WO2014163466A1 - 정수 픽셀의 위치와 관련하여 비디오의 부호화 및 복호화를 수행하는 방법과 그 장치 - Google Patents
정수 픽셀의 위치와 관련하여 비디오의 부호화 및 복호화를 수행하는 방법과 그 장치 Download PDFInfo
- Publication number
- WO2014163466A1 WO2014163466A1 PCT/KR2014/003011 KR2014003011W WO2014163466A1 WO 2014163466 A1 WO2014163466 A1 WO 2014163466A1 KR 2014003011 W KR2014003011 W KR 2014003011W WO 2014163466 A1 WO2014163466 A1 WO 2014163466A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- current
- layer
- depth
- unit
- image
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/50—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
- H04N19/503—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
- H04N19/51—Motion estimation or motion compensation
- H04N19/513—Processing of motion vectors
- H04N19/521—Processing of motion vectors for estimating the reliability of the determined motion vectors or motion vector field, e.g. for smoothing the motion vector field or for correcting motion vectors
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/169—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
- H04N19/187—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being a scalable video layer
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/169—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
- H04N19/188—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being a video data packet, e.g. a network abstraction layer [NAL] unit
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/30—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using hierarchical techniques, e.g. scalability
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/44—Decoders specially adapted therefor, e.g. video decoders which are asymmetric with respect to the encoder
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/50—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
- H04N19/503—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
- H04N19/51—Motion estimation or motion compensation
- H04N19/513—Processing of motion vectors
- H04N19/517—Processing of motion vectors by encoding
- H04N19/52—Processing of motion vectors by encoding by predictive encoding
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/50—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
- H04N19/597—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding specially adapted for multi-view video sequence encoding
Definitions
- the present invention relates to a method and apparatus for performing video encoding and decoding in relation to the position of an integer pixel.
- video codec for efficiently encoding or decoding high resolution or high definition video content.
- video is encoded according to a limited encoding method based on a macroblock of a predetermined size.
- the video codec reduces the amount of data by using a prediction technique by using a feature that images of a video are highly correlated with each other temporally or spatially.
- image information is recorded using a temporal or spatial distance between the images, a prediction error, and the like.
- a method of predicting an image using a disparity vector may include a disparity vector having a component of a subpixel unit for inter-layer prediction between images belonging to a current layer and a reference layer. Determining a position of an integer pixel of the reference layer corresponding to the position indicated by the disperity vector obtained from the current pixel of the current layer, and determining a position of the reference layer corresponding to the determined position of the integer pixel. And decoding the image of the current layer by using the prediction information of the candidate region.
- the position of the integer pixel of the reference layer corresponding to the position indicated by the disparity vector acquired from the current pixel of the current layer can be effectively determined.
- FIG. 1A is a block diagram illustrating a configuration of a video encoding apparatus, according to various embodiments.
- 1B is a flowchart illustrating a method of encoding by determining a disperity vector according to various embodiments.
- 2A is a flowchart illustrating a method of determining an integer pixel position by determining an integer disparity vector corresponding to a disperity vector, according to various embodiments of the present disclosure.
- FIG. 2B is a flowchart illustrating a method of determining an integer disparity vector through a rounding operation on subpixel units of x and y components of a disperity vector, according to various embodiments of the present disclosure.
- 2C is a flowchart illustrating a method of determining an integer disperity vector according to various embodiments of the present disclosure.
- 3A is a flowchart illustrating a method of predicting motion information using positions of integer pixels determined according to various embodiments of the present disclosure.
- 3B is a flowchart for describing a method of determining information related to a depth and encoding by using positions of integer pixels determined according to various embodiments of the present disclosure.
- 4A is a block diagram illustrating a configuration of a video decoding apparatus, according to various embodiments.
- 4B is a flowchart illustrating a method of performing decoding by obtaining a disperity vector according to various embodiments of the present disclosure.
- 5A is a flowchart illustrating a method of determining an integer pixel position by determining an integer disparity vector corresponding to a disperity vector according to various embodiments of the present disclosure.
- FIG. 5B is a flowchart illustrating a method of determining an integer disperity vector through rounding operations on subpixel units of x and y components of a disperity vector, according to various embodiments of the present disclosure.
- 5C is a flowchart illustrating a method of determining an integer disperity vector according to various embodiments of the present disclosure.
- 6A is a flowchart illustrating a method of predicting motion information by using positions of integer pixels determined according to various embodiments of the present disclosure.
- 6B is a flowchart for describing a method of determining information related to a depth and performing encoding by using positions of integer pixels determined according to various embodiments of the present disclosure.
- 6C is a flowchart illustrating a method of predicting residual image data using positions of integer pixels determined according to various embodiments of the present disclosure.
- FIG. 7A is a block diagram illustrating a method of predicting a disparity vector by the video decoding apparatus 40 according to various embodiments.
- FIG. 7C is a diagram for describing a method of the video decoding apparatus 40 predicting a disparity vector using a reference depth map, according to various embodiments.
- FIG. 8 is a block diagram of a video encoding apparatus based on coding units according to a tree structure, according to an embodiment.
- FIG. 9 is a block diagram of a video decoding apparatus based on coding units according to a tree structure, according to an embodiment.
- FIG. 10 illustrates a concept of coding units, according to an embodiment of the present invention.
- FIG. 12 is a block diagram of an image decoder based on coding units, according to an embodiment of the present invention.
- FIG. 14 illustrates a relationship between coding units and transformation units, according to an embodiment of the present invention.
- FIG. 15 illustrates encoding information according to depths, according to an embodiment of the present invention.
- 16 is a diagram of deeper coding units according to depths, according to an embodiment of the present invention.
- 17, 18, and 19 illustrate a relationship between coding units, prediction units, and transformation units, according to an embodiment of the present invention.
- 21 illustrates a physical structure of a disk in which a program is stored, according to an embodiment.
- Fig. 22 shows a disc drive for recording and reading a program by using the disc.
- FIG. 23 shows an overall structure of a content supply system for providing a content distribution service.
- 24 and 25 illustrate an external structure and an internal structure of a mobile phone to which a video encoding method and a video decoding method of the present invention are applied, according to an embodiment.
- 26 illustrates a digital broadcasting system employing a communication system according to the present invention.
- FIG. 27 illustrates a network structure of a cloud computing system using a video encoding apparatus and a video decoding apparatus, according to an embodiment of the present invention.
- a video decoding method comprising: obtaining a disparity vector having a component of a subpixel unit for inter-layer prediction between images belonging to a current layer and a reference layer, from a position of a current pixel of a current layer Determining the position of the integer pixel of the reference layer corresponding to the position indicated by the obtained disparity vector and using the prediction information of the candidate region of the reference layer corresponding to the determined position of the integer pixel.
- a video decoding method comprising performing decoding of an image.
- image may refer to a generic image including a still image as well as a video such as a video.
- the current block may include a coding unit and a prediction unit.
- FIGS. 1A to 7D a method and an apparatus for performing video encoding and decoding in relation to the position of an integer pixel according to various embodiments are disclosed.
- 8 to 20 a video encoding method and a video decoding method based on coding units having a tree structure according to various embodiments applicable to the video encoding method and the decoding method proposed above are disclosed.
- various embodiments to which the video encoding method and the video decoding method proposed above may be applied are described with reference to FIGS. 21 to 27.
- FIG. 1A is a block diagram illustrating a configuration of a video encoding apparatus, according to various embodiments.
- the video encoding apparatus 10 may include a disparity vector determiner 11, an integer pixel position determiner 12, and an encoder 13.
- the video encoding apparatus 10 may be implemented by more components than the illustrated components, or the video encoding apparatus 10 may be implemented by fewer components than the illustrated components.
- the video encoding apparatus 10 classifies and encodes a plurality of image sequences for each layer according to a scalable video coding scheme, and outputs a separate stream including data encoded for each layer. can do.
- the video encoding apparatus 10 may encode the current layer image sequence and the reference layer image sequence into different layers.
- the encoder 13 may encode current layer images and output a current layer stream including encoded data of the current layer images.
- the encoder 13 may encode reference layer images and output a reference layer stream including encoded data of the reference layer images.
- a multiview video may be encoded according to a scalable video coding scheme.
- Left view images may be encoded as reference layer images
- right view images may be encoded as current layer images.
- the center view images, the left view images and the right view images are respectively encoded, among which the center view images are encoded as current layer images, the left view images are reference layer images, and the right view images are other reference layer images.
- a scalable video coding scheme may be performed according to temporal hierarchical prediction based on temporal scalability.
- a reference layer stream including encoding information generated by encoding pictures of a base frame rate may be output.
- Temporal levels may be classified according to frame rates, and each temporal layer may be encoded into each layer.
- the current layer stream including encoding information of the high frame rate may be output by further encoding the high frame rate pictures by referring to the pictures of the base frame rate.
- scalable video coding may be performed on a reference layer and a plurality of current layers.
- reference layer images, first current layer images, second current layer images, ..., K-th current layer images may be encoded. Accordingly, the encoding results of the reference layer images are output to the reference layer stream, and the encoding results of the first, second, ..., K th current layer images are respectively output to the first, second, ..., K th current layer stream.
- the video encoding apparatus 10 may perform inter prediction to predict a current image by referring to images of a single layer. Through inter prediction, a motion vector representing motion information between the current picture and the reference picture and a residual component between the current picture and the reference picture may be generated.
- the video encoding apparatus 10 may perform inter-layer prediction for predicting current layer images by referring to reference layer images.
- the video encoding apparatus 10 when the video encoding apparatus 10 according to an embodiment allows three or more layers such as a reference layer, a current layer, and a reference layer, interlayer prediction between one reference layer image and a reference layer image according to a multilayer prediction structure In addition, interlayer prediction between the current layer image and the reference layer image may be performed.
- a position difference component between the current image and a reference image of another layer and a residual component between the current image and a reference image of another layer may be generated.
- the video encoding apparatus 10 encodes each block of each image of the video for each layer.
- the type of block may be square or rectangular, and may be any geometric shape. It is not limited to data units of a certain size.
- the block may be a maximum coding unit, a coding unit, a prediction unit, a transformation unit, or the like among coding units having a tree structure.
- the maximum coding unit including the coding units of the tree structure may be a coding tree unit, a coding block tree, a block tree, a root block tree, a coding tree, a coding root, or a tree. It may also be called variously as a trunk trunk.
- a video encoding and decoding method based on coding units having a tree structure will be described later with reference to FIGS. 8 to 20.
- Inter prediction and inter layer prediction may be performed based on a data unit of a coding unit, a prediction unit, or a transformation unit.
- the encoder 13 may generate symbol data by performing source coding operations including inter prediction or intra prediction on reference layer images.
- the symbol data represents a sample value of each coding parameter and a sample value of the residual.
- the encoder 13 generates symbol data by performing inter prediction or intra prediction, transformation, and quantization on samples of data units of reference layer images, and performs reference entropy encoding on symbol data to perform a reference layer. You can create a stream.
- the encoder 13 may encode current layer images based on coding units having a tree structure.
- the encoder 13 may generate symbol data by performing inter / intra prediction, transform, and quantization on samples of a coding unit of a current layer image, and generate a current layer stream by performing entropy encoding on the symbol data. have.
- the encoder 13 may perform interlayer prediction for predicting the current layer image by using reconstructed samples of the reference layer image.
- the encoder 13 generates a current layer prediction image by using the reference layer reconstruction image, and encodes the current layer original image among the current layer image sequences through an interlayer prediction structure, and then predicts the current layer original image and the current layer.
- the prediction error between images may be encoded.
- the encoder 13 may perform interlayer prediction on the current layer image for each block, such as a coding unit or a prediction unit.
- a block of the reference layer image to be referred to by the block of the current layer image may be determined.
- a reconstruction block of a reference layer image positioned corresponding to the position of the current block in the current layer image may be determined.
- the encoder 13 may determine the current layer prediction block by using a reference layer reconstruction block corresponding to the current layer block.
- the encoder 13 may use the current layer prediction block determined by using the reference layer reconstruction block according to the interlayer prediction structure as a reference image for interlayer prediction of the current layer original block.
- the encoder 13 may perform entropy encoding by converting and quantizing a residual component according to inter-layer prediction, that is, an error between a sample value of the current layer prediction block and a sample value of the original layer original block using the reference layer reconstructed image. have.
- the encoder 13 may encode the current layer image sequence by referring to the reference layer reconstructed images through the interlayer prediction structure.
- the encoder 13 may encode the current layer image sequence according to a single layer prediction structure without referring to other layer samples. Therefore, care must be taken not to restrictively interpret that the encoder 13 performs only interlayer prediction in order to encode the current layer image sequence.
- the peripheral pixel value of the reference layer reconstruction block corresponding to the current layer current block must be obtained.
- a disparity vector may be used to find a reference layer reconstruction block corresponding to the current layer current block.
- the disperity vector may be included in the bitstream and transmitted or derived from other encoding information.
- the disperity vector may have a precision of fractional units such as quarter-pel or half-pel
- the disperity vector may be pointed at the position of the current block current block.
- the location may be a subpixel location.
- Motion information, depth information, and residual image data to be predicted may all be stored in integer pixel units.
- the video encoding apparatus 10 may change and use the disparity vector expressed in subpixel units in integer pixel units to access data stored in integer pixel units.
- the video encoding apparatus 10 may perform a video encoding operation including transformation by operating in conjunction with an internal video encoding processor or an external video encoding processor to output a video encoding result.
- the internal video encoding processor of the video encoding apparatus 10 may implement a video encoding operation as a separate processor.
- the video encoding apparatus 10, the central computing unit, or the graphics processing unit may include a video encoding processing module to implement a basic video encoding operation.
- the disparity determiner 11 may determine a disparity vector having a component of a subpixel unit for inter-layer prediction between images belonging to a current layer and a reference layer.
- the integer pixel position determiner 12 may determine the position of the integer pixel of the reference layer corresponding to the position indicated by the disperity vector determined based on the position of the current pixel of the current layer.
- the encoder 13 may encode the image of the current layer by using prediction information of the candidate region of the reference layer corresponding to the determined integer pixel position.
- 1B is a flowchart illustrating a method of encoding by determining a disperity vector according to various embodiments.
- the video encoding apparatus 10 may determine a disparity vector having a component of a subpixel unit for inter-layer prediction between the reference layer and the images belonging to the current layer.
- the reference layer is a layer different from the current layer. It may mean.
- the current layer may be a layer associated with a color image
- the reference layer may be an enhancement layer associated with a depth image.
- the image of the current layer and the image of the reference layer may be images having different viewpoints.
- the disperity vector may be a vector for multiple dimensions.
- the disperity vector may be a vector for two dimensions.
- the disperity vector may be a vector for three dimensions.
- the disperity vector may have a component of a subpixel unit.
- the video encoding apparatus 10 may use motion information corresponding to a candidate region of a reference layer corresponding to the current block of the current layer when predicting the current block of the current layer.
- the video encoding apparatus 10 may use the residual image data corresponding to the candidate region of the reference layer corresponding to the current block of the current layer when predicting the current block of the current layer.
- the video encoding apparatus 10 may determine that the region of the reference layer corresponding to the current block of the current layer is a candidate region of the reference layer corresponding to the current block of the current layer through the disperity vector.
- a plurality of pixels may be included in the current block of the current layer. Accordingly, the video encoding apparatus 10 may determine a position of a predetermined pixel among a plurality of pixels belonging to the current block of the current layer as a reference position of the current block.
- the predetermined pixel as a reference may be regarded as a current pixel of the current layer.
- the video encoding apparatus 10 may determine the location indicated by the disparity vector determined in step S411 based on the location of the current pixel of the current layer.
- the video encoding apparatus 10 may determine the position of the integer pixel corresponding to the position indicated by the disparity vector determined in step S411 based on the position of the current pixel of the current layer.
- the integer pixel may be located in the reference layer.
- the position of the current pixel of the current layer may be located in the current block of the current layer.
- the position of the current pixel of the current layer may be a predetermined position in the current block of the current layer.
- the position of the current pixel of the current layer may be the upper left corner of the current block of the current layer.
- the position of the current pixel of the current layer may be a lower left end of the current block of the current layer.
- the position of the current pixel of the current layer may be the upper right end of the current block of the current layer.
- the position of the current pixel of the current layer may be the bottom right of the current block of the current layer.
- the position of the current pixel of the current layer may be the center of the current block of the current layer.
- the disperity vector may have a component of a subpixel unit.
- the disperity vector may have a real component.
- the disperity vector may have a precision of fractional units such as quarter-pel or half-pel. Therefore, the position indicated by the disparity vector in the position of the current layer current block may be a subpixel position.
- Motion information, depth information, and residual image data to be predicted may all be stored in integer pixel units. Accordingly, the video encoding apparatus 10 may change and use the disparity vector expressed in subpixel units in integer pixel units to access data stored in integer pixel units. Therefore, the video encoding apparatus 10 may determine the position of the integer pixel corresponding to the position of the subpixel indicated by the disparity vector.
- the video encoding apparatus 10 may use a rounding operation when determining the position of the integer pixel corresponding to the position of the subpixel indicated by the disparity vector.
- the video encoding apparatus 10 may use a bit shift operation when determining the position of an integer pixel corresponding to the position of the subpixel indicated by the disperity vector.
- the video encoding apparatus 10 may determine a candidate region of the reference layer corresponding to the position of the integer pixel determined in operation S412. The video encoding apparatus 10 may obtain prediction information corresponding to the candidate region of the determined reference layer.
- the prediction information may include at least one of motion information, information related to depth, and residual image data.
- the video encoding apparatus 10 may obtain motion information of the candidate region of the reference layer corresponding to the position of the integer pixel determined in step S112.
- the motion information may include a motion vector.
- the video encoding apparatus 10 may predict the motion information of the current block of the current layer by using the determined motion information.
- the video encoding apparatus 10 may obtain information related to the depth of the candidate region of the reference layer corresponding to the position of the integer pixel determined in operation S412.
- the reference layer may be a depth layer.
- the video encoding apparatus 10 may encode the current block of the current layer by using the information related to the determined depth.
- the video encoding apparatus 10 may predict the information related to the depth of the current block of the current layer by using the information related to the determined depth.
- the video encoding apparatus 10 may acquire residual image data of the candidate region of the reference layer corresponding to the position of the integer pixel determined in operation S112.
- the video encoding apparatus 10 may predict the residual image data of the current block of the current layer by using the determined residual image data.
- the integer pixel determined in step S412 may be located inside the candidate area of the determined reference layer. In addition, the integer pixel determined in operation S412 may be located at a predetermined position in the candidate region of the determined reference layer.
- the integer pixel determined in step S412 may be the upper left end of the candidate region of the determined reference layer.
- the integer pixel determined in step S412 may be a lower left end of the candidate region of the determined reference layer.
- the integer pixel determined in step S412 may be the upper right end of the candidate region of the determined reference layer.
- the integer pixel determined in step S412 may be the lower right end of the candidate region of the determined reference layer.
- the integer pixel determined in step S412 may be the center of the candidate region of the determined reference layer.
- 2A is a flowchart illustrating a method of determining an integer pixel position by determining an integer disparity vector corresponding to a disperity vector, according to various embodiments of the present disclosure.
- step S211 corresponds to step S111, the detailed description of the invention will be omitted to simplify the overall description.
- the video encoding apparatus 10 may determine an integer disparity vector corresponding to the disparity vector determined in operation S211.
- the integer disperity vector may have an integer as a component.
- the video encoding apparatus 10 may have a component of a subpixel unit determined in step S211.
- the disperity vector can have a fractional precision, such as a quarter pel or a half pel.
- the integer disperity vector corresponding to the disperity vector determined in step S211 may be the same as the disperity vector determined in step S211.
- the integer disperity vector corresponding to the disperity vector determined in step S211 may not be the same as the disperity vector determined in step S211.
- the video encoding apparatus 10 may determine an integer disparity vector corresponding to the disperity vector determined in step S211.
- the video encoding apparatus 10 may determine the position of the integer pixel of the reference layer indicated by the integer disperity vector determined in step S212 from the current pixel of the current layer.
- the current pixel of the current layer may be an integer pixel. Therefore, the position of the pixel of the reference layer indicated by the integer disperity vector determined in step S212 from the current pixel of the current layer may be the position of the integer pixel.
- the video encoding apparatus 10 may determine the position of the pixel of the reference layer indicated by the integer disperity vector determined in step S212 from the current pixel of the current layer.
- the position of the pixel of the reference layer indicated by the disperity vector may be the position of an integer pixel when the current pixel is an integer pixel.
- step S221 corresponds to step S111
- step S223 corresponds to step S213
- detailed description of the invention is omitted to simplify the overall description.
- the video encoding apparatus 10 determines an integer disperity vector by performing a rounding operation on sub-pixel units of x and y components of the disperity vector determined in operation S221.
- 2C is a flowchart illustrating a method of determining an integer disperity vector according to various embodiments of the present disclosure.
- step S231 corresponds to step S111, a detailed description of the invention will be omitted to simplify the overall description.
- the video encoding apparatus 10 may determine a disperity vector value from the disparity vector determined in operation S232.
- the video encoding apparatus 10 may determine a value of a component of the disperity vector determined in step S231.
- the disperity vector determined in step S231 may be two or more components.
- the video encoding apparatus 10 may add a predetermined value to the vector value determined in operation S232.
- the predetermined value added to the disperity vector value determined in step S232 may be an n power of 1 or 2 (n is a positive integer).
- the predetermined value added to the disparity vector value determined in step S232 may be related to the number of bits shifted in step S233.
- a predetermined value added to the disperity vector value determined in step S232 may be k-1 powers of two.
- the predetermined value added to the disparity vector value determined in step S232 may be 1.
- the predetermined value added to the disparity vector value determined in step S232 may be 2.
- the predetermined value added to the disparity vector value determined in step S232 may be 4.
- the predetermined value added to the disperity vector value determined in step S232 may be 2 plus k ⁇ 1.
- the video encoding apparatus 10 may shift a value added with a predetermined value to the right by a predetermined bit in a bit shift operation in operation S233.
- step S311 and step S312 correspond to step S111 and step S112, respectively, detailed description of the invention will be omitted to simplify the overall description.
- the video encoding apparatus 10 may determine motion information corresponding to the candidate region of the reference layer corresponding to the position of the integer pixel determined in operation S312.
- the motion information may include a motion vector. Motion information, motion vectors, and motion prediction have been described above.
- the video encoding apparatus 10 may determine a candidate region of the reference layer corresponding to the position of the integer pixel determined in operation S312.
- the video encoding apparatus 10 may obtain motion information corresponding to the candidate region of the determined reference layer.
- the video encoding apparatus 10 may obtain motion information allocated to the candidate region of the determined reference layer.
- an embodiment of predicting motion information using a location of an integer pixel determined according to various embodiments may be represented by the following code.
- the disparity vector (mvDisp [0], mvDisp [1]) is stored in quarter-pel units.)
- the block to be currently encoded may be referred to as a current block.
- the current block may be an area of all or part of the image of the current layer.
- the video encoding apparatus 10 may use information related to a candidate region of a reference layer corresponding to the current block of the current layer.
- the current block may be a luma block.
- the video encoding apparatus 10 may determine the position of the integer pixel of the reference layer corresponding to the position indicated by the disparity vector from the current pixel of the current layer.
- xPb may mean a horizontal axis position of a current pixel located at a predetermined position within a current block of the current layer.
- yPb may mean a vertical axis position of a current pixel located at a predetermined position within a current block of the current layer.
- nPbW may mean the width of the current block of the current layer.
- nPbH may mean the height of the current block of the current layer.
- ⁇ may mean shifting bits to the left.
- mvDisp may mean a disperity vector.
- ((mvDisp [0] + 2) >> 2) may mean a horizontal component value of an integer disperity vector.
- xRefFull may mean the horizontal axis position of an integer pixel of a reference layer.
- yRefFull may mean the vertical axis position of the integer pixel of the reference layer.
- the video encoding apparatus 10 may determine the position of the integer pixel located in the reference layer image based on the position of the current pixel and the value of the disperity vector. In addition, the video encoding apparatus 10 may determine an integer disparity vector by performing addition and shift operations on the disparity vector.
- the video encoding apparatus 10 may predict motion information of the image of the current layer using the motion information determined in operation S313.
- the video encoding apparatus 10 may perform encoding on the current layer image by using the motion information determined in operation S313.
- 3B is a flowchart for describing a method of determining information related to a depth and encoding by using positions of integer pixels determined according to various embodiments of the present disclosure.
- step S321 and step S322 correspond to step S111 and step S112, respectively, detailed description of the invention will be omitted to simplify the overall description.
- the video encoding apparatus 10 may obtain depth information from a depth image, and determine a disparity vector by using the acquired depth information.
- the candidate region in the reference layer may be determined using the determined disparity vector.
- the video encoding apparatus 10 may determine information related to a depth corresponding to the candidate region of the reference layer corresponding to the position of the integer pixel determined in operation S322.
- the reference layer may be a depth layer.
- the information related to the depth may include depth information of the image.
- the video encoding apparatus 10 may determine a candidate region of the reference layer corresponding to the position of the integer pixel determined in operation S322.
- the video encoding apparatus 10 may obtain information related to the depth corresponding to the candidate region of the determined reference layer.
- the video encoding apparatus 10 may encode an image of the current layer by using the information related to the depth determined in operation S323.
- the video encoding apparatus 10 may predict the information related to the depth of the current block of the current layer by using the information related to the determined depth.
- an embodiment of predicting information related to a depth using a location of an integer pixel determined according to various embodiments may be represented by the following code.
- the block to be currently encoded may be referred to as a current block.
- the current block may be an area of all or part of the color image.
- the video encoding apparatus 10 may use information related to a candidate region of the depth image corresponding to the current block of the color image.
- the video encoding apparatus 10 may determine the position of the integer pixel of the depth image corresponding to the position indicated by the disparity vector from the current pixel of the color image.
- xP may refer to the horizontal axis position of the current pixel located at a predetermined position within the current block of the color image.
- yP may mean the vertical axis position of the current pixel located at a predetermined position within the current block of the color image.
- ⁇ may mean shifting bits to the left.
- mvDisp may mean a disperity vector.
- 3C is a flowchart for describing a method of predicting residual image data using positions of integer pixels determined according to various embodiments of the present disclosure.
- the video encoding apparatus 10 may determine the position of the integer pixel of the reference layer corresponding to the position indicated by the disparity vector from the current pixel of the current layer.
- xP may refer to the horizontal axis position of the current pixel located at a predetermined position within the current block of the current layer.
- ((mvDisp [0] + 2) >> 2) may mean a horizontal component value of an integer disperity vector.
- the video encoding apparatus 10 may find the position of the reference layer corresponding to the current block of the current layer as a disperity vector.
- the video encoding apparatus 10 may use an integer disparity vector when searching for a position of a reference layer corresponding to the current block of the current layer.
- the integer disperity vector may be determined through addition and shift operations to the disperity vector.
- the video encoding apparatus 10 may obtain residual image data in a candidate region corresponding to the position of the reference layer corresponding to the current block of the current layer. Also, the video encoding apparatus 10 may predict the residual image data of the current block by using the obtained residual image data.
- the video decoding apparatus 40 may include a disparity vector obtainer 11, an integer pixel position determiner 12, and a decoder 13.
- the video decoding apparatus 40 may be implemented by more components than the illustrated components, or the video decoding apparatus 40 may be implemented by fewer components than the illustrated components.
- Multi-view video may be decoded according to the scalable video coding scheme.
- left view images may be reconstructed by decoding the reference layer stream.
- Right-view images may be reconstructed by further decoding the current layer stream in addition to the reference layer stream.
- reference layer images may be reconstructed from the reference layer stream, and the current layer images may be further reconstructed by further decoding the current layer stream with reference to the reference layer reconstructed images.
- the K-th layer images may be further reconstructed by further decoding the K-th layer stream with reference to the current layer reconstruction image.
- the video decoding apparatus 40 may decode inter-predicted data for each layer and decode inter-layer predicted data among a plurality of layers. Reconstruction through motion compensation and inter-layer decoding may be performed based on a coding unit or a prediction unit.
- images may be reconstructed by performing motion compensation for the current image with reference to reconstructed images predicted through inter prediction of the same layer.
- the motion compensation refers to an operation of reconstructing a reconstructed image of the current image by synthesizing the reference image determined using the motion vector of the current image and the residual component of the current image.
- the video decoding apparatus 40 may perform inter-layer decoding for reconstructing reference layer images predicted with reference to current layer images.
- the decoder 43 may decode the current layer stream without referring to the reference layer image sequence. Therefore, care must be taken not to restrict the interpretation that the decoder 43 performs inter-layer prediction in order to decode the current layer image sequence.
- the decoder 43 may decode the reference layer image by using encoding symbols of the parsed reference layer image. If the video decoding apparatus 40 receives streams encoded based on coding units having a tree structure, the decoder 43 may perform decoding based on coding units having a tree structure for each maximum coding unit of a reference layer stream. Can be.
- the decoder 43 may perform entropy decoding for each largest coding unit to obtain encoded information and encoded data.
- the decoder 43 may reconstruct the residual component by performing inverse quantization and inverse transformation on the encoded data obtained from the stream.
- the decoder 43 according to another embodiment may directly receive a bitstream of the quantized transform coefficients. As a result of performing inverse quantization and inverse transformation on the quantized transform coefficients, the residual component of the images may be reconstructed.
- the decoder 43 may generate the current layer prediction image by using the samples of the reference layer reconstruction image.
- the decoder 43 may decode the current layer stream to obtain a prediction error according to interlayer prediction.
- the decoder 43 may generate the current layer reconstruction image by combining the prediction error with the current layer prediction image.
- the decoder 43 may determine the current layer prediction image by using the reference layer reconstructed image decoded by the decoder 43.
- the decoder 43 may determine a block of the reference layer image to which a block, such as a coding unit or a prediction unit, of the current layer image refers, according to the interlayer prediction structure. For example, a reconstruction block of a reference layer image positioned corresponding to the position of the current block in the current layer image may be determined.
- the decoder 43 may determine the current layer prediction block by using a reference layer reconstruction block corresponding to the current layer block.
- the decoder 43 may use the current layer prediction block determined by using the reference layer reconstruction block according to the interlayer prediction structure as a reference image for interlayer prediction of the current layer original block. In this case, the decoder 43 may reconstruct the current layer block by synthesizing the sample value of the current layer prediction block determined using the reference layer reconstructed image and the residual component according to the interlayer prediction.
- the decoder 43 when the decoder 43 reconstructs a reference layer image having a resolution different from that of the current layer image, the decoder 43 sets the reference layer reconstructed image to the same resolution as the current layer original image. You can interpolate to scale.
- the interpolated reference layer reconstruction image may be determined as a current layer prediction image for interlayer prediction.
- the video decoding apparatus 40 may receive a data stream.
- the data stream received by the video decoding apparatus 40 may be configured of NAL (Network Abstraction Layer) units.
- the NAL unit may mean a network abstraction layer unit which is a basic unit constituting the bit stream.
- one or more NAL units may constitute a data stream.
- the video decoding apparatus 40 may receive a data stream composed of one or more NAL (Network Abstraction Layer) units from the outside.
- NAL Network Abstraction Layer
- the video decoding apparatus 40 may receive the data stream, divide the data stream into units of NAL units, and then decode each separated NAL unit.
- Each NAL unit may include two bytes of header information.
- the video decoding apparatus 40 may check the approximate information on the data inside each NAL unit by decoding the header information of two bytes included in each NAL unit.
- the disparity vector obtainer 41 may obtain a disparity vector having a component of a subpixel unit for inter-layer prediction between images belonging to a current layer and a reference layer.
- the integer pixel position determiner 12 may determine the position of the integer pixel of the reference layer corresponding to the position indicated by the disparity vector obtained from the current pixel of the current layer.
- the decoder 13 may decode the image of the current layer by using prediction information of the candidate region of the reference layer corresponding to the determined integer pixel position.
- the video decoding apparatus 40 may perform decoding of an image in relation to interlayer prediction.
- 4B is a flowchart illustrating a method of performing decoding by obtaining a disperity vector according to various embodiments of the present disclosure.
- the video decoding apparatus 40 may obtain a disparity vector having a component of a subpixel unit for inter-layer prediction between images belonging to a current layer and a reference layer.
- the reference layer may mean a layer different from the current layer.
- the current layer may be a layer associated with a color image
- the reference layer may be a layer associated with a depth image.
- the image of the current layer and the image of the reference layer may be images having different viewpoints.
- the disparity vector may express a difference in positions corresponding to each other with respect to the plurality of layers.
- a disperity vector may be used when performing inter-layer prediction.
- the disparity vector may be used for inter-layer prediction between images belonging to different layers.
- the disparity vector may be used for inter-layer prediction between pictures belonging to the current layer and the reference layer.
- the disperity vector may be a vector for multiple dimensions.
- the disperity vector may be a vector for two dimensions.
- the disperity vector may be a vector for three dimensions.
- the disperity vector may have a component of a subpixel unit.
- the position indicated by the disperity vector in the position of the current layer current block is May be a subpixel location.
- Motion information, depth information, and residual image data to be predicted may all be stored in integer pixel units. Accordingly, the video encoding apparatus 10 may change and use the disparity vector expressed in subpixel units in integer pixel units to access data stored in integer pixel units.
- the video decoding apparatus 40 may decode an image belonging to the current layer by using an image belonging to two layers.
- the video decoding apparatus 40 may perform prediction on an image belonging to a current layer by using an image belonging to a reference layer.
- the disparity vector may be used.
- the video decoding apparatus 40 predicts an image belonging to the current layer by using an image belonging to the reference layer, the disparity vector may be used.
- the block currently being decoded may be referred to as a current block.
- the video decoding apparatus 40 may use information related to the candidate region of the reference layer corresponding to the current block of the current layer when decoding the current block of the current layer.
- the video decoding apparatus 40 may use motion information corresponding to a candidate region of a reference layer corresponding to the current block of the current layer when decoding the current block of the current layer.
- the video decoding apparatus 40 may use information related to a depth corresponding to a candidate region of a reference layer corresponding to the current block of the current layer when decoding the current block of the current layer.
- the video decoding apparatus 40 may use the residual image data corresponding to the candidate region of the reference layer corresponding to the current block of the current layer when decoding the current block of the current layer.
- the video decoding apparatus 40 may use information related to the candidate region of the reference layer corresponding to the current block of the current layer when predicting the current block of the current layer.
- the video decoding apparatus 40 may use motion information corresponding to a candidate region of a reference layer corresponding to the current block of the current layer when predicting the current block of the current layer.
- the video decoding apparatus 40 may use information related to a depth corresponding to a candidate region of a reference layer corresponding to the current block of the current layer when predicting the current block of the current layer.
- the video decoding apparatus 40 may use the residual image data corresponding to the candidate region of the reference layer corresponding to the current block of the current layer when predicting the current block of the current layer.
- the video decoding apparatus 40 may determine the position of the integer pixel of the reference layer corresponding to the position indicated by the disperity vector obtained in operation S411 from the current pixel of the current layer.
- the video decoding apparatus 40 may use the disparity vector to correspond to the candidate region of the current block and the reference layer of the current layer.
- the video decoding apparatus 40 may determine that the region of the reference layer corresponding to the current block of the current layer is a candidate region of the reference layer corresponding to the current block of the current layer through the disperity vector.
- a plurality of pixels may be included in the current block of the current layer. Accordingly, the video decoding apparatus 40 may determine the position of a predetermined pixel among the plurality of pixels belonging to the current block of the current layer as the reference position of the current block.
- the predetermined pixel as a reference may be regarded as a current pixel of the current layer.
- the video decoding apparatus 40 may determine the location indicated by the disparity vector acquired in step S411 based on the location of the current pixel of the current layer.
- the video decoding apparatus 40 may determine the position of the integer pixel corresponding to the position indicated by the disparity vector obtained in step S411 based on the position of the current pixel of the current layer.
- the integer pixel may be located in the reference layer.
- the position of the current pixel of the current layer may be located in the current block of the current layer.
- the position of the current pixel of the current layer may be a predetermined position in the current block of the current layer.
- the position of the current pixel of the current layer may be the upper left corner of the current block of the current layer.
- the position of the current pixel of the current layer may be a lower left end of the current block of the current layer.
- the position of the current pixel of the current layer may be the upper right end of the current block of the current layer.
- the position of the current pixel of the current layer may be the bottom right of the current block of the current layer.
- the position of the current pixel of the current layer may be the center of the current block of the current layer.
- the disperity vector may have a component of a subpixel unit.
- the disperity vector may have a real component.
- the disperity vector may have a precision of fractional units such as quarter-pel or half-pel. Therefore, the position indicated by the disparity vector in the position of the current layer current block may be a subpixel position.
- Motion information, depth information, and residual image data to be predicted may all be stored in integer pixel units. Accordingly, the video encoding apparatus 10 may change and use the disparity vector expressed in subpixel units in integer pixel units to access data stored in integer pixel units. Accordingly, the video decoding apparatus 40 may determine the position of the integer pixel corresponding to the position of the subpixel indicated by the disparity vector.
- the video decoding apparatus 40 may use a rounding operation when determining the position of the integer pixel corresponding to the position of the subpixel indicated by the disparity vector.
- the video decoding apparatus 40 may use a bit shift operation when determining the position of the integer pixel corresponding to the position of the subpixel indicated by the disparity vector.
- the video decoding apparatus 40 may decode the image of the current layer by using prediction information of the candidate region of the reference layer corresponding to the position of the integer pixel determined in operation S412.
- the video decoding apparatus 40 may determine a candidate region of the reference layer corresponding to the position of the integer pixel determined in operation S412. The video decoding apparatus 40 may obtain prediction information corresponding to the candidate region of the determined reference layer.
- the prediction information may include at least one of motion information, information related to depth, and residual image data.
- the video decoding apparatus 40 may obtain motion information of the candidate region of the reference layer corresponding to the position of the integer pixel determined in step S412.
- the motion information may include a motion vector.
- the video decoding apparatus 40 may predict the motion information of the current block of the current layer by using the obtained motion information.
- the video decoding apparatus 40 may obtain information related to the depth of the candidate region of the reference layer corresponding to the position of the integer pixel determined in operation S412.
- the reference layer may be a depth layer.
- the video decoding apparatus 40 may decode the current block of the current layer by using the obtained information related to the depth.
- the video decoding apparatus 40 may predict the information related to the depth of the current block of the current layer by using the obtained information related to the depth.
- the video decoding apparatus 40 may obtain residual image data of the candidate region of the reference layer corresponding to the position of the integer pixel determined in operation S412.
- the video decoding apparatus 40 may predict the residual image data of the current block of the current layer by using the obtained residual image data.
- the integer pixel determined in step S412 may be located inside the candidate area of the determined reference layer. In addition, the integer pixel determined in operation S412 may be located at a predetermined position in the candidate region of the determined reference layer.
- the integer pixel determined in step S412 may be the upper left end of the candidate region of the determined reference layer.
- the integer pixel determined in step S412 may be a lower left end of the candidate region of the determined reference layer.
- the integer pixel determined in step S412 may be the upper right end of the candidate region of the determined reference layer.
- the integer pixel determined in step S412 may be the lower right end of the candidate region of the determined reference layer.
- the integer pixel determined in step S412 may be the center of the candidate region of the determined reference layer.
- 5A is a flowchart illustrating a method of determining an integer pixel position by determining an integer disparity vector corresponding to a disperity vector according to various embodiments of the present disclosure.
- step S511 corresponds to step S411, detailed description of the invention is omitted to simplify the overall description.
- the video decoding apparatus 40 may determine an integer disparity vector corresponding to the disparity vector obtained in operation S511.
- the integer disperity vector may have an integer as a component.
- the video decoding apparatus 40 may have components of a subpixel unit obtained in step S511.
- the disperity vector can have a fractional precision, such as a quarter pel or a half pel.
- the integer disperity vector corresponding to the disperity vector obtained in step S511 may be the same as the disperity vector obtained in step S511.
- the integer disperity vector corresponding to the disperity vector obtained in step S511 may not be the same as the disperity vector obtained in step S511. have.
- the video decoding apparatus 40 may determine an integer disparity vector corresponding to the disparity vector obtained in step S511 when the component of the disperity vector acquired in step S511 is not an integer.
- the video decoding apparatus 40 may determine the position of the integer pixel of the reference layer indicated by the integer disperity vector acquired in step S512 from the current pixel of the current layer.
- the current pixel of the current layer may be an integer pixel. Accordingly, the position of the pixel of the reference layer indicated by the integer disperity vector acquired in step S512 from the current pixel of the current layer may be the position of the integer pixel.
- the video decoding apparatus 40 may determine the position of the pixel of the reference layer indicated by the integer disperity vector acquired in step S512 from the current pixel of the current layer.
- the position of the pixel of the reference layer indicated by the disperity vector may be the position of an integer pixel when the current pixel is an integer pixel.
- FIG. 5B is a flowchart illustrating a method of determining an integer disperity vector through rounding operations on subpixel units of x and y components of a disperity vector, according to various embodiments of the present disclosure.
- step S521 corresponds to step S411, and step S523 corresponds to step S513, detailed description of the invention will be omitted to simplify the overall description.
- the video decoding apparatus 40 may determine an integer disparity vector by performing a rounding operation on subpixel units of x and y components of the disperity vector obtained in operation S521.
- the video decoding apparatus 40 may determine a vector value corresponding to the disparity vector obtained in step S521.
- the video decoding apparatus 40 may perform a rounding operation on the value of each component of the determined vector value.
- the video decoding apparatus 40 may determine an integer disperity vector having, as a component, a value on which the rounding operation is performed.
- 5C is a flowchart illustrating a method of determining an integer disperity vector according to various embodiments of the present disclosure.
- step S531 corresponds to step S411, detailed description of the invention will be omitted to simplify the overall description.
- the video decoding apparatus 40 may determine a disperity vector value from the disparity vector obtained in operation S531.
- the video decoding apparatus 40 may determine the value of the component of the disperity vector obtained in step S531.
- the disperity vector obtained in step S531 may be two or more components.
- the video decoding apparatus 40 may add a predetermined value to the disparity vector value obtained in operation S532.
- the video decoding apparatus 40 may add 1 to the disparity vector value obtained in step S532. As another example, the video decoding apparatus 40 may add 2 to the disparity vector value obtained in step S532.
- the predetermined value added to the disparity vector value obtained in step S532 may be an n power of 1 or 2 (n is an integer).
- the predetermined value added to the disparity vector value obtained in step S532 may be an n power of 1 or 2 (n is a positive integer).
- the predetermined value added to the disparity vector value obtained in step S532 may be related to the number of bits shifted in step S533.
- a predetermined value added to the disperity vector value obtained in step S532 may be k-1 powers of two.
- the predetermined value added to the disparity vector value obtained in step S532 may be 1.
- the predetermined value added to the disparity vector value obtained in step S532 may be 2.
- the predetermined value added to the disperity vector value obtained in step S532 may be 4.
- the predetermined value added to the disperity vector value obtained in step S532 may be a value obtained by adding 2 to k-1 powers.
- a predetermined value added to the disperity vector value obtained in step S532 may be 2 plus k-1.
- the video decoding apparatus 40 may shift a value added with a predetermined value to the right by a predetermined bit in a bit shift operation in operation S533.
- the video decoding apparatus 40 may shift the value added with the predetermined value to the left by a predetermined bit in step S533.
- 6A is a flowchart illustrating a method of predicting motion information by using positions of integer pixels determined according to various embodiments of the present disclosure.
- step S611 and step S612 correspond to step S411 and step S412, respectively, detailed description of the invention is omitted to simplify the overall description.
- the video decoding apparatus 40 may obtain motion information corresponding to the candidate region of the reference layer corresponding to the position of the integer pixel determined in operation S612.
- the motion information may include a motion vector. Motion information, motion vectors, and motion prediction have been described above.
- the video decoding apparatus 40 may determine a candidate region of the reference layer corresponding to the position of the integer pixel determined in operation S612.
- the video decoding apparatus 40 may obtain motion information corresponding to the candidate region of the determined reference layer.
- the video decoding apparatus 40 may obtain motion information allocated to the candidate region of the determined reference layer.
- the video decoding apparatus 40 may predict motion information of the current layer image using the motion information acquired in step S613.
- the video decoding apparatus 40 may decode the current layer image by using the motion information acquired in step S613.
- an embodiment of predicting motion information using a location of an integer pixel determined according to various embodiments may be represented by the following code.
- the block currently being decoded may be referred to as a current block.
- the current block may be an area of all or part of the image of the current layer.
- the video decoding apparatus 40 may use information related to the candidate region of the reference layer corresponding to the current block of the current layer when decoding the current block of the current layer.
- the current block may be a luma block.
- the video decoding apparatus 40 may determine the position of the integer pixel of the reference layer corresponding to the position indicated by the disparity vector from the current pixel of the current layer.
- xPb may mean a horizontal axis position of a current pixel located at a predetermined position within a current block of the current layer.
- yPb may mean a vertical axis position of a current pixel located at a predetermined position within a current block of the current layer.
- nPbW may mean the width of the current block of the current layer.
- the video decoding apparatus 40 may obtain depth information from a depth image, and determine a disparity vector by using the acquired depth information.
- the candidate region in the reference layer may be determined using the determined disparity vector.
- the video decoding apparatus 40 may predict the information related to the depth of the current block of the current layer by using the obtained information related to the depth.
- an embodiment of predicting information related to a depth using a location of an integer pixel determined according to various embodiments may be represented by the following code.
- the video decoding apparatus 40 may determine the position of the integer pixel of the depth image corresponding to the position indicated by the disparity vector from the current pixel of the color image.
- xP may refer to the horizontal axis position of the current pixel located at a predetermined position within the current block of the color image.
- ⁇ may mean shifting bits to the left.
- mvDisp may mean a disperity vector.
- ((mvDisp [0] + 2) >> 2) may mean a horizontal component value of an integer disperity vector.
- ((mvDisp [1] + 2) >> 2) may mean a vertical component value of an integer disperity vector.
- the xTL may mean a horizontal axis position of an integer pixel located in the depth image.
- yTL may mean the vertical axis position of an integer pixel located in the depth image.
- the video decoding apparatus 40 may determine the position of the integer pixel located in the depth image based on the position of the current pixel and the value of the disparity vector. In addition, the video decoding apparatus 40 may determine the integer disparity vector by performing addition and shift operations on the disperity vector.
- step S631 and step S632 correspond to step S411 and step S412, respectively, detailed description of the invention is omitted to simplify the overall description.
- the video decoding apparatus 40 may decode the current layer image by using the obtained motion information.
- the video decoding apparatus 40 may determine the position of the integer pixel of the reference layer corresponding to the position indicated by the disparity vector from the current pixel of the current layer.
- ⁇ may mean shifting bits to the left.
- xRef may mean a horizontal axis position of an integer pixel of a reference layer.
- yRef may mean the vertical axis position of the integer pixel of the reference layer.
- the video encoding apparatus 40 may find the position of the reference layer corresponding to the current block of the current layer as a disperity vector.
- the video decoding apparatus 40 may use the integer disperity vector when finding the position of the reference layer corresponding to the current block of the current layer.
- the integer disperity vector may be determined through addition and shift operations to the disperity vector.
- the video decoding apparatus 40 may obtain residual image data in the candidate area corresponding to the position of the reference layer corresponding to the current block of the current layer.
- the video decoding apparatus 40 may predict the residual image data of the current block by using the obtained residual image data.
- the video decoding apparatus 40 may represent a depth of the position corresponding to the current block in the depth map of the reference view corresponding to the current view. Takes a value and converts it to a disparity vector. The video decoding apparatus 40 determines the converted disparity vector as the disparity vector corresponding to the current block.
- the video decoding apparatus 40 may check whether the depth map exists in the reference view.
- an initial disparity vector as an example of a search process (when an initial disparity vector is an intermediate value of a range of values that a depth can have, for example, 8 bits are converted into a disparity vector) Value), taking a depth value representative from a corresponding position of a depth map of a reference view using an initial disparity vector, converting the depth value into a disparity vector, Taking a depth value represented at a depth position corresponding to a depth map of a reference view using the disparity vector, converting the depth value into a disparity vector, and converting the disparity vector into a disparity vector of the current block It may comprise the step of setting. (The video decoding apparatus 40 may convert the depth value into a disparity vector using a camera parameter.)
- the video decoding apparatus 40 searches for the disparity vector in a sequence of neighboring blocks in the temporal or spatial direction, and searches the disparity vector of the current block for the disparity vector. Can be determined by the parity vector.
- the video decoding apparatus 40 may set the disparity vector to (0, 0).
- the video decoding apparatus 40 may derive a disparity vector by using only the depth map existing in the reference view without using neighboring block information. Therefore, the complexity of the process of deriving the disparity vector can be reduced and the coding efficiency can be improved.
- FIG. 7B is a block diagram illustrating a method of predicting a disparity vector by a video decoding apparatus 40 using a depth map of a reference view, according to an embodiment.
- the video decoding apparatus 40 when the depth map of the reference view exists, the video decoding apparatus 40 according to an embodiment may set an initial value to (0, 0) as an example corresponding to the current view.
- the video decoding apparatus 40 may set an initial value to a median value of a bit depth of a depth map of a reference view (for example, when BitDepth is referred to as a bit depth of a current depth map, a value of 1 ⁇ (BitDepth-1)). ) May be used as a disparity vector.
- the video decoding apparatus 40 may use an initial value transmitted by being included in the biststream header.
- the video decoding apparatus 40 may calculate the global disparity vector and use the initial value as the initial value.
- the video decoding apparatus 40 may obtain a representative depth value in an area of a depth map of a position set as an initial value, and convert the representative depth value into a disparity vector to determine the disparity vector of the current block.
- the video encoding apparatus 100 including video prediction based on coding units having a tree structure includes a coding unit determiner 120 and an output unit 130.
- the video encoding apparatus 100 that includes video prediction based on coding units having a tree structure is abbreviated as “video encoding apparatus 100”.
- the coding unit determiner 120 may partition the current picture based on a maximum coding unit that is a coding unit having a maximum size for the current picture of the image. If the current picture is larger than the maximum coding unit, image data of the current picture may be split into at least one maximum coding unit.
- the maximum coding unit may be a data unit having a size of 32x32, 64x64, 128x128, 256x256, or the like, and may be a square data unit having a square of two horizontal and vertical sizes.
- the image data of the current picture may be divided into maximum coding units according to the maximum size of the coding unit, and each maximum coding unit may include coding units divided by depths. Since the maximum coding unit is divided according to depths, image data of a spatial domain included in the maximum coding unit may be hierarchically classified according to depths.
- the coding unit determiner 120 may determine coding units having a tree structure included in the current maximum coding unit.
- the coding units according to the tree structure according to an embodiment include coding units having a depth determined as a final depth among all deeper coding units included in the current maximum coding unit.
- the coding unit of the final depth may be hierarchically determined according to the depth in the same region within the maximum coding unit, and may be independently determined for the other regions. Similarly, the final depth for the current area can be determined independently of the final depth for the other area.
- the maximum depth according to an embodiment is an index related to the number of divisions from the maximum coding unit to the minimum coding unit.
- the first maximum depth according to an embodiment may represent the total number of divisions from the maximum coding unit to the minimum coding unit.
- the second maximum depth according to an embodiment may represent the total number of depth levels from the maximum coding unit to the minimum coding unit. For example, when the depth of the largest coding unit is 0, the depth of the coding unit obtained by dividing the largest coding unit once may be set to 1, and the depth of the coding unit divided twice may be set to 2. In this case, if the coding unit divided four times from the maximum coding unit is the minimum coding unit, since depth levels of 0, 1, 2, 3, and 4 exist, the first maximum depth is set to 4 and the second maximum depth is set to 5. Can be.
- Predictive encoding and transformation of the largest coding unit may be performed. Similarly, prediction encoding and transformation are performed based on depth-wise coding units for each maximum coding unit and for each depth less than or equal to the maximum depth.
- encoding including prediction encoding and transformation should be performed on all the coding units for each depth generated as the depth deepens.
- the prediction encoding and the transformation will be described based on the coding unit of the current depth among at least one maximum coding unit.
- prediction coding may be performed based on coding units of a final depth, that is, stranger undivided coding units, according to an embodiment.
- a more strange undivided coding unit that is the basis of prediction coding is referred to as a 'prediction unit'.
- the partition in which the prediction unit is divided may include a data unit in which at least one of the prediction unit and the height and the width of the prediction unit are divided.
- the partition may be a data unit in which the prediction unit of the coding unit is split, and the prediction unit may be a partition having the same size as the coding unit.
- the partition mode may be formed in a geometric form, as well as partitions divided in an asymmetric ratio such as 1: n or n: 1, as well as symmetric partitions in which a height or width of a prediction unit is divided in a symmetrical ratio. It may optionally include partitioned partitions, arbitrary types of partitions, and the like.
- the video encoding apparatus 100 may perform conversion of image data of a coding unit based on not only a coding unit for encoding image data, but also a data unit different from the coding unit.
- the transformation may be performed based on a transformation unit having a size smaller than or equal to the coding unit.
- the transformation unit may include a data unit for intra mode and a transformation unit for inter mode.
- the split information for each depth requires not only depth but also prediction related information and transformation related information. Accordingly, the coding unit determiner 120 may determine not only the depth that generates the minimum coding error, but also a partition mode in which the prediction unit is divided into partitions, a prediction mode for each prediction unit, and a size of a transformation unit for transformation.
- the coding unit determiner 120 may measure a coding error of coding units according to depths using a Lagrangian Multiplier-based rate-distortion optimization technique.
- the output unit 130 outputs the image data and the split information according to depths of the maximum coding unit, which are encoded based on at least one depth determined by the coding unit determiner 120, in a bitstream form.
- the split information for each depth may include depth information, partition mode information of a prediction unit, prediction mode information, split information of a transformation unit, and the like.
- the final depth information may be defined using depth-specific segmentation information indicating whether to encode in a coding unit of a lower depth rather than encoding the current depth. If the current depth of the current coding unit is a depth, since the current coding unit is encoded in a coding unit of the current depth, split information of the current depth may be defined so that it is no longer divided into lower depths. On the contrary, if the current depth of the current coding unit is not the depth, encoding should be attempted using the coding unit of the lower depth, and thus split information of the current depth may be defined to be divided into coding units of the lower depth.
- coding units having a tree structure are determined in one largest coding unit and at least one split information should be determined for each coding unit of a depth, at least one split information may be determined for one maximum coding unit.
- the depth since the data of the largest coding unit is partitioned hierarchically according to the depth, the depth may be different for each location, and thus depth and split information may be set for the data.
- the encoding information output through the output unit 130 may be classified into encoding information according to depth coding units and encoding information according to prediction units.
- the encoding information for each coding unit according to depth may include prediction mode information and partition size information.
- the encoding information transmitted for each prediction unit includes information about an estimation direction of the inter mode, information about a reference image index of the inter mode, information about a motion vector, information about a chroma component of an intra mode, and information about an inter mode of an intra mode. And the like.
- Information about the maximum size and information about the maximum depth of the coding unit defined for each picture, slice, or GOP may be inserted into a header, a sequence parameter set, or a picture parameter set of the bitstream.
- the information on the maximum size of the transform unit and the minimum size of the transform unit allowed for the current video may also be output through a header, a sequence parameter set, a picture parameter set, or the like of the bitstream.
- the output unit 130 may encode and output reference information, prediction information, slice type information, and the like related to prediction.
- a coding unit according to depths is a coding unit having a size in which a height and a width of a coding unit of one layer higher depth are divided by half. That is, if the size of the coding unit of the current depth is 2Nx2N, the size of the coding unit of the lower depth is NxN.
- the current coding unit having a size of 2N ⁇ 2N may include up to four lower depth coding units having a size of N ⁇ N.
- the video encoding apparatus may adjust the coding unit in consideration of the image characteristics while increasing the maximum size of the coding unit in consideration of the size of the image, thereby increasing image compression efficiency.
- the video encoding apparatus 40 described above with reference to FIG. 4 may include as many video encoding apparatuses 100 as the number of layers for encoding single layer images for each layer of a multilayer video.
- the encoding unit determiner 120 determines a prediction unit for inter-image prediction for each coding unit having a tree structure for each maximum coding unit, and for each image Liver prediction can be performed.
- the coding unit determiner 120 may determine a coding unit and a prediction unit having a tree structure for each maximum coding unit, and perform inter prediction for each prediction unit. have.
- the video encoding apparatus 100 may encode the luminance difference to compensate for the luminance difference between the reference layer image and the current layer image. However, whether to perform luminance may be determined according to an encoding mode of a coding unit. For example, luminance compensation may be performed only for prediction units having a size of 2N ⁇ 2N.
- FIG. 9 is a block diagram of a video decoding apparatus 200 based on coding units having a tree structure, according to various embodiments.
- a video decoding apparatus 200 including video prediction based on coding units having a tree structure includes a receiver 210, image data and encoding information extractor 220, and image data decoder 230. do.
- the video decoding apparatus 200 that includes video prediction based on coding units having a tree structure is abbreviated as “video decoding apparatus 200”.
- the receiver 210 receives and parses a bitstream of an encoded video.
- the image data and encoding information extractor 220 extracts image data encoded for each coding unit from the parsed bitstream according to coding units having a tree structure for each maximum coding unit, and outputs the encoded image data to the image data decoder 230.
- the image data and encoding information extractor 220 may extract information about a maximum size of a coding unit of the current picture from a header, a sequence parameter set, or a picture parameter set for the current picture.
- the image data and encoding information extractor 220 extracts the final depth and the split information of the coding units having a tree structure for each maximum coding unit from the parsed bitstream.
- the extracted final depth and split information are output to the image data decoder 230. That is, the image data of the bit string may be divided into maximum coding units so that the image data decoder 230 may decode the image data for each maximum coding unit.
- the depth and split information for each largest coding unit may be set for one or more depth information, and the split information for each depth may include partition mode information, prediction mode information, split information of a transform unit, and the like, of a corresponding coding unit. .
- depth-specific segmentation information may be extracted.
- the depth and split information for each largest coding unit extracted by the image data and encoding information extractor 220 are repeatedly used for each coding unit for each deeper coding unit, as in the video encoding apparatus 100 according to an exemplary embodiment. Depth and split information determined to perform encoding to generate a minimum encoding error. Therefore, the video decoding apparatus 200 may reconstruct an image by decoding data according to an encoding method that generates a minimum encoding error.
- the image data and the encoding information extractor 220 may use the predetermined data unit. Depth and segmentation information can be extracted for each. If the depth and the split information of the corresponding maximum coding unit are recorded for each predetermined data unit, the predetermined data units having the same depth and the split information may be inferred as data units included in the same maximum coding unit.
- the image data decoder 230 reconstructs the current picture by decoding image data of each maximum coding unit based on the depth and the split information for each maximum coding unit. That is, the image data decoder 230 may decode the encoded image data based on the read partition mode, the prediction mode, and the transformation unit for each coding unit among the coding units having the tree structure included in the maximum coding unit. Can be.
- the decoding process may include a prediction process including intra prediction and motion compensation, and an inverse transform process.
- the image data decoder 230 may perform intra prediction or motion compensation according to each partition and prediction mode for each coding unit, based on the partition mode information and the prediction mode information of the prediction unit of the coding unit according to depths.
- the image data decoder 230 may read transform unit information having a tree structure for each coding unit, and perform inverse transform based on the transformation unit for each coding unit, for inverse transformation for each largest coding unit. Through inverse transformation, the pixel value of the spatial region of the coding unit may be restored.
- the image data decoder 230 may determine the depth of the current maximum coding unit by using the split information for each depth. If the split information indicates that the split information is no longer divided at the current depth, the current depth is the depth. Therefore, the image data decoder 230 may decode the coding unit of the current depth using the partition mode, the prediction mode, and the transformation unit size information of the prediction unit, for the image data of the current maximum coding unit.
- the image data decoder 230 It may be regarded as one data unit to be decoded in the same encoding mode.
- the decoding of the current coding unit may be performed by obtaining information about an encoding mode for each coding unit determined in this way.
- the video decoding apparatus 10 described above with reference to FIG. 10 views the video decoding apparatus 200 in order to decode the received reference layer image stream and the current layer image stream to reconstruct the reference layer images and the current layer images. It can contain as many as.
- the image data decoder 230 of the video decoding apparatus 200 may extract the samples of the reference layer images extracted from the reference layer image stream by the extractor 220 in the maximum coding unit. It may be divided into coding units having a tree structure. The image data decoder 230 may reconstruct the reference layer images by performing motion compensation for each coding unit according to a tree structure of samples of the reference layer images and for each prediction unit for inter-image prediction.
- the image data decoder 230 of the video decoding apparatus 200 may extract the samples of the current layer images extracted from the current layer image stream by the extractor 220 in the maximum coding unit. It may be divided into coding units having a tree structure. The image data decoder 230 may reconstruct the current layer images by performing motion compensation for each prediction unit for inter prediction for each coding unit of samples of the current layer images.
- the extractor 220 may obtain information related to the luminance error from the bitstream to compensate for the luminance difference between the reference layer image and the current layer image. However, whether to perform luminance may be determined according to an encoding mode of a coding unit. For example, luminance compensation may be performed only for prediction units having a size of 2N ⁇ 2N.
- the video decoding apparatus 200 may obtain information about a coding unit that generates a minimum coding error by recursively encoding each maximum coding unit in the encoding process, and use the same to decode the current picture. That is, decoding of encoded image data of coding units having a tree structure determined as an optimal coding unit for each maximum coding unit can be performed.
- the image data is efficiently decoded according to the size and encoding mode of a coding unit adaptively determined according to the characteristics of the image using the optimal split information transmitted from the encoding end. Can be restored
- FIG. 10 illustrates a concept of coding units, according to various embodiments.
- a size of a coding unit may be expressed by a width x height, and may include 32x32, 16x16, and 8x8 from a coding unit having a size of 64x64.
- Coding units of size 64x64 may be partitioned into partitions of size 64x64, 64x32, 32x64, and 32x32, coding units of size 32x32 are partitions of size 32x32, 32x16, 16x32, and 16x16, and coding units of size 16x16 are 16x16.
- Coding units of size 8x8 may be divided into partitions of size 8x8, 8x4, 4x8, and 4x4, into partitions of 16x8, 8x16, and 8x8.
- the resolution is set to 1920x1080, the maximum size of the coding unit is 64, and the maximum depth is 2.
- the resolution is set to 1920x1080, the maximum size of the coding unit is 64, and the maximum depth is 3.
- the resolution is set to 352x288, the maximum size of the coding unit is 16, and the maximum depth is 1.
- the maximum depth illustrated in FIG. 10 represents the total number of divisions from the maximum coding unit to the minimum coding unit.
- the maximum size of the coding size is relatively large not only to improve the coding efficiency but also to accurately shape the image characteristics. Accordingly, the video data 310 or 320 having a higher resolution than the video data 330 may be selected to have a maximum size of 64.
- the coding unit 315 of the video data 310 is divided twice from a maximum coding unit having a long axis size of 64, and the depth is deepened by two layers, so that the long axis size is 32, 16. Up to coding units may be included.
- the coding unit 335 of the video data 330 is divided once from coding units having a long axis size of 16, and the depth is deepened by one layer to increase the long axis size to 8. Up to coding units may be included.
- the coding unit 325 of the video data 320 is divided three times from the largest coding unit having a long axis size of 64, and the depth is three layers deep, so that the long axis size is 32, 16. , Up to 8 coding units may be included. As the depth increases, the expressive power of the detailed information may be improved.
- FIG. 11 is a block diagram of an image encoder 400 based on coding units, according to various embodiments.
- the image encoder 400 performs operations that are performed to encode image data by the picture encoder 120 of the video encoding apparatus 100. That is, the intra prediction unit 420 performs intra prediction on each coding unit of the intra mode of the current image 405, and the inter prediction unit 415 performs the current image on the prediction unit of the coding unit of the inter mode. Inter-prediction is performed using the reference image acquired at 405 and the reconstructed picture buffer 410.
- the current image 405 may be divided into maximum coding units and then sequentially encoded. In this case, encoding may be performed on the coding unit in which the largest coding unit is to be divided into a tree structure.
- Residual image data is generated by subtracting the prediction data for the coding unit of each mode output from the intra predictor 420 or the inter predictor 415 from the data for the encoded coding unit of the current image 405, and remaining.
- the image data is output as transform coefficients quantized for each transform unit through the transform unit 425 and the quantization unit 430.
- the quantized transform coefficients are reconstructed by the inverse quantization unit 445 and the inverse transform unit 450 to the residual image data of the spatial domain.
- the residual image data of the reconstructed spatial domain is added to the prediction data of the coding unit of each mode output from the intra predictor 420 or the inter predictor 415, thereby adding the residual data of the spatial domain to the coding unit of the current image 405.
- the data is restored.
- the reconstructed spatial region data is generated as a reconstructed image through the deblocking unit 455 and the SAO performing unit 460.
- the generated reconstructed image is stored in the reconstructed picture buffer 410.
- the reconstructed images stored in the reconstructed picture buffer 410 may be used as reference images for inter prediction of another image.
- the transform coefficients quantized by the transformer 425 and the quantizer 430 may be output as the bitstream 440 through the entropy encoder 435.
- an inter predictor 415, an intra predictor 420, and a transformer each have a tree structure for each maximum coding unit. An operation based on each coding unit among the coding units may be performed.
- the intra prediction unit 420 and the inter prediction unit 415 determine the partition mode and the prediction mode of each coding unit among the coding units having a tree structure in consideration of the maximum size and the maximum depth of the current maximum coding unit.
- the transform unit 425 may determine whether to split the transform unit according to the quad tree in each coding unit among the coding units having the tree structure.
- FIG. 12 is a block diagram of an image decoder 500 based on coding units, according to various embodiments.
- the entropy decoding unit 515 parses the encoded image data to be decoded from the bitstream 505 and encoding information necessary for decoding.
- the encoded image data is a quantized transform coefficient
- the inverse quantizer 520 and the inverse transform unit 525 reconstruct the residual image data from the quantized transform coefficients.
- the intra prediction unit 540 performs intra prediction for each prediction unit with respect to the coding unit of the intra mode.
- the inter prediction unit 535 performs inter prediction using the reference image obtained from the reconstructed picture buffer 530 for each coding unit of the coding mode of the inter mode among the current pictures.
- the data of the spatial domain of the coding unit of the current image 405 is restored and restored.
- the data of the space area may be output as a reconstructed image 560 via the deblocking unit 545 and the SAO performing unit 550.
- the reconstructed images stored in the reconstructed picture buffer 530 may be output as reference images.
- step-by-step operations after the entropy decoder 515 of the image decoder 500 may be performed.
- the entropy decoder 515, the inverse quantizer 520, and the inverse transformer ( 525, the intra prediction unit 540, the inter prediction unit 535, the deblocking unit 545, and the SAO performer 550 based on each coding unit among coding units having a tree structure for each maximum coding unit. You can do it.
- the intra predictor 540 and the inter predictor 535 determine a partition mode and a prediction mode for each coding unit among coding units having a tree structure, and the inverse transformer 525 has a quad tree structure for each coding unit. It is possible to determine whether to divide the conversion unit according to.
- the encoding operation of FIG. 10 and the decoding operation of FIG. 11 describe the video stream encoding operation and the decoding operation in a single layer, respectively. Therefore, if the encoder 12 of FIG. 4 encodes a video stream of two or more layers, the encoder 12 may include an image encoder 400 for each layer. Similarly, if the decoder 26 of FIG. 10 decodes a video stream of two or more layers, the decoder 26 may include an image decoder 500 for each layer.
- FIG. 13 is a diagram illustrating deeper coding units according to depths, and partitions, according to various embodiments.
- the video encoding apparatus 100 according to an embodiment and the video decoding apparatus 200 according to an embodiment use hierarchical coding units to consider image characteristics.
- the maximum height, width, and maximum depth of the coding unit may be adaptively determined according to the characteristics of the image, and may be variously set according to a user's request. According to the maximum size of the preset coding unit, the size of the coding unit for each depth may be determined.
- the hierarchical structure 600 of a coding unit illustrates a case in which a maximum height and a width of a coding unit are 64 and a maximum depth is three.
- the maximum depth indicates the total number of divisions from the maximum coding unit to the minimum coding unit. Since the depth deepens along the vertical axis of the hierarchical structure 600 of the coding unit according to an embodiment, the height and the width of the coding unit for each depth are divided.
- a prediction unit and a partition on which the prediction encoding of each depth-based coding unit is shown along the horizontal axis of the hierarchical structure 600 of the coding unit are illustrated.
- the coding unit 610 has a depth of 0 as the largest coding unit of the hierarchical structure 600 of the coding unit, and the size, ie, the height and width, of the coding unit is 64x64.
- a depth deeper along the vertical axis includes a coding unit 620 of depth 1 having a size of 32x32, a coding unit 630 of depth 2 having a size of 16x16, and a coding unit 640 of depth 3 having a size of 8x8.
- a coding unit 640 of depth 3 having a size of 8 ⁇ 8 is a minimum coding unit.
- Prediction units and partitions of the coding unit are arranged along the horizontal axis for each depth. That is, if the coding unit 610 of size 64x64 having a depth of zero is a prediction unit, the prediction unit may include a partition 610 of size 64x64, partitions 612 of size 64x32, and size included in the coding unit 610 of size 64x64. 32x64 partitions 614, 32x32 partitions 616.
- the prediction unit of the coding unit 620 having a size of 32x32 having a depth of 1 includes a partition 620 of size 32x32, partitions 622 of size 32x16 and a partition of size 16x32 included in the coding unit 620 of size 32x32. 624, partitions 626 of size 16x16.
- the prediction unit of the coding unit 630 of size 16x16 having a depth of 2 includes a partition 630 of size 16x16, partitions 632 of size 16x8, and a partition of size 8x16 included in the coding unit 630 of size 16x16. 634, partitions 636 of size 8x8.
- the prediction unit of the coding unit 640 of size 8x8 having a depth of 3 includes a partition 640 of size 8x8, partitions 642 of size 8x4 and a partition of size 4x8 included in the coding unit 640 of size 8x8. 644, partitions 646 of size 4x4.
- the coding unit determiner 120 of the video encoding apparatus 100 may determine the depth of the maximum coding unit 610 for each coding unit of each depth included in the maximum coding unit 610. Encoding must be performed.
- the number of deeper coding units according to depths for including data having the same range and size increases as the depth increases. For example, four coding units of depth 2 are required for data included in one coding unit of depth 1. Therefore, in order to compare the encoding results of the same data for each depth, each of the coding units having one depth 1 and four coding units having four depths 2 should be encoded.
- encoding may be performed for each prediction unit of a coding unit according to depths along a horizontal axis of the hierarchical structure 600 of the coding unit, and a representative coding error, which is the smallest coding error at a corresponding depth, may be selected. .
- a depth deeper along the vertical axis of the hierarchical structure 600 of the coding unit the encoding may be performed for each depth, and the minimum coding error may be searched by comparing the representative coding error for each depth.
- the depth and partition in which the minimum coding error occurs in the maximum coding unit 610 may be selected as the depth and partition mode of the maximum coding unit 610.
- FIG. 14 illustrates a relationship between a coding unit and transformation units, according to various embodiments.
- the video encoding apparatus 100 encodes or decodes an image in coding units having a size smaller than or equal to the maximum coding unit for each maximum coding unit.
- the size of a transformation unit for transformation in the encoding process may be selected based on a data unit that is not larger than each coding unit.
- the 32x32 size conversion unit 720 is The conversion can be performed.
- the data of the 64x64 coding unit 710 is transformed into 32x32, 16x16, 8x8, and 4x4 transform units of 64x64 size or less, and then encoded, and the transform unit having the least error with the original is selected. Can be.
- 15 is a diagram of deeper encoding information according to depths, according to various embodiments.
- the output unit 130 of the video encoding apparatus 100 is split information, and information about a partition mode 800, information 810 about a prediction mode, and transform unit size for each coding unit of each depth.
- Information 820 may be encoded and transmitted.
- the information about the partition mode 800 is a data unit for predictive encoding of the current coding unit and indicates information about a partition type in which the prediction unit of the current coding unit is divided.
- the current coding unit CU_0 of size 2Nx2N may be any one of a partition 802 of size 2Nx2N, a partition 804 of size 2NxN, a partition 806 of size Nx2N, and a partition 808 of size NxN. It can be divided and used.
- the information 800 about the partition mode of the current coding unit represents one of a partition 802 of size 2Nx2N, a partition 804 of size 2NxN, a partition 806 of size Nx2N, and a partition 808 of size NxN. It is set to.
- Information 810 relating to the prediction mode indicates the prediction mode of each partition. For example, through the information 810 about the prediction mode, whether the partition indicated by the information 800 about the partition mode is performed in one of the intra mode 812, the inter mode 814, and the skip mode 816 is performed. Whether or not can be set.
- the information about the transform unit size 820 indicates whether to transform the current coding unit based on the transform unit.
- the transform unit may be one of a first intra transform unit size 822, a second intra transform unit size 824, a first inter transform unit size 826, and a second inter transform unit size 828. have.
- the image data and encoding information extractor 210 of the video decoding apparatus 200 may include information about a partition mode 800, information 810 about a prediction mode, and transformation for each depth-based coding unit. Information 820 about the unit size may be extracted and used for decoding.
- 16 is a diagram of deeper coding units according to depths, according to various embodiments.
- Segmentation information may be used to indicate a change in depth.
- the split information indicates whether a coding unit of a current depth is split into coding units of a lower depth.
- the prediction unit 910 for predictive encoding of the coding unit 900 having depth 0 and 2N_0x2N_0 size includes a partition mode 912 of 2N_0x2N_0 size, a partition mode 914 of 2N_0xN_0 size, a partition mode 916 of N_0x2N_0 size, and N_0xN_0 May include a partition mode 918 of size.
- partition mode 912, 914, 916, and 918 in which the prediction unit is divided by a symmetrical ratio are illustrated, as described above, the partition mode is not limited thereto, and asymmetric partitions, arbitrary partitions, geometric partitions, and the like. It may include.
- prediction coding For each partition mode, prediction coding must be performed repeatedly for one 2N_0x2N_0 partition, two 2N_0xN_0 partitions, two N_0x2N_0 partitions, and four N_0xN_0 partitions.
- prediction encoding For partitions having a size 2N_0x2N_0, a size N_0x2N_0, a size 2N_0xN_0, and a size N_0xN_0, prediction encoding may be performed in an intra mode and an inter mode.
- the skip mode may be performed only for prediction encoding on partitions having a size of 2N_0x2N_0.
- the depth 0 is changed to 1 and split (920), and the encoding is repeatedly performed on the depth 2 and the coding units 930 of the partition mode of size N_0xN_0.
- the depth 1 is changed to the depth 2 and divided (950), and repeatedly for the depth 2 and the coding units 960 of the size N_2xN_2.
- the encoding may be performed to search for the minimum encoding error.
- depth-based coding units may be set until depth d-1, and split information may be set up to depth d-2. That is, when encoding is performed from the depth d-2 to the depth d-1 to the depth d-1, the prediction encoding of the coding unit 980 of the depth d-1 and the size 2N_ (d-1) x2N_ (d-1)
- the prediction unit for 990 is a partition mode 992 of size 2N_ (d-1) x2N_ (d-1), a partition mode 994 of size 2N_ (d-1) xN_ (d-1), and size
- a partition mode 996 of N_ (d-1) x2N_ (d-1) and a partition mode 998 of size N_ (d-1) xN_ (d-1) may be included.
- partition mode one partition 2N_ (d-1) x2N_ (d-1), two partitions 2N_ (d-1) xN_ (d-1), two sizes N_ (d-1) x2N_
- a partition mode in which a minimum encoding error occurs may be searched.
- the coding unit CU_ (d-1) of the depth d-1 is no longer
- the depth of the current maximum coding unit 900 may be determined as the depth d-1, and the partition mode may be determined as N_ (d-1) xN_ (d-1) without going through a division process into lower depths.
- split information is not set for the coding unit 952 having the depth d-1.
- the data unit 999 may be referred to as a 'minimum unit' for the current maximum coding unit.
- the minimum unit may be a square data unit having a size obtained by dividing the minimum coding unit, which is the lowest depth, into four.
- the video encoding apparatus 100 compares depth-to-depth encoding errors of the coding units 900, selects a depth at which the smallest encoding error occurs, and determines a depth.
- the partition mode and the prediction mode may be set to the encoding mode of the depth.
- depths with the smallest error can be determined by comparing the minimum coding errors for all depths of depths 0, 1, ..., d-1, and d.
- the depth, the partition mode of the prediction unit, and the prediction mode may be encoded and transmitted as split information.
- the coding unit since the coding unit must be split from the depth 0 to the depth, only the split information of the depth is set to '0', and the split information for each depth except the depth should be set to '1'.
- the image data and encoding information extractor 220 of the video decoding apparatus 200 may extract information about a depth and a prediction unit of the coding unit 900 and use it to decode the coding unit 912. have.
- the video decoding apparatus 200 may grasp a depth having split information of '0' as a depth using split information for each depth, and may use the split information for the corresponding depth for decoding.
- 17, 18, and 19 illustrate a relationship between coding units, prediction units, and transformation units, according to various embodiments.
- the coding units 1010 are deeper coding units determined by the video encoding apparatus 100 according to an embodiment with respect to the largest coding unit.
- the prediction unit 1060 is partitions of prediction units of each deeper coding unit among the coding units 1010, and the transform unit 1070 is transform units of each deeper coding unit.
- the depth-based coding units 1010 have a depth of 0
- the coding units 1012 and 1054 have a depth of 1
- the coding units 1014, 1016, 1018, 1028, 1050, and 1052 have depths.
- coding units 1020, 1022, 1024, 1026, 1030, 1032, and 1048 have a depth of three
- coding units 1040, 1042, 1044, and 1046 have a depth of four.
- partitions 1014, 1016, 1022, 1032, 1048, 1050, 1052, and 1054 of the prediction units 1060 are obtained by splitting coding units. That is, partitions 1014, 1022, 1050, and 1054 are 2NxN partition modes, partitions 1016, 1048, and 1052 are Nx2N partition modes, and partitions 1032 are NxN partition modes. Prediction units and partitions of the coding units 1010 according to depths are smaller than or equal to each coding unit.
- the image data of the part 1052 of the transformation units 1070 is transformed or inversely transformed into a data unit having a smaller size than the coding unit.
- the transformation units 1014, 1016, 1022, 1032, 1048, 1050, 1052, and 1054 are data units having different sizes or shapes when compared to corresponding prediction units and partitions among the prediction units 1060. That is, the video encoding apparatus 100 according to an embodiment and the video decoding apparatus 200 according to an embodiment may be intra prediction / motion estimation / motion compensation operations and transform / inverse transform operations for the same coding unit. Each can be performed on a separate data unit.
- coding is performed recursively for each coding unit having a hierarchical structure for each largest coding unit to determine an optimal coding unit.
- coding units having a recursive tree structure may be configured.
- the encoding information may include split information about the coding unit, partition mode information, prediction mode information, and transformation unit size information. Table 1 below shows an example that can be set in the video encoding apparatus 100 and the video decoding apparatus 200 according to an embodiment.
- the output unit 130 of the video encoding apparatus 100 outputs encoding information about coding units having a tree structure
- the encoding information extraction unit of the video decoding apparatus 200 according to an embodiment 220 may extract encoding information about coding units having a tree structure from the received bitstream.
- the split information indicates whether the current coding unit is split into coding units of a lower depth. If the split information of the current depth d is 0, partition mode information, prediction mode, and transform unit size information may be defined for the depth since the current coding unit is a depth in which the current coding unit is no longer divided into lower coding units. have. If it is to be further split by the split information, encoding should be performed independently for each coding unit of the divided four lower depths.
- the prediction mode may be represented by one of an intra mode, an inter mode, and a skip mode.
- Intra mode and inter mode can be defined in all partition modes, and skip mode can only be defined in partition mode 2Nx2N.
- the partition mode information indicates symmetric partition modes 2Nx2N, 2NxN, Nx2N, and NxN, where the height or width of the prediction unit is divided by symmetrical ratios, and asymmetric partition modes 2NxnU, 2NxnD, nLx2N, nRx2N, divided by asymmetrical ratios.
- the asymmetric partition modes 2NxnU and 2NxnD are divided into heights of 1: 3 and 3: 1, respectively, and the asymmetric partition modes nLx2N and nRx2N are divided into 1: 3 and 3: 1 widths, respectively.
- the conversion unit size may be set to two kinds of sizes in the intra mode and two kinds of sizes in the inter mode. That is, if the transformation unit split information is 0, the size of the transformation unit is set to the size 2Nx2N of the current coding unit. If the transform unit split information is 1, a transform unit having a size obtained by dividing the current coding unit may be set. In addition, if the partition mode for the current coding unit having a size of 2Nx2N is a symmetric partition mode, the size of the transform unit may be set to NxN, and N / 2xN / 2 if it is an asymmetric partition mode.
- Encoding information of coding units having a tree structure may be allocated to at least one of a coding unit, a prediction unit, and a minimum unit unit of a depth.
- the coding unit of the depth may include at least one prediction unit and at least one minimum unit having the same encoding information.
- the encoding information held by each adjacent data unit is checked, it may be determined whether the data is included in the coding unit having the same depth.
- the coding unit of the corresponding depth may be identified using the encoding information held by the data unit, the distribution of depths within the maximum coding unit may be inferred.
- the encoding information of the data unit in the depth-specific coding unit adjacent to the current coding unit may be directly referred to and used.
- the prediction coding when the prediction coding is performed by referring to the neighboring coding unit, the data adjacent to the current coding unit in the coding unit according to depths is encoded by using the encoding information of the adjacent coding units according to depths.
- the neighboring coding unit may be referred to by searching.
- FIG. 20 illustrates a relationship between a coding unit, a prediction unit, and a transformation unit, according to encoding mode information of Table 1.
- FIG. 20 illustrates a relationship between a coding unit, a prediction unit, and a transformation unit, according to encoding mode information of Table 1.
- the maximum coding unit 1300 includes coding units 1302, 1304, 1306, 1312, 1314, 1316, and 1318 of depths. Since one coding unit 1318 is a coding unit of depth, split information may be set to zero. Partition mode information of the coding unit 1318 having a size of 2Nx2N includes partition modes 2Nx2N 1322, 2NxN 1324, Nx2N 1326, NxN 1328, 2NxnU 1332, 2NxnD 1334, and nLx2N 1336. And nRx2N 1338.
- the transform unit split information (TU size flag) is a type of transform index, and a size of a transform unit corresponding to the transform index may be changed according to a prediction unit type or a partition mode of the coding unit.
- the partition mode information is set to one of symmetric partition modes 2Nx2N 1322, 2NxN 1324, Nx2N 1326, and NxN 1328
- the conversion unit partition information is 0, a conversion unit of size 2Nx2N ( 1342 is set, and if the transform unit split information is 1, a transform unit 1344 of size NxN may be set.
- partition mode information is set to one of asymmetric partition modes 2NxnU (1332), 2NxnD (1334), nLx2N (1336), and nRx2N (1338), if the conversion unit partition information (TU size flag) is 0, a conversion unit of size 2Nx2N ( 1352 is set, and if the transform unit split information is 1, a transform unit 1354 of size N / 2 ⁇ N / 2 may be set.
- the conversion unit partitioning information (TU size flag) described above with reference to FIG. 19 is a flag having a value of 0 or 1, but the conversion unit partitioning information according to an embodiment is not limited to a 1-bit flag and is set to 0 according to a setting. , 1, 2, 3., etc., and may be divided hierarchically.
- the transformation unit partition information may be used as an embodiment of the transformation index.
- the size of the transformation unit actually used may be expressed.
- the video encoding apparatus 100 may encode maximum transform unit size information, minimum transform unit size information, and maximum transform unit split information.
- the encoded maximum transform unit size information, minimum transform unit size information, and maximum transform unit split information may be inserted into the SPS.
- the video decoding apparatus 200 may use the maximum transform unit size information, the minimum transform unit size information, and the maximum transform unit split information to use for video decoding.
- the maximum transform unit split information is defined as 'MaxTransformSizeIndex'
- the minimum transform unit size is 'MinTransformSize'
- the transform unit split information is 0,
- the minimum transform unit possible in the current coding unit is defined as 'RootTuSize'.
- the size 'CurrMinTuSize' can be defined as in relation (1) below.
- 'RootTuSize' which is a transform unit size when the transform unit split information is 0, may indicate a maximum transform unit size that can be adopted in the system. That is, according to relation (1), 'RootTuSize / (2 ⁇ MaxTransformSizeIndex)' is a transformation obtained by dividing 'RootTuSize', which is the size of the transformation unit when the transformation unit division information is 0, by the number of times corresponding to the maximum transformation unit division information. Since the unit size is 'MinTransformSize' is the minimum transform unit size, a smaller value among them may be the minimum transform unit size 'CurrMinTuSize' possible in the current coding unit.
- the maximum transform unit size RootTuSize may vary depending on a prediction mode.
- RootTuSize may be determined according to the following relation (2).
- 'MaxTransformSize' represents the maximum transform unit size
- 'PUSize' represents the current prediction unit size.
- RootTuSize min (MaxTransformSize, PUSize) ......... (2)
- 'RootTuSize' which is a transform unit size when the transform unit split information is 0, may be set to a smaller value among the maximum transform unit size and the current prediction unit size.
- 'RootTuSize' may be determined according to Equation (3) below.
- 'PartitionSize' represents the size of the current partition unit.
- RootTuSize min (MaxTransformSize, PartitionSize) ........... (3)
- the conversion unit size 'RootTuSize' when the conversion unit split information is 0 may be set to a smaller value among the maximum conversion unit size and the current partition unit size.
- the current maximum conversion unit size 'RootTuSize' according to an embodiment that changes according to the prediction mode of the partition unit is only an embodiment, and a factor determining the current maximum conversion unit size is not limited thereto.
- the image data of the spatial domain is encoded for each coding unit of the tree structure, and the video decoding method based on the coding units of the tree structure.
- decoding is performed for each largest coding unit, and image data of a spatial region may be reconstructed to reconstruct a picture and a video that is a picture sequence.
- the reconstructed video can be played back by a playback device, stored in a storage medium, or transmitted over a network.
- the above-described embodiments of the present invention can be written as a program that can be executed in a computer, and can be implemented in a general-purpose digital computer that operates the program using a computer-readable recording medium.
- the computer-readable recording medium may include a storage medium such as a magnetic storage medium (eg, a ROM, a floppy disk, a hard disk, etc.) and an optical reading medium (eg, a CD-ROM, a DVD, etc.).
- the above-described video encoding method and / or video encoding method are collectively referred to as the video encoding method of the present invention.
- the above-described video decoding method and / or video decoding method is referred to as 'video decoding method of the present invention'
- the video encoding apparatus composed of the video encoding apparatus 40, the video encoding apparatus 100, or the image encoding unit 400 described above is collectively referred to as the "video encoding apparatus of the present invention.”
- the video decoding apparatus including the video decoding apparatus 10, the video decoding apparatus 200, or the image decoding unit 500 described above is collectively referred to as the video decoding apparatus of the present invention.
- a computer-readable storage medium in which a program is stored according to an embodiment of the present invention will be described in detail below.
- the disk 26000 described above as a storage medium may be a hard drive, a CD-ROM disk, a Blu-ray disk, or a DVD disk.
- the disk 26000 is composed of a plurality of concentric tracks tr, and the tracks are divided into a predetermined number of sectors Se in the circumferential direction.
- a program for implementing the above-described quantization parameter determination method, video encoding method, and video decoding method may be allocated and stored in a specific region of the disc 26000 which stores the program according to the above-described embodiment.
- a computer system achieved using a storage medium storing a program for implementing the above-described video encoding method and video decoding method will be described below with reference to FIG. 22.
- the computer system 26700 may store a program for implementing at least one of the video encoding method and the video decoding method of the present invention on the disc 26000 using the disc drive 26800.
- the program may be read from the disk 26000 by the disk drive 26800, and the program may be transferred to the computer system 26700.
- a program for implementing at least one of the video encoding method and the video decoding method may be stored in a memory card, a ROM cassette, and a solid state drive (SSD). .
- FIG. 23 illustrates an overall structure of a content supply system 11000 for providing a content distribution service.
- the service area of the communication system is divided into cells of a predetermined size, and wireless base stations 11700, 11800, 11900, and 12000 that serve as base stations are installed in each cell.
- the content supply system 11000 includes a plurality of independent devices.
- independent devices such as a computer 12100, a personal digital assistant (PDA) 12200, a camera 12300, and a mobile phone 12500 may be an Internet service provider 11200, a communication network 11400, and a wireless base station. 11700, 11800, 11900, and 12000 to connect to the Internet 11100.
- PDA personal digital assistant
- the content supply system 11000 is not limited to the structure shown in FIG. 24, and devices may be selectively connected.
- the independent devices may be directly connected to the communication network 11400 without passing through the wireless base stations 11700, 11800, 11900, and 12000.
- the video camera 12300 is an imaging device capable of capturing video images like a digital video camera.
- the mobile phone 12500 is such as Personal Digital Communications (PDC), code division multiple access (CDMA), wideband code division multiple access (W-CDMA), Global System for Mobile Communications (GSM), and Personal Handyphone System (PHS). At least one communication scheme among various protocols may be adopted.
- PDC Personal Digital Communications
- CDMA code division multiple access
- W-CDMA wideband code division multiple access
- GSM Global System for Mobile Communications
- PHS Personal Handyphone System
- the video camera 12300 may be connected to the streaming server 11300 through the wireless base station 11900 and the communication network 11400.
- the streaming server 11300 may stream and transmit the content transmitted by the user using the video camera 12300 through real time broadcasting.
- Content received from the video camera 12300 may be encoded by the video camera 12300 or the streaming server 11300.
- Video data captured by the video camera 12300 may be transmitted to the streaming server 11300 via the computer 12100.
- Video data captured by the camera 12600 may also be transmitted to the streaming server 11300 via the computer 12100.
- the camera 12600 is an imaging device capable of capturing both still and video images, like a digital camera.
- Video data received from the camera 12600 may be encoded by the camera 12600 or the computer 12100.
- Software for video encoding and decoding may be stored in a computer readable recording medium such as a CD-ROM disk, a floppy disk, a hard disk drive, an SSD, or a memory card that the computer 12100 may access.
- video data may be received from the mobile phone 12500.
- the video data may be encoded by a large scale integrated circuit (LSI) system installed in the video camera 12300, the mobile phone 12500, or the camera 12600.
- LSI large scale integrated circuit
- a user is recorded using a video camera 12300, a camera 12600, a mobile phone 12500, or another imaging device.
- the content is encoded and sent to the streaming server 11300.
- the streaming server 11300 may stream and transmit content data to other clients who have requested the content data.
- the clients are devices capable of decoding the encoded content data, and may be, for example, a computer 12100, a PDA 12200, a video camera 12300, or a mobile phone 12500.
- the content supply system 11000 allows clients to receive and play encoded content data.
- the content supply system 11000 enables clients to receive and decode and reproduce encoded content data in real time, thereby enabling personal broadcasting.
- the video encoding apparatus and the video decoding apparatus of the present invention may be applied to encoding and decoding operations of independent devices included in the content supply system 11000.
- the mobile phone 12500 is not limited in functionality and may be a smart phone that can change or expand a substantial portion of its functions through an application program.
- the mobile phone 12500 includes a built-in antenna 12510 for exchanging RF signals with the wireless base station 12000, and displays images captured by the camera 1530 or images received and decoded by the antenna 12510. And a display screen 12520 such as an LCD (Liquid Crystal Display) and an OLED (Organic Light Emitting Diodes) screen for displaying.
- the smartphone 12510 includes an operation panel 12540 including a control button and a touch panel. When the display screen 12520 is a touch screen, the operation panel 12540 further includes a touch sensing panel of the display screen 12520.
- the smart phone 12510 includes a speaker 12580 or another type of audio output unit for outputting voice and sound, and a microphone 12550 or another type of audio input unit for inputting voice and sound.
- the smartphone 12510 further includes a camera 1530 such as a CCD camera for capturing video and still images.
- the smartphone 12510 may be a storage medium for storing encoded or decoded data, such as video or still images captured by the camera 1530, received by an e-mail, or obtained in another form. 12570); And a slot 12560 for mounting the storage medium 12570 to the mobile phone 12500.
- the storage medium 12570 may be another type of flash memory such as an electrically erasable and programmable read only memory (EEPROM) embedded in an SD card or a plastic case.
- EEPROM electrically erasable and programmable read only memory
- FIG. 25 illustrates an internal structure of the mobile phone 12500.
- the power supply circuit 12700 the operation input controller 12640, the image encoder 12720, and the camera interface (12630), LCD control unit (12620), image decoding unit (12690), multiplexer / demultiplexer (12680), recording / reading unit (12670), modulation / demodulation unit (12660) and
- the sound processor 12650 is connected to the central controller 12710 through the synchronization bus 1730.
- the power supply circuit 12700 supplies power to each part of the mobile phone 12500 from the battery pack, thereby causing the mobile phone 12500 to operate. Can be set to an operating mode.
- the central controller 12710 includes a CPU, a read only memory (ROM), and a random access memory (RAM).
- the digital signal is generated in the mobile phone 12500 under the control of the central controller 12710, for example, the digital sound signal is generated in the sound processor 12650.
- the image encoder 12720 may generate a digital image signal, and text data of the message may be generated through the operation panel 12540 and the operation input controller 12640.
- the modulator / demodulator 12660 modulates a frequency band of the digital signal, and the communication circuit 12610 is a band-modulated digital signal. Digital-to-analog conversion and frequency conversion are performed on the acoustic signal.
- the transmission signal output from the communication circuit 12610 may be transmitted to the voice communication base station or the radio base station 12000 through the antenna 12510.
- the sound signal acquired by the microphone 12550 is converted into a digital sound signal by the sound processor 12650 under the control of the central controller 12710.
- the generated digital sound signal may be converted into a transmission signal through the modulation / demodulation unit 12660 and the communication circuit 12610 and transmitted through the antenna 12510.
- the text data of the message is input using the operation panel 12540, and the text data is transmitted to the central controller 12610 through the operation input controller 12640.
- the text data is converted into a transmission signal through the modulator / demodulator 12660 and the communication circuit 12610, and transmitted to the radio base station 12000 through the antenna 12510.
- the image data photographed by the camera 1530 is provided to the image encoder 12720 through the camera interface 12630.
- the image data photographed by the camera 1252 may be directly displayed on the display screen 12520 through the camera interface 12630 and the LCD controller 12620.
- the structure of the image encoder 12720 may correspond to the structure of the video encoding apparatus as described above.
- the image encoder 12720 encodes the image data provided from the camera 1252 according to the video encoding method of the present invention described above, converts the image data into compression-encoded image data, and multiplexes / demultiplexes the encoded image data. (12680).
- the sound signal acquired by the microphone 12550 of the mobile phone 12500 is also converted into digital sound data through the sound processing unit 12650 during recording of the camera 1250, and the digital sound data is converted into the multiplexing / demultiplexing unit 12680. Can be delivered.
- the multiplexer / demultiplexer 12680 multiplexes the encoded image data provided from the image encoder 12720 together with the acoustic data provided from the sound processor 12650.
- the multiplexed data may be converted into a transmission signal through the modulation / demodulation unit 12660 and the communication circuit 12610 and transmitted through the antenna 12510.
- the signal received through the antenna converts the digital signal through a frequency recovery (Analog-Digital conversion) process .
- the modulator / demodulator 12660 demodulates the frequency band of the digital signal.
- the band demodulated digital signal is transmitted to the video decoder 12690, the sound processor 12650, or the LCD controller 12620 according to the type.
- the mobile phone 12500 When the mobile phone 12500 is in the call mode, the mobile phone 12500 amplifies a signal received through the antenna 12510 and generates a digital sound signal through frequency conversion and analog-to-digital conversion processing.
- the received digital sound signal is converted into an analog sound signal through the modulator / demodulator 12660 and the sound processor 12650 under the control of the central controller 12710, and the analog sound signal is output through the speaker 12580. .
- a signal received from the radio base station 12000 via the antenna 12510 is converted into multiplexed data as a result of the processing of the modulator / demodulator 12660.
- the output and multiplexed data is transmitted to the multiplexer / demultiplexer 12680.
- the multiplexer / demultiplexer 12680 demultiplexes the multiplexed data to separate the encoded video data stream and the encoded audio data stream.
- the encoded video data stream is provided to the video decoder 12690, and the encoded audio data stream is provided to the sound processor 12650.
- the structure of the image decoder 12690 may correspond to the structure of the video decoding apparatus as described above.
- the image decoder 12690 generates the reconstructed video data by decoding the encoded video data by using the video decoding method of the present invention described above, and displays the reconstructed video data through the LCD controller 1262 through the display screen 1252. ) Can be restored video data.
- video data of a video file accessed from a website of the Internet can be displayed on the display screen 1252.
- the sound processor 1265 may convert the audio data into an analog sound signal and provide the analog sound signal to the speaker 1258. Accordingly, audio data contained in a video file accessed from a website of the Internet can also be reproduced in the speaker 1258.
- the mobile phone 1250 or another type of communication terminal is a transmitting / receiving terminal including both the video encoding apparatus and the video decoding apparatus of the present invention, a transmitting terminal including only the video encoding apparatus of the present invention described above, or the video decoding apparatus of the present invention. It may be a receiving terminal including only.
- FIG. 26 illustrates a digital broadcasting system employing a communication system, according to various embodiments.
- the digital broadcasting system according to the embodiment of FIG. 26 may receive digital broadcasting transmitted through a satellite or terrestrial network using the video encoding apparatus and the video decoding apparatus.
- the broadcast station 12890 transmits the video data stream to the communication satellite or the broadcast satellite 12900 through radio waves.
- the broadcast satellite 12900 transmits a broadcast signal, and the broadcast signal is received by the antenna 12860 in the home to the satellite broadcast receiver.
- the encoded video stream may be decoded and played back by the TV receiver 12610, set-top box 12870, or other device.
- the playback device 12230 can read and decode the encoded video stream recorded on the storage medium 12020 such as a disk and a memory card.
- the reconstructed video signal may thus be reproduced in the monitor 12840, for example.
- the video decoding apparatus of the present invention may also be mounted in the set-top box 12870 connected to the antenna 12860 for satellite / terrestrial broadcasting or the cable antenna 12850 for cable TV reception. Output data of the set-top box 12870 may also be reproduced by the TV monitor 12880.
- the video decoding apparatus of the present invention may be mounted on the TV receiver 12810 instead of the set top box 12870.
- An automobile 12920 with an appropriate antenna 12910 may receive signals from satellite 12800 or radio base station 11700.
- the decoded video may be played on the display screen of the car navigation system 12930 mounted on the car 12920.
- the video signal may be encoded by the video encoding apparatus of the present invention and recorded and stored in a storage medium.
- the video signal may be stored in the DVD disk 12960 by the DVD recorder, or the video signal may be stored in the hard disk by the hard disk recorder 12950.
- the video signal may be stored in the SD card 12970. If the hard disk recorder 12950 includes the video decoding apparatus of the present invention according to an embodiment, the video signal recorded on the DVD disk 12960, the SD card 12970, or another type of storage medium is output from the monitor 12880. Can be recycled.
- the vehicle navigation system 12930 may not include the camera 1530, the camera interface 12630, and the image encoder 12720 of FIG. 26.
- the computer 12100 and the TV receiver 12610 may not include the camera 1250, the camera interface 12630, and the image encoder 12720 of FIG. 26.
- FIG. 27 illustrates a network structure of a cloud computing system using a video encoding apparatus and a video decoding apparatus, according to various embodiments.
- the cloud computing system of the present invention may include a cloud computing server 14100, a user DB 14100, a computing resource 14200, and a user terminal.
- the cloud computing system provides an on demand outsourcing service of computing resources through an information communication network such as the Internet at the request of a user terminal.
- service providers integrate the computing resources of data centers located in different physical locations into virtualization technology to provide users with the services they need.
- the service user does not install and use computing resources such as application, storage, operating system, and security in each user's own terminal, but services in virtual space created through virtualization technology. You can choose as many times as you want.
- a user terminal of a specific service user accesses the cloud computing server 14100 through an information communication network including the Internet and a mobile communication network.
- the user terminals may be provided with a cloud computing service, particularly a video playback service, from the cloud computing server 14100.
- the user terminal may be any electronic device capable of accessing the Internet, such as a desktop PC 14300, a smart TV 14400, a smartphone 14500, a notebook 14600, a portable multimedia player (PMP) 14700, a tablet PC 14800, and the like. It can be a device.
- the cloud computing server 14100 may integrate and provide a plurality of computing resources 14200 distributed in a cloud network to a user terminal.
- the plurality of computing resources 14200 include various data services and may include data uploaded from a user terminal.
- the cloud computing server 14100 integrates a video database distributed in various places into a virtualization technology to provide a service required by a user terminal.
- the user DB 14100 stores user information subscribed to a cloud computing service.
- the user information may include login information and personal credit information such as an address and a name.
- the user information may include an index of the video.
- the index may include a list of videos that have been played, a list of videos being played, and a stop time of the videos being played.
- Information about a video stored in the user DB 14100 may be shared among user devices.
- the playback history of the predetermined video service is stored in the user DB 14100.
- the cloud computing server 14100 searches for and plays a predetermined video service with reference to the user DB 14100.
- the smartphone 14500 receives the video data stream through the cloud computing server 14100, the operation of decoding the video data stream and playing the video may be performed by the operation of the mobile phone 12500 described above with reference to FIG. 24. similar.
- the cloud computing server 14100 may refer to a playback history of a predetermined video service stored in the user DB 14100. For example, the cloud computing server 14100 receives a playback request for a video stored in the user DB 14100 from a user terminal. If the video was being played before, the cloud computing server 14100 may have a streaming method different depending on whether the video is played from the beginning or from the previous stop point according to the user terminal selection. For example, when the user terminal requests to play from the beginning, the cloud computing server 14100 streams the video to the user terminal from the first frame. On the other hand, if the terminal requests to continue playing from the previous stop point, the cloud computing server 14100 streams the video to the user terminal from the frame at the stop point.
- the user terminal may include the video decoding apparatus as described above.
- the user terminal may include the video encoding apparatus as described above.
- the user terminal may include both the video encoding apparatus and the video decoding apparatus described above.
- FIGS. 21 through 27 Various embodiments in which the above-described video encoding method, video decoding method, video encoding apparatus, and video decoding apparatus are utilized are described above with reference to FIGS. 21 through 27. However, various embodiments in which the aforementioned video encoding method and the video decoding method are stored in a storage medium or the video encoding apparatus and the video decoding apparatus are implemented in the device are not limited to the embodiments of FIGS. 21 to 27.
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Compression Or Coding Systems Of Tv Signals (AREA)
Abstract
비디오 복호화 방법에 있어서, 현재 레이어 및 참조 레이어에 속한 영상들 간의 인터 레이어 예측을 위한 부화소 단위의 구성 성분을 갖는 디스페리티 벡터(disparity vector)를 획득하는 단계, 현재 레이어의 현재 픽셀의 위치로부터 획득한 디스페리티 벡터가 가리키는 위치에 대응하는 참조 레이어의 정수 픽셀(integer pixel)의 위치를 결정하는 단계 및 결정된 정수 픽셀의 위치에 대응되는 참조 레이어의 후보 영역의 예측 정보를 이용하여 현재 레이어의 영상의 복호화를 수행하는 단계를 포함하는 비디오 복호화 방법이 개시된다.
Description
본 발명은 정수 픽셀의 위치와 관련하여 비디오 부호화 및 복호화를 수행하는 방법 및 장치에 관한 것이다.
고해상도 또는 고화질 비디오 컨텐트를 재생, 저장할 수 있는 하드웨어의 개발 및 보급에 따라, 고해상도 또는 고화질 비디오 컨텐트를 효과적으로 부호화하거나 복호화하는 비디오 코덱의 필요성이 증대하고 있다. 기존의 비디오 코덱에 따르면, 비디오는 소정 크기의 매크로블록에 기반하여 제한된 부호화 방식에 따라 부호화되고 있다.
비디오 코덱은, 비디오의 영상들이 시간적 또는 공간적으로 서로 상관성이 높다는 특징을 이용하여 예측 기법을 이용하여 데이터량을 저감한다. 예측 기법에 따르면, 주변 영상을 이용하여 현재영상을 예측하기 위하여, 영상 간의 시간적 거리 또는 공간적 거리, 예측오차 등을 이용하여 영상정보가 기록된다.
인터 예측 또는 인터 레이어 예측을 수행함에 있어서 디스페리티 벡터를 이용하여 영상을 예측하는 방법을 제안한다.
다양한 실시 예에 따라 디스페리티 벡터를 이용하여 영상을 예측하는 방법은, 현재 레이어 및 참조 레이어에 속한 영상들 간의 인터 레이어 예측을 위한 부화소 단위의 구성 성분을 갖는 디스페리티 벡터(disparity vector)를 획득하는 단계, 현재 레이어의 현재 픽셀로부터 획득한 디스페리티 벡터가 가리키는 위치에 대응하는 참조 레이어의 정수 픽셀(integer pixel)의 위치를 결정하는 단계 및 결정된 정수 픽셀의 위치에 대응되는 참조 레이어의 후보 영역의 예측 정보를 이용하여 현재 레이어의 영상의 복호화를 수행하는 단계를 포함할 수 있다.
다양한 실시 예에 의하면, 현재 레이어의 현재 픽셀로부터 획득한 디스페리티 벡터가 가리키는 위치에 대응하는 참조 레이어의 정수 픽셀(integer pixel)의 위치를 효과적으로 결정할 수 있다.
도 1a는 다양한 실시 예에 따른 비디오 부호화 장치의 구성을 설명하기 위한 블록도를 도시한다.
도 1b는 다양한 실시 예에 따라 디스페리티 벡터를 결정하여 부호화를 수행하는 방법을 설명하기 위한 흐름도이다.
도 2a는 다양한 실시 예에 따라 디스페리티 벡터에 대응하는 정수 디스페리티 벡터를 결정하여 정수 픽셀의 위치를 결정하는 방법을 설명하기 위한 흐름도이다.
도 2b는 다양한 실시 예에 따라 디스페리티 벡터의 x, y 구성성분의 부화소 단위에 대한 반올림 동작을 통해서 정수 디스페리티 벡터를 결정하는 방법을 설명하기 위한 흐름도이다.
도 2c는 다양한 실시 예에 따라 정수 디스페리티 벡터를 결정하는 방법을 설명하기 위한 흐름도이다.
도 3a는 다양한 실시 예에 따라 결정된 정수 픽셀의 위치를 이용하여 움직임 정보를 예측하는 방법을 설명하기 위한 흐름도이다.
도 3b는 다양한 실시 예에 따라 결정된 정수 픽셀의 위치를 이용하여 뎁스와 관련된 정보를 결정하고 부호화를 수행하는 방법을 설명하기 위한 흐름도이다.
도 3c는 다양한 실시 예에 따라 결정된 정수 픽셀의 위치를 이용하여 잔여 영상 데이터를 예측하는 방법을 설명하기 위한 흐름도이다.
도 4a는 다양한 실시 예에 따라 비디오 복호화 장치의 구성을 설명하기 위한 블록도를 도시한다.
도 4b는 다양한 실시 예에 따라 디스페리티 벡터를 획득하여 복호화를 수행하는 방법을 설명하기 위한 흐름도이다.
도 5a는 다양한 실시 예에 따라 디스페리티 벡터에 대응하는 정수 디스페리티 벡터를 결정하여 정수 픽셀의 위치를 결정하는 방법을 설명하기 위한 흐름도이다.
도 5b는 다양한 실시 예에 따라 디스페리티 벡터의 x, y 구성성분의 부화소 단위에 대한 반올림 동작을 통해서 정수 디스페리티 벡터를 결정하는 방법을 설명하기 위한 흐름도이다.
도 5c는 다양한 실시 예에 따라 정수 디스페리티 벡터를 결정하는 방법을 설명하기 위한 흐름도이다.
도 6a는 다양한 실시 예에 따라 결정된 정수 픽셀의 위치를 이용하여 움직임 정보를 예측하는 방법을 설명하기 위한 흐름도이다.
도 6b는 다양한 실시 예에 따라 결정된 정수 픽셀의 위치를 이용하여 뎁스와 관련된 정보를 결정하고 부호화를 수행하는 방법을 설명하기 위한 흐름도이다.
도 6c는 다양한 실시 예에 따라 결정된 정수 픽셀의 위치를 이용하여 잔여 영상 데이터를 예측하는 방법을 설명하기 위한 흐름도이다.
도 7a는 다양한 실시 예에 따라 비디오 복호화 장치(40)가 디스패리티 벡터를 예측하는 방법을 설명하기 위한 블록도이다.
도 7b는 다양한 실시 예에 따라 비디오 복호화 장치(40)가 참조뷰의 뎁스맵을 이용하여 디스패리티 벡터를 예측하는 방법을 설명하기 위한 블록도이다.
도 7c는 다양한 실시 예에 따라 비디오 복호화 장치(40)가 참조 깊이 맵을 이용하여 디스패리티 벡터를 예측하는 방법을 설명하기 위한 도면이다.
도 8 은 일 실시예에 따라 트리 구조에 따른 부호화단위에 기초한 비디오 부호화 장치의 블록도를 도시한다.
도 9 은 일 실시예에 따라 트리 구조에 따른 부호화단위에 기초한 비디오 복호화 장치의 블록도를 도시한다.
도 10 은 본 발명의 일 실시예에 따른 부호화단위의 개념을 도시한다.
도 11 는 본 발명의 일 실시예에 따른 부호화단위에 기초한 영상 부호화부의 블록도를 도시한다.
도 12 는 본 발명의 일 실시예에 따른 부호화단위에 기초한 영상 복호화부의 블록도를 도시한다.
도 13 는 본 발명의 일 실시예에 따른 심도별 부호화단위 및 파티션을 도시한다.
도 14 은 본 발명의 일 실시예에 따른, 부호화단위 및 변환단위의 관계를 도시한다.
도 15 은 본 발명의 일 실시예에 따라, 심도별 부호화 정보들을 도시한다.
도 16 는 본 발명의 일 실시예에 따른 심도별 부호화단위를 도시한다.
도 17, 18 및 19는 본 발명의 일 실시예에 따른, 부호화단위, 예측단위 및 변환단위의 관계를 도시한다.
도 20 은 표 1의 부호화 모드 정보에 따른 부호화단위, 예측단위 및 변환단위의 관계를 도시한다.
도 21 은 일 실시예에 따른 프로그램이 저장된 디스크의 물리적 구조를 예시한다.
도 22 는 디스크를 이용하여 프로그램을 기록하고 판독하기 위한 디스크드라이브를 도시한다.
도 23 은 컨텐트 유통 서비스(content distribution service)를 제공하기 위한 컨텐트 공급 시스템(content supply system)의 전체적 구조를 도시한다.
도 24 및 25은, 일 실시예에 따른 본 발명의 비디오 부호화 방법 및 비디오 복호화 방법이 적용되는 휴대폰의 외부구조와 내부구조를 도시한다.
도 26 은 본 발명에 따른 통신시스템이 적용된 디지털 방송 시스템을 도시한다.
도 27 은 본 발명의 일 실시예에 따른 비디오 부호화 장치 및 비디오 복호화 장치를 이용하는 클라우드 컴퓨팅 시스템의 네트워크 구조를 도시한다.
비디오 복호화 방법에 있어서, 현재 레이어 및 참조 레이어에 속한 영상들 간의 인터 레이어 예측을 위한 부화소 단위의 구성 성분을 갖는 디스페리티 벡터(disparity vector)를 획득하는 단계, 현재 레이어의 현재 픽셀의 위치로부터 획득한 디스페리티 벡터가 가리키는 위치에 대응하는 참조 레이어의 정수 픽셀(integer pixel)의 위치를 결정하는 단계 및 결정된 정수 픽셀의 위치에 대응되는 참조 레이어의 후보 영역의 예측 정보를 이용하여 현재 레이어의 영상의 복호화를 수행하는 단계를 포함하는 비디오 복호화 방법이 개시된다.
이하 본 명세서에 기재된 다양한 실시 예들에서, ‘영상’은 정지 영상 뿐만 아니라 비디오와 같은 동영상을 포함하여 포괄적으로 지칭할 수 있다.
이하 '샘플'은, 영상의 샘플링 위치에 할당된 데이터로서 프로세싱 대상이 되는 데이터를 의미한다. 예를 들어, 공간영역의 영상에서 픽셀들이 샘플들일 수 있다.
이하 본 명세서에서, 현재 블록은 부호화 단위 및 예측단위를 포함할 수 있다.
이하 도 1a 내지 도 7d를 참조하여, 다양한 실시 예에 정수 픽셀의 위치와 관련하여 비디오 부호화 및 복호화를 수행하는 방법 및 장치가 개시된다. 또한, 도 8 내지 도 20을 참조하여, 앞서 제안한 비디오 부호화 기법 및 복호화 기법에 적용가능한 다양한 실시예에 따른 트리 구조의 부호화 단위에 기초한 비디오 부호화 기법 및 비디오 복호화 기법이 개시된다. 또한, 도 21 내지 도 27을 참조하여, 앞서 제안한 비디오 부호화 방법, 비디오 복호화 방법이 적용가능한 다양한 실시예들이 개시된다.
도 1a는 다양한 실시 예에 따른 비디오 부호화 장치의 구성을 설명하기 위한 블록도를 도시한다.
도 1a에 도시된 바와 같이, 비디오 부호화 장치(10)는 디스페리티 벡터 결정부(11), 정수 픽셀 위치 결정부(12) 및 부호화부(13)를 포함할 수 있다. 그러나 도시된 구성요소보다 많은 구성요소에 의해 비디오 부호화 장치(10)가 구현될 수도 있고, 도시된 구성요소보다 적은 구성요소에 의해 비디오 부호화 장치(10)가 구현될 수도 있다.
다양한 실시예에 따른 비디오 부호화 장치(10)는 스케일러블 비디오 코딩(Scalable Video Coding) 방식에 따라 다수의 영상시퀀스들을 레이어별로 분류하여 각각 부호화하고, 레이어별로 부호화된 데이터를 포함하는 별개의 스트림을 출력할 수 있다. 비디오 부호화 장치(10)는 현재 레이어 영상 시퀀스와 참조 레이어 영상 시퀀스를 서로 다른 레이어로 부호화할 수 있다.
부호화부(13)가 현재 레이어 영상들을 부호화하고, 현재 레이어 영상들의 부호화 데이터를 포함하는 현재 레이어 스트림을 출력할 수 있다.
부호화부(13)가 참조 레이어 영상들을 부호화하고, 참조 레이어 영상들의 부호화 데이터를 포함하는 참조 레이어 스트림을 출력할 수 있다.
예를 들어, 공간적 스케일러빌러티(Spatial Scalability)에 기반한 스케일러블 비디오 코딩 방식에 따르면, 저해상도 영상들이 참조 레이어 영상들로서 부호화되고, 고해상도 영상들이 현재 레이어 영상들로서 부호화될 수 있다. 참조 레이어 영상들의 부호화 결과가 참조 레이어 스트림으로 출력되고, 현재 레이어 영상들의 부호화 결과가 현재 레이어 스트림으로 출력될 수 있다.
다른 예로, 다시점 비디오가 스케일러블 비디오 코딩 방식에 따라 부호화될 수 있다. 좌시점 영상들은 참조 레이어 영상들로서 부호화되고, 우시점 영상들은 현재 레이어 영상들로서 부호화될 수 있다. 또는, 중앙시점 영상들, 좌시점 영상들과 우시점 영상들이 각각 부호화되고, 이 중에서 중앙시점 영상들은 현재 레이어 영상들로서 부호화되고, 좌시점 영상들은 참조 레이어 영상들, 우시점 영상들은 다른 참조 레이어 영상들로서 부호화될 수 있다.
다른 예로, 시간적 스케일러빌러티에 기반한 시간 계층적 예측(Temporal Hierarchical Prediction)에 따라 스케일러블 비디오 코딩 방식이 수행될 수 있다. 기본 프레임 레이트의 영상들을 부호화하여 생성된 부호화 정보를 포함하는 참조 레이어 스트림이 출력될 수 있다. 프레임 레이트별로 시간적 계층(temporal level)이 분류되고 각 시간적 계층이 각 레이어로 부호화될 수 있다. 기본 프레임 레이트의 영상들을 참조하여 고속 프레임 레이트의 영상들을 더 부호화하여, 고속 프레임 레이트의 부호화 정보를 포함하는 현재 레이어 스트림이 출력될 수 있다.
또한, 참조 레이어와 다수의 현재 레이어들에 대한 스케일러블 비디오 코딩이 수행될 수 있다. 현재 레이어가 셋 이상인 경우, 참조 레이어 영상들과 첫번째 현재 레이어 영상들, 두번째 현재 레이어 영상들, ..., K번째 현재 레이어 영상들이 부호화될 수도 있다. 이에 따라 참조 레이어 영상들의 부호화 결과가 참조 레이어 스트림으로 출력되고, 첫번째, 두번째, ..., K번째 현재 레이어 영상들의 부호화 결과가 각각 첫번째, 두번째, ..., K번째 현재 레이어 스트림으로 출력될 수 있다.
다양한 실시예에 따른 비디오 부호화 장치(10)는 단일레이어의 영상들을 참조하여 현재영상을 예측하는 인터 예측(Inter Prediction)을 수행할 수 있다. 인터 예측을 통해, 현재영상과 참조영상 사이의 움직임 정보를 나타내는 움직임 벡터(motion vector) 및 현재영상과 참조영상 사이의 레지듀얼 성분(residual)이 생성될 수 있다.
또한, 비디오 부호화 장치(10)는 참조 레이어 영상들을 참조하여 현재 레이어 영상들을 예측하는 인터 레이어 예측(Inter-layer Prediction)을 수행할 수 있다.
또한 일 실시예에 따른 비디오 부호화 장치(10)가 참조 레이어, 현재 레이어, 참조 레이어 등 셋 이상의 레이어를 허용하는 경우에는, 멀티 레이어 예측 구조에 따라 하나의 참조 레이어 영상과 참조 레이어 영상 간의 인터 레이어 예측, 현재 레이어 영상과 참조 레이어 영상 간의 인터 레이어 예측을 수행할 수도 있다.
인터 레이어 예측을 통해, 현재영상과 다른 레이어의 참조영상 사이의 위치 차이성분 및 현재영상과 다른 레이어의 참조영상 사이의 레지듀얼 성분이 생성될 수 있다.
다양한 실시예에 따른 비디오 부호화 장치(10)는 각 레이어마다, 비디오의 각각의 영상의 블록별로 부호화한다. 블록의 타입은 정사각형 또는 직사각형일 수 있으며, 임의의 기하학적 형태일 수도 있다. 일정한 크기의 데이터 단위로 제한되는 것은 아니다. 블록은, 트리구조에 따른 부호화단위들 중에서는, 최대 부호화 단위, 부호화 단위, 예측 단위, 변환 단위 등일 수 있다. 트리 구조의 부호화 단위들을 포함하는 최대부호화단위는, 코딩 트리 유닛(Coding Tree Unit), 코딩 블록 트리(Coding Block Tree), 블록 트리, 루트 블록 트리(Root Block Tree), 코딩 트리, 코딩 루트 또는 트리 트렁크(Tree Trunk) 등으로 다양하게 명명되기도 한다. 트리구조에 따른 부호화단위들에 기초한 비디오 부복호화 방식은, 도 8 내지 도 20을 참조하여 후술한다.
인터 예측 및 인터 레이어 예측은 부호화 단위, 예측 단위 또는 변환 단위의 데이터 단위를 기초로 수행될 수도 있다.
다양한 실시예에 따른 부호화부(13)는, 참조 레이어 영상들에 대해 인터 예측 또는 인트라 예측을 포함하는 소스 코딩 동작들을 수행하여 심볼 데이터를 생성할 수 있다. 심볼데이터는 각 부호화 파라미터의 샘플값 및 레지듀얼의 샘플값을 나타낸다.
예를 들어, 부호화부(13)는, 참조 레이어 영상들의 데이터 단위의 샘플들에 대해 인터 예측 또는 인트라 예측, 변환, 양자화를 수행하여 심볼데이터를 생성하고 심볼데이터에 대해 엔트로피 부호화를 수행하여 참조 레이어 스트림을 생성할 수 있다.
부호화부(13)는, 트리 구조의 부호화 단위들에 기초하여 현재 레이어 영상들을 부호화할 수 있다. 부호화부(13)는, 현재 레이어 영상의 부호화 단위의 샘플들에 대해 인터/인트라 예측, 변환, 양자화를 수행하여 심볼데이터를 생성하고 심볼데이터에 대해 엔트로피 부호화를 수행하여 현재 레이어 스트림을 생성할 수 있다.
다양한 실시예에 따른 부호화부(13)는, 참조 레이어 영상의 복원샘플을 이용하여, 현재 레이어 영상을 예측하는 인터 레이어 예측을 수행할 수 있다. 부호화부(13)는, 인터 레이어 예측 구조를 통해 현재 레이어 영상시퀀스 중 현재 레이어 원본영상을 부호화하기 위해, 참조 레이어 복원영상을 이용하여 현재 레이어 예측영상을 생성하고, 현재 레이어 원본영상과 현재 레이어 예측영상 간의 예측 오차를 부호화할 수 있다.
부호화부(13)는, 현재 레이어 영상을 부호화 단위 또는 예측 단위와 같은 블록별로 인터 레이어 예측을 수행할 수 있다. 현재 레이어 영상의 블록이 참조할 참조 레이어 영상의 블록을 결정할 수 있다. 예를 들어, 현재 레이어 영상에서 현재 블록의 위치에 상응하여 위치하는 참조 레이어 영상의 복원블록이 결정될 수 있다. 부호화부(13)는, 현재 레이어 블록에 상응하는 참조 레이어 복원블록을 이용하여, 현재 레이어 예측블록을 결정할 수 있다.
부호화부(13)는, 인터 레이어 예측 구조에 따라 참조 레이어 복원블록을 이용하여 결정된 현재 레이어 예측블록을, 현재 레이어 원본블록의 인터 레이어 예측을 위한 참조영상으로서 이용할 수 있다. 부호화부(13)는, 참조 레이어 복원영상을 이용하여 현재 레이어 예측블록의 샘플값과 현재 레이어 원본블록의 샘플값 간의 오차, 즉 인터 레이어 예측에 따른 레지듀얼 성분을 변환 및 양자화 하여 엔트로피 부호화할 수 있다.
전술한 바와 같이 부호화부(13)는 인터 레이어 예측 구조를 통해 참조 레이어 복원영상들을 참조하여 현재 레이어 영상 시퀀스를 부호화할 수도 있다. 다만, 다양한 실시예에 따른 부호화부(13)가, 다른 레이어 샘플들을 참조하지 않고도, 단일 레이어 예측 구조에 따라 현재 레이어 영상 시퀀스를 부호화할 수도 있다. 따라서, 부호화부(13)가 현재 레이어 영상 시퀀스를 부호화하기 위해, 인터 레이어 예측만을 수행한다고 제한적으로 해석하지 않도록 유의하여야 한다.
한편, 일 실시예에 따라 휘도보상 파라미터를 유도하기 위해서, 현재 레이어 현재 블록에 대응되는 참조 레이어 복원 블록의 주변픽셀값을 획득해야 한다. 이때, 현재 레이어 현재 블록에 대응되는 참조 레이어 복원 블록을 찾기 위해 디스페리티(disparity)벡터가 이용될 수 있다. 여기서 디스페리티 벡터는 비트스트림에 포함되어 전송되거나 또는 다른 부호화 정보들로부터 유도될 수 있다.
그런데, 디스페리티 벡터는 쿼터 펠(quarter-pel) 또는 하프 펠(half-pel)과 같은 분수(fractional) 단위의 정밀도를 가질 수 있기 때문에, 현재 레이어 현재블록의 위치에서 디스페리티 벡터가 가리키는 위치는 서브픽셀 위치 일 수 있다. 예측하려는 움직임 정보, 뎁스 정보, 잔여 영상 데이터 등은 모두 정수 픽셀 단위로 저장될 수 있다. 따라서 비디오 부호화 장치(10)는 부화소 단위로 표현되어있는 디스페리티 벡터를 정수 픽셀 단위로 저장되어있는 데이터에 접근하기 위해 정수 픽셀 단위로 변경하여 사용할 수 있다. 비디오 부호화 장치(10)는, 비디오 부호화 결과를 출력하기 위해, 내부에 탑재된 비디오 인코딩 프로세서 또는 외부 비디오 인코딩 프로세서와 연계하여 작동함으로써, 변환을 포함한 비디오 부호화 동작을 수행할 수 있다. 비디오 부호화 장치(10)의 내부 비디오 인코딩 프로세서는, 별개의 프로세서로서 비디오 부호화 동작을 구현할 수 있다. 또한, 비디오 부호화 장치(10) 또는 중앙 연산 장치, 그래픽 연산 장치가 비디오 인코딩 프로세싱 모듈을 포함함으로써 기본적인 비디오 부호화 동작을 구현하는 경우도 가능하다.
디스페리티 결정부(11)는 현재 레이어 및 참조 레이어에 속한 영상들 간의 인터 레이어 예측을 위한 부화소 단위의 구성 성분을 갖는 디스페리티 벡터를 결정할 수 있다.
정수 픽셀 위치 결정부(12)는 현재 레이어의 현재 픽셀의 위치을 기준으로 하여 결정된 디스페리티 벡터가 가리키는 위치에 대응하는 참조 레이어의 정수 픽셀의 위치를 결정할 수 있다.
부호화부(13)는 결정된 정수 픽셀의 위치에 대응되는 참조 레이어의 후보 영역의 예측 정보를 이용하여 현재 레이어의 영상의 부호화를 수행할 수 있다.
이하, 비디오 부호화 장치(10)의 자세한 동작을 도 1b 내지 도 3c를 참조하여 상술한다.
도 1b는 다양한 실시 예에 따라 디스페리티 벡터를 결정하여 부호화를 수행하는 방법을 설명하기 위한 흐름도이다.
단계 S111에서 비디오 부호화 장치(10)는 참조 레이어 및 현재 레이어에 속한 영상들 간의 인터 레이어 예측을 위한 부화소 단위의 구성 성분을 갖는 디스페리티 벡터를 결정할 수 있다.참조 레이어는 현재 레이어와 상이한 레이어를 의미할 수 있다. 예를 들면, 현재 레이어는 칼라 영상과 관련된 레이어이고, 참조 레이어는 뎁스(depth) 영상과 관련된 향상 레이어일 수 있다. 다른 예로, 현재 레이어의 영상과 참조 레이어의 영상은 서로 상이한 시점을 가진 영상일 수 있다.
디스페리티 벡터는 복수개의 레이어들에 대해서 서로 대응하는 위치의 차이를 표현할 수 있다. 또한 인터 레이어 예측을 수행할 때 디스페리티 벡터가 이용될 수 있다.
디스페리티 벡터는 서로 다른 레이어에 속한 영상들 간의 인터 레이어 예측을 위해 이용될 수 있다. 또는, 디스페리티 벡터는 현재 레이어 및 참조 레이어에 속한 영상들 간의 인터 레이어 예측을 위해 이용될 수 있다. 비디오 부호화 장치(10)는 현재 레이어의 현재 블록의 움직임 정보, 뎁스와 관련된 정보 또는 잔여 영상 데이터를 예측하기 위해 디스페리티 벡터를 이용할 수 있다.
디스페리티 벡터는 복수 차원에 대한 벡터일 수 있다. 예를 들면, 디스페리티 벡터는 2차원에 대한 벡터일 수 있다. 또 다른 예를 들면, 디스페리티 벡터는 3차원에 대한 벡터일 수 있다. 디스페리티 벡터는 부화소 단위의 구성성분을 가질 수 있다.
디스페리티 벡터는 쿼터 펠(quarter-pel) 또는 하프 펠(half-pel)과 같은 분수(fractional) 단위의 정밀도를 가질 수 있기 때문에, 현재 레이어 현재블록의 위치에서 디스페리티 벡터가 가리키는 위치는 서브픽셀 위치 일 수 있다. 예측하려는 움직임 정보, 뎁스 정보, 잔여 영상 데이터 등은 모두 정수 픽셀 단위로 저장될 수 있다. 따라서 비디오 부호화 장치(10)는 부화소 단위로 표현되어있는 디스페리티 벡터를 정수 픽셀 단위로 저장되어있는 데이터에 접근하기 위해 정수 픽셀 단위로 변경하여 사용할 수 있다. 비디오 부호화 장치(10)는 2 레이어에 속한 영상을 이용하여 현재 레이어에 속한 영상을 부호화할 수 있다. 비디오 부호화 장치(10)는 참조 레이어에 속한 영상을 이용하여 현재 레이어에 속한 영상에 대한 예측을 수행할 수 있다. 비디오 부호화 장치(10)가 참조 레이어에 속한 영상을 이용하여 현재 레이어에 속한 영상을 부호화할 때 디스페리티 벡터를 이용할 수 있다. 비디오 부호화 장치(10)가 참조 레이어에 속한 영상을 이용하여 현재 레이어에 속한 영상을 예측할 때 디스페리티 벡터를 이용할 수 있다.
현재 복호화되는 블록을 현재 블록이라고 할 수 있다.
비디오 부호화 장치(10)는 현재 레이어의 현재 블록을 부호화할 때 현재 레이어의 현재 블록에 대응되는 참조 레이어의 후보 영역과 관련된 정보를 이용할 수 있다.
비디오 부호화 장치(10)는 현재 레이어의 현재 블록을 예측할 때 현재 레이어의 현재 블록에 대응되는 참조 레이어의 후보 영역과 관련된 정보를 이용할 수 있다.
예를 들면, 비디오 부호화 장치(10)는 현재 레이어의 현재 블록을 예측할 때 현재 레이어의 현재 블록에 대응되는 참조 레이어의 후보 영역에 대응되는 움직임 정보를 이용할 수 있다.
또 다른 예를 들면, 비디오 부호화 장치(10)는 현재 레이어의 현재 블록을 예측할 때 현재 레이어의 현재 블록에 대응되는 참조 레이어의 후보 영역에 대응되는 뎁스와 관련된 정보를 이용할 수 있다.
또 다른 예를 들면, 비디오 부호화 장치(10)는 현재 레이어의 현재 블록을 예측할 때 현재 레이어의 현재 블록에 대응되는 참조 레이어의 후보 영역에 대응되는 잔여 영상 데이터를 이용할 수 있다.
단계 S112에서 비디오 부호화 장치(10)는 현재 레이어의 현재 픽셀로부터 단계 S111에서 결정된 디스페리티 벡터가 가리키는 위치에 대응하는 참조 레이어의 정수 픽셀(integer pixel)의 위치를 결정할 수 있다.
비디오 부호화 장치(10)는 현재 레이어의 현재 블록을 부호화할 때 현재 레이어의 현재 블록과 참조 레이어의 후보 영역을 서로 대응시키기 위해서 디스페리티 벡터를 이용할 수 있다.
비디오 부호화 장치(10)는 디스페리티 벡터를 통해 현재 레이어의 현재 블록에 대응되는 참조 레이어의 영역을 현재 레이어의 현재 블록에 대응되는 참조 레이어의 후보 영역이라고 결정할 수 있다.
현재 레이어의 현재 블록에는 복수개의 픽셀들이 포함될 수 있다. 따라서 비디오 부호화 장치(10)는 현재 레이어의 현재 블록에 속한 복수개의 픽셀들 중 소정의 픽셀의 위치를 상기 현재 블록의 기준 위치로 결정할 수 있다. 그리고 기준이 되는 소정의 픽셀을 현재 레이어의 현재 픽셀이라고 볼 수 있다. 그리고 비디오 부호화 장치(10)는 현재 레이어의 현재 픽셀의 위치를 기준으로하여 단계 S411에서 결정된 디스페리티 벡터가 가리키는 위치를 결정할 수 있다. 비디오 부호화 장치(10)는 현재 레이어의 현재 픽셀의 위치를 기준으로하여 단계 S411에서 결정된 디스페리티 벡터가 가리키는 위치에 대응하는 정수 픽셀의 위치를 결정할 수 있다. 그리고 정수 픽셀은 참조 레이어에 위치할 수 있다.
현재 레이어의 현재 픽셀의 위치는 현재 레이어의 현재 블록 내에 위치할 수 있다. 그리고 현재 레이어의 현재 픽셀의 위치는 현재 레이어의 현재 블록 내의 소정의 위치일 수 있다. 예를 들면, 현재 레이어의 현재 픽셀의 위치는 현재 레이어의 현재 블록의 좌상단일 수 있다. 다른 예로, 현재 레이어의 현재 픽셀의 위치는 현재 레이어의 현재 블록의 좌하단일 수 있다. 다른 예로, 현재 레이어의 현재 픽셀의 위치는 현재 레이어의 현재 블록의 우상단일 수 있다. 다른 예로, 현재 레이어의 현재 픽셀의 위치는 현재 레이어의 현재 블록의 우하단일 수 있다. 다른 예로, 현재 레이어의 현재 픽셀의 위치는 현재 레이어의 현재 블록의 정중앙일 수 있다.
디스페리티 벡터는 부화소 단위의 구성성분을 가질 수 있다. 또는 디스페리티 벡터는 실수 구성성분을 가질 수 있다. 또는 디스페리티 벡터는 쿼터 펠(quarter-pel) 또는 하프 펠(half-pel)과 같은 분수(fractional) 단위의 정밀도를 가질 수 있다. 따라서 현재 레이어 현재블록의 위치에서 디스페리티 벡터가 가리키는 위치는 서브픽셀 위치 일 수 있다. 예측하려는 움직임 정보, 뎁스 정보, 잔여 영상 데이터 등은 모두 정수 픽셀 단위로 저장될 수 있다. 따라서 비디오 부호화 장치(10)는 부화소 단위로 표현되어있는 디스페리티 벡터를 정수 픽셀 단위로 저장되어있는 데이터에 접근하기 위해 정수 픽셀 단위로 변경하여 사용할 수 있다. 따라서 비디오 부호화 장치(10) 디스페리티 벡터가 가리키는 서브 픽셀의 위치에 대응되는 정수 픽셀의 위치를 결정할 수 있다.
비디오 부호화 장치(10)는 디스페리티 벡터가 가리키는 서브 픽셀의 위치에 대응되는 정수 픽셀의 위치를 결정할 때 반올림 동작을 이용할 수 있다.
또한 비디오 부호화 장치(10)는 디스페리티 벡터가 가리키는 서브 픽셀의 위치에 대응되는 정수 픽셀의 위치를 결정할 때 비트 시프트 동작을 이용할 수 있다.
비디오 부호화 장치(10)가 디스페리티 벡터가 가리키는 서브 픽셀의 위치에 대응되는 정수 픽셀의 위치를 결정하는 구체적인 방법은 후술한다.
단계 S113에서 비디오 부호화 장치(10)는 단계 S112에서 결정된 정수 픽셀의 위치에 대응되는 참조 레이어의 후보 영역의 예측 정보를 이용하여 현재 레이어의 영상의 부호화를 수행할 수 있다.
비디오 부호화 장치(10)는 단계 S412에서 결정된 정수 픽셀의 위치에 대응되는 참조 레이어의 후보 영역을 결정할 수 있다. 그리고 비디오 부호화 장치(10)는 결정된 참조 레이어의 후보 영역에 대응하는 예측 정보를 획득할 수 있다.
예측 정보는 움직임 정보, 뎁스와 관련된 정보 및 잔여 영상 데이터 중 적어도 하나를 포함할 수 있다.
예를 들면, 비디오 부호화 장치(10)는 단계 S112에서 결정된 정수 픽셀의 위치에 대응되는 참조 레이어의 후보 영역의 움직임 정보를 획득할 수 있다. 움직임 정보는 움직임 벡터를 포함할 수 있다. 그리고 비디오 부호화 장치(10)는 결정된 움직임 정보를 이용하여 현재 레이어의 현재 블록의 움직임 정보를 예측할 수 있다.
다른 예로, 비디오 부호화 장치(10)는 단계 S412에서 결정된 정수 픽셀의 위치에 대응되는 참조 레이어의 후보 영역의 뎁스와 관련된 정보를 획득할 수 있다. 참조 레이어는 뎁스 레이어일 수 있다. 그리고 비디오 부호화 장치(10)는 결정된 뎁스와 관련된 정보를 이용하여 현재 레이어의 현재 블록의 부호화를 수행할 수 있다. 또는 비디오 부호화 장치(10)는 결정된 뎁스와 관련된 정보를 이용하여 현재 레이어의 현재 블록의 뎁스와 관련된 정보를 예측할 수 있다.
다른 예로, 비디오 부호화 장치(10)는 단계 S112에서 결정된 정수 픽셀의 위치에 대응되는 참조 레이어의 후보 영역의 잔여 영상 데이터를 획득할 수 있다. 그리고 비디오 부호화 장치(10)는 결정된 잔여 영상 데이터를 이용하여 현재 레이어의 현재 블록의 잔여 영상 데이터를 예측할 수 있다.
단계 S412에서 결정된 정수 픽셀은 결정된 참조 레이어의 후보 영역의 내부에 위치할 수 있다. 그리고 단계 S412에서 결정된 정수 픽셀은 결정된 참조 레이어의 후보 영역 내의 미리 결정된 위치에 위치할 수 있다. 예를 들면, 단계 S412에서 결정된 정수 픽셀은 결정된 참조 레이어의 후보 영역의 좌상단일 수 있다. 다른 예로, 단계 S412에서 결정된 정수 픽셀은 결정된 참조 레이어의 후보 영역의 좌하단일 수 있다. 다른 예로, 단계 S412에서 결정된 정수 픽셀은 결정된 참조 레이어의 후보 영역의 우상단일 수 있다. 다른 예로, 단계 S412에서 결정된 정수 픽셀은 결정된 참조 레이어의 후보 영역의 우하단일 수 있다. 다른 예로, 단계 S412에서 결정된 정수 픽셀은 결정된 참조 레이어의 후보 영역의 정중앙일 수 있다.
도 2a는 다양한 실시 예에 따라 디스페리티 벡터에 대응하는 정수 디스페리티 벡터를 결정하여 정수 픽셀의 위치를 결정하는 방법을 설명하기 위한 흐름도이다.
단계 S211은 단계 S111에 대응되므로 전체적인 설명을 간단히 하기 위해 발명의 상세한 설명을 생략한다.
단계 S212에서 비디오 부호화 장치(10)는 단계 S211에서 결정된 디스페리티 벡터에 대응하는 정수 디스페리티 벡터를 결정할 수 있다.
정수 디스페리티 벡터는 정수를 구성성분으로 가질 수 있다. 그러나 비디오 부호화 장치(10)는 단계 S211에서 결정된 디스페리티 벡터는 부화소 단위의 구성성분을 가질 수 있다. 예를 들면, 디스페리티 벡터는 쿼터 펠 또는 하프 펠과 같은 분수(fractional) 단위의 정밀도를 가질 수 있다.
따라서 단계 S211에서 결정된 디스페리티 벡터의 구성성분이 정수인 경우 단계 S211에서 결정된 디스페리티 벡터에 대응하는 정수 디스페리티 벡터는 단계 S211에서 결정된 디스페리티 벡터와 같을 수 있다.
그러나, 단계 S211에서 결정된 디스페리티 벡터의 구성성분이 정수가 아닌 경우 단계 S211에서 결정된 디스페리티 벡터에 대응하는 정수 디스페리티 벡터는 단계 S211에서 결정된 디스페리티 벡터와 같지 않을 수 있다.
비디오 부호화 장치(10)는 단계 S211에서 결정된 디스페리티 벡터의 구성성분이 정수가 아닌 경우, 단계 S211에서 결정된 디스페리티 벡터에 대응하는 정수 디스페리티 벡터를 결정할 수 있다.
구체적으로 비디오 부호화 장치(10)가 정수 디스페리티 벡터를 결정하는 방법은 도 2b 및 도 2c를 참조하여 후술한다.
단계 S213에서 비디오 부호화 장치(10)는 현재 레이어의 현재 픽셀로부터 단계 S212에서 결정된 정수 디스페리티 벡터가 가리키는 참조 레이어의 정수 픽셀의 위치를 결정할 수 있다.
현재 레이어의 현재 픽셀은 정수 픽셀일 수 있다. 따라서 현재 레이어의 현재 픽셀로부터 단계 S212에서 결정된 정수 디스페리티 벡터가 가리키는 참조 레이어의 픽셀의 위치는 정수 픽셀의 위치일 수 있다.
비디오 부호화 장치(10)는 현재 레이어의 현재 픽셀로부터 단계 S212에서 결정된 정수 디스페리티 벡터가 가리키는 참조 레이어의 픽셀의 위치를 결정할 수 있다. 디스페리티 벡터가 가리키는 참조 레이어의 픽셀의 위치는 현재 픽셀이 정수 픽셀인 경우 정수 픽셀의 위치일 수 있다.
도 2b는 다양한 실시 예에 따라 디스페리티 벡터의 x, y 구성성분의 부화소 단위에 대한 반올림 동작을 통해서 정수 디스페리티 벡터를 결정하는 방법을 설명하기 위한 흐름도이다.
단계 S221은 단계 S111에 대응되고, 단계 S223은 단계 S213에 대응되므로 전체적인 설명을 간단히 하기 위해 발명의 상세한 설명을 생략한다.
단계 S222에서 비디오 부호화 장치(10)는 단계 S221에서 결정된 디스페리티 벡터의 x, y 구성성분의 부화소 단위에 대한 반올림 동작을 통해서 정수 디스페리티 벡터를 결정
비디오 부호화 장치(10)는 단계 S221에서 결정된 디스페리티 벡터에 대응하는 벡터 값을 결정할 수 있다. 그리고 비디오 부호화 장치(10)는 결정된 벡터 값의 각 구성성분의 값에 반올림 동작을 수행할 수 있다. 그리고 비디오 부호화 장치(10)는 반올림 동작이 수행된 값을 구성성분으로 갖는 정수 디스페리티 벡터를 결정할 수 있다.
도 2c는 다양한 실시 예에 따라 정수 디스페리티 벡터를 결정하는 방법을 설명하기 위한 흐름도이다.
단계 S231은 단계 S111에 대응되므로 전체적인 설명을 간단히 하기 위해 발명의 상세한 설명을 생략한다.
단계 S232에서 비디오 부호화 장치(10)는 단계 S232에서 결정된 디스페리티 벡터로부터 디스페리티 벡터값을 결정할 수 있다.
또는 비디오 부호화 장치(10)는 단계 S231에서 결정된 디스페리티 벡터의 구성성분의 값을 결정할 수 있다. 단계 S231에서 결정된 디스페리티 벡터의 구성성분은 2개 이상일 수 있다.
단계 S233에서 비디오 부호화 장치(10)는 단계 S232에서 결정된 벡터값에 소정의 값을 더할 수 있다.
예를 들면, 비디오 부호화 장치(10)는 단계 S232에서 결정된 디스페리티 벡터 값에 1을 더할 수 있다. 다른 예로, 비디오 부호화 장치(10)는 단계 S232에서 결정된 디스페리티 벡터 값에 2를 더할 수 있다.
단계 S232에서 결정된 디스페리티 벡터 값에 더해지는 소정의 값은 1 또는 2의 n승(n은 정수)일 수 있다.
또는, 단계 S232에서 결정된 디스페리티 벡터 값에 더해지는 소정의 값은 1 또는 2의 n승(n은 양의 정수)일 수 있다.
단계 S232에서 결정된 디스페리티 벡터 값에 더해지는 소정의 값은 단계 S233에서 시프트되는 비트수와 관련이 있을 수 있다.
예를 들면, 단계 S233에서 시프트되는 비트수를 k라고 할 때 단계 S232에서 결정된 디스페리티 벡터 값에 더해지는 소정의 값은 2의 k-1승일 수 있다. 다른 예로, 단계 S233에서 시프트되는 비트수가 1인 경우 단계 S232에서 결정된 디스페리티 벡터 값에 더해지는 소정의 값은 1일 수 있다. 다른 예로, 단계 S233에서 시프트되는 비트수가 2인 경우 단계 S232에서 결정된 디스페리티 벡터 값에 더해지는 소정의 값은 2일 수 있다. 다른 예로, 단계 S233에서 시프트되는 비트수가 3인 경우 단계 S232에서 결정된 디스페리티 벡터 값에 더해지는 소정의 값은 4일 수 있다.
또 다른 예를 들면, 단계 S233에서 시프트되는 비트수를 k라고 할 때 단계 S232에서 결정된 디스페리티 벡터 값에 더해지는 소정의 값은 2를 k-1승한 값에 1을 더한 값일 수 있다.
또 다른 예를 들면, 단계 S233에서 시프트되는 비트수를 k라고 할 때 단계 S232에서 결정된 디스페리티 벡터 값에 더해지는 소정의 값은 2를 k-1승한 값에 2를 더한 값일 수 있다.
단계 S234에서 비디오 부호화 장치(10)는 단계 S233에서 소정의 값이 더해진 값을 비트 시프트 동작으로 소정의 비트만큼 우측으로 시프트할 수 있다.
또는 비디오 부호화 장치(10)는 단계 S233에서 소정의 값이 더해진 값을 비트 시프트 동작으로 소정의 비트만큼 좌측으로 시프트할 수 있다.
비디오 부호화 장치(10)가 단계 S232에서 결정된 디스페리티 벡터 값에 더하는 소정의 값이 어떻게 결정되는지에 대해서는 상술하였다.
도 3a는 다양한 실시 예에 따라 결정된 정수 픽셀의 위치를 이용하여 움직임 정보를 예측하는 방법을 설명하기 위한 흐름도이다.
단계 S311 및 단계 S312는 각각 단계 S111 및 단계 S112에 대응되므로 전체적인 설명을 간단히 하기 위해 발명의 상세한 설명을 생략한다.
단계 S313에서 비디오 부호화 장치(10)는 단계 S312에서 결정된 정수 픽셀의 위치에 대응되는 참조 레이어의 후보 영역에 대응되는 움직임 정보를 결정할 수 있다.
움직임 정보는 움직임 벡터를 포함할 수 있다. 움직임 정보, 움직임 벡터, 움직임 예측에 대해서는 상술한 바 있다.
비디오 부호화 장치(10)는 단계 S312에서 결정된 정수 픽셀의 위치에 대응되는 참조 레이어의 후보 영역을 결정할 수 있다. 그리고 비디오 부호화 장치(10)는 결정된 참조 레이어의 후보 영역에 대응되는 움직임 정보를 획득할 수 있다. 또는 비디오 부호화 장치(10)는 결정된 참조 레이어의 후보 영역에 할당되어 있는 움직임 정보를 획득할 수 있다.
다양한 실시 예에 따라 결정된 정수 픽셀의 위치를 이용하여 움직임 정보를 예측하는 일 실시 예가 아래와 같은 수도코드로 표현될 수 있다. (해당 실시 예는 disparity vector(mvDisp[0], mvDisp[1])가 quarter-pel 단위로 저장되어 있을 경우)
xRefFull = xPb + ( nPbW >> 1 ) + ( ( mvDisp[ 0 ] + 2 ) >> 2 ),
yRefFull = yPb + ( nPbH >> 1 ) + ( ( mvDisp[ 1 ] + 2 ) >> 2 )
현재 부호화되는 블록을 현재 블록이라고 할 수 있다. 그리고 현재 블록은 현재 레이어의 영상의 전부 또는 일부의 영역일 수 있다. 비디오 부호화 장치(10)는 현재 레이어의 현재 블록을 부호화할 때 현재 레이어의 현재 블록에 대응되는 참조 레이어의 후보 영역과 관련된 정보를 이용할 수 있다. 현재 블록은 루마 블록일 수 있다.
비디오 부호화 장치(10)는 현재 레이어의 현재 픽셀로부터 디스페리티 벡터가 가리키는 위치에 대응하는 참조 레이어의 정수 픽셀의 위치를 결정할 수 있다.
xPb는 현재 레이어의 현재 블록 내의 소정의 위치에 위치한 현재 픽셀의 가로축 위치를 의미할 수 있다.
yPb는 현재 레이어의 현재 블록 내의 소정의 위치에 위치한 현재 픽셀의 세로축 위치를 의미할 수 있다.
nPbW는 현재 레이어의 현재 블록의 너비를 의미할 수 있다.
nPbH는 현재 레이어의 현재 블록의 높이를 의미할 수 있다.
>>는 우측으로 비트를 이동시키는 것을 의미할 수 있다.
<<는 좌측으로 비트를 이동시키는 것을 의미할 수 있다.
mvDisp는 디스페리티 벡터를 의미할 수 있다.
((mvDisp[ 0 ] + 2) >> 2)는 정수 디스페리티 벡터의 가로축 구성성분 값을 의미할 수 있다.
((mvDisp[ 1 ] + 2) >> 2)는 정수 디스페리티 벡터의 세로축 구성성분 값을 의미할 수 있다.
따라서 2를 더하고 2만큼 우측으로 시프트연산을 수행함으로써 디스페리티 벡터로부터 정수 디스페리티 벡터를 획득하는 연산이 수행되는 것을 확인할 수 있다.
xRefFull은 참조 레이어의 정수 픽셀의 가로축 위치를 의미할 수 있다.
yRefFull은 참조 레이어의 정수 픽셀의 세로축 위치를 의미할 수 있다.
또한 상기 수도코드와 같은 과정을 통해서, 비디오 부호화 장치(10)는 현재 픽셀의 위치와 디스페리티 벡터의 값으로 참조 레이어 영상에 위치한 정수 픽셀의 위치를 결정할 수 있다. 또한 비디오 부호화 장치(10)는 디스페리티 벡터에 대한 더하기와 시프트 연산을 수행하여 정수 디스페리티 벡터를 결정할 수 있다.
단계 S314에서 비디오 부호화 장치(10)는 단계 S313에서 결정된 움직임 정보를 이용하여 현재 레이어의 영상의 움직임 정보를 예측할 수 있다.
비디오 부호화 장치(10)는 단계 S313에서 결정된 움직임 정보를 이용하여 현재 레이어 영상에 대해 부호화를 수행할 수 있다.
도 3b는 다양한 실시 예에 따라 결정된 정수 픽셀의 위치를 이용하여 뎁스와 관련된 정보를 결정하고 부호화를 수행하는 방법을 설명하기 위한 흐름도이다.
단계 S321 및 단계 S322는 각각 단계 S111 및 단계 S112에 대응되므로 전체적인 설명을 간단히 하기 위해 발명의 상세한 설명을 생략한다.
다양한 실시 예에 의할 때 비디오 부호화장치(10)는 뎁스 영상으로부터 뎁스 정보를 획득하고, 획득한 뎁스정보를 이용해서 디스페리티 벡터를 결정할 수 있다. 그리고 결정된 디스페리티 벡터를 이용해서 참조 레이어에서의 후보 영역을 결정할 수 있다.
단계 S323에서 비디오 부호화 장치(10)는 단계 S322에서 결정된 정수 픽셀의 위치에 대응되는 참조 레이어의 후보 영역에 대응되는 뎁스(depth)와 관련된 정보를 결정할 수 있다. . 참조 레이어는 뎁스 레이어일 수 있다.
뎁스와 관련된 정보는 영상의 깊이 정보를 포함할 수 있다.
비디오 부호화 장치(10)는 단계 S322에서 결정된 정수 픽셀의 위치에 대응되는 참조 레이어의 후보 영역을 결정할 수 있다. 그리고 비디오 부호화 장치(10)는 결정된 참조 레이어의 후보 영역에 대응되는 뎁스와 관련된 정보를 획득할 수 있다.
단계 S324에서 비디오 부호화 장치(10)는 단계 S323에서 결정된 뎁스와 관련된 정보를 이용하여 현재 레이어의 영상의 부호화를 수행할 수 있다.
또는 비디오 부호화 장치(10)는 결정된 뎁스와 관련된 정보를 이용하여 현재 레이어의 현재 블록의 뎁스와 관련된 정보를 예측할 수 있다.
다양한 실시 예에 따라 결정된 정수 픽셀의 위치를 이용하여 뎁스와 관련된 정보를 예측하는 일 실시 예가 아래와 같은 수도코드로 표현될 수 있다.
xTL = xP + ( ( mvDisp[ 0 ] + 2 ) >> 2 )
yTL = yP + ( ( mvDisp[ 1 ] + 2 ) >> 2 )
현재 부호화되는 블록을 현재 블록이라고 할 수 있다. 그리고 현재 블록은 컬러 영상의 전부 또는 일부의 영역일 수 있다. 비디오 부호화 장치(10)는 컬러 영상의 현재 블록을 부호화할 때 컬러 영상의 현재 블록에 대응되는 뎁스 영상의 후보 영역과 관련된 정보를 이용할 수 있다.
비디오 부호화 장치(10)는 컬러 영상의 현재 픽셀로부터 디스페리티 벡터가 가리키는 위치에 대응하는 뎁스 영상의 정수 픽셀의 위치를 결정할 수 있다.
xP는 컬러 영상의 현재 블록 내의 소정의 위치에 위치한 현재 픽셀의 가로축 위치를 의미할 수 있다.
yP는 컬러 영상의 현재 블록 내의 소정의 위치에 위치한 현재 픽셀의 세로축 위치를 의미할 수 있다.
>>는 우측으로 비트를 이동시키는 것을 의미할 수 있다.
<<는 좌측으로 비트를 이동시키는 것을 의미할 수 있다.
mvDisp는 디스페리티 벡터를 의미할 수 있다.
((mvDisp[ 0 ] + 2) >> 2)는 정수 디스페리티 벡터의 가로축 구성 성분 값을 의미할 수 있다.
((mvDisp[ 1 ] + 2) >> 2)는 정수 디스페리티 벡터의 세로축 구성 성분 값을 의미할 수 있다.
따라서 2를 더하고 2만큼 우측으로 시프트연산을 수행함으로써 디스페리티 벡터로부터 정수 디스페리티 벡터를 획득하는 연산이 수행되는 것을 확인할 수 있다.
xTL은 뎁스 영상에 위치하는 정수 픽셀의 가로축 위치를 의미할 수 있다.
yTL은 뎁스 영상에 위치하는 정수 픽셀의 세로축 위치를 의미할 수 있다.
또한 상기 수도코드와 같은 과정을 통해서, 비디오 부호화 장치(10)는 현재 픽셀의 위치와 디스페리티 벡터의 값으로 깊이 영상에 위치한 정수 픽셀의 위치를 결정할 수 있다. 또한 비디오 부호화 장치(10)는 디스페리티 벡터에 대한 더하기와 시프트 연산을 수행하여 정수 디스페리티 벡터를 결정할 수 있다.
도 3c는 다양한 실시 예에 따라 결정된 정수 픽셀의 위치를 이용하여 잔여 영상 데이터를 예측하는 방법을 설명하기 위한 흐름도이다.
단계 S331 및 단계 S332는 각각 단계 S111 및 단계 S112에 대응되므로 전체적인 설명을 간단히 하기 위해 발명의 상세한 설명을 생략한다.
단계 S333에서 비디오 부호화 장치(10)는 단계 S332에서 결정된 정수 픽셀의 위치에 대응되는 참조 레이어의 후보 영역에 대응되는 잔여 영상 데이터를 결정할 수 있다.
비디오 부호화 장치(10)는 단계 S332에서 결정된 정수 픽셀의 위치에 대응되는 참조 레이어의 후보 영역을 결정할 수 있다. 그리고 비디오 부호화 장치(10)는 결정된 참조 레이어의 후보 영역에 대응되는 잔여 영상 데이터를 획득할 수 있다.
단계 S334에서 비디오 부호화 장치(10)는 단계 S333에서 결정된 잔여 영상 데이터를 이용하여 현재 레이어의 영상의 잔여 영상 데이터를 예측할 수 있다.
또는 비디오 부호화 장치(10)는 결정된 움직임 정보를 이용하여 현재 레이어 영상의 부호화를 수행할 수 있다.
다양한 실시 예에 따라 결정된 정수 픽셀의 위치를 이용하여 잔여 영상 데이터를 예측하기위한 참조 영역의 후보 영역의 위치를 결정하는 일 실시 예가 아래와 같은 수도코드로 표현될 수 있다.
xRef = Clip3( 0, PicWidthInSamplesL ? 1, xP + ( nPSW >> 1 ) + ( ( mvDisp[ 0 ] + 2 ) >> 2 ) )
yRef = Clip3( 0, PicHeightInSamplesL ? 1, yP + ( nPSH >> 1 ) + ( ( mvDisp[ 1 ] + 2 ) >> 2 ) )
현재 부호화되는 블록을 현재 블록이라고 할 수 있다. 그리고 현재 블록은 현재 레이어의 영상의 전부 또는 일부의 영역일 수 있다. 비디오 부호화 장치(10)는 현재 레이어의 현재 블록을 부호화할 때 현재 레이어의 현재 블록에 대응되는 참조 레이어의 후보 영역과 관련된 정보를 이용할 수 있다. 현재 블록은 루마 블록일 수 있다.
비디오 부호화 장치(10)는 현재 레이어의 현재 픽셀로부터 디스페리티 벡터가 가리키는 위치에 대응하는 참조 레이어의 정수 픽셀의 위치를 결정할 수 있다.
xP는 현재 레이어의 현재 블록 내의 소정의 위치에 위치한 현재 픽셀의 가로축 위치를 의미할 수 있다.
yP는 현재 레이어의 현재 블록 내의 소정의 위치에 위치한 현재 픽셀의 세로축 위치를 의미할 수 있다.
>>는 우측으로 비트를 이동시키는 것을 의미할 수 있다.
<<는 좌측으로 비트를 이동시키는 것을 의미할 수 있다.
mvDisp는 디스페리티 벡터를 의미할 수 있다.
((mvDisp[ 0 ] + 2) >> 2)는 정수 디스페리티 벡터의 가로축 구성성분 값을 의미할 수 있다.
((mvDisp[ 1 ] + 2) >> 2)는 정수 디스페리티 벡터의 세로축 구성성분 값을 의미할 수 있다.
따라서 2를 더하고 2만큼 우측으로 시프트연산을 수행함으로써 디스페리티 벡터로부터 정수 디스페리티 벡터를 획득하는 연산이 수행되는 것을 확인할 수 있다.
xRef는 참조 레이어의 정수 픽셀의 가로축 위치를 의미할 수 있다.
yRef는 참조 레이어의 정수 픽셀의 세로축 위치를 의미할 수 있다.
비디오 부호화 장치(10)는 현재 레이어의 현재 블록에 대응하는 참조 레이어의 위치를 디스페리티 벡터로 찾을 수 있다. 비디오 부호화 장치(10)는 현재 레이어의 현재 블록에 대응하는 참조 레이어의 위치를 찾을 때 정수 디스페리티 벡터를 이용할 수 있다. 정수 디스페리티 벡터는 디스페리티 벡터에 더하기 및 시프트 연산을 통해 결정될 수 있다. 비디오 부호화 장치(10)는 현재 레이어의 현재 블록에 대응하는 참조 레이어의 위치에 대응하는 후보 영역에서 잔여 영상 데이터를 획득할 수 있다. 또한 비디오 부호화 장치(10)는 획득한 잔여 영상 데이터를 이용하여 현재 블록의 잔여 영상 데이터를 예측할 수 있다.
도 4a는 다양한 실시 예에 따라 비디오 복호화 장치의 구성을 설명하기 위한 블록도를 도시한다.
도 4에 도시된 바와 같이, 비디오 복호화 장치(40)는 디스페리티 벡터 획득부(11), 정수 픽셀 위치 결정부(12) 및 복호화부(13)를 포함할 수 있다. 그러나 도시된 구성요소보다 많은 구성요소에 의해 비디오 복호화 장치(40)가 구현될 수도 있고, 도시된 구성요소보다 적은 구성요소에 의해 비디오 복호화 장치(40)가 구현될 수도 있다.
다양한 실시예에 따른 비디오 복호화 장치(40)는, 스케일러블 부호화 방식에 따라 레이어별로 비트스트림들을 수신할 수 있다. 비디오 복호화 장치(40)가 수신하는 비트스트림들의 레이어의 개수가 한정되는 것은 아니다.
공간적 스케일러빌러티에 기반한 비디오 복호화 장치(40)는, 서로 다른 해상도의 영상시퀀스가 서로 다른 레이어로 부호화된 스트림을 수신할 수 있다. 참조 레이어 스트림을 복호화하여 저해상도 영상시퀀스가 복원되고, 현재 레이어 스트림을 복호화하여 고해상도 영상 시퀀스가 복원될 수 있다.
다시점 비디오가 스케일러블 비디오 코딩 방식에 따라 복호화될 수 있다. 스테레오스코픽 비디오 스트림이 다수 레이어로 수신된 경우에, 참조 레이어 스트림을 복호화하여 좌시점 영상들이 복원될 수 있다. 참조 레이어 스트림에 현재 레이어 스트림을 더 복호화하여 우시점 영상들이 복원될 수 있다.
또는 다시점 비디오 스트림이 다수 레이어로 수신된 경우에, 참조 레이어 스트림을 복호화하여 중앙시점 영상들이 복원될 수 있다. 참조 레이어 스트림에 현재 레이어 스트림을 더 복호화하여 좌시점 영상들이 복원될 수 있다. 참조 레이어 스트림에 참조 레이어 스트림을 더 복호화하여 우시점 영상들이 복원될 수 있다.
시간적 스케일러빌러티에 기반한 스케일러블 비디오 코딩 방식이 수행될 수 있다. 참조 레이어 스트림을 복호화하여 기본 프레임 레이트의 영상들이 복원될 수 있다. 참조 레이어 스트림에 현재 레이어 스트림을 더 복호화하여 고속 프레임 레이트의 영상들이 복원될 수 있다.
또한, 현재 레이어가 셋 이상인 경우, 참조 레이어 스트림으로부터 참조 레이어 영상들이 복원되고, 참조 레이어 복원영상들을 참조하여 현재 레이어 스트림을 더 복호화하면 현재 레이어 영상들이 더 복원될 수 있다. 현재 레이어 복원영상을 참조하여 K번째 레이어 스트림을 더 복호화하면 K번째 레이어 영상들이 더 복원될 수도 있다.
비디오 복호화 장치(40)는, 참조 레이어 스트림과 현재 레이어 스트림으로부터 참조 레이어 영상들 및 현재 레이어 영상들의 부호화된 데이터를 획득하고, 더하여 인터 예측에 의해 생성된 움직임 벡터 및 인터 레이어 예측에 의해 생성된 예측 정보를 더 획득할 수 있다.
예를 들어 비디오 복호화 장치(40)는 각 레이어별로 인터 예측된 데이터를 복호화하고, 다수 레이어 간에 인터 레이어 예측된 데이터를 복호화할 수 있다. 부호화 단위 또는 예측 단위를 기초로 움직임 보상(Motion Compensation) 및 인터 레이어 복호화를 통한 복원이 수행될 수도 있다.
각 레이어 스트림에 대해서는 동일 레이어의 인터 예측을 통해 예측된 복원영상들을 참조하여, 현재영상을 위한 움직임 보상을 수행함으로써, 영상들을 복원할 수 있다. 움직임 보상은, 현재 영상의 움직임 벡터를 이용하여 결정된 참조영상과, 현재 영상의 레지듀얼 성분을 합성하여 현재 영상의 복원 영상을 재구성하는 동작을 의미한다.
또한, 비디오 복호화 장치(40)는 인터 레이어 예측을 통해 예측된 현재 레이어 영상을 복원하기 위해 참조 레이어 영상들을 참조하여 인터 레이어 복호화를 수행할 수도 있다. 인터 레이어 복호화는, 현재 영상을 예측하기 위하여 결정된 다른 레이어의 참조영상과, 현재 영상의 레지듀얼 성분을 합성하여 현재 영상의 복원 영상을 재구성하는 동작을 의미한다.
일 실시예에 따른 비디오 복호화 장치(40)는 현재 레이어 영상들을 참조하여 예측된 참조 레이어 영상들을 복원하기 위한 인터 레이어 복호화를 수행할 수도 있다.
다만, 다양한 실시예에 따른 복호화부(43)가, 참조 레이어 영상시퀀스를 참조하지 않고도, 현재 레이어 스트림을 복호화할 수도 있다. 따라서, 복호화부(43)가 현재 레이어 영상 시퀀스를 복호화하기 위해, 인터 레이어 예측을 수행한다고 제한적으로 해석하지 않도록 유의하여야 한다.
비디오 복호화 장치(40)는 비디오의 각각의 영상의 블록별로 복호화한다. 블록은, 트리구조에 따른 부호화단위들 중에서는, 최대 부호화 단위, 부호화 단위, 예측 단위, 변환 단위 등일 수 있다.
복호화부(43)는, 파싱된 참조 레이어 영상의 부호화 심볼들을 이용하여, 참조 레이어 영상을 복호화할 수 있다. 비디오 복호화 장치(40)가 트리 구조의 부호화 단위들을 기초로 부호화된 스트림들을 수신한다면, 복호화부(43)는, 참조 레이어 스트림의 최대 부호화 단위마다, 트리 구조의 부호화 단위들을 기초로 복호화를 수행할 수 있다.
복호화부(43)는, 최대 부호화 단위마다 엔트로피 복호화를 수행하여, 부호화 정보와 부호화된 데이터를 획득할 수 있다. 복호화부(43)는, 스트림으로부터 획득한 부호화된 데이터에 대해 역양자화, 역변환을 수행하여, 레지듀얼 성분을 복원할 수 있다. 다른 실시예에 따른 복호화부(43)는, 양자화된 변환계수들의 비트스트림을 직접 수신할 수도 있다. 양자화된 변환계수들에 대해 역양자화, 역변환을 수행한 결과, 영상들의 레지듀얼 성분이 복원될 수도 있다.
복호화부(43)는, 동일 레이어 영상들 간에 움직임 보상을 통해, 예측영상과 레지듀얼 성분을 결합하여 참조 레이어 영상들을 복원할 수 있다.
복호화부(43)는 인터 레이어 예측 구조에 따르면, 참조 레이어 복원영상의 샘플들을 이용하여 현재 레이어 예측영상을 생성할 수 있다. 복호화부(43)는 현재 레이어 스트림을 복호화하여, 인터 레이어 예측에 따른 예측 오차를 획득할 수 있다. 복호화부(43)는, 현재 레이어 예측영상에 예측 오차를 결합함으로써 현재 레이어 복원영상을 생성할 수 있다.
복호화부(43)는, 복호화부(43)에서 복호화된 참조 레이어 복원영상을 이용하여 현재 레이어 예측영상을 결정할 수 있다. 복호화부(43)는, 인터 레이어 에측 구조에 따라, 현재 레이어 영상의 부호화 단위 또는 예측 단위와 같은 블록이 참조할 참조 레이어 영상의 블록을 결정할 수 있다. 예를 들어, 현재 레이어 영상에서 현재 블록의 위치에 상응하여 위치하는 참조 레이어 영상의 복원블록이 결정될 수 있다. 복호화부(43)는, 현재 레이어 블록에 상응하는 참조 레이어 복원블록을 이용하여, 현재 레이어 예측블록을 결정할 수 있다.
복호화부(43)는, 인터 레이어 예측 구조에 따라 참조 레이어 복원블록을 이용하여 결정된 현재 레이어 예측블록을, 현재 레이어 원본블록의 인터 레이어 예측을 위한 참조영상으로서 이용할 수도 있다. 이 경우에 복호화부(43)는, 참조 레이어 복원영상을 이용하여 결정한 현재 레이어 예측블록의 샘플값과 인터 레이어 예측에 따른 레지듀얼 성분을 합성함으로써, 현재 레이어 블록을 복원할 수 있다.
공간적 스케일러블 비디오 코딩 방식에 따르면, 복호화부(43)가 현재 레이어 영상과 다른 해상도의 참조 레이어 영상을 복원한 경우에, 복호화부(43)는 참조 레이어 복원영상을 현재 레이어 원본영상과 동일한 해상도로 크기조절하기 위해 보간할 수 있다. 보간된 참조 레이어 복원영상을 인터 레이어 예측을 위한 현재 레이어 예측영상으로서 결정될 수 있다.
비디오 복호화 장치(40)는 데이터 스트림을 수신할 수 있다. 비디오 복호화 장치(40)가 수신하는 데이터 스트림은 NAL (Network Abstraction Layer) 유닛들로 구성될 수 있다.
NAL 유닛은 비트 스트림을 구성하는 기본 단위인 네트워크 추상화 계층 유닛을 의미할 수 있다. 또한, 하나 이상의 NAL 유닛들이 데이터 스트림을 구성할 수 있다. 비디오 복호화 장치(40)는 하나 이상의 NAL (Network Abstraction Layer) 유닛들로 구성된 데이터 스트림을 외부로부터 수신할 수 있다.
비디오 복호화 장치(40)는 데이터 스트림을 수신하여 데이터 스트림을 NAL 유닛 단위로 분리한 후, 분리된 각각의 NAL 유닛을 디코딩할 수 있다.
각각의 NAL 유닛은 두 바이트의 헤더 정보를 포함할 수 있다. 또한 비디오 복호화 장치(40)는 각각의 NAL 유닛에 포함된 두 바이트의 헤더 정보를 디코딩함으로써 각각의 NAL 유닛 내부의 데이터에 대한 대략적인 정보를 확인할 수 있다.
디스페리티 벡터 획득부(41)는 현재 레이어 및 참조 레이어에 속한 영상들 간의 인터 레이어 예측을 위한 부화소 단위의 구성 성분을 갖는 디스페리티 벡터를 획득할 수 있다.
정수 픽셀 위치 결정부(12)는 현재 레이어의 현재 픽셀로부터 획득한 디스페리티 벡터가 가리키는 위치에 대응하는 참조 레이어의 정수 픽셀의 위치를 결정할 수 있다.
복호화부(13)는 결정된 정수 픽셀의 위치에 대응되는 참조 레이어의 후보 영역의 예측 정보를 이용하여 현재 레이어의 영상의 복호화를 수행할 수 있다.
비디오 복호화 장치(40)는 인터 레이어 예측과 관련하여 영상의 복호화를 수행할 수 있다.
이하, 비디오 복호화 장치(40)의 자세한 동작을 도 4b 내지 도 6c를 참조하여 상술한다.
도 4b는 다양한 실시 예에 따라 디스페리티 벡터를 획득하여 복호화를 수행하는 방법을 설명하기 위한 흐름도이다.
단계 S411에서 비디오 복호화 장치(40)는 현재 레이어 및 참조 레이어에 속한 영상들 간의 인터 레이어 예측을 위한 부화소 단위의 구성 성분을 갖는 디스페리티 벡터를 획득할 수 있다.
참조 레이어는 현재 레이어와 상이한 레이어를 의미할 수 있다. 예를 들면, 현재 레이어는 칼라 영상과 관련된 레이어이고, 참조 레이어는 뎁스(depth) 영상과 관련된 레이어일 수 있다. 다른 예로, 현재 레이어의 영상과 참조 레이어의 영상은 서로 상이한 시점을 가진 영상일 수 있다.
디스페리티 벡터는 복수개의 레이어들에 대해서 서로 대응하는 위치의 차이를 표현할 수 있다. 또한 인터 레이어 예측을 수행할 때 디스페리티 벡터가 이용될 수 있다.
디스페리티 벡터는 서로 다른 레이어에 속한 영상들 간의 인터 레이어 예측을 위해 이용될 수 있다. 또는, 디스페리티 벡터는 현재 레이어 및 참조 레이어에 속한 영상들 간의 인터 레이어 예측을 위해 이용될 수 있다.
디스페리티 벡터는 복수 차원에 대한 벡터일 수 있다. 예를 들면, 디스페리티 벡터는 2차원에 대한 벡터일 수 있다. 또 다른 예를 들면, 디스페리티 벡터는 3차원에 대한 벡터일 수 있다. 디스페리티 벡터는 부화소 단위의 구성성분을 가질 수 있다.
디스페리티 벡터는 쿼터 펠(quarter-pel) 또는 하프 펠(half-pel)과 같은 분수(fractional) 단위의 정밀도를 가질 수 있기 때문에, 현재 레이어 현재블록의 위치에서 디스페리티 벡터가 가리키는 위치는 서브픽셀 위치 일 수 있다. 예측하려는 움직임 정보, 뎁스 정보, 잔여 영상 데이터 등은 모두 정수 픽셀 단위로 저장될 수 있다. 따라서 비디오 부호화 장치(10)는 부화소 단위로 표현되어있는 디스페리티 벡터를 정수 픽셀 단위로 저장되어있는 데이터에 접근하기 위해 정수 픽셀 단위로 변경하여 사용할 수 있다.
비디오 복호화 장치(40)는 2 레이어에 속한 영상을 이용하여 현재 레이어에 속한 영상을 복호화할 수 있다. 비디오 복호화 장치(40)는 참조 레이어에 속한 영상을 이용하여 현재 레이어에 속한 영상에 대한 예측을 수행할 수 있다. 비디오 복호화 장치(40)가 참조 레이어에 속한 영상을 이용하여 현재 레이어에 속한 영상을 복호화할 때 디스페리티 벡터를 이용할 수 있다. 비디오 복호화 장치(40)가 참조 레이어에 속한 영상을 이용하여 현재 레이어에 속한 영상을 예측할 때 디스페리티 벡터를 이용할 수 있다.
현재 복호화되는 블록을 현재 블록이라고 할 수 있다.
비디오 복호화 장치(40)는 현재 레이어의 현재 블록을 복호화할 때 현재 레이어의 현재 블록에 대응되는 참조 레이어의 후보 영역과 관련된 정보를 이용할 수 있다.
예를 들면, 비디오 복호화 장치(40)는 현재 레이어의 현재 블록을 복호화할 때 현재 레이어의 현재 블록에 대응되는 참조 레이어의 후보 영역에 대응되는 움직임 정보를 이용할 수 있다.
또 다른 예를 들면, 비디오 복호화 장치(40)는 현재 레이어의 현재 블록을 복호화할 때 현재 레이어의 현재 블록에 대응되는 참조 레이어의 후보 영역에 대응되는 뎁스와 관련된 정보를 이용할 수 있다.
또 다른 예를 들면, 비디오 복호화 장치(40)는 현재 레이어의 현재 블록을 복호화할 때 현재 레이어의 현재 블록에 대응되는 참조 레이어의 후보 영역에 대응되는 잔여 영상 데이터를 이용할 수 있다.
비디오 복호화 장치(40)는 현재 레이어의 현재 블록을 예측할 때 현재 레이어의 현재 블록에 대응되는 참조 레이어의 후보 영역과 관련된 정보를 이용할 수 있다.
예를 들면, 비디오 복호화 장치(40)는 현재 레이어의 현재 블록을 예측할 때 현재 레이어의 현재 블록에 대응되는 참조 레이어의 후보 영역에 대응되는 움직임 정보를 이용할 수 있다.
또 다른 예를 들면, 비디오 복호화 장치(40)는 현재 레이어의 현재 블록을 예측할 때 현재 레이어의 현재 블록에 대응되는 참조 레이어의 후보 영역에 대응되는 뎁스와 관련된 정보를 이용할 수 있다.
또 다른 예를 들면, 비디오 복호화 장치(40)는 현재 레이어의 현재 블록을 예측할 때 현재 레이어의 현재 블록에 대응되는 참조 레이어의 후보 영역에 대응되는 잔여 영상 데이터를 이용할 수 있다.
단계 S412에서 비디오 복호화 장치(40)는 현재 레이어의 현재 픽셀로부터 단계 S411에서 획득한 디스페리티 벡터가 가리키는 위치에 대응하는 참조 레이어의 정수 픽셀의 위치를 결정할 수 있다.
비디오 복호화 장치(40)는 현재 레이어의 현재 블록을 복호화할 때 현재 레이어의 현재 블록과 참조 레이어의 후보 영역을 서로 대응시키기 위해서 디스페리티 벡터를 이용할 수 있다.
비디오 복호화 장치(40)는 디스페리티 벡터를 통해 현재 레이어의 현재 블록에 대응되는 참조 레이어의 영역을 현재 레이어의 현재 블록에 대응되는 참조 레이어의 후보 영역이라고 결정할 수 있다.
현재 레이어의 현재 블록에는 복수개의 픽셀들이 포함될 수 있다. 따라서 비디오 복호화 장치(40)는 현재 레이어의 현재 블록에 속한 복수개의 픽셀들 중 소정의 픽셀의 위치를 상기 현재 블록의 기준 위치로 결정할 수 있다. 그리고 기준이 되는 소정의 픽셀을 현재 레이어의 현재 픽셀이라고 볼 수 있다. 그리고 비디오 복호화 장치(40)는 현재 레이어의 현재 픽셀의 위치를 기준으로하여 단계 S411에서 획득한 디스페리티 벡터가 가리키는 위치를 결정할 수 있다. 비디오 복호화 장치(40)는 현재 레이어의 현재 픽셀의 위치를 기준으로하여 단계 S411에서 획득한 디스페리티 벡터가 가리키는 위치에 대응하는 정수 픽셀의 위치를 결정할 수 있다. 그리고 정수 픽셀은 참조 레이어에 위치할 수 있다.
현재 레이어의 현재 픽셀의 위치는 현재 레이어의 현재 블록 내에 위치할 수 있다. 그리고 현재 레이어의 현재 픽셀의 위치는 현재 레이어의 현재 블록 내의 소정의 위치일 수 있다. 예를 들면, 현재 레이어의 현재 픽셀의 위치는 현재 레이어의 현재 블록의 좌상단일 수 있다. 다른 예로, 현재 레이어의 현재 픽셀의 위치는 현재 레이어의 현재 블록의 좌하단일 수 있다. 다른 예로, 현재 레이어의 현재 픽셀의 위치는 현재 레이어의 현재 블록의 우상단일 수 있다. 다른 예로, 현재 레이어의 현재 픽셀의 위치는 현재 레이어의 현재 블록의 우하단일 수 있다. 다른 예로, 현재 레이어의 현재 픽셀의 위치는 현재 레이어의 현재 블록의 정중앙일 수 있다.
디스페리티 벡터는 부화소 단위의 구성성분을 가질 수 있다. 또는 디스페리티 벡터는 실수 구성성분을 가질 수 있다. 또는 디스페리티 벡터는 쿼터 펠(quarter-pel) 또는 하프 펠(half-pel)과 같은 분수(fractional) 단위의 정밀도를 가질 수 있다. 따라서 현재 레이어 현재블록의 위치에서 디스페리티 벡터가 가리키는 위치는 서브픽셀 위치 일 수 있다. 예측하려는 움직임 정보, 뎁스 정보, 잔여 영상 데이터 등은 모두 정수 픽셀 단위로 저장될 수 있다. 따라서 비디오 부호화 장치(10)는 부화소 단위로 표현되어있는 디스페리티 벡터를 정수 픽셀 단위로 저장되어있는 데이터에 접근하기 위해 정수 픽셀 단위로 변경하여 사용할 수 있다. 따라서 비디오 복호화 장치(40) 디스페리티 벡터가 가리키는 서브 픽셀의 위치에 대응되는 정수 픽셀의 위치를 결정할 수 있다.
비디오 복호화 장치(40)는 디스페리티 벡터가 가리키는 서브 픽셀의 위치에 대응되는 정수 픽셀의 위치를 결정할 때 반올림 동작을 이용할 수 있다.
또한 비디오 복호화 장치(40)는 디스페리티 벡터가 가리키는 서브 픽셀의 위치에 대응되는 정수 픽셀의 위치를 결정할 때 비트 시프트 동작을 이용할 수 있다.
비디오 복호화 장치(40)가 디스페리티 벡터가 가리키는 서브 픽셀의 위치에 대응되는 정수 픽셀의 위치를 결정하는 구체적인 방법은 후술한다.
단계 S413에서 비디오 복호화 장치(40)는 단계 S412에서 결정된 정수 픽셀의 위치에 대응되는 참조 레이어의 후보 영역의 예측 정보를 이용하여 현재 레이어의 영상의 복호화를 수행할 수 있다.
비디오 복호화 장치(40)는 단계 S412에서 결정된 정수 픽셀의 위치에 대응되는 참조 레이어의 후보 영역을 결정할 수 있다. 그리고 비디오 복호화 장치(40)는 결정된 참조 레이어의 후보 영역에 대응하는 예측 정보를 획득할 수 있다.
예측 정보는 움직임 정보, 뎁스와 관련된 정보 및 잔여 영상 데이터 중 적어도 하나를 포함할 수 있다.
예를 들면, 비디오 복호화 장치(40)는 단계 S412에서 결정된 정수 픽셀의 위치에 대응되는 참조 레이어의 후보 영역의 움직임 정보를 획득할 수 있다. 움직임 정보는 움직임 벡터를 포함할 수 있다. 그리고 비디오 복호화 장치(40)는 획득한 움직임 정보를 이용하여 현재 레이어의 현재 블록의 움직임 정보를 예측할 수 있다.
다른 예로, 비디오 복호화 장치(40)는 단계 S412에서 결정된 정수 픽셀의 위치에 대응되는 참조 레이어의 후보 영역의 뎁스와 관련된 정보를 획득할 수 있다. 참조 레이어는 뎁스 레이어일 수 있다. 그리고 비디오 복호화 장치(40)는 획득한 뎁스와 관련된 정보를 이용하여 현재 레이어의 현재 블록의 복호화를 수행할 수 있다. 또는 비디오 복호화 장치(40)는 획득한 뎁스와 관련된 정보를 이용하여 현재 레이어의 현재 블록의 뎁스와 관련된 정보를 예측할 수 있다.
다른 예로, 비디오 복호화 장치(40)는 단계 S412에서 결정된 정수 픽셀의 위치에 대응되는 참조 레이어의 후보 영역의 잔여 영상 데이터를 획득할 수 있다. 그리고 비디오 복호화 장치(40)는 획득한 잔여 영상 데이터를 이용하여 현재 레이어의 현재 블록의 잔여 영상 데이터를 예측할 수 있다.
단계 S412에서 결정된 정수 픽셀은 결정된 참조 레이어의 후보 영역의 내부에 위치할 수 있다. 그리고 단계 S412에서 결정된 정수 픽셀은 결정된 참조 레이어의 후보 영역 내의 미리 결정된 위치에 위치할 수 있다. 예를 들면, 단계 S412에서 결정된 정수 픽셀은 결정된 참조 레이어의 후보 영역의 좌상단일 수 있다. 다른 예로, 단계 S412에서 결정된 정수 픽셀은 결정된 참조 레이어의 후보 영역의 좌하단일 수 있다. 다른 예로, 단계 S412에서 결정된 정수 픽셀은 결정된 참조 레이어의 후보 영역의 우상단일 수 있다. 다른 예로, 단계 S412에서 결정된 정수 픽셀은 결정된 참조 레이어의 후보 영역의 우하단일 수 있다. 다른 예로, 단계 S412에서 결정된 정수 픽셀은 결정된 참조 레이어의 후보 영역의 정중앙일 수 있다.
도 5a는 다양한 실시 예에 따라 디스페리티 벡터에 대응하는 정수 디스페리티 벡터를 결정하여 정수 픽셀의 위치를 결정하는 방법을 설명하기 위한 흐름도이다.
단계 S511은 단계 S411에 대응되므로 전체적인 설명을 간단히 하기 위해 발명의 상세한 설명을 생략한다.
단계 S512에서 비디오 복호화 장치(40)는 단계 S511에서 획득한 디스페리티 벡터에 대응하는 정수 디스페리티 벡터를 결정할 수 있다.
정수 디스페리티 벡터는 정수를 구성성분으로 가질 수 있다. 그러나 비디오 복호화 장치(40)는 단계 S511에서 획득한 디스페리티 벡터는 부화소 단위의 구성성분을 가질 수 있다. 예를 들면, 디스페리티 벡터는 쿼터 펠 또는 하프 펠과 같은 분수(fractional) 단위의 정밀도를 가질 수 있다.
따라서 단계 S511에서 획득한 디스페리티 벡터의 구성성분이 정수인 경우 단계 S511에서 획득한 디스페리티 벡터에 대응하는 정수 디스페리티 벡터는 단계 S511에서 획득한 디스페리티 벡터와 같을 수 있다.
그러나, 단계 S511에서 획득한 디스페리티 벡터의 구성성분이 정수가 아닌 경우 단계 S511에서 획득한 디스페리티 벡터에 대응하는 정수 디스페리티 벡터는 단계 S511에서 획득한 디스페리티 벡터와 같지 않을 수 있다.
비디오 복호화 장치(40)는 단계 S511에서 획득한 디스페리티 벡터의 구성성분이 정수가 아닌 경우, 단계 S511에서 획득한 디스페리티 벡터에 대응하는 정수 디스페리티 벡터를 결정할 수 있다.
구체적으로 비디오 복호화 장치(40)가 정수 디스페리티 벡터를 결정하는 방법은 도 5b 및 도 5c를 참조하여 후술한다.
단계 S513에서 비디오 복호화 장치(40)는 현재 레이어의 현재 픽셀로부터 단계 S512에서 획득한 정수 디스페리티 벡터가 가리키는 참조 레이어의 정수 픽셀의 위치를 결정할 수 있다.
현재 레이어의 현재 픽셀은 정수 픽셀일 수 있다. 따라서 현재 레이어의 현재 픽셀로부터 단계 S512에서 획득한 정수 디스페리티 벡터가 가리키는 참조 레이어의 픽셀의 위치는 정수 픽셀의 위치일 수 있다.
비디오 복호화 장치(40)는 현재 레이어의 현재 픽셀로부터 단계 S512에서 획득한 정수 디스페리티 벡터가 가리키는 참조 레이어의 픽셀의 위치를 결정할 수 있다. 디스페리티 벡터가 가리키는 참조 레이어의 픽셀의 위치는 현재 픽셀이 정수 픽셀인 경우 정수 픽셀의 위치일 수 있다.
도 5b는 다양한 실시 예에 따라 디스페리티 벡터의 x, y 구성성분의 부화소 단위에 대한 반올림 동작을 통해서 정수 디스페리티 벡터를 결정하는 방법을 설명하기 위한 흐름도이다.
단계 S521은 단계 S411에 대응되고, 단계 S523은 단계 S513에 대응되므로 전체적인 설명을 간단히 하기 위해 발명의 상세한 설명을 생략한다.
단계 S522에서 비디오 복호화 장치(40)는 단계 S521에서 획득한 디스페리티 벡터의 x, y 구성성분의 부화소 단위에 대한 반올림 동작을 통해서 정수 디스페리티 벡터를 결정할 수 있다.
비디오 복호화 장치(40)는 단계 S521에서 획득한 디스페리티 벡터에 대응하는 벡터 값을 결정할 수 있다. 그리고 비디오 복호화 장치(40)는 결정된 벡터 값의 각 구성성분의 값에 반올림 동작을 수행할 수 있다. 그리고 비디오 복호화 장치(40)는 반올림 동작이 수행된 값을 구성성분으로 갖는 정수 디스페리티 벡터를 결정할 수 있다.
도 5c는 다양한 실시 예에 따라 정수 디스페리티 벡터를 결정하는 방법을 설명하기 위한 흐름도이다.
단계 S531은 단계 S411에 대응되므로 전체적인 설명을 간단히 하기 위해 발명의 상세한 설명을 생략한다.
단계 S532에서 비디오 복호화 장치(40)는 단계 S531에서 획득한 디스페리티 벡터로부터 디스페리티 벡터 값을 결정할 수 있다.
또는 비디오 복호화 장치(40)는 단계 S531에서 획득한 디스페리티 벡터의 구성성분의 값을 결정할 수 있다. 단계 S531에서 획득한 디스페리티 벡터의 구성성분은 2개 이상일 수 있다.
단계 S533에서 비디오 복호화 장치(40)는 단계 S532에서 획득한 디스페리티 벡터 값에 소정의 값을 더할 수 있다.
예를 들면, 비디오 복호화 장치(40)는 단계 S532에서 획득한 디스페리티 벡터 값에 1을 더할 수 있다. 다른 예로, 비디오 복호화 장치(40)는 단계 S532에서 획득한 디스페리티 벡터 값에 2를 더할 수 있다.
단계 S532에서 획득한 디스페리티 벡터 값에 더해지는 소정의 값은 1 또는 2의 n승(n은 정수)일 수 있다.
또는, 단계 S532에서 획득한 디스페리티 벡터 값에 더해지는 소정의 값은 1 또는 2의 n승(n은 양의 정수)일 수 있다.
단계 S532에서 획득한 디스페리티 벡터 값에 더해지는 소정의 값은 단계 S533에서 시프트되는 비트수와 관련이 있을 수 있다.
예를 들면, 단계 S533에서 시프트되는 비트수를 k라고 할 때 단계 S532에서 획득한 디스페리티 벡터 값에 더해지는 소정의 값은 2의 k-1승일 수 있다. 다른 예로, 단계 S533에서 시프트되는 비트수가 1인 경우 단계 S532에서 획득한 디스페리티 벡터 값에 더해지는 소정의 값은 1일 수 있다. 다른 예로, 단계 S533에서 시프트되는 비트수가 2인 경우 단계 S532에서 획득한 디스페리티 벡터 값에 더해지는 소정의 값은 2일 수 있다. 다른 예로, 단계 S533에서 시프트되는 비트수가 3인 경우 단계 S532에서 획득한 디스페리티 벡터 값에 더해지는 소정의 값은 4일 수 있다.
또 다른 예를 들면, 단계 S533에서 시프트되는 비트수를 k라고 할 때 단계 S532에서 획득한 디스페리티 벡터 값에 더해지는 소정의 값은 2를 k-1승한 값에 1을 더한 값일 수 있다.
또 다른 예를 들면, 단계 S533에서 시프트되는 비트수를 k라고 할 때 단계 S532에서 획득한 디스페리티 벡터 값에 더해지는 소정의 값은 2를 k-1승한 값에 2를 더한 값일 수 있다.
단계 S534에서 비디오 복호화 장치(40)는 단계 S533에서 소정의 값이 더해진 값을 비트 시프트 동작으로 소정의 비트만큼 우측으로 시프트할 수 있다.
또는 비디오 복호화 장치(40)는 단계 S533에서 소정의 값이 더해진 값을 비트 시프트 동작으로 소정의 비트만큼 좌측으로 시프트할 수 있다.
비디오 복호화 장치(40)가 단계 S532에서 획득한 디스페리티 벡터 값에 더하는 소정의 값이 어떻게 결정되는지에 대해서는 상술하였다.
도 6a는 다양한 실시 예에 따라 결정된 정수 픽셀의 위치를 이용하여 움직임 정보를 예측하는 방법을 설명하기 위한 흐름도이다.
단계 S611 및 단계 S612는 각각 단계 S411 및 단계 S412에 대응되므로 전체적인 설명을 간단히 하기 위해 발명의 상세한 설명을 생략한다.
단계 S613에서 비디오 복호화 장치(40)는 단계 S612에서 결정된 정수 픽셀의 위치에 대응되는 참조 레이어의 후보 영역에 대응되는 움직임 정보를 획득할 수 있다.
움직임 정보는 움직임 벡터를 포함할 수 있다. 움직임 정보, 움직임 벡터, 움직임 예측에 대해서는 상술한 바 있다.
비디오 복호화 장치(40)는 단계 S612에서 결정된 정수 픽셀의 위치에 대응되는 참조 레이어의 후보 영역을 결정할 수 있다. 그리고 비디오 복호화 장치(40)는 결정된 참조 레이어의 후보 영역에 대응되는 움직임 정보를 획득할 수 있다. 또는 비디오 복호화 장치(40)는 결정된 참조 레이어의 후보 영역에 할당되어 있는 움직임 정보를 획득할 수 있다.
단계 S614에서 비디오 복호화 장치(40)는 단계 S613에서 획득한 움직임 정보를 이용하여 현재 레이어 영상의 움직임 정보를 예측할 수 있다.
비디오 복호화 장치(40)는 단계 S613에서 획득한 움직임 정보를 이용하여 현재 레이어 영상에 대해 복호화를 수행할 수 있다.
다양한 실시 예에 따라 결정된 정수 픽셀의 위치를 이용하여 움직임 정보를 예측하는 일 실시 예가 아래와 같은 수도코드로 표현될 수 있다.
xRefFull = xPb + ( nPbW >> 1 ) + ( ( mvDisp[ 0 ] + 2 ) >> 2 ),
yRefFull = yPb + ( nPbH >> 1 ) + ( ( mvDisp[ 1 ] + 2 ) >> 2 )
현재 복호화되는 블록을 현재 블록이라고 할 수 있다. 그리고 현재 블록은 현재 레이어의 영상의 전부 또는 일부의 영역일 수 있다. 비디오 복호화 장치(40)는 현재 레이어의 현재 블록을 복호화할 때 현재 레이어의 현재 블록에 대응되는 참조 레이어의 후보 영역과 관련된 정보를 이용할 수 있다. 현재 블록은 루마 블록일 수 있다.
비디오 복호화 장치(40)는 현재 레이어의 현재 픽셀로부터 디스페리티 벡터가 가리키는 위치에 대응하는 참조 레이어의 정수 픽셀의 위치를 결정할 수 있다.
xPb는 현재 레이어의 현재 블록 내의 소정의 위치에 위치한 현재 픽셀의 가로축 위치를 의미할 수 있다.
yPb는 현재 레이어의 현재 블록 내의 소정의 위치에 위치한 현재 픽셀의 세로축 위치를 의미할 수 있다.
nPbW는 현재 레이어의 현재 블록의 너비를 의미할 수 있다.
nPbH는 현재 레이어의 현재 블록의 높이를 의미할 수 있다.
>>는 우측으로 비트를 이동시키는 것을 의미할 수 있다.
<<는 좌측으로 비트를 이동시키는 것을 의미할 수 있다.
mvDisp는 디스페리티 벡터를 의미할 수 있다.
((mvDisp[ 0 ] + 2) >> 2)는 정수 디스페리티 벡터의 가로축 구성성분 값을 의미할 수 있다.
((mvDisp[ 1 ] + 2) >> 2)는 정수 디스페리티 벡터의 세로축 구성성분 값을 의미할 수 있다.
따라서 2를 더하고 2만큼 우측으로 시프트연산을 수행함으로써 디스페리티 벡터로부터 정수 디스페리티 벡터를 획득하는 연산이 수행되는 것을 확인할 수 있다.
xRefFull은 참조 레이어의 정수 픽셀의 가로축 위치를 의미할 수 있다.
yRefFull은 참조 레이어의 정수 픽셀의 세로축 위치를 의미할 수 있다.
또한 상기 수도코드와 같은 과정을 통해서, 비디오 복호화 장치(40)는 현재 픽셀의 위치와 디스페리티 벡터의 값으로 참조 레이어 영상에 위치한 정수 픽셀의 위치를 결정할 수 있다. 또한 비디오 복호화 장치(40)는 디스페리티 벡터에 대한 더하기와 시프트 연산을 수행하여 정수 디스페리티 벡터를 결정할 수 있다.
도 6b는 다양한 실시 예에 따라 결정된 정수 픽셀의 위치를 이용하여 뎁스와 관련된 정보를 결정하고 부호화를 수행하는 방법을 설명하기 위한 흐름도이다.
단계 S621 및 단계 S622는 각각 단계 S411 및 단계 S412에 대응되므로 전체적인 설명을 간단히 하기 위해 발명의 상세한 설명을 생략한다.
다양한 실시 예에 의할 때 비디오 복호화장치(40)는 뎁스 영상으로부터 뎁스 정보를 획득하고, 획득한 뎁스정보를 이용해서 디스페리티 벡터를 결정할 수 있다. 그리고 결정된 디스페리티 벡터를 이용해서 참조 레이어에서의 후보 영역을 결정할 수 있다.
단계 S623에서 비디오 복호화 장치(40)는 단계 S612에서 결정된 정수 픽셀의 위치에 대응되는 참조 레이어의 후보 영역에 대응되는 뎁스(depth)와 관련된 정보를 획득할 수 있다. 참조 레이어는 뎁스 레이어일 수 있다.
뎁스와 관련된 정보는 영상의 깊이 정보를 포함할 수 있다.
비디오 복호화 장치(40)는 단계 S622에서 결정된 정수 픽셀의 위치에 대응되는 참조 레이어의 후보 영역을 결정할 수 있다. 그리고 비디오 복호화 장치(40)는 결정된 참조 레이어의 후보 영역에 대응되는 뎁스와 관련된 정보를 획득할 수 있다.
단계 S624에서 비디오 복호화 장치(40)는 단계 S613에서 획득한 뎁스와 관련된 정보를 이용하여 현재 레이어 영상의 복호화를 수행할 수 있다.
또는 비디오 복호화 장치(40)는 획득한 뎁스와 관련된 정보를 이용하여 현재 레이어의 현재 블록의 뎁스와 관련된 정보를 예측할 수 있다.
다양한 실시 예에 따라 결정된 정수 픽셀의 위치를 이용하여 뎁스와 관련된 정보를 예측하는 일 실시 예가 아래와 같은 수도코드로 표현될 수 있다.
xTL = xP + ( ( mvDisp[ 0 ] + 2 ) >> 2 )
yTL = yP + ( ( mvDisp[ 1 ] + 2 ) >> 2 )
현재 복호화되는 블록을 현재 블록이라고 할 수 있다. 그리고 현재 블록은 컬러 영상의 전부 또는 일부의 영역일 수 있다. 비디오 복호화 장치(40)는 컬러 영상의 현재 블록을 복호화할 때 컬러 영상의 현재 블록에 대응되는 뎁스 영상의 후보 영역과 관련된 정보를 이용할 수 있다.
비디오 복호화 장치(40)는 컬러 영상의 현재 픽셀로부터 디스페리티 벡터가 가리키는 위치에 대응하는 뎁스 영상의 정수 픽셀의 위치를 결정할 수 있다.
xP는 컬러 영상의 현재 블록 내의 소정의 위치에 위치한 현재 픽셀의 가로축 위치를 의미할 수 있다.
yP는 컬러 영상의 현재 블록 내의 소정의 위치에 위치한 현재 픽셀의 세로축 위치를 의미할 수 있다.
>>는 우측으로 비트를 이동시키는 것을 의미할 수 있다.
<<는 좌측으로 비트를 이동시키는 것을 의미할 수 있다.
mvDisp는 디스페리티 벡터를 의미할 수 있다.
((mvDisp[ 0 ] + 2) >> 2)는 정수 디스페리티 벡터의 가로축 구성 성분 값을 의미할 수 있다.
((mvDisp[ 1 ] + 2) >> 2)는 정수 디스페리티 벡터의 세로축 구성 성분 값을 의미할 수 있다.
따라서 2를 더하고 2만큼 우측으로 시프트연산을 수행함으로써 디스페리티 벡터로부터 정수 디스페리티 벡터를 획득하는 연산이 수행되는 것을 확인할 수 있다.
xTL은 뎁스 영상에 위치하는 정수 픽셀의 가로축 위치를 의미할 수 있다.
yTL은 뎁스 영상에 위치하는 정수 픽셀의 세로축 위치를 의미할 수 있다.
또한 상기 수도코드
와 같은 과정을 통해서, 비디오 복호화 장치(40)는 현재 픽셀의 위치와 디스페리티 벡터의 값으로 깊이 영상에 위치한 정수 픽셀의 위치를 결정할 수 있다. 또한 비디오 복호화 장치(40)는 디스페리티 벡터에 대한 더하기와 시프트 연산을 수행하여 정수 디스페리티 벡터를 결정할 수 있다.
도 6c는 다양한 실시 예에 따라 결정된 정수 픽셀의 위치를 이용하여 잔여 영상 데이터를 예측하는 방법을 설명하기 위한 흐름도이다.
단계 S631 및 단계 S632는 각각 단계 S411 및 단계 S412에 대응되므로 전체적인 설명을 간단히 하기 위해 발명의 상세한 설명을 생략한다.
단계 S633에서 비디오 복호화 장치(40)는 단계 S632에서 결정된 정수 픽셀의 위치에 대응되는 참조 레이어의 후보 영역에 대응되는 잔여 영상 데이터를 획득할 수 있다.
비디오 복호화 장치(40)는 단계 S632에서 결정된 정수 픽셀의 위치에 대응되는 참조 레이어의 후보 영역을 결정할 수 있다. 그리고 비디오 복호화 장치(40)는 결정된 참조 레이어의 후보 영역에 대응되는 잔여 영상 데이터를 획득할 수 있다.
단계 S634에서 비디오 복호화 장치(40)는 단계 S613에서 획득한 움직임 정보를 이용하여 현재 레이어 영상의 잔여 영상 데이터를 예측할 수 있다.
또는 비디오 복호화 장치(40)는 획득한 움직임 정보를 이용하여 현재 레이어 영상의 복호화를 수행할 수 있다.
다양한 실시 예에 따라 결정된 정수 픽셀의 위치를 이용하여 잔여 영상 데이터를 예측하기위한 참조 영역의 후보 영역의 위치를 결정하는 일 실시 예가 아래와 같은 수도코드로 표현될 수 있다.
xRef = Clip3( 0, PicWidthInSamplesL ? 1, xP + ( nPSW >> 1 ) + ( ( mvDisp[ 0 ] + 2 ) >> 2 ) )
yRef = Clip3( 0, PicHeightInSamplesL ? 1, yP + ( nPSH >> 1 ) + ( ( mvDisp[ 1 ] + 2 ) >> 2 ) )
현재 복호화되는 블록을 현재 블록이라고 할 수 있다. 그리고 현재 블록은 현재 레이어의 영상의 전부 또는 일부의 영역일 수 있다. 비디오 복호화 장치(40)는 현재 레이어의 현재 블록을 복호화할 때 현재 레이어의 현재 블록에 대응되는 참조 레이어의 후보 영역과 관련된 정보를 이용할 수 있다. 현재 블록은 루마 블록일 수 있다.
비디오 복호화 장치(40)는 현재 레이어의 현재 픽셀로부터 디스페리티 벡터가 가리키는 위치에 대응하는 참조 레이어의 정수 픽셀의 위치를 결정할 수 있다.
xP는 현재 레이어의 현재 블록 내의 소정의 위치에 위치한 현재 픽셀의 가로축 위치를 의미할 수 있다.
yP는 현재 레이어의 현재 블록 내의 소정의 위치에 위치한 현재 픽셀의 세로축 위치를 의미할 수 있다.
>>는 우측으로 비트를 이동시키는 것을 의미할 수 있다.
<<는 좌측으로 비트를 이동시키는 것을 의미할 수 있다.
mvDisp는 디스페리티 벡터를 의미할 수 있다.
((mvDisp[ 0 ] + 2) >> 2)는 정수 디스페리티 벡터의 가로축 구성성분 값을 의미할 수 있다.
((mvDisp[ 1 ] + 2) >> 2)는 정수 디스페리티 벡터의 세로축 구성성분 값을 의미할 수 있다.
따라서 2를 더하고 2만큼 우측으로 시프트연산을 수행함으로써 디스페리티 벡터로부터 정수 디스페리티 벡터를 획득하는 연산이 수행되는 것을 확인할 수 있다.
xRef는 참조 레이어의 정수 픽셀의 가로축 위치를 의미할 수 있다.
yRef는 참조 레이어의 정수 픽셀의 세로축 위치를 의미할 수 있다.
비디오 부호화 장치(40)는 현재 레이어의 현재 블록에 대응하는 참조 레이어의 위치를 디스페리티 벡터로 찾을 수 있다. 비디오 복호화 장치(40)는 현재 레이어의 현재 블록에 대응하는 참조 레이어의 위치를 찾을 때 정수 디스페리티 벡터를 이용할 수 있다. 정수 디스페리티 벡터는 디스페리티 벡터에 더하기 및 시프트 연산을 통해 결정될 수 있다. 비디오 복호화 장치(40)는 현재 레이어의 현재 블록에 대응하는 참조 레이어의 위치에 대응하는 후보 영역에서 잔여 영상 데이터를 획득할 수 있다. 또한 비디오 복호화 장치(40)는 획득한 잔여 영상 데이터를 이용하여 현재 블록의 잔여 영상 데이터를 예측할 수 있다.
도 7a는 일 실시예에 따른 비디오 복호화 장치(40)가 디스패리티 벡터를 예측하는 방법을 설명하기 위한 블록도이다.
단계 S71에서 일 실시예에 따른 비디오 복호화 장치(40)는 현재뷰에 해당하는 뎁스맵의 존재 여부를 확인한다.
단계 S74에서 현재뷰에 해당하는 뎁스맵이 존재하는 경우, 일 실시예에 따른 비디오 복호화 장치(40)는 현재 뷰에 해당하는 참조 뷰의 뎁스맵에서 현재 블록에 대응되는 위치의 대표(representative) 깊이값을 취하여 디스패리티 벡터로 변환한다. 비디오 복호화 장치(40)는 변환된 디스패리티 벡터를 현재 블록에 해당하는 디스패리티 벡터로 결정한다.
단계 S72에서 현재뷰에 해당하는 뎁스맵이 존재하지 않는 경우, 비디오 복호화 장치(40)는 참조뷰에 뎁스 맵의 존재 여부를 확인할 수 있다.
단계 S75에서 참조뷰에 뎁스 맵이 존재하는 경우, 비디오 복호화 장치(40)는 참조 뎁스 맵의 소정의 탐색과정을 통해 대표하는 깊이값을 취하여 해당 값을 디스패리티 벡터로 변환한할 수 있다. 비디오 복호화 장치(40)는 변환된 디스패리티 벡터를 현재 블록에 해당하는 디스패리티 벡터로 결정할 수 있다. 탐색과정의 실시 일 예로, 초기 디스패리티 벡터를 설정하는 단계 (초기 디스패리티 벡터는 뎁스가 가질 수 있는 값의 범위의 중간 값 일 예로 8비트로 표현되었을 경우에 128의 값을 디스패리티 벡터로 변환한 값으로 설정할 수 있다), 비디오 복호화를 위한 방법은 초기 디스패리티 벡터를 사용하여 참조뷰의 뎁스 맵의 대응하는 위치에서 대표하는 뎁스 값을 취하는 단계, 해당 뎁스 값을 디스패리티 벡터로 변환하는 단계, 해당 디스패리티 벡터를 사용하여 참조뷰의 뎁스 맵에 대응하는 뎁스 위치에서 대표하는 뎁스 값을 취하는 단계, 해당 뎁스 값을 디스패리티 벡터로 변환하는 단계, 해당 디스패리티 벡터를 현재 블록의 디스패리티 벡터로 설정하는 단계를 포함할 수 있다. (비디오 복호화 장치(40)는 뎁스 값을 디스패리티 벡터로 변환할 때에는 카메라 파라미터를 사용하여 변환할 수 있다.)
단계 S73에서 참조뷰에 뎁스 맵이 존재하지 않는 경우, 비디오 복호화 장치(40)는 시간 또는 공간 방향의 주변 블록에서 디스패리티 벡터를 일련의 순서에 따라 검색하고, 검색된 디스패리티 벡터를 현재 블록의 디스패리티 벡터로 결정할 수 있다.
단계 S73에서 주변 블록에서 디스패리티 벡터가 검색되지 않는 경우에는 비디오 복호화 장치(40)는 디스패리티 벡터를 (0, 0)으로 설정할 수 있다.
그런데, 도 7a에서 상술한 디스패리티 벡터를 예측하는 방법은 뎁스맵을 이용가능하나 현재뷰에 대응하는 댑스맵이 존재하지 않는 경우가 뎁스맵을 이용하지 않는 경우와 마찬가지로 취급된다. 이 경우 상당히 복잡한 연산이 필요하기 때문에 간단히 디스패리티 벡터를 검출할 수 있는 방법이 요구된다.
따라서 일 실시예에 따른 비디오 복호화 장치(40)는 참조뷰의 뎁스맵이 존재하는 경우 주변블록정보를 활용하지 않고 단순히 참조뷰에 존재하는 뎁스맵만을 이용하여 디스패리티 벡터를 유도할 수 있다. 따라서 디스패리티 벡터를 유도하는 과정의 복잡도를 낮추고 코딩 효율을 향상시킬 수 있다.
도 7b는 일 실시예에 따른 비디오 복호화 장치(40)가 참조뷰의 뎁스맵을 이용하여 디스패리티 벡터를 예측하는 방법을 설명하기 위한 블록도이다.
단계 S76에서, 일 실시예에 따른 비디오 복호화 장치(40)는 참조뷰의 뎁스맵이 존재하는 경우 현재뷰에 해당하는 일 예로 초기값을 (0, 0)으로 설정할 수 있다.
또 다른 일 예로 비디오 복호화 장치(40)는 초기값을 참조뷰의 뎁스맵의 비트뎁스의 중간값(일 예로 BitDepth를 현재 뎁스맵의 비트뎁스라고 했을 때, 1 << (BitDepth - 1)의 값)을 디스패리티 벡터로 환산한 값을 사용할 수도 있다.
또 다른 일 예로 비디오 복호화 장치(40)는 비스트스트림 헤더에 포함하여 전송된 초기값을 사용할 수도 있다.
또 다른 일 예로 초기값을 비디오 복호화 장치(40)는 글로벌 디스패리티 벡터를 계산하여 초기값으로 사용할 수도 있다.
단계 S76에서, 일 실시예에 따른 비디오 복호화 장치(40)는 현재 블록에 대응하는 참조뷰의 뎁스맵 영역에서 대표 깊이 값을 설정할 수 있다.
예를 들어 비디오 복호화 장치(40)는 현재블록에 대응하는 뎁스맵의 영역에서, 영역안의 모든 픽셀의 값을 비교하여 최대값을 가지는 깊이 값을 대표 깊이 값으로 설정할 수 있다. 또 다른 일 예로 최대값의 비중이 M보다 작을 경우 그 다음의 최대값을 대표 깊이 값으로 선택할 수도 있다.
단계 S77에서, 일 실시예에 따른 비디오 복호화 장치(40)는 현재블록에 대응하는 뎁스맵 영역에서 대표 깊이 값을 이용하여 디스패리티 벡터를 결정할 수 있다.
일 예로 비디오 복호화 장치(40)는 초기값으로 설정된 위치의 뎁스맵의 영역 안에서 대표 깊이 값을 얻고, 대표 뎁스 값을 디스패리티 벡터로 환산하여 현재 블록의 디스패리티 벡터로 결정할 수 있다.
다른 예로, 도 7c는 일 실시예에 따른 비디오 복호화 장치(40)가 참조 깊이 맵을 이용하여 디스패리티 벡터를 예측하는 방법을 설명하기 위한 도면이다.
도 7c를 참조하면 비디오 복호화 장치(40)는 초기값으로 설정된 디스패리티 벡터(DV1)위치의 뎁스맵 영역(83)안에서 대표 깊이 값을 얻고, 대표 깊이값을 환산하여 제1 디스패리티 벡터(DV2)를 결정할 수 있다.
비디오 복호화 장치(40)는 제1 디스패리티 벡터(DV2)가 가리키는 X스맵영역(84)을 기준으로 다시 대표 깊이 값을 얻어 해당 대표 깊이 값을 제2 디스패리티 벡터로 환산할 수 있다. 따라서, 비디오 복호화 장치(40)는 제2 디스패리티 벡터가 현재 블록의 디스패리티 벡터로 결정할 수 있다.
상술한 바에 따라서 일 실시예에 따른 비디오 복호화 장치(40)는 참조뷰의 뎁스맵이 존재하는 경우 주변블록정보를 활용하지 않고 단순히 참조뷰에 존재하는 뎁스맵만을 이용하여 디스패리티 벡터를 유도할 수 있다. 따라서 디스패리티 벡터를 유도하는 과정의 복잡도를 낮추고 코딩 효율을 향상시킬 수 있다.
도 8 은 본 발명의 일 실시예에 따라 트리 구조에 따른 부호화 단위에 기초한 비디오 부호화 장치(100)의 블록도를 도시한다.
일 실시예에 따라 트리 구조에 따른 부호화 단위에 기초한 비디오 예측을 수반하는 비디오 부호화 장치(100)는 부호화 단위 결정부(120) 및 출력부(130)를 포함한다. 이하 설명의 편의를 위해, 일 실시예에 따라 트리 구조에 따른 부호화 단위에 기초한 비디오 예측을 수반하는 비디오 부호화 장치(100)는 '비디오 부호화 장치(100)'로 축약하여 지칭한다.
부호화 단위 결정부(120)는 영상의 현재 픽처를 위한 최대 크기의 부호화 단위인 최대 부호화 단위에 기반하여 현재 픽처를 구획할 수 있다. 현재 픽처가 최대 부호화 단위보다 크다면, 현재 픽처의 영상 데이터는 적어도 하나의 최대 부호화 단위로 분할될 수 있다. 일 실시예에 따른 최대 부호화 단위는 크기 32x32, 64x64, 128x128, 256x256 등의 데이터 단위로, 가로 및 세로 크기가 2의 자승인 정사각형의 데이터 단위일 수 있다.
일 실시예에 따른 부호화 단위는 최대 크기 및 심도로 특징지어질 수 있다. 심도란 최대 부호화 단위로부터 부호화 단위가 공간적으로 분할한 횟수를 나타내며, 심도가 깊어질수록 심도별 부호화 단위는 최대 부호화 단위로부터 최소 부호화 단위까지 분할될 수 있다. 최대 부호화 단위의 심도가 최상위 심도이며 최소 부호화 단위가 최하위 부호화 단위로 정의될 수 있다. 최대 부호화 단위는 심도가 깊어짐에 따라 심도별 부호화 단위의 크기는 감소하므로, 상위 심도의 부호화 단위는 복수 개의 하위 심도의 부호화 단위를 포함할 수 있다.
전술한 바와 같이 부호화 단위의 최대 크기에 따라, 현재 픽처의 영상 데이터를 최대 부호화 단위로 분할하며, 각각의 최대 부호화 단위는 심도별로 분할되는 부호화 단위들을 포함할 수 있다. 일 실시예에 따른 최대 부호화 단위는 심도별로 분할되므로, 최대 부호화 단위에 포함된 공간 영역(spatial domain)의 영상 데이터가 심도에 따라 계층적으로 분류될 수 있다.
최대 부호화 단위의 높이 및 너비를 계층적으로 분할할 수 있는 총 횟수를 제한하는 최대 심도 및 부호화 단위의 최대 크기가 미리 설정되어 있을 수 있다.
부호화 단위 결정부(120)는, 심도마다 최대 부호화 단위의 영역이 분할된 적어도 하나의 분할 영역을 부호화하여, 적어도 하나의 분할 영역 별로 최종 부호화 결과가 출력될 심도를 결정한다. 즉 부호화 단위 결정부(120)는, 현재 픽처의 최대 부호화 단위마다 심도별 부호화 단위로 영상 데이터를 부호화하여 가장 작은 부호화 오차가 발생하는 심도를 선택하여 최종 심도로 결정한다. 결정된 최종 심도 및 최대 부호화 단위별 영상 데이터는 출력부(130)로 출력된다.
최대 부호화 단위 내의 영상 데이터는 최대 심도 이하의 적어도 하나의 심도에 따라 심도별 부호화 단위에 기반하여 부호화되고, 각각의 심도별 부호화 단위에 기반한 부호화 결과가 비교된다. 심도별 부호화 단위의 부호화 오차의 비교 결과 부호화 오차가 가장 작은 심도가 선택될 수 있다. 각각의 최대화 부호화 단위마다 적어도 하나의 최종 심도가 결정될 수 있다.
최대 부호화 단위의 크기는 심도가 깊어짐에 따라 부호화 단위가 계층적으로 분할되어 분할되며 부호화 단위의 개수는 증가한다. 또한, 하나의 최대 부호화 단위에 포함되는 동일한 심도의 부호화 단위들이라 하더라도, 각각의 데이터에 대한 부호화 오차를 측정하고 하위 심도로의 분할 여부가 결정된다. 따라서, 하나의 최대 부호화 단위에 포함되는 데이터라 하더라도 위치에 따라 심도별 부호화 오차가 다르므로 위치에 따라 최종 심도가 달리 결정될 수 있다. 따라서, 하나의 최대 부호화 단위에 대해 최종 심도가 하나 이상 설정될 수 있으며, 최대 부호화 단위의 데이터는 하나 이상의 최종 심도의 부호화 단위에 따라 구획될 수 있다.
따라서, 일 실시예에 따른 부호화 단위 결정부(120)는, 현재 최대 부호화 단위에 포함되는 트리 구조에 따른 부호화 단위들이 결정될 수 있다. 일 실시예에 따른 '트리 구조에 따른 부호화 단위들'은, 현재 최대 부호화 단위에 포함되는 모든 심도별 부호화 단위들 중, 최종 심도로 결정된 심도의 부호화 단위들을 포함한다. 최종 심도의 부호화 단위는, 최대 부호화 단위 내에서 동일 영역에서는 심도에 따라 계층적으로 결정되고, 다른 영역들에 대해서는 독립적으로 결정될 수 있다. 마찬가지로, 현재 영역에 대한 최종 심도는, 다른 영역에 대한 최종 심도와 독립적으로 결정될 수 있다.
일 실시예에 따른 최대 심도는 최대 부호화 단위로부터 최소 부호화 단위까지의 분할 횟수와 관련된 지표이다. 일 실시예에 따른 제 1 최대 심도는, 최대 부호화 단위로부터 최소 부호화 단위까지의 총 분할 횟수를 나타낼 수 있다. 일 실시예에 따른 제 2 최대 심도는 최대 부호화 단위로부터 최소 부호화 단위까지의 심도 레벨의 총 개수를 나타낼 수 있다. 예를 들어, 최대 부호화 단위의 심도가 0이라고 할 때, 최대 부호화 단위가 1회 분할된 부호화 단위의 심도는 1로 설정되고, 2회 분할된 부호화 단위의 심도가 2로 설정될 수 있다. 이 경우, 최대 부호화 단위로부터 4회 분할된 부호화 단위가 최소 부호화 단위라면, 심도 0, 1, 2, 3 및 4의 심도 레벨이 존재하므로 제 1 최대 심도는 4, 제 2 최대 심도는 5로 설정될 수 있다.
최대 부호화 단위의 예측 부호화 및 변환이 수행될 수 있다. 예측 부호화 및 변환도 마찬가지로, 최대 부호화 단위마다, 최대 심도 이하의 심도마다 심도별 부호화 단위를 기반으로 수행된다.
최대 부호화 단위가 심도별로 분할될 때마다 심도별 부호화 단위의 개수가 증가하므로, 심도가 깊어짐에 따라 생성되는 모든 심도별 부호화 단위에 대해 예측 부호화 및 변환을 포함한 부호화가 수행되어야 한다. 이하 설명의 편의를 위해 적어도 하나의 최대 부호화 단위 중 현재 심도의 부호화 단위를 기반으로 예측 부호화 및 변환을 설명하겠다.
일 실시예에 따른 비디오 부호화 장치(100)는, 영상 데이터의 부호화를 위한 데이터 단위의 크기 또는 형태를 다양하게 선택할 수 있다. 영상 데이터의 부호화를 위해서는 예측 부호화, 변환, 엔트로피 부호화 등의 단계를 거치는데, 모든 단계에 걸쳐서 동일한 데이터 단위가 사용될 수도 있으며, 단계별로 데이터 단위가 변경될 수도 있다.
예를 들어 비디오 부호화 장치(100)는, 영상 데이터의 부호화를 위한 부호화 단위 뿐만 아니라, 부호화 단위의 영상 데이터의 예측 부호화를 수행하기 위해, 부호화 단위와 다른 데이터 단위를 선택할 수 있다.
최대 부호화 단위의 예측 부호화를 위해서는, 일 실시예에 따른 최종 심도의 부호화 단위, 즉 더 이상한 분할되지 않는 부호화 단위를 기반으로 예측 부호화가 수행될 수 있다. 이하, 예측 부호화의 기반이 되는 더 이상한 분할되지 않는 부호화 단위를 '예측 단위'라고 지칭한다. 예측 단위가 분할된 파티션은, 예측 단위 및 예측 단위의 높이 및 너비 중 적어도 하나가 분할된 데이터 단위를 포함할 수 있다. 파티션은 부호화 단위의 예측 단위가 분할된 형태의 데이터 단위이고, 예측 단위는 부호화 단위와 동일한 크기의 파티션일 수 있다.
예를 들어, 크기 2Nx2N(단, N은 양의 정수)의 부호화 단위가 더 이상 분할되지 않는 경우, 크기 2Nx2N의 예측 단위가 되며, 파티션의 크기는 2Nx2N, 2NxN, Nx2N, NxN 등일 수 있다. 일 실시예에 따른 파티션 모드는 예측 단위의 높이 또는 너비가 대칭적 비율로 분할된 대칭적 파티션들뿐만 아니라, 1:n 또는 n:1과 같이 비대칭적 비율로 분할된 파티션들, 기하학적인 형태로 분할된 파티션들, 임의적 형태의 파티션들 등을 선택적으로 포함할 수도 있다.
예측 단위의 예측 모드는, 인트라 모드, 인터 모드 및 스킵 모드 중 적어도 하나일 수 있다. 예를 들어 인트라 모드 및 인터 모드는, 2Nx2N, 2NxN, Nx2N, NxN 크기의 파티션에 대해서 수행될 수 있다. 또한, 스킵 모드는 2Nx2N 크기의 파티션에 대해서만 수행될 수 있다. 부호화 단위 이내의 하나의 예측 단위마다 독립적으로 부호화가 수행되어 부호화 오차가 가장 작은 예측 모드가 선택될 수 있다.
또한, 일 실시예에 따른 비디오 부호화 장치(100)는, 영상 데이터의 부호화를 위한 부호화 단위 뿐만 아니라, 부호화 단위와 다른 데이터 단위를 기반으로 부호화 단위의 영상 데이터의 변환을 수행할 수 있다. 부호화 단위의 변환을 위해서는, 부호화 단위보다 작거나 같은 크기의 변환 단위를 기반으로 변환이 수행될 수 있다. 예를 들어 변환 단위는, 인트라 모드를 위한 데이터 단위 및 인터 모드를 위한 변환 단위를 포함할 수 있다.
일 실시예에 따른 트리 구조에 따른 부호화 단위와 유사한 방식으로, 부호화 단위 내의 변환 단위도 재귀적으로 더 작은 크기의 변환 단위로 분할되면서, 부호화 단위의 잔여 영상 데이터가 변환 심도에 따라 트리 구조에 따른 변환 단위에 따라 구획될 수 있다.
일 실시예에 따른 변환 단위에 대해서도, 부호화 단위의 높이 및 너비가 분할하여 변환 단위에 이르기까지의 분할 횟수를 나타내는 변환 심도가 설정될 수 있다. 예를 들어, 크기 2Nx2N의 현재 부호화 단위의 변환 단위의 크기가 2Nx2N이라면 변환 심도 0, 변환 단위의 크기가 NxN이라면 변환 심도 1, 변환 단위의 크기가 N/2xN/2이라면 변환 심도 2로 설정될 수 있다. 즉, 변환 단위에 대해서도 변환 심도에 따라 트리 구조에 따른 변환 단위가 설정될 수 있다.
심도별 분할 정보는, 심도 뿐만 아니라 예측 관련 정보 및 변환 관련 정보가 필요하다. 따라서, 부호화 단위 결정부(120)는 최소 부호화 오차를 발생시킨 심도 뿐만 아니라, 예측 단위를 파티션으로 분할한 파티션 모드, 예측 단위별 예측 모드, 변환을 위한 변환 단위의 크기 등을 결정할 수 있다.
일 실시예에 따른 최대 부호화 단위의 트리 구조에 따른 부호화 단위 및 예측단위/파티션, 및 변환 단위의 결정 방식에 대해서는, 도 9 내지 19를 참조하여 상세히 후술한다.
부호화 단위 결정부(120)는 심도별 부호화 단위의 부호화 오차를 라그랑지 곱(Lagrangian Multiplier) 기반의 율-왜곡 최적화 기법(Rate-Distortion Optimization)을 이용하여 측정할 수 있다.
출력부(130)는, 부호화 단위 결정부(120)에서 결정된 적어도 하나의 심도에 기초하여 부호화된 최대 부호화 단위의 영상 데이터 및 심도별 분할정보를 비트스트림 형태로 출력한다.
부호화된 영상 데이터는 영상의 잔여 영상 데이터의 부호화 결과일 수 있다.
심도별 분할정보는, 심도 정보, 예측 단위의 파티션 모드 정보, 예측 모드 정보, 변환 단위의 분할 정보 등을 포함할 수 있다.
최종 심도 정보는, 현재 심도로 부호화하지 않고 하위 심도의 부호화 단위로 부호화할지 여부를 나타내는 심도별 분할 정보를 이용하여 정의될 수 있다. 현재 부호화 단위의 현재 심도가 심도라면, 현재 부호화 단위는 현재 심도의 부호화 단위로 부호화되므로 현재 심도의 분할 정보는 더 이상 하위 심도로 분할되지 않도록 정의될 수 있다. 반대로, 현재 부호화 단위의 현재 심도가 심도가 아니라면 하위 심도의 부호화 단위를 이용한 부호화를 시도해보아야 하므로, 현재 심도의 분할 정보는 하위 심도의 부호화 단위로 분할되도록 정의될 수 있다.
현재 심도가 심도가 아니라면, 하위 심도의 부호화 단위로 분할된 부호화 단위에 대해 부호화가 수행된다. 현재 심도의 부호화 단위 내에 하위 심도의 부호화 단위가 하나 이상 존재하므로, 각각의 하위 심도의 부호화 단위마다 반복적으로 부호화가 수행되어, 동일한 심도의 부호화 단위마다 재귀적(recursive) 부호화가 수행될 수 있다.
하나의 최대 부호화 단위 안에 트리 구조의 부호화 단위들이 결정되며 심도의 부호화 단위마다 적어도 하나의 분할정보가 결정되어야 하므로, 하나의 최대 부호화 단위에 대해서는 적어도 하나의 분할정보가 결정될 수 있다. 또한, 최대 부호화 단위의 데이터는 심도에 따라 계층적으로 구획되어 위치 별로 심도가 다를 수 있으므로, 데이터에 대해 심도 및 분할정보가 설정될 수 있다.
따라서, 일 실시예에 따른 출력부(130)는, 최대 부호화 단위에 포함되어 있는 부호화 단위, 예측 단위 및 최소 단위 중 적어도 하나에 대해, 해당 심도 및 부호화 모드에 대한 부호화 정보를 할당될 수 있다.
일 실시예에 따른 최소 단위는, 최하위 심도인 최소 부호화 단위가 4분할된 크기의 정사각형의 데이터 단위이다. 일 실시예에 따른 최소 단위는, 최대 부호화 단위에 포함되는 모든 부호화 단위, 예측 단위, 파티션 단위 및 변환 단위 내에 포함될 수 있는 최대 크기의 정사각 데이터 단위일 수 있다.
예를 들어 출력부(130)를 통해 출력되는 부호화 정보는, 심도별 부호화 단위별 부호화 정보와 예측 단위별 부호화 정보로 분류될 수 있다. 심도별 부호화 단위별 부호화 정보는, 예측 모드 정보, 파티션 크기 정보를 포함할 수 있다. 예측 단위별로 전송되는 부호화 정보는 인터 모드의 추정 방향에 관한 정보, 인터 모드의 참조 영상 인덱스에 관한 정보, 움직임 벡터에 관한 정보, 인트라 모드의 크로마 성분에 관한 정보, 인트라 모드의 보간 방식에 관한 정보 등을 포함할 수 있다.
픽처, 슬라이스 또는 GOP별로 정의되는 부호화 단위의 최대 크기에 관한 정보 및 최대 심도에 관한 정보는 비트스트림의 헤더, 시퀀스 파라미터 세트 또는 픽처 파라미터 세트 등에 삽입될 수 있다.
또한 현재 비디오에 대해 허용되는 변환 단위의 최대 크기에 관한 정보 및 변환 단위의 최소 크기에 관한 정보도, 비트스트림의 헤더, 시퀀스 파라미터 세트 또는 픽처 파라미터 세트 등을 통해 출력될 수 있다. 출력부(130)는, 예측과 관련된 참조정보, 예측정보, 슬라이스 타입 정보 등을 부호화하여 출력할 수 있다.
비디오 부호화 장치(100)의 가장 간단한 형태의 실시예에 따르면, 심도별 부호화 단위는 한 계층 상위 심도의 부호화 단위의 높이 및 너비를 반분한 크기의 부호화 단위이다. 즉, 현재 심도의 부호화 단위의 크기가 2Nx2N이라면, 하위 심도의 부호화 단위의 크기는 NxN 이다. 또한, 2Nx2N 크기의 현재 부호화 단위는 NxN 크기의 하위 심도 부호화 단위를 최대 4개 포함할 수 있다.
따라서, 비디오 부호화 장치(100)는 현재 픽처의 특성을 고려하여 결정된 최대 부호화 단위의 크기 및 최대 심도를 기반으로, 각각의 최대 부호화 단위마다 최적의 형태 및 크기의 부호화 단위를 결정하여 트리 구조에 따른 부호화 단위들을 구성할 수 있다. 또한, 각각의 최대 부호화 단위마다 다양한 예측 모드, 변환 방식 등으로 부호화할 수 있으므로, 다양한 영상 크기의 부호화 단위의 영상 특성을 고려하여 최적의 부호화 모드가 결정될 수 있다.
따라서, 영상의 해상도가 매우 높거나 데이터량이 매우 큰 영상을 기존 매크로블록 단위로 부호화한다면, 픽처당 매크로블록의 수가 과도하게 많아진다. 이에 따라, 매크로블록마다 생성되는 압축 정보도 많아지므로 압축 정보의 전송 부담이 커지고 데이터 압축 효율이 감소하는 경향이 있다. 따라서, 일 실시예에 따른 비디오 부호화 장치는, 영상의 크기를 고려하여 부호화 단위의 최대 크기를 증가시키면서, 영상 특성을 고려하여 부호화 단위를 조절할 수 있으므로, 영상 압축 효율이 증대될 수 있다.
도 4를 참조하여 전술한 비디오 부호화 장치(40)는, 멀티 레이어 비디오의 레이어들마다 싱글 레이어 영상들의 부호화를 위해, 레이어 개수만큼의 비디오 부호화 장치(100)들을 포함할 수 있다.
비디오 부호화 장치(100)가 참조 레이어 영상들을 부호화하는 경우에, 부호화 단위 결정부(120)는 최대 부호화 단위마다 트리 구조에 따른 부호화 단위별로 영상간 예측을 위한 예측단위를 결정하고, 예측단위마다 영상간 예측을 수행할 수 있다.
비디오 부호화 장치(100)가 현재 레이어 영상들을 부호화하는 경우에도, 부호화 단위 결정부(120)는 최대 부호화 단위마다 트리 구조에 따른 부호화 단위 및 예측단위를 결정하고, 예측단위마다 인터 예측을 수행할 수 있다.
비디오 부호화 장치(100)는, 참조 레이어 영상과 현재 레이어 영상 간의 휘도 차를 보상하기 위해 휘도 차를 부호화할 수 있다. 다만, 부호화 단위의 부호화 모드에 따라 휘도 수행 여부가 결정될 수 있다. 예를 들어, 크기 2Nx2N의 예측 단위에 대해서만 휘도보상이 수행될 수 있다.
도 9 는 다양한 실시예에 따라 트리 구조에 따른 부호화 단위에 기초한 비디오 복호화 장치(200)의 블록도를 도시한다.
일 실시예에 따라 트리 구조에 따른 부호화 단위에 기초한 비디오 예측을 수반하는 비디오 복호화 장치(200)는 수신부(210), 영상 데이터 및 부호화 정보 추출부(220) 및 영상 데이터 복호화부(230)를 포함한다. 이하 설명의 편의를 위해, 일 실시예에 따라 트리 구조에 따른 부호화 단위에 기초한 비디오 예측을 수반하는 비디오 복호화 장치(200)는 '비디오 복호화 장치(200)'로 축약하여 지칭한다.
일 실시예에 따른 비디오 복호화 장치(200)의 복호화 동작을 위한 부호화 단위, 심도, 예측 단위, 변환 단위, 각종 분할정보 등 각종 용어의 정의는, 도 8 및 비디오 부호화 장치(100)를 참조하여 전술한 바와 동일하다.
수신부(210)는 부호화된 비디오에 대한 비트스트림을 수신하여 파싱한다. 영상 데이터 및 부호화 정보 추출부(220)는 파싱된 비트스트림으로부터 최대 부호화 단위별로 트리 구조에 따른 부호화 단위들에 따라 부호화 단위마다 부호화된 영상 데이터를 추출하여 영상 데이터 복호화부(230)로 출력한다. 영상 데이터 및 부호화 정보 추출부(220)는 현재 픽처에 대한 헤더, 시퀀스 파라미터 세트 또는 픽처 파라미터 세트로부터 현재 픽처의 부호화 단위의 최대 크기에 관한 정보를 추출할 수 있다.
또한, 영상 데이터 및 부호화 정보 추출부(220)는 파싱된 비트스트림으로부터 최대 부호화 단위별로 트리 구조에 따른 부호화 단위들에 대한 최종 심도 및 분할정보를 추출한다. 추출된 최종 심도 및 분할정보는 영상 데이터 복호화부(230)로 출력된다. 즉, 비트열의 영상 데이터를 최대 부호화 단위로 분할하여, 영상 데이터 복호화부(230)가 최대 부호화 단위마다 영상 데이터를 복호화하도록 할 수 있다.
최대 부호화 단위별 심도 및 분할정보는, 하나 이상의 심도 정보에 대해 설정될 수 있으며, 심도별 분할정보는, 해당 부호화 단위의 파티션 모드 정보, 예측 모드 정보 및 변환 단위의 분할 정보 등을 포함할 수 있다. 또한, 심도 정보로서, 심도별 분할 정보가 추출될 수도 있다.
영상 데이터 및 부호화 정보 추출부(220)가 추출한 최대 부호화 단위별 심도 및 분할정보는, 일 실시예에 따른 비디오 부호화 장치(100)와 같이 부호화단에서, 최대 부호화 단위별 심도별 부호화 단위마다 반복적으로 부호화를 수행하여 최소 부호화 오차를 발생시키는 것으로 결정된 심도 및 분할정보다. 따라서, 비디오 복호화 장치(200)는 최소 부호화 오차를 발생시키는 부호화 방식에 따라 데이터를 복호화하여 영상을 복원할 수 있다.
일 실시예에 따른 심도 및 부호화 모드에 대한 부호화 정보는, 해당 부호화 단위, 예측 단위 및 최소 단위 중 소정 데이터 단위에 대해 할당되어 있을 수 있으므로, 영상 데이터 및 부호화 정보 추출부(220)는 소정 데이터 단위별로 심도 및 분할정보를 추출할 수 있다. 소정 데이터 단위별로, 해당 최대 부호화 단위의 심도 및 분할정보가 기록되어 있다면, 동일한 심도 및 분할정보를 갖고 있는 소정 데이터 단위들은 동일한 최대 부호화 단위에 포함되는 데이터 단위로 유추될 수 있다.
영상 데이터 복호화부(230)는 최대 부호화 단위별 심도 및 분할정보에 기초하여 각각의 최대 부호화 단위의 영상 데이터를 복호화하여 현재 픽처를 복원한다. 즉 영상 데이터 복호화부(230)는, 최대 부호화 단위에 포함되는 트리 구조에 따른 부호화 단위들 가운데 각각의 부호화 단위마다, 판독된 파티션 모드, 예측 모드, 변환 단위에 기초하여 부호화된 영상 데이터를 복호화할 수 있다. 복호화 과정은 인트라 예측 및 움직임 보상을 포함하는 예측 과정, 및 역변환 과정을 포함할 수 있다.
영상 데이터 복호화부(230)는, 심도별 부호화 단위의 예측 단위의 파티션 모드 정보 및 예측 모드 정보에 기초하여, 부호화 단위마다 각각의 파티션 및 예측 모드에 따라 인트라 예측 또는 움직임 보상을 수행할 수 있다.
또한, 영상 데이터 복호화부(230)는, 최대 부호화 단위별 역변환을 위해, 부호화 단위별로 트리 구조에 따른 변환 단위 정보를 판독하여, 부호화 단위마다 변환 단위에 기초한 역변환을 수행할 수 있다. 역변환을 통해, 부호화 단위의 공간 영역의 화소값이 복원할 수 있다.
영상 데이터 복호화부(230)는 심도별 분할 정보를 이용하여 현재 최대 부호화 단위의 심도를 결정할 수 있다. 만약, 분할 정보가 현재 심도에서 더 이상 분할되지 않음을 나타내고 있다면 현재 심도가 심도다. 따라서, 영상 데이터 복호화부(230)는 현재 최대 부호화 단위의 영상 데이터에 대해 현재 심도의 부호화 단위를 예측 단위의 파티션 모드, 예측 모드 및 변환 단위 크기 정보를 이용하여 복호화할 수 있다.
즉, 부호화 단위, 예측 단위 및 최소 단위 중 소정 데이터 단위에 대해 설정되어 있는 부호화 정보를 관찰하여, 동일한 분할 정보를 포함한 부호화 정보를 보유하고 있는 데이터 단위가 모여, 영상 데이터 복호화부(230)에 의해 동일한 부호화 모드로 복호화할 하나의 데이터 단위로 간주될 수 있다. 이런 식으로 결정된 부호화 단위마다 부호화 모드에 대한 정보를 획득하여 현재 부호화 단위의 복호화가 수행될 수 있다.
도 10를 참조하여 전술한 비디오 복호화 장치(10)는, 수신된 참조 레이어 영상스트림 및 현재 레이어 영상스트림을 복호화하여 참조 레이어 영상들 및 현재 레이어 영상들을 복원하기 위해, 비디오 복호화 장치(200)를 시점 개수만큼 포함할 수 있다.
참조 레이어 영상스트림이 수신된 경우에는, 비디오 복호화 장치(200)의 영상데이터 복호화부(230)는, 추출부(220)에 의해 참조 레이어 영상스트림으로부터 추출된 참조 레이어 영상들의 샘플들을 최대 부호화 단위의 트리 구조에 따른 부호화 단위들로 나눌 수 있다. 영상데이터 복호화부(230)는 참조 레이어 영상들의 샘플들의 트리 구조에 따른 부호화 단위들마다, 영상간 예측을 위한 예측단위별로 움직임 보상을 수행하여 참조 레이어 영상들을 복원할 수 있다.
현재 레이어 영상스트림이 수신된 경우에는, 비디오 복호화 장치(200)의 영상데이터 복호화부(230)는, 추출부(220)에 의해 현재 레이어 영상스트림으로부터 추출된 현재 레이어 영상들의 샘플들을 최대 부호화 단위의 트리 구조에 따른 부호화 단위들로 나눌 수 있다. 영상데이터 복호화부(230)는, 현재 레이어 영상들의 샘플들의 부호화 단위들마다 영상간 예측을 위한 예측단위별로 움직임 보상을 수행하여 현재 레이어 영상들을 복원할 수 있다.
추출부(220)는, 참조 레이어 영상과 현재 레이어 영상 간의 휘도 차를 보상하기 위해 휘도 오차와 관련된 정보를 비트스트림으로부터 획득할 수 있다. 다만, 부호화 단위의 부호화 모드에 따라 휘도 수행 여부가 결정될 수 있다. 예를 들어, 크기 2Nx2N의 예측 단위에 대해서만 휘도보상이 수행될 수 있다.
결국, 비디오 복호화 장치(200)는, 부호화 과정에서 최대 부호화 단위마다 재귀적으로 부호화를 수행하여 최소 부호화 오차를 발생시킨 부호화 단위에 대한 정보를 획득하여, 현재 픽처에 대한 복호화에 이용할 수 있다. 즉, 최대 부호화 단위마다 최적 부호화 단위로 결정된 트리 구조에 따른 부호화 단위들의 부호화된 영상 데이터의 복호화가 가능해진다.
따라서, 높은 해상도의 영상 또는 데이터량이 과도하게 많은 영상이라도 부호화단으로부터 전송된 최적 분할정보를 이용하여, 영상의 특성에 적응적으로 결정된 부호화 단위의 크기 및 부호화 모드에 따라 효율적으로 영상 데이터를 복호화하여 복원할 수 있다.
도 10 은 다양한 실시예에 따른 부호화 단위의 개념을 도시한다.
부호화 단위의 예는, 부호화 단위의 크기는 너비x높이로 표현되며, 크기 64x64인 부호화 단위부터, 32x32, 16x16, 8x8를 포함할 수 있다. 크기 64x64의 부호화 단위는 크기 64x64, 64x32, 32x64, 32x32의 파티션들로 분할될 수 있고, 크기 32x32의 부호화 단위는 크기 32x32, 32x16, 16x32, 16x16의 파티션들로, 크기 16x16의 부호화 단위는 크기 16x16, 16x8, 8x16, 8x8의 파티션들로, 크기 8x8의 부호화 단위는 크기 8x8, 8x4, 4x8, 4x4의 파티션들로 분할될 수 있다.
비디오 데이터(310)에 대해서는, 해상도는 1920x1080, 부호화 단위의 최대 크기는 64, 최대 심도가 2로 설정되어 있다. 비디오 데이터(320)에 대해서는, 해상도는 1920x1080, 부호화 단위의 최대 크기는 64, 최대 심도가 3로 설정되어 있다. 비디오 데이터(330)에 대해서는, 해상도는 352x288, 부호화 단위의 최대 크기는 16, 최대 심도가 1로 설정되어 있다. 도 10에 도시된 최대 심도는, 최대 부호화 단위로부터 최소 부호화 단위까지의 총 분할 횟수를 나타낸다.
해상도가 높거나 데이터량이 많은 경우 부호화 효율의 향상 뿐만 아니라 영상 특성을 정확히 반형하기 위해 부호화 사이즈의 최대 크기가 상대적으로 큰 것이 바람직하다. 따라서, 비디오 데이터(330)에 비해, 해상도가 높은 비디오 데이터(310, 320)는 부호화 사이즈의 최대 크기가 64로 선택될 수 있다.
비디오 데이터(310)의 최대 심도는 2이므로, 비디오 데이터(310)의 부호화 단위(315)는 장축 크기가 64인 최대 부호화 단위로부터, 2회 분할하며 심도가 두 계층 깊어져서 장축 크기가 32, 16인 부호화 단위들까지 포함할 수 있다. 반면, 비디오 데이터(330)의 최대 심도는 1이므로, 비디오 데이터(330)의 부호화 단위(335)는 장축 크기가 16인 부호화 단위들로부터, 1회 분할하며 심도가 한 계층 깊어져서 장축 크기가 8인 부호화 단위들까지 포함할 수 있다.
비디오 데이터(320)의 최대 심도는 3이므로, 비디오 데이터(320)의 부호화 단위(325)는 장축 크기가 64인 최대 부호화 단위로부터, 3회 분할하며 심도가 세 계층 깊어져서 장축 크기가 32, 16, 8인 부호화 단위들까지 포함할 수 있다. 심도가 깊어질수록 세부 정보의 표현능력이 향상될 수 있다.
도 11 은 다양한 실시예에 따른 부호화 단위에 기초한 영상 부호화부(400)의 블록도를 도시한다.
일 실시예에 따른 영상 부호화부(400)는, 비디오 부호화 장치(100)의 픽처 부호화부(120)에서 영상 데이터를 부호화하는데 거치는 작업들을 수행한다. 즉, 인트라 예측부(420)는 현재 영상(405) 중 인트라 모드의 부호화 단위에 대해 예측 단위별로 인트라 예측을 수행하고, 인터 예측부(415)는 인터 모드의 부호화 단위에 대해 예측단위별로 현재 영상(405) 및 복원 픽처 버퍼(410)에서 획득된 참조 영상을 이용하여 인터 예측을 수행한다. 현재 영상(405)은 최대부호화 단위로 분할된 후 순차적으로 인코딩이 수행될 수 있다. 이때, 최대 부호화 단위가 트리 구조로 분할될 부호화 단위에 대해 인코딩을 수행될 수 있다.
인트라 예측부(420) 또는 인터 예측부(415)로부터 출력된 각 모드의 부호화 단위에 대한 예측 데이터를 현재 영상(405)의 인코딩되는 부호화 단위에 대한 데이터로부터 빼줌으로써 잔여 영상 데이터를 생성하고, 잔여 영상 데이터는 변환부(425) 및 양자화부(430)를 거쳐 변환 단위별로 양자화된 변환 계수로 출력된다. 양자화된 변환 계수는 역양자화부(445), 역변환부(450)을 통해 공간 영역의 잔여 영상 데이터로 복원된다. 복원된 공간 영역의 잔여 영상 데이터는 인트라 예측부(420) 또는 인터 예측부(415)로부터 출력된 각 모드의 부호화 단위에 대한 예측 데이터와 더해짐으로써 현재 영상(405)의 부호화 단위에 대한 공간 영역의 데이터로 복원된다. 복원된 공간 영역의 데이터는 디블로킹부(455) 및 SAO 수행부(460)를 거쳐 복원 영상으로 생성된다. 생성된 복원 영상은 복원 픽쳐 버퍼(410)에 저장된다. 복원 픽처 버퍼(410)에 저장된 복원 영상들은 다른 영상의 인터예측을 위한 참조 영상으로 이용될 수 있다. 변환부(425) 및 양자화부(430)에서 양자화된 변환 계수는 엔트로피 부호화부(435)를 거쳐 비트스트림(440)으로 출력될 수 있다.
일 실시예에 따른 영상 부호화부(400)가 비디오 부호화 장치(100)에 적용되기 위해서, 영상 부호화부(400)의 구성 요소들인 인터 예측부(415), 인트라 예측부(420), 변환부(425), 양자화부(430), 엔트로피 부호화부(435), 역양자화부(445), 역변환부(450), 디블로킹부(455) 및 SAO 수행부(460)가 최대 부호화 단위마다 트리 구조에 따른 부호화 단위들 중 각각의 부호화 단위에 기반한 작업을 수행할 수 있다.
특히, 인트라 예측부(420)및 인터예측부(415) 는 현재 최대 부호화 단위의 최대 크기 및 최대 심도를 고려하여 트리 구조에 따른 부호화 단위들 중 각각의 부호화 단위의 파티션 모드 및 예측 모드를 결정하며, 변환부(425)는 트리 구조에 따른 부호화 단위들 중 각각의 부호화 단위 내의 쿼드 트리에 따른 변환 단위의 분할 여부를 결정할 수 있다.
도 12 는 다양한 실시예에 따른 부호화 단위에 기초한 영상 복호화부(500)의 블록도를 도시한다.
엔트로피 복호화부(515)는 비트스트림(505)으로부터 복호화 대상인 부호화된 영상 데이터 및 복호화를 위해 필요한 부호화 정보를 파싱한다. 부호화된 영상 데이터는 양자화된 변환계수로서, 역양자화부(520) 및 역변환부(525)는 양자화된 변환 계수로부터 잔여 영상 데이터를 복원한다.
인트라 예측부(540)는 인트라 모드의 부호화 단위에 대해 예측 단위 별로 인트라 예측을 수행한다. 인터 예측부(535)는 현재 영상 중 인터 모드의 부호화 단위에 대해 예측 단위 별로 복원 픽처 버퍼(530)에서 획득된 참조 영상을 이용하여 인터 예측을 수행한다.
인트라 예측부(540) 또는 인터 예측부(535)를 거친 각 모드의 부호화 단위에 대한 예측 데이터와 잔여 영상 데이터가 더해짐으로써 현재 영상(405)의 부호화 단위에 대한 공간 영역의 데이터가 복원되고, 복원된 공간 영역의 데이터는 디블로킹부(545) 및 SAO 수행부(550)를 거쳐 복원 영상(560)으로 출력될 수 있다. 또한, 복원 픽쳐 버퍼(530)에 저장된 복원 영상들은 참조 영상으로서 출력될 수 있다.
비디오 복호화 장치(200)의 픽처 복호화부(230)에서 영상 데이터를 복호화하기 위해, 일 실시예에 따른 영상 복호화부(500)의 엔트로피 복호화부(515) 이후의 단계별 작업들이 수행될 수 있다.
영상 복호화부(500)가 일 실시예에 따른 비디오 복호화 장치(200)에 적용되기 위해서, 영상 복호화부(500)의 구성 요소들인 엔트로피 복호화부(515), 역양자화부(520), 역변환부(525), 인트라 예측부(540), 인터 예측부(535), 디블로킹부(545) 및 SAO 수행부(550)가 최대 부호화 단위마다 트리 구조에 따른 부호화 단위들 중 각각의 부호화 단위에 기반하여 작업을 수행할 수 있다.
특히, 인트라 예측부(540)및 인터 예측부(535)는 트리 구조에 따른 부호화 단위들 중 각각의 부호화 단위마다 파티션 모드 및 예측 모드를 결정하며, 역변환부(525)는 부호화 단위마다 쿼드 트리구조에 따른 변환단위의 분할 여부를 결정할 수 있다.
도 10의 부호화 동작 및 도 11의 복호화 동작은 각각 단일 레이어에서의 비디오스트림 부호화 동작 및 복호화 동작을 상술한 것이다. 따라서, 도 4의 부호화부(12)가 둘 이상의 레이어의 비디오스트림을 부호화한다면, 레이어별로 영상부호화부(400)를 포함할 수 있다. 유사하게, 도 10의 복호화부(26)가 둘 이상의 레이어의 비디오스트림을 복호화한다면, 레이어별로 영상복호화부(500)를 포함할 수 있다.
도 13 는 다양한 실시예에 따른 심도별 부호화 단위 및 파티션을 도시한다.
일 실시예에 따른 비디오 부호화 장치(100) 및 일 실시예에 따른 비디오 복호화 장치(200)는 영상 특성을 고려하기 위해 계층적인 부호화 단위를 사용한다. 부호화 단위의 최대 높이 및 너비, 최대 심도는 영상의 특성에 따라 적응적으로 결정될 수도 있으며, 사용자의 요구에 따라 다양하게 설정될 수도 있다. 미리 설정된 부호화 단위의 최대 크기에 따라, 심도별 부호화 단위의 크기가 결정될 수 있다.
일 실시예에 따른 부호화 단위의 계층 구조(600)는 부호화 단위의 최대 높이 및 너비가 64이며, 최대 심도가 3인 경우를 도시하고 있다. 이 때, 최대 심도는 최대 부호화 단위로부터 최소 부호화 단위까지의 총 분할 횟수를 나타낸다. 일 실시예에 따른 부호화 단위의 계층 구조(600)의 세로축을 따라서 심도가 깊어지므로 심도별 부호화 단위의 높이 및 너비가 각각 분할한다. 또한, 부호화 단위의 계층 구조(600)의 가로축을 따라, 각각의 심도별 부호화 단위의 예측 부호화의 기반이 되는 예측 단위 및 파티션이 도시되어 있다.
즉, 부호화 단위(610)는 부호화 단위의 계층 구조(600) 중 최대 부호화 단위로서 심도가 0이며, 부호화 단위의 크기, 즉 높이 및 너비가 64x64이다. 세로축을 따라 심도가 깊어지며, 크기 32x32인 심도 1의 부호화 단위(620), 크기 16x16인 심도 2의 부호화 단위(630), 크기 8x8인 심도 3의 부호화 단위(640)가 존재한다. 크기 8x8인 심도 3의 부호화 단위(640)는 최소 부호화 단위이다.
각각의 심도별로 가로축을 따라, 부호화 단위의 예측 단위 및 파티션들이 배열된다. 즉, 심도 0의 크기 64x64의 부호화 단위(610)가 예측 단위라면, 예측 단위는 크기 64x64의 부호화 단위(610)에 포함되는 크기 64x64의 파티션(610), 크기 64x32의 파티션들(612), 크기 32x64의 파티션들(614), 크기 32x32의 파티션들(616)로 분할될 수 있다.
마찬가지로, 심도 1의 크기 32x32의 부호화 단위(620)의 예측 단위는, 크기 32x32의 부호화 단위(620)에 포함되는 크기 32x32의 파티션(620), 크기 32x16의 파티션들(622), 크기 16x32의 파티션들(624), 크기 16x16의 파티션들(626)로 분할될 수 있다.
마찬가지로, 심도 2의 크기 16x16의 부호화 단위(630)의 예측 단위는, 크기 16x16의 부호화 단위(630)에 포함되는 크기 16x16의 파티션(630), 크기 16x8의 파티션들(632), 크기 8x16의 파티션들(634), 크기 8x8의 파티션들(636)로 분할될 수 있다.
마찬가지로, 심도 3의 크기 8x8의 부호화 단위(640)의 예측 단위는, 크기 8x8의 부호화 단위(640)에 포함되는 크기 8x8의 파티션(640), 크기 8x4의 파티션들(642), 크기 4x8의 파티션들(644), 크기 4x4의 파티션들(646)로 분할될 수 있다.
일 실시예에 따른 비디오 부호화 장치(100)의 부호화 단위 결정부(120)는, 최대 부호화 단위(610)의 심도를 결정하기 위해, 최대 부호화 단위(610)에 포함되는 각각의 심도의 부호화 단위마다 부호화를 수행하여야 한다.
동일한 범위 및 크기의 데이터를 포함하기 위한 심도별 부호화 단위의 개수는, 심도가 깊어질수록 심도별 부호화 단위의 개수도 증가한다. 예를 들어, 심도 1의 부호화 단위 한 개가 포함하는 데이터에 대해서, 심도 2의 부호화 단위는 네 개가 필요하다. 따라서, 동일한 데이터의 부호화 결과를 심도별로 비교하기 위해서, 한 개의 심도 1의 부호화 단위 및 네 개의 심도 2의 부호화 단위를 이용하여 각각 부호화되어야 한다.
각각의 심도별 부호화를 위해서는, 부호화 단위의 계층 구조(600)의 가로축을 따라, 심도별 부호화 단위의 예측 단위들마다 부호화를 수행하여, 해당 심도에서 가장 작은 부호화 오차인 대표 부호화 오차가 선택될 수다. 또한, 부호화 단위의 계층 구조(600)의 세로축을 따라 심도가 깊어지며, 각각의 심도마다 부호화를 수행하여, 심도별 대표 부호화 오차를 비교하여 최소 부호화 오차가 검색될 수 있다. 최대 부호화 단위(610) 중 최소 부호화 오차가 발생하는 심도 및 파티션이 최대 부호화 단위(610)의 심도 및 파티션 모드로 선택될 수 있다.
도 14 은 다양한 실시예에 따른, 부호화 단위 및 변환 단위의 관계를 도시한다.
일 실시예에 따른 비디오 부호화 장치(100) 또는 일 실시예에 따른 비디오 복호화 장치(200)는, 최대 부호화 단위마다 최대 부호화 단위보다 작거나 같은 크기의 부호화 단위로 영상을 부호화하거나 복호화한다. 부호화 과정 중 변환을 위한 변환 단위의 크기는 각각의 부호화 단위보다 크지 않은 데이터 단위를 기반으로 선택될 수 있다.
예를 들어, 일 실시예에 따른 비디오 부호화 장치(100) 또는 일 실시예에 따른 비디오 복호화 장치(200)에서, 현재 부호화 단위(710)가 64x64 크기일 때, 32x32 크기의 변환 단위(720)를 이용하여 변환이 수행될 수 있다.
또한, 64x64 크기의 부호화 단위(710)의 데이터를 64x64 크기 이하의 32x32, 16x16, 8x8, 4x4 크기의 변환 단위들로 각각 변환을 수행하여 부호화한 후, 원본과의 오차가 가장 적은 변환 단위가 선택될 수 있다.
도 15 은 다양한 실시예에 따라, 심도별 부호화 정보들을 도시한다.
일 실시예에 따른 비디오 부호화 장치(100)의 출력부(130)는 분할정보로서, 각각의 심도의 부호화 단위마다 파티션 모드에 관한 정보(800), 예측 모드에 관한 정보(810), 변환 단위 크기에 대한 정보(820)를 부호화하여 전송할 수 있다.
파티션 모드에 대한 정보(800)는, 현재 부호화 단위의 예측 부호화를 위한 데이터 단위로서, 현재 부호화 단위의 예측 단위가 분할된 파티션의 형태에 대한 정보를 나타낸다. 예를 들어, 크기 2Nx2N의 현재 부호화 단위 CU_0는, 크기 2Nx2N의 파티션(802), 크기 2NxN의 파티션(804), 크기 Nx2N의 파티션(806), 크기 NxN의 파티션(808) 중 어느 하나의 타입으로 분할되어 이용될 수 있다. 이 경우 현재 부호화 단위의 파티션 모드에 관한 정보(800)는 크기 2Nx2N의 파티션(802), 크기 2NxN의 파티션(804), 크기 Nx2N의 파티션(806) 및 크기 NxN의 파티션(808) 중 하나를 나타내도록 설정된다.
예측 모드에 관한 정보(810)는, 각각의 파티션의 예측 모드를 나타낸다. 예를 들어 예측 모드에 관한 정보(810)를 통해, 파티션 모드에 관한 정보(800)가 가리키는 파티션이 인트라 모드(812), 인터 모드(814) 및 스킵 모드(816) 중 하나로 예측 부호화가 수행되는지 여부가 설정될 수 있다.
또한, 변환 단위 크기에 관한 정보(820)는 현재 부호화 단위를 어떠한 변환 단위를 기반으로 변환을 수행할지 여부를 나타낸다. 예를 들어, 변환 단위는 제 1 인트라 변환 단위 크기(822), 제 2 인트라 변환 단위 크기(824), 제 1 인터 변환 단위 크기(826), 제 2 인터 변환 단위 크기(828) 중 하나일 수 있다.
일 실시예에 따른 비디오 복호화 장치(200)의 영상 데이터 및 부호화 정보 추출부(210)는, 각각의 심도별 부호화 단위마다 파티션 모드에 관한 정보(800), 예측 모드에 관한 정보(810), 변환 단위 크기에 대한 정보(820)를 추출하여 복호화에 이용할 수 있다.
도 16 는 다양한 실시예에 따른 심도별 부호화 단위를 도시한다.
심도의 변화를 나타내기 위해 분할 정보가 이용될 수 있다. 분할 정보는 현재 심도의 부호화 단위가 하위 심도의 부호화 단위로 분할될지 여부를 나타낸다.
심도 0 및 2N_0x2N_0 크기의 부호화 단위(900)의 예측 부호화를 위한 예측 단위(910)는 2N_0x2N_0 크기의 파티션 모드(912), 2N_0xN_0 크기의 파티션 모드(914), N_0x2N_0 크기의 파티션 모드(916), N_0xN_0 크기의 파티션 모드(918)을 포함할 수 있다. 예측 단위가 대칭적 비율로 분할된 파티션들(912, 914, 916, 918)만이 예시되어 있지만, 전술한 바와 같이 파티션 모드는 이에 한정되지 않고 비대칭적 파티션, 임의적 형태의 파티션, 기하학적 형태의 파티션 등을 포함할 수 있다.
파티션 모드마다, 한 개의 2N_0x2N_0 크기의 파티션, 두 개의 2N_0xN_0 크기의 파티션, 두 개의 N_0x2N_0 크기의 파티션, 네 개의 N_0xN_0 크기의 파티션마다 반복적으로 예측 부호화가 수행되어야 한다. 크기 2N_0x2N_0, 크기 N_0x2N_0 및 크기 2N_0xN_0 및 크기 N_0xN_0의 파티션에 대해서는, 인트라 모드 및 인터 모드로 예측 부호화가 수행될 수 있다. 스킵 모드는 크기 2N_0x2N_0의 파티션에 예측 부호화가 대해서만 수행될 수 있다.
크기 2N_0x2N_0, 2N_0xN_0 및 N_0x2N_0의 파티션 모드(912, 914, 916) 중 하나에 의한 부호화 오차가 가장 작다면, 더 이상 하위 심도로 분할할 필요 없다.
크기 N_0xN_0의 파티션 모드(918)에 의한 부호화 오차가 가장 작다면, 심도 0를 1로 변경하며 분할하고(920), 심도 2 및 크기 N_0xN_0의 파티션 모드의 부호화 단위들(930)에 대해 반복적으로 부호화를 수행하여 최소 부호화 오차를 검색해 나갈 수 있다.
심도 1 및 크기 2N_1x2N_1 (=N_0xN_0)의 부호화 단위(930)의 예측 부호화를 위한 예측 단위(940)는, 크기 2N_1x2N_1의 파티션 모드(942), 크기 2N_1xN_1의 파티션 모드(944), 크기 N_1x2N_1의 파티션 모드(946), 크기 N_1xN_1의 파티션 모드(948)을 포함할 수 있다.
또한, 크기 N_1xN_1 크기의 파티션 모드(948)에 의한 부호화 오차가 가장 작다면, 심도 1을 심도 2로 변경하며 분할하고(950), 심도 2 및 크기 N_2xN_2의 부호화 단위들(960)에 대해 반복적으로 부호화를 수행하여 최소 부호화 오차를 검색해 나갈 수 있다.
최대 심도가 d인 경우, 심도별 부호화 단위는 심도 d-1일 때까지 설정되고, 분할 정보는 심도 d-2까지 설정될 수 있다. 즉, 심도 d-2로부터 분할(970)되어 심도 d-1까지 부호화가 수행될 경우, 심도 d-1 및 크기 2N_(d-1)x2N_(d-1)의 부호화 단위(980)의 예측 부호화를 위한 예측 단위(990)는, 크기 2N_(d-1)x2N_(d-1)의 파티션 모드(992), 크기 2N_(d-1)xN_(d-1)의 파티션 모드(994), 크기 N_(d-1)x2N_(d-1)의 파티션 모드(996), 크기 N_(d-1)xN_(d-1)의 파티션 모드(998)을 포함할 수 있다.
파티션 모드 가운데, 한 개의 크기 2N_(d-1)x2N_(d-1)의 파티션, 두 개의 크기 2N_(d-1)xN_(d-1)의 파티션, 두 개의 크기 N_(d-1)x2N_(d-1)의 파티션, 네 개의 크기 N_(d-1)xN_(d-1)의 파티션마다 반복적으로 예측 부호화를 통한 부호화가 수행되어, 최소 부호화 오차가 발생하는 파티션 모드가 검색될 수 있다.
크기 N_(d-1)xN_(d-1)의 파티션 모드(998)에 의한 부호화 오차가 가장 작더라도, 최대 심도가 d이므로, 심도 d-1의 부호화 단위 CU_(d-1)는 더 이상 하위 심도로의 분할 과정을 거치지 않으며, 현재 최대 부호화 단위(900)에 대한 심도가 심도 d-1로 결정되고, 파티션 모드는 N_(d-1)xN_(d-1)로 결정될 수 있다. 또한 최대 심도가 d이므로, 심도 d-1의 부호화 단위(952)에 대해 분할 정보는 설정되지 않는다.
데이터 단위(999)은, 현재 최대 부호화 단위에 대한 '최소 단위'라 지칭될 수 있다. 일 실시예에 따른 최소 단위는, 최하위 심도인 최소 부호화 단위가 4분할된 크기의 정사각형의 데이터 단위일 수 있다. 이러한 반복적 부호화 과정을 통해, 일 실시예에 따른 비디오 부호화 장치(100)는 부호화 단위(900)의 심도별 부호화 오차를 비교하여 가장 작은 부호화 오차가 발생하는 심도를 선택하여, 심도를 결정하고, 해당 파티션 모드 및 예측 모드가 심도의 부호화 모드로 설정될 수 있다.
이런 식으로 심도 0, 1, ..., d-1, d의 모든 심도별 최소 부호화 오차를 비교하여 오차가 가장 작은 심도가 선택되어 심도로 결정될 수 있다. 심도, 및 예측 단위의 파티션 모드 및 예측 모드는 분할정보로써 부호화되어 전송될 수 있다. 또한, 심도 0으로부터 심도에 이르기까지 부호화 단위가 분할되어야 하므로, 심도의 분할 정보만이 '0'으로 설정되고, 심도를 제외한 심도별 분할 정보는 '1'로 설정되어야 한다.
일 실시예에 따른 비디오 복호화 장치(200)의 영상 데이터 및 부호화 정보 추출부(220)는 부호화 단위(900)에 대한 심도 및 예측 단위에 관한 정보를 추출하여 부호화 단위(912)를 복호화하는데 이용할 수 있다. 일 실시예에 따른 비디오 복호화 장치(200)는 심도별 분할 정보를 이용하여 분할 정보가 '0'인 심도를 심도로 파악하고, 해당 심도에 대한 분할정보를 이용하여 복호화에 이용할 수 있다.
도 17, 18 및 19는 다양한 실시예에 따른, 부호화 단위, 예측 단위 및 변환 단위의 관계를 도시한다.
부호화 단위(1010)는, 최대 부호화 단위에 대해 일 실시예에 따른 비디오 부호화 장치(100)가 결정한 심도별 부호화 단위들이다. 예측 단위(1060)는 부호화 단위(1010) 중 각각의 심도별 부호화 단위의 예측 단위들의 파티션들이며, 변환 단위(1070)는 각각의 심도별 부호화 단위의 변환 단위들이다.
심도별 부호화 단위들(1010)은 최대 부호화 단위의 심도가 0이라고 하면, 부호화 단위들(1012, 1054)은 심도가 1, 부호화 단위들(1014, 1016, 1018, 1028, 1050, 1052)은 심도가 2, 부호화 단위들(1020, 1022, 1024, 1026, 1030, 1032, 1048)은 심도가 3, 부호화 단위들(1040, 1042, 1044, 1046)은 심도가 4이다.
예측 단위들(1060) 중 일부 파티션(1014, 1016, 1022, 1032, 1048, 1050, 1052, 1054)는 부호화 단위가 분할된 형태이다. 즉, 파티션(1014, 1022, 1050, 1054)은 2NxN의 파티션 모드며, 파티션(1016, 1048, 1052)은 Nx2N의 파티션 모드, 파티션(1032)은 NxN의 파티션 모드다. 심도별 부호화 단위들(1010)의 예측 단위 및 파티션들은 각각의 부호화 단위보다 작거나 같다.
변환 단위들(1070) 중 일부(1052)의 영상 데이터에 대해서는 부호화 단위에 비해 작은 크기의 데이터 단위로 변환 또는 역변환이 수행된다. 또한, 변환 단위(1014, 1016, 1022, 1032, 1048, 1050, 1052, 1054)는 예측 단위들(1060) 중 해당 예측 단위 및 파티션와 비교해보면, 서로 다른 크기 또는 형태의 데이터 단위이다. 즉, 일 실시예에 따른 비디오 부호화 장치(100) 및 일 실시예에 다른 비디오 복호화 장치(200)는 동일한 부호화 단위에 대한 인트라 예측/움직임 추정/움직임 보상 작업, 및 변환/역변환 작업이라 할지라도, 각각 별개의 데이터 단위를 기반으로 수행할 수 있다.
이에 따라, 최대 부호화 단위마다, 영역별로 계층적인 구조의 부호화 단위들마다 재귀적으로 부호화가 수행되어 최적 부호화 단위가 결정됨으로써, 재귀적 트리 구조에 따른 부호화 단위들이 구성될 수 있다. 부호화 정보는 부호화 단위에 대한 분할 정보, 파티션 모드 정보, 예측 모드 정보, 변환 단위 크기 정보를 포함할 수 있다. 이하 표 1은, 일 실시예에 따른 비디오 부호화 장치(100) 및 일 실시예에 따른 비디오 복호화 장치(200)에서 설정할 수 있는 일례를 나타낸다.
표 1
분할 정보 0 (현재 심도 d의 크기 2Nx2N의 부호화 단위에 대한 부호화) | 분할 정보 1 | ||||
예측 모드 | 파티션 모드 | 변환 단위 크기 | 하위 심도 d+1의 부호화 단위들마다 반복적 부호화 | ||
인트라,인터,스킵 (2Nx2N만) | 대칭형 파티션 모드 | 비대칭형 파티션 모드 | 변환 단위 분할 정보 0 | 변환 단위 분할 정보 1 | |
2Nx2N2NxNNx2NNxN | 2NxnU2NxnDnLx2NnRx2N | 2Nx2N | NxN (대칭형 파티션 모드) N/2xN/2 (비대칭형 파티션 모드) |
일 실시예에 따른 비디오 부호화 장치(100)의 출력부(130)는 트리 구조에 따른 부호화 단위들에 대한 부호화 정보를 출력하고, 일 실시예에 따른 비디오 복호화 장치(200)의 부호화 정보 추출부(220)는 수신된 비트스트림으로부터 트리 구조에 따른 부호화 단위들에 대한 부호화 정보를 추출할 수 있다.
분할 정보는 현재 부호화 단위가 하위 심도의 부호화 단위들로 분할되는지 여부를 나타낸다. 현재 심도 d의 분할 정보가 0이라면, 현재 부호화 단위가 현재 부호화 단위가 하위 부호화 단위로 더 이상 분할되지 않는 심도가 심도이므로, 심도에 대해서 파티션 모드 정보, 예측 모드, 변환 단위 크기 정보가 정의될 수 있다. 분할 정보에 따라 한 단계 더 분할되어야 하는 경우에는, 분할된 4개의 하위 심도의 부호화 단위마다 독립적으로 부호화가 수행되어야 한다.
예측 모드는, 인트라 모드, 인터 모드 및 스킵 모드 중 하나로 나타낼 수 있다. 인트라 모드 및 인터 모드는 모든 파티션 모드에서 정의될 수 있으며, 스킵 모드는 파티션 모드 2Nx2N에서만 정의될 수 있다.
파티션 모드 정보는, 예측 단위의 높이 또는 너비가 대칭적 비율로 분할된 대칭적 파티션 모드 2Nx2N, 2NxN, Nx2N 및 NxN 과, 비대칭적 비율로 분할된 비대칭적 파티션 모드 2NxnU, 2NxnD, nLx2N, nRx2N를 나타낼 수 있다. 비대칭적 파티션 모드 2NxnU 및 2NxnD는 각각 높이가 1:3 및 3:1로 분할된 형태이며, 비대칭적 파티션 모드 nLx2N 및 nRx2N은 각각 너비가 1:3 및 3:1로 분할된 형태를 나타낸다.
변환 단위 크기는 인트라 모드에서 두 종류의 크기, 인터 모드에서 두 종류의 크기로 설정될 수 있다. 즉, 변환 단위 분할 정보가 0 이라면, 변환 단위의 크기가 현재 부호화 단위의 크기 2Nx2N로 설정된다. 변환 단위 분할 정보가 1이라면, 현재 부호화 단위가 분할된 크기의 변환 단위가 설정될 수 있다. 또한 크기 2Nx2N인 현재 부호화 단위에 대한 파티션 모드가 대칭형 파티션 모드이라면 변환 단위의 크기는 NxN, 비대칭형 파티션 모드이라면 N/2xN/2로 설정될 수 있다.
일 실시예에 따른 트리 구조에 따른 부호화 단위들의 부호화 정보는, 심도의 부호화 단위, 예측 단위 및 최소 단위 단위 중 적어도 하나에 대해 할당될 수 있다. 심도의 부호화 단위는 동일한 부호화 정보를 보유하고 있는 예측 단위 및 최소 단위를 하나 이상 포함할 수 있다.
따라서, 인접한 데이터 단위들끼리 각각 보유하고 있는 부호화 정보들을 확인하면, 동일한 심도의 부호화 단위에 포함되는지 여부가 확인될 수 있다. 또한, 데이터 단위가 보유하고 있는 부호화 정보를 이용하면 해당 심도의 부호화 단위를 확인할 수 있으므로, 최대 부호화 단위 내의 심도들의 분포가 유추될 수 있다.
따라서 이 경우 현재 부호화 단위가 주변 데이터 단위를 참조하여 예측하기 경우, 현재 부호화 단위에 인접하는 심도별 부호화 단위 내의 데이터 단위의 부호화 정보가 직접 참조되어 이용될 수 있다.
또 다른 실시예로, 현재 부호화 단위가 주변 부호화 단위를 참조하여 예측 부호화가 수행되는 경우, 인접하는 심도별 부호화 단위의 부호화 정보를 이용하여, 심도별 부호화 단위 내에서 현재 부호화 단위에 인접하는 데이터가 검색됨으로써 주변 부호화 단위가 참조될 수도 있다.
도 20 은 표 1의 부호화 모드 정보에 따른 부호화 단위, 예측 단위 및 변환 단위의 관계를 도시한다.
최대 부호화 단위(1300)는 심도의 부호화 단위들(1302, 1304, 1306, 1312, 1314, 1316, 1318)을 포함한다. 이 중 하나의 부호화 단위(1318)는 심도의 부호화 단위이므로 분할 정보가 0으로 설정될 수 있다. 크기 2Nx2N의 부호화 단위(1318)의 파티션 모드 정보는, 파티션 모드 2Nx2N(1322), 2NxN(1324), Nx2N(1326), NxN(1328), 2NxnU(1332), 2NxnD(1334), nLx2N(1336) 및 nRx2N(1338) 중 하나로 설정될 수 있다.
변환 단위 분할 정보(TU size flag)는 변환 인덱스의 일종으로서, 변환 인덱스에 대응하는 변환 단위의 크기는 부호화 단위의 예측 단위 타입 또는 파티션 모드에 따라 변경될 수 있다.
예를 들어, 파티션 모드 정보가 대칭형 파티션 모드 2Nx2N(1322), 2NxN(1324), Nx2N(1326) 및 NxN(1328) 중 하나로 설정되어 있는 경우, 변환 단위 분할 정보가 0이면 크기 2Nx2N의 변환 단위(1342)가 설정되고, 변환 단위 분할 정보가 1이면 크기 NxN의 변환 단위(1344)가 설정될 수 있다.
파티션 모드 정보가 비대칭형 파티션 모드 2NxnU(1332), 2NxnD(1334), nLx2N(1336) 및 nRx2N(1338) 중 하나로 설정된 경우, 변환 단위 분할 정보(TU size flag)가 0이면 크기 2Nx2N의 변환 단위(1352)가 설정되고, 변환 단위 분할 정보가 1이면 크기 N/2xN/2의 변환 단위(1354)가 설정될 수 있다.
도 19 를 참조하여 전술된 변환 단위 분할 정보(TU size flag)는 0 또는 1의 값을 갖는 플래그이지만, 일 실시예에 따른 변환 단위 분할 정보가 1비트의 플래그로 한정되는 것은 아니며 설정에 따라 0, 1, 2, 3.. 등으로 증가하며 변환 단위가 계층적으로 분할될 수도 있다. 변환 단위 분할 정보는 변환 인덱스의 한 실시예로써 이용될 수 있다.
이 경우, 일 실시예에 따른 변환 단위 분할 정보를 변환 단위의 최대 크기, 변환 단위의 최소 크기와 함께 이용하면, 실제로 이용된 변환 단위의 크기가 표현될 수 있다. 일 실시예에 따른 비디오 부호화 장치(100)는, 최대 변환 단위 크기 정보, 최소 변환 단위 크기 정보 및 최대 변환 단위 분할 정보를 부호화할 수 있다. 부호화된 최대 변환 단위 크기 정보, 최소 변환 단위 크기 정보 및 최대 변환 단위 분할 정보는 SPS에 삽입될 수 있다. 일 실시예에 따른 비디오 복호화 장치(200)는 최대 변환 단위 크기 정보, 최소 변환 단위 크기 정보 및 최대 변환 단위 분할 정보를 이용하여, 비디오 복호화에 이용할 수 있다.
예를 들어, (a) 현재 부호화 단위가 크기 64x64이고, 최대 변환 단위 크기는 32x32이라면, (a-1) 변환 단위 분할 정보가 0일 때 변환 단위의 크기가 32x32, (a-2) 변환 단위 분할 정보가 1일 때 변환 단위의 크기가 16x16, (a-3) 변환 단위 분할 정보가 2일 때 변환 단위의 크기가 8x8로 설정될 수 있다.
다른 예로, (b) 현재 부호화 단위가 크기 32x32이고, 최소 변환 단위 크기는 32x32이라면, (b-1) 변환 단위 분할 정보가 0일 때 변환 단위의 크기가 32x32로 설정될 수 있으며, 변환 단위의 크기가 32x32보다 작을 수는 없으므로 더 이상의 변환 단위 분할 정보가 설정될 수 없다.
또 다른 예로, (c) 현재 부호화 단위가 크기 64x64이고, 최대 변환 단위 분할 정보가 1이라면, 변환 단위 분할 정보는 0 또는 1일 수 있으며, 다른 변환 단위 분할 정보가 설정될 수 없다.
따라서, 최대 변환 단위 분할 정보를 'MaxTransformSizeIndex', 최소 변환 단위 크기를 'MinTransformSize', 변환 단위 분할 정보가 0인 경우의 변환 단위 크기를 'RootTuSize'라고 정의할 때, 현재 부호화 단위에서 가능한 최소 변환 단위 크기 'CurrMinTuSize'는 아래 관계식 (1) 과 같이 정의될 수 있다.
CurrMinTuSize
= max (MinTransformSize, RootTuSize/(2^MaxTransformSizeIndex)) ... (1)
현재 부호화 단위에서 가능한 최소 변환 단위 크기 'CurrMinTuSize'와 비교하여, 변환 단위 분할 정보가 0인 경우의 변환 단위 크기인 'RootTuSize'는 시스템상 채택 가능한 최대 변환 단위 크기를 나타낼 수 있다. 즉, 관계식 (1)에 따르면, 'RootTuSize/(2^MaxTransformSizeIndex)'는, 변환 단위 분할 정보가 0인 경우의 변환 단위 크기인 'RootTuSize'를 최대 변환 단위 분할 정보에 상응하는 횟수만큼 분할한 변환 단위 크기이며, 'MinTransformSize'는 최소 변환 단위 크기이므로, 이들 중 작은 값이 현재 현재 부호화 단위에서 가능한 최소 변환 단위 크기 'CurrMinTuSize'일 수 있다.
일 실시예에 따른 최대 변환 단위 크기 RootTuSize는 예측 모드에 따라 달라질 수도 있다.
예를 들어, 현재 예측 모드가 인터 모드라면 RootTuSize는 아래 관계식 (2)에 따라 결정될 수 있다. 관계식 (2)에서 'MaxTransformSize'는 최대 변환 단위 크기, 'PUSize'는 현재 예측 단위 크기를 나타낸다.
RootTuSize = min(MaxTransformSize, PUSize) ......... (2)
즉 현재 예측 모드가 인터 모드라면, 변환 단위 분할 정보가 0인 경우의 변환 단위 크기인 'RootTuSize'는 최대 변환 단위 크기 및 현재 예측 단위 크기 중 작은 값으로 설정될 수 있다.
현재 파티션 단위의 예측 모드가 예측 모드가 인트라 모드라면 모드라면 'RootTuSize'는 아래 관계식 (3)에 따라 결정될 수 있다. 'PartitionSize'는 현재 파티션 단위의 크기를 나타낸다.
RootTuSize = min(MaxTransformSize, PartitionSize) ...........(3)
즉 현재 예측 모드가 인트라 모드라면, 변환 단위 분할 정보가 0인 경우의 변환 단위 크기인 'RootTuSize'는 최대 변환 단위 크기 및 현재 파티션 단위 크기 중 작은 값으로 설정될 수 있다.
다만, 파티션 단위의 예측 모드에 따라 변동하는 일 실시예에 따른 현재 최대 변환 단위 크기 'RootTuSize'는 일 실시예일 뿐이며, 현재 최대 변환 단위 크기를 결정하는 요인이 이에 한정되는 것은 아님을 유의하여야 한다.
도 8 내지 20를 참조하여 전술된 트리 구조의 부호화 단위들에 기초한 비디오 부호화 기법에 따라, 트리 구조의 부호화 단위들마다 공간영역의 영상 데이터가 부호화되며, 트리 구조의 부호화 단위들에 기초한 비디오 복호화 기법에 따라 최대 부호화 단위마다 복호화가 수행되면서 공간 영역의 영상 데이터가 복원되어, 픽처 및 픽처 시퀀스인 비디오가 복원될 수 있다. 복원된 비디오는 재생 장치에 의해 재생되거나, 저장 매체에 저장되거나, 네트워크를 통해 전송될 수 있다.
한편, 상술한 본 발명의 실시예들은 컴퓨터에서 실행될 수 있는 프로그램으로 작성가능하고, 컴퓨터로 읽을 수 있는 기록매체를 이용하여 상기 프로그램을 동작시키는 범용 디지털 컴퓨터에서 구현될 수 있다. 상기 컴퓨터로 읽을 수 있는 기록매체는 마그네틱 저장매체(예를 들면, 롬, 플로피 디스크, 하드디스크 등), 광학적 판독 매체(예를 들면, 시디롬, 디브이디 등)와 같은 저장매체를 포함한다.
설명의 편의를 위해 앞서 전술된 비디오 부호화 방법 및/또는 비디오 부호화 방법은, '본 발명의 비디오 부호화 방법'으로 통칭한다. 또한, 앞서 전술된 비디오 복호화 방법 및/또는 비디오 복호화 방법은 '본 발명의 비디오 복호화 방법'으로 지칭한다
또한, 앞서 전술된 비디오 부호화 장치(40), 비디오 부호화 장치(100) 또는 영상 부호화부(400)로 구성된 비디오 부호화 장치는, '본 발명의 비디오 부호화 장치'로 통칭한다. 또한, 앞서 전술된 비디오 복호화 장치(10), 비디오 복호화 장치(200) 또는 영상 복호화부(500)로 구성된 비디오 복호화 장치는, '본 발명의 비디오 복호화 장치'로 통칭한다.
일 실시예에 따른 프로그램이 저장되는 컴퓨터로 판독 가능한 저장매체가 디스크(26000)인 실시예를 이하 상술한다.
도 21은 다양한 실시예에 따른 프로그램이 저장된 디스크(26000)의 물리적 구조를 예시한다. 저장매체로서 전술된 디스크(26000)는, 하드드라이브, 시디롬(CD-ROM) 디스크, 블루레이(Blu-ray) 디스크, DVD 디스크일 수 있다. 디스크(26000)는 다수의 동심원의 트랙(tr)들로 구성되고, 트랙들은 둘레 방향에 따라 소정 개수의 섹터(Se)들로 분할된다. 상기 전술된 일 실시예에 따른 프로그램을 저장하는 디스크(26000) 중 특정 영역에, 전술된 양자화 파라미터 결정 방법, 비디오 부호화 방법 및 비디오 복호화 방법을 구현하기 위한 프로그램이 할당되어 저장될 수 있다.
전술된 비디오 부호화 방법 및 비디오 복호화 방법을 구현하기 위한 프로그램을 저장하는 저장매체를 이용하여 달성된 컴퓨터 시스템이 도 22를 참조하여 후술된다.
도 22는 디스크(26000)를 이용하여 프로그램을 기록하고 판독하기 위한 디스크드라이브(26800)를 도시한다. 컴퓨터 시스템(26700)은 디스크드라이브(26800)를 이용하여 본 발명의 비디오 부호화 방법 및 비디오 복호화 방법 중 적어도 하나를 구현하기 위한 프로그램을 디스크(26000)에 저장할 수 있다. 디스크(26000)에 저장된 프로그램을 컴퓨터 시스템(26700)상에서 실행하기 위해, 디스크 드라이브(26800)에 의해 디스크(26000)로부터 프로그램이 판독되고, 프로그램이 컴퓨터 시스템(26700)에게로 전송될 수 있다.
도 21 및 22에서 예시된 디스크(26000) 뿐만 아니라, 메모리 카드, 롬 카세트, SSD(Solid State Drive)에도 본 발명의 비디오 부호화 방법 및 비디오 복호화 방법 중 적어도 하나를 구현하기 위한 프로그램이 저장될 수 있다.
전술된 실시예에 따른 비디오 부호화 방법 및 비디오 복호화 방법이 적용된 시스템이 후술된다.
도 23은 컨텐트 유통 서비스(content distribution service)를 제공하기 위한 컨텐트 공급 시스템(content supply system)(11000)의 전체적 구조를 도시한다. 통신시스템의 서비스 영역은 소정 크기의 셀들로 분할되고, 각 셀에 베이스 스테이션이 되는 무선 기지국(11700, 11800, 11900, 12000)이 설치된다.
컨텐트 공급 시스템(11000)은 다수의 독립 디바이스들을 포함한다. 예를 들어, 컴퓨터(12100), PDA(Personal Digital Assistant)(12200), 카메라(12300) 및 휴대폰(12500)과 같은 독립디바이스들이, 인터넷 서비스 공급자(11200), 통신망(11400), 및 무선 기지국(11700, 11800, 11900, 12000)을 거쳐 인터넷(11100)에 연결된다.
그러나, 컨텐트 공급 시스템(11000)은 도 24에 도시된 구조에만 한정되는 것이 아니며, 디바이스들이 선택적으로 연결될 수 있다. 독립 디바이스들은 무선 기지국(11700, 11800, 11900, 12000)을 거치지 않고 통신망(11400)에 직접 연결될 수도 있다.
비디오 카메라(12300)는 디지털 비디오 카메라와 같이 비디오 영상을 촬영할 수 있는 촬상 디바이스이다. 휴대폰(12500)은 PDC(Personal Digital Communications), CDMA(code division multiple access), W-CDMA(wideband code division multiple access), GSM(Global System for Mobile Communications), 및 PHS(Personal Handyphone System)방식과 같은 다양한 프로토콜들 중 적어도 하나의 통신방식을 채택할 수 있다.
비디오 카메라(12300)는 무선기지국(11900) 및 통신망(11400)을 거쳐 스트리밍 서버(11300)에 연결될 수 있다. 스트리밍 서버(11300)는 사용자가 비디오 카메라(12300)를 사용하여 전송한 컨텐트를 실시간 방송으로 스트리밍 전송할 수 있다. 비디오 카메라(12300)로부터 수신된 컨텐트는 비디오 카메라(12300) 또는 스트리밍 서버(11300)에 의해 부호화될 수 있다. 비디오 카메라(12300)로 촬영된 비디오 데이터는 컴퓨터(12100)을 거쳐 스트리밍 서버(11300)로 전송될 수도 있다.
카메라(12600)로 촬영된 비디오 데이터도 컴퓨터(12100)를 거쳐 스트리밍 서버(11300)로 전송될 수도 있다. 카메라(12600)는 디지털 카메라와 같이 정지영상과 비디오 영상을 모두 촬영할 수 있는 촬상 장치이다. 카메라(12600)로부터 수신된 비디오 데이터는 카메라(12600) 또는 컴퓨터(12100)에 의해 부호화될 수 있다. 비디오 부호화 및 복호화를 위한 소프트웨어는 컴퓨터(12100)가 억세스할 수 있는 시디롬 디스크, 플로피디스크, 하드디스크 드라이브, SSD , 메모리 카드와 같은 컴퓨터로 판독 가능한 기록 매체에 저장될 수 있다.
또한 휴대폰(12500)에 탑재된 카메라에 의해 비디오가 촬영된 경우, 비디오 데이터가 휴대폰(12500)으로부터 수신될 수 있다.
비디오 데이터는, 비디오 카메라(12300), 휴대폰(12500) 또는 카메라(12600)에 탑재된 LSI(Large scale integrated circuit) 시스템에 의해 부호화될 수 있다.
일 실시예에 따른 컨텐트 공급 시스템(11000)에서, 예를 들어 콘서트의 현장녹화 컨텐트와 같이, 사용자가 비디오 카메라(12300), 카메라(12600), 휴대폰(12500) 또는 다른 촬상 디바이스를 이용하여 녹화된 컨텐트가 부호화되고, 스트리밍 서버(11300)로 전송된다. 스트리밍 서버(11300)는 컨텐트 데이터를 요청한 다른 클라이언트들에게 컨텐트 데이터를 스트리밍 전송할 수 있다.
클라이언트들은 부호화된 컨텐트 데이터를 복호화할 수 있는 디바이스이며, 예를 들어 컴퓨터(12100), PDA(12200), 비디오 카메라(12300) 또는 휴대폰(12500)일 수 있다. 따라서, 컨텐트 공급 시스템(11000)은, 클라이언트들이 부호화된 컨텐트 데이터를 수신하여 재생할 수 있도록 한다. 또한 컨텐트 공급 시스템(11000)은, 클라이언트들이 부호화된 컨텐트 데이터를 수신하여 실시간으로 복호화하고 재생할 수 있도록 하여, 개인방송(personal broadcasting)이 가능하게 한다.
컨텐트 공급 시스템(11000)에 포함된 독립 디바이스들의 부호화 동작 및 복호화 동작에 본 발명의 비디오 부호화 장치 및 비디오 복호화 장치가 적용될 수 있다.
도 24 및 25을 참조하여 컨텐트 공급 시스템(11000) 중 휴대폰(12500)의 일 실시예가 상세히 후술된다.
도 24은, 다양한 실시예에 따른 본 발명의 비디오 부호화 방법 및 비디오 복호화 방법이 적용되는 휴대폰(12500)의 외부 구조를 도시한다. 휴대폰(12500)은 기능이 제한되어 있지 않고 응용 프로그램을 통해 상당 부분의 기능을 변경하거나 확장할 수 있는 스마트폰일 수 있다.
휴대폰(12500)은, 무선기지국(12000)과 RF신호를 교환하기 위한 내장 안테나(12510)을 포함하고, 카메라(12530)에 의해 촬영된 영상들 또는 안테나(12510)에 의해 수신되어 복호화된 영상들을 디스플레이하기 위한 LCD(Liquid Crystal Display), OLED(Organic Light Emitting Diodes)화면 같은 디스플레이화면(12520)를 포함한다. 스마트폰(12510)은 제어버튼, 터치패널을 포함하는 동작 패널(12540)를 포함한다. 디스플레이화면(12520)이 터치스크린인 경우, 동작 패널(12540)은 디스플레이화면(12520)의 터치감지패널을 더 포함한다. 스마트폰(12510)은 음성, 음향을 출력하기 위한 스피커(12580) 또는 다른 형태의 음향출력부와, 음성, 음향이 입력되는 마이크로폰(12550) 또는 다른 형태의 음향입력부를 포함한다. 스마트폰(12510)은 비디오 및 정지영상을 촬영하기 위한 CCD 카메라와 같은 카메라(12530)를 더 포함한다. 또한, 스마트폰(12510)은 카메라(12530)에 의해 촬영되거나 이메일(E-mail)로 수신되거나 다른 형태로 획득된 비디오나 정지영상들과 같이, 부호화되거나 복호화된 데이터를 저장하기 위한 저장매체(12570); 그리고 저장매체(12570)를 휴대폰(12500)에 장착하기 위한 슬롯(12560)을 포함할 수 있다. 저장매체(12570)는 SD카드 또는 플라스틱 케이스에 내장된 EEPROM(electrically erasable and programmable read only memory)와 같은 다른 형태의 플래쉬 메모리일 수 있다.
도 25은 휴대폰(12500)의 내부 구조를 도시한다. 디스플레이화면(12520) 및 동작 패널(12540)로 구성된 휴대폰(12500)의 각 파트를 조직적으로 제어하기 위해, 전력공급회로(12700), 동작입력제어부(12640), 영상부호화부(12720), 카메라 인터페이스(12630), LCD제어부(12620), 영상복호화부(12690), 멀티플렉서/디멀티플렉서(multiplexer/demultiplexer)(12680), 기록/판독부(12670), 변조/복조(modulation/demodulation)부(12660) 및 음향처리부(12650)가, 동기화 버스(12730)를 통해 중앙제어부(12710)에 연결된다.
사용자가 전원 버튼을 동작하여 '전원꺼짐' 상태에서 '전원켜짐' 상태로 설정하면, 전력공급회로(12700)는 배터리팩으로부터 휴대폰(12500)의 각 파트에 전력을 공급함으로써, 휴대폰(12500)가 동작 모드로 셋팅될 수 있다.
중앙제어부(12710)는 CPU, ROM(Read Only Memory) 및 RAM(Random Access Memory)을 포함한다.
휴대폰(12500)이 외부로 통신데이터를 송신하는 과정에서는, 중앙제어부(12710)의 제어에 따라 휴대폰(12500)에서 디지털 신호가 생성된다, 예를 들어, 음향처리부(12650)에서는 디지털 음향신호가 생성되고, 영상 부호화부(12720)에서는 디지털 영상신호가 생성되며, 동작 패널(12540) 및 동작 입력제어부(12640)를 통해 메시지의 텍스트 데이터가 생성될 수 있다. 중앙제어부(12710)의 제어에 따라 디지털 신호가 변조/복조부(12660)에게 전달되면, 변조/복조부(12660)는 디지털 신호의 주파수대역을 변조하고, 통신회로(12610)는 대역변조된 디지털 음향신호에 대해 D/A변환(Digital-Analog conversion) 및 주파수변환(frequency conversion) 처리를 수행한다. 통신회로(12610)로부터 출력된 송신신호는 안테나(12510)를 통해 음성통신기지국 또는 무선기지국(12000)으로 송출될 수 있다.
예를 들어, 휴대폰(12500)이 통화 모드일 때 마이크로폰(12550)에 의해 획득된 음향신호는, 중앙제어부(12710)의 제어에 따라 음향처리부(12650)에서 디지털 음향신호로 변환된다. 생성된 디지털 음향신호는 변조/복조부(12660) 및 통신회로(12610)를 거쳐 송신신호로 변환되고, 안테나(12510)를 통해 송출될 수 있다.
데이터통신 모드에서 이메일과 같은 텍스트 메시지가 전송되는 경우, 동작 패널(12540)을 이용하여 메시지의 텍스트 데이터가 입력되고, 텍스트 데이터가 동작 입력제어부(12640)를 통해 중앙제어부(12610)로 전송된다. 중앙제어부(12610)의 제어에 따라, 텍스트 데이터는 변조/복조부(12660) 및 통신회로(12610)를 통해 송신신호로 변환되고, 안테나(12510)를 통해 무선기지국(12000)에게로 송출된다.
데이터통신 모드에서 영상 데이터를 전송하기 위해, 카메라(12530)에 의해 촬영된 영상 데이터가 카메라 인터페이스(12630)를 통해 영상부호화부(12720)로 제공된다. 카메라(12530)에 의해 촬영된 영상 데이터는 카메라 인터페이스(12630) 및 LCD제어부(12620)를 통해 디스플레이화면(12520)에 곧바로 디스플레이될 수 있다.
영상부호화부(12720)의 구조는, 전술된 본 발명의 비디오 부호화 장치의 구조와 상응할 수 있다. 영상부호화부(12720)는, 카메라(12530)로부터 제공된 영상 데이터를, 전술된 본 발명의 비디오 부호화 방식에 따라 부호화하여, 압축 부호화된 영상 데이터로 변환하고, 부호화된 영상 데이터를 다중화/역다중화부(12680)로 출력할 수 있다. 카메라(12530)의 녹화 중에 휴대폰(12500)의 마이크로폰(12550)에 의해 획득된 음향신호도 음향처리부(12650)를 거쳐 디지털 음향데이터로 변환되고, 디지털 음향데이터는 다중화/역다중화부(12680)로 전달될 수 있다.
다중화/역다중화부(12680)는 음향처리부(12650)로부터 제공된 음향데이터와 함께 영상부호화부(12720)로부터 제공된 부호화된 영상 데이터를 다중화한다. 다중화된 데이터는 변조/복조부(12660) 및 통신회로(12610)를 통해 송신신호로 변환되고, 안테나(12510)를 통해 송출될 수 있다.
휴대폰(12500)이 외부로부터 통신데이터를 수신하는 과정에서는, 안테나(12510)를 통해 수신된 신호를 주파수복원(frequency recovery) 및 A/D변환(Analog-Digital conversion) 처리를 통해 디지털 신호를 변환한다. 변조/복조부(12660)는 디지털 신호의 주파수대역을 복조한다. 대역복조된 디지털 신호는 종류에 따라 비디오 복호화부(12690), 음향처리부(12650) 또는 LCD제어부(12620)로 전달된다.
휴대폰(12500)은 통화 모드일 때, 안테나(12510)를 통해 수신된 신호를 증폭하고 주파수변환 및 A/D변환(Analog-Digital conversion) 처리를 통해 디지털 음향 신호를 생성한다. 수신된 디지털 음향 신호는, 중앙제어부(12710)의 제어에 따라 변조/복조부(12660) 및 음향처리부(12650)를 거쳐 아날로그 음향 신호로 변환되고, 아날로그 음향 신호가 스피커(12580)를 통해 출력된다.
데이터통신 모드에서 인터넷의 웹사이트로부터 억세스된 비디오 파일의 데이터가 수신되는 경우, 안테나(12510)를 통해 무선기지국(12000)으로부터 수신된 신호는 변조/복조부(12660)의 처리결과 다중화된 데이터를 출력하고, 다중화된 데이터는 다중화/역다중화부(12680)로 전달된다.
안테나(12510)를 통해 수신한 다중화된 데이터를 복호화하기 위해, 다중화/역다중화부(12680)는 다중화된 데이터를 역다중화하여 부호화된 비디오 데이터스트림과 부호화된 오디오 데이터스트림을 분리한다. 동기화 버스(12730)에 의해, 부호화된 비디오 데이터스트림은 비디오 복호화부(12690)로 제공되고, 부호화된 오디오 데이터스트림은 음향처리부(12650)로 제공된다.
영상복호화부(12690)의 구조는, 전술된 본 발명의 비디오 복호화 장치의 구조와 상응할 수 있다. 영상복호화부(12690)는 전술된 본 발명의 비디오 복호화 방법을 이용하여, 부호화된 비디오 데이터를 복호화하여 복원된 비디오 데이터를 생성하고, 복원된 비디오 데이터를 LCD제어부(1262)를 거쳐 디스플레이화면(1252)에게 복원된 비디오 데이터를 제공할 수 있다.
이에 따라 인터넷의 웹사이트로부터 억세스된 비디오 파일의 비디오 데이터가 디스플레이화면(1252)에서 디스플레이될 수 있다. 이와 동시에 음향처리부(1265)도 오디오 데이터를 아날로그 음향 신호로 변환하고, 아날로그 음향 신호를 스피커(1258)로 제공할 수 있다. 이에 따라, 인터넷의 웹사이트로부터 억세스된 비디오 파일에 포함된 오디오 데이터도 스피커(1258)에서 재생될 수 있다.
휴대폰(1250) 또는 다른 형태의 통신단말기는 본 발명의 비디오 부호화 장치 및 비디오 복호화 장치를 모두 포함하는 송수신 단말기이거나, 전술된 본 발명의 비디오 부호화 장치만을 포함하는 송신단말기이거나, 본 발명의 비디오 복호화 장치만을 포함하는 수신단말기일 수 있다.
본 발명의 통신시스템은 도 24를 참조하여 전술한 구조에 한정되지 않는다. 예를 들어, 도 26은 다양한 실시예에 따른 통신시스템이 적용된 디지털 방송 시스템을 도시한다. 도 26의 일 실시예에 따른 디지털 방송 시스템은, 본 발명의 비디오 부호화 장치 및 비디오 복호화 장치를 이용하여, 위성 또는 지상파 네트워크를 통해 전송되는 디지털 방송을 수신할 수 있다.
구체적으로 보면, 방송국(12890)은 전파를 통해 비디오 데이터스트림을 통신위성 또는 방송위성(12900)으로 전송한다. 방송위성(12900)은 방송신호를 전송하고, 방송신호는 가정에 있는 안테나(12860)에 의해 위성방송수신기로 수신된다. 각 가정에서, 부호화된 비디오스트림은 TV수신기(12810), 셋탑박스(set-top box)(12870) 또는 다른 디바이스에 의해 복호화되어 재생될 수 있다.
재생장치(12830)에서 본 발명의 비디오 복호화 장치가 구현됨으로써, 재생장치(12830)가 디스크 및 메모리 카드와 같은 저장매체(12820)에 기록된 부호화된 비디오스트림을 판독하여 복호화할 수 있다. 이에 따라 복원된 비디오 신호는 예를 들어 모니터(12840)에서 재생될 수 있다.
위성/지상파 방송을 위한 안테나(12860) 또는 케이블TV 수신을 위한 케이블 안테나(12850)에 연결된 셋탑박스(12870)에도, 본 발명의 비디오 복호화 장치가 탑재될 수 있다. 셋탑박스(12870)의 출력데이터도 TV모니터(12880)에서 재생될 수 있다.
다른 예로, 셋탑박스(12870) 대신에 TV수신기(12810) 자체에 본 발명의 비디오 복호화 장치가 탑재될 수도 있다.
적절한 안테나(12910)를 구비한 자동차(12920)가 위성(12800) 또는 무선기지국(11700)으로부터 송출되는 신호를 수신할 수도 있다. 자동차(12920)에 탑재된 자동차 네비게이션 시스템(12930)의 디스플레이 화면에 복호화된 비디오가 재생될 수 있다.
비디오 신호는, 본 발명의 비디오 부호화 장치에 의해 부호화되어 저장매체에 기록되어 저장될 수 있다. 구체적으로 보면, DVD 레코더에 의해 영상 신호가 DVD디스크(12960)에 저장되거나, 하드디스크 레코더(12950)에 의해 하드디스크에 영상 신호가 저장될 수 있다. 다른 예로, 비디오 신호는 SD카드(12970)에 저장될 수도 있다. 하드디스크 레코더(12950)가 일 실시예에 따른 본 발명의 비디오 복호화 장치를 구비하면, DVD디스크(12960), SD카드(12970) 또는 다른 형태의 저장매체에 기록된 비디오 신호가 모니터(12880)에서 재생될 수 있다.
자동차 네비게이션 시스템(12930)은 도 26의 카메라(12530), 카메라 인터페이스(12630) 및 영상 부호화부(12720)를 포함하지 않을 수 있다. 예를 들어, 컴퓨터(12100) 및 TV수신기(12810)도, 도 26의 카메라(12530), 카메라 인터페이스(12630) 및 영상 부호화부(12720)를 포함하지 않을 수 있다.
도 27은 다양한 실시예에 따른 비디오 부호화 장치 및 비디오 복호화 장치를 이용하는 클라우드 컴퓨팅 시스템의 네트워크 구조를 도시한다.
본 발명의 클라우드 컴퓨팅 시스템은 클라우드 컴퓨팅 서버(14100), 사용자 DB(14100), 컴퓨팅 자원(14200) 및 사용자 단말기를 포함하여 이루어질 수 있다.
클라우드 컴퓨팅 시스템은, 사용자 단말기의 요청에 따라 인터넷과 같은 정보 통신망을 통해 컴퓨팅 자원의 온 디맨드 아웃소싱 서비스를 제공한다. 클라우드 컴퓨팅 환경에서, 서비스 제공자는 서로 다른 물리적인 위치에 존재하는 데이터 센터의 컴퓨팅 자원를 가상화 기술로 통합하여 사용자들에게 필요로 하는 서비스를 제공한다. 서비스 사용자는 어플리케이션(Application), 스토리지(Storage), 운영체제(OS), 보안(Security) 등의 컴퓨팅 자원을 각 사용자 소유의 단말에 설치하여 사용하는 것이 아니라, 가상화 기술을 통해 생성된 가상 공간상의 서비스를 원하는 시점에 원하는 만큼 골라서 사용할 수 있다.
특정 서비스 사용자의 사용자 단말기는 인터넷 및 이동통신망을 포함하는 정보통신망을 통해 클라우드 컴퓨팅 서버(14100)에 접속한다. 사용자 단말기들은 클라우드 컴퓨팅 서버(14100)로부터 클라우드 컴퓨팅 서비스 특히, 동영상 재생 서비스를 제공받을 수 있다. 사용자 단말기는 데스트탑 PC(14300), 스마트TV(14400), 스마트폰(14500), 노트북(14600), PMP(Portable Multimedia Player)(14700), 태블릿 PC(14800) 등, 인터넷 접속이 가능한 모든 전자 기기가 될 수 있다.
클라우드 컴퓨팅 서버(14100)는 클라우드 망에 분산되어 있는 다수의 컴퓨팅 자원(14200)을 통합하여 사용자 단말기에게 제공할 수 있다. 다수의 컴퓨팅 자원(14200)은 여러가지 데이터 서비스를 포함하며, 사용자 단말기로부터 업로드된 데이터를 포함할 수 있다. 이런 식으로 클라우드 컴퓨팅 서버(14100)는 여러 곳에 분산되어 있는 동영상 데이터베이스를 가상화 기술로 통합하여 사용자 단말기가 요구하는 서비스를 제공한다.
사용자 DB(14100)에는 클라우드 컴퓨팅 서비스에 가입되어 있는 사용자 정보가 저장된다. 여기서, 사용자 정보는 로그인 정보와, 주소, 이름 등 개인 신용 정보를 포함할 수 있다. 또한, 사용자 정보는 동영상의 인덱스(Index)를 포함할 수 있다. 여기서, 인덱스는 재생을 완료한 동영상 목록과, 재생 중인 동영상 목록과, 재생 중인 동영상의 정지 시점 등을 포함할 수 있다.
사용자 DB(14100)에 저장된 동영상에 대한 정보는, 사용자 디바이스들 간에 공유될 수 있다. 따라서 예를 들어 노트북(14600)으로부터 재생 요청되어 노트북(14600)에게 소정 동영상 서비스를 제공한 경우, 사용자 DB(14100)에 소정 동영상 서비스의 재생 히스토리가 저장된다. 스마트폰(14500)으로부터 동일한 동영상 서비스의 재생 요청이 수신되는 경우, 클라우드 컴퓨팅 서버(14100)는 사용자 DB(14100)을 참조하여 소정 동영상 서비스를 찾아서 재생한다. 스마트폰(14500)이 클라우드 컴퓨팅 서버(14100)를 통해 동영상 데이터스트림을 수신하는 경우, 동영상 데이터스트림을 복호화하여 비디오를 재생하는 동작은, 앞서 도 24을 참조하여 전술한 휴대폰(12500)의 동작과 유사하다.
클라우드 컴퓨팅 서버(14100)는 사용자 DB(14100)에 저장된 소정 동영상 서비스의 재생 히스토리를 참조할 수도 있다. 예를 들어, 클라우드 컴퓨팅 서버(14100)는 사용자 단말기로부터 사용자 DB(14100)에 저장된 동영상에 대한 재생 요청을 수신한다. 동영상이 그 전에 재생 중이었던 것이면, 클라우드 컴퓨팅 서버(14100)는 사용자 단말기로의 선택에 따라 처음부터 재생하거나, 이전 정지 시점부터 재생하느냐에 따라 스트리밍 방법이 달라진다. 예를 들어, 사용자 단말기가 처음부터 재생하도록 요청한 경우에는 클라우드 컴퓨팅 서버(14100)가 사용자 단말기에게 해당 동영상을 첫 프레임부터 스트리밍 전송한다. 반면, 단말기가 이전 정지시점부터 이어서 재생하도록 요청한 경우에는, 클라우드 컴퓨팅 서버(14100)가 사용자 단말기에게 해당 동영상을 정지시점의 프레임부터 스트리밍 전송한다.
이 때 사용자 단말기는, 전술한 본 발명의 비디오 복호화 장치를 포함할 수 있다. 다른 예로, 사용자 단말기는, 전술한 본 발명의 비디오 부호화 장치를 포함할 수 있다. 또한, 사용자 단말기는, 전술한 본 발명의 비디오 부호화 장치 및 비디오 복호화 장치를 모두 포함할 수도 있다.
전술된 비디오 부호화 방법 및 비디오 복호화 방법, 비디오 부호화 장치 및 비디오 복호화 장치가 활용되는 다양한 실시예들이 도 21 내지 도 27에서 전술되었다. 하지만, 전술된 비디오 부호화 방법 및 비디오 복호화 방법이 저장매체에 저장되거나 비디오 부호화 장치 및 비디오 복호화 장치가 디바이스에서 구현되는 다양한 실시예들은, 도 21 내지 도 27의 실시예들에 한정되지 않는다.
이제까지 개시된 다양한 실시예들이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 명세서에서 개시된 실시예들의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 실시예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 명세서의 개시 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 명세서의 개시범위에 포함된 것으로 해석되어야 할 것이다.
Claims (15)
- 비디오 복호화 방법에 있어서,참조 레이어 및 현재 레이어에 속한 영상들 간의 인터 레이어 예측을 위한 부화소 단위의 구성 성분을 갖는 디스페리티 벡터(disparity vector)를 획득하는 단계;상기 현재 레이어의 현재 픽셀로부터 상기 디스페리티 벡터가 가리키는 위치에 대응하는 상기 참조 레이어의 정수 픽셀(integer pixel)의 위치를 결정하는 단계; 및상기 결정된 정수 픽셀의 위치에 대응되는 상기 참조 레이어의 후보 영역의 예측 정보를 이용하여 상기 현재 레이어의 영상의 복호화를 수행하는 단계를 포함하는 비디오 복호화 방법.
- 제 1 항에 있어서,상기 정수 픽셀의 위치를 결정하는 단계는상기 획득한 디스페리티 벡터에 대응하는 정수 디스페리티 벡터를 결정하는 단계; 및상기 현재 레이어의 현재 픽셀로부터 상기 획득한 정수 디스페리티 벡터가 가리키는 상기 참조 레이어의 정수 픽셀의 위치를 결정하는 단계를 포함하는 비디오 복호화 방법.
- 제 2 항에 있어서,상기 정수 디스페리티 벡터를 결정하는 단계는상기 획득한 디스페리티 벡터의 x, y 구성성분의 부화소 성분에 대한 반올림 동작을 통해서 상기 정수 디스페리티 벡터를 결정하는 비디오 복호화 방법.
- 제 2 항에 있어서,상기 정수 디스페리티 벡터를 결정하는 단계는상기 획득한 디스페리티 벡터로부터 디스페리티 벡터값을 결정하는 단계;상기 획득한 디스페리티 벡터값에 소정의 값을 더하는 단계; 및상기 소정의 값이 더해진 값을 비트 시프트 동작으로 소정의 비트만큼 우측으로 시프트하는 단계를 포함하는 비디오 복호화 방법.
- 제 1 항에 있어서,상기 복호화를 수행하는 단계는상기 참조 레이어의 후보 영역의 움직임 정보를 이용하여 상기 현재 레이어의 영상의 움직임 정보를 예측하는 단계를 포함하는 비디오 복호화 방법.
- 제 1 항에 있어서,상기 복호화를 수행하는 단계는향상 레이어인 참조 레이어의 후보 영역의 뎁스(depth)와 관련된 정보를 획득하는 단계; 및상기 획득한 뎁스와 관련된 정보를 이용하여 상기 현재 레이어의 영상의 복호화를 수행하는 단계를 포함하는 비디오 복호화 방법.
- 제 1 항에 있어서,상기 복호화를 수행하는 단계는상기 참조 레이어의 후보 영역의 잔여 영상 데이터를 획득하는 단계; 및상기 획득한 잔여 영상 데이터를 이용하여 상기 현재 레이어의 영상의 잔여 영상 데이터를 예측하는 단계를 포함하는 비디오 복호화 방법.
- 제 1 항에 있어서,상기 현재 픽셀은 현재 블록 내의 소정의 위치의 픽셀인 비디오 복호화 방법.
- 제 8 항에 있어서,상기 소정의 위치의 픽셀은 현재 블록의 좌상단, 좌하단, 우상단, 우하단 및 정중앙 중 미리 결정된 위치의 픽셀인 비디오 복호화 방법.
- 제 1 항에 있어서,상기 향상 레이어인 참조 레이어의 후보 영역은 뎁스 영상 (depth map image) 내의 부호화 단위 또는 예측 단위인 비디오 복호화 방법.
- 제 1 항에 있어서,상기 참조 레이어의 후보 영역은 상기 현재 픽셀이 포함된 영상과 다른 시점의 영상 내의 부호화 단위 또는 예측 단위인 비디오 복호화 방법.
- 비디오 부호화 방법에 있어서,참조 레이어 및 현재 레이어에 속한 영상들 간의 인터 레이어 예측을 위한 부화소 단위의 구성 성분을 갖는 디스페리티 벡터를 결정하는 단계;상기 현재 레이어의 현재 픽셀의 위치로부터 상기 결정된 디스페리티 벡터가 가리키는 위치에 대응하는 상기 참조 레이어의 정수 픽셀(integer pixel)의 위치를 결정하는 단계; 및상기 결정된 정수 픽셀의 위치에 대응되는 상기 참조 레이어의 후보 영역의 예측 정보를 이용하여 상기 현재 레이어의 영상의 부호화를 수행하는 단계를 포함하는 비디오 부호화 방법.
- 비디오 복호화 장치에 있어서,참조 레이어 및 현재 레이어에 속한 영상들 간의 인터 레이어 예측을 위한 부화소 단위의 구성 성분을 갖는 디스페리티 벡터를 획득하는 디스페리티 벡터 획득부;상기 현재 레이어의 현재 픽셀의 위치로부터 상기 획득한 디스페리티 벡터가 가리키는 위치에 대응하는 상기 참조 레이어의 정수 픽셀의 위치를 결정하는 정수 픽셀 위치 결정부; 및상기 결정된 정수 픽셀의 위치에 대응되는 상기 참조 레이어의 후보 영역의 예측 정보를 이용하여 상기 현재 레이어의 영상의 복호화를 수행하는 복호화부를 포함하는 비디오 복호화 장치.
- 비디오 부호화 장치에 있어서,참조 레이어 및 현재 레이어에 속한 영상들 간의 인터 레이어 예측을 위한 부화소 단위의 구성 성분을 갖는 디스페리티 벡터를 결정하는 디스페리티 벡터 결정부;상기 현재 레이어의 현재 픽셀의 위치로부터 상기 결정된 디스페리티 벡터가 가리키는 위치에 대응하는 상기 참조 레이어의 정수 픽셀의 위치를 결정하는 정수 픽셀 위치 결정부; 및상기 결정된 정수 픽셀의 위치에 대응되는 상기 참조 레이어의 후보 영역의 예측 정보를 이용하여 상기 현재 레이어의 영상의 부호화를 수행하는 부호화부를 포함하는 비디오 부호화 장치.
- 제 1 항에 따른 방법을 구현하기 위한 프로그램이 기록된 컴퓨터로 판독 가능한 기록 매체.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP14778165.2A EP2983367A4 (en) | 2013-04-05 | 2014-04-07 | METHOD AND DEVICE FOR CODING AND DECODING VIDEO CONTENT IN RELATION TO THE POSITION OF ALL-NUMBER PIXELS |
US14/782,549 US10469866B2 (en) | 2013-04-05 | 2014-04-07 | Method and apparatus for encoding and decoding video with respect to position of integer pixel |
CN201480032642.8A CN105308970B (zh) | 2013-04-05 | 2014-04-07 | 针对整数像素的位置对视频进行编码和解码的方法和设备 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201361808808P | 2013-04-05 | 2013-04-05 | |
US61/808,808 | 2013-04-05 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014163466A1 true WO2014163466A1 (ko) | 2014-10-09 |
Family
ID=51658680
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2014/003011 WO2014163466A1 (ko) | 2013-04-05 | 2014-04-07 | 정수 픽셀의 위치와 관련하여 비디오의 부호화 및 복호화를 수행하는 방법과 그 장치 |
Country Status (5)
Country | Link |
---|---|
US (1) | US10469866B2 (ko) |
EP (1) | EP2983367A4 (ko) |
KR (1) | KR102186461B1 (ko) |
CN (1) | CN105308970B (ko) |
WO (1) | WO2014163466A1 (ko) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2983367A4 (en) * | 2013-04-05 | 2016-11-16 | Samsung Electronics Co Ltd | METHOD AND DEVICE FOR CODING AND DECODING VIDEO CONTENT IN RELATION TO THE POSITION OF ALL-NUMBER PIXELS |
EP3579553B1 (en) * | 2018-06-05 | 2020-05-20 | Axis AB | A method, controller, and system for encoding a sequence of video frames |
US11375182B2 (en) * | 2019-12-17 | 2022-06-28 | Hfi Innovation Inc. | Method and apparatus of constrained layer-wise video coding |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20060108952A (ko) * | 2005-04-13 | 2006-10-19 | 연세대학교 산학협력단 | 다시점 동영상 부호화/복호화 시스템의 부호화 방법 및시점간 보정 변이 추정 방법 |
KR20080036910A (ko) * | 2006-10-24 | 2008-04-29 | 엘지전자 주식회사 | 비디오 신호 디코딩 방법 및 장치 |
KR100941608B1 (ko) * | 2006-10-17 | 2010-02-11 | 경희대학교 산학협력단 | 다시점 영상의 부호화 및 복호화 방법과 그를 위한 장치 |
US20110311147A1 (en) * | 2009-02-12 | 2011-12-22 | Dolby Laboratories Licensing Corporation | Quality Evaluation of Sequences of Images |
KR20120084629A (ko) * | 2011-01-20 | 2012-07-30 | 삼성전자주식회사 | 움직임 정보 및 변이 정보를 부호화/복호화하는 영상 처리 장치 및 방법 |
Family Cites Families (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1592248B1 (en) | 2004-04-30 | 2006-09-20 | Matsushita Electric Industrial Co., Ltd. | Motion vector estimation employing adaptive temporal prediction |
KR101227601B1 (ko) | 2005-09-22 | 2013-01-29 | 삼성전자주식회사 | 시차 벡터 예측 방법, 그 방법을 이용하여 다시점 동영상을부호화 및 복호화하는 방법 및 장치 |
CN101056398A (zh) * | 2006-03-29 | 2007-10-17 | 清华大学 | 一种多视编码过程中获取视差矢量的方法及编解码方法 |
WO2007110000A1 (en) | 2006-03-29 | 2007-10-04 | Huawei Technologies Co., Ltd. | A method and device of obtaining disparity vector and its multi-view encoding-decoding |
JP5055355B2 (ja) | 2006-03-30 | 2012-10-24 | エルジー エレクトロニクス インコーポレイティド | ビデオ信号のデコーディング/エンコーディング方法及び装置 |
KR101196975B1 (ko) * | 2006-07-17 | 2012-11-02 | 톰슨 라이센싱 | 비디오 색 인핸스먼트 데이터를 인코딩하기 위한 방법 및 장치, 그리고 비디오 색 인핸스먼트 데이터를 디코딩하기 위한 방법 및 장치 |
KR101369746B1 (ko) * | 2007-01-22 | 2014-03-07 | 삼성전자주식회사 | 적응적 보간 필터를 이용한 영상 부호화, 복호화 방법 및장치 |
CN101420609B (zh) | 2007-10-24 | 2010-08-25 | 华为终端有限公司 | 视频编码、解码方法及视频编码器、解码器 |
CN101483770B (zh) * | 2008-01-08 | 2011-03-16 | 华为技术有限公司 | 一种编解码方法及装置 |
EP2200321A1 (en) * | 2008-12-19 | 2010-06-23 | Thomson Licensing | Method for browsing video streams |
KR20110007928A (ko) * | 2009-07-17 | 2011-01-25 | 삼성전자주식회사 | 다시점 영상 부호화 및 복호화 방법과 장치 |
DE102009041328A1 (de) * | 2009-09-15 | 2011-03-24 | Natural View Systems Gmbh | Verfahren und Vorrichtung zum Erzeugen von Teilansichten und/oder einer Raumbildvorlage aus einer 2D-Ansicht für eine stereoskopische Wiedergabe |
US8938011B2 (en) * | 2010-01-27 | 2015-01-20 | Dolby Laboratories Licensing Corporation | Methods and systems for reference processing in image and video codecs |
KR101628383B1 (ko) * | 2010-02-26 | 2016-06-21 | 연세대학교 산학협력단 | 영상 처리 장치 및 방법 |
JP5693716B2 (ja) * | 2010-07-08 | 2015-04-01 | ドルビー ラボラトリーズ ライセンシング コーポレイション | 参照処理信号を使った多層画像およびビデオ送達のためのシステムおよび方法 |
EP2991347B1 (en) * | 2010-07-15 | 2019-10-23 | GE Video Compression, LLC | Hybrid video coding supporting intermediate view synthesis |
JP5663093B2 (ja) * | 2010-10-01 | 2015-02-04 | ドルビー ラボラトリーズ ライセンシング コーポレイション | 参照ピクチャー処理のための最適化されたフィルタ選択 |
CN103339943B (zh) * | 2010-12-08 | 2017-06-13 | Lg电子株式会社 | 内预测方法及使用该方法的编码装置和解码装置 |
US20120189060A1 (en) | 2011-01-20 | 2012-07-26 | Industry-Academic Cooperation Foundation, Yonsei University | Apparatus and method for encoding and decoding motion information and disparity information |
KR101956284B1 (ko) * | 2011-06-30 | 2019-03-08 | 엘지전자 주식회사 | 보간 방법 및 이를 이용한 예측 방법 |
US9635355B2 (en) * | 2011-07-28 | 2017-04-25 | Qualcomm Incorporated | Multiview video coding |
JP6039178B2 (ja) * | 2011-09-15 | 2016-12-07 | シャープ株式会社 | 画像符号化装置、画像復号装置、並びにそれらの方法及びプログラム |
CN102510500B (zh) * | 2011-10-14 | 2013-12-18 | 北京航空航天大学 | 一种基于深度信息的多视点立体视频错误隐藏方法 |
US20130176390A1 (en) * | 2012-01-06 | 2013-07-11 | Qualcomm Incorporated | Multi-hypothesis disparity vector construction in 3d video coding with depth |
US20130271565A1 (en) * | 2012-04-16 | 2013-10-17 | Qualcomm Incorporated | View synthesis based on asymmetric texture and depth resolutions |
US9549180B2 (en) * | 2012-04-20 | 2017-01-17 | Qualcomm Incorporated | Disparity vector generation for inter-view prediction for video coding |
CN102685532B (zh) * | 2012-06-04 | 2014-04-16 | 山东大学 | 自由视点四维空间视频编码系统的编码方法 |
TWI625052B (zh) * | 2012-08-16 | 2018-05-21 | Vid衡器股份有限公司 | 多層視訊編碼以片段為基礎之跨越模式傳訊 |
CN104813665A (zh) * | 2012-09-28 | 2015-07-29 | 三星电子株式会社 | 用于对层间预测误差进行编码的sao补偿的方法和设备 |
EP2920966B1 (en) * | 2012-11-15 | 2019-12-18 | MediaTek Inc. | Inter-layer texture coding with adaptive transform and multiple inter-layer motion candidates |
US9667942B2 (en) * | 2012-11-20 | 2017-05-30 | Qualcomm Incorporated | Adaptive luminance compensation in three dimensional video coding |
US9357214B2 (en) * | 2012-12-07 | 2016-05-31 | Qualcomm Incorporated | Advanced merge/skip mode and advanced motion vector prediction (AMVP) mode for 3D video |
CN105165011A (zh) * | 2013-02-25 | 2015-12-16 | 三星电子株式会社 | 用于考虑存储器带宽和计算量的可伸缩视频编码的装置和方法以及用于可伸缩视频解码的装置和方法 |
WO2014137175A1 (ko) * | 2013-03-06 | 2014-09-12 | 삼성전자 주식회사 | 선택적인 노이즈제거 필터링을 이용한 스케일러블 비디오 부호화 방법 및 그 장치, 선택적인 노이즈제거 필터링을 이용한 스케일러블 비디오 복호화 방법 및 그 장치 |
US9800857B2 (en) * | 2013-03-08 | 2017-10-24 | Qualcomm Incorporated | Inter-view residual prediction in multi-view or 3-dimensional video coding |
EP2983367A4 (en) * | 2013-04-05 | 2016-11-16 | Samsung Electronics Co Ltd | METHOD AND DEVICE FOR CODING AND DECODING VIDEO CONTENT IN RELATION TO THE POSITION OF ALL-NUMBER PIXELS |
-
2014
- 2014-04-07 EP EP14778165.2A patent/EP2983367A4/en not_active Withdrawn
- 2014-04-07 CN CN201480032642.8A patent/CN105308970B/zh not_active Expired - Fee Related
- 2014-04-07 KR KR1020140041551A patent/KR102186461B1/ko active IP Right Grant
- 2014-04-07 WO PCT/KR2014/003011 patent/WO2014163466A1/ko active Application Filing
- 2014-04-07 US US14/782,549 patent/US10469866B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20060108952A (ko) * | 2005-04-13 | 2006-10-19 | 연세대학교 산학협력단 | 다시점 동영상 부호화/복호화 시스템의 부호화 방법 및시점간 보정 변이 추정 방법 |
KR100941608B1 (ko) * | 2006-10-17 | 2010-02-11 | 경희대학교 산학협력단 | 다시점 영상의 부호화 및 복호화 방법과 그를 위한 장치 |
KR20080036910A (ko) * | 2006-10-24 | 2008-04-29 | 엘지전자 주식회사 | 비디오 신호 디코딩 방법 및 장치 |
US20110311147A1 (en) * | 2009-02-12 | 2011-12-22 | Dolby Laboratories Licensing Corporation | Quality Evaluation of Sequences of Images |
KR20120084629A (ko) * | 2011-01-20 | 2012-07-30 | 삼성전자주식회사 | 움직임 정보 및 변이 정보를 부호화/복호화하는 영상 처리 장치 및 방법 |
Also Published As
Publication number | Publication date |
---|---|
EP2983367A4 (en) | 2016-11-16 |
US20160044333A1 (en) | 2016-02-11 |
KR102186461B1 (ko) | 2020-12-03 |
CN105308970A (zh) | 2016-02-03 |
KR20140122674A (ko) | 2014-10-20 |
US10469866B2 (en) | 2019-11-05 |
CN105308970B (zh) | 2018-11-23 |
EP2983367A1 (en) | 2016-02-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2014030920A1 (ko) | 트리 구조의 부호화 단위에 기초한 예측 정보의 인터-레이어 비디오 부호화 방법 및 그 장치, 트리 구조의 부호화 단위에 기초한 예측 정보의 인터-레이어 비디오 복호화 방법 및 그 장치 | |
WO2015099506A1 (ko) | 서브블록 기반 예측을 수행하는 인터 레이어 비디오 복호화 방법 및 그 장치 및 서브블록 기반 예측을 수행하는 인터 레이어 비디오 부호화 방법 및 그 장치 | |
WO2015137783A1 (ko) | 인터 레이어 비디오의 복호화 및 부호화를 위한 머지 후보 리스트 구성 방법 및 장치 | |
WO2015005753A1 (ko) | 깊이 기반 디스패리티 벡터를 이용하는 인터 레이어 비디오 복호화 방법 및 그 장치, 깊이 기반 디스패리티 벡터를 이용하는 인터 레이어 비디오 부호화 방법 및 장치 | |
WO2013162311A1 (ko) | 다시점 비디오 예측을 위한 참조픽처세트를 이용하는 다시점 비디오 부호화 방법 및 그 장치, 다시점 비디오 예측을 위한 참조픽처세트를 이용하는 다시점 비디오 복호화 방법 및 그 장치 | |
WO2015133866A1 (ko) | 서브 블록 기반 예측을 수행하는 인터 레이어 비디오 복호화 방법 및 그 장치 및 서브 블록 기반 예측을 수행하는 인터 레이어 비디오 부호화 방법 및 그 장치 | |
WO2014109594A1 (ko) | 휘도차를 보상하기 위한 인터 레이어 비디오 부호화 방법 및 그 장치, 비디오 복호화 방법 및 그 장치 | |
WO2014051408A1 (ko) | 인터 레이어 예측 오차를 부호화하기 위한 sao 오프셋 보상 방법 및 그 장치 | |
WO2015152608A4 (ko) | 서브블록 기반 예측을 수행하는 인터 레이어 비디오 복호화 방법 및 그 장치 및 서브블록 기반 예측을 수행하는 인터 레이어 비디오 부호화 방법 및 그 장치 | |
WO2014163458A1 (ko) | 인터 레이어 복호화 및 부호화 방법 및 장치를 위한 인터 예측 후보 결정 방법 | |
WO2013157817A1 (ko) | 트리 구조의 부호화 단위에 기초한 다시점 비디오 부호화 방법 및 그 장치, 트리 구조의 부호화 단위에 기초한 다시점 비디오 복호화 방법 및 그 장치 | |
WO2015002444A1 (ko) | 필터링을 수반한 비디오 부호화 및 복호화 방법 및 그 장치 | |
WO2015053598A1 (ko) | 멀티 레이어 비디오 부호화 방법 및 장치, 멀티 레이어 비디오 복호화 방법 및 장치 | |
WO2015053601A1 (ko) | 멀티 레이어 비디오 부호화 방법 및 그 장치, 멀티 레이어 비디오 복호화 방법 및 그 장치 | |
WO2016117930A1 (ko) | 인터 레이어 비디오 복호화 방법 및 그 장치 및 인터 레이어 비디오 부호화 방법 및 그 장치 | |
WO2014163460A1 (ko) | 계층 식별자 확장에 따른 비디오 스트림 부호화 방법 및 그 장치, 계층 식별자 확장에 따른 따른 비디오 스트림 복호화 방법 및 그 장치 | |
WO2015194896A1 (ko) | 휘도차를 보상하기 위한 인터 레이어 비디오 부호화 방법 및 그 장치, 비디오 복호화 방법 및 그 장치 | |
WO2015012622A1 (ko) | 움직임 벡터 결정 방법 및 그 장치 | |
WO2015009113A1 (ko) | 인터 레이어 비디오 복호화 및 부호화 장치 및 방법을 위한 깊이 영상의 화면내 예측 방법 | |
WO2014129872A1 (ko) | 메모리 대역폭 및 연산량을 고려한 스케일러블 비디오 부호화 장치 및 방법, 스케일러블 비디오 복호화 장치 및 방법 | |
WO2015005749A1 (ko) | 인터 레이어 비디오 복호화 및 부호화 장치 및 방법을 위한 블록 기반 디스패리티 벡터 예측 방법 | |
WO2016072753A1 (ko) | 샘플 단위 예측 부호화 장치 및 방법 | |
WO2013162251A1 (ko) | 다시점 비디오 예측을 위한 참조리스트를 이용하는 다시점 비디오 부호화 방법 및 그 장치, 다시점 비디오 예측을 위한 참조리스트를 이용하는 다시점 비디오 복호화 방법 및 그 장치 | |
WO2014171769A1 (ko) | 시점 합성 예측을 이용한 다시점 비디오 부호화 방법 및 그 장치, 다시점 비디오 복호화 방법 및 그 장치 | |
WO2015093920A1 (ko) | 휘도 보상을 이용한 인터 레이어 비디오 부호화 방법 및 그 장치, 비디오 복호화 방법 및 그 장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201480032642.8 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14778165 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14782549 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014778165 Country of ref document: EP |