WO2014164409A1 - Inhibitors of human immunodeficiency virus replication - Google Patents

Inhibitors of human immunodeficiency virus replication Download PDF

Info

Publication number
WO2014164409A1
WO2014164409A1 PCT/US2014/022354 US2014022354W WO2014164409A1 WO 2014164409 A1 WO2014164409 A1 WO 2014164409A1 US 2014022354 W US2014022354 W US 2014022354W WO 2014164409 A1 WO2014164409 A1 WO 2014164409A1
Authority
WO
WIPO (PCT)
Prior art keywords
alkyl
hiv
inhibitors
haloalkyl
tert
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/US2014/022354
Other languages
English (en)
French (fr)
Inventor
Kevin Peese
Zhongyu Wang
John F. Kadow
B. Narasimhulu Naidu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bristol Myers Squibb Co
Original Assignee
Bristol Myers Squibb Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bristol Myers Squibb Co filed Critical Bristol Myers Squibb Co
Priority to EP14725559.0A priority Critical patent/EP2970273B1/en
Priority to ES14725559.0T priority patent/ES2623777T3/es
Priority to CN201480013594.8A priority patent/CN105008358B/zh
Priority to JP2016500947A priority patent/JP2016512507A/ja
Priority to US14/770,702 priority patent/US9655889B2/en
Publication of WO2014164409A1 publication Critical patent/WO2014164409A1/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/445Non condensed piperidines, e.g. piperocaine
    • A61K31/4523Non condensed piperidines, e.g. piperocaine containing further heterocyclic ring systems
    • A61K31/4545Non condensed piperidines, e.g. piperocaine containing further heterocyclic ring systems containing a six-membered ring with nitrogen as a ring hetero atom, e.g. pipamperone, anabasine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • A61P31/18Antivirals for RNA viruses for HIV
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00

Definitions

  • the disclosure generally relates to compounds, compositions, and methods for the treatment of human immunodeficiency virus (HIV) infection.
  • HIV human immunodeficiency virus
  • the disclosure provides novel inhibitors of HIV, pharmaceutical compositions containing such compounds, and methods for using these compounds in the treatment of HIV infection.
  • HIV Human immunodeficiency virus
  • AIDS acquired immune deficiency syndrome
  • Recent statistics indicate that as many as 33.3 million people worldwide are infected with the virus (UNAIDS Report on the Global AIDS Epidemic 2010).
  • UNAIDS Report on the Global AIDS Epidemic 2010 In addition to the large number of individuals already infected, the virus continues to spread. Estimates from 1998 point to close to 6 million new infections in that year alone. In the same year there were approximately 2.5 million deaths associated with HIV and AIDS.
  • antiviral drugs available to combat the infection. These drugs can be divided into classes based on the viral protein they target or their mode of action.
  • saquinavir, indinavir, ritonavir, nelfmavir atazanavir darunavir, amprenavir, fosamprenavir, lopinavir and tipranavir are competitive inhibitors of the aspartyl protease expressed by HIV.
  • Zidovudine, didanosine, stavudine, lamivudine, zalcitabine, emtricitibine, tenofovir and abacavir are nucleos(t)ide reverse transcriptase inhibitors that behave as substrate mimics to halt viral cDNA synthesis.
  • the non-nucleoside reverse transcriptase inhibitors nevirapine, delavirdine, efavirenz and etravirine inhibit the synthesis of viral cDNA via a non-competitive (or uncompetitive) mechanism.
  • Enfuvirtide and maraviroc inhibit the entry of the virus into the host cell.
  • An HIV integrase inhibitor, raltegravir MK-0518, Isentress ®
  • MK-0518, Isentress ® has also been approved for use in treatment experienced patients, and it is clear that this class of inhibitors is very effective as part of a combination regimen containing HIV inhibitors of different classes.
  • the invention provides technical advantages, for example, the compounds are novel and are useful in the treatment of HIV. Additionally, the compounds provide advantages for pharmaceutical uses, for example, with regard to one or more of their mechanism of action, binding, inhibition efficacy, target selectivity, solubility, safety profiles, or bioavailability.
  • the invention encompasses compounds of Formula I, including
  • One aspect of the invention is a compound of Formula I
  • R 1 is -CON(R 7 )(R 8 ), -NHSOR 7 , or (R 7 )Ar 2 R 2 is hydrogen or alkyl;
  • R 3 is azetidinyl, pyrrolidinyl, piperidinyl, piperazinyl, morpholinyl, homopiperidinyl, homopiperazinyl, or homomorpholinyl, and is substituted with 0-3 substituents selected from halo, alkyl, haloalkyl, hydroxyalkyl, alkoxyalkyl, alkenyl, cycloalkyl, hydroxy, alkoxy, haloalkoxy, alkenyloxy, and phenyl; or R 3 is cycloalkyl, cycloalkenyl, chromanyl, oxazinyl, or dihydropyranoquinolinyl, and is substituted with 0-3 substituents selected from halo, alkyl, haloalkyl, hydroxyalkyl, alkoxyalkyl, alkenyl, cycloalkyl, hydroxy, alkoxy, haloalkoxy, alkeny
  • R 4 is alkyl or haloalkyl
  • R 5 is hydrogen or alkyl
  • R 6 is hydrogen or alkyl
  • R 7 is (Ar ⁇ alkyl
  • R 8 is hydrogen or alkyl
  • Ar 1 is phenyl substituted with 0-3 substituents selected from halo, cyano, alkyl, haloalkyl, alkoxy, haloalkoxy, and alkenyloxy; and
  • Ar 2 is pyrrolyl, furanyl, thienyl, pyrazolyl, isoxazolyl, isothiazolyl, imidazolyl, oxazolyl, thiazolyl, triazolyl, oxadiazolyl, or thiadiazolyl, and is substituted with 0-3 substituents selected from halo, cyano, alkyl, haloalkyl, alkoxy, haloalkoxy, and alkenyloxy; or a pharmaceutically acceptable salt thereof.
  • Another aspect of the invention is a compound of Formula I where R 1 is
  • R 2 is hydrogen or alkyl
  • R 3 is azetidinyl, pyrrolidinyl, piperidinyl, piperazinyl, morpholinyl, homopiperidinyl, homopiperazinyl, or homomorpholinyl, and is substituted with 0-3 substituents selected from halo, alkyl, haloalkyl, hydroxyalkyl, alkoxyalkyl, alkenyl, cycloalkyl, hydroxy, alkoxy, haloalkoxy, alkenyloxy, and phenyl; or R 3 is cycloalkyl, cycloalkenyl, chromanyl, oxazinyl, or dihydropyranoquinolinyl, and is substituted with 0-3 substituents selected from halo, alkyl, haloalkyl, hydroxyalkyl, alkoxyalkyl, alkenyl, cyclo
  • Another aspect of the invention is a compound of Formula I where R 1 is
  • R 2 is hydrogen
  • R 3 is azetidinyl, pyrrolidinyl, piperidinyl, piperazinyl, morpholinyl, homopiperidinyl, homopiperazinyl, or homomorpholinyl, and is substituted with 0-3 substituents selected from halo, alkyl, haloalkyl, hydroxyalkyl, alkoxyalkyl, alkenyl, cycloalkyl, hydroxy, alkoxy, haloalkoxy, alkenyloxy, and phenyl; or R 3 is cycloalkyl, cycloalkenyl, chromanyl, oxazinyl, or
  • dihydropyranoquinolinyl and is substituted with 0-3 substituents selected from halo, alkyl, haloalkyl, hydroxyalkyl, alkoxyalkyl, alkenyl, cycloalkyl, hydroxy, alkoxy, haloalkoxy, alkenyloxy, and phenyl;
  • R 4 is alkyl or haloalkyl;
  • R 5 is alkyl;
  • R 6 is hydrogen;
  • R 7 is (Ar ⁇ alkyl;
  • R 8 is hydrogen; and
  • Ar 1 is phenyl substituted with 0-3 substituents selected from halo, cyano, alkyl, haloalkyl, alkoxy, haloalkoxy, and alkenyloxy; or a pharmaceutically acceptable salt thereof.
  • Another aspect of the invention is a compound of Formula I where R 2 is hydrogen, R 4 is alkyl, R 5 is alkyl, and R 6 is hydrogen.
  • R 3 is azetidinyl, pyrrolidinyl, piperidinyl, piperazinyl, morpholinyl, homopiperidinyl,
  • homopiperazinyl, or homomorpholinyl is substituted with 0-3 substituents selected from halo, alkyl, haloalkyl, hydroxyalkyl, alkoxyalkyl, alkenyl, cycloalkyl, hydroxy, alkoxy, haloalkoxy, alkenyloxy, and phenyl.
  • R 3 is piperidinyl substituted with 0-3 substituents selected from halo, alkyl, haloalkyl, hydroxyalkyl, alkoxyalkyl, alkenyl, cycloalkyl, hydroxy, alkoxy, haloalkoxy, alkenyloxy, and phenyl.
  • R 3 is cycloalkyl, cycloalkenyl, chromanyl, oxazinyl, or dihydropyranoquinolinyl, and is substituted with 0-3 substituents selected from halo, alkyl, haloalkyl, hydroxyalkyl, alkoxyalkyl, alkenyl, cycloalkyl, hydroxy, alkoxy, haloalkoxy, alkenyloxy, and phenyl.
  • Another aspect of the invention is a compound of Formula I where R 4 is alkyl.
  • Another aspect of the invention is a compound of Formula I where R 5 is alkyl.
  • Another aspect of the invention is a compound of Formula I where where R
  • any instance of a variable substituent including R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , Ar 1 , and Ar 2 , can be used independently with the scope of any other instance of a variable substituent.
  • the invention includes combinations of the different aspects.
  • Alkyl means a straight or branched alkyl group composed of 1 to 6 carbons.
  • Alkenyl means a straight or branched alkyl group composed of 2 to 6 carbons with at least one double bond.
  • Alkylene means a straight or branched divalent alkyl group composed of 1 to 6 carbons.
  • Alkenylene means a straight or branched divalent alkene group composed of 2 to 6 carbons with at least one double bond.
  • Cycloalkyl means a monocyclic ring system composed of 3 to 7 carbons.
  • Haldroxyalkyl alkoxy and other terms with a substituted alkyl moiety include straight and branched isomers composed of 1 to 6 carbon atoms for the alkyl moiety.
  • Halo includes fluoro, chloro, bromo, and iodo.
  • Halo includes all halogenated isomers from monohalo substituted to perhalo substituted in substituents defined with halo, for example, “Haloalkyl” and “haloalkoxy", “halophenyl”, “halophenoxy.”
  • Aryl includes carbocyclic and heterocyclic aromatic substituents.
  • the invention includes all pharmaceutically acceptable salt forms of the compounds.
  • Pharmaceutically acceptable salts are those in which the counter ions do not contribute significantly to the physiological activity or toxicity of the compounds and as such function as pharmacological equivalents. These salts can be made according to common organic techniques employing commercially available reagents. Some anionic salt forms include acetate, acistrate, besylate, bromide, chloride, citrate, fumarate, glucouronate, hydrobromide, hydrochloride, hydroiodide, iodide, lactate, maleate, mesylate, nitrate, pamoate, phosphate, succinate, sulfate, tartrate, tosylate, and xinofoate.
  • Some cationic salt forms include ammonium, aluminum, benzathine, bismuth, calcium, choline, diethylamine, diethanolamine, lithium, magnesium, meglumine, 4-phenylcyclohexylamine, piperazine, potassium, sodium, tromethamine, and zinc.
  • the invention includes all stereoisomeric forms of the compounds including enantiomers and diastereromers. Methods of making and separating stereoisomers are known in the art.
  • the invention includes all tautomeric forms of the compounds.
  • the invention includes atropisomers and rotational isomers.
  • the invention is intended to include all isotopes of atoms occurring in the present compounds.
  • Isotopes include those atoms having the same atomic number but different mass numbers.
  • isotopes of hydrogen include deuterium and tritium.
  • Isotopes of carbon include 13 C and 14 C.
  • Isotopically-labeled compounds of the invention can generally be prepared by conventional techniques known to those skilled in the art or by processes analogous to those described herein, using an appropriate isotopically-labeled reagent in place of the non-labeled reagent otherwise employed. Such compounds may have a variety of potential uses, for example as standards and reagents in determining biological activity. In the case of stable isotopes, such compounds may have the potential to favorably modify biological, pharmacological, or pharmacokinetic properties.
  • a recombinant NL-Rluc virus was constructed in which a section of the nef gene from NL4-3 was replaced with the Renilla Luciferase gene.
  • the NL-RLuc virus was prepared by co-transfection of two plasmids, pNLRLuc and pVSVenv.
  • the pNLRLuc contains the NL-Rluc DNA cloned into pUC18 at the PvuW site, while the pVSVenv contains the gene for VSV G protein linked to an LTR promoter.
  • Transfections were performed at a 1 :3 ratio of pNLRLuc to pVSVenv in 293T cells using the LipofectAMINE PLUS kit from Invitrogen (Carlsbad, CA) according to the manufacturer, and the pseudotype virus generated was titered in MT-2 cells.
  • the titrated virus was used to infect MT-2 cells in the presence of compound, and after 5 days of incubation, cells were processed and quantitated for virus growth by the amount of expressed luciferase. This provides a simple and easy method for quantitating the extent of virus growth and consequently, the antiviral activity of test compounds.
  • Luciferase was quantitated using the Dual Luciferase kit from Promega (Madison, WI).
  • compositions and Methods of Use The compounds of this invention inhibit HIV replication. Accordingly, another aspect of the invention is a method for treating HIV infection in a human patient comprising administering a therapeutically effective amount of a compound of Formula I, or a pharmaceutically acceptable salt thereof, with a pharmaceutically acceptable carrier.
  • Another aspect of the invention is the use of a compound of formula I in the manufacture of a medicament for the treatment of AIDS or HIV infection.
  • Another aspect of the invention is a method for treating HIV infection in a human patient comprising the administration of a therapeutically effective amount of a compound of Formula I, or a pharmaceutically acceptable salt thereof, with a therapeutically effective amount of at least one other agent used for treatment of AIDS or HIV infection selected from the group consisting of nucleoside HIV reverse transcriptase inhibitors, non-nucleoside HIV reverse transcriptase inhibitors, HIV protease inhibitors, HIV fusion inhibitors, HIV attachment inhibitors, CCR5 inhibitors, CXCR4 inhibitors, HIV budding or maturation inhibitors, and HIV integrase inhibitors.
  • Another aspect of the invention is a method wherein the agent is a nucleoside HIV reverse transcriptase inhibitor.
  • nucleoside HIV reverse transcriptase inhibitor is selected from the group consisting of abacavir, didanosine, emtricitabine, lamivudine, stavudine, tenofovir, zalcitabine, and zidovudine, or a pharmaceutically acceptable salt thereof.
  • Another aspect of the invention is a method wherein the agent is a non- nucleoside HIV reverse transcriptase inhibitor.
  • Another aspect of the invention is a method wherein the non-nucleoside HIV reverse transcriptase inhibitor is selected from the group consisting of delavirdine, efavirenz, and nevirapine, or a pharmaceutically acceptable thereof.
  • Another aspect of the invention is a method wherein the agent is an HIV protease inhibitor.
  • HIV protease inhibitor is selected from the group consisting of amprenavir, atazanavir, indinavir, lopinavir, nelfmavir, ritonavir, saquinavir and fosamprenavir, or a pharmaceutically acceptable salt thereof.
  • Another aspect of the invention is a method wherein the agent is an HIV fusion inhibitor.
  • Another aspect of the invention is a method wherein the HIV fusion inhibitor is enfuvirtide or T-1249, or a pharmaceutically acceptable salt thereof.
  • Another aspect of the invention is a method wherein the agent is an HIV attachment inhibitor.
  • Another aspect of the invention is a method wherein the agent is a CCR5 inhibitor.
  • Another aspect of the invention is a method wherein the CCR5 inhibitor is selected from the group consisting of Sch-C, Sch-D, TAK-220, PRO-140, and UK- 427,857, or a pharmaceutically acceptable salt thereof.
  • Another aspect of the invention is a method wherein the agent is a CXCR4 inhibitor.
  • Another aspect of the invention is a method wherein the CXCR4 inhibitor is AMD-3100, or a pharmaceutically acceptable salt thereof.
  • Another aspect of the invention is a method wherein the agent is an HIV budding or maturation inhibitor.
  • Another aspect of the invention is a method wherein the budding or maturation inhibitor is PA-457, or a pharmaceutically acceptable salt thereof.
  • Another aspect of the invention is a method wherein the agent is an HIV integrase inhibitor.
  • Another aspect of the invention is a pharmaceutical composition
  • a pharmaceutical composition comprising a therapeutically effective amount of a compound of Formula I, or a pharmaceutically acceptable salt thereof, with at least one other agent used for treatment of AIDS or HIV infection selected from the group consisting of nucleoside HIV reverse transcriptase inhibitors, non-nucleoside HIV reverse transcriptase inhibitors, HIV protease inhibitors, HIV fusion inhibitors, HIV attachment inhibitors, CCR5 inhibitors, CXCR4 inhibitors, HIV budding or maturation inhibitors, and HIV integrase inhibitors, and a pharmaceutically acceptable carrier.
  • at least one other agent used for treatment of AIDS or HIV infection selected from the group consisting of nucleoside HIV reverse transcriptase inhibitors, non-nucleoside HIV reverse transcriptase inhibitors, HIV protease inhibitors, HIV fusion inhibitors, HIV attachment inhibitors, CCR5 inhibitors, CXCR4 inhibitors, HIV budding or maturation inhibitors, and HIV integrase inhibitors,
  • compositions wherein the agent is a nucleoside HIV reverse transcriptase inhibitor.
  • nucleoside HIV transcriptase inhibitor is selected from the group consisting of abacavir, didanosine, emtricitabine, lamivudine, stavudine, tenofovir, zalcitabine, and zidovudine, or a pharmaceutically acceptable salt thereof.
  • composition wherein the agent is a non- nucleoside HIV reverse transcriptase inhibitor.
  • composition wherein the non- nucleoside HIV reverse transcriptase inhibitor is selected from the group consisting of delavirdine, efavirenz, and nevirapine, or a pharmaceutically acceptable salt thereof.
  • composition wherein the agent is an HIV protease inhibitor.
  • composition wherein the HIV protease inhibitor is selected from the group consisting of amprenavir, atazanavir, indinavir, lopinavir, nelfmavir, ritonavir, saquinavir and fosamprenavir, or a pharmaceutically acceptable salt thereof.
  • compositions wherein the agent is an HIV fusion inhibitor.
  • composition method wherein the HIV fusion inhibitor is enfuvirtide or T-1249, or a pharmaceutically acceptable salt thereof.
  • composition wherein the agent is an HIV attachment inhibitor.
  • compositions wherein the agent are a CCR5 inhibitor.
  • the CCR5 inhibitor is selected from the group consisting of Sch-C, Sch-D, TAK-220, PRO- 140, and UK-427,857, or a pharmaceutically acceptable salt thereof.
  • Another aspect of the invention is a method wherein the agent is a CXCR4 inhibitor.
  • Another aspect of the invention is a method wherein the CXCR4 inhibitor is AMD-3100 or a pharmaceutically acceptable salt thereof.
  • composition wherein the agent is an HIV budding or maturation inhibitor.
  • composition wherein the budding or maturation inhibitor is PA-457, or a pharmaceutically acceptable salt thereof.
  • compositions wherein the agent is an HIV integrase inhibitor.
  • “Combination,” “coadministration,” “concurrent” and similar terms referring to the administration of a compound of Formula I with at least one anti-HIV agent mean that the components are part of a combination antiretroviral therapy or highly active antiretroviral therapy (HAART) as understood by practitioners in the field of AIDS and HIV infection.
  • HAART highly active antiretroviral therapy
  • “Therapeutically effective” means the amount of agent required to provide a meaningful patient benefit as understood by practitioners in the field of AIDS and HIV infection. In general, the goals of treatment are suppression of viral load, restoration and preservation of immunologic function, improved quality of life, and reduction of HIV-related morbidity and mortality.
  • Patient means a person infected with the HIV virus and suitable for therapy as understood by practitioners in the field of AIDS and HIV infection.
  • Treatment means a person infected with the HIV virus and suitable for therapy as understood by practitioners in the field of AIDS and HIV infection.
  • Treatment means a person infected with the HIV virus and suitable for therapy as understood by practitioners in the field of AIDS and HIV infection.
  • Treatment means a person infected with the HIV virus and suitable for therapy as understood by practitioners in the field of AIDS and HIV infection.
  • Treatment “therapy,” “regimen,” “HIV infection,” “ARC,” “AIDS” and related terms are used as understood by practitioners in the field of AIDS and HIV infection.
  • compositions comprised of a therapeutically effective amount of a compound of Formula I or its pharmaceutically acceptable salt and a pharmaceutically acceptable carrier and may contain conventional excipients.
  • a therapeutically effective amount is that which is needed to provide a meaningful patient benefit.
  • Pharmaceutically acceptable carriers are those conventionally known carriers having acceptable safety profiles.
  • Compositions encompass all common solid and liquid forms including capsules, tablets, losenges, and powders as well as liquid suspensions, syrups, elixers, and solutions. Compositions are made using common formulation techniques, and conventional excipients (such as binding and wetting agents) and vehicles (such as water and alcohols) are generally used for compositions. See, for example,
  • Solid compositions are normally formulated in dosage units and compositions providing from about 1 to 1000 mg of the active ingredient per dose are preferred. Some examples of dosages are 1 mg, 10 mg, 100 mg, 250 mg, 500 mg, and 1000 mg. Generally, other antiretroviral agents will be present in a unit range similar to agents of that class used clinically. Typically, this is 0.25-1000 mg/unit. Liquid compositions are usually in dosage unit ranges. Generally, the liquid composition will be in a unit dosage range of 1-100 mg/mL. Some examples of dosages are 1 mg/mL, 10 mg/mL, 25 mg/mL, 50 mg/mL, and 100 mg/mL.
  • antiretroviral agents will be present in a unit range similar to agents of that class used clinically. Typically, this is 1-100 mg/mL.
  • the invention encompasses all conventional modes of administration; oral and parenteral methods are preferred.
  • the dosing regimen will be similar to other antiretroviral agents used clinically.
  • the daily dose will be 1-100 mg/kg body weight daily.
  • more compound is required orally and less parenterally.
  • the specific dosing regime will be determined by a physician using sound medical judgement.
  • the invention also encompasses methods where the compound is given in combination therapy. That is, the compound can be used in conjunction with, but separately from, other agents useful in treating AIDS and HIV infection.
  • Some of these agents include HIV attachment inhibitors, CCR5 inhibitors, CXCR4 inhibitors, HIV cell fusion inhibitors, HIV integrase inhibitors, HIV nucleoside reverse transcriptase inhibitors, HIV non-nucleoside reverse transcriptase inhibitors, HIV protease inhibitors, budding and maturation inhibitors, immunomodulators, and anti- infectives.
  • the compound of Formula I will generally be given in a daily dose of 1-100 mg/kg body weight daily in conjunction with other agents.
  • the other agents generally will be given in the amounts used therapeutically. The specific dosing regime, however, will be determined by a physician using sound medical judgement.
  • the compounds of this invention can be made by various methods known in the art including those of the following schemes and in the specific embodiments section.
  • the structure numbering and variable numbering shown in the synthetic schemes are distinct from, and should not be confused with, the structure or variable numbering in the claims or the rest of the specification.
  • the variables in the schemes are meant only to illustrate how to make some of the compounds of this invention.
  • the disclosure is not limited to the foregoing illustrative examples and the examples should be considered in all respects as illustrative and not restrictive, reference being made to the appended claims, rather than to the foregoing examples, and all changes which come within the meaning and range of equivalency of the claims are therefore intended to be embraced.
  • KHMDS potasium bis(trimethylsilyl)amide
  • DMF N,N-dimethylformamide
  • 2,6-Dichloro-4-methylnicotinic acid Prepared from commercially available 2,6-dichloro-4-methylnicotinonitrile following procedure in US6677352 (2004).
  • tert-Butyl 6-chloro-2-(4,4-dimethylpiperidin-l-yl)-4-methylnicotinate To a solution of tert-butyl 2,6-dichloro-4-methylnicotinate (11.93 g, 45.4 mmol, 1 equiv) in DCE (228 mL) was added 4,4-dimethylpiperidine (7.21 g, 63.7 mmol, 1.4 equiv) and DIPEA (11.1 mL, 63.7 mmol, 1.4 equiv). The reaction was heated to reflux for 2 h, at which point it appears stalled at -40% conversion. The solution was concentrated in vacuo.
  • tert-Butyl 6-amino-2-(4,4-dimethylpiperidin-l-yl)-4-methylnicotinate A solution of tert-butyl 6-chloro-2-(4,4-dimethylpiperidin- 1 -yl)-4-methylnicotinate (1.0 g, 2.95 mmol, 1 equiv), benzophenone imine (0.59 mL, 3.54 mmol, 1.2 equiv), Pd 2 (dba) 3 (0.135 g, 0.148 mmol, 0.05 equiv), xantphos (0.171 g, 0.295 mmol, 0.10 equiv), and Cs 2 C0 3 (2.31 g, 7.08 mmol, 2.4 equiv) in dioxane (30 mL deoxygenated by bubbling nitrogen through for 10 min) was heated to 90 °C.
  • 6-tert-butyl 2-ethyl 5-(4,4-dimethylpiperidin-l-yl)-7-methylimidazo[ 1,2- a]pyridine-2,6-dicarboxylate A solution of tert-butyl 6-amino-2-(4,4- dimethylpiperidin-l-yl)-4-methylnicotinate (0.76 g, 2.38 mmol, 1 equiv) and ethyl bromopyruvate (0.40 mL, 2.85 mmol, 1.2 equiv) in EtOH (24 mL) was heated at 90 °C for 5 h.
  • the reaction was heated at 60 °C for 2 h. Upon cooling to ambient temperature, the reaction was concentrated in vacuo. The crude product was taken up in MeOH (1 mL) and 1 N NaOH (0.16 mL, 0.16 mmol, 3 equiv) was added. The reaction was stirred at 65°C for 4 h.
  • the reaction was heated to 45 °C fior 6 h. Upon cooling to ambient temperature, the reaction was diluted with DCM, washed with 1 N NaOH, dried (Na 2 S0 4 ), and concentrated in vacuo. The crude product was purified by flash column
  • tert-Butyl 4-hydroxy-4-methylpiperidine-l-carboxylate Under an N2 atmosphere, a 3N solution in ether of methylmagnesium bromide (1.67 mL, 5.02 mmol) was added dropwise to a cooled (-25°C) solution of tert-butyl 4-hydroxy-4- methylpiperidine-l-carboxylate (4g, 20.08 mmol) in ether (20 mL). The reaction mixture was allowed to warm to rt and was stirred for 2 h. It was then cooled to 0°C and quenched by the addition of sat. aq. ammonium chloride.
  • tert-Butyl 4-(allyloxy)-4-methylpiperidine-l-carboxylate To a mixture of tert- butyl 4-hydroxy-4-methylpiperidine-l-carboxylate (4.30 g, 20.0 mmol) in DMF (50 mL) at 0°C was added NaH (60 wt%) (1.60 g, 39.9 mmol). The mixture was then stirred at rt for 2h. At this time allyl bromide (8.64 mL, 100 mmol) was added slowly over the course of 5 min. The reaction mixture was stirred at rt for 3h. It was then cooled to 0°C and quenched with sat. aq. ammonium chloride.
  • Benzophenone imine (8.0 mL, 48.1 mmol, 1.2 equiv) added and the mixture was heated at 90 °C for 1 h. Upon cooling to ambient temperature, the reaction was diluted with EtOAc and washed with water, dried (Na 2 S0 4 ), and concentrated in vacuo. The crude product was taken up in MeOH (200 mL) and NaOAc (9.87, 120 mmol, equiv) and hydroxlamine hydrochloride (5.57 g, 80 mmol, 2 equiv) was added. After 30 min, the reaction was added to 1 N NaOH and extracted with DCM (x2). The combined DCM extracts were dried (Na 2 S0 4 ) and concentrated in vacuo.
  • (S)-Ethyl 5- 4- (allyloxy)-4-methylpiperidin-l-yl)-6- (l-( tert-butoxy)-2- methoxy-2-oxoethyl)-7-methylimidazo[l,2-a]pyridine-2-carboxylate:

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Virology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Communicable Diseases (AREA)
  • Molecular Biology (AREA)
  • Oncology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • AIDS & HIV (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
PCT/US2014/022354 2013-03-13 2014-03-10 Inhibitors of human immunodeficiency virus replication Ceased WO2014164409A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP14725559.0A EP2970273B1 (en) 2013-03-13 2014-03-10 Inhibitors of human immunodeficiency virus replication
ES14725559.0T ES2623777T3 (es) 2013-03-13 2014-03-10 Inhibidores de la replicación del virus de la inmunodeficiencia humana
CN201480013594.8A CN105008358B (zh) 2013-03-13 2014-03-10 人免疫缺陷病毒复制的抑制剂
JP2016500947A JP2016512507A (ja) 2013-03-13 2014-03-10 ヒト免疫不全ウイルス複製の阻害剤
US14/770,702 US9655889B2 (en) 2013-03-13 2014-03-10 Inhibitors of human immunodeficiency virus replication

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201361780179P 2013-03-13 2013-03-13
US61/780,179 2013-03-13

Publications (1)

Publication Number Publication Date
WO2014164409A1 true WO2014164409A1 (en) 2014-10-09

Family

ID=50771321

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2014/022354 Ceased WO2014164409A1 (en) 2013-03-13 2014-03-10 Inhibitors of human immunodeficiency virus replication

Country Status (6)

Country Link
US (1) US9655889B2 (enExample)
EP (1) EP2970273B1 (enExample)
JP (1) JP2016512507A (enExample)
CN (1) CN105008358B (enExample)
ES (1) ES2623777T3 (enExample)
WO (1) WO2014164409A1 (enExample)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015126765A1 (en) 2014-02-19 2015-08-27 Bristol-Myers Squibb Company Inhibitors of human immunodeficiency virus replication
WO2016033009A1 (en) * 2014-08-27 2016-03-03 Bristol-Myers Squibb Company Imidazo[1,2-a]pyridine derivatives for use as inhibitors of human immunodeficiency virus replication
WO2016119700A1 (en) * 2015-01-28 2016-08-04 Jn Therapeutics Substituted imidazo [1, 2-a] pyridin-2-ylamine compounds, and pharmaceutical compositions and methods of use thereof
US9409922B2 (en) 2014-02-18 2016-08-09 Bristol-Myers Squibb Company Imidazopyridine macrocycles as inhibitors of human immunodeficiency virus replication
WO2017006261A1 (en) * 2015-07-06 2017-01-12 VIIV Healthcare UK (No.5) Limited Pyridin-3-yl acetic acid derivatives as inhibitors of human immunodeficiency virus replication
WO2017006260A1 (en) * 2015-07-08 2017-01-12 VIIV Healthcare UK (No.5) Limited Pyridin-3-yl acetic acid derivatives as inhibitors of human immunodeficiency virus replication
WO2017025913A1 (en) * 2015-08-10 2017-02-16 VIIV Healthcare UK (No.5) Limited Imidazopyridine macrocycles as inhibitors of human immunodeficiency virus replication
US9975906B2 (en) 2014-05-16 2018-05-22 Shionogi & Co., Ltd. Tricyclic heterocycle derivatives having HIV replication inhibitory effect
US10494380B2 (en) 2015-05-29 2019-12-03 Shionogi & Co., Ltd. Nitrogen-containing tricyclic derivatives having HIV replication inhibitory activity
WO2022033551A1 (zh) * 2020-08-14 2022-02-17 上海复旦张江生物医药股份有限公司 Jak抑制剂的盐型、晶型及其制备方法和应用

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113698342B (zh) * 2021-10-29 2021-12-31 南京恒远科技开发有限公司 一种奥布替尼关键中间体杂环类化合物2,6-二氯烟酸的制备方法

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6677352B1 (en) 2001-09-26 2004-01-13 Yamin Wang 1,6-naphthyridine derivatives and their use to treat diabetes and related disorders
WO2007131350A1 (en) 2006-05-16 2007-11-22 Boehringer Ingelheim International Gmbh Inhibitors of human immunodeficiency virus replication
WO2009062308A1 (en) 2007-11-16 2009-05-22 Boehringer Ingelheim International Gmbh Inhibitors of human immunodeficiency virus replication
WO2009062285A1 (en) 2007-11-16 2009-05-22 Boehringer Ingelheim International Gmbh Inhibitors of human immunodeficiency virus replication
WO2009062288A1 (en) 2007-11-15 2009-05-22 Boehringer Ingelheim International Gmbh Inhibitors of human immunodeficiency virus replication
WO2009062289A1 (en) 2007-11-15 2009-05-22 Boehringer Ingelheim International Gmbh Inhibitors of human immunodeficiency virus replication
WO2010130842A1 (en) 2009-05-15 2010-11-18 Katholieke Universiteit Leuven Thieno [2, 3-b] pyridine derivatives as viral replication inhibitors
WO2010130034A1 (en) 2009-05-15 2010-11-18 Boehringer Ingelheim International Gmbh Inhibitors of human immunodeficiency virus replication
WO2011015641A1 (en) 2009-08-05 2011-02-10 Katholieke Universiteit Leuven Novel viral replication inhibitors
WO2011076765A1 (en) 2009-12-23 2011-06-30 Katholieke Universiteit Leuven Novel antiviral compounds
WO2012003497A1 (en) 2010-07-02 2012-01-05 Gilead Sciences, Inc. Napht- 2 -ylacetic acid derivatives to treat aids
WO2012003498A1 (en) 2010-07-02 2012-01-05 Gilead Sciences, Inc. 2 -quinolinyl- acetic acid derivatives as hiv antiviral compounds
WO2012033735A1 (en) 2010-09-08 2012-03-15 Bristol-Myers Squibb Company Inhibitors of human immunodeficiency virus replication
WO2012066442A1 (en) 2010-11-15 2012-05-24 Pfizer Limited Inhibitors of hiv replication
WO2012065963A2 (en) 2010-11-15 2012-05-24 Katholieke Universiteit Leuven Novel antiviral compounds
WO2013025584A1 (en) * 2011-08-18 2013-02-21 Bristol-Myers Squibb Company Inhibitors of human immunodeficiency virus replication

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR910011852A (ko) * 1989-12-04 1991-08-07 폴 디. 매튜카이티스 신경독 장해 치료용 이미다조[1,2-a]피리디닐알킬 화합물
EP1919872A4 (en) * 2005-08-31 2009-08-05 Smithkline Beecham Corp CHEMICAL COMPOUNDS
WO2010032195A1 (en) * 2008-09-16 2010-03-25 Csir Imidazopyridines and imidazopyrimidines as hiv-i reverse transcriptase inhibitors

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6677352B1 (en) 2001-09-26 2004-01-13 Yamin Wang 1,6-naphthyridine derivatives and their use to treat diabetes and related disorders
WO2007131350A1 (en) 2006-05-16 2007-11-22 Boehringer Ingelheim International Gmbh Inhibitors of human immunodeficiency virus replication
WO2009062288A1 (en) 2007-11-15 2009-05-22 Boehringer Ingelheim International Gmbh Inhibitors of human immunodeficiency virus replication
WO2009062289A1 (en) 2007-11-15 2009-05-22 Boehringer Ingelheim International Gmbh Inhibitors of human immunodeficiency virus replication
WO2009062308A1 (en) 2007-11-16 2009-05-22 Boehringer Ingelheim International Gmbh Inhibitors of human immunodeficiency virus replication
WO2009062285A1 (en) 2007-11-16 2009-05-22 Boehringer Ingelheim International Gmbh Inhibitors of human immunodeficiency virus replication
WO2010130842A1 (en) 2009-05-15 2010-11-18 Katholieke Universiteit Leuven Thieno [2, 3-b] pyridine derivatives as viral replication inhibitors
WO2010130034A1 (en) 2009-05-15 2010-11-18 Boehringer Ingelheim International Gmbh Inhibitors of human immunodeficiency virus replication
WO2011015641A1 (en) 2009-08-05 2011-02-10 Katholieke Universiteit Leuven Novel viral replication inhibitors
WO2011076765A1 (en) 2009-12-23 2011-06-30 Katholieke Universiteit Leuven Novel antiviral compounds
WO2012003497A1 (en) 2010-07-02 2012-01-05 Gilead Sciences, Inc. Napht- 2 -ylacetic acid derivatives to treat aids
WO2012003498A1 (en) 2010-07-02 2012-01-05 Gilead Sciences, Inc. 2 -quinolinyl- acetic acid derivatives as hiv antiviral compounds
WO2012033735A1 (en) 2010-09-08 2012-03-15 Bristol-Myers Squibb Company Inhibitors of human immunodeficiency virus replication
WO2012066442A1 (en) 2010-11-15 2012-05-24 Pfizer Limited Inhibitors of hiv replication
WO2012065963A2 (en) 2010-11-15 2012-05-24 Katholieke Universiteit Leuven Novel antiviral compounds
WO2013025584A1 (en) * 2011-08-18 2013-02-21 Bristol-Myers Squibb Company Inhibitors of human immunodeficiency virus replication

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Remington's Pharmaceutical Sciences", 1985, MACK PUBLISHING COMPANY
PALELLA, F. J.; DELANY, K. M.; MOORMAN, A. C.; LOVELESS, M. 0.; FURHER, J.; SATTEN, G. A.; ASCHMAN, D. J.; HOLMBERG, S. D., N. ENGL. J. MED., vol. 338, 1998, pages 853 - 860

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9409922B2 (en) 2014-02-18 2016-08-09 Bristol-Myers Squibb Company Imidazopyridine macrocycles as inhibitors of human immunodeficiency virus replication
WO2015126765A1 (en) 2014-02-19 2015-08-27 Bristol-Myers Squibb Company Inhibitors of human immunodeficiency virus replication
US9975906B2 (en) 2014-05-16 2018-05-22 Shionogi & Co., Ltd. Tricyclic heterocycle derivatives having HIV replication inhibitory effect
WO2016033009A1 (en) * 2014-08-27 2016-03-03 Bristol-Myers Squibb Company Imidazo[1,2-a]pyridine derivatives for use as inhibitors of human immunodeficiency virus replication
US10065953B2 (en) 2014-08-27 2018-09-04 VIIV Healthcare UK (No.5) Limited Imidazo[1,2-A]pyridine derivatives for use as inhibitors of human immunodeficiency virus replication
JP2018503678A (ja) * 2015-01-28 2018-02-08 ジェイ・エヌ・セラピューティクスJn Therapeutics 置換イミダゾ[1,2−a]ピリジン−2−イルアミン化合物ならびにその医薬組成物および使用方法
KR20170105119A (ko) * 2015-01-28 2017-09-18 제이엔 테라퓨틱스 치환된 이미다조[1,2-a]피리딘-2-일아민 화합물, 및 약학 조성물 및 이의 사용 방법
CN107428749A (zh) * 2015-01-28 2017-12-01 南京泽宁医药研发有限公司 取代的咪唑并[1,2‑α]吡啶‑2‑基胺化合物及其药物组合物和使用方法
KR101987994B1 (ko) 2015-01-28 2019-06-11 제이엔 테라퓨틱스 치환된 이미다조[1,2-a]피리딘-2-일아민 화합물, 및 약학 조성물 및 이의 사용 방법
US12024511B2 (en) 2015-01-28 2024-07-02 Shanghai Fudan-Zhangjiang Bio-Pharmaceutical Co., Ltd. Substituted imidazo[1,2-a]pyridin-2-ylamine compounds, and pharmaceutical compositions and methods of use thereof
US10730875B2 (en) 2015-01-28 2020-08-04 Jn Therapeutics Substituted imidazo[1,2-A]pyridin-2-ylamine compounds, and pharmaceutical compositions and methods of use thereof
WO2016119700A1 (en) * 2015-01-28 2016-08-04 Jn Therapeutics Substituted imidazo [1, 2-a] pyridin-2-ylamine compounds, and pharmaceutical compositions and methods of use thereof
US10870661B2 (en) 2015-05-29 2020-12-22 Shionogi & Co., Ltd. Nitrogen-containing tricyclic derivatives having HIV replication inhibitory activity
US10494380B2 (en) 2015-05-29 2019-12-03 Shionogi & Co., Ltd. Nitrogen-containing tricyclic derivatives having HIV replication inhibitory activity
WO2017006261A1 (en) * 2015-07-06 2017-01-12 VIIV Healthcare UK (No.5) Limited Pyridin-3-yl acetic acid derivatives as inhibitors of human immunodeficiency virus replication
CN107835808A (zh) * 2015-07-08 2018-03-23 Viiv保健英国第五有限公司 作为人类免疫缺陷性病毒复制的抑制剂的吡啶‑3‑基乙酸衍生物
US10221156B2 (en) 2015-07-08 2019-03-05 VIIV Healthcare UK (No.5) Limited Pyridin-3-yl acetic acid derivatives as inhibitors of human immunodeficiency virus replication
WO2017006260A1 (en) * 2015-07-08 2017-01-12 VIIV Healthcare UK (No.5) Limited Pyridin-3-yl acetic acid derivatives as inhibitors of human immunodeficiency virus replication
US10138253B2 (en) 2015-08-10 2018-11-27 VIIV Healthcare UK (No.5) Limited Imidazopyridine macrocycles as inhibitors of human immunodeficiency virus replication
CN108026113A (zh) * 2015-08-10 2018-05-11 Viiv保健英国第五有限公司 作为人免疫缺陷病毒复制的抑制剂的咪唑并吡啶大环类化合物
WO2017025913A1 (en) * 2015-08-10 2017-02-16 VIIV Healthcare UK (No.5) Limited Imidazopyridine macrocycles as inhibitors of human immunodeficiency virus replication
WO2022033551A1 (zh) * 2020-08-14 2022-02-17 上海复旦张江生物医药股份有限公司 Jak抑制剂的盐型、晶型及其制备方法和应用
CN116322678A (zh) * 2020-08-14 2023-06-23 上海复旦张江生物医药股份有限公司 Jak抑制剂的盐型、晶型及其制备方法和应用

Also Published As

Publication number Publication date
CN105008358A (zh) 2015-10-28
CN105008358B (zh) 2017-12-29
ES2623777T3 (es) 2017-07-12
JP2016512507A (ja) 2016-04-28
US20160000771A1 (en) 2016-01-07
EP2970273A1 (en) 2016-01-20
EP2970273B1 (en) 2017-03-01
US9655889B2 (en) 2017-05-23

Similar Documents

Publication Publication Date Title
EP2970273B1 (en) Inhibitors of human immunodeficiency virus replication
US9034882B2 (en) Inhibitors of human immunodeficiency virus replication
US8629276B2 (en) Inhibitors of human immunodeficiency virus replication
AU2015306779B2 (en) Imidazo[1,2-a]pyridine derivatives for use as inhibitors of human immunodeficiency virus replication
EP3116880B1 (en) Pyridin-3-yl acetic acid macrocycles as inhibitors of human immunodeficiency virus replication
US9932356B2 (en) Pyrazolopyrimidine macrocycles as inhibitors of human immunodeficiency virus replication
EP3107913A1 (en) Inhibitors of human immunodeficiency virus replication
WO2015126743A1 (en) Pyrazolopyrimidine macrocycles as inhibitors of human immunodeficiency virus replication
WO2015126751A1 (en) Imidazopyridine macrocycles as inhibitors of human immunodeficiency virus replication
EP3105236B1 (en) Benzothiazole macrocycles as inhibitors of human immunodeficiency virus replication
US9932353B2 (en) Imidazopyrimidine macrocycles as inhibitors of human immunodeficiency virus replication
WO2011046873A1 (en) Hiv integrase inhibitors

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14725559

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14770702

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2016500947

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014725559

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014725559

Country of ref document: EP