WO2014166244A1 - 煤层底板突水脆弱性评价方法 - Google Patents

煤层底板突水脆弱性评价方法 Download PDF

Info

Publication number
WO2014166244A1
WO2014166244A1 PCT/CN2013/086689 CN2013086689W WO2014166244A1 WO 2014166244 A1 WO2014166244 A1 WO 2014166244A1 CN 2013086689 W CN2013086689 W CN 2013086689W WO 2014166244 A1 WO2014166244 A1 WO 2014166244A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
coal seam
main control
vulnerability
data
Prior art date
Application number
PCT/CN2013/086689
Other languages
English (en)
French (fr)
Inventor
武强
李博
刘守强
曾一凡
徐生恒
Original Assignee
中国矿业大学(北京)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国矿业大学(北京) filed Critical 中国矿业大学(北京)
Priority to US14/387,056 priority Critical patent/US20160070828A1/en
Publication of WO2014166244A1 publication Critical patent/WO2014166244A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation

Definitions

  • the present invention relates to a method for evaluating physical structure characteristic parameters, and more particularly to a method for evaluating vulnerability of a physical structure. Background technique
  • the coal seam floor has many causes of water inrush, and the process shows a very complex nonlinear dynamic characteristic.
  • the traditional water inrush coefficient method can consider the influencing factors of water inrush to be extremely limited, and cannot fully describe the water inrush from the coal floor.
  • the nonlinear dynamic phenomena controlled by many factors and with very complicated mechanisms have been unable to adapt to the new mining methods and the evaluation of coal seam floor water inrush under new hydrogeological environment conditions.
  • the weight of each main control factor in this method is determined by information fusion method. Once the weight is determined, no matter how the index value of the main control factor changes in the study area, there will be a large number of sudden changes, and the weight value is fixed throughout the study area. .
  • This constant weighted constant power model only considers the relative importance of various indicators in decision-making, but ignores A preference for the degree of state equilibrium. It is impossible to characterize the control and influence characteristics of each single main controlling factor on the water inrush from the coal floor due to the sudden change of the index caused by the change of hydrogeological conditions in the study area, nor can it reveal that the main controlling factors are in the study area due to the sudden change of the index value.
  • the "incentive" and “punishment” mechanisms for the control and influence of coal seam floor water inrush cannot reflect the relative importance and preference of multiple controlling factors in various combinations and their control of coal seam floor water inrush. Influence. Summary of the invention
  • the object of the present invention is to provide a method for evaluating the water intrusion vulnerability of a coal seam floor, which can not effectively analyze the main control factors when using the constant weight model evaluation method to evaluate the water intrusion vulnerability of the coal seam floor, and cannot obtain the main control factors.
  • the inherent variation law leads to technical problems with low evaluation accuracy.
  • the method for evaluating the water intrusion vulnerability of the coal seam floor of the present invention includes:
  • Step 1 Collect the geological data of the target area to be evaluated to determine the main control factors for water inrush from the floor;
  • Step 2 Quantify the relevant data for the main control factor of the water inrush from the floor, and form a thematic map of each main control factor;
  • Step 3 normalizing the attribute data corresponding to the main control factor thematic maps, eliminating the influence of the dimension factors between the attribute data, and forming a normalized thematic map corresponding to each main control factor;
  • Step 4 using GIS, to establish a database of normalized attribute data corresponding to the normalized thematic map;
  • Step 5 determining a constant weight of each main control factor based on the constant weight model
  • Step 6 determining a weighting factor of the main control factor based on the partition variable weight model
  • Step 7 Normalize the composite superposition of each single main control factor, and create a topology relationship of related data in the attribute database for multi-factor fitting analysis;
  • Step 8 Establish a vulnerability assessment model for floor water inrush based on the partition variable weight model, and evaluate the vulnerability of coal seam floor water inrush.
  • the main controlling factor in the step 1 is obtained through the basic data of the water-filled aquifer of the coal seam floor, the basic data of the coal seam geological structure, and the basic data collection and processing of the water-blocking strength of the water-blocking layer.
  • the main controlling factors in the step 2 include the equivalent thickness of the effective aquifer, the thickness of the brittle rock below the failure zone, the fault and fold distribution, the intersection and end point distribution of the fault and fold, the fault scale index, and the floor ash according to the geological conditions.
  • Ai is the normalized data, a, b respectively lower the upper and upper limits of the range, the study takes 0 and 1.
  • Ma X (; Xl ) is the minimum and maximum of the quantized values of each main control factor.
  • step 5 the weighting value of the control factor is determined by establishing a hierarchical structure analysis model, constructing a judgment matrix, and hierarchical ordering and consistency check.
  • the partition variable weight model formula of the main control factor variable weight utilization in the step 6 is:
  • S ( X ) - m-dimensional partition state change weight ) a constant weight vector; w m dimension partition variable weight vector; c is the adjustment level; ai , a 2 , a 3 are the parameters to be determined; ⁇ , d 2 , d 3 is the variable weight interval threshold,
  • VI -vulnerability index Wi -influencing factor variable weight vector
  • Ji ⁇ ' ⁇ -single factor influence value function
  • variable weight interval threshold in the partition variable weight model is determined by dynamic clustering.
  • the method for evaluating the water inrush vulnerability of the coal seam floor of the invention analyzes the coal seam floor data by applying the partition variable weight model to the collected formation geological data, and solves the key technical problems in the evaluation and prediction of the water inrush vulnerability of the coal seam floor.
  • the variable weight model can not only consider the relative importance of the weight of each objective main controlling factor reflected in the water inrush of the coal seam floor, but also effectively study the objective main controlling factors that cannot be dealt with by the constant weight model.
  • the index state value of different units in the district considers the control effect of water inrush from the coal floor. It is more important to consider the role of various objective main control indicators in different combinations of state levels. This effect is continuously adjusted objectively.
  • the main control factor is realized by the weight of different units in the study area changing with the change of its state value.
  • the partitioned variable weight model is used to evaluate the data processing. It not only pays attention to the control effect of each objective main controlling factor on the water inrush from the coal floor, but also pays attention to the control effect of the correlation between the objective main controlling factors on the coal seam floor water inrush.
  • the change law of each objective main control factor in the water inrush problem of coal seam floor Therefore, the evaluation results are more reasonable, the evaluation method is more advanced, and the evaluation results are more in line with the actual production. Using this method can overcome the fact that each objective main control factor in the evaluation prediction process has only one constant defect in the whole research area, which can greatly improve the accuracy of the prediction and prediction of water intrusion in the coal seam floor.
  • FIG. 1 is a water pressure special map of a bottom layer limestone aquifer formed in a coal seam floor water intrusion vulnerability evaluation method according to the present invention
  • FIG. 2 is a rich view of a floor limestone aquifer formed in a coal seam floor water inrush vulnerability evaluation method according to the present invention
  • Water-based thematic map
  • Figure 3 is a special map of the equivalent thickness of the effective water-repellent layer of the bottom plate formed by the water-level vulnerability assessment method for the coal seam floor of the present invention
  • Figure 4 is the mine pressure damage formed by the water-level vulnerability assessment method for the coal seam floor of the present invention
  • FIG. 5 is a special map of the fault and fold distribution formed in the method for evaluating the water intrusion vulnerability of the coal seam floor of the present invention
  • Fig. 6 is a fault and fold formed in the method for evaluating the water intrusion vulnerability of the coal seam floor of the present invention
  • Figure 7 is a thematic map of the fault scale index formed in the method for evaluating the water intrusion vulnerability of the coal seam floor of the present invention
  • Figure 8 is a coal seam floor formed by the method for evaluating the water burst vulnerability of the coal seam floor of the present invention.
  • Figure 10 is a thematic map of the equivalent thickness of the effective aquifer of the coal seam floor limestone formed in the coal seam floor water inrush vulnerability assessment method according to the present invention
  • Figure 11 is a thematic map of the thickness of brittle rock under the coalbed floor limestone ore failure zone formed in the coal seam floor water burst vulnerability assessment method of the present invention
  • Figure 12 is a thematic map of the normalization of the fault and fold distribution of the coal seam floor formed in the method for evaluating the water intrusion vulnerability of the coal seam floor of the present invention
  • Figure 13 is a thematic map of the normalization of the fracture layer and the fold of the coal seam floor formed in the method for evaluating the water inrush vulnerability of the coal seam floor of the present invention
  • Figure 14 is a normalized map of the coal seam floor fault scale index formed in the coal seam floor water burst vulnerability assessment method of the present invention.
  • Figure 15 is a schematic view showing the evaluation model of the water inrush vulnerability of the coal seam floor limestone aquifer utilized in the method for evaluating the water inrush vulnerability of the coal seam floor of the present invention
  • FIG. 16 is a flow chart of a dynamic clustering method utilized in the method for evaluating water intrusion vulnerability of a coal seam floor according to the present invention
  • FIG. 17 is a regulation level C and a to-be-determined parameter ai , a 2 utilized in the method for evaluating water intrusion vulnerability of a coal seam floor of the present invention. , a 3 method flow chart;
  • FIG. 18 is a sectional view showing the water intrusion vulnerability assessment of the 5# coal seam floor based on the partition variable weight model formed in the method for evaluating the water inrush vulnerability of the coal seam floor of the present invention
  • Figure 19 is a schematic view showing the divisional detail of the water intrusion vulnerability assessment zone map formed by the water inrush vulnerability assessment method of the coal seam floor of the present invention.
  • Figure 20 is a detailed view of the partitioning details of the water inrush vulnerability assessment sub-section formed by the conventional coal seam floor water inrush vulnerability assessment method
  • Figure 21 is a partial enlarged view of the variable zone model of the A zone in the water intrusion vulnerability assessment zone map formed by the water intrusion vulnerability assessment method of the coal seam floor of the present invention
  • Figure 22 is a partial enlarged view of the A-zone constant weight model in the water inrush vulnerability assessment zone map formed by the conventional coal seam floor water inrush vulnerability assessment method;
  • Figure 23 is a partial enlarged view of the variable zone model of the B zone in the water intrusion vulnerability assessment zone map formed by the water intrusion vulnerability assessment method of the coal seam floor of the present invention
  • Figure 24 is a partial enlarged view of the B-zone constant weight model in the water-intrusion vulnerability assessment zone map formed by the conventional coal seam floor water vulnerability assessment method;
  • 25 is a partial enlarged view of a variable area model of the C zone in the water intrusion vulnerability assessment zone map formed by the water intrusion vulnerability assessment method of the coal seam floor of the present invention
  • Figure 26 is a partial enlarged view of the C-zone constant weight model in the water-intrusion vulnerability assessment zone map formed by the conventional coal seam floor water vulnerability assessment method;
  • Fig. 27 is a schematic diagram of the data processing process of basic data acquisition, data filtering, data patterning, variable weight model establishment and water intrusion vulnerability assessment of the conventional coal seam floor water inrush vulnerability assessment method. detailed description
  • the determination of the main control factors mainly includes the collection and analysis of objective data in the following aspects:
  • Basic data of the water-filled aquifer of the coal seam floor Including water-rich data, water pressure data of aquifers, etc.;
  • the coal seam floor is limestone
  • the main controlling factors affecting the water inrush from the limestone floor are: the equivalent thickness of the effective aquifer;
  • the thematic map is a graphical representation of the corresponding data set.
  • the thematic map creation method and the generated corresponding map data are described as follows:
  • the water level map of the gray ash aquifer of the bottom plate is calculated, and then the limestone coal field hole is selected according to the selected Calculate the water level value of each coal hole at the position on the water level line, and then calculate the floor height of the aquifer at each hole.
  • the water level elevation of the aquifer subtract the floor level of the 5# coal seam aquifer floor. Calculate the water pressure of the floor limestone that the bottom layer of the aquifer in the study area is subjected to.
  • the water pressure special map of the bottom layer limestone aquifer that is affected by the 5# coal seam floor water layer in the study area is generated (as shown in Figure 1). Show).
  • the unit of color change is Mpa, and the color from light to dark indicates an increase in the value.
  • there are scales and legends in the north direction, and the numbers in the outer frame indicate geographic coordinates.
  • the water-rich aqueous layer refers to the water content of the aquifer or the ability to release water. Measuring the aquifer water-rich index The most ideal indicator is the unit water inflow indicator for drilling.
  • the water inflow of drilling unit should be 91mm in diameter and 10m deep in pumping water.
  • the conversion formula is as follows:
  • the unit water inflow with different pore diameters and different depths is converted into a unit water inflow with a borehole diameter of 91 mm and a pumping depth of 10 m, which further determines the water-rich degree of the aquifer.
  • the results of each pumping test of the floor limestone aquifer are counted and calculated, and their respective unit water inflows are obtained. Based on this, a water-rich thematic map of the bottom layer limestone aquifer is formed (as shown in Figure 2).
  • the thickness of the aquifer suppresses the water inrush from the coal floor, and the water-blocking capacity of the aquifer is related to the thickness, strength and lithology of the aquifer.
  • the effective water-blocking layer is the effective water-blocking layer. Therefore, we should first determine the thickness of the effective water-repellent layer and then determine the equivalent thickness of the effective water-repellent layer.
  • the thickness of the effective aquifer is equal to the total thickness of the aquifer minus the depth of the failure zone of the mine and the elevation of the mine pressure.
  • the range of spatial distribution of the fractures that cause the water conductivity to change significantly is called the bottom water conduction failure zone.
  • the normal distance from the bottom of the coal seam to the deepest boundary of the distribution of the water-conducting fracture is called the "water-conducting failure zone depth", which can be referred to as "the floor failure depth”.
  • the methods for determining are: field test observation method, indoor simulation experiment observation method, and empirical formula method.
  • the empirical formula (3-3) is used to calculate the depth of the mining failure zone of the 5# coal seam floor in the evaluation area.
  • the thickness of the effective aquifer of each hole is the total thickness of the drilling aquif. The difference between the degree and the depth of the mine failure zone.
  • h floor water damage depth, m ;
  • L-mining working face is inclined long, m ;
  • the mining working face has an oblique length of 180m
  • the mining coal seam inclination angle is 25 °
  • the mining depth is the depth of the mining coal seam floor.
  • the application range of the formula is: depth 100m ⁇ 1000m, inclination 4° ⁇ 30°, primary thickness 0. 9 ⁇ 3. 5m (layered total thickness ⁇ 10m), the applicable range can be appropriately expanded.
  • the effective aquifer thickness of each borehole can be subtracted from the total thickness of the borehole layer by the total thickness of the borehole.
  • the thickness of different lithologic layers in the effective aquifer is converted into the corresponding equivalent thickness, and then the equivalent thickness of the effective aquifer is accumulated, according to the final accumulated The thickness is used to establish the equivalent thickness of the effective water-repellent layer of the 5# coal seam floor (as shown in Figure 3).
  • the different lithological combinations in the aquifer and their location have a great influence on the water inrush from the floor.
  • brittle rocks such as sandstone and limestone at the bottom of the aquifer in the minefield.
  • the lithology is hard and the pressure resistance is strong.
  • the water and pressure resistance is also very important.
  • the position of the brittle rock in the aquifer is different, and the effect of water and pressure resistance is also different.
  • Brittle rock is only distributed in the effective aquif layer to play a key role in water blocking; if the brittle rock is distributed within the mine pressure failure zone, after the coal seam is mined, cracks will occur in the brittle rock due to the existence of the failure zone. , can not get water blocking effect.
  • the thickness of the brittle rock under the failure zone is 0 ⁇ 56.35m, mainly composed of coarse sandstone, fine sandstone and siltstone. According to the drilling data, the thickness data of these brittle rocks are statistically added, and the interpolation and quantification processing is used to generate the contour map of the brittle rock thickness under the mine pressure failure zone, and finally the thematic map of the brittle rock thickness under the mine pressure failure zone is obtained. As shown in Figure 4).
  • the fault and fracture structural plane is the weak surface of the pressurized water protruding from the coal seam floor. More than 80% of large water inrush accidents are caused by faults and fissures. These structural belts destroy the integrity of the rock mass itself and become a water guiding channel. The existence of structural belts such as faults also shortens the distance between the coal seam and the aquifer. Increased the possibility of water inrush from the floor. In addition, the axial surface of the pleats also greatly reduces the rupture and water blocking effect of the rock mass due to the extrusion. Therefore, we not only consider the fault but also the influence of the wrinkle shaft when we make the structural distribution.
  • fault fracture zone and fault zone also called buffer of fault
  • fault zone also called buffer of fault
  • pleats only the influence of a certain range of widths of the slant and anticline is considered.
  • the measured collection and reasonable estimation of fault and anticline data form thematic map of coal mine fault and fold distribution in the study area (as shown in Figure 5).
  • the fault scale index comprehensively reflects the scale and development degree of faults, and is another indicator that affects the vulnerability of coal seam floor water inrush.
  • the karst collapse column distribution and the equivalent thickness of the paleo-weathering crust of the top of the ash are limited in the evaluation area, indicating that the corresponding geological features are not obvious and do not constitute the main controlling factor.
  • the data needs to be normalized.
  • the purpose of normalization is to make the data comparable and statistically meaningful for system analysis.
  • Max( . ) - min( . ) In Equation 3-4, Ai is the normalized data, a, b respectively lower the upper and upper limits of the range, and take 0 and 1.
  • Min(i) and maxOi) are the minimum and maximum values of the quantized values of the main control factors, respectively.
  • each single factor attribute database can be established. Use GIS to process normalized data and make a normalized thematic map of each individual control factor ( Figures 8 through 14).
  • the attribute data (quantization value) of the main control factor is input into the computer to generate the attribute database, and the relationship between the graphic element and the attribute database is established.
  • the thematic maps of each of the main control factors and their respective attribute data tables are the basis for the evaluation of the vulnerability of the floor, so as to be used for the composite overlay of the thematic maps of each main control factor, statistics and queries of the data.
  • the water vulnerability assessment model of the coal seam floor limestone aquifer is based on the main influence of the coal seam floor limestone water inrush.
  • the research object is divided into three levels.
  • the vulnerability assessment of water inrush from limestone floor is the ultimate goal of this problem, as the target layer of the model (A level); confined aquifers, geological structures, and aquifers determine the possibility of water inrush, but the way of impact It also needs to be reflected by the specific factors related to it.
  • This is the intermediate link to solve the problem, that is, the criterion layer of the model (the specific main control factor indicators of the B level constitute the decision-making layer of the model (C level), The decision of the level problem finally reaches the goal of the required solution.
  • the method of collecting experts' scores is used to solicit and consult the experts of the field experts, universities and research institutes to listen to their opinions and opinions. Hands-on experience and experience in on-site production practices and scientific research, as well as specific methods of dealing with problems, score the main controlling factors that influence the water inrush.
  • the scoring standard is based on the 1 ⁇ 9 scale method established by TL SAATY.
  • the specific method is to list the factors that influence the water inrush, and ask the domain experts to analyze the main controlling factors, and then the relative importance of each factor.
  • the evaluation is given, and the quantitative scores of each factor are given.
  • the total scores between the factors are compared to form an expert's evaluation set for each influencing factor, thereby constructing the judgment matrix of the AHP evaluation of the coal seam floor water inrush. .
  • the weights of the single-sorting of each layer are calculated according to the judgment matrix, as shown in Tables 1 to 4.
  • weight values of the seven main controlling factors affecting the limestone water inrush from the coal seam floor are determined, as shown in Table 6.
  • the different methods of dynamic clustering are mainly based on different principles of modifying the classification. He is pre-classified coarsely, and then gradually adjusted until it is satisfied.
  • the K-means clustering method in the dynamic clustering method, and combine the SPSS software to process the data.
  • the K-means clustering method from the SPSS software, we can find the aquifer water pressure, the water layer water-rich, the brittle rock thickness under the mine pressure failure zone, the equivalent thickness of the effective aquifer of the coal seam floor, and the fault scale index.
  • the index value is classified as a critical value.
  • the normalized index values of the fault distribution are: 0.7, 1.
  • the index values are: 0.5, 0.7, 0.85, 1.
  • the principle of strong excitation treatment for fault fracture zone and fault intersection is combined with previous application experience to determine the threshold of variable weight interval of these two factors, and finally corresponding The variable control interval of each main control factor is shown in Table 7.
  • the partition variable weight model of the main controlling factor of 5# coal seam floor water inrush is established. Then, using the partition variable weight model to solve the variable weights of each main control factor, the weight of the main control factors changing with the change of the state value of the factors is obtained based on the configuration level of the state values of each factor, as shown in Table 8. Show.
  • thematic map overlay process The single factor is used to eliminate the normalized thematic maps after the dimension, and a new composite map is synthesized, and the topological relationship attribute table of the related data in the attribute database is newly created, and the information storage layers of the relevant factors are combined into one.
  • Information storage layer for multi-factor fit analysis is used to eliminate the normalized thematic maps after the dimension, and a new composite map is synthesized, and the topological relationship attribute table of the related data in the attribute database is newly created, and the information storage layers of the relevant factors are combined into one.
  • coal seam floor water inrush vulnerability assessment model is actually to establish a mathematical model that shows the effects of various influencing factors.
  • the calculated value of this model can reflect the danger of water inrush from the coal seam floor in a certain geographical location.
  • the establishment of the initial model must be based on geological conditions analysis, analysis of water inrush factors and the contribution of various factors to water inrush.
  • Vulnerability Index (VI) was introduced to evaluate the water inrush vulnerability of the coal seam floor.
  • the vulnerability index is defined as the sum of the influences of various influencing factors on a certain grid location in a certain area of a certain area.
  • variable weights of each main control factor determined by the partition variable weight model are based on geological condition data analysis, water inrush factor data analysis and the contribution mechanism of each factor to water inrush.
  • W vulnerability index
  • W '' influential factor variable weight vector
  • single factor influence value function
  • the fragile index value (VI) of the ash water in each superimposed unit in the evaluation area is calculated.
  • the vulnerability index value (VI) is graded to obtain the five-level classification result.
  • the 5# coal seam floor bottom ash water vulnerability index method is used to evaluate the partition.
  • the fragile index of the water in the aquifer is 0.591137, 0.506855, 0. 427520, 0.344868.
  • the study area is divided into five areas based on the grading threshold:
  • the vulnerability evaluation results of the applied partition variable weight model are compared with the traditional application AHP method vulnerability assessment results, and the variable weight evaluation results and traditional evaluation The advanced nature of the analysis.
  • the center position evaluation result of the area based on the variable weight model is a fragile area, and most of the positions corresponding to the position based on the constant weight model The evaluation result is a relatively weak area.
  • the main reason for the difference is that the effective thickness of the effective water-repellent layer in this area is very thin.
  • the effective thickness of the effective water-repellent layer in the red area at the center of Figure 12 is only 2.5m, and the thickness is much smaller than the surrounding area. region.
  • the traditional constant weight model cannot reflect the sudden change of the thickness of the effective aquifer in the region through the adjustment weight, and the variable weight model can increase the equivalent thickness of the effective aquifer in the region.
  • the form of weights is more accurate than the traditional constant weight model.
  • the center position based on the variable weight model is a relatively weak area, and the corresponding position based on the constant weight model is a transition area.
  • the reason for this difference is that the water content of the aquifer in this area is much larger than that of the surrounding area, and the unit water inflow value is about 3.86 L/s ⁇ ⁇ , which is far stronger than the surrounding water-rich. Therefore, compared with other main factors of water inrush from the floor, the weight of the water-bearing influence of the aquifer in this area should be strengthened. Under the variable weight model, the water-rich effect of the aquifer is highlighted in this area. The results of the constant power model evaluation are more accurate.
  • variable weight model can more accurately reflect the influence of the mutation value of each main control factor on the evaluation results.
  • the factors that promote the "penalty" index value to promote the water inrush from the floor, and the factors of the "reward” index value hinder the water inrush from the floor.
  • the variable weight model better describes the effective separation. The weight of the water layer is thinner, the water-rich becomes stronger, and the fracture structure is distributed. The weight of the factor is obviously "pussed", which more realistically describes the hydrogeology of the water inrush from the 5# coal seam floor in the Weizhou mining area.
  • the method for evaluating the water intrusion vulnerability of the coal seam floor of the invention has a significant impact on coal mine production.
  • the basis for the judgment of the bottom layer of the coal seam and the sustainable analysis of the water inrush evaluation is more reliable, and the major defects in the existing evaluation methods are avoided.
  • the evaluation accuracy of this evaluation method tends to be more practical sampling data, which can be promoted and used in a larger coal mining range.
  • This method has strong industrial applicability and operability, and reduces mineral loss and improves Production safety levels and increased recoverable quantities are significant.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

一种煤层底板突水脆弱性评价方法,步骤包括:采集待评价目标区地质数据确定的主控因素;针对的主控因素,对相关数据进行量化,形成每一个主控因素的专题图;针对各专题图对应的属性数据,进行归一化处理,消除属性数据间量纲因素的影响,形成各主控因素相应的归一化专题图;利用GIS,建立与归一化专题图相应的归一化属性数据的数据库;基于常权模型确定各主控因素的权重;基于分区变权模型确定主控因素变权权重;将各单一主控因素归一化专题图复合叠加,新建属性数据库中相关数据的拓扑关系,用于进行多因素拟和分析;建立基于分区变权模型的脆弱性评价模型,进行煤层脆弱性评价。结合分区变权模型与常权模型的数据处理评价过程,评价精度高。

Description

煤层底板突水脆弱性评价方法 本发明是要求由申请人提出的,申请日为 2013年 4月 8日,申请号为 CN201310119817.6, 发明名称为 "改进的煤层底板突水脆弱性评价方法" 的申请的优先权, 该申请的全部内容通 过整体引用结合于此。 技术领域
本发明涉及一种物理结构特征参数评价方法, 特别是涉及一种物理结构的脆弱性评价方 法。 背景技术
矿井水害一直是制约我国煤炭生产发展的重要因素之一, 受水害威胁的煤炭储量约占探 明储量的 27%, 目前不少矿井已进入深部开采, 有些矿井下组煤开采标高已达到 -600 至 -1000m。 煤层底板承受岩溶承压水的水压已达到 2.0MPa~6.5MPa, 而下组煤层与其下伏的灰 岩岩溶含水层之间的隔水层厚度一般只有 10~20m, 最大也仅为 50m~60m, 随着矿井向深部 延伸。 工作面底板含水层的水压逐渐增大, 突水的危险性不断增大。
在国内, 根据本矿区开采到一定深度时各矿井底板突水的实际数据总结出预测底板突水 的经验突水系数评价方法, 一直沿用至今。
但是煤层底板突水促因众多, 且过程显现出一种非常复杂的非线性动态特征, 传统的突 水系数法所能考虑的突水影响因素极为有限, 未能全面描述煤层底板突水这种受控于多因素 且具有非常复杂机理的非线性动力现象, 已不能适应新的采矿方法和新的水文地质环境条件 下的煤层底板突水评价。
基于以上原因, 中国矿业大学 (北京) 武强教授早在上世纪九十年代末就致力于研究基 于多源信息集成理论和 "环套理论" , 并采用具有强大空间数据统计分析处理功能的地理信 息系统 (GIS)与线性或非线性数学方法的集成技术, 对煤层底板突水进行了研究, 提出了基于 GIS 的信息融合型脆弱性指数评价方法, 该方法能够真实反映受控于多因素影响且具有非常 复杂机理和演变过程的煤层底板突水, 较好地解决了煤层底板突水预测预报难题。
但是该方法各主控因素权重的确定采用信息融合方法, 权重一旦确定后无论主控因素在 研究区的指标数值如何变化, 出现多大幅度的突变情况, 权重数值在整个研究区均是固定不 变。 这种权重固定不变的常权模型, 仅仅考虑到各类指标在决策中的相对重要性, 而忽略了 对状态均衡程度的偏好。 无法刻画各单一主控因素在研究区因水文地质条件变化引起其指标 数值突变而造成对煤层底板突水的控制与影响特征, 也不能揭示出各主控因素在研究区因其 指标数值突变而对煤层底板突水控制与影响的 "激励"与 "惩罚"机制, 更不能反映多个主 控因素在多种组合变化状态下其相对重要性与偏好性以及他们对煤层底板突水的控制与影响 作用。 发明内容
本发明的目的是提供一种煤层底板突水脆弱性评价方法, 解决采用常权模型评价方法进 行煤层底板突水脆弱性评价时无法对各主控因素进行有效关联分析, 无法获得各主控因素的 内在变化规律, 导致评价精度较低的技术问题。
本发明的煤层底板突水脆弱性评价方法, 主要步骤包括:
步骤 1, 采集待评价目标区地质数据确定底板突水的主控因素;
步骤 2, 针对底板突水的主控因素, 对相关数据进行量化, 形成每一个主控因素的专题 图;
步骤 3, 针对各主控因素专题图对应的属性数据, 进行归一化处理, 消除属性数据间量 纲因素的影响, 形成各主控因素相应的归一化专题图;
步骤 4, 利用 GIS, 建立与归一化专题图相应的归一化属性数据的数据库;
步骤 5, 基于常权模型确定各主控因素的常权权重;
步骤 6, 基于分区变权模型确定主控因素变权权重;
步骤 7, 将各单一主控因素归一化专题图复合叠加, 并新建属性数据库中相关数据的拓 扑关系, 用于进行多因素拟和分析;
步骤 8, 建立基于分区变权模型的底板突水脆弱性评价模型, 进行煤层底板突水脆弱性 评价。
所述步骤 1中主控因素是通过煤层底板的充水含水层基本数据、煤层地质构造基本数据、 隔水层的隔水强度基本数据采集处理获得的。
所述步骤 2中主控因素, 根据地质条件包括有效隔水层等效厚度、 矿压破坏带以下脆性 岩的厚度、 断层与褶皱分布、 断层与褶皱交点与端点分布、 断层规模指数、 底板灰岩含水层 的富水性和底板灰岩含水层水压、岩溶陷落柱分布和奥灰顶部古风化壳等效厚度中的若干项。
所述步骤 3中采用的消除主控因素不同量纲的数据对评价结果的影响, 采用的归一化公 式为: (b - ) x ( ; - min( ; ))
A, = a + (3-4)
max( ; ) - min( ; )
其中, Ai为归一化处理后的数据, a, b分别归一化范围的下限和上限, 研究取 0和 1。
maX(;Xl)分别为各主控因素量化值的最小值和最大值。
所述步骤 5中通过建立层次结构分析模型, 构造判断矩阵和层次排序及一致性检验确定 所述控制因素的权重值。
所述步骤 6中主控因素变权权重利用的分区变权模型公式为:
Figure imgf000005_0001
其中
Figure imgf000005_0002
0 ,(0)
S ( X )— m维分区状态变权向: )一任一常权向量; w m 维分区变权向量; c为调节水平; ai、 a2、 a3为待确定的参数; ^、 d2、 d3为变权区间阈值,
Figure imgf000005_0003
VI一脆弱性指数; Wi一影响因素变权向量; Ji ^' ^一单因素影响值函数;
—地理坐标; —任一常权向量; S(X)— m维分区状态变权向量。
所述分区变权模型中变权区间阈值采用动态聚类法确定。
所述所述分区变权模型中状态变权向量中调节水平 C和待定参数 ai、 、 a3的优选值为
Figure imgf000006_0001
本发明的煤层底板突水脆弱性评价方法, 对采集的地层地质数据应用分区变权模型对煤 层底板数据进行分析, 解决了煤层底板突水脆弱性评价预测中的关键技术难题。 变权模型不 仅能够考虑常权模型所能反映的各客观主控因素在煤层底板突水过程中的权重的相对重要 性, 也能有效的对常权模型无法处理的各客观主控因素在研究区不同单元的指标状态值对煤 层底板突水的控制作用进行考虑, 更重要的是可以考虑多种客观主控因素指标状态值在不同 组合状态水平情况下的作用, 这种作用通过不断调整客观主控因素在研究区不同单元的权重 随其状态值的变化而变化来实现。 采用分区变权模型进行评价数据处理, 既注重各客观主控 因素对煤层底板突水的控制作用, 也注重各客观主控因素之间相互关联关系对煤层底板突水 的控制作用, 有效的反映了各客观主控因素在煤层底板突水问题中的变化规律。 因而其评价 结果更加合理, 评价方法更加先进, 评价结果更符合生产实际。 使用该方法可以克服评价预 测过程中每个客观主控因素在整个研究区只有一个常权的缺陷, 可大大提高煤层底板突水脆 弱性评价预测的精度。
下面结合附图对本发明的实施例作进一步说明。 附图说明
图 1为本发明煤层底板突水脆弱性评价方法中形成的底板灰岩含水层的水压专题图; 图 2为本发明煤层底板突水脆弱性评价方法中形成的底板灰岩含水层的富水性专题图; 图 3为本发明煤层底板突水脆弱性评价方法中形成的底板有效隔水层等效厚度专题图; 图 4为本发明煤层底板突水脆弱性评价方法中形成的矿压破坏带下脆性岩厚度专题图; 图 5为本发明煤层底板突水脆弱性评价方法中形成的断层与褶皱分布专题图; 图 6为本发明煤层底板突水脆弱性评价方法中形成的断层与褶皱交点、 端点专题图; 图 7为本发明煤层底板突水脆弱性评价方法中形成的断层规模指数等值线专题图; 图 8为本发明煤层底板突水脆弱性评价方法中形成的煤层底板隔水层承受的底板灰岩水 压归一化专题图;
图 9为本发明煤层底板突水脆弱性评价方法中形成的煤层底板灰岩含水层富水性归一化 专题图;
图 10 为本发明煤层底板突水脆弱性评价方法中形成的煤层底板灰岩有效隔水层等效厚 度归一化专题图;
图 11 为本发明煤层底板突水脆弱性评价方法中形成的煤层底板灰岩矿压破坏带下脆性 岩厚度归一化专题图; 图 12 为本发明煤层底板突水脆弱性评价方法中形成的煤层底板断层与褶皱分布归一化 专题图;
图 13 为本发明煤层底板突水脆弱性评价方法中形成的煤层底板断层与褶皱交端点归一 化专题图;
图 14 为本发明煤层底板突水脆弱性评价方法中形成的煤层底板断层规模指数归一化专 题图;
图 15 为本发明煤层底板突水脆弱性评价方法中利用的煤层底板灰岩含水层突水脆弱性 评价模型示意图;
图 16为本发明煤层底板突水脆弱性评价方法中利用的动态聚类方法的流程图; 图 17为本发明煤层底板突水脆弱性评价方法中利用的调节水平 C和待定参数 ai、 a2、 a3 的方法流程图;
图 18为本发明煤层底板突水脆弱性评价方法中形成的基于分区变权模型的 5#煤层底板 突水脆弱性评价分区图;
图 19 为本发明煤层底板突水脆弱性评价方法形成的突水脆弱性评价分区图的分区细节 示意图;
图 20 为常规煤层底板突水脆弱性评价方法形成的突水脆弱性评价分区图的分区细节示 意图;
图 21为本发明煤层底板突水脆弱性评价方法形成的突水脆弱性评价分区图中 A区变权 模型局部放大图;
图 22为常规煤层底板突水脆弱性评价方法形成的突水脆弱性评价分区图中 A区常权模 型局部放大图;
图 23为本发明煤层底板突水脆弱性评价方法形成的突水脆弱性评价分区图中 B区变权 模型局部放大图;
图 24为常规煤层底板突水脆弱性评价方法形成的突水脆弱性评价分区图中 B区常权模 型局部放大图;
图 25为本发明煤层底板突水脆弱性评价方法形成的突水脆弱性评价分区图中 C区变权 模型局部放大图;
图 26为常规煤层底板突水脆弱性评价方法形成的突水脆弱性评价分区图中 C区常权模 型局部放大图;
图 27常规煤层底板突水脆弱性评价方法的基本数据采集、 数据过滤、 数据图形化、 变权 模型建立和突水脆弱性评价的数据处理过程示意图。 具体实施方式
根据某矿区目前存在的严重底板突水问题和相关数据资料, 对该矿区 (研究区) 5#煤底 板突水危险性进行脆弱性评价分区和预测预报的具体步骤如下。
1、 确定待评价目标区底板突水的主控因素
主控因素的确定主要包括对以下几方面客观数据的采集和数据分析:
煤层底板的充水含水层基本数据。 包括富水性数据, 含水层的水压数据等;
煤层地质构造基本数据。包括井田内岩溶陷落柱、 褶皱、 断层的分布数据及其发育数据, 规模大小等数据;
隔水层的隔水强度基本数据。 煤层底板与主要含水层之间的隔水层厚度数据, 及其岩性 组合数据和分布位置数据等。
根据以上采集的数据, 确定煤层底板为灰岩, 确定影响灰岩底板突水的主要控制因素为: 有效隔水层等效厚度;
矿压破坏带以下脆性岩的厚度;
断层与褶皱分布;
断层与褶皱交点与端点分布;
断层规模指数;
底板灰岩含水层的富水性;
底板灰岩含水层的水压;
岩溶陷落柱分布;
奥灰顶部古风化壳等效厚度。
2、 煤层底板突水主控因素数据采集、 量化及其专题图的建立
利用评价区 5#煤层底板突水主控因素原始数据进行插值计算处理,进而生成属性数据库, 建立各主控因素专题图。 专题图为相应数据集合的一种图形表示形式, 各专题图建立方法和 生成的相应图件数据分述如下:
1 ) 底板灰岩含水层的水压
根据在研究区煤矿获取的钻孔资料及利用矿方提供的各水文孔的水位标高以及区域水流 情况插值计算得出底板灰灰含水层的等水位线图, 然后根据选取的见灰岩煤田孔在等水位线 上的位置推算出各见煤钻孔处的水位值, 再统计各个钻孔处的隔水层底板标高, 据此用含水 层的水位标高减去 5#煤层隔水层底板标高, 计算出研究区内隔水层底板所承受的底板灰岩水 压力。 据此生成研究区 5#煤层底板隔水层所承受的底板灰岩含水层的水压专题图 (如图 1所 示)。 图 1中, 颜色变化的单位为 Mpa, 颜色由浅到深表示数值的增大。 图中有比例尺和指北 方向的图例, 外框的数字表示地理坐标。
2) 底板灰岩含水层的富水性
充水含水层的富水性是指含水层的含水程度或释放水量的能力。 衡量含水层富水性指标 最理想的是钻孔的单位涌水量指标。本次针对评价区共收集 15个对底板灰岩含水层混合抽水 试验成果数据, 根据试验成果数据可知在煤矿区内底板灰岩含水层的单位涌水量在 0.000657〜3.86L/s · m之间, 对底板突水起到了一定的控制作用。
为了消除井径以及不同降深对涌水量的影响, 钻孔单位涌水量应以口径 91mm、 抽水水 位降深 10m为准, 换算公式如下所示:
Q井 = Q ( lgR- 1 g¾ )
V* Vft gR井 -lgr井 (3 )
Figure imgf000009_0001
式中: Q涌水量, L/s;
R影响半径, m;
r钻孔半径, m;
K渗透系数, m/d。
通过这样的换算, 把不同孔径、 不同降深的单位涌水量都换算成钻孔孔径为 91mm, 抽 水降深为 10m时的单位涌水量, 这样更加标准的确定了含水层的富水性程度。 根据提取的资 料对底板灰岩含水层的各个抽水试验成果进行统计与计算, 得出它们各自的单位涌水量。 据 此形成了底板灰岩含水层的富水性专题图 (如图 2所示)。
3 ) 有效隔水层等效厚度
隔水层的厚度对煤层底板突水起着抑制作用, 而隔水层的隔水能力与隔水层的厚度、 强 度和岩性组合有关。 根据煤层底板突水的 "下三带"理论, 真正起到阻水作用的是有效隔水 层, 所以我们首先应确定有效隔水层厚度, 然后确定有效隔水层等效厚度。
有效隔水层厚度等于隔水层总厚度减去矿压破坏带深度与矿压导升高度。根据 "下三带" 理论, 煤层底板受开采矿压作用, 岩层连续性遭受破坏, 其导水性因裂隙产生而明显改变, 促使导水性明显改变的裂隙在空间分布的范围称底板导水破坏带。 自开采煤层底面至导水裂 隙分布范围最深部边界的法线距离称 "导水破坏带深度", 可简称 "底板破坏深度"。 其确定 方法有:现场试验观测法、室内模拟实验观测法、经验公式法。本次评价中采用经验公式(3-3 ) 计算评价区 5#煤层底板的矿压破坏带深度, 各个钻孔的有效隔水层厚度为该钻孔隔水层总厚 度与矿压破坏带深度之差。
h=0.0085H+0.1665a+0.1079L-4.3579 (3-3 )
式中: h—底板导水破坏深度, m;
L一开采工作面斜长, m;
H—开采深度, m;
a—开采煤层倾角, (° )。
其中, 开采工作面斜长为 180m, 开采煤层倾角 25 ° , 开采深度为开采煤层底板深度。 公式运用范围为: 采深 100m〜1000m, 倾角 4° 〜30° , 一次采厚 0. 9〜3. 5m (分层开 采总厚 <10m) , 该适用范围可适当外扩。
由于矿压导升高度一般为零, 因此各个钻孔的有效隔水层厚度就可以通过该钻孔隔水层 总厚度减去矿压破坏带深度。
由于隔水层是由多种岩性的岩层组成, 因此必须考虑不同岩性组合特征对隔水能力的影 响。 在考虑不同岩性的隔水强度时, 依据等效系数, 将有效隔水层中不同岩性岩层厚度折算 成相应的等效厚度, 再累加生成有效隔水层等效厚度, 依据最后累加的厚度建立 5#煤层底板 有效隔水层等效厚度专题图 (如图 3所示)。
4)矿压破坏带下脆性岩厚度
隔水层中不同的岩性组合及其位置的分布对底板突水的影响很大。 井田内隔水层底部存 在砂岩, 灰岩等脆性岩, 其岩性坚硬, 抗压能力强, 阻水抗压作用也就非常重要。 隔水层中 脆性岩所处的位置不同, 阻水抗压的效果也不同。 脆性岩只有分布在有效隔水层中才对阻水 起到关键作用; 若脆性岩分布在矿压破坏带以内, 则在煤层开采后, 由于矿压破坏带的存在 使得脆性岩中产生破裂裂隙, 起不到阻水作用。 研究区矿区范围内, 矿压破坏带下脆性岩的 厚度在 0〜56.35m, 主要有粗砂岩、 细砂岩、 粉砂岩组成。 根据钻孔资料把这几种脆性岩的 厚度数据统计累加, 采用进行插值量化处理, 生成矿压破坏带下脆性岩厚度等值线图, 最终 得出矿压破坏带下脆性岩厚度专题图 (如图 4所示)。
5 ) 断层与褶皱的分布
断层、 裂隙结构面是承压水从煤层底板突出的薄弱面。 80%以上的大型突水事故是由断 层和裂隙造成的, 这些构造带破坏了岩体本身的完整性, 易成为导水通道; 断层等构造带的 存在也缩短了煤层与含水层的距离, 增加了底板突水的可能性。 另外, 褶皱的轴面也由于挤 压使岩体破裂阻水效果大大降低。 因此, 我们在做构造分布时不仅考虑了断层也考虑了褶皱 轴部的影响。对于断层,我们把它分为断层破碎带和断层影响带(也可称之为断层的缓冲区); 对于褶皱仅考虑向斜、 背斜轴部一定范围宽度的影响。 根据研究区水文地质图数据和精査报 告上的实测采集及合理推测的断层和向背斜数据形成研究区煤矿断层与褶皱分布专题图 (如 图 5所示)。
6) 断层与褶皱交点、 端点分布
断层和褶皱在空间和平面上的展布交叉形成了具有一定发育规律的尖灭点和交叉点, 在 断层与断层相交、 断层与褶皱、 褶皱与褶皱的端点处, 导水的可能性增强。 根据断层影响带 的影响范围数据形成断层与褶皱交点、 端点专题图 (如图 6所示)。
7) 断层规模指数
断层规模指数综合反映断层的规模和发育程度,是影响煤层底板突水脆弱性的又一指标。 断层规模指数越大表明断层的规模越大, 发育程度越好, 发生突水的可能性也就越大。 建立 断层规模指数专题图时, 先按照 250mX 250m的大小建立单元网格, 统计单元网格内各个断 层的落差及对应的走向长度, 然后将落差与走向长度之积除以一千计算其断层规模指数, 然 后提取网格中心点坐标进而赋值, 以此绘制出断层规模指数等值线专题图 (如图 7所示)。
根据对地质数据的分析, 岩溶陷落柱分布和奥灰顶部古风化壳等效厚度在评价区数据量 有限, 表明相应地质特征不明显, 不构成主控因素。
3、 数据归一化及单因素归一化专题图的建立
为了消除主控因素不同量纲的数据对评价结果的影响, 需要对数据进行归一化处理, 归 一化的目的是相对化, 使数据具有可比性、 有统计意义, 便于系统分析。
4 = " + (6— '》 (3-4)
max( . ) - min( . ) 在式 3-4中, Ai为归一化处理后的数据, a, b分别归一化范围的下限和上限, 研究取 0 和 1。 min( i)和 maxOi)分别为各主控因素量化值的最小值和最大值。
单因素数据经过归一化处理后, 即可建立各单因素属性数据库。 运用 GIS处理归一化数 据, 作出各单独主控因素的归一化专题图 (如图 8至图 14所示)。
4、 属性数据库建立
利用 GIS对空间数据的管理功能, 将主控因素的属性数据 (量化值) 输入到计算机中生 成属性数据库, 并建立图形元素与属性数据库之间的关联关系。 各个主控因素的专题图和它 们各自的属性数据表是进行底板脆弱性评价的基础, 以便用于各主控因素专题图复合叠加、 数据的统计和査询。
5、 通过层次分析法 (AHP) 确定主控因素常权权重
1 ) 建立层次结构分析模型
如图 15所示,煤层底板灰岩含水层突水脆弱性评价模型根据影响煤层底板灰岩突水的主 要控制因素的分析, 将研究对象划分为 3个层次。 灰岩底板突水脆弱性评价是这一问题的最 终目的, 作为模型的目标层 (A层次); 承压含水层、 地质构造、 底板隔水层决定了突水的可 能性, 但其影响方式还需通过与其相关的具体因素来体现, 这是解决问题的中间环节, 亦即 模型的准则层 (B层次 各个具体的主控因素指标构成了本模型的决策层 (C层次), 通过 对该层次问题的决策, 最终达到所要求解的目标。
2 ) 构造判断矩阵
根据对影响煤矿煤层底板灰岩突水主要控制因素的分析, 运用 "征集专家评分"的方法, 征集和咨询现场专家、 高校及科研单位研究学者的意见, 广泛听取他们的见解和看法, 根据 他们在现场生产实践和科学研究中的亲身体验和经历以及处理问题的具体方法, 对影响突水 的主控因素进行评分。 打分标准是依照 T. L. SAATY创立的 1~9 标度方法, 具体做法是把拟 定的影响突水的因素罗列成表, 请领域专家对各个主控因素进行分析, 然后对每个因素的相 对重要性作出评价, 给出每个因素的量化分值; 最后根据累计得分情况, 进行各因素间的总 分比较, 形成专家对各影响因素的评判集, 由此构建煤层底板突水 AHP评价的判断矩阵。
3 ) 层次排序及一致性检验
根据判断矩阵计算出各层单排序的权值, 如表 1至表 4所示。
表 1 判断矩阵 A~Bi ( i=l~3)
Figure imgf000012_0001
l max=3 , CI尸 0.02681, CR尸 0.04623O.1 表 2判断矩阵 Br^d ( i=5~6)
Figure imgf000012_0002
^=2, CI21=0, CR21不存在 表 3 判断矩阵 B2~€i ( i=2~4)
Figure imgf000012_0003
max=3, CI22= 0.00915, C 2= 0.01577<0.1 表 4判断矩阵 B3~Ci (i=5~6)
Figure imgf000013_0001
U CI23=0, CR23=0<0.1 通过各表可知, 各组矩阵计算出 A max, CI与 CR, 存在的 CR值都小于 0.1, 判断矩阵 具有令人满意的一致性, 可以通过一致性检验。
各指标 Ci对总目标的权重 (表 5 ), 即指标层各指标 Ci 经过 Bi层对目标层 A的权重结 果, 符号 A/Ci表示各指标 Ci相对于总目标 A, WA/Ci 为各指标 Ci对总目标 A的权重 (表 6)。
计算可得 C层的总排序随机一致性比率: C¾ = 0¾ +"^ = 0¾ +^ - = 0.00793 < 0.10 "― 具有较满意的一致性, WA/Ci则作为最终决策依据, 如表 5所示。
表 5各指标对总目标的权重
Figure imgf000013_0002
从而确定 7个影响煤层底板灰岩突水的主要控制因素的权重值, 如表 6所示。 表 6影响煤层底板灰岩突水各主控因素的权重
Figure imgf000013_0003
6、 基于分区变权模型确定主控因素变权权重
1 ) 确定主控因素的变权区间和参数阈值
( 1 ) 变权区间阈值的确定 结合已有的矿井水文地质背景数据,基于实测数据, 采用系统动态聚类分析将各因素指标 值逐步凝聚和分类, 对各主控因素根据其指标值的相似性作相对的分区, 从而了解各主控因 素空间分布态势和分区特点, 并根据相对分区结果确定变权区间。
如图 16所示, 动态聚类的不同方法主要以修改分类的不同原则来分区, 他是先粗糙的进 行预分类, 然后再逐步调整, 直到满意为止,
在具体的聚类分析方法上我们选择动态聚类法中的 K-均值聚类法, 同时结合 SPSS软件 对数据进行处理。 按照 K-均值聚类法, 从 SPSS软件中我们可以求出含水层水压、 水层富水 性, 矿压破坏带下的脆性岩厚度、 煤层底板有效隔水层等效厚度、 断层规模指数这些因素被 分为 4类时, 指标值分类临界值。 对于断层分布、 断层端点和交叉点的分布两个主控因素, 他们的指标值是固定的, 断层分布归一化后指标值为: 0.7、 1。 断层端点和交叉点归一化后 指标值为: 0.5、 0.7、 0.85、 1。 我们根据将断层影响带和断层端点进行初始激励处理, 对断 层破碎带和断层交叉点进行强激励处理的原则, 同时结合以往的应用经验来确定这两个因素 的变权区间阈值, 最终得到相应的各主控因素变权区间, 如表 7所示。
表 7各主控因素变权区间
Figure imgf000014_0003
(2) 状态变权向量中待定参数和调节水平的确定
图 17所示, 在分区状态变权向量的确定过程中, 除了要确定公式的形式和变权的区间阈 值 (即 A ) 夕卜, 还需要确定状态变权向量中调节水平 C和待定参数 ai、 a2、 a3的确定方 法。 经过分析与计算, 确定在本次评价中参数为
Figure imgf000014_0001
2) 分区变权模型建立与变权权重确定
在确定状态变权向量的基础上建立与煤层底板突水评价规律相符合的分区变权模型, 具 体公式如下:
Figure imgf000014_0002
其中
Figure imgf000015_0001
,,(0)
S(X)-m维分区状态变权向量; ^。=( ', ',…… 一任一常权向量; ^W-m 维分区变权向量; c为调节水平; ai、 a2、 a3为待确定的参数; ^、 d2、 d3为变权区间阈值。
结合公式 3-7, 按照公式 3-6, 建立 5#煤层底板突水主控因素的分区变权模型。 然后利用 分区变权模型对各主控因素变权权重进行求解,得出在考虑各因素状态值的组态水平基础上, 随因素状态值的变化而变化的主控因素权重, 如表 8所示。
表 8 各主控因素变权权重值
Figure imgf000015_0002
注: 因数据量较大, 在此只选取部分数据
7、 专题图叠加过程 将各单因素消除量纲后的归一化专题图复合叠加, 配准合成一个新的复合图, 并新建属 性数据库中相关数据的拓扑关系属性表, 把各个有关因素的信息存储层复合成一个信息存储 层, 用于进行多因素拟和分析。
8、 建立基于分区变权模型的底板突水脆弱性评价模型
建立煤层底板突水脆弱性评价模型, 实际上就是建立一个表明各影响因素作用的数学模 型, 这个模型所得出的计算值能反映出某一地理位置煤层底板突水的危险程度。 初始模型的 建立必须以地质条件分析、 突水因素分析以及各因素对突水的贡献机理为基础。
为此引入脆弱性指数 VI (Vulnerability Index) 的初始模型来对煤层底板突水脆弱性进行 评价。 脆弱性指数定义为某一地区的某一地段的某一栅格位置上的各种影响因素对其产生的 叠加影响总和。
根据分区变权模型确定的各主控因素变权权重, 结合地质条件数据分析、 突水因素数据 分析以及各因素对突水的贡献机理为基础。 建立研究区煤层底板突水脆弱性评价模型, 可用 以下模型公式 (3-8) 表示: 3
Figure imgf000017_0001
W—脆弱性指数; W' '—影响因素变权向量; —单因素影响值函数;
(x, 一地理坐标; —任一常权向量; S(X)— m维分区状态变权向量。
9、 基于分区变权模型的煤层底板突水脆弱性评价分区
根据公式 3-8, 计算评价区每个叠加单元奥灰突水的脆弱指数值 (VI)。 脆弱指数值越大 说明脆弱性越强, 相对而言底板突水的危险性越大; 脆弱指数值越小, 脆弱性越小, 相对而 言底板突水的危险性越小。然后运用分级地图上常用的 Natural Breaks (Jenks) (自然分级法) 对脆弱指数值 (VI)进行分级, 得到五级分级结果, 最后形成 5#煤煤层底板奥灰突水脆弱性 指数法评价分区中间数据以及相应的奥灰突水专题图。
根据 5#煤层底板承压奥灰含水层突水的脆弱指数分级阈值分别为 0.591137、 0.506855、 0. 427520、 0.344868。 脆弱性指数越大, 突水的可能性也就越大。 根据分级阈值将研究区域 划分为五个区域:
VI > 0.591137 突水脆弱区
0.506855<VI^0.591137 突水较脆弱区
0. 427520<VI^0.506855 突水过渡区
0.344868<VI^0. 427520 突水较安全区 VI^O.344868 突水相对安全区
如图 18所示, 利用中间数据以及相应的奥灰突水专题图, 根据分区阈值对评价区 5#煤 层底板灰岩突水脆弱性进行脆弱性分区, 最终得出基于分区变权原理的底板突水脆弱性评价 预测图。
10、 变权评价效果与传统常权评价效果准确性比较分析
进一步通过直观的专题图形式, 利用突水脆弱性评价分区图, 将应用分区变权模型的脆 弱性评价结果与传统应用 AHP方法的脆弱性评价结果进行对比分析,对变权评价结果与传统 评价的先进性进行分析。
对比变权与传统常权模型的评价结果 (见图 19、 20), 从整体上看, 二者总体趋势是一 致的, 即从东向西其底板突水脆弱性逐渐加强, 突水危险性逐渐增大。 但也明显可看出, 在 局部地区存在差异, 现将局部典型区块差异性放大精细对比分析如下:
由图 21和图 22的 A区局部放大图可看到 (见图 19、 20), 基于变权模型的该区域的中 心位置评价结果为脆弱区, 基于常权模型相对应的位置大部分区域评价结果为较脆弱区, 造 成差异的主要原因是在该区域有效隔水层等效厚度很薄,图 12中心位置的红色区域有效隔水 层等效厚度仅为 2.5m,厚度远小于周围的区域。传统的常权模型并不能将该区域的有效隔水层 厚度很薄的突变情况通过调整权重反映出来, 而变权模型可以将该区域有效隔水层等效厚度 很薄的突变情况, 通过加重权重的形式表现出来, 相比较传统的常权模型评价结果更加准确。
由图 23和图 24的 B区局部放大图可看到 (见图 19、 20), 基于变权模型的中心位置为 较脆弱区, 而基于常权模型的相应位置大部分区域为过渡区, 造成该差异的原因是由于在该 区域含水层的富水性比周围大很多,单位涌水量值在 3.86 L/s ·ηι左右,远强于周围的富水性。 因此, 相对于其他的底板突水主控因素, 在该区域含水层富水性的影响权重值应该得到加强, 在变权模型下在该区域便突出了含水层的富水性的作用, 相比较传统的常权模型评价结果更 加准确。
通过图 25和图 26对比分析可看到 (见图 19、 20), 基于变权模型下中断层的破裂带评 价结果为较脆弱区, 而在常权模型下评价结果为过渡区。 因为断裂构造在传统常权模型中权 重是固定不变的, 就造成了在一些存在断裂构造区块, 各因素多源信息叠加后, 断裂的脆弱 性被消减弱化, 无法突出断裂构造对底板突水的绝对控制作用。 但在变权模型中, 通过对断 裂构造权重的 "惩罚"性加强, 可更好的突出断裂构造对局部突水的决定控制作用。
通过以上分析, 我们可以看到在煤层底板突水脆弱性评价中, 对比传统的常权模型, 变 权模型能够更确切地反映各主控因素指标值突变对评价结果的影响。 "惩罚"指标值对底板突 水起促进作用的因素, "奖励 "指标值对底板突水起阻碍作用的因素, 如在上述 、 B、 C区 块, 变权模型更好地刻画了有效隔水层厚度变薄、 富水性变强和断裂构造分布等指标值发生 明显突变的因素的权重 "惩罚", 更加真实地描述了蔚州矿区 5#煤层底板突水的水文地质物 理概念模型。
如图 27所示,基于上述煤层底板突水脆弱性评价数据处理过程,可以将抽象的数据采集、 数据处理、 模型建立和运用模型进行数据评价概括为简单的系统工作过程。
以上所述的实施例仅仅是对本发明的优选实施方式进行描述, 并非对本发明的范围进行 限定, 在不脱离本发明设计精神的前提下, 本领域普通技术人员对本发明的技术方案作出的 各种变形和改进, 均应落入本发明权利要求书确定的保护范围内。 工业实用性
本发明的煤层底板突水脆弱性评价方法, 对于煤矿生产具有重大影响。 使得对煤层深处 底板的判断和突水评价的可续分析依据更加可靠, 避免了现有评价方法中的重大缺陷。 经过 具体实验检验, 利用本评价方法的评价精度更趋于实际采样数据, 可以在更大采煤范围内推 广使用, 本方法具有很强的工业实用性和可操作性, 对降低矿藏损失, 提高生产安全等级和 增加可开采量意义重大。

Claims

权 利 要 求
1、 一种煤层底板突水脆弱性评价方法, 其特征在于: 主要步骤包括:
步骤 1, 采集待评价目标区地质数据确定底板突水的主控因素;
步骤 2, 针对底板突水的主控因素, 对相关数据进行量化, 形成每一个主控因素的专题 图;
步骤 3, 针对各主控因素专题图对应的属性数据, 进行归一化处理, 消除属性数据间量 纲因素的影响, 形成各主控因素相应的归一化专题图;
步骤 4, 利用 GIS, 建立与归一化专题图相应的归一化属性数据的数据库;
步骤 5, 基于常权模型确定各主控因素的常权权重;
步骤 6, 基于分区变权模型确定主控因素变权权重;
步骤 7, 将各单一主控因素归一化专题图复合叠加, 并新建属性数据库中相关数据的拓 扑关系, 用于进行多因素拟和分析;
步骤 8, 建立基于分区变权模型的底板突水脆弱性评价模型, 进行煤层底板突水脆弱性 评价。
2、 根据权利要求 1所述的煤层底板突水脆弱性评价方法, 其特征在于: 所述步骤 1中主 控因素是通过煤层底板的充水含水层基本数据、 煤层地质构造基本数据、 隔水层的隔水强度 基本数据采集处理获得的。
3、 根据权利要求 2所述的煤层底板突水脆弱性评价方法, 其特征在于: 所述步骤 2中主 控因素, 根据地质条件包括有效隔水层等效厚度、 矿压破坏带以下脆性岩的厚度、 断层与褶 皱分布、 断层与褶皱交点与端点分布、 断层规模指数、 底板灰岩含水层的富水性和底板灰岩 含水层水压、 岩溶陷落柱分布和奥灰顶部古风化壳等效厚度中的若干项。
4、 根据权利要求 3所述的煤层底板突水脆弱性评价方法, 其特征在于: 所述步骤 3中采 用的消除主控因素不同量纲的数据对评价结果的影响, 采用的归一化公式为:
4 = " + (6— '》 (3-4)
max( . ) - min( . ) 其中, 为归一化处理后的数据, a, b分别归一化范围的下限和上限, 研究取 0和 1。
maX(;Xl)分别为各主控因素量化值的最小值和最大值。
5、 根据权利要求 4所述的煤层底板突水脆弱性评价方法, 其特征在于: 所述步骤 5中通 过建立层次结构分析模型, 构造判断矩阵和层次排序及一致性检验确定所述控制因素的权重 值。
6、 根据权利要求 5所述的煤层底板突水脆弱性评价方法, 其特征在于: 所述步骤 6中主 控因素变权权重利用的分区变权模型公式为:
w Sx(X) w2°S2(X) Sm(X)
wjx)u W^S X) □ (3-6) =1 V J-1 J-1 =1 其中
Figure imgf000021_0001
-m 0 =(<), ) ,(0)
s(x)_ 维分区状态变权向 )一任一常权向量; w ■m 维分区变权向量; c为调节水平; ai、 a2、 a3为待确定的参数; ^、 d2、 d3为变权区间阈值。
7、 根据权利要求 6所述的煤层底板突水脆弱性评价方法, 其特征在于: 所述步骤 8中底 板
Figure imgf000021_0002
W—脆弱性指数; -影响因素变权向: -单因素影响值函数;
,(0)
—地理坐标; —任一常权向量; S(X)— m维分区状态变权向里。
8、 根据权利要求 7所述的煤层底板突水脆弱性评价方法, 其特征在于: 所述分区变权模 型中变权区间阈值采用动态聚类法确定。
9、 根据权利要求 8所述的 X, 其特征在于: 所述所述分区变权模型中状态变权向量中调 节水平 C和待定参数 ai、 a2、 a3的优选值为
Figure imgf000021_0003
PCT/CN2013/086689 2013-04-08 2013-11-07 煤层底板突水脆弱性评价方法 WO2014166244A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/387,056 US20160070828A1 (en) 2013-04-08 2013-11-07 Vulnerability Assessment Method of Water Inrush from Aquifer Underlying Coal Seam

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310119817.6A CN103995947B (zh) 2013-04-08 2013-04-08 改进的煤层底板突水脆弱性评价方法
CN201310119817.6 2013-04-08

Publications (1)

Publication Number Publication Date
WO2014166244A1 true WO2014166244A1 (zh) 2014-10-16

Family

ID=51310111

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/086689 WO2014166244A1 (zh) 2013-04-08 2013-11-07 煤层底板突水脆弱性评价方法

Country Status (2)

Country Link
CN (1) CN103995947B (zh)
WO (1) WO2014166244A1 (zh)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107480864A (zh) * 2017-07-21 2017-12-15 中国民航科学技术研究院 一种基于ahp评价的民航应急救援能力分析方法
CN109470839A (zh) * 2018-11-22 2019-03-15 山东科技大学 模拟深部断层形成、断层活化和断层突水的物理试验装置及方法
CN109753704A (zh) * 2018-12-24 2019-05-14 永城煤电控股集团有限公司 地质构造复杂程度的非线性评价方法
CN110276116A (zh) * 2019-06-13 2019-09-24 中煤科工集团西安研究院有限公司 一种煤矿突水水源判别方法及系统
CN110472819A (zh) * 2019-07-04 2019-11-19 中国科学院城市环境研究所 一种基于三维荧光技术的溶解性有机物组分生态风险评价方法
CN113075744A (zh) * 2021-03-15 2021-07-06 华南理工大学 一种建筑物下盾构隧道影响区域岩溶探测系统
CN113190793A (zh) * 2020-09-17 2021-07-30 合肥工业大学 一种松散承压含水层区域富水性动态确定方法
CN113703064A (zh) * 2021-08-05 2021-11-26 中煤科工开采研究院有限公司 坚硬煤层弱化评价方法、评价装置及检测系统
CN114329680A (zh) * 2020-10-09 2022-04-12 神华神东煤炭集团有限责任公司 一种矿区地下水库矿柱坝体稳定性评价方法及其应用
CN114966842A (zh) * 2022-05-27 2022-08-30 山东科技大学 含煤地层断层的三维可视化模型的构建方法
CN115640996A (zh) * 2022-09-30 2023-01-24 中铁二十局集团有限公司 一种富水复杂地层隧道突涌水灾害的评估方法
CN117436291A (zh) * 2023-12-21 2024-01-23 山东科技大学 一种基于覆岩运动学理论的采场三带辨别方法
CN114966842B (zh) * 2022-05-27 2024-06-07 山东科技大学 含煤地层断层的三维可视化模型的构建方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104481587B (zh) * 2014-11-10 2018-09-14 西安科技大学 大采深、大跨度综放采煤工作面顶板砂岩裂隙水探防方法
CN104502995A (zh) * 2014-12-15 2015-04-08 中国矿业大学 一种深矿井煤层开采底板突水危险性评价Ts-q法
CN104794298A (zh) * 2015-04-29 2015-07-22 南华大学 一种铀尾矿库核素对库区地下水污染风险评价的方法
CN105332685B (zh) * 2015-11-13 2018-05-25 西南石油大学 一种提高煤层复杂裂缝支撑效果的支撑剂多级铺置方法
CN105804794B (zh) * 2016-03-22 2018-04-10 太原理工大学 一种用于矿井下多巷道任意角度耦合的水害漫延系统
CN111652490A (zh) * 2020-05-28 2020-09-11 山东科技大学 一种基于断裂力学理论的深部矿山构造型突水预测新方法
CN111724059B (zh) * 2020-06-17 2023-09-15 中煤能源研究院有限责任公司 一种改进的底板突水脆弱性变权评价方法
CN115983639A (zh) * 2022-12-27 2023-04-18 贵州大学 一种岩溶含水层底板突水危险性评价方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101894189A (zh) * 2010-07-14 2010-11-24 中国矿业大学(北京) 煤层底板突水评价的新方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101699451A (zh) * 2009-05-08 2010-04-28 中国矿业大学(北京) 煤层底板突水评价的新型实用方法-脆弱性指数法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101894189A (zh) * 2010-07-14 2010-11-24 中国矿业大学(北京) 煤层底板突水评价的新方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
WU, QIANG ET AL.: "Application of Vulnerable Index Method in the Assessment of Water Outbursts from Coal Seam Floor", CHINA COAL, vol. 36, no. 16, June 2010 (2010-06-01), pages 15 - 19,22 *
WU, QIANG ET AL.: "Vulnerability Forecasting Model Based on Coupling Technique of GIS and ANN in Floor Groundwater Bursting", JOURNAL OF CHINA COAL SOCIETY, vol. 31, no. 3, June 2006 (2006-06-01), pages 314 - 319 *
ZHANG, LONG ET AL.: "Risk Evaluation of Coal Floor Inrush Water Based on GIS: Example for Cao Village Ida", THE CHINESE JOURNAL OF GEOLOGICAL HAZARD AND CONTROL, vol. 23, no. 3, September 2012 (2012-09-01), pages 86 - 90 *

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107480864A (zh) * 2017-07-21 2017-12-15 中国民航科学技术研究院 一种基于ahp评价的民航应急救援能力分析方法
CN109470839A (zh) * 2018-11-22 2019-03-15 山东科技大学 模拟深部断层形成、断层活化和断层突水的物理试验装置及方法
CN109753704A (zh) * 2018-12-24 2019-05-14 永城煤电控股集团有限公司 地质构造复杂程度的非线性评价方法
CN109753704B (zh) * 2018-12-24 2023-09-05 永城煤电控股集团有限公司 地质构造复杂程度的非线性评价方法
CN110276116B (zh) * 2019-06-13 2022-11-25 中煤科工集团西安研究院有限公司 一种煤矿突水水源判别方法及系统
CN110276116A (zh) * 2019-06-13 2019-09-24 中煤科工集团西安研究院有限公司 一种煤矿突水水源判别方法及系统
CN110472819B (zh) * 2019-07-04 2023-04-14 中国科学院城市环境研究所 一种基于三维荧光技术的溶解性有机物组分生态风险评价方法
CN110472819A (zh) * 2019-07-04 2019-11-19 中国科学院城市环境研究所 一种基于三维荧光技术的溶解性有机物组分生态风险评价方法
CN113190793A (zh) * 2020-09-17 2021-07-30 合肥工业大学 一种松散承压含水层区域富水性动态确定方法
CN113190793B (zh) * 2020-09-17 2024-05-21 合肥工业大学 一种松散承压含水层区域富水性动态确定方法
CN114329680A (zh) * 2020-10-09 2022-04-12 神华神东煤炭集团有限责任公司 一种矿区地下水库矿柱坝体稳定性评价方法及其应用
CN114329680B (zh) * 2020-10-09 2024-04-16 神华神东煤炭集团有限责任公司 一种矿区地下水库矿柱坝体稳定性评价方法及其应用
CN113075744A (zh) * 2021-03-15 2021-07-06 华南理工大学 一种建筑物下盾构隧道影响区域岩溶探测系统
CN113703064A (zh) * 2021-08-05 2021-11-26 中煤科工开采研究院有限公司 坚硬煤层弱化评价方法、评价装置及检测系统
CN114966842A (zh) * 2022-05-27 2022-08-30 山东科技大学 含煤地层断层的三维可视化模型的构建方法
CN114966842B (zh) * 2022-05-27 2024-06-07 山东科技大学 含煤地层断层的三维可视化模型的构建方法
CN115640996A (zh) * 2022-09-30 2023-01-24 中铁二十局集团有限公司 一种富水复杂地层隧道突涌水灾害的评估方法
CN115640996B (zh) * 2022-09-30 2024-03-19 中铁二十局集团有限公司 一种富水复杂地层隧道突涌水灾害的评估方法
CN117436291A (zh) * 2023-12-21 2024-01-23 山东科技大学 一种基于覆岩运动学理论的采场三带辨别方法

Also Published As

Publication number Publication date
CN103995947A (zh) 2014-08-20
CN103995947B (zh) 2015-06-24

Similar Documents

Publication Publication Date Title
WO2014166244A1 (zh) 煤层底板突水脆弱性评价方法
Wu et al. Prediction of floor water inrush: the application of GIS-based AHP vulnerable index method to Donghuantuo coal mine, China
US20160070828A1 (en) Vulnerability Assessment Method of Water Inrush from Aquifer Underlying Coal Seam
CN109034582B (zh) 基于云模型和组合赋权的隧道穿越断层突水突泥风险评价方法
Wu et al. Application of the analytic hierarchy process to assessment of water inrush: a case study for the no. 17 coal seam in the Sanhejian coal mine, China
CN104730596B (zh) 一种基于多尺度因素约束的离散裂缝建模方法
CN104732070B (zh) 一种基于信息向量机的岩爆等级预测方法
CN106407493B (zh) 一种基于多维高斯云模型的岩爆等级评价方法
CN106296475B (zh) 隧道及地下工程突涌水灾害多类型证据合成评估方法
CN102194056B (zh) 煤层顶底板突水危险评价预测的bn-gis方法
CN112330002B (zh) 一种城市地面坍塌灾害综合监测预警方法及系统
CN109447493B (zh) 一种基于物源活动强度的震后泥石流危险性评价方法
CN105785471A (zh) 一种矿井预开采煤层的冲击危险性评价方法
Hu et al. Evaluation of water inrush risk from coal seam floors with an AHP–EWM algorithm and GIS
Li et al. Risk assessment of floor water inrush using entropy weight and variation coefficient model
Zeng et al. Vulnerability assessment of water bursting from Ordovician limestone into coal mines of China
Wu et al. Assessment of groundwater inrush from underlying aquifers in Tunbai coal mine, Shanxi province, China
CN113570226A (zh) 断层破碎带隧道突涌水灾害发生概率等级评价方法
Zhang et al. Integrating the hierarchy-variable-weight model with collaboration-competition theory for assessing coal-floor water-inrush risk
CN105182412A (zh) 煤矿地下水库煤柱坝体地震安全性的检测方法
CN109345119A (zh) 一种基于层次分析法的煤层顶板动力分区评价方法
Wang et al. Application of fuzzy analytic hierarchy process in sandstone aquifer water yield property evaluation
Yang et al. Debris flow characteristics and risk degree assessment in Changyuan Gully, Huairou District, Beijing
Yang Risk prediction of water inrush of karst tunnels based on bp neural network
Tu et al. Comprehensive risk assessment and engineering application of mine water inrush based on normal cloud model and local variable weight

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14387056

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13882026

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13882026

Country of ref document: EP

Kind code of ref document: A1