bacterias rizosféricas nativas de teca como medio para promover el crecimiento vegetal. La invención consiste en el desarrollo de un producto biológico basado en la aplicación de bacterias rizosféricas sobre un soporte de aserrín carbonizado de teca, que permite lograr plantas con mejores características en menor tiempo.

Description

INOCULANTE BIOLÓGICO PARA PROMOCIÓN DE CRECIMIENTO DE LAS
ESPECIES FORESTALES Y MÉTODO PARA SU OBTENCIÓN
CAMPO DE LA TÉCNICA
La presente invención se relaciona con el campo de la biotecnología agrícola y la aplicación de inoculantes biológicos para la promoción de crecimiento vegetal sin afectar el medio ambiente.
ANTECEDENTES DE LA INVENCIÓN
La industria maderera en el año 2009 produjo USD 91.898.016.000 en importaciones a nivel mundial y unos USD 89.787.048.000 en exportaciones, lo cual indica que es un sector con alto impacto económico en el mundo. En el caso de Colombia para el 2009 se obtuvieron 46 millones de dólares en exportaciones de madera y el coste de la importación de este producto fue de 104,556 millones de dólares, lo que muestra que hay una falencia en la producción maderera para suplir la demanda interna (Trademap, 201 1 ).
El insumo principal para la obtención de madera son las especies forestales como el roble, pino, eucalipto, ciprés o nogal. El banco mundial estima que cerca de 1 ,2 billones de empleos dependen de la industria forestal que se desarrolla principalmente en África, Latinoamérica y Asia. En Colombia, el 70% del área de bosques productivos, está compuesto por especies forestales introducidas como la araucaria, el urapán, el ciprés, diversos pinos, eucaliptos y la teca entre otros.
Las plantaciones de estas especies forestales se ubican generalmente en tierras agrícolas abandonadas y de baja fertilidad, lo que ha generado varios inconvenientes desde las fases iniciales de crecimiento, relacionados con problemas en fertilización, bajo porcentaje de micorrización y un alto desarrollo de enfermedades (Jaramillo & Martínez-Nieto, 2009). Todo esto ha conllevado al desarrollo e implementación de una variedad de productos de gran utilidad en las fases iniciales de crecimiento de estas especies. .
Sumado a lo anterior, existe un alto interés en la actualidad por realizar actividades y utilizar productos ambientalmente sostenibles, como el caso de los sustratos bioenriquecidos e inoculantes biológicos, entendidos éstos como productos que contienen microorganismos viables benéficos, utilizados en la agricultura para la fijación de nitrógeno, la solubilización de materiales portadores de nutrientes, la promoción del crecimiento vegetal, la micorrización o transformación de materia orgánica; el producto no debe contener microorganismos patógenos a humanos, plantas o animales (Pardo, 2002; Soroaef al., 2006; NTC 5842, 201 1 ).
El uso de microorganismos para el desarrollo de estos productos es importante, ya que son los componentes más importantes del suelo, responsables de la dinámica de transformación y desarrollo vegetal. La presencia de estos microorganismos en el suelo lo hace fértil, es decir, que aumenta la concentración de elementos nutritivos disponibles para la planta - o de poblaciones microbianas que liberen nutrientes que permitan un buen desarrollo de las plantas.
Dentro de los microorganismos, las bacterias y los hongos de micorriza arbuscular han sido reconocidos por la Organización de las Naciones Unidas para la Alimentación y la Agricultura - FAO, como una herramienta importante para aumentar la producción agrícola y brindar beneficios a las plantas en la protección y en la obtención de nutrientes (Ocampo ef a/. , 2001). Algunas características de estos microorganismos son el hecho de que no requieren de la colonización interna de tejidos en plantas para actuar, el de tener la capacidad de aumentar en corto tiempo su densidad poblacional en la rizosfera después de su inoculación y el de colonizar efectivamente la superficie de la raíz (Jiménez et al., 2001 ).
En el caso particular de los hongos, las ventajas más importantes se evidencian en el aumento de la capacidad de obtención de fósforo y en el mejoramiento de las relaciones hídricas y la adaptación al suelo de las plantas producidas en vivero (Ocampo ef al., 2001 ). Las bacterias por su parte promueven la interacción entre las raíces de las plantas y los hongos, la acción bioprotectora y el desarrollo vegetal, ya que intervienen en la producción de reguladores de crecimiento vegetal como el ácido 3-indolacético (AIA); además facilitan la asimilación de nitrógeno y de sales inorgánicas. Otras ventajas se relacionan con un aumento en el vigor, la emergencia y el peso de plántulas, así como un mayor desarrollo en los sistemas radicales y un incremento hasta del 30% en la producción (Jiménez et a.,, 2001 ; Bertolini eí al. , 2007).
En relación con las especies Pseudomonas sp. y Enterobacter sp., se identificó que se han usado como biofertilizantes o promotores de crecimiento en Lactuca sativa ( ohler, 2009), en tomate (Gamalero, 2002; Pivato eí al., 2009), en Medicago truncatula, en tabaco (Ramamoorthy ef al., 2001 ) y en arroz (Nandakumar, 2001 ), entre otros.
En relación con Enterobacter sp., se encontró que se ha utilizado en promoción de crecimiento de cañóla (Saleh, 2001 ; Mayak, 2001 ; Nie ef al., 2002), tomate (Holguin, 2003), en clavel (Li ef al., 2005) y en caña de Azúcar (Mirza ef al., 2001), entre otros.
El paso de los nutrientes, la transferencia de oxígeno y la adhesión de una población microbiana a las plantas se favorece con el uso los soportes microbianos. El uso de soportes es importante porque al momento de introducir microorganismos a distintos ambientes sin un soporte se pueden presentar bajas tasas de supervivencia de los primeros y una baja eficiencia debido al bajo número de unidades formadoras de colonias por gramo de suelo. El uso del soporte permite un mayor grado de supervivencia en los procesos de inoculación y además no causan contaminación en el ambiente en que se aplique. Estos soportes microbianos también son conocidos como portadores microbianos.
No obstante, se presentan algunas limitaciones en el uso de algunos soportes. Por ejemplo cuando se utiliza la turba como soporte, además de su alto costo y baja disponibilidad en nuestros países tropicales, se habla de la baja pureza del soporte, ya que a los 90 días de almacenamiento en frío los inoculantes comienzan a presentar contaminación con microorganismos diferentes al inmovilizado (Step ens & Rask, 2000) como lo son los bacilos Gram positivos; con aserrín de guadua no se mantiene la viabilidad celular y en el caso del soporte alginato de sodio, aunque sí se mantienen las características de pureza, viabilidad y actividad biológica, los costos de obtención del inoculante son altos.
Dentro de los soportes que se emplean con este fin, el estado de la técnica divulga diferentes tipos, de acuerdo a los compuestos por materiales porosos como el poliuretano, la celulosa, el polipropileno y la cerámica. Estos soportes se caracterizan porque permiten la inmovilización de células de animales, plantas, microorganismos y protozoos. Los soportes de celulosa son susceptibles a la erosión por lo tanto su duración es más corta y los soportes de cerámica tienen varias limitaciones por su alta gravedad específica que les impide ser fluidos en agua.
Otro tipo de soportes son los compuestos por geles, que incluyen los compuestos por poliacrilamida, glicol de polietileno y ácido algínico. Los soportes de gel pueden contener gran cantidad de agua por lo que tienen mayor biocompatibilidad con las células de microorganismos, humanas y vegetales.
Para la promoción de crecimiento vegetal y en la industria de la agricultura, los soportes más utilizados son los de arcilla, vermiculita, perlita, sepiolita, caolín, tierra de diatomeas y zeolita natural, entre otros, como así se presenta en la solicitud de patente WO2009/027544A1.
Otras invenciones relacionadas con el uso de soportes, donde se utiliza el aserrín, se identificaron en el estado de la técnica, como por ejemplo el documento de patente JP2000016889 que hace referencia a un proceso para la producción de abono como fertilizante de fermentación que utiliza bacterias fotosintéticas de los géneros Rhodopseudomonas, Rhodospirillum y Éctothiorhodospira y de las familias Ectothiorhodospiraceae y Chloroflexaceae, con ácido acético o un material que lo contenga, y en el cual se utiliza como adsorbente la mezcla sobre un material poroso (30% p/p o menos) producido por carbonización de la madera, aserrín, cáscaras de coco, bagazo, cascos de trigo, cascos de semillas de algodón, sedimentos de café o similares, una zeolita, etc.
Es importante señalar que este documento se limita a divulgar el requerimiento de un 30%(p/p) o menos del cultivo microbiano con respecto al material poroso, así mismo esta formulación incluye el requerimiento de ácido acético o una fuente del mismo en una proporción de hasta ocho veces respecto al volumen del cultivo. Sin embargo, no establece una concentración de los microorganismos particulares por gramo, lo que imposibilita la dosificación precisa de los componentes del producto.
En la patente KR960002627 se revela un promotor de compostaje que es obtenido de la mezcla uniforme de una parte de bacterias con aserrín, cascarilla de arroz y piedra caliza en proporciones (p/p) 4:5: 1.
La patente KR920003238 divulga un agente para el mejoramiento del suelo que es obtenido mediante las mezclas del 94-97% (p/p) de materia orgánica de desecho con 2-5% (p/p) de aserrín, 0.2-0.5% de lechada de cal y 0.2-0.5% de cenizas de madera y ajustar el pH a un valor entre 6.5 y 7.5.
La patente JP11029384 reporta un fertilizante orgánico promotor del crecimiento vegetal que mejora efectivamente la calidad del suelo y permite la reutilización de desechos industriales. Este fertilizante es obtenido mezclando salvado de arroz, aserrín de un árbol de follaje o madera, sedimentos líquidos de soya, paja cortada de plantas de arroz, residuos de basura o carbón vegetal granular, con un material que comprende residuos bacterianos de un cultivo de hongos (por ejemplo Shiitake, Maitake y Shimeji) y fermentar el material resultante.
La patente JP4122788 hace referencia a un activador de suelos y promotor del crecimiento vegetal obtenido por la fermentación aeróbica de una fuente vegetal rica en fibras mezclada con salvado de cereales, fósiles de crustáceos, entre otros y un complejo enzimático, el cual es mezclado con aserrín o astillas de madera tratadas enzimáticamente. Las patentes KR960002627 y JP11029384 reportan etapas separadas como es el caso del alistamiento del soporte (calentamiento y carbonización) y etapas de inoculación e incubación, respectivamente.
De acuerdo con la información anterior, es evidente que aún subsiste la necesidad de inoculantes biológicos para sustratos de vivero a fin de promover el crecimiento vegetal sin que afecten el medio ambiente y que permitan lograr plantas con mejores características de vigor y sanidad en un menor tiempo a través de un proceso que incluya etapas de alistamiento del soporte, inoculación e incubación y que permitan la disminución del uso de fertilizantes químicos.
OBJETO DE LA INVENCIÓN
Un objeto de la invención es un inoculante biológico estimulador de crecimiento vegetal que comprende un soporte derivado del proceso de transformación industrial de la madera de teca, y una o más cepas bacterianas promotoras de crecimiento vegetal, preferiblemente cepas bacterianas aisladas de raíces de teca. Este inoculante biológico se puede combinar con excipientes adecuados para formar un producto para ser aplicado al material vegetal antes de la siembra.
Otro objeto de la presente invención es proporcionar un proceso de inmovilización de cepas en un soporte caracterizado por el tiempo de cultivo, la realización de un cultivo secundario, la forma de almacenamiento del inoculante y la aplicación sobre materiales vegetales provenientes de propagación clonal por estacas, seudo-estacas o mini-estacas o proveniente de semillas-plántulas.
Aún, otro objeto de la invención es un producto caracterizado porque comprende el inoculante biológico junto con excipientes adecuados para la estimulación del crecimiento de plantas cuando el producto es aplicado sobre semillas, plántulas, estacas, seudo-estacas o mini-estacas DESCRIPCIÓN DE LAS FIGURAS
La figura 1 muestra los resultados en la longitud radical de plantas de teca inoculadas con diferentes bacterias inmovilizadas en el soporte de aserrín de teca. Las plantas fueron sembradas en una mezcla de arena cuarcítica, suelo de vivero y cascarilla de arroz en proporción 1 : 1 : 1. La longitud de las raíces fue determinada 30 días después de la siembra.
La figura 2 muestra el efecto del inoculante biológico empleando dos soportes (alginato y aserrín de teca) o portadores sobre la longitud de la raíz de plantas de teca sembradas en turba por 50 días, empleando diferentes microorganismos promotores del crecimiento vegetal y una fitohormona comercial.
La figura 3 muestra el efecto del inoculante biológico empleando dos soportes o portadores sobre la longitud de la raíz de plantas de teca sembradas por 25 días, empleando diferentes microorganismos promotores del crecimiento vegetal y diferentes sustratos de siembra: turba y mezcla de arena, suelo y cascarilla.
La figura 4 muestra el efecto sobre la biomasa obtenida después de 50 días de cultivo empleando una fitohormona comercial y diferentes microrganismos promotores de crecimiento vegetal inmovilizados en aserrín de teca y sembrados sobre turba como sustrato.
La figura 5 muestra el efecto del inoculante biológico sobre el diámetro del tallo en plantas de teca sembradas en turba por 25 días, empleando diferentes microorganismos promotores del crecimiento vegetal y dos soportes diferentes para su inmovilización: alginato de sodio y aserrín de teca.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN
El proceso de inmovilización para obtener un inoculante biológico estimulador de crecimiento vegetal de la presente invención incluye las siguientes etapas: Conformar un soporte, a partir de aserrín de madera teca en un tamaño entre 400-1000 pm, sometido a un tratamiento térmico de forma tal que el aserrín se queme homogéneamente, no genere ceniza, posea una densidad aparente de 0.1 g/l a 0.2 g/l, preferiblemente 0.167 g/l. que su color esté entre las categorías 7.5R2/4 y 10YR2/4 con presencia de partículas de color 10Y1/2 según la tabla de colores de Munsell y tenga la siguiente composición i. Carbono orgánico total entre 20% y 40%
¡i. Nitrógeno total entre 0.1 % y 0.5%
¡¡i. Relación C/N >90
iv. Capacidad de intercambio catiónico >20 meq/100g v. Calcio entre 8 y 15 meq/100 g
vi. Magnesio entre 6 y 12 meq/100 g
vii. Potasio entre 4 y 8 meq/ 00 g
viii. Sodio entre 1 y 5 meq/100 g
ix. Fósforo disponible entre 400 y 750 ppm Cultivar una o más cepas promotoras de crecimiento vegetal del grupo de las bacterias Gram negativas en un sistema de fermentación hasta el final de su fase exponencial o logarítmica, momento en el que alcanzan la máxima producción de biomasa celular y producen metabolitos secundarios dé interés agroindustrial como ácidos y compuestos reguladores de crecimiento vegetal, separar el sobrenadante y re- suspender en solución salina de concentración 0.85% hasta una concentración celular final de 1012 UFC/mL. Mezclar cada solución resultante de la etapa 2 con el soporte de aserrín de teca obtenido en el punto 1 en proporción de inoculo: soporte entre 2:5 a 2:7 4. Cultivar la mezcla obtenida en la etapa por un periodo de tiempo entre 24 y 72 horas a una temperatura entre 25 °C y 42 °C y opcionalmente incluir excipientes, para obtener el inoculante biológico
Las ventajas de la presente invención serán mejor explicadas a continuación mediante la obtención de un inoculante biológico que comprende: a. un cultivo de la cepa TgLGBR285 del género Stenotrophomonas depositada en la colección del departamento de Biología de la Pontificia Universidad Javeriana con el número No BIO-PUJ-146, la colección del departamento de Microbiología con el número CM-PUJ-148, la cual a su vez está registrada en la Federación Mundial de Colecciones de Cultivos (WFCC) con el número 857- CM-DM-PUJ; b. o un cultivo de la cepa TgLGBR250 del género Enterobacter depositada en la colección del departamento de Biología de la Pontificia Universidad Javeriana con el número No BIO-PUJ-146, la colección del departamento de Microbiología con el número CM-PUJ-148, la cual a su vez está registrada en la Federación Mundial de Colecciones de Cultivos (WFCC) con el número 857- CM-DM-PUJ; c. un soporte de aserrín de teca obtenido a partir de madera dura de teca que no requiere inmunización hasta antes de obtener el aserrín.
La determinación de los soportes o portadores es una de las etapas críticas en la formulación del producto, debido a que estos tienen que mantener los microorganismos viables activos y en una concentración mayor a 106 (preferiblemente entre 106 y 109 UFC/mL).
Dentro de las características que debe presentar un soporte para ser utilizado en la formulación de bioinoculantes microbianos están la capacidad de retención de agua, porosidad, ausencia de compuestos tóxicos y de volátiles que afecten el crecimiento microbiano, que sean de fácil esterilización y manejo debido a la homogeneidad de sus partículas.
Dos de las categorías utilizadas como soportes en la industria de los inoculantes son el carbón solo o con mezclas con otros materiales y materiales ligninocelulolíticos incluyendo bagazo, cascarilla y aserrín (D'souza y Godbole, 2002; Pandey y Maheswari, 2007). El aserrín contiene estructuras con macroporos, como las laberintinas, que proveen una gran área superficial para la unión con las bacterias (Podorozhko et al., 2008).
Kostov y Lynch (1998), utilizaron aserrín compostado como soporte para inoculantes basados en bacterias Gram negativas fijadoras de nitrógeno de los géneros Rhizobium, Bradyrhizobium y Azospirillum con buenos resultados sobre el crecimiento de la planta y el de los microorganismos inoculados. Sin embargo el proceso de compostaje es lento (tarda más de 40 días) y el efecto sobre el crecimiento puede verse enmascarado por los materiales que se adicionan en el proceso de compostaje. De otra parte De Brito-Alvarez (1995) utilizó como soporte para bacterias la mezcla de compost, aserrín, cascarilla de arroz y bagazo, pero las plantas de tomate presentaron fitotoxicidad. En otros estudios con aserrín como soporte, se reportó disminución inicial de las poblaciones de bacterias Gram negativas como Bulkholderia sp. de 109 UFC/g a 107 UFC/g (Pandey y Maheshwari, 2007).
No se han encontrado reportes del uso de aserrín de Teca como soporte en la formulación de bioinoculantes. Una de las razones está relacionada con su efecto antimicrobiano. La durabilidad natural de la madera de Teca es alta, es resistente a la degradaciones de hongos cromógenos y de pudrición (Peraza, 2002). Esta durabilidad en su duramen, constituyente principal del aserrín, ha sido conferida a la proporción de tectoquinona y naftoquinona, compuestos aromáticos del grupo de las antroquinonas (Thulasidas y Bhat, 2007), utilizadas como compuestos antimicrobianos de efecto no generalizado. Aunque para otras especies vegetales no se reportan efectos negativos de sus antraquinonas sobre bacterias Gram negativas como Pseudomonas sp. (Chukwujekwu et al., 2006), para los extractos de madera de Teca sí hay estudios de su efecto perjudicial sobre algunos géneros de este grupo bacteriano (Thulasidas y Bhat, 2007; Krishna & Jayakumaran, 2010).
El aserrín de teca sin quemar tiene un contenido de Carbono Orgánico Oxidable Total entre 46 y 48 %, de sílice entre 1.5% y 2%, de Nitrógeno orgánico entre 0.35 y 0.38%, alto contenido de lignina entre 46 y 56%, de celulosa, entre 30 y 40%, de hemicelulosa, entre 7 y 12 % y una relación carbono:nitrógeno entre 125 y 131. Esta última es menor que lo reportado para otros aserrines, C:N= 300 (Pandey y Maheshwari, 2007).
El soporte derivado del proceso de transformación industrial de la madera de teca para el inoculante biológico de acuerdo con la invención puede ser aserrín proveniente de la transformación industrial de la madera de teca y puede tener un tamaño de partícula entre 400 a 1000 mieras.
El soporte derivado del proceso de transformación industrial de la madera de teca obtenido de acuerdo con la invención se obtiene por combustión controlada y esterilización del material y dicho soporte tiene las siguientes características y composición:
- Carbono orgánico total entre 20% y 40%
- Nitrógeno total entre 0.1 % y 0.5%
- Relación C/N >90
- Capacidad de intercambio catiónico >20 meq/100g
- Calcio entre 8 y 15 meq/100 g
- Magnesio entre 6 y 12 meq/100 g
- Potasio entre 4 y 8 meq/100 g
- Sodio entre 1 y 5 meq/100 g
Fósforo disponible entre 400 y 750 ppm
Queremos resaltar que estos valores fisicoquímicos presentados por el aserrín están dentro de los rangos recomendados para diferentes soportes orgánicos e inorgánicos, según lo reportado por autores como Pandey y Maheshwari en el 2007 (PANDEY, P Y MAHESHWARI, D.K 2007. Bioformulation of Burkholderia sp. MSSP with a multispecies consortium for growth promotion of Cajanus cajan. Canadian Joumal of Microbiology. 53: 213 - 222).
El aserrín también puede obtenerse mediante un proceso de combustión, por ejemplo en una mufla Neycraft JFF2000®. El aserrín fresco con un porcentaje de humedad entre el 50% y el 60%, se coloca sobre una bandeja formando una capa preferiblemente de 1 ,5 cm de espesor y se introduce en la mufla previamente calentada a 250°C. Después de 60 minutos en la mufla, se retira temporalmente para hacer un primer proceso de homogenización del material, luego se introduce de nuevo en la mufla y se deja por 30 minutos adicionales. Al final de este tiempo, el material se retira de la mufla y se realiza un segundo proceso de homogenización para evitar que la capa superior se calcine.
Este aserrín obtenido del proceso de combustión, se humedece con solución salina y se esteriliza en autoclave a 121 °C y 0,72 KPa (15 psi) en tres ciclos cada uno con una duración entre 50 minutos y 100 minutos con un periodo de reposo del material entre 20 y 25 horas entre cada ciclo. El producto obtenido es un soporte de aserrín de teca quemado y esterilizado.
La cepa bacteriana TgLGBR250 se caracteriza por ser un bacilo corto Gram negativo, su actividad biológica más importante es la de solubilizar fósforo, en relación a la cepa de referencia, Pseudomonas fluorescens ATCC BAA 477, solubilizando en mayor proporción dicho elemento y alcanzando halos de 8 mm en agar Pikovskaya y concentraciones de derivados indólicos de 75.73 mg/L en caldo nutritivo suplementado con triptófano al 0.2% (p/v).
Por otro lado, la cepa bacteriana Tgl_GBR285 se caracteriza por ser un bacilo corto Gram negativo, productora de derivados indólicos en concentración de 195.83 mg/L en cultivo en caldo nutritivo suplementado con 0.2% de triptófano (p/v), comparable con la cepa de referencia Azospirillum brasilense ATCC 29145 que produce 247 mg/L. El método de aislamiento de las cepas TgLGBR285 y TgLGBR250 provenientes de raíz de Teca, se realiza sobre el medio de cultivo King B ®, la solubilización de fósforo se evalúa en medio Picovskaya (Pikovskaya, 1948) y la producción de ácido indolacético se evalúa en caldo nutritivo suplementado con triptófano al 0.2% (p/v).
El proceso de inmovilización inicia con' el cultivo proveniente de una fermentación discontinua en Caldo nutritivo Difco ® de las cepas bacterianas aisladas. Para el caso de la cepa TgLGBR285 se cultiva durante un periodo de 8 a 24 horas, en donde alcanza una concentración superior a 109 UFC/mL y para el caso de la cepa Tgl_GBR250 se cultiva durante un periodo de 3 a 15 horas y alcanza una concentración superior a 109 UFC/mL.
Este procedimiento se realiza en un sistema de fermentación discontinuo, por ejemplo en un biorreactor a escala con un volumen efectivo de trabajo de 1 litro, a una velocidad de agitación entre 1 10 rpm y 150 rpm y una temperatura entre 28 °C y 35 °C.
Posteriormente se realiza una centrifugación a 4500 rpm durante 15 minutos y el precipitado celular se re-suspende en 1 I de solución salina. Se repite el proceso de centrifugado y se lava dos veces más. El precipitado de la última centrifugación se re-suspende en solución salina 8.5 g/L ajustando una concentración de 1012 UFC/mL para cada una de las dos cepas.
El inoculo resultante por cada cepa se mezcla con el soporte de aserrín de teca quemado y esterilizado. Previo a la realización de la mezcla, el soporte de aserrín se humedece con una solución salina de concentración 8.5g/l (proporción entre 0.5:5 ml/g y 2.5:5 ml/g) y luego se mezcla con el inoculo resultante de cada cepa en una proporción entre 3 y 5 mi de inoculo por cada 5 a 7 g de soporte de aserrín.
La mezcla se deja cultivando por un periodo de entre 24 y 72 horas a una temperatura entre 29 °C y 35 °C, lo que se conoce como un cultivo secundario. El producto obtenido al finalizar este cultivo secundario es el inoculante biológico, que comprende un soporte de aserrín de teca y una o más cepas bacterianas promotoras de crecimiento vegetal. Las bacterias que se incluyen en este documento de patente son mesófilas y por ello su temperatura de crecimiento está entre los 25 °C y 42 °C con una óptima entre 28 y 32 °C
El inoculante biológico mantiene su viabilidad y actividad biológica hasta los 120 días a una concentración superior a 1010 UFC/mL en el caso de la cepa Tgl_GBR285 y superior a 1011 UFC/mL en el caso de la cepa TgLGBR250. Ambos valores son comparables con los de la cepa control de Azospirillum brasilense ATCC 29145 que obtuvo una concentración de 10x101 1 UFC/g. Así mismo, bajo estas condiciones se logra una pureza del 100%.
Se puede preparar un producto pastoso con el inoculante biológico obtenido, mezclando 720 mL de Carboximetilcelulosa que tiene una concentración de 4g/L previamente esterilizada en autoclave y 180 g del inoculante biológico. Esta mezcla obtenida se aplica sobre el material vegetal permitiendo un tiempo de contacto entre la mezcla y el material vegetal de por lo menos 15 minutos antes de la siembra sin que el material se deshidrate. La concentración del inoculo al momento de la aplicación de la mezcla sobre el material vegetal es mayor o igual a 1011 UFC/g mezcla inoculante biológico+carboximetilcelulosa dando cumplimiento al límite mínimo establecido (107UFC/g). El producto pastoso obtenido tiene un volumen final de 900ml cuyo rendimiento es: 2200 miniestacas ó 1220 estacas ó 459 plántulas inoculadas. La relación entre gramos de inoculante y solución de carboximetilcelulosa es de 4:20, es decir, 4 gramos de inoculante por cada 20 mL de solución de carboximetilcelulosa.
El proceso de inmovilización de las cepas para obtener el inoculante biológico estimulador se puede condensar en las siguiente etapas de acuerdo con lo indicado anteriormente:
a. cultivar la cepa TgLGBR285 durante un periodo de 8 a 24 horas en un sistema de fermentación discontinuo una velocidad de agitación entre 1 10 rpm y 150 rpm y una temperatura entre 28°C y 35 °C; b. cultivar la cepa TgLGBR250 durante un periodo de 3 a 15 horas en un sistema de fermentación discontinuo una velocidad de agitación entre 1 10 rpm y 150 rpm y una temperatura entre 28°C y 35 °C;
c. centrifugar por separado el producto de las etapas a y b a 4.500 rpm durante 15 minutos y separar el sobrenadante;
d. re-suspender el precipitado celular de cada cepa en solución salina de concentración entre 1 a 20 g/L;
e. repetir los pasos c y d dos veces;
f. mezclar el soporte de aserrín de teca con el inoculo resultante de cada cepa en una proporción entre 2 y 3 mi de inoculo por cada 5 a 7 g de soporte de aserrín.
g. realizar un cultivo secundario de la mezcla por un periodo entre 24 y 72 horas a una temperatura entre 25°C y 42 °C.
Más aún, en una modalidad preferida de la invención, el proceso de inmovilización de una o más cepas bacterianas promotoras de crecimiento vegetal para obtener el inoculante biológico estimulador de acuerdo con la invención, se encuentra caracterizado porque el proceso comprende las etapas de: a. cultivar cada cepa a emplear en un sistema de fermentación discontinuo por un periodo de 8 a 24 horas con agitación entre 110 y 150 rpm y una temperatura entre 28°C y 35°C;
b. centrifugar el producto de la etapa y separar el sobrenadante;
c. re-suspender en solución salina de concentración menor a 20 g/L el precipitado de cada cepa obtenido en la etapa
d. repetir los pasos dos veces para cada cepa a emplear;
e. mezclar cada solución resultante de la etapa con el soporte de aserrín de teca en un intervalo de proporción de inoculo: soporte entre 2:5 a 2:7 f. cultivar la mezcla obtenida en la etapa por un periodo de tiempo entre 24 y 72 horas a una temperatura entre 25°C y 42°C. Queremos indicar que la proporción citada se ajusta a la capacidad de retención de agua de los soportes citados por Pandey y Maheshwari en el 2007 y mantiene la concentración bacteriana de 101 1 UFC/g de soporte
En una modalidad preferida de la invención, el soporte de aserrín quemado es previamente humedecido con una solución de cloruro de sodio (NaCI) de 8.5g/L a razón de 0.5 a 2.5 mililitros de solución por 5 gramos de soporte.
EJEMPLOS
Los siguientes ejemplos sirven para ilustrar el alcance de la invención:
El inoculante biológico en sus dos formulaciones con la cepa TgLGBR285 y la otra formulación TgLGBR250 fueron comparados con la fitohormona AIB (ácido indolbutírico) y con la cepa Azospirillum brasilense ATCC 29145, la cual es usada en una formulación comercial conocida.
Ejemplo 1
Este ensayo se realizó para valorar la longitud de la raíz de plantas de teca, en este ejemplo se compararon las cepas TgLGBR285 + soporte de aserrín de teca, TgLGBR250 + soporte de aserrín de teca y Azospirrillum brasilense + soporte de aserrín de teca en distintos tipos de sustrato de siembra en vivero. Este ensayo se realizó con miniestacas de teca y la longitud de las raíces fue determinada 30 días después de la siembra, donde la cepa Azospirrillum brasilense fue empleada como control.
En este sentido, los resultados presentados en la figura 1 mostraron que TgLGBR285 + soporte de aserrín de teca y TgLGBR250 + soporte de aserrín de teca, fueron mejores que la cepa de referencia y comercial de Azospirillum brasilense + soporte de aserrín de teca en la variable de crecimiento de teca evaluada: longitud de las raíces. En el primer caso, se obtuvo una longitud de 15,02 cm, en el segundo una longitud de 13,59 cm y para Azospirillum sp. una longitud de 12,61 cm como se observa en la figura 1. En este mismo sentido, se evaluó el efecto del inoculante empleando dos soportes o portadores, sobre la longitud de la raíz de plantas de teca sembradas en turba por 50 días mediante el empleo de microorganismos promotores del crecimiento vegetal y una fitohormona.
Al evaluar la longitud de raíz de las plantas de teca sembradas, los datos mostrados en la figura 2 evidencian un mejor resultado al emplear aserrín de teca como soporte para inmovilizar los microorganismos Tgl_GBR1 10, Tgl_GBR250 y TgLGBR285 obtenidos de raíces de teca, frente al uso del alginato de sodio como soporte empleado en el estado de la técnica. En el periodo de 50 días a partir de la siembra y empleando como variable evaluada la longitud de raíz de las plantas, se observa que los resultados obtenidos con la cepa de referencia y el fertilizante químico son equivalentes con el soporte de aserrín de teca y el alginato, lo cual es consistente con lo observado en el ejemplo 5 y evidencia que el inoculante biológico de la invención permitiría obtener resultados superiores sin emplear fertilizantes químicos y superiores a los obtenidos con la cepa de referencia empleada en el estado de la técnica.
En la figura 3 se muestra el efecto del inoculante empleando dos soportes o portadores sobre la longitud de la raíz de plantas de teca sembradas por 25 días mediante el uso de los dos sustratos diferentes. Es así como se evaluó el efecto del uso del inoculante biológico en la longitud de la raíz. Para esta evaluación se obtuvieron los inoculantes biológicos empleando las cepas Tgl_GBR285, Tgl_GBR250 y Azospirillum brasilense (Cepa de control) y el procedimiento de inmovilización descrito en la presente invención empleando ambos soportes: el soporte de aserrín de teca y el alginato de sodio.
Los resultados consignados en la figura 3 evidencian un crecimiento de las plantas superior o equivalente en los dos sustratos de siembra evaluados, empleando el inoculante biológico con el soporte de aserrín de teca de acuerdo con la invención y con alginato de sodio como soporte usado de manera convencional. La longitud.de la raíz es superior al emplear el inoculante biológico con soporte de aserrín de teca frente al que emplea alginato, inoculados con la cepa TgLGBR285 en los dos sustratos evaluados. Al sembrar en turba empleando el inoculante biológico con aserrín de teca como soporte, los resultados son en general superiores.
Ejemplo 2
Se realizó un ensayo con mini-estacas de mini-jardín clonal para medir la biomasa de raíces de las plantas de teca producidas en suelo de vivero. En este ensayo, la comparación se hizo con las cepas TgLGBR285 + soporte de aserrín de teca, TgLGBR250 + soporte de aserrín de teca, A. Brasilense + aserrín de teca y la fitohormona AIB 4000ppm + aserrín de teca durante un periodo de 50 días. Todas las plantas se sembraron en turba. Se identificó un mejor resultado para la biomasa de las raíces de plantas inoculadas con la bacteria TgLGBR250 (0,43g) por encima del control positivo de las plantas a las que se aplicó la fitohormona comercial (0,39g). Los resultados se observan en la figura 4.
De otra parte, el diámetro de las plantas es sustancialmente mayor al emplear la fitohormona y las tres cepas evaluadas inmovilizadas en el soporte de aserrín de teca comparado con los resultados de las inmovilizadas en alginato, lo cual evidencia que el soporte de aserrín de teca mejora la efecto de estas cepas, particularmente la cepa TgLGBR285, obteniendo un diámetro similar al obtenido con la fitohormona pero sin los efectos de emplear un producto químico. Ratificando lo anterior, se observa en la figura 5 que para la cepa de control se obtienen resultados comparables entre el soporte de aserrín de teca y el alginato, lo cual evidencia que el soporte de aserrín de teca de acuerdo con la invención es favorable y conveniente frente a los soportes convencionalmente conocidos en el estado del arte.
Ejemplo 3
Se realizaron ensayos para comprobar la propiedad del soporte de aserrín de teca de acuerdo con la invención frente a uno de los soportes o portadores reportados ampliamente para la formulación de bacterias promotoras de crecimiento vegetal: alginato de sodio.
En este ejemplo se evaluaron la viabilidad y la estabilidad de la actividad biológica hasta el día 120 después de la inmovilización de diferentes bacterias aisladas a partir de teca. Los soportes inoculados fueron mantenidos a 19±2°C. La actividad biológica evaluada corresponde a actividad de la enzima nitrogenasa presente en estas bacterias fijadoras de nitrógeno.
Los resultados se presentan en la Tabla 1 a continuación. En todos los casos se realizaron cultivos secundarios.
Tabla 1
Figure imgf000021_0001
En este sentido, se puede observar que las bacterias inmovilizadas en aserrín de teca y almacenadas hasta por 120 días a temperatura ambiente (19±2°C) mantienen su viabilidad y actividad biológica en rangos similares a las inmovilizadas en alginato de sodio, portador comúnmente utilizado en la formulación de inoculantes biológicos. La viabilidad alcanzó valores mayores a los establecidos para inoculantes biológicos según la Norma Técnica Colombiana NTC 5842 (107UFC/g).
Ejemplo 4
En el ejemplo 4, se realizaron ensayos para evaluar la viabilidad de bacterias aisladas de teca y la cepa de referencia Azospirillum brasilense ATCC 29145 inmovilizadas en aserrín quemado de teca y en alginato de solio, almacenadas a 4°C durante 120 días. Los resultados se presentan en la tabla 2 a continuación. Tabla 2
Figure imgf000022_0001
Como se puede observar de la tabla anterior, el aserrín quemado de teca mantiene la viabilidad de diferentes aislamientos de teca en valores superiores a los de la norma técnica mencionada, y también mantiene la viabilidad de bacterias aisladas de otras especies vegetales, como es el caso de la cepa A. brasilense.
Ejemplo 5
En el siguiente ejemplo se presentan los resultados de viabilidad de bacterias aisladas de Guadua angustifolia-guadua, inmovilizadas en aserrín quemado de teca y en alginato de sodio. La evaluación se realizó después de almacenarlas 30 y 45 días, respectivamente, a 19±2°C. En la Tabla 3 se evidencia que de nuevo el aserrín quemado de teca mantiene la viabilidad de las bacterias inmovilizadas en él.
Tabla 3
Figure imgf000022_0002
Finalmente se evaluó la viabilidad de una bacteria aislada de teca (TgLGBR250) y una aislada de guadua (GaYaR3308) en otro soporte orgánico, cascarilla quemada de arroz. Para las dos cepas se mantiene la viabilidad al inmovilizarlas en aserrín quemado de teca, pero no cuando se inmovilizan en la cascarilla. Los soportes inoculados se mantuvieron a 19±2°C durante 2 días. Los resultados de este ejemplo de presentan en la Tabla 4.
Tabla 4
Figure imgf000023_0001

Claims

REIVINDICACIONES
1. Un proceso de inmovilización para obtener un inoculante biológico estimulador de crecimiento vegetal caracterizado porque incluye las etapas de: a. Conformar un soporte a partir de aserrín de madera teca en un tamaño entre 400-1000 μιη sometida a un tratamiento térmico de forma tal que el aserrín se queme homogéneamente, no genere ceniza, posea una densidad aparente de 0.1 g/l a 0.2 g/l, preferiblemente 0.167 q/l. que su color esté entre las categorías 7.5R2/4 y 10YR2/4 con presencia de partículas de color 10Y1/2 según la tabla de colores de Munsell y tenga la siguiente composición
i. Carbono orgánico total entre 20% y 40%
ii. Nitrógeno total entre 0.1 % y 0.5%
iii. Relación C/N >90
iv. Capacidad de intercambio catiónico >20 meq/100g
v. Calcio entre 8 y 15 meq/100 g
vi. Magnesio entre 6 y 12 meq/100 g
vii. Potasio entre 4 y 8 meq/100 g
viii. Sodio entre 1 y 5 meq/100 g
ix. Fósforo disponible entre 400 y 750 ppm
b. Cultivar una o más cepas promotoras de crecimiento vegetal del grupo de las bacterias Gram negativas en un sistema de fermentación hasta el final de su fase exponencial o logarítmica, momento en el que alcanzan la máxima producción de biomasa celular y producen metabolitos secundarios de interés agroindustrial como ácidos y compuestos reguladores de crecimiento vegetal, separar el sobrenadante y re- suspenderla en solución salina de concentración 0.85% hasta una concentración celular final de 1012 UFC/mL.
c. Mezclar cada solución resultante de la etapa b) con el soporte de aserrín de teca obtenido en el punto a) en proporción de inoculo: soporte entre 2:5 a 2:7
d. Cultivar la mezcla obtenida en la etapa por un periodo de tiempo entre 24 y 72 horas a una temperatura entre 25 °C y 42 °C y opcionalmente incluirle excipientes, para obtener el inoculante biológico
2. Un proceso de inmovilización para obtener un inoculante biológico estimulador de crecimiento vegetal de acuerdo a la reivindicación 1 caracterizado porque las cepas son bacterias Gram negativas que pertenecen a los géneros Pseudomonas, Burkholderia, Stenotrophomonas, Rhizobium¡ Bradyrhizobium, Sinorhizobium, Azospiríllum, Azotobacter, Klebsiella, Enterobacter o Sphingomonas.
3. Un proceso de inmovilización para obtener un inoculante biológico estimulador de crecimiento vegetal de acuerdo a la reivindicación 1 caracterizado porque la cepa bacteriana es una cepa rizosférica seleccionada del grupo que consiste de cepa Tgl_GBR285 Stenotrophomonas sp.y cepa TgLGBR250 Enterobacter sp.
4. Un proceso de inmovilización para obtener un inoculante biológico estimulador de crecimiento vegetal de acuerdo a la reivindicación 1 caracterizado porque la temperatura para cultivar la mezcla está entre los 25 y los 42 °C.
5. Un proceso de inmovilización para obtener un inoculante biológico estimulador de crecimiento vegetal de - acuerdo a la reivindicación 1 caracterizado porque las bacterias solubilizan fósforo
6. Un proceso de inmovilización para obtener un inoculante biológico estimulador de crecimiento vegetal de acuerdo a la reivindicación 1 caracterizado porque el soporte de aserrín de teca tratado posee un pH entre 6.8 y 7.8.
7. Un proceso de inmovilización para obtener un inoculante biológico estimulador de crecimiento vegetal de acuerdo a la reivindicación 1 caracterizado porque el soporte de aserrín de teca tratado posee una capacidad de intercambio catiónico entre 20 y 30 meq/100 g.
8. Un proceso de inmovilización para obtener un inoculante biológico estimulador de crecimiento vegetal de acuerdo a la reivindicación 1 caracterizado porque el soporte de aserrín de teca tratado posee un recuento de heterótrofos totales, de actinomicetos y de hongos menor a 10 UFC/g.
9. Un proceso de inmovilización para obtener un inoculante biológico estimulador de crecimiento vegetal de acuerdo a la reivindicación 1 caracterizado porque el excipiente es carboximetilcelulosa
10. Un proceso de inmovilización para obtener un inoculante biológico estimulador de crecimiento vegetal de acuerdo a la reivindicación 9 caracterizado porque la carboximetilcelulosa en solución tiene una concentración de 4 g/l y en donde la relación entre gramos de inoculante y solución de carboximetilcelulosa es de 4:20, es decir, 4 gramos de inoculante por cada 16 mL de solución de carboximetilcelulosa.
1 1. Un soporte de teca caracterizado porque se obtiene de acuerdo con el proceso de la reivindicación 1
12. Un soporte de teca de acuerdo a la reivindicación 1 1 caracterizado porque el soporte de aserrín de teca posee un pH entre 6.8 y 7.8.
13. Un soporte de teca de acuerdo a la reivindicación 1 1 caracterizado porque el soporte de aserrín de teca posee una capacidad 'de intercambio catiónico entre 20 y 30 meq/100 g.
14. Un soporte de teca de acuerdo a la reivindicación 1 caracterizado porque el soporte de aserrín de teca tratado posee un recuento de heterótrofos totales, de actinomicetos y de hongos menor a 10 UFC/g.
15. Un inoculante biológico estimulador de crecimiento caracterizado porque se obtiene de acuerdo con el proceso de cualquiera de las reivindicaciones 1 a 10
16. Un inoculante biológico de acuerdo con la reivindicación 15 caracterizado porque se emplea para disminuir el tiempo de una planta en un vivero.
PCT/IB2014/000527 2013-04-11 2014-04-10 Inoculante biológico para promoción de crecimiento de las especies forestales y método para su obtención WO2014167409A1 (es)

Priority Applications (2)

Application Number Priority Date Filing Date Title
BR112015025912-0A BR112015025912B1 (pt) 2013-04-11 2014-04-10 Processo de imobilização para obter um inoculante biológico estimulador do crescimento vegetal, suporte de teca, e, inoculante biológico
US14/783,393 US10368548B2 (en) 2013-04-11 2014-04-10 Biological inoculant for promotion of growth in forest species and method for obtaining the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CO13094384A CO6660082A1 (es) 2013-04-11 2013-04-11 Inoculante biológico para promoción de crecimiento de las especies forestales y método para su obtención
CO13094384 2013-04-11

Publications (1)

Publication Number Publication Date
WO2014167409A1 true WO2014167409A1 (es) 2014-10-16

Family

ID=49118876

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2014/000527 WO2014167409A1 (es) 2013-04-11 2014-04-10 Inoculante biológico para promoción de crecimiento de las especies forestales y método para su obtención

Country Status (4)

Country Link
US (1) US10368548B2 (es)
BR (1) BR112015025912B1 (es)
CO (1) CO6660082A1 (es)
WO (1) WO2014167409A1 (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11001536B2 (en) 2019-03-08 2021-05-11 Pontificia Universidad Javeriana Bioinoculant composition

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180177192A1 (en) * 2016-12-27 2018-06-28 Talc Usa, Llc Seed Treatment Composition
US20230042599A1 (en) * 2021-08-02 2023-02-09 Heliae Development, Llc Cellulosic compounds and agricultural uses thereof
KR102505272B1 (ko) * 2022-09-16 2023-03-09 주식회사 금강바이오 신규의 네오리조비움 sp. FWR7 및 이를 이용한 퇴비

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR920003238B1 (ko) * 1990-06-07 1992-04-25 정상현 토양 미생물에 의한 토지개량제의 제조방법
KR960002627B1 (ko) * 1993-07-08 1996-02-24 주식회사영우환경 미생물 퇴비부숙 촉진제및 그를 이용한 퇴비의 제조방법
CN1548404A (zh) * 2003-05-13 2004-11-24 上海汇仁复合有机肥料有限公司 一种微生物有机复合肥料的制造工艺
CN101318852A (zh) * 2007-06-07 2008-12-10 华丰源生物科技(深圳)有限公司 有机肥

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR920003238B1 (ko) * 1990-06-07 1992-04-25 정상현 토양 미생물에 의한 토지개량제의 제조방법
KR960002627B1 (ko) * 1993-07-08 1996-02-24 주식회사영우환경 미생물 퇴비부숙 촉진제및 그를 이용한 퇴비의 제조방법
CN1548404A (zh) * 2003-05-13 2004-11-24 上海汇仁复合有机肥料有限公司 一种微生物有机复合肥料的制造工艺
CN101318852A (zh) * 2007-06-07 2008-12-10 华丰源生物科技(深圳)有限公司 有机肥

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11001536B2 (en) 2019-03-08 2021-05-11 Pontificia Universidad Javeriana Bioinoculant composition

Also Published As

Publication number Publication date
BR112015025912A2 (pt) 2017-07-25
CO6660082A1 (es) 2013-04-30
US20160066583A1 (en) 2016-03-10
BR112015025912B1 (pt) 2022-04-26
BR112015025912A8 (pt) 2019-10-29
US10368548B2 (en) 2019-08-06

Similar Documents

Publication Publication Date Title
KR100869349B1 (ko) 친환경 토양활성제와 그 제조방법
AU2007355202B2 (en) Stable organic-carrier-based microbial inoculants and method for producing the same
ES2551678T3 (es) Nuevo fertilizante biológico, procedimiento de obtención y su uso como estimulador del crecimiento vegetal
CN106164247A (zh) 用于应力土壤的接种菌剂
CN105347926A (zh) 一种微生物有机土壤杀菌杀虫增温调节剂的制备方法
CN104911127B (zh) 一种根瘤菌及其菌剂和制备方法与应用
ES2551684T3 (es) Composición biofertilizante
CN104447040A (zh) 一种三酸混合发酵生物有机肥及其制备方法和在烟草种植中的应用
US20190021339A1 (en) Bio-stimulant and method of producing same
CN108059575A (zh) 一种生物肥料及制备方法
WO2014167409A1 (es) Inoculante biológico para promoción de crecimiento de las especies forestales y método para su obtención
CN110079480B (zh) 耐草甘膦的胶质类芽孢杆菌jd-07、菌剂及应用
CN103621210B (zh) 一种提高潮土有效磷含量的方法
KR100965631B1 (ko) 바실러스 속 미생물 함유 상토 조성물 및 이의 제조방법
CN108034609B (zh) 一株具有解磷作用的类芽孢杆菌菌株t1-1及其应用
CN108083931A (zh) 一种有机草莓的无土栽培基质
Latif et al. Effect of biofertilizers and carbolizer on growth of gerbera plant (Gerbera jamesonii).
ES2234417B1 (es) Nuevo fertilizante biologico y procedimiento de obtencion.
CA3147054C (en) Bio-stimulant and method of producing same
CN105145632A (zh) 一种具有多重效果的复合菌酶体系及其应用
CN101786912B (zh) 一种烟草漂浮育苗用高效菌肥及其生产方法
CN107602278A (zh) 烟草设施育苗基质的制备方法
ES2687810T3 (es) Un fertilizante mineral complejo que comprende el microorganismo Rhizobium leguminosarum, procedimiento de producción y usos del mismo
ES2934004T3 (es) Una formulación inoculante bacteriana a base de un consorcio de microorganismos del género calothrix sp. para incrementar el rendimiento y calidad de cultivos vegetales, el método para la fabricación, la formulación, y usos
ES2706099B2 (es) Nueva cepa de Trichoderma aggressivum fsp europaeum, composiciones y aplicaciones de la misma

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14782361

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14783393

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015025912

Country of ref document: BR

122 Ep: pct application non-entry in european phase

Ref document number: 14782361

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 112015025912

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20151009