WO2015012622A1 - 움직임 벡터 결정 방법 및 그 장치 - Google Patents

움직임 벡터 결정 방법 및 그 장치 Download PDF

Info

Publication number
WO2015012622A1
WO2015012622A1 PCT/KR2014/006770 KR2014006770W WO2015012622A1 WO 2015012622 A1 WO2015012622 A1 WO 2015012622A1 KR 2014006770 W KR2014006770 W KR 2014006770W WO 2015012622 A1 WO2015012622 A1 WO 2015012622A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
prediction
motion vector
size
sub
Prior art date
Application number
PCT/KR2014/006770
Other languages
English (en)
French (fr)
Inventor
박민우
이진영
위호천
Original Assignee
삼성전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자 주식회사 filed Critical 삼성전자 주식회사
Priority to EP14829473.9A priority Critical patent/EP3016392A4/en
Priority to US14/906,953 priority patent/US20160173904A1/en
Priority to CN201480052699.4A priority patent/CN105594212B/zh
Publication of WO2015012622A1 publication Critical patent/WO2015012622A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/513Processing of motion vectors
    • H04N19/517Processing of motion vectors by encoding
    • H04N19/52Processing of motion vectors by encoding by predictive encoding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/103Selection of coding mode or of prediction mode
    • H04N19/105Selection of the reference unit for prediction within a chosen coding or prediction mode, e.g. adaptive choice of position and number of pixels used for prediction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/103Selection of coding mode or of prediction mode
    • H04N19/114Adapting the group of pictures [GOP] structure, e.g. number of B-frames between two anchor frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/119Adaptive subdivision aspects, e.g. subdivision of a picture into rectangular or non-rectangular coding blocks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/136Incoming video signal characteristics or properties
    • H04N19/137Motion inside a coding unit, e.g. average field, frame or block difference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/176Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/177Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being a group of pictures [GOP]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/187Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being a scalable video layer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/30Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using hierarchical techniques, e.g. scalability
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/593Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving spatial prediction techniques
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/597Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding specially adapted for multi-view video sequence encoding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/65Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using error resilience
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/117Filters, e.g. for pre-processing or post-processing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/186Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being a colour or a chrominance component
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/44Decoders specially adapted therefor, e.g. video decoders which are asymmetric with respect to the encoder
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/587Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal sub-sampling or interpolation, e.g. decimation or subsequent interpolation of pictures in a video sequence
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/59Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving spatial sub-sampling or interpolation, e.g. alteration of picture size or resolution

Definitions

  • the present invention relates to a method and apparatus for determining a motion vector in performing video encoding and decoding.
  • video codec for efficiently encoding or decoding high resolution or high definition video content.
  • video is encoded according to a limited encoding method based on a macroblock of a predetermined size.
  • the video codec reduces the amount of data by using a prediction technique by using a feature that images of a video are highly correlated with each other temporally or spatially.
  • image information is recorded using a temporal or spatial distance between the images, a prediction error, and the like.
  • a method of determining a motion vector used in performing video encoding and decoding using a motion vector may be provided.
  • a method and apparatus for determining a motion vector in performing video encoding and decoding are provided.
  • a method and apparatus for determining an effective motion vector when performing inter prediction or inter layer prediction in performing video encoding and decoding is proposed.
  • FIG. 1A is a block diagram of an apparatus for determining a motion vector, according to an exemplary embodiment.
  • 1B is a flowchart of a method of determining a motion vector, according to an exemplary embodiment.
  • FIG. 2A is a block diagram of a video encoder including a motion vector determining method, according to an exemplary embodiment.
  • 2B is a block diagram of a video decoder including a motion vector determining method, according to an exemplary embodiment.
  • FIG. 3 is a diagram illustrating an interlayer prediction structure, according to various embodiments.
  • 4A and 4B illustrate a motion vector determination method according to various embodiments.
  • 5A through 5F illustrate a method of splitting a prediction unit, according to various embodiments of the present disclosure.
  • 6A through 6C illustrate syntax or semantics for a motion vector determining method according to various embodiments of the present disclosure.
  • FIG. 7A is a diagram for describing a motion vector determining method according to an intra prediction region of a reference unit, according to an embodiment.
  • FIG. 7B is a diagram for describing a method of dividing a reference block, according to an exemplary embodiment.
  • FIG. 8 is a block diagram of a video encoding apparatus based on coding units according to a tree structure, according to an embodiment.
  • FIG. 9 is a block diagram of a video decoding apparatus based on coding units according to a tree structure, according to an embodiment.
  • FIG. 10 illustrates a concept of coding units, according to an embodiment of the present invention.
  • FIG. 11 is a block diagram of an image encoder based on coding units, according to an embodiment of the present invention.
  • FIG. 12 is a block diagram of an image decoder based on coding units, according to an embodiment of the present invention.
  • FIG. 13 is a diagram of deeper coding units according to depths, and partitions, according to an embodiment of the present invention.
  • FIG. 14 illustrates a relationship between coding units and transformation units, according to an embodiment of the present invention.
  • FIG. 15 illustrates encoding information according to depths, according to an embodiment of the present invention.
  • 16 is a diagram of deeper coding units according to depths, according to an embodiment of the present invention.
  • 17, 18, and 19 illustrate a relationship between coding units, prediction units, and transformation units, according to an embodiment of the present invention.
  • FIG. 20 illustrates a relationship between a coding unit, a prediction unit, and a transformation unit, according to encoding mode information of Table 1.
  • FIG. 20 illustrates a relationship between a coding unit, a prediction unit, and a transformation unit, according to encoding mode information of Table 1.
  • 21 illustrates a physical structure of a disk in which a program is stored, according to an embodiment.
  • Fig. 22 shows a disc drive for recording and reading a program by using the disc.
  • FIG. 23 shows an overall structure of a content supply system for providing a content distribution service.
  • 24 and 25 illustrate an external structure and an internal structure of a mobile phone to which a video encoding method and a video decoding method of the present invention are applied, according to an embodiment.
  • 26 illustrates a digital broadcasting system employing a communication system according to the present invention.
  • FIG. 27 illustrates a network structure of a cloud computing system using a video encoding apparatus and a video decoding apparatus, according to an embodiment of the present invention.
  • a method and apparatus for determining a motion vector in performing video encoding and decoding are provided.
  • a method of determining a motion vector may include: dividing the prediction unit into a plurality of sub units when a size of a prediction unit belonging to a current layer is larger than a preset size; Determining a reference subunit belonging to a reference layer used for interlayer prediction of a current subunit, which is one of the subunits; Determining a sub motion vector prediction candidate for inter prediction of the current sub unit using the motion vector for inter prediction of the reference sub unit; And determining a motion vector for inter prediction of the current sub-unit by using one of the prediction candidates including the sub-motion vector prediction candidate.
  • the preset size may include 8 ⁇ 8.
  • the determining of the motion vector may include determining a motion vector for inter prediction of the reference sub-unit as a motion vector for inter prediction of the current sub-unit.
  • the motion vector determination method determines the sub-motion vector prediction candidate using a disparity vector for inter-layer prediction of the current sub-unit. It may further comprise a step.
  • dividing the prediction unit into a plurality of sub-units may include: signaling the preset size; And dividing the prediction unit into the plurality of sub units when the size of the prediction unit is larger than the signaled preset size.
  • the method of determining a motion vector may further include receiving a bitstream, and signaling the preset size may include parsing the preset size from the bitstream. have.
  • the dividing of the prediction unit into a plurality of sub-units may include generating the prediction unit when the sum of the width and height of the prediction unit is greater than 12. Dividing into multiples.
  • the method of determining a motion vector may further include performing motion compensation on the current sub-unit by using the determined motion vector.
  • the apparatus for determining a motion vector divides the prediction unit into a plurality of subunits when the size of the prediction unit belonging to the current layer is larger than a preset size, and inter-constructs the current subunit, which is one of the subunits.
  • Decision unit and a motion vector determiner configured to determine a motion vector for inter prediction of the current sub-unit by using one of prediction candidates including the sub-motion vector prediction candidates.
  • a computer readable recording medium having recorded thereon a program for implementing a method according to various embodiments is proposed.
  • image may refer to a generic image including a still image as well as a video such as a video.
  • sample means data to be processed as data allocated to a sampling position of an image.
  • the pixels in the spatial domain image may be samples.
  • residuals corresponding to pixels in the image of the spatial domain may be samples.
  • a block may be square or rectangular, and may be any geometric shape. It is not limited to data units of a certain size.
  • a block according to an embodiment may be a maximum coding unit, a coding unit, a prediction unit, a transform unit, etc. among coding units having a tree structure. Video encoding and decoding methods based on coding units having a tree structure will be described later with reference to FIGS. 8 to 20.
  • the block may include all of a sub-unit, a current sub-unit, a reference unit, a reference sub-unit, and the like in connection with a term to be described later.
  • signaling may mean transmission or reception of a signal.
  • signaling may mean transmitting an encoded signal.
  • signaling may mean receiving an encoded signal.
  • FIG. 1A is a block diagram of an apparatus for determining a motion vector 10 according to an exemplary embodiment.
  • the motion vector determining apparatus 10 may include a prediction candidate determiner 11 and a motion vector determiner 12.
  • the motion vector determining apparatus 10 may be implemented by more components than the illustrated components, or the motion vector determining apparatus 10 may be implemented by fewer components than the illustrated components.
  • the motion vector determining apparatus 10 may perform inter prediction by using similarity between the current image and another image.
  • the motion vector determining apparatus 10 may detect a reference block corresponding to the current block of the current image in the reference image reconstructed before the current image.
  • the distance in coordinates between the current block and the reference block may be represented by a motion vector, and the difference between pixel values between the current block and the reference block may be represented by residual data. Therefore, the information output by the inter prediction on the current block may be indexes, motion vectors, and residual data indicating the reference block, not image information of the current block.
  • the motion vector determining apparatus 10 may perform interlayer prediction using similarity between the current image and another image.
  • the reference picture used to reconstruct the current picture may be an image belonging to a layer different from the layer to which the current picture belongs.
  • the motion vector determining apparatus 10 may detect a reference block that is similar to the current block of the current image in the reference image reconstructed before the current image.
  • the distance in coordinates between the current block and the reference block may be represented by a motion vector, and the difference between pixel values between the current block and the reference block may be represented by residual data. Therefore, the information output by inter prediction for the current block may be indexes, motion vectors, and residual data indicating a reference picture, not image information of the current block.
  • Inter-layer motion prediction may be an example of inter-layer prediction.
  • the inter-layer motion prediction determines a motion vector used when performing inter prediction on a current image of a current layer by using a motion vector used when performing inter prediction on a reference image of a reference layer. May include an action.
  • the motion vector determining apparatus 10 may perform inter prediction or inter layer prediction for each block of each image of a video.
  • the motion vector of the current block may be determined with reference to the motion vector of another block.
  • the other block may include blocks of layers different from the current block.
  • the apparatus for determining a motion vector may determine the motion vector of the current block by referring to the motion vector of another block that is temporally or spatially adjacent to the current block.
  • the motion vector determining apparatus 10 may determine prediction candidates including motion vectors of candidate blocks that may be a reference object of the motion vector of the current block.
  • the motion vector determining apparatus 10 may determine the motion vector of the current block by referring to one motion vector selected from the prediction candidates.
  • the prediction unit may mean a unit that is a basis of prediction split from a coding unit.
  • a prediction unit may be split from a coding unit and may be split only once without being split into quad tree shapes. For example, one coding unit may be split into a plurality of prediction units, and the prediction unit generated by the split may not be further split.
  • the prediction unit may be divided into sub units.
  • one prediction unit may be separated into a plurality of sub units.
  • intra prediction, inter prediction, or inter layer prediction may be performed for each sub unit.
  • the motion vector may include a disperity vector.
  • the disparity vector corresponding to the current block and the reference block may be a disparity vector used when decoding the current block.
  • a motion vector may be used when inter prediction or inter layer prediction is performed.
  • the motion vector determining apparatus 10 may determine a reference subunit corresponding to the current subunit by using a motion vector for inter prediction of the current subunit.
  • the reference subunit may be included in the same layer as the current subunit.
  • the encoder may express the difference between the determined reference subunit and pixel values of the current subunit as residual data. Instead of directly outputting image information of the current sub-unit, the encoder may output an index indicating a reference sub-unit, a motion vector, and the determined residual data.
  • the motion vector determining apparatus 10 may determine a reference subunit corresponding to the current subunit by using a motion vector for interlayer prediction of the current subunit.
  • the reference subunit may be included in a layer different from the current subunit.
  • the encoder may express the difference between the determined reference subunit and pixel values of the current subunit as residual data. Instead of directly outputting image information of the current sub-unit, the encoder may output an index indicating a reference sub-unit, a motion vector, and the determined residual data.
  • the motion vector determining apparatus 10 determines a motion vector used for inter prediction of a reference subunit included in a layer different from a layer to which the current subunit belongs, in order to determine a motion vector for inter prediction of the current subunit. It is available.
  • the motion vector determining apparatus 10 receives the motion vector of the current subunit, the quantized transform coefficients, and the index of the reference subunit to receive the register of the current subunit. Dual data can be restored.
  • the decoder may reconstruct the current subunit by performing motion compensation on the current subunit encoded through inter prediction or interlayer prediction.
  • the motion vector determining apparatus 10 may determine a reference subunit corresponding to the current subunit by using a motion vector for interlayer prediction of the current subunit.
  • the reference subunit may be included in a layer different from the current subunit.
  • the motion vector determining apparatus 10 determines a motion vector used for inter prediction of a reference subunit included in a layer different from a layer to which the current subunit belongs, in order to determine a motion vector for inter prediction of the current subunit. It is available.
  • the sub unit may mean a block generated by dividing the prediction unit included in the current layer.
  • the current sub unit may mean a sub unit that is currently encoded or decoded.
  • sub-motion vector prediction candidate may mean a candidate motion vector used for inter prediction or inter-layer prediction of the current sub-unit.
  • the prediction candidate according to an embodiment may mean a candidate motion vector used for inter prediction or inter layer prediction of the current sub-unit or prediction unit.
  • the prediction candidate according to an embodiment may include the aforementioned sub motion vector prediction candidate.
  • the reference unit may mean a block corresponding to the prediction unit included in the current layer.
  • the reference unit may be included in the current layer or may be included in the reference layer.
  • the reference unit may refer to a reference block used to perform inter prediction or inter layer prediction on the prediction unit.
  • the reference subunit may mean a block generated by dividing the reference unit included in the reference layer.
  • the prediction candidate determiner 11 may divide the prediction unit into a plurality of sub units when the size of the prediction unit belonging to the current layer is larger than the preset size.
  • the prediction candidate determiner 11 may divide the prediction unit into a plurality of sub units when the size of the prediction unit belonging to the current layer is larger than 8 ⁇ 8. In this case, when the size of the prediction unit is 8 ⁇ 8, 8 ⁇ 4, or 4 ⁇ 8, the motion vector may be determined for each prediction unit without dividing the prediction unit into subunits.
  • the prediction candidate determiner 11 may divide the prediction unit into a plurality of sub units when the size of the prediction unit belonging to the current layer is larger than 4 ⁇ 4.
  • the prediction candidate determiner 11 may divide the prediction unit into a plurality of sub units.
  • the prediction candidate determiner 11 may divide the prediction unit into a plurality of sub units.
  • the prediction candidate determiner 11 may divide the prediction unit into a plurality of sub-units when the size of the prediction unit is not 8 ⁇ 4 or 4 ⁇ 8.
  • the prediction candidate determiner 11 may divide the prediction unit into a plurality of sub-units when the size of the prediction unit is not 8 ⁇ 4, not 4 ⁇ 8, or 8 ⁇ 8.
  • the prediction candidate determiner 11 may divide the prediction unit into a plurality of sub units only when the size of the prediction unit is 2N ⁇ 2N.
  • the prediction candidate determiner 11 may divide the prediction unit into a plurality of sub units only when the size of the prediction unit is larger than N ⁇ N.
  • the prediction candidate determiner 11 may not divide the prediction unit into sub-units when the size of the prediction unit is less than or equal to the preset size.
  • the video encoder or the video decoder may perform interlayer prediction or inter prediction for each prediction unit.
  • 2N ⁇ 2N, 2N ⁇ N, N ⁇ 2N, and N ⁇ N may mean sizes of coding units, prediction units, subunits, and the like.
  • N may be one of 4, 8, 16, and 32 values.
  • the size of the coding unit is 2N ⁇ 2N and the size of the prediction unit is 2N ⁇ 2N, only one prediction unit may exist in one coding unit.
  • the size of the coding unit is 2N ⁇ 2N and the size of the prediction unit is N ⁇ 2N
  • two prediction units may exist in one coding unit.
  • the size of the minimum sub unit may be a preset size.
  • the size of the minimum sub unit may be 8 ⁇ 8.
  • the size of the minimum sub unit may be at least one of 4 ⁇ 4, 4 ⁇ 8, and 8 ⁇ 4.
  • the prediction candidate determiner 11 may divide the prediction unit into a predetermined number of sub units according to the size of the prediction unit.
  • the prediction unit may be divided into four sub units, which are preset numbers.
  • the prediction unit may be divided into eight sub units, which are preset numbers.
  • the prediction unit when the prediction unit size is 2N ⁇ 2N, the prediction unit may be divided into eight sub units, which are preset numbers.
  • the prediction unit when the prediction unit size is 2N ⁇ N, the prediction unit may be divided into four sub units, which are preset numbers.
  • the prediction unit size is N ⁇ 2N
  • the prediction unit may be divided into 16 sub units, which are preset numbers.
  • the minimum size of the sub unit according to an embodiment may be predetermined.
  • the prediction candidate determiner 11 divides a prediction unit into 16 subunits when the prediction unit size is 2N ⁇ 2N, and divides 8 prediction units when the prediction unit size is N ⁇ 2N or 2N ⁇ N. Can be divided into sub units.
  • the prediction candidate determiner 11 divides the prediction unit into 8 ⁇ 8 subunits, and the prediction unit size is 8 ⁇ . In the case of 8, 8 ⁇ 4, or 4 ⁇ 8, the prediction unit may not be divided into sub-units.
  • the prediction candidate determiner 11 may divide the prediction unit into a maximum number of subunits of 8 ⁇ 8 blocks that may be included in the prediction unit without overlapping areas.
  • the prediction candidate determiner 11 may divide the prediction unit into a maximum number of sub units of a block having a predetermined size that may be included in the prediction unit without overlapping areas.
  • a preset size according to an embodiment used when determining whether to split a prediction unit into a plurality of sub units may be signaled.
  • the prediction candidate determiner 11 may obtain a predetermined size by parsing the received bitstream.
  • the prediction candidate determiner 11 may divide the prediction unit into a plurality of sub units when the size of the prediction unit is larger than the preset size obtained by parsing the received bitstream.
  • the video encoding apparatus 20 may transmit a preset size to the outside through a bitstream according to an embodiment used when determining whether to split a prediction unit into a plurality of sub units.
  • the preset size may be signaled by at least one of a video parameter set (VPS), a sequence parameter set (SPS), a picture parameter set (PPS), and a slice segment header.
  • VPS video parameter set
  • SPS sequence parameter set
  • PPS picture parameter set
  • slice segment header a slice segment header
  • the prediction candidate determiner 11 may determine a reference subunit belonging to a reference layer used for interlayer prediction of a current subunit, which is one of the subunits.
  • the image may include images of a plurality of layers.
  • a reference subunit belonging to the reference layer may be used to restore the current subunit belonging to the current layer.
  • the prediction candidate determiner 11 may determine a motion vector for inter prediction of the current sub unit using the motion vector for inter prediction of the reference sub unit.
  • the prediction candidate determiner 11 may use the disparity vector when determining a reference subunit corresponding to the current subunit.
  • the disparity vector may be used when the current block of the current layer corresponds to the reference block of the reference layer.
  • the reference unit corresponding to the current unit may be divided into a plurality of reference subunits.
  • One reference subunit among the plurality of reference subunits may correspond to the current subunit.
  • the reference subunit may be obtained by dividing the reference unit.
  • the prediction candidate determiner 11 may determine a sub-motion vector prediction candidate for inter prediction in the current sub-unit by using the motion vector for inter prediction in the reference sub-unit.
  • the first motion vector may be used for inter prediction of the reference sub-unit.
  • the second motion vector may be used for inter prediction of the current sub-unit.
  • the sub motion vector prediction candidate may be used for inter prediction of the current sub-unit.
  • the sub motion vector prediction candidate may be determined using the first motion vector. For example, the prediction candidate determiner 11 may determine the first motion vector as the sub-motion vector prediction candidate.
  • the sub-motion vector prediction candidate may be one of candidate motion vectors for inter prediction of the current sub-unit.
  • the sub motion vector prediction candidate may be the same as the second motion vector.
  • the motion vector determining apparatus 10 may determine the second motion vector using the first motion vector.
  • the prediction candidate determiner 11 may include the first motion vector in the prediction candidates for determining the second motion vector.
  • the motion vector determiner 12 may select a motion vector used for inter prediction of a current sub-unit among motion vectors included in the prediction candidates.
  • the video encoding apparatus 20 or the video decoding apparatus 25 may determine a candidate block to be referenced by the current sub unit from among blocks corresponding to the current sub unit included in the image that is earlier or later in time than the current image. have.
  • the video encoding apparatus 20 or the video decoding apparatus 25 may select a motion vector used to determine a candidate block to be referenced by the current sub-unit from among motion vectors of the prediction candidates.
  • the first motion vector may be included in the prediction candidates for inter prediction of the reference sub-unit.
  • the motion vector determiner 12 may determine a motion vector for inter prediction of the current sub-unit by using one of the prediction candidates including the sub-motion vector prediction candidates.
  • the motion vector determiner 12 may determine the sub-motion vector prediction candidate determined by the prediction candidate determiner 11 as a motion vector for inter prediction or intra prediction of the current sub-unit. As another example, the motion vector determiner 12 may determine a motion vector used for inter prediction in a reference sub unit as a motion vector used for inter prediction in a current sub unit. As another example, when the unit for performing inter prediction is not a prediction unit but a sub unit, the motion vector determiner 12 may determine a current vector as a motion vector for inter prediction of the reference sub unit determined by the prediction candidate determiner 11. It may be determined as a motion vector for inter prediction.
  • the motion vector determiner 12 may generate prediction candidates including candidate motion vectors of blocks referred to for predicting a motion vector of a current sub-unit.
  • the motion vector determiner 12 may select at least one candidate motion vector from among candidate motion vectors included in the prediction candidates, and determine the motion vector of the current block by using the selected candidate motion vector. .
  • the motion vector determiner 12 may determine the motion vector of the current block by copying, combining, or modifying at least one candidate motion vector as it is.
  • the motion vector determining apparatus 10 may determine a motion vector for each divided sub unit by dividing the prediction unit into sub units.
  • the video encoder or the video decoder may perform inter prediction or inter layer prediction for each sub unit by using the motion vector determined by the motion vector determiner 10.
  • an image having a higher quality than that for performing the prediction for each prediction unit may be obtained.
  • the motion vector determining apparatus 10 may determine a motion vector of the current sub-unit without determining whether another candidate motion vector is the motion vector of the current sub-unit. It may be determined by the motion vector of the reference subunit.
  • 1B is a flowchart of a method of determining a motion vector, according to an exemplary embodiment.
  • the prediction code determiner 11 divides the prediction unit into a plurality of sub units when the size of the prediction unit belonging to the current layer is larger than the preset size.
  • the preset size may be 8 ⁇ 8.
  • the prediction candidate determiner 11 may divide the prediction unit into a plurality of sub units when the size of the prediction unit belonging to the current layer is larger than 8 ⁇ 8.
  • the preset size may be signaled. Accordingly, the prediction candidate determiner 11 according to an embodiment obtains a predetermined size by parsing a received bitstream, and when the size of the prediction unit is larger than the obtained predetermined size, converts the prediction unit into a plurality of subunits. Can be divided
  • step S12 the prediction code determiner 11 determines a reference subunit belonging to a reference layer used for interlayer prediction of the current subunit, which is one of the subunits divided in step S11.
  • the prediction code determiner 11 may determine a reference subunit included in a layer different from the current subunit.
  • the prediction code determiner 11 may obtain a motion vector for inter prediction of the determined reference sub-unit.
  • the prediction code determiner 11 may use a disparity vector that corresponds to the current subunit and the reference subunit.
  • the prediction code determiner 11 may determine a sub-motion vector prediction candidate for inter prediction in the current sub-unit using the obtained motion vector.
  • a sample value of the reference subunit may be used to encode or decode the current subunit.
  • step S13 the prediction code determiner 11 determines a sub-motion vector prediction candidate for inter prediction of the current sub-unit by using the motion vector for inter prediction of the reference sub-unit determined in step S12.
  • the prediction code determiner 11 may use the motion vector of the reference sub-unit to determine a sub-motion vector prediction candidate used for inter prediction of the current sub-unit.
  • the prediction code determiner 11 may determine a motion vector for inter prediction of the reference sub-unit determined in step S12 as a sub-motion vector prediction candidate for inter prediction of the current sub-unit.
  • the sub-motion vector prediction candidate may include other candidate motion vectors in addition to the motion vector for inter prediction of the reference sub-unit determined in step S12.
  • step S14 the motion vector determiner 12 determines a motion vector for inter prediction of the current sub-unit by using one of the prediction candidates including the sub-motion vector prediction candidate determined in step S13.
  • the motion vector determiner 12 performs the inter prediction of the current sub unit using the motion vector for inter prediction of the reference sub unit determined in step S12. Can be determined by the motion vector.
  • the encoder or the decoder may perform motion compensation on the current sub-unit by using the motion vector determined in step S14.
  • Encoding or decoding of the current sub-unit may be performed through motion compensation using the motion vector determined in step S14.
  • the motion compensation may refer to an operation of reconstructing a reconstructed image of the current image by synthesizing a reference image determined using the motion vector of the current image and a residual component of the current image.
  • FIG. 2A is a block diagram of a video encoding apparatus 20 that includes a motion vector determination method, according to an exemplary embodiment.
  • the video encoding apparatus 20 may include a second layer encoder 18 and a first layer encoder 24.
  • the second layer encoder 18 may include a predictor 22 and a transform quantizer 23.
  • the predictor 22 may include a motion vector determiner 10 and a residual generator 21, according to an exemplary embodiment.
  • the video encoding apparatus 20 may be implemented by more components than the illustrated components, or the video encoding apparatus 20 may be implemented by fewer components than the illustrated components.
  • the video encoding apparatus 20 may generate a data stream.
  • the data stream generated by the video encoding apparatus 20 may be configured of network abstraction layer (NAL) units.
  • NAL network abstraction layer
  • the NAL unit may mean a network abstraction layer unit, which is a basic unit constituting the bitstream.
  • one or more NAL units may constitute a data stream.
  • the video encoding apparatus 20 may transmit a data stream composed of one or more NAL units to the outside.
  • the NAL unit may include two bytes of header information.
  • the video encoding apparatus 20 may check the approximate information on the data inside each NAL unit by including header information of two bytes included in each NAL unit.
  • the video encoding apparatus 20 classifies and encodes a plurality of image sequences for each layer according to a scalable video coding method, and outputs a separate stream including data encoded for each layer. can do.
  • the video encoding apparatus 20 may multiplex and output the bitstream output for each layer into one bitstream.
  • the video encoding apparatus 20 classifies and encodes a plurality of image sequences for each layer according to a scalable video coding method, and outputs a separate stream including data encoded for each layer. can do.
  • the video encoding apparatus 20 may encode the first layer image sequence and the second layer image sequence into different layers.
  • the first layer encoder 24 may encode first layer images and output a first layer stream including encoded data of the first layer images.
  • the second layer encoder 18 may encode second layer images and output a second layer stream including encoded data of the second layer images.
  • low resolution images may be encoded as first layer images, and high resolution images may be encoded as second layer images.
  • An encoding result of the first layer images may be output as a first layer stream, and an encoding result of the second layer images may be output as a second layer stream.
  • a multiview video may be encoded according to a scalable video coding scheme.
  • Left view images may be encoded as second layer images
  • right view images may be encoded as first layer images.
  • the center view images, the left view images and the right view images are respectively encoded, among which the center view images are encoded as the first layer images, the left view images are the second layer images, and the right view images are the third It may be encoded as layer images.
  • a scalable video coding scheme may be performed according to temporal hierarchical prediction based on temporal scalability.
  • a first layer stream including encoding information generated by encoding images of a base frame rate may be output.
  • Temporal levels may be classified according to frame rates, and each temporal layer may be encoded into each layer.
  • the second layer stream including the encoding information of the high frame rate may be output by further encoding the high frame rate images by referring to the images of the base frame rate.
  • scalable video coding may be performed on the first layer and the plurality of second layers.
  • the first layer images, the first second layer images, the second second layer images, ..., and the K-th second layer images may be encoded. Accordingly, the encoding results of the first layer images are output to the first layer stream, and the encoding results of the first, second, ..., K-th second layer images are respectively the first, second, ..., K-th second layer. Can be output as a stream.
  • the video encoding apparatus 20 may perform inter-layer prediction for predicting second layer images with reference to the first layer images.
  • the video encoding apparatus 20 may predict the second layer images by referring to the first layer images, and the first layer may mean a layer referred to when encoding the second layer. Therefore, the first layer may correspond to the second layer, and the second layer may correspond to the first layer, respectively.
  • the video encoding apparatus 20 may generate symbol data by performing source coding operations including inter prediction or intra prediction on first layer images.
  • the video encoding apparatus 20 may generate symbol data by performing inter prediction or intra prediction, transformation, and quantization on samples of data units of first layer images, and perform entropy encoding on symbol data.
  • the first layer stream may be generated.
  • the video encoding apparatus 20 may encode second layer images based on coding units having a tree structure.
  • the video encoding apparatus 20 may generate symbol data by performing prediction, transformation, and quantization on samples of a coding unit of a second layer image, and may generate a second layer stream by performing entropy encoding on the symbol data. have.
  • the video encoding apparatus 20 may perform interlayer prediction for predicting a second layer image by using reconstructed samples of the first layer image.
  • the video encoding apparatus 20 generates a second layer prediction image by using the first layer reconstruction image, and encodes the second layer original image of the second layer image sequence through the interlayer prediction structure, and then performs the second layer.
  • a prediction error between the original image and the second layer prediction image may be encoded.
  • the video encoding apparatus 20 may perform interlayer prediction on the second layer image for each block, such as a coding unit or a prediction unit.
  • a block of the first layer image to be referred to by the block of the second layer image may be determined.
  • a reconstruction block of the first layer image positioned corresponding to the position of the current block in the second layer image may be determined.
  • the video encoding apparatus 20 may determine the second layer prediction block by using the first layer reconstruction block corresponding to the second layer block.
  • the second layer when the second layer performs inter-layer prediction with reference to the first layer, the second layer may be referred to as a current layer, and the first layer may be referred to as a reference layer.
  • the current layer when the enhancement layer performs inter-layer prediction with reference to the base layer, the current layer may be the enhancement layer and the reference layer may be the base layer.
  • the video encoding apparatus 20 may encode the first layer image before the second layer image.
  • the video encoding apparatus 20 may encode the base layer image before the enhancement layer image.
  • the video encoding apparatus 20 may encode each layer and each block of each image of the video.
  • the motion vector determining apparatus 10 may determine a motion vector for inter prediction or inter layer prediction of a prediction unit or a current sub-unit.
  • the motion vector determining apparatus 10 may include neighboring blocks that are spatially adjacent to a current sub unit, or blocks that exist at the same position as a current sub unit among images that are earlier or later in time with the current image, or are present.
  • Candidate blocks to be referenced by the current sub unit may be determined from among reference sub units included in the reference layer corresponding to the sub unit.
  • the apparatus for determining a motion vector may determine the motion vector of the current subblock using the determined motion vector of the candidate block.
  • the residual generator 21 may generate residual data between the reference block and the current block by using a reference block indicated by a motion vector of the current block in a reference image included in the same layer as the current block. Can be.
  • the residual generator 21 may determine a reference block indicated by the motion vector determined by the motion vector determiner 10, and generate residual data between the current sub-unit and the reference block. In this case, both the current sub unit and the reference block may be included in the current layer.
  • the residual generator 21 may generate residual data between the reference block and the current block by using a reference block indicated by a motion vector of the current block in a reference image included in a layer different from the current block. Can be.
  • the residual generator 21 may determine a reference block indicated by the motion vector determined by the motion vector determiner 10, and generate residual data between the current sub-unit and the reference block.
  • the current subunit may be included in the current layer and the reference block may be included in the reference layer.
  • the prediction unit 22 may output residual data for each block as a result of performing inter prediction or inter-layer prediction for each block.
  • the prediction unit 22 may output residual data according to a result of performing inter prediction or inter-layer prediction for each sub-unit.
  • the transform quantizer 23 may generate quantized transform coefficients by performing transform and quantization on the residual data output by the predictor 22.
  • the transform quantization unit 23 may generate transform coefficients quantized for each block by performing transform and quantization on the residual data for each block received from the prediction unit 22.
  • the video encoding apparatus 20 may perform entropy encoding on the quantized transform coefficients generated by the transform quantization unit 23 to output the encoded bitstream.
  • the video encoding apparatus 20 may perform entropy encoding on not only the quantized transform coefficient but also the reference index and the motion vector to output a bitstream. Can be.
  • the video encoding apparatus 20 may use a merge mode or Advanced Motion Vector Prediction (AMVP) when transmitting data for the determined motion vector.
  • the video encoding apparatus 20 configures a list of neighboring blocks for determining a motion vector, and transmits selection information, which is information about which block to select among the blocks in the list, to the video decoding apparatus 25. By transmitting, the amount of motion related data can be reduced.
  • the video encoding apparatus 20 may reduce the amount of motion information transmitted in the prediction unit by using a merge mode or AMVP.
  • the motion information may include information about a motion vector.
  • the merge mode is a method of determining a motion vector of a current block by using a reference block.
  • the video encoding apparatus 20 may determine one or more spatial candidate blocks that are blocks located around the current block when in the merge mode. Also, according to an embodiment, the video encoding apparatus 20 may determine at least one temporal candidate block that is a block included in a picture having a different time from the current block. Also, the video encoding apparatus 20 according to an embodiment may determine one or more candidate blocks included in the reference layer when in the merge mode. The video encoding apparatus 20 may use the disparity vector when determining the candidate block.
  • the disperity vector may mean a motion vector used to correspond to the current block and the candidate block. Also, the video encoding apparatus 20 according to an embodiment may determine a candidate block included in a reference layer by using a motion vector of the reference block.
  • the video encoding apparatus 20 may determine candidate blocks used when determining a motion vector of the current block by combining candidate blocks determined in the above-described manner.
  • Candidate blocks according to an embodiment may be included in a reference picture.
  • One or more reference pictures may be included in two lists.
  • the two lists are referred to as reference picture list 0 and reference picture list 1, respectively, a first motion vector obtained from a candidate block in the reference picture included in reference picture list 0, and a candidate in the reference picture included in reference picture list 1
  • the motion vector of the current block may be determined using the second motion vector obtained from the block.
  • one motion vector of the first motion vector and the second motion vector may be a motion vector of the current block.
  • the new motion vector determined by combining the first motion vector and the second motion vector may be determined as the motion vector of the current block.
  • the AMVP mode may refer to a method of reconstructing a current block using at least one of a differential motion vector, reference picture classification information, and a reference index.
  • the differential motion vector may mean a value corresponding to a difference value between two motion vectors.
  • the video encoding apparatus 20 may transmit a difference value of the motion vector by using two motion vectors referenced to reconstruct the current block.
  • Reference picture classification information may represent a list including a picture including a reference block used when inter prediction or inter layer prediction of a current block is performed.
  • the reference picture classification information may indicate whether to use candidate blocks included in L0, use candidate blocks included in L1, or use both candidate blocks included in L1 and L2 when inter prediction is performed. .
  • the reference index may mean an index indicating a reference picture in a picture list used when inter prediction or inter layer prediction of a current block is performed.
  • the video encoding apparatus 20 may signal a merge index when transmitting data for the determined motion vector using a merge mode.
  • the video encoding apparatus 20 may determine candidate blocks used when determining a motion vector of the current block among blocks on which motion prediction is performed.
  • the video encoding apparatus 20 may transmit a merge index, that is, information indicating a selected block among candidate blocks, to the video decoding apparatus 25.
  • the video encoding apparatus 20 may signal at least one of a differential motion vector, reference picture classification information, and a reference index in order to transmit data for a motion vector determined using AMVP.
  • the video encoding apparatus 20 may include a central processor (not shown) that collectively controls the motion vector determining apparatus 10, the residual generating unit 21, and the transform quantization unit 23. have.
  • the motion vector determining apparatus 10, the residual generator 21, and the transform quantization unit 23 are operated by their own processors (not shown), and the processors (not shown) operate organically with each other.
  • the video encoding apparatus 20 may be operated as a whole.
  • the motion vector determining apparatus 10, the residual generator 21, and the transform quantization unit 23 may be controlled. It may be.
  • the video encoding apparatus 20 may include one or more data storage units (not shown) in which input and output data of the motion vector determining apparatus 10, the residual generator 21, and the transform quantization unit 23 are stored. It may include.
  • the video encoding apparatus 20 may include a memory controller (not shown) that controls data input / output of the data storage unit (not shown).
  • the video encoding apparatus 20 may perform a video encoding operation including transformation by operating in conjunction with an internal video encoding processor or an external video encoding processor to output a video encoding result.
  • the internal video encoding processor of the video encoding apparatus 20 includes not only a separate processor, but also a video encoding processing module 20, a central computing unit, and a graphic computing unit including a video encoding processing module. It may also include the case of implementing.
  • FIG. 2B is a block diagram of a video decoding apparatus 25 involving a motion vector determination method, according to an exemplary embodiment.
  • the video decoding apparatus 25 may include a base layer decoder 29 and an enhancement layer decoder 19.
  • the enhancement layer decoder 19 may include an inverse quantization inverse transformer 28 and a motion compensator 27.
  • the motion compensator 27 may include a motion vector determiner 10 and a block reconstructor 26, according to an exemplary embodiment.
  • the video decoding apparatus 25 may be implemented by more components than the illustrated components, or the video decoding apparatus 25 may be implemented by fewer components than the illustrated components.
  • the video decoding apparatus 25 may perform decoding on the current block.
  • the current block may include a prediction unit and a current subunit.
  • the video decoding apparatus 25 may use the motion vector of the candidate block when decoding the current block.
  • the candidate block may include a reference unit and a reference subunit.
  • the video decoding apparatus 25 may receive bitstreams for each layer according to the scalable encoding scheme.
  • the number of layers of the bitstreams received by the video decoding apparatus 25 is not limited.
  • the first layer decoder 29 of the video decoding apparatus 25 receives and decodes the first layer stream
  • the second layer decoder 19 receives the second layer stream. An embodiment of decoding will be described in detail.
  • the video decoding apparatus 25 may receive a stream in which image sequences having different resolutions are encoded in different layers.
  • the low resolution image sequence may be reconstructed by decoding the first layer stream, and the high resolution image sequence may be reconstructed by decoding the second layer stream.
  • a multiview video may be decoded according to a scalable video coding scheme.
  • left view images may be reconstructed by decoding the first layer stream.
  • Right-view images may be reconstructed by further decoding the second layer stream in addition to the first layer stream.
  • the center view images may be reconstructed by decoding the first layer stream.
  • Left view images may be reconstructed by further decoding the second layer stream in addition to the first layer stream.
  • Right-view images may be reconstructed by further decoding the third layer stream in addition to the first layer stream.
  • a scalable video coding scheme based on temporal scalability may be performed. Images of the base frame rate may be reconstructed by decoding the first layer stream. The high frame rate images may be reconstructed by further decoding the second layer stream in addition to the first layer stream.
  • first layer images may be reconstructed from the first layer stream, and second layer images may be further reconstructed by further decoding the second layer stream with reference to the first layer reconstructed images.
  • the K-th layer images may be further reconstructed by further decoding the K-th layer stream with reference to the second layer reconstruction image.
  • the video decoding apparatus 25 obtains encoded data of the first layer images and the second layer images from the first layer stream and the second layer stream, and adds the encoded data to the motion vector and the inter layer prediction generated by the inter prediction. It is possible to further obtain the prediction information generated by.
  • the video decoding apparatus 25 may decode inter-predicted data for each layer, and decode inter-layer predicted data between a plurality of layers. Reconstruction through motion compensation and inter-layer decoding may be performed based on a coding unit or a prediction unit.
  • images may be reconstructed by performing motion compensation for the current image with reference to reconstructed images predicted through inter prediction of the same layer.
  • Motion compensation refers to an operation of reconstructing a reconstructed image of the current image by synthesizing the reference image determined using the motion vector of the current image and the residual component of the current image.
  • the video decoding apparatus 25 may perform interlayer decoding with reference to the prediction information of the first layer images in order to decode the second layer image predicted through the interlayer prediction.
  • Inter-layer decoding refers to an operation of reconstructing prediction information of the current image using prediction information of a reference block of another layer to determine prediction information of the current image.
  • the video decoding apparatus 25 may perform interlayer decoding for reconstructing third layer images predicted with reference to the second layer images.
  • the interlayer prediction structure will be described in detail later with reference to FIG. 3.
  • the second layer decoder 19 may decode the second layer stream without referring to the first layer image sequence. Therefore, care should be taken not to limit the interpretation that the second layer decoder 19 performs interlayer prediction in order to decode the second layer image sequence.
  • the video decoding apparatus 25 decodes each block of each image of the video.
  • the block may be a maximum coding unit, a coding unit, a prediction unit, a transformation unit, or the like among coding units having a tree structure.
  • the first layer decoder 29 may decode the first layer image by using encoding symbols of the parsed first layer image. If the video decoding apparatus 25 receives streams encoded based on coding units having a tree structure, the first layer decoder 29 may be configured based on the coding units having a tree structure for each maximum coding unit of the first layer stream. Decryption can be performed.
  • the first layer decoder 29 may perform entropy decoding for each largest coding unit to obtain encoded information and encoded data.
  • the first layer decoder 29 may reconstruct the residual component by performing inverse quantization and inverse transformation on the encoded data obtained from the stream.
  • the first layer decoder 29 according to another embodiment may directly receive a bitstream of quantized transform coefficients. As a result of performing inverse quantization and inverse transformation on the quantized transform coefficients, the residual component of the images may be reconstructed.
  • the first layer decoder 29 may determine the predicted image through motion compensation between the same layer images, and reconstruct the first layer images by combining the predicted image and the residual component.
  • the second layer decoder 19 may generate a second layer prediction image by using samples of the first layer reconstruction image.
  • the second layer decoder 19 may obtain a prediction error according to interlayer prediction by decoding the second layer stream.
  • the second layer decoder 19 may generate the second layer reconstruction image by combining the prediction error with the second layer prediction image.
  • the second layer decoder 19 may determine the second layer prediction image by using the first layer reconstructed image decoded by the first layer decoder 29.
  • the second layer decoder 19 may determine a block of the first layer image to which a block such as a coding unit or a prediction unit of the second layer image refers, according to the interlayer prediction structure. For example, a reconstruction block of the first layer image positioned corresponding to the position of the current block in the second layer image may be determined.
  • the second layer decoder 19 may determine the second layer prediction block by using the first layer reconstruction block corresponding to the second layer block.
  • the second layer decoder 19 may use the second layer prediction block determined by using the first layer reconstruction block according to the interlayer prediction structure as a reference image for interlayer prediction of the second layer original block. In this case, the second layer decoder 19 may reconstruct the second layer block by synthesizing the sample value of the second layer prediction block determined using the first layer reconstructed image and the residual component according to the interlayer prediction. Can be.
  • the second layer when the second layer performs inter-layer prediction with reference to the first layer, the second layer may be a current layer and the first layer may be a reference layer.
  • the current layer when the enhancement layer performs inter-layer prediction with reference to the base layer, the current layer may be referred to as an enhancement layer, and the reference layer may be referred to as a base layer.
  • the video decoding apparatus 25 may decode the first layer image before the second layer image.
  • the video decoding apparatus 25 may decode the base layer image before the enhancement layer image.
  • the stream can be received.
  • the data stream received by the video decoding apparatus 25 may be configured of network abstraction layer (NAL) units.
  • NAL network abstraction layer
  • the NAL unit may mean a network abstraction layer unit, which is a basic unit constituting the bitstream.
  • one or more NAL units may constitute a data stream.
  • the video decoding apparatus 25 may receive a data stream composed of one or more NAL (Network Abstraction Layer) units from the outside.
  • NAL Network Abstraction Layer
  • the video decoding apparatus 25 may receive the data stream, split the data stream into units of NAL units, and then decode each separated NAL unit.
  • Each NAL unit may include two bytes of header information.
  • the video decoding apparatus 25 may check the approximate information on the data inside each NAL unit by decoding the header information of two bytes included in each NAL unit.
  • the video decoding apparatus 25 may generate symbol data by performing source coding operations including inter prediction or intra prediction on base layer images.
  • the video decoding apparatus 25 generates symbol data by performing inter prediction or intra prediction, transformation, and quantization on samples of data units of base layer images, and performs entropy encoding on symbol data. You can create a layer stream.
  • the video decoding apparatus 25 may perform a filtering process in performing video decoding.
  • the video decoding apparatus 25 may generate symbol data with improved prediction by filtering the symbol data generated by performing inter prediction or intra prediction.
  • the video decoding apparatus 25 may generate an improved reconstructed image signal by filtering the reconstructed image signal.
  • the video decoding apparatus 25 may perform an additional filtering process in addition to the deblocking filtering process and the SAO process during in-loop filtering.
  • the video decoding apparatus 25 may receive a reference index of the current block, quantized transform coefficients, and a motion vector of the candidate block.
  • the inverse quantization inverse transform unit 28 may perform inverse quantization and inverse transformation on the received quantized transform coefficients of the current block to restore the residual data of the current block.
  • the motion compensator 27 may reconstruct the current block by performing motion compensation on the current block encoded through inter prediction.
  • the motion vector determining apparatus 10 may determine a motion vector for each block.
  • the motion vector determining apparatus 10 may determine prediction candidates including one or more candidate motion vectors for current block prediction for motion vector prediction.
  • the candidate block may include a collocated block or a neighbor block.
  • the motion vector determining apparatus 10 may determine one reference motion vector among candidate motion vectors included in the prediction candidates.
  • the motion vector determination apparatus 10 may determine a reference motion vector by selecting an optimal candidate motion vector among motion vectors included in the prediction candidates, and predict and determine a motion vector of the current block by using the reference motion vector. .
  • the block reconstruction unit 26 may determine the reference image of the current block indicated by the reference index of the current block received by the video decoding apparatus 25.
  • the motion vector of the current block determined by the motion vector determination apparatus 10 may determine a reference block indicated in the reference picture, and may synthesize the reference block and residual data of the current block to restore the current block.
  • the motion compensator 27 may reconstruct each block and then reconstruct the current image including the reconstructed blocks. Accordingly, in the video decoding apparatus 25, as the images are reconstructed, a video including the image sequence may be reconstructed.
  • the video decoding apparatus 25 may further include an in-loop filtering unit that performs deblocking filtering on the reconstructed image including the current block and the reconstructed blocks that are reconstructed as the blocks are reconstructed.
  • the video decoding apparatus 25 may receive the encoded video stream and decode the video stream to reconstruct the video. In this case, the video decoding apparatus 25 may parse the received video stream and extract the reference index and quantized transform coefficients of the current block and the motion vector of the candidate block from the video stream. In addition, the video decoding apparatus 25 receives the bitstream, performs entropy decoding on the bitstream, parses and extracts the reference index of the current block, the quantized transform coefficients, and the motion vector of the candidate block from the bitstream. It may further include a receiving unit.
  • the video decoding apparatus 25 may be combined with the video encoding apparatus 20 to generate a reconstructed image to be referred to for inter prediction of another image in the video encoding apparatus 20 described above with reference to FIG. 2A.
  • the video decoding apparatus 25 receives the reference index of the current block, the quantized transform coefficients, and the motion vector of the candidate block, which are generated and output from the video encoding apparatus 20 through inter prediction, transformation, and quantization.
  • the inversely quantized inverse transform unit 28 and the motion compensator 27 may output the finally reconstructed current image.
  • the reconstructed image output by the video decoding apparatus 25 may be used as a reference image for inter prediction of another image of the video encoding apparatus 20.
  • the video decoding apparatus 25 may operate differently depending on whether it is a merge mode or an advanced motion vector prediction (AMVP) when receiving data about a motion vector.
  • AMVP advanced motion vector prediction
  • the video decoding apparatus 25 may parse the received bitstream to determine whether the prediction mode is the merge mode or the AMVP.
  • the video decoding apparatus 25 may obtain a merge index from the received bitstream.
  • the merge index may be parsed to determine a motion vector of the current block.
  • the current block may be reconstructed using the determined motion vector.
  • the merge index may mean data used when the video encoding apparatus 20 transmits data for a motion vector determined by using a merge mode.
  • the video decoding apparatus 25 may obtain at least one of a differential motion vector, reference picture classification information, and a reference index from the received bitstream.
  • the obtained information may be parsed to determine a motion vector of the current block.
  • the current block may be reconstructed using the determined motion vector.
  • blocks in which video data is divided may be divided into coding units having a tree structure, and prediction units for inter prediction with respect to coding units may be used. As shown.
  • a video encoding method and apparatus therefor, a video decoding method, and an apparatus based on coding units and transformation units of a tree structure according to an embodiment will be described with reference to FIGS. 8 to 20.
  • the video decoding apparatus 25 may include a central processor (not shown) that collectively controls the motion vector determining apparatus 10, the block reconstruction unit 26, and the inverse quantization inverse transform unit 28. .
  • the motion vector determining apparatus 10 the block reconstructing unit 26, and the inverse quantization inverse transform unit 28 are operated by their own processors (not shown), and the processors (not shown) operate organically with each other.
  • the video decoding apparatus 25 may be operated as a whole.
  • the motion vector determining apparatus 10, the block reconstruction unit 26, and the inverse quantization inverse transformer 28 may be controlled. It may be.
  • the video decoding apparatus 25 may include one or more data storage units (not shown) in which input and output data of the motion vector determining apparatus 10, the block reconstruction unit 26, and the inverse quantization inverse transform unit 28 are stored. It may include.
  • the video decoding apparatus 25 may include a memory controller (not shown) that controls data input / output of the data storage unit (not shown).
  • the video decoding apparatus 25 may perform a video decoding operation including an inverse transform by operating in conjunction with an internal video decoding processor or an external video decoding processor to restore video through video decoding. Can be.
  • the internal video decoding processor of the video decoding apparatus 25 may include a video decoding processing module 25, a central processing unit, and a graphics processing unit, as well as a separate processor. It may also include the case of implementing.
  • various embodiments that may be implemented in the video decoding apparatus 25 according to an embodiment will be described with reference to FIGS. 3 to 7B.
  • FIG 3 illustrates an interlayer prediction structure 30 according to various embodiments.
  • FIG 3 illustrates an interlayer prediction structure according to various embodiments.
  • the video encoding apparatus 20 may predictively encode base view images, left view images, and right view images according to a playback sequence 30 of the multiview video prediction structure illustrated in FIG. 3. .
  • images of the same view are arranged in the horizontal direction. Therefore, left view images labeled 'Left' are arranged in a row in the horizontal direction, basic view images labeled 'Center' are arranged in a row in the horizontal direction, and right view images labeled 'Right' are arranged in a row in the horizontal direction. It is becoming.
  • the base view images may be center view images, in contrast to left / right view images.
  • images having the same POC order are arranged in the vertical direction.
  • the POC order of an image indicates a reproduction order of images constituting the video.
  • 'POC X' displayed in the multi-view video prediction structure 30 indicates a relative reproduction order of images located in a corresponding column. The smaller the number of X is, the higher the playback order is and the larger the playback order is, the slower the playback order is.
  • the left view images labeled 'Left' are arranged in the horizontal direction according to the POC order (playing order), and the base view images labeled 'Center' These images are arranged in the horizontal direction according to the POC order (playing order), and right-view images marked as 'Right' are arranged in the horizontal direction according to the POC order (playing order).
  • both the left view image and the right view image located in the same column as the base view image are images having different viewpoints but having the same POC order (playing order).
  • Each GOP includes images between successive anchor pictures and one anchor picture.
  • An anchor picture is a random access point.
  • the anchor picture When a video is played at random, when the playback position is randomly selected from among images arranged according to the playback order of the video, that is, the POC order, the anchor picture has the nearest POC order at the playback position. Is played.
  • Base view images include base view anchor pictures 31, 32, 33, 34, and 35
  • left view images include left view anchor pictures 131, 132, 133, 134, and 135
  • the images include right-view anchor pictures 231, 232, 233, 234, and 235.
  • Multi-view images may be played back in GOP order and predicted (restored).
  • images included in GOP 0 may be reproduced, and then images included in GOP 1 may be reproduced. That is, images included in each GOP may be reproduced in the order of GOP 0, GOP 1, GOP 2, and GOP 3.
  • the images included in GOP 1 may be predicted (restored). That is, images included in each GOP may be predicted (restored) in the order of GOP 0, GOP 1, GOP 2, and GOP 3.
  • both inter-view prediction (inter layer prediction) and inter prediction are performed on the images.
  • the image at which the arrow starts is a reference image
  • the image at which the arrow ends is an image predicted using the reference image.
  • the prediction result of the base view images may be encoded and output in the form of a base view image stream, and the prediction result of the additional view images may be encoded and output in the form of a layer bitstream.
  • the prediction encoding result of the left view images may be output as a base layer bitstream, and the prediction encoding result of the right view images may be output as an enhancement layer bitstream.
  • B-picture type pictures are predicted with reference to an I-picture type anchor picture followed by a POC order and an I-picture type anchor picture following it.
  • the b-picture type pictures are predicted by referring to an I-picture type anchor picture followed by a POC order and a subsequent B-picture type picture or by referring to a B-picture type picture followed by a POC order and an I-picture type anchor picture following it. .
  • inter-view prediction (inter layer prediction) referring to different view images and inter prediction referring to the same view images are performed, respectively.
  • inter-view prediction (inter layer prediction) with reference to the base view anchor pictures 31, 32, 33, 34, and 35 having the same POC order, respectively. This can be done.
  • the base view images 31, 32, 33, 34, 35 having the same POC order or the left view anchor pictures 131, 132, 133, 134 and 135 may perform inter-view prediction.
  • other views other than the anchor pictures 131, 132, 133, 134, 135, 231, 232, 233, 234, and 235 may have different viewpoint images having the same POC.
  • Reference inter-view prediction (inter layer prediction) may be performed.
  • the remaining images other than the anchor pictures 131, 132, 133, 134, 135, 231, 232, 233, 234, and 235 among the left view images and the right view images are predicted with reference to the same view images.
  • left view images and the right view images may not be predicted with reference to the anchor picture having the playback order that precedes the additional view images of the same view. That is, for inter prediction of the current left view image, left view images other than a left view anchor picture having a playback order preceding the current left view image may be referenced. Similarly, for inter prediction of a current right view point image, right view images except for a right view anchor picture whose reproduction order precedes the current right view point image may be referred to.
  • the left view image that belongs to the previous GOP that precedes the current GOP to which the current left view image belongs is not referenced and is left view point that belongs to the current GOP but is reconstructed before the current left view image.
  • the prediction is performed with reference to the image. The same applies to the right view image.
  • the video decoding apparatus 25 may reconstruct the base view images, the left view images, and the right view images according to the reproduction order 30 of the multiview video prediction structure shown in FIG. 3.
  • the left view images may be reconstructed through inter-view disparity compensation referring to the base view images and inter motion compensation referring to the left view images.
  • the right view images may be reconstructed through inter-view disparity compensation referring to the base view images and the left view images and inter motion compensation referring to the right view images.
  • Reference images must be reconstructed first for disparity compensation and motion compensation of left view images and right view images.
  • the left view images may be reconstructed through inter motion compensation referring to the reconstructed left view reference image.
  • the right view images may be reconstructed through inter motion compensation referring to the reconstructed right view reference image.
  • a left view image belonging to a previous GOP that precedes the current GOP to which the current left view image belongs is not referenced, and is left in the current GOP but reconstructed before the current left view image. It is preferable that only the viewpoint image is referred to. The same applies to the right view image.
  • the video decoding apparatus 25 not only performs disparity compensation (or interlayer prediction compensation) to encode / decode a multiview image, but also performs inter-image motion through inter-view motion vector prediction. Compensation (or interlayer motion prediction compensation) may be performed.
  • 4A and 4B illustrate a motion vector determination method according to various embodiments.
  • 4A illustrates a method of determining the second motion vector 48 of the current sub unit 44 belonging to the current layer.
  • the current layer 40 may include the prediction unit 42.
  • the prediction unit 42 may be divided into a plurality of sub units 43.
  • the prediction candidate determiner 11 may use a pixel included in the current subunit when determining the reference subunit corresponding to the current subunit.
  • the prediction candidate determiner 11 selects the second pixel, which is a pixel in the reference unit 45, corresponding to the first pixel, which is a pixel at a predetermined position inside the current sub unit 44, to the disparity vector 49.
  • the reference subunit 46 including the second pixel may be determined as the reference subunit 46 corresponding to the current subunit 44.
  • a pixel at a predetermined position inside the current sub unit 44 may be positioned at an upper left end of the current sub unit 44. According to another exemplary embodiment, a pixel at a predetermined position inside the current sub unit 44 may be positioned at the center of the current sub unit 44. According to another exemplary embodiment, a pixel at a predetermined position inside the current sub unit 44 may be a pixel closest to the center of the prediction unit among the pixels of the current sub unit 44.
  • the disparity vector 49 according to an embodiment may correspond to the prediction unit 42 and the reference unit 45. Alternatively, the disparity vector 49 according to an embodiment may correspond to the current sub unit 44 and the reference sub unit 46. The disparity vector according to an embodiment may be determined for each prediction unit or may be determined for each sub unit 43.
  • the first motion vector 47 may mean a motion vector used for inter prediction of the reference subunit 46.
  • the second motion vector 48 may mean a motion vector used for inter prediction of the current sub unit 44.
  • the motion vector determining apparatus 10 may determine the first motion vector 47 as the second motion vector 48 when the prediction is performed in the sub unit 43.
  • the motion vector determination apparatus 10 may determine a sub-motion vector prediction candidate for inter prediction of the current sub-unit 44 using the first motion vector 47.
  • the motion vector determining apparatus 10 may use the first motion vector 47 as a candidate motion vector for determining the second motion vector 48.
  • the motion vector determination apparatus 10 may determine the first motion vector 47 as a sub-motion vector prediction candidate.
  • the sub-motion vector prediction candidate may be one of candidate motion vectors for inter prediction of the current sub-unit 44.
  • the motion vector determining apparatus 10 may include the first motion vector 47 as prediction candidates for determining the second motion vector 48.
  • the motion vector determining apparatus 10 may select a motion vector used for inter prediction or inter layer prediction of the current sub-unit 44 from among the motion vectors included in the prediction candidates.
  • a block located in the periphery of the reference subunit 46 or a block located within the reference subunit 46 may be used. Can be.
  • the motion vector determining apparatus 10 may determine a motion vector of the reference subunit 46 by predicting a motion vector of a block including a pixel at a predetermined position in the reference subunit 46.
  • the motion vector determining apparatus 10 may determine a motion vector of the reference subunit 46 by predicting a motion vector of a block having a predetermined size including a pixel at the upper left of the reference subunit 46.
  • the motion vector determining apparatus 10 may determine a motion vector of the reference subunit 46 by predicting a motion vector of a block having a predetermined size including a pixel in the center of the reference subunit 46.
  • the motion vector determining apparatus 10 may predict a motion vector of a block having a predetermined size including a pixel closest to the center of the reference unit 45 among the pixels in the reference subunit 46 to determine the reference subunit ( 46 can be determined.
  • the second motion vector determining apparatus 10 When the motion vector determining apparatus 10 according to an embodiment performs the inter prediction or the inter layer prediction as the sub unit 43, the second motion vector determining apparatus 10 does not determine whether another candidate motion vector is the first motion vector 47.
  • the motion vector 48 may be determined as the first motion vector 47.
  • FIG. 4B is a diagram for describing an embodiment of a method of determining a motion vector of the reference subunit 46.
  • the motion vector determining apparatus 10 may determine a motion vector of the reference subunit 46 by predicting a motion vector of a block including a pixel at a predetermined position in the reference subunit 46.
  • the motion vector determining apparatus 10 predicts a motion vector of a block of a predetermined size including a pixel closest to the center of the reference unit 45 among the pixels in the reference subunit 46 to thereby refer to the reference subunit.
  • a motion vector of 46 can be determined.
  • the pixel closest to the center of the reference unit 45 among the pixels in the sub unit 46 is one of the first pixel 57, the second pixel 58, the third pixel 59, and the fourth pixel 60. Can be.
  • the motion vector determining apparatus 10 when the reference unit 45 is divided into four blocks, includes the reference subunit 46 of the first pixels 57 to 4th pixel 60.
  • the motion vector corresponding to the pixel may be determined as the first motion vector 47.
  • the motion vector corresponding to the first pixel 57 may be determined as the first motion vector 47.
  • the motion vector determining apparatus 10 when the reference unit 45 is divided into four blocks, includes the reference subunit 46 of the first pixels 57 to 4th pixel 60.
  • the motion vector of the block having a predetermined size corresponding to the pixel may be determined as the first motion vector 47.
  • 5A through 5F illustrate a method of splitting a prediction unit, according to various embodiments of the present disclosure.
  • FIG. 5A illustrates an embodiment in which the prediction candidate determiner 11 splits a first prediction unit 51 having a square size into four sub units.
  • the size of the first prediction unit 51 may be 16 ⁇ 16.
  • the size of the first prediction unit 51 may be 2N ⁇ 2N.
  • the size of the first prediction unit 51 may be 16 ⁇ 16 or more.
  • the size of the first prediction unit 51 is 16 ⁇ 16 because it cannot be divided into four sub units. It may be abnormal.
  • FIG. 5B illustrates an embodiment in which the prediction candidate determiner 11 splits a second prediction unit 52 having a square size into 16 sub units.
  • the size of the second prediction unit 52 may be 64 ⁇ 64.
  • the size of the second prediction unit 52 may be 2N ⁇ 2N.
  • the size of the second prediction unit 52 may be 32 ⁇ 32 or more. If the size of the second prediction unit 52 is less than 32 ⁇ 32 when the minimum size of the sub unit is 8 ⁇ 8, the size of the second prediction unit 52 is 32 ⁇ 32 It may be abnormal.
  • FIG. 5C illustrates an embodiment in which the prediction candidate determiner 11 splits a third prediction unit 53 having a rectangular size into two sub units.
  • the size of the third prediction unit 53 may be 64 ⁇ 32.
  • the size of the third prediction unit 53 may be 2N ⁇ N.
  • the size of the third prediction unit 53 may be 16 ⁇ 8 or more.
  • the size of the third prediction unit 53 is 16 ⁇ 8 because the size of the third prediction unit 53 cannot be divided into two sub units. It may be abnormal.
  • FIG. 5D illustrates an embodiment in which the prediction candidate determiner 11 splits a fourth prediction unit 54 having a rectangular size into two sub units.
  • the size of the fourth prediction unit 54 may be 32 ⁇ 64.
  • the size of the fourth prediction unit 54 may be N ⁇ 2N.
  • the size of the fourth prediction unit 54 may be 8 ⁇ 16 or more. If the size of the fourth prediction unit 54 cannot be divided into two sub-units when the size of the fourth prediction unit 54 is less than 8 ⁇ 16 when the minimum size of the sub-unit is 8 ⁇ 8, the size of the fourth prediction unit 54 is 8 ⁇ 16. It may be abnormal.
  • FIG. 5E illustrates an embodiment in which the prediction candidate determiner 11 splits a fifth prediction unit 55 having a rectangular size into eight sub units.
  • the size of the fifth prediction unit 55 may be 32 ⁇ 16.
  • the size of the fifth prediction unit 55 may be 2N ⁇ N.
  • the size of the fifth prediction unit 55 may be 32 ⁇ 16 or more.
  • the size of the fifth prediction unit 55 may be 32 ⁇ 16. It may be abnormal.
  • 5F illustrates an embodiment in which the prediction candidate determiner 11 splits the sixth prediction unit 56 having a rectangular size into eight sub-units.
  • the size of the sixth prediction unit 56 may be 32 ⁇ 64.
  • the size of the sixth prediction unit 56 may be N ⁇ 2N.
  • the size of the sixth prediction unit 56 may be 16 ⁇ 32 or more. When the size of the sixth prediction unit 56 is less than 16 ⁇ 32 when the minimum size of the sub unit is 8 ⁇ 8, the size of the sixth prediction unit 56 may be 16 ⁇ 32. It may be abnormal.
  • 6A through 6C illustrate syntax or semantics for a motion vector determining method according to various embodiments of the present disclosure.
  • FIG. 6A illustrates a syntax element for a minimum size of a sub unit in relation to a method of determining a motion vector for the sub unit.
  • the first syntax element 61 indicates parsing a flag related to inter-layer motion vector prediction corresponding to the ID of the current layer.
  • the second syntax element 62 indicates parsing the size of the sub unit when dividing the prediction unit into sub units.
  • the size of the sub unit is called sub_pb_size
  • a value of "log2 (sub_pb_size) -3" is signaled.
  • the sub unit size may be 8 or more. Therefore, the minimum size of the sub unit may be 8 ⁇ 8.
  • FIG. 6B is a diagram for describing semantics of a method of determining whether to perform prediction in sub units.
  • a merge candidate list may be used.
  • the merge candidate list used in the HEVC may be used.
  • the sum of the horizontal size and the vertical size of the prediction unit is not 12
  • an extended merge candidate list may be used rather than the merge candidate list used in HEVC.
  • an operation of dividing the prediction unit into a plurality of sub units may be performed.
  • whether prediction is performed in sub units may vary according to the sum of the horizontal size and the vertical size of the prediction unit.
  • inter prediction when the sum of the horizontal size and the vertical size of the prediction unit is equal to 12, inter prediction is performed in the prediction unit, but inter prediction may not be performed in the sub unit.
  • the size of the prediction unit is 8 ⁇ 4 or 4 ⁇ 8, inter prediction may be performed in the prediction unit, but inter prediction may not be performed in the sub unit.
  • inter prediction when the sum of the horizontal size and the vertical size of the prediction unit is not equal to 12, inter prediction may be performed for each sub unit. As another example, when the size of the prediction unit is 16 ⁇ 8, inter prediction may be performed for each sub unit.
  • FIG. 6C is a semantics related to a method of determining a size of a unit in which inter prediction or inter layer prediction is performed by comparing a size of a preset sub unit and a size of a prediction unit.
  • nSbW denotes a horizontal size of a sub unit
  • nPbW denotes a horizontal size of a prediction unit currently encoded or decoded
  • nSbH denotes a vertical size of a sub-unit
  • nPbH denotes a vertical size of a prediction unit currently encoded or decoded
  • SubPbSize May mean a preset sub unit size and minSize may mean a minimum sub unit size.
  • the motion vector determination apparatus 10 may determine the size of a sub unit by comparing the size of a prediction unit currently encoded or decoded with a size of a preset sub unit.
  • the motion vector determining apparatus 10 determines that the horizontal size of the prediction unit to be currently encoded or decoded is smaller than or equal to the horizontal size of the preset sub-unit.
  • the size may be determined to be equal to the horizontal size of the prediction unit.
  • the motion vector determining apparatus 10 may predetermine the horizontal size of the sub unit when the horizontal size of the prediction unit that is currently encoded or decoded is larger than the horizontal size of the preset sub unit.
  • the determined minimum size can be determined.
  • the motion vector determining apparatus 10 may determine the vertical size of the sub-unit when the vertical size of the prediction unit that is currently encoded or decoded is smaller than or equal to the vertical size of the preset sub-unit. May be determined to be equal to the vertical size of the prediction unit.
  • the motion vector determining apparatus 10 may preset the vertical size of the sub-unit in advance when the vertical size of the prediction unit that is currently encoded or decoded is larger than the preset vertical size of the sub-unit.
  • the determined minimum size can be determined.
  • FIG. 7A is a diagram for describing a motion vector determining method according to an intra prediction region of a reference unit, according to an embodiment.
  • the prediction unit 72 included in the current layer 70 may be divided into sub units 73.
  • the prediction unit 72 may correspond to the reference unit 75 included in the reference layer 71.
  • the motion vector determining apparatus 10 may map the prediction unit 72 to the reference unit 75 using the first disparity vector 77.
  • the first disparity vector 77 and the second disparity vector 78 may be related.
  • the first disparity vector 77 used when determining the reference unit 75 corresponding to the prediction unit 72 may select the second reference subunit 79 corresponding to the current subunit 74. It may be the same as the second disparity vector 78 used in the determination.
  • the motion vector determining apparatus 10 may determine the second disparity vector 78 by using the first disparity vector 77.
  • the encoding mode of the second reference sub unit 79 included in the reference layer 71 corresponding to the current sub unit 74 included in the current layer 70 may be an intra mode.
  • the second reference sub unit 79 When the second reference sub unit 79 is encoded in the intra mode, there may be no motion vector corresponding to the second reference sub unit 79.
  • the motion vector determining apparatus 10 sets the second disparity vector 78 to the current subunit 74. It can be determined by the motion vector used for the prediction of. For example, when the encoding mode of the second reference subunit 79 is the intra mode, the video decoding apparatus 25 performs interlayer prediction using the second disparity vector 78 to perform the current subunit 74. ) Can be decrypted.
  • the video decoding apparatus 25 performs interlayer prediction using the second disparity vector 78, the pixel value of the current subunit 74 is set to the value of the second reference subunit 79. It may be equal to the pixel value.
  • FIG. 7B is a diagram for describing a method of dividing a reference block, according to an exemplary embodiment.
  • the reference unit 75 may be positioned on a predetermined boundary in the image of the reference layer 71. Therefore, the motion vector determining apparatus 10 may consider a predetermined boundary when dividing the reference unit 75 into a plurality of blocks.
  • a predetermined boundary may be formed by the coding unit.
  • the motion vector determination apparatus 10 may divide the reference unit 75 into a plurality of blocks in consideration of a boundary line for dividing coding units for encoding the reference image.
  • the motion vector determining apparatus 10 may include the first reference subunit 14 to the fourth reference sub such that the reference unit 75 is divided into a plurality of blocks according to the boundary line 80 formed by the coding unit.
  • the size of the unit 17 can be adjusted.
  • a method of determining the reference sub-unit using pixels may refer to the above description with reference to FIG. 4.
  • a method for determining a motion vector after the reference sub-unit is determined may refer to the above description with reference to FIGS. 1 and 2B.
  • FIG. 8 is a block diagram of a video encoding apparatus 100 based on coding units having a tree structure, according to an embodiment of the present invention.
  • the video encoding apparatus 100 including video prediction based on coding units having a tree structure includes a coding unit determiner 120 and an output unit 130.
  • the video encoding apparatus 100 that includes video prediction based on coding units having a tree structure is abbreviated as “video encoding apparatus 100”.
  • the coding unit determiner 120 may partition the current picture based on a maximum coding unit that is a coding unit having a maximum size for the current picture of the image. If the current picture is larger than the maximum coding unit, image data of the current picture may be split into at least one maximum coding unit.
  • the maximum coding unit may be a data unit having a size of 32x32, 64x64, 128x128, 256x256, or the like, and may be a square data unit having a square of two horizontal and vertical sizes.
  • the coding unit according to an embodiment may be characterized by a maximum size and depth.
  • the depth indicates the number of times the coding unit is spatially divided from the maximum coding unit, and as the depth increases, the coding unit for each depth may be split from the maximum coding unit to the minimum coding unit.
  • the depth of the largest coding unit is the highest depth and the minimum coding unit may be defined as the lowest coding unit.
  • the maximum coding unit decreases as the depth increases, the size of the coding unit for each depth decreases, and thus, the coding unit of the higher depth may include coding units of a plurality of lower depths.
  • the image data of the current picture may be divided into maximum coding units according to the maximum size of the coding unit, and each maximum coding unit may include coding units divided by depths. Since the maximum coding unit is divided according to depths, image data of a spatial domain included in the maximum coding unit may be hierarchically classified according to depths.
  • the maximum depth and the maximum size of the coding unit that limit the total number of times of hierarchically dividing the height and the width of the maximum coding unit may be preset.
  • the coding unit determiner 120 encodes at least one divided region obtained by dividing the region of the largest coding unit for each depth, and determines a depth at which the final encoding result is output for each of the at least one divided region. That is, the coding unit determiner 120 encodes the image data in coding units according to depths for each maximum coding unit of the current picture, and selects the depth at which the smallest coding error occurs to determine the final depth. The determined final depth and the image data for each maximum coding unit are output to the outputter 130.
  • Image data in the largest coding unit is encoded based on coding units according to depths according to at least one depth less than or equal to the maximum depth, and encoding results based on the coding units for each depth are compared. As a result of comparing the encoding error of the coding units according to depths, a depth having the smallest encoding error may be selected. At least one final depth may be determined for each maximum coding unit.
  • the coding unit is divided into hierarchically and the number of coding units increases.
  • a coding error of each data is measured, and whether or not division into a lower depth is determined. Therefore, even in the data included in one largest coding unit, since the encoding error for each depth is different according to the position, the final depth may be differently determined according to the position. Accordingly, one or more final depths may be set for one maximum coding unit, and data of the maximum coding unit may be partitioned according to coding units of one or more final depths.
  • the coding unit determiner 120 may determine coding units having a tree structure included in the current maximum coding unit.
  • the coding units according to the tree structure according to an embodiment include coding units having a depth determined as a final depth among all deeper coding units included in the current maximum coding unit.
  • the coding unit of the final depth may be determined hierarchically according to the depth in the same region within the maximum coding unit, and may be independently determined for the other regions.
  • the final depth for the current area can be determined independently of the final depth for the other area.
  • the maximum depth according to an embodiment is an index related to the number of divisions from the maximum coding unit to the minimum coding unit.
  • the first maximum depth according to an embodiment may represent the total number of divisions from the maximum coding unit to the minimum coding unit.
  • the second maximum depth according to an embodiment may represent the total number of depth levels from the maximum coding unit to the minimum coding unit. For example, when the depth of the largest coding unit is 0, the depth of the coding unit obtained by dividing the largest coding unit once may be set to 1, and the depth of the coding unit divided twice may be set to 2. In this case, if the coding unit divided four times from the maximum coding unit is the minimum coding unit, since depth levels of 0, 1, 2, 3, and 4 exist, the first maximum depth is set to 4 and the second maximum depth is set to 5. Can be.
  • Predictive encoding and transformation of the largest coding unit may be performed. Similarly, prediction encoding and transformation are performed based on depth-wise coding units for each maximum coding unit and for each depth less than or equal to the maximum depth.
  • encoding including prediction encoding and transformation should be performed on all the coding units for each depth generated as the depth deepens.
  • the prediction encoding and the transformation will be described based on the coding unit of the current depth among at least one maximum coding unit.
  • the video encoding apparatus 100 may variously select a size or shape of a data unit for encoding image data.
  • the encoding of the image data is performed through prediction encoding, transforming, entropy encoding, and the like.
  • the same data unit may be used in every step, or the data unit may be changed in steps.
  • the video encoding apparatus 100 may select not only a coding unit for encoding the image data, but also a data unit different from the coding unit in order to perform predictive encoding of the image data in the coding unit.
  • prediction encoding may be performed based on coding units of a final depth, that is, stranger undivided coding units, according to an embodiment.
  • a more strange undivided coding unit that is the basis of prediction coding is referred to as a 'prediction unit'.
  • the partition in which the prediction unit is divided may include a data unit in which at least one of the prediction unit and the height and the width of the prediction unit are divided.
  • the partition may be a data unit in which the prediction unit of the coding unit is split, and the prediction unit may be a partition having the same size as the coding unit.
  • the partition mode may be formed in a geometric form, as well as partitions divided in an asymmetric ratio such as 1: n or n: 1, as well as symmetric partitions in which a height or width of a prediction unit is divided in a symmetrical ratio. It may optionally include partitioned partitions, arbitrary types of partitions, and the like.
  • the prediction mode of the prediction unit may be at least one of an intra mode, an inter mode, and a skip mode.
  • the intra mode and the inter mode may be performed on partitions having sizes of 2N ⁇ 2N, 2N ⁇ N, N ⁇ 2N, and N ⁇ N.
  • the skip mode may be performed only for partitions having a size of 2N ⁇ 2N.
  • the encoding may be performed independently for each prediction unit within the coding unit to select a prediction mode having the smallest encoding error.
  • the video encoding apparatus 100 may perform conversion of image data of a coding unit based on not only a coding unit for encoding image data, but also a data unit different from the coding unit.
  • the transformation may be performed based on a transformation unit having a size smaller than or equal to the coding unit.
  • the transformation unit may include a data unit for intra mode and a transformation unit for inter mode.
  • the transformation unit in the coding unit is also recursively divided into smaller transformation units, so that the residual image data of the coding unit may depend on the tree structure according to the transformation depth. Can be partitioned according to the conversion unit.
  • a transform depth indicating a number of divisions between the height and the width of the coding unit divided to the transform unit may be set. For example, if the size of the transform unit of the current coding unit of size 2Nx2N is 2Nx2N, the transform depth is 0, the transform depth 1 if the size of the transform unit is NxN, and the transform depth 2 if the size of the transform unit is N / 2xN / 2. Can be. That is, the transformation unit having a tree structure may also be set for the transformation unit according to the transformation depth.
  • the split information for each depth requires not only depth but also prediction related information and transformation related information. Accordingly, the coding unit determiner 120 may determine not only the depth that generates the minimum coding error, but also a partition mode in which the prediction unit is divided into partitions, a prediction mode for each prediction unit, and a size of a transformation unit for transformation.
  • a method of determining a coding unit, a prediction unit / partition, and a transformation unit according to a tree structure of a maximum coding unit according to an embodiment will be described in detail with reference to FIGS. 9 to 19.
  • the coding unit determiner 120 may measure a coding error of coding units according to depths using a Lagrangian Multiplier-based rate-distortion optimization technique.
  • the output unit 130 outputs the image data and the split information according to depths of the maximum coding unit, which are encoded based on at least one depth determined by the coding unit determiner 120, in a bitstream form.
  • the encoded image data may be a result of encoding residual image data of the image.
  • the split information for each depth may include depth information, partition mode information of a prediction unit, prediction mode information, split information of a transformation unit, and the like.
  • the final depth information may be defined using depth-specific segmentation information indicating whether to encode in a coding unit of a lower depth rather than encoding the current depth. If the current depth of the current coding unit is a depth, since the current coding unit is encoded in a coding unit of the current depth, split information of the current depth may be defined so that it is no longer divided into lower depths. On the contrary, if the current depth of the current coding unit is not the depth, encoding should be attempted using the coding unit of the lower depth, and thus split information of the current depth may be defined to be divided into coding units of the lower depth.
  • encoding is performed on the coding unit divided into the coding units of the lower depth. Since at least one coding unit of a lower depth exists in the coding unit of the current depth, encoding may be repeatedly performed for each coding unit of each lower depth, and recursive coding may be performed for each coding unit of the same depth.
  • coding units having a tree structure are determined in one largest coding unit and at least one split information should be determined for each coding unit of a depth, at least one split information may be determined for one maximum coding unit.
  • the depth since the data of the largest coding unit is partitioned hierarchically according to the depth, the depth may be different for each location, and thus depth and split information may be set for the data.
  • the output unit 130 may allocate encoding information about a corresponding depth and an encoding mode to at least one of a coding unit, a prediction unit, and a minimum unit included in the maximum coding unit.
  • the minimum unit according to an embodiment is a square data unit having a size obtained by dividing a minimum coding unit, which is the lowest depth, into four divisions.
  • the minimum unit according to an embodiment may be a square data unit having a maximum size that may be included in all coding units, prediction units, partition units, and transformation units included in the maximum coding unit.
  • the encoding information output through the output unit 130 may be classified into encoding information according to depth coding units and encoding information according to prediction units.
  • the encoding information for each coding unit according to depth may include prediction mode information and partition size information.
  • the encoding information transmitted for each prediction unit includes information about an estimation direction of the inter mode, information about a reference image index of the inter mode, information about a motion vector, information about a chroma component of an intra mode, and information about an inter mode of an intra mode. And the like.
  • Information about the maximum size and information about the maximum depth of the coding unit defined for each picture, slice, or GOP may be inserted into a header, a sequence parameter set, or a picture parameter set of the bitstream.
  • the information on the maximum size of the transform unit and the minimum size of the transform unit allowed for the current video may also be output through a header, a sequence parameter set, a picture parameter set, or the like of the bitstream.
  • the output unit 130 may encode and output reference information, prediction information, slice type information, and the like related to prediction.
  • a coding unit according to depths is a coding unit having a size in which a height and a width of a coding unit of one layer higher depth are divided by half. That is, if the size of the coding unit of the current depth is 2Nx2N, the size of the coding unit of the lower depth is NxN.
  • the current coding unit having a size of 2N ⁇ 2N may include up to four lower depth coding units having a size of N ⁇ N.
  • the video encoding apparatus 100 determines a coding unit having an optimal shape and size for each maximum coding unit based on the size and the maximum depth of the maximum coding unit determined in consideration of the characteristics of the current picture. Coding units may be configured. In addition, since each of the maximum coding units may be encoded in various prediction modes and transformation methods, an optimal coding mode may be determined in consideration of image characteristics of coding units having various image sizes.
  • the video encoding apparatus may adjust the coding unit in consideration of the image characteristics while increasing the maximum size of the coding unit in consideration of the size of the image, thereby increasing image compression efficiency.
  • the video encoding apparatus 20 described above with reference to FIG. 2A may include as many video encoding apparatuses 100 as the number of layers for encoding single layer images for each layer of a multilayer video.
  • the coding unit determiner 120 determines a prediction unit for inter-image prediction for each coding unit having a tree structure for each maximum coding unit, and for each prediction unit. Inter-prediction may be performed.
  • the coding unit determiner 120 determines a coding unit and a prediction unit having a tree structure for each maximum coding unit, and performs inter prediction for each prediction unit. Can be.
  • the video encoding apparatus 100 may encode the luminance difference to compensate for the luminance difference between the first layer image and the second layer image. However, whether to perform luminance may be determined according to an encoding mode of a coding unit. For example, luminance compensation may be performed only for prediction units having a size of 2N ⁇ 2N.
  • FIG. 9 is a block diagram of a video decoding apparatus 200 based on coding units having a tree structure, according to various embodiments.
  • a video decoding apparatus 200 including video prediction based on coding units having a tree structure includes a receiver 210, image data and encoding information extractor 220, and image data decoder 230. do.
  • the video decoding apparatus 200 that includes video prediction based on coding units having a tree structure is abbreviated as “video decoding apparatus 200”.
  • the receiver 210 receives and parses a bitstream of an encoded video.
  • the image data and encoding information extractor 220 extracts image data encoded for each coding unit from the parsed bitstream according to coding units having a tree structure for each maximum coding unit, and outputs the encoded image data to the image data decoder 230.
  • the image data and encoding information extractor 220 may extract information about a maximum size of a coding unit of the current picture from a header, a sequence parameter set, or a picture parameter set for the current picture.
  • the image data and encoding information extractor 220 extracts the final depth and the split information of the coding units having a tree structure for each maximum coding unit from the parsed bitstream.
  • the extracted final depth and split information are output to the image data decoder 230. That is, the image data of the bit string may be divided into maximum coding units so that the image data decoder 230 may decode the image data for each maximum coding unit.
  • the depth and split information for each largest coding unit may be set for one or more depth information, and the split information for each depth may include partition mode information, prediction mode information, split information of a transform unit, and the like, of a corresponding coding unit. .
  • depth-specific segmentation information may be extracted.
  • the depth and split information for each largest coding unit extracted by the image data and encoding information extractor 220 are repeatedly used for each coding unit for each deeper coding unit, as in the video encoding apparatus 100 according to an exemplary embodiment. Depth and split information determined to perform encoding to generate a minimum encoding error. Therefore, the video decoding apparatus 200 may reconstruct an image by decoding data according to an encoding method that generates a minimum encoding error.
  • the image data and the encoding information extractor 220 may use the predetermined data unit. Depth and segmentation information can be extracted for each. If the depth and the split information of the corresponding maximum coding unit are recorded for each predetermined data unit, the predetermined data units having the same depth and the split information may be inferred as data units included in the same maximum coding unit.
  • the image data decoder 230 reconstructs the current picture by decoding image data of each maximum coding unit based on the depth and the split information for each maximum coding unit. That is, the image data decoder 230 may decode the encoded image data based on the read partition mode, the prediction mode, and the transformation unit for each coding unit among the coding units having the tree structure included in the maximum coding unit. Can be.
  • the decoding process may include a prediction process including intra prediction and motion compensation, and an inverse transform process.
  • the image data decoder 230 may perform intra prediction or motion compensation according to each partition and prediction mode for each coding unit, based on the partition mode information and the prediction mode information of the prediction unit of the coding unit according to depths.
  • the image data decoder 230 may read transform unit information having a tree structure for each coding unit, and perform inverse transform based on the transformation unit for each coding unit, for inverse transformation for each largest coding unit. Through inverse transformation, the pixel value of the spatial region of the coding unit may be restored.
  • the image data decoder 230 may determine the depth of the current maximum coding unit by using the split information for each depth. If the split information indicates that the split information is no longer divided at the current depth, the current depth is the depth. Therefore, the image data decoder 230 may decode the coding unit of the current depth using the partition mode, the prediction mode, and the transformation unit size information of the prediction unit, for the image data of the current maximum coding unit.
  • the image data decoder 230 It may be regarded as one data unit to be decoded in the same encoding mode.
  • the decoding of the current coding unit may be performed by obtaining information about an encoding mode for each coding unit determined in this way.
  • the video decoding apparatus 25 described above with reference to FIG. 2B may be configured to decode the received first layer image stream and the second layer image stream to reconstruct the first layer images and the second layer images. 200) may be included as many as the number of viewpoints.
  • the image data decoder 230 of the video decoding apparatus 200 may maximize the samples of the first layer images extracted from the first layer image stream by the extractor 220. It may be divided into coding units having a tree structure of the coding units. The image data decoder 230 may reconstruct the first layer images by performing motion compensation for each coding unit according to the tree structure of the samples of the first layer images, for each prediction unit for inter-image prediction.
  • the image data decoder 230 of the video decoding apparatus 200 may maximize the samples of the second layer images extracted from the second layer image stream by the extractor 220. It may be divided into coding units having a tree structure of the coding units. The image data decoder 230 may reconstruct the second layer images by performing motion compensation for each prediction unit for inter-image prediction for each coding unit of the samples of the second layer images.
  • the extractor 220 may obtain information related to the luminance error from the bitstream to compensate for the luminance difference between the first layer image and the second layer image. However, whether to perform luminance may be determined according to an encoding mode of a coding unit. For example, luminance compensation may be performed only for prediction units having a size of 2N ⁇ 2N.
  • the video decoding apparatus 200 may obtain information about a coding unit that generates a minimum coding error by recursively encoding each maximum coding unit in the encoding process, and use the same to decode the current picture. That is, decoding of encoded image data of coding units having a tree structure determined as an optimal coding unit for each maximum coding unit can be performed.
  • the image data is efficiently decoded according to the size and encoding mode of a coding unit adaptively determined according to the characteristics of the image using the optimal split information transmitted from the encoding end. Can be restored
  • FIG. 10 illustrates a concept of coding units, according to various embodiments.
  • a size of a coding unit may be expressed by a width x height, and may include 32x32, 16x16, and 8x8 from a coding unit having a size of 64x64.
  • Coding units of size 64x64 may be partitioned into partitions of size 64x64, 64x32, 32x64, and 32x32, coding units of size 32x32 are partitions of size 32x32, 32x16, 16x32, and 16x16, and coding units of size 16x16 are 16x16.
  • Coding units of size 8x8 may be divided into partitions of size 8x8, 8x4, 4x8, and 4x4, into partitions of 16x8, 8x16, and 8x8.
  • the resolution is set to 1920x1080, the maximum size of the coding unit is 64, and the maximum depth is 2.
  • the resolution is set to 1920x1080, the maximum size of the coding unit is 64, and the maximum depth is 3.
  • the resolution is set to 352x288, the maximum size of the coding unit is 16, and the maximum depth is 1.
  • the maximum depth illustrated in FIG. 10 represents the total number of divisions from the maximum coding unit to the minimum coding unit.
  • the maximum size of the coding size is relatively large not only to improve the coding efficiency but also to accurately shape the image characteristics. Accordingly, the video data 310 or 320 having a higher resolution than the video data 330 may be selected to have a maximum size of 64.
  • the coding unit 315 of the video data 310 is divided twice from a maximum coding unit having a long axis size of 64, and the depth is deepened by two layers, so that the long axis size is 32, 16. Up to coding units may be included.
  • the coding unit 335 of the video data 330 is divided once from coding units having a long axis size of 16, and the depth is deepened by one layer to increase the long axis size to 8. Up to coding units may be included.
  • the coding unit 325 of the video data 320 is divided three times from the largest coding unit having a long axis size of 64, and the depth is three layers deep, so that the long axis size is 32, 16. , Up to 8 coding units may be included. As the depth increases, the expressive power of the detailed information may be improved.
  • FIG. 11 is a block diagram of an image encoder 400 based on coding units, according to various embodiments.
  • the image encoder 400 performs operations that are performed to encode image data by the picture encoder 120 of the video encoding apparatus 100. That is, the intra prediction unit 420 performs intra prediction on each coding unit of the intra mode of the current image 405, and the inter prediction unit 415 performs the current image on the prediction unit of the coding unit of the inter mode. Inter-prediction is performed using the reference image acquired at 405 and the reconstructed picture buffer 410.
  • the current image 405 may be divided into maximum coding units and then sequentially encoded. In this case, encoding may be performed on the coding unit in which the largest coding unit is to be divided into a tree structure.
  • Residual image data is generated by subtracting the prediction data for the coding unit of each mode output from the intra predictor 420 or the inter predictor 415 from the data for the encoded coding unit of the current image 405, and remaining.
  • the image data is output as transform coefficients quantized for each transform unit through the transform unit 425 and the quantization unit 430.
  • the quantized transform coefficients are reconstructed by the inverse quantization unit 445 and the inverse transform unit 450 to the residual image data of the spatial domain.
  • the residual image data of the reconstructed spatial domain is added to the prediction data of the coding unit of each mode output from the intra predictor 420 or the inter predictor 415, thereby adding the residual data of the spatial domain to the coding unit of the current image 405.
  • the data is restored.
  • the reconstructed spatial region data is generated as a reconstructed image through the deblocking unit 455 and the SAO performing unit 460.
  • the generated reconstructed image is stored in the reconstructed picture buffer 410.
  • the reconstructed images stored in the reconstructed picture buffer 410 may be used as reference images for inter prediction of another image.
  • the transform coefficients quantized by the transformer 425 and the quantizer 430 may be output as the bitstream 440 through the entropy encoder 435.
  • an inter predictor 415, an intra predictor 420, and a transformer each have a tree structure for each maximum coding unit. An operation based on each coding unit among the coding units may be performed.
  • the intra prediction unit 420 and the inter prediction unit 415 determine the partition mode and the prediction mode of each coding unit among the coding units having a tree structure in consideration of the maximum size and the maximum depth of the current maximum coding unit.
  • the transform unit 425 may determine whether to split the transform unit according to the quad tree in each coding unit among the coding units having the tree structure.
  • FIG. 12 is a block diagram of an image decoder 500 based on coding units, according to various embodiments.
  • the entropy decoding unit 515 parses the encoded image data to be decoded from the bitstream 505 and encoding information necessary for decoding.
  • the encoded image data is a quantized transform coefficient
  • the inverse quantizer 520 and the inverse transform unit 525 reconstruct the residual image data from the quantized transform coefficients.
  • the intra prediction unit 540 performs intra prediction for each prediction unit with respect to the coding unit of the intra mode.
  • the inter prediction unit 535 performs inter prediction using the reference image obtained from the reconstructed picture buffer 530 for each coding unit of the coding mode of the inter mode among the current pictures.
  • the data of the spatial domain of the coding unit of the current image 405 is restored and restored.
  • the data of the space area may be output as a reconstructed image 560 via the deblocking unit 545 and the SAO performing unit 550.
  • the reconstructed images stored in the reconstructed picture buffer 530 may be output as reference images.
  • step-by-step operations after the entropy decoder 515 of the image decoder 500 may be performed.
  • the entropy decoder 515, the inverse quantizer 520, and the inverse transformer ( 525, the intra prediction unit 540, the inter prediction unit 535, the deblocking unit 545, and the SAO performer 550 based on each coding unit among coding units having a tree structure for each maximum coding unit. You can do it.
  • the intra predictor 540 and the inter predictor 535 determine a partition mode and a prediction mode for each coding unit among coding units having a tree structure, and the inverse transformer 525 has a quad tree structure for each coding unit. It is possible to determine whether to divide the conversion unit according to.
  • the encoding operation of FIG. 10 and the decoding operation of FIG. 11 describe the video stream encoding operation and the decoding operation in a single layer, respectively. Therefore, if the video encoding apparatus 20 of FIG. 2A encodes a video stream of two or more layers, the video encoding unit 400 may be included for each layer. Similarly, if the video decoding apparatus 25 of FIG. 2B decodes video streams of two or more layers, it may include an image decoder 500 for each layer.
  • FIG. 13 is a diagram illustrating deeper coding units according to depths, and partitions, according to various embodiments.
  • the video encoding apparatus 100 according to an embodiment and the video decoding apparatus 200 according to an embodiment use hierarchical coding units to consider image characteristics.
  • the maximum height, width, and maximum depth of the coding unit may be adaptively determined according to the characteristics of the image, and may be variously set according to a user's request. According to the maximum size of the preset coding unit, the size of the coding unit for each depth may be determined.
  • the hierarchical structure 600 of a coding unit illustrates a case in which a maximum height and a width of a coding unit are 64 and a maximum depth is three.
  • the maximum depth indicates the total number of divisions from the maximum coding unit to the minimum coding unit. Since the depth deepens along the vertical axis of the hierarchical structure 600 of the coding unit according to an embodiment, the height and the width of the coding unit for each depth are divided.
  • a prediction unit and a partition on which the prediction encoding of each depth-based coding unit is shown along the horizontal axis of the hierarchical structure 600 of the coding unit are illustrated.
  • the coding unit 610 has a depth of 0 as the largest coding unit of the hierarchical structure 600 of the coding unit, and the size, ie, the height and width, of the coding unit is 64x64.
  • a depth deeper along the vertical axis includes a coding unit 620 of depth 1 having a size of 32x32, a coding unit 630 of depth 2 having a size of 16x16, and a coding unit 640 of depth 3 having a size of 8x8.
  • a coding unit 640 of depth 3 having a size of 8 ⁇ 8 is a minimum coding unit.
  • Prediction units and partitions of the coding unit are arranged along the horizontal axis for each depth. That is, if the coding unit 610 of size 64x64 having a depth of zero is a prediction unit, the prediction unit may include a partition 610 of size 64x64, partitions 612 of size 64x32, and size included in the coding unit 610 of size 64x64. 32x64 partitions 614, 32x32 partitions 616.
  • the prediction unit of the coding unit 620 having a size of 32x32 having a depth of 1 includes a partition 620 of size 32x32, partitions 622 of size 32x16 and a partition of size 16x32 included in the coding unit 620 of size 32x32. 624, partitions 626 of size 16x16.
  • the prediction unit of the coding unit 630 of size 16x16 having a depth of 2 includes a partition 630 of size 16x16, partitions 632 of size 16x8, and a partition of size 8x16 included in the coding unit 630 of size 16x16. 634, partitions 636 of size 8x8.
  • the prediction unit of the coding unit 640 of size 8x8 having a depth of 3 includes a partition 640 of size 8x8, partitions 642 of size 8x4 and a partition of size 4x8 included in the coding unit 640 of size 8x8. 644, partitions 646 of size 4x4.
  • the coding unit determiner 120 of the video encoding apparatus 100 may determine the depth of the maximum coding unit 610 for each coding unit of each depth included in the maximum coding unit 610. Encoding must be performed.
  • the number of deeper coding units according to depths for including data having the same range and size increases as the depth increases. For example, four coding units of depth 2 are required for data included in one coding unit of depth 1. Therefore, in order to compare the encoding results of the same data for each depth, each of the coding units having one depth 1 and four coding units having four depths 2 should be encoded.
  • encoding may be performed for each prediction unit of a coding unit according to depths along a horizontal axis of the hierarchical structure 600 of the coding unit, and a representative coding error, which is the smallest coding error at a corresponding depth, may be selected. .
  • a depth deeper along the vertical axis of the hierarchical structure 600 of the coding unit the encoding may be performed for each depth, and the minimum coding error may be searched by comparing the representative coding error for each depth.
  • the depth and partition in which the minimum coding error occurs in the maximum coding unit 610 may be selected as the depth and partition mode of the maximum coding unit 610.
  • FIG. 14 illustrates a relationship between a coding unit and transformation units, according to various embodiments.
  • the video encoding apparatus 100 encodes or decodes an image in coding units having a size smaller than or equal to the maximum coding unit for each maximum coding unit.
  • the size of a transformation unit for transformation in the encoding process may be selected based on a data unit that is not larger than each coding unit.
  • the 32x32 size conversion unit 720 is The conversion can be performed.
  • the data of the 64x64 coding unit 710 is transformed into 32x32, 16x16, 8x8, and 4x4 transform units of 64x64 size or less, and then encoded, and the transform unit having the least error with the original is selected. Can be.
  • 15 is a diagram of deeper encoding information according to depths, according to various embodiments.
  • the output unit 130 of the video encoding apparatus 100 is split information, and information about a partition mode 800, information 810 about a prediction mode, and transform unit size for each coding unit of each depth.
  • Information 820 may be encoded and transmitted.
  • the information about the partition mode 800 is a data unit for predictive encoding of the current coding unit and indicates information about a partition type in which the prediction unit of the current coding unit is divided.
  • the current coding unit CU_0 of size 2Nx2N may be any one of a partition 802 of size 2Nx2N, a partition 804 of size 2NxN, a partition 806 of size Nx2N, and a partition 808 of size NxN. It can be divided and used.
  • the information 800 about the partition mode of the current coding unit represents one of a partition 802 of size 2Nx2N, a partition 804 of size 2NxN, a partition 806 of size Nx2N, and a partition 808 of size NxN. It is set to.
  • Information 810 relating to the prediction mode indicates the prediction mode of each partition. For example, through the information 810 about the prediction mode, whether the partition indicated by the information 800 about the partition mode is performed in one of the intra mode 812, the inter mode 814, and the skip mode 816 is performed. Whether or not can be set.
  • the information about the transform unit size 820 indicates whether to transform the current coding unit based on the transform unit.
  • the transform unit may be one of a first intra transform unit size 822, a second intra transform unit size 824, a first inter transform unit size 826, and a second inter transform unit size 828. have.
  • the image data and encoding information extractor 210 of the video decoding apparatus 200 may include information about a partition mode 800, information 810 about a prediction mode, and transformation for each depth-based coding unit. Information 820 about the unit size may be extracted and used for decoding.
  • 16 is a diagram of deeper coding units according to depths, according to various embodiments.
  • Segmentation information may be used to indicate a change in depth.
  • the split information indicates whether a coding unit of a current depth is split into coding units of a lower depth.
  • the prediction unit 910 for predictive encoding of the coding unit 900 having depth 0 and 2N_0x2N_0 size includes a partition mode 912 having a size of 2N_0x2N_0, a partition mode 914 having a size of 2N_0xN_0, a partition mode 916 having a size of N_0x2N_0, and N_0xN_0 May include a partition mode 918 of size. Although only partitions 912, 914, 916, and 918 in which the prediction unit is divided by a symmetrical ratio are illustrated, as described above, the partition mode is not limited thereto, and asymmetric partitions, arbitrary partitions, geometric partitions, and the like. It may include.
  • prediction coding For each partition mode, prediction coding must be performed repeatedly for one 2N_0x2N_0 partition, two 2N_0xN_0 partitions, two N_0x2N_0 partitions, and four N_0xN_0 partitions.
  • prediction encoding For partitions having a size 2N_0x2N_0, a size N_0x2N_0, a size 2N_0xN_0, and a size N_0xN_0, prediction encoding may be performed in an intra mode and an inter mode.
  • the skip mode may be performed only for prediction encoding on partitions having a size of 2N_0x2N_0.
  • the depth 0 is changed to 1 and split (920), and the encoding is repeatedly performed on the depth 2 and the coding units 930 of the partition mode of size N_0xN_0.
  • the depth 1 is changed to the depth 2 and split (950), and repeatedly for the depth 2 and the coding units 960 of the size N_2xN_2.
  • the encoding may be performed to search for a minimum encoding error.
  • depth-based coding units may be set until depth d-1, and split information may be set up to depth d-2. That is, when encoding is performed from the depth d-2 to the depth d-1 to the depth d-1, the prediction encoding of the coding unit 980 of the depth d-1 and the size 2N_ (d-1) x2N_ (d-1)
  • the prediction unit for 990 is a partition mode 992 of size 2N_ (d-1) x2N_ (d-1), a partition mode 994 of size 2N_ (d-1) xN_ (d-1), and size
  • a partition mode 996 of N_ (d-1) x2N_ (d-1) and a partition mode 998 of size N_ (d-1) xN_ (d-1) may be included.
  • partition mode one partition 2N_ (d-1) x2N_ (d-1), two partitions 2N_ (d-1) xN_ (d-1), two sizes N_ (d-1) x2N_
  • a partition mode in which a minimum encoding error occurs may be searched.
  • the coding unit CU_ (d-1) of the depth d-1 is no longer
  • the depth of the current maximum coding unit 900 may be determined as the depth d-1, and the partition mode may be determined as N_ (d-1) xN_ (d-1) without going through a division process into lower depths.
  • split information is not set for the coding unit 952 having the depth d-1.
  • the data unit 999 may be referred to as a 'minimum unit' for the current maximum coding unit.
  • the minimum unit may be a square data unit having a size obtained by dividing the minimum coding unit, which is the lowest depth, into four segments.
  • the video encoding apparatus 100 compares depth-to-depth encoding errors of the coding units 900, selects a depth at which the smallest encoding error occurs, and determines a depth.
  • the partition mode and the prediction mode may be set to the encoding mode of the depth.
  • depths with the smallest error can be determined by comparing the minimum coding errors for all depths of depths 0, 1, ..., d-1, and d.
  • the depth, the partition mode of the prediction unit, and the prediction mode may be encoded and transmitted as split information.
  • the coding unit since the coding unit must be split from the depth 0 to the depth, only the split information of the depth is set to '0', and the split information for each depth except the depth should be set to '1'.
  • the image data and encoding information extractor 220 of the video decoding apparatus 200 may extract information about a depth and a prediction unit of the coding unit 900 and use it to decode the coding unit 912. have.
  • the video decoding apparatus 200 may grasp a depth having split information of '0' as a depth using split information for each depth, and may use the split information for the corresponding depth for decoding.
  • 17, 18, and 19 illustrate a relationship between coding units, prediction units, and transformation units, according to various embodiments.
  • the coding units 1010 are deeper coding units determined by the video encoding apparatus 100 according to an embodiment with respect to the largest coding unit.
  • the prediction unit 1060 is partitions of prediction units of each deeper coding unit among the coding units 1010, and the transform unit 1070 is transform units of each deeper coding unit.
  • the depth-based coding units 1010 have a depth of 0
  • the coding units 1012 and 1054 have a depth of 1
  • the coding units 1014, 1016, 1018, 1028, 1050, and 1052 have depths.
  • coding units 1020, 1022, 1024, 1026, 1030, 1032, and 1048 have a depth of three
  • coding units 1040, 1042, 1044, and 1046 have a depth of four.
  • partitions 1014, 1016, 1022, 1032, 1048, 1050, 1052, and 1054 of the prediction units 1060 are obtained by splitting coding units. That is, partitions 1014, 1022, 1050, and 1054 are 2NxN partition modes, partitions 1016, 1048, and 1052 are Nx2N partition modes, and partitions 1032 are NxN partition modes. Prediction units and partitions of the coding units 1010 according to depths are smaller than or equal to each coding unit.
  • the image data of the part 1052 of the transformation units 1070 is transformed or inversely transformed into a data unit having a smaller size than the coding unit.
  • the transformation units 1014, 1016, 1022, 1032, 1048, 1050, 1052, and 1054 are data units having different sizes or shapes when compared to corresponding prediction units and partitions among the prediction units 1060. That is, the video encoding apparatus 100 according to an embodiment and the video decoding apparatus 200 according to an embodiment may be intra prediction / motion estimation / motion compensation operations and transform / inverse transform operations for the same coding unit. Each can be performed on a separate data unit.
  • coding is performed recursively for each coding unit having a hierarchical structure for each largest coding unit to determine an optimal coding unit.
  • coding units having a recursive tree structure may be configured.
  • the encoding information may include split information about the coding unit, partition mode information, prediction mode information, and transformation unit size information. Table 1 below shows an example that can be set in the video encoding apparatus 100 and the video decoding apparatus 200 according to an embodiment.
  • the output unit 130 of the video encoding apparatus 100 outputs encoding information about coding units having a tree structure
  • the encoding information extraction unit of the video decoding apparatus 200 according to an embodiment 220 may extract encoding information about coding units having a tree structure from the received bitstream.
  • the split information indicates whether the current coding unit is split into coding units of a lower depth. If the split information of the current depth d is 0, partition mode information, prediction mode, and transform unit size information may be defined for the depth since the current coding unit is a depth in which the current coding unit is no longer divided into lower coding units. have. If it is to be further split by the split information, encoding should be performed independently for each coding unit of the divided four lower depths.
  • the prediction mode may be represented by one of an intra mode, an inter mode, and a skip mode.
  • Intra mode and inter mode can be defined in all partition modes, and skip mode can only be defined in partition mode 2Nx2N.
  • the partition mode information indicates symmetric partition modes 2Nx2N, 2NxN, Nx2N, and NxN, in which the height or width of the prediction unit is divided by symmetrical ratios, and asymmetric partition modes 2NxnU, 2NxnD, nLx2N, nRx2N, divided by asymmetrical ratios.
  • the asymmetric partition modes 2NxnU and 2NxnD are divided into heights of 1: 3 and 3: 1, respectively, and the asymmetric partition modes nLx2N and nRx2N are divided into 1: 3 and 3: 1 widths, respectively.
  • the conversion unit size may be set to two kinds of sizes in the intra mode and two kinds of sizes in the inter mode. That is, if the transformation unit split information is 0, the size of the transformation unit is set to the size 2Nx2N of the current coding unit. If the transform unit split information is 1, a transform unit having a size obtained by dividing the current coding unit may be set. In addition, if the partition mode for the current coding unit having a size of 2Nx2N is a symmetric partition mode, the size of the transform unit may be set to NxN, and N / 2xN / 2 if it is an asymmetric partition mode.
  • Encoding information of coding units having a tree structure may be allocated to at least one of a coding unit, a prediction unit, and a minimum unit unit of a depth.
  • the coding unit of the depth may include at least one prediction unit and at least one minimum unit having the same encoding information.
  • the encoding information held by each adjacent data unit is checked, it may be determined whether the data is included in the coding unit having the same depth.
  • the coding unit of the corresponding depth may be identified using the encoding information held by the data unit, the distribution of depths within the maximum coding unit may be inferred.
  • the encoding information of the data unit in the depth-specific coding unit adjacent to the current coding unit may be directly referred to and used.
  • the prediction coding when the prediction coding is performed by referring to the neighboring coding unit, the data adjacent to the current coding unit in the coding unit according to depths is encoded by using the encoding information of the adjacent coding units according to depths.
  • the neighboring coding unit may be referred to by searching.
  • FIG. 20 illustrates a relationship between a coding unit, a prediction unit, and a transformation unit, according to encoding mode information of Table 1.
  • FIG. 20 illustrates a relationship between a coding unit, a prediction unit, and a transformation unit, according to encoding mode information of Table 1.
  • the maximum coding unit 1300 includes coding units 1302, 1304, 1306, 1312, 1314, 1316, and 1318 of depths. Since one coding unit 1318 is a coding unit of depth, split information may be set to zero.
  • the partition mode information of the coding unit 1318 having a size of 2Nx2N includes partition modes 2Nx2N 1322, 2NxN 1324, Nx2N 1326, NxN 1328, 2NxnU 1332, 2NxnD 1334, and nLx2N (1336). And nRx2N 1338.
  • the transform unit split information (TU size flag) is a type of transform index, and a size of a transform unit corresponding to the transform index may be changed according to a prediction unit type or a partition mode of the coding unit.
  • the partition mode information is set to one of symmetric partition modes 2Nx2N 1322, 2NxN 1324, Nx2N 1326, and NxN 1328
  • the conversion unit partition information is 0, a conversion unit of size 2Nx2N ( 1342 is set, and if the transform unit split information is 1, a transform unit 1344 of size NxN may be set.
  • partition mode information is set to one of asymmetric partition modes 2NxnU (1332), 2NxnD (1334), nLx2N (1336), and nRx2N (1338), if the conversion unit partition information (TU size flag) is 0, a conversion unit of size 2Nx2N ( 1352 is set, and if the transform unit split information is 1, a transform unit 1354 of size N / 2 ⁇ N / 2 may be set.
  • the conversion unit splitting information (TU size flag) described above with reference to FIG. 19 is a flag having a value of 0 or 1, but the conversion unit splitting information according to an embodiment is not limited to a 1-bit flag and is set according to a setting. , 1, 2, 3., etc., and may be divided hierarchically.
  • the transformation unit partition information may be used as an embodiment of the transformation index.
  • the size of the transformation unit actually used may be expressed.
  • the video encoding apparatus 100 may encode maximum transform unit size information, minimum transform unit size information, and maximum transform unit split information.
  • the encoded maximum transform unit size information, minimum transform unit size information, and maximum transform unit split information may be inserted into the SPS.
  • the video decoding apparatus 200 may use the maximum transform unit size information, the minimum transform unit size information, and the maximum transform unit split information to use for video decoding.
  • the maximum transform unit split information is defined as 'MaxTransformSizeIndex'
  • the minimum transform unit size is 'MinTransformSize'
  • the transform unit split information is 0,
  • the minimum transform unit possible in the current coding unit is defined as 'RootTuSize'.
  • the size 'CurrMinTuSize' can be defined as in relation (1) below.
  • 'RootTuSize' which is a transform unit size when the transform unit split information is 0, may indicate a maximum transform unit size that can be adopted in the system. That is, according to relation (1), 'RootTuSize / (2 ⁇ MaxTransformSizeIndex)' is a transformation obtained by dividing 'RootTuSize', which is the size of the transformation unit when the transformation unit division information is 0, by the number of times corresponding to the maximum transformation unit division information. Since the unit size is 'MinTransformSize' is the minimum transform unit size, a smaller value among them may be the minimum transform unit size 'CurrMinTuSize' possible in the current coding unit.
  • the maximum transform unit size RootTuSize may vary depending on a prediction mode.
  • RootTuSize may be determined according to the following relation (2).
  • 'MaxTransformSize' represents the maximum transform unit size
  • 'PUSize' represents the current prediction unit size.
  • RootTuSize min (MaxTransformSize, PUSize) ......... (2)
  • 'RootTuSize' which is a transform unit size when the transform unit split information is 0, may be set to a smaller value among the maximum transform unit size and the current prediction unit size.
  • 'RootTuSize' may be determined according to Equation (3) below.
  • 'PartitionSize' represents the size of the current partition unit.
  • RootTuSize min (MaxTransformSize, PartitionSize) ........... (3)
  • the conversion unit size 'RootTuSize' when the conversion unit split information is 0 may be set to a smaller value among the maximum conversion unit size and the current partition unit size.
  • the current maximum conversion unit size 'RootTuSize' according to an embodiment that changes according to the prediction mode of the partition unit is only an embodiment, and a factor determining the current maximum conversion unit size is not limited thereto.
  • the image data of the spatial domain is encoded for each coding unit of the tree structure, and the video decoding method based on the coding units of the tree structure.
  • decoding is performed for each largest coding unit, and image data of a spatial region may be reconstructed to reconstruct a picture and a video that is a picture sequence.
  • the reconstructed video can be played back by a playback device, stored in a storage medium, or transmitted over a network.
  • the above-described embodiments of the present invention can be written as a program that can be executed in a computer, and can be implemented in a general-purpose digital computer that operates the program using a computer-readable recording medium.
  • the computer-readable recording medium may include a storage medium such as a magnetic storage medium (eg, a ROM, a floppy disk, a hard disk, etc.) and an optical reading medium (eg, a CD-ROM, a DVD, etc.).
  • the above-described video encoding method and / or video encoding method are collectively referred to as the video encoding method of the present invention.
  • the above-described video decoding method and / or video decoding method is referred to as 'video decoding method of the present invention'
  • the video encoding apparatus comprised of the video encoding apparatus 20, the video encoding apparatus 100, or the image encoding unit 400 described above is collectively referred to as the "video encoding apparatus of the present invention".
  • the video decoding apparatus including the video decoding apparatus 25, the video decoding apparatus 200, or the image decoding unit 500 described above is collectively referred to as the video decoding apparatus of the present invention.
  • a computer-readable storage medium in which a program is stored according to an embodiment of the present invention will be described in detail below.
  • the disk 26000 described above as a storage medium may be a hard drive, a CD-ROM disk, a Blu-ray disk, or a DVD disk.
  • the disk 26000 is composed of a plurality of concentric tracks tr, and the tracks are divided into a predetermined number of sectors Se in the circumferential direction.
  • a program for implementing the above-described quantization parameter determination method, video encoding method, and video decoding method may be allocated and stored in a specific region of the disc 26000 which stores the program according to the above-described embodiment.
  • a computer system achieved using a storage medium storing a program for implementing the above-described video encoding method and video decoding method will be described below with reference to FIG. 22.
  • the computer system 26700 may store a program for implementing at least one of the video encoding method and the video decoding method of the present invention on the disc 26000 using the disc drive 26800.
  • the program may be read from the disk 26000 by the disk drive 26800, and the program may be transferred to the computer system 26700.
  • a program for implementing at least one of the video encoding method and the video decoding method may be stored in a memory card, a ROM cassette, and a solid state drive (SSD). .
  • FIG. 23 illustrates an overall structure of a content supply system 11000 for providing a content distribution service.
  • the service area of the communication system is divided into cells of a predetermined size, and wireless base stations 11700, 11800, 11900, and 12000 that serve as base stations are installed in each cell.
  • the content supply system 11000 includes a plurality of independent devices.
  • independent devices such as a computer 12100, a personal digital assistant (PDA) 12200, a camera 12300, and a mobile phone 12500 may be an Internet service provider 11200, a communication network 11400, and a wireless base station. 11700, 11800, 11900, and 12000 to connect to the Internet 11100.
  • PDA personal digital assistant
  • the content supply system 11000 is not limited to the structure shown in FIG. 24, and devices may be selectively connected.
  • the independent devices may be directly connected to the communication network 11400 without passing through the wireless base stations 11700, 11800, 11900, and 12000.
  • the video camera 12300 is an imaging device capable of capturing video images like a digital video camera.
  • the mobile phone 12500 is such as Personal Digital Communications (PDC), code division multiple access (CDMA), wideband code division multiple access (W-CDMA), Global System for Mobile Communications (GSM), and Personal Handyphone System (PHS). At least one communication scheme among various protocols may be adopted.
  • PDC Personal Digital Communications
  • CDMA code division multiple access
  • W-CDMA wideband code division multiple access
  • GSM Global System for Mobile Communications
  • PHS Personal Handyphone System
  • the video camera 12300 may be connected to the streaming server 11300 through the wireless base station 11900 and the communication network 11400.
  • the streaming server 11300 may stream and transmit the content transmitted by the user using the video camera 12300 through real time broadcasting.
  • Content received from the video camera 12300 may be encoded by the video camera 12300 or the streaming server 11300.
  • Video data captured by the video camera 12300 may be transmitted to the streaming server 11300 via the computer 12100.
  • Video data captured by the camera 12600 may also be transmitted to the streaming server 11300 via the computer 12100.
  • the camera 12600 is an imaging device capable of capturing both still and video images, like a digital camera.
  • Video data received from the camera 12600 may be encoded by the camera 12600 or the computer 12100.
  • Software for video encoding and decoding may be stored in a computer readable recording medium such as a CD-ROM disk, a floppy disk, a hard disk drive, an SSD, or a memory card that the computer 12100 may access.
  • video data may be received from the mobile phone 12500.
  • the video data may be encoded by a large scale integrated circuit (LSI) system installed in the video camera 12300, the mobile phone 12500, or the camera 12600.
  • LSI large scale integrated circuit
  • a user is recorded using a video camera 12300, a camera 12600, a mobile phone 12500, or another imaging device.
  • the content is encoded and sent to the streaming server 11300.
  • the streaming server 11300 may stream and transmit content data to other clients who have requested the content data.
  • the clients are devices capable of decoding the encoded content data, and may be, for example, a computer 12100, a PDA 12200, a video camera 12300, or a mobile phone 12500.
  • the content supply system 11000 allows clients to receive and play encoded content data.
  • the content supply system 11000 enables clients to receive and decode and reproduce encoded content data in real time, thereby enabling personal broadcasting.
  • the video encoding apparatus and the video decoding apparatus of the present invention may be applied to encoding and decoding operations of independent devices included in the content supply system 11000.
  • the mobile phone 12500 is not limited in functionality and may be a smart phone that can change or expand a substantial portion of its functions through an application program.
  • the mobile phone 12500 includes a built-in antenna 12510 for exchanging RF signals with the wireless base station 12000, and displays images captured by the camera 1530 or images received and decoded by the antenna 12510. And a display screen 12520 such as an LCD (Liquid Crystal Display) and an OLED (Organic Light Emitting Diodes) screen for displaying.
  • the smartphone 12510 includes an operation panel 12540 including a control button and a touch panel. When the display screen 12520 is a touch screen, the operation panel 12540 further includes a touch sensing panel of the display screen 12520.
  • the smart phone 12510 includes a speaker 12580 or another type of audio output unit for outputting voice and sound, and a microphone 12550 or another type of audio input unit for inputting voice and sound.
  • the smartphone 12510 further includes a camera 1530 such as a CCD camera for capturing video and still images.
  • the smartphone 12510 may be a storage medium for storing encoded or decoded data, such as video or still images captured by the camera 1530, received by an e-mail, or obtained in another form. 12570); And a slot 12560 for mounting the storage medium 12570 to the mobile phone 12500.
  • the storage medium 12570 may be another type of flash memory such as an electrically erasable and programmable read only memory (EEPROM) embedded in an SD card or a plastic case.
  • EEPROM electrically erasable and programmable read only memory
  • FIG. 25 illustrates an internal structure of the mobile phone 12500.
  • the power supply circuit 12700 the operation input controller 12640, the image encoder 12720, and the camera interface (12630), LCD control unit (12620), image decoding unit (12690), multiplexer / demultiplexer (12680), recording / reading unit (12670), modulation / demodulation unit (12660) and
  • the sound processor 12650 is connected to the central controller 12710 through the synchronization bus 1730.
  • the power supply circuit 12700 supplies power to each part of the mobile phone 12500 from the battery pack, thereby causing the mobile phone 12500 to operate. Can be set to an operating mode.
  • the central controller 12710 includes a CPU, a read only memory (ROM), and a random access memory (RAM).
  • the digital signal is generated in the mobile phone 12500 under the control of the central controller 12710, for example, the digital sound signal is generated in the sound processor 12650.
  • the image encoder 12720 may generate a digital image signal, and text data of the message may be generated through the operation panel 12540 and the operation input controller 12640.
  • the modulator / demodulator 12660 modulates a frequency band of the digital signal, and the communication circuit 12610 is a band-modulated digital signal. Digital-to-analog conversion and frequency conversion are performed on the acoustic signal.
  • the transmission signal output from the communication circuit 12610 may be transmitted to the voice communication base station or the radio base station 12000 through the antenna 12510.
  • the sound signal acquired by the microphone 12550 is converted into a digital sound signal by the sound processor 12650 under the control of the central controller 12710.
  • the generated digital sound signal may be converted into a transmission signal through the modulation / demodulation unit 12660 and the communication circuit 12610 and transmitted through the antenna 12510.
  • the text data of the message is input using the operation panel 12540, and the text data is transmitted to the central controller 12610 through the operation input controller 12640.
  • the text data is converted into a transmission signal through the modulator / demodulator 12660 and the communication circuit 12610, and transmitted to the radio base station 12000 through the antenna 12510.
  • the image data photographed by the camera 1530 is provided to the image encoder 12720 through the camera interface 12630.
  • the image data photographed by the camera 1252 may be directly displayed on the display screen 12520 through the camera interface 12630 and the LCD controller 12620.
  • the structure of the image encoder 12720 may correspond to the structure of the video encoding apparatus as described above.
  • the image encoder 12720 encodes the image data provided from the camera 1252 according to the video encoding method of the present invention described above, converts the image data into compression-encoded image data, and multiplexes / demultiplexes the encoded image data. (12680).
  • the sound signal obtained by the microphone 12550 of the mobile phone 12500 is also converted into digital sound data through the sound processor 12650 during recording of the camera 1250, and the digital sound data is converted into the multiplex / demultiplexer 12680. Can be delivered.
  • the multiplexer / demultiplexer 12680 multiplexes the encoded image data provided from the image encoder 12720 together with the acoustic data provided from the sound processor 12650.
  • the multiplexed data may be converted into a transmission signal through the modulation / demodulation unit 12660 and the communication circuit 12610 and transmitted through the antenna 12510.
  • the signal received through the antenna converts the digital signal through a frequency recovery (Analog-Digital conversion) process .
  • the modulator / demodulator 12660 demodulates the frequency band of the digital signal.
  • the band demodulated digital signal is transmitted to the video decoder 12690, the sound processor 12650, or the LCD controller 12620 according to the type.
  • the mobile phone 12500 When the mobile phone 12500 is in the call mode, the mobile phone 12500 amplifies a signal received through the antenna 12510 and generates a digital sound signal through frequency conversion and analog-to-digital conversion processing.
  • the received digital sound signal is converted into an analog sound signal through the modulator / demodulator 12660 and the sound processor 12650 under the control of the central controller 12710, and the analog sound signal is output through the speaker 12580. .
  • a signal received from the radio base station 12000 via the antenna 12510 is converted into multiplexed data as a result of the processing of the modulator / demodulator 12660.
  • the output and multiplexed data is transmitted to the multiplexer / demultiplexer 12680.
  • the multiplexer / demultiplexer 12680 demultiplexes the multiplexed data to separate the encoded video data stream and the encoded audio data stream.
  • the encoded video data stream is provided to the video decoder 12690, and the encoded audio data stream is provided to the sound processor 12650.
  • the structure of the image decoder 12690 may correspond to the structure of the video decoding apparatus as described above.
  • the image decoder 12690 generates the reconstructed video data by decoding the encoded video data by using the video decoding method of the present invention described above, and displays the reconstructed video data through the LCD controller 1262 through the display screen 1252. ) Can be restored video data.
  • video data of a video file accessed from a website of the Internet can be displayed on the display screen 1252.
  • the sound processor 1265 may convert the audio data into an analog sound signal and provide the analog sound signal to the speaker 1258. Accordingly, audio data contained in a video file accessed from a website of the Internet can also be reproduced in the speaker 1258.
  • the mobile phone 1250 or another type of communication terminal is a transmitting / receiving terminal including both the video encoding apparatus and the video decoding apparatus of the present invention, a transmitting terminal including only the video encoding apparatus of the present invention described above, or the video decoding apparatus of the present invention. It may be a receiving terminal including only.
  • FIG. 26 illustrates a digital broadcasting system employing a communication system, according to various embodiments.
  • the digital broadcasting system according to the embodiment of FIG. 26 may receive digital broadcasting transmitted through a satellite or terrestrial network using the video encoding apparatus and the video decoding apparatus.
  • the broadcast station 12890 transmits the video data stream to the communication satellite or the broadcast satellite 12900 through radio waves.
  • the broadcast satellite 12900 transmits a broadcast signal, and the broadcast signal is received by the antenna 12860 in the home to the satellite broadcast receiver.
  • the encoded video stream may be decoded and played back by the TV receiver 12610, set-top box 12870, or other device.
  • the playback device 12230 can read and decode the encoded video stream recorded on the storage medium 12020 such as a disk and a memory card.
  • the reconstructed video signal may thus be reproduced in the monitor 12840, for example.
  • the video decoding apparatus of the present invention may also be mounted in the set-top box 12870 connected to the antenna 12860 for satellite / terrestrial broadcasting or the cable antenna 12850 for cable TV reception. Output data of the set-top box 12870 may also be reproduced by the TV monitor 12880.
  • the video decoding apparatus of the present invention may be mounted on the TV receiver 12810 instead of the set top box 12870.
  • An automobile 12920 with an appropriate antenna 12910 may receive signals from satellite 12800 or radio base station 11700.
  • the decoded video may be played on the display screen of the car navigation system 12930 mounted on the car 12920.
  • the video signal may be encoded by the video encoding apparatus of the present invention and recorded and stored in a storage medium.
  • the video signal may be stored in the DVD disk 12960 by the DVD recorder, or the video signal may be stored in the hard disk by the hard disk recorder 12950.
  • the video signal may be stored in the SD card 12970. If the hard disk recorder 12950 includes the video decoding apparatus of the present invention according to an embodiment, the video signal recorded on the DVD disk 12960, the SD card 12970, or another type of storage medium is output from the monitor 12880. Can be recycled.
  • the vehicle navigation system 12930 may not include the camera 1530, the camera interface 12630, and the image encoder 12720 of FIG. 26.
  • the computer 12100 and the TV receiver 12610 may not include the camera 1250, the camera interface 12630, and the image encoder 12720 of FIG. 26.
  • FIG. 27 illustrates a network structure of a cloud computing system using a video encoding apparatus and a video decoding apparatus, according to various embodiments.
  • the cloud computing system of the present invention may include a cloud computing server 14100, a user DB 14100, a computing resource 14200, and a user terminal.
  • the cloud computing system provides an on demand outsourcing service of computing resources through an information communication network such as the Internet at the request of a user terminal.
  • service providers integrate the computing resources of data centers located in different physical locations into virtualization technology to provide users with the services they need.
  • the service user does not install and use computing resources such as application, storage, operating system, and security in each user's own terminal, but services in virtual space created through virtualization technology. You can choose as many times as you want.
  • a user terminal of a specific service user accesses the cloud computing server 14100 through an information communication network including the Internet and a mobile communication network.
  • the user terminals may be provided with a cloud computing service, particularly a video playback service, from the cloud computing server 14100.
  • the user terminal may be any electronic device capable of accessing the Internet, such as a desktop PC 14300, a smart TV 14400, a smartphone 14500, a notebook 14600, a portable multimedia player (PMP) 14700, a tablet PC 14800, and the like. It can be a device.
  • the cloud computing server 14100 may integrate and provide a plurality of computing resources 14200 distributed in a cloud network to a user terminal.
  • the plurality of computing resources 14200 include various data services and may include data uploaded from a user terminal.
  • the cloud computing server 14100 integrates a video database distributed in various places into a virtualization technology to provide a service required by a user terminal.
  • the user DB 14100 stores user information subscribed to a cloud computing service.
  • the user information may include login information and personal credit information such as an address and a name.
  • the user information may include an index of the video.
  • the index may include a list of videos that have been played, a list of videos being played, and a stop time of the videos being played.
  • Information about a video stored in the user DB 14100 may be shared among user devices.
  • the playback history of the predetermined video service is stored in the user DB 14100.
  • the cloud computing server 14100 searches for and plays a predetermined video service with reference to the user DB 14100.
  • the smartphone 14500 receives the video data stream through the cloud computing server 14100, the operation of decoding the video data stream and playing the video may be performed by the operation of the mobile phone 12500 described above with reference to FIG. 24. similar.
  • the cloud computing server 14100 may refer to a playback history of a predetermined video service stored in the user DB 14100. For example, the cloud computing server 14100 receives a playback request for a video stored in the user DB 14100 from a user terminal. If the video was being played before, the cloud computing server 14100 may have a streaming method different depending on whether the video is played from the beginning or from the previous stop point according to the user terminal selection. For example, when the user terminal requests to play from the beginning, the cloud computing server 14100 streams the video to the user terminal from the first frame. On the other hand, if the terminal requests to continue playing from the previous stop point, the cloud computing server 14100 streams the video to the user terminal from the frame at the stop point.
  • the user terminal may include the video decoding apparatus as described above.
  • the user terminal may include the video encoding apparatus as described above.
  • the user terminal may include both the video encoding apparatus and the video decoding apparatus described above.
  • FIGS. 21 through 27 Various embodiments in which the above-described video encoding method, video decoding method, video encoding apparatus, and video decoding apparatus are utilized are described above with reference to FIGS. 21 through 27. However, various embodiments in which the aforementioned video encoding method and the video decoding method are stored in a storage medium or the video encoding apparatus and the video decoding apparatus are implemented in the device are not limited to the embodiments of FIGS. 21 to 27.

Abstract

비디오 복호화 방법에 있어서, 제 1 샘플은 루마 샘플 및 크로마 샘플 중 하나이고, 제 2 샘플은 다른 하나일 때, 컬러 성분이 다른 제 1 샘플 및 제 2 샘플 중 제 1 샘플의 값을 보정하기 위해 이용되는 하나 이상의 제 2 샘플을 결정하고, 샘플 값의 총 범위를 소정의 간격으로 분할하여 결정된 밴드들 중 제 1 샘플의 값이 포함된 밴드에 따라 필터 계수 세트를 결정하고, 결정된 필터 계수 세트를 이용하여 결정된 하나 이상의 제 2 샘플의 값에 대해서 필터링을 수행하고, 필터링을 통해 획득한 값을 이용하여 제 1 샘플의 값을 보정하는 복호화 방법이 제공된다.

Description

움직임 벡터 결정 방법 및 그 장치
본 발명은 비디오 부호화 및 복호화를 수행함에 있어서 움직임 벡터를 결정하는 방법 및 장치에 관한 것이다.
고해상도 또는 고화질 비디오 컨텐트를 재생, 저장할 수 있는 하드웨어의 개발 및 보급에 따라, 고해상도 또는 고화질 비디오 컨텐트를 효과적으로 부호화하거나 복호화하는 비디오 코덱의 필요성이 증대하고 있다. 기존의 비디오 코덱에 따르면, 비디오는 소정 크기의 매크로블록에 기반하여 제한된 부호화 방식에 따라 부호화되고 있다.
비디오 코덱은, 비디오의 영상들이 시간적 또는 공간적으로 서로 상관성이 높다는 특징을 이용하여 예측 기법을 이용하여 데이터량을 저감한다. 예측 기법에 따르면, 주변 영상을 이용하여 현재영상을 예측하기 위하여, 영상 간의 시간적 거리 또는 공간적 거리, 예측오차 등을 이용하여 영상정보가 기록된다.
움직임 벡터를 이용한 비디오 부호화 및 복호화를 수행함에 있어 이용되는 움직임 벡터를 결정하는 방법을 제공할 수 있다.
비디오 부호화 및 복호화를 수행함에 있어서 움직임 벡터를 결정하는 방법 및 장치를 제안한다.
비디오 부호화 및 복호화를 수행함에 있어서 인터 예측 또는 인터 레이어 예측을 수행할 때 효과적인 움직임 벡터를 결정 방법 및 장치를 제안한다.
도 1a는 일 실시 예에 따른 움직임 벡터 결정 장치의 블록도를 도시한다.
도 1b는 일 실시 예에 따른 움직임 벡터 결정 방법의 흐름도를 도시한다.
도 2a는 일 실시 예에 따른 움직임 벡터 결정 방법을 수반한 비디오 부호화부의 블록도를 도시한다.
도 2b는 일 실시 예에 따른 움직임 벡터 결정 방법을 수반한 비디오 복호화부의 블록도를 도시한다.
도 3 은 다양한 실시예에 따른 인터 레이어 예측 구조를 도시한다.
도 4a 및 4b는 다양한 실시 예에 따른 움직임 벡터 결정 방법을 도시한다.
도 5a 내지 도 5f는 다양한 실시 예에 따른 예측 단위를 분할하는 방법을 도시한다.
도 6a 내지 도6c는 다양한 실시 예에 따른 움직임 벡터 결정 방법에 대한 신택스 또는 시맨틱을 도시한다.
도 7a는 일 실시 예에 따른 움직임 벡터 결정 방법을 참조 단위의 인트라 예측 영역과 관련하여 설명하기 위한 도면이다.
도 7b는 일 실시 예에 따른 참조 블록의 분할 방법을 설명하기 위한 도면이다.
도 8 은 일 실시예에 따라 트리 구조에 따른 부호화단위에 기초한 비디오 부호화 장치의 블록도를 도시한다.
도 9 은 일 실시예에 따라 트리 구조에 따른 부호화단위에 기초한 비디오 복호화 장치의 블록도를 도시한다.
도 10 은 본 발명의 일 실시예에 따른 부호화단위의 개념을 도시한다.
도 11 는 본 발명의 일 실시예에 따른 부호화단위에 기초한 영상 부호화부의 블록도를 도시한다.
도 12 는 본 발명의 일 실시예에 따른 부호화단위에 기초한 영상 복호화부의 블록도를 도시한다.
도 13 는 본 발명의 일 실시예에 따른 심도별 부호화단위 및 파티션을 도시한다.
도 14 은 본 발명의 일 실시예에 따른, 부호화단위 및 변환단위의 관계를 도시한다.
도 15 은 본 발명의 일 실시예에 따라, 심도별 부호화 정보들을 도시한다.
도 16 는 본 발명의 일 실시예에 따른 심도별 부호화단위를 도시한다.
도 17, 18 및 19는 본 발명의 일 실시예에 따른, 부호화단위, 예측단위 및 변환단위의 관계를 도시한다.
도 20 은 표 1의 부호화 모드 정보에 따른 부호화단위, 예측단위 및 변환단위의 관계를 도시한다.
도 21 은 일 실시예에 따른 프로그램이 저장된 디스크의 물리적 구조를 예시한다.
도 22 는 디스크를 이용하여 프로그램을 기록하고 판독하기 위한 디스크드라이브를 도시한다.
도 23 은 컨텐트 유통 서비스(content distribution service)를 제공하기 위한 컨텐트 공급 시스템(content supply system)의 전체적 구조를 도시한다.
도 24 및 25은, 일 실시예에 따른 본 발명의 비디오 부호화 방법 및 비디오 복호화 방법이 적용되는 휴대폰의 외부구조와 내부구조를 도시한다.
도 26 은 본 발명에 따른 통신시스템이 적용된 디지털 방송 시스템을 도시한다.
도 27 은 본 발명의 일 실시예에 따른 비디오 부호화 장치 및 비디오 복호화 장치를 이용하는 클라우드 컴퓨팅 시스템의 네트워크 구조를 도시한다.
비디오 부호화 및 복호화를 수행함에 있어서 움직임 벡터를 결정하는 방법 및 장치를 제안한다.
다양한 실시 예에 따라 움직임 벡터 결정 방법은, 현재 레이어에 속한 예측 단위의 사이즈가 기 설정된 사이즈보다 클 때 상기 예측 단위를 복수개의 서브 단위들로 분할하는 단계; 상기 서브 단위들 중 하나인 현재 서브 단위의 인터 레이어 예측을 위해 이용되는 참조 레이어에 속한 참조 서브 단위를 결정하는 단계; 상기 참조 서브 단위의 인터 예측을 위한 움직임 벡터를 이용하여 상기 현재 서브 단위의 인터 예측을 위한 서브 움직임 벡터 예측 후보를 결정하는 단계; 및 상기 서브 움직임 벡터 예측 후보를 포함하는 예측 후보들 중 하나를 이용하여 상기 현재 서브 단위의 인터 예측을 위한 움직임 벡터를 결정하는 단계를 포함할 수 있다.
다양한 실시 예에 따라 상기 기 설정된 사이즈는 8×8을 포함할 수 있다.
다양한 실시 예에 따라 상기 움직임 벡터를 결정하는 단계는 상기 참조 서브 단위의 인터 예측을 위한 움직임 벡터를 상기 현재 서브 단위의 인터 예측을 위한 움직임 벡터로 결정하는 단계를 포함할 수 있다.
다양한 실시 예에 따라 상기 움직임 벡터 결정 방법은 상기 참조 서브 단위의 부호화 방식이 인트라 모드인 경우, 상기 현재 서브 단위의 인터 레이어 예측을 위한 디스페리티 벡터를 이용하여 상기 서브 움직임 벡터 예측 후보를 결정하는 단계를 더 포함할 수 있다.
다양한 실시 예에 따라 상기 예측 단위를 복수개의 서브 단위들로 분할하는 단계는 상기 기 설정된 사이즈를 시그널링하는 단계; 및 상기 시그널링된 기 설정된 사이즈보다 상기 예측 단위의 사이즈가 클 때 상기 예측 단위를 상기 복수개의 서브 단위들로 분할하는 단계를 포함할 수 있다.
다양한 실시 예에 따라 상기 움직임 벡터 결정 방법은 비트스트림을 수신하는 단계를 더 포함하고, 상기 기 설정된 사이즈를 시그널링하는 단계는 상기 비트스트림으로부터 상기 기 설정된 사이즈를 파싱(parsing)하는 단계를 포함할 수 있다.
다양한 실시 예에 따라 상기 예측 단위를 복수개의 서브 단위들로 분할하는 단계는 상기 예측 단위의 가로 사이즈(width)와 세로 사이즈(height)의 합이 12보다 클 때 상기 예측 단위를 상기 복수개의 서브 단위들로 분할하는 단계를 포함할 수 있다.
다양한 실시 예에 따라 상기 움직임 벡터 결정 방법은 상기 결정된 움직임 벡터를 이용하여 상기 현재 서브 단위에 대한 움직임 보상을 수행하는 단계를 더 포함할 수 있다.
다양한 실시 예에 따라 움직임 벡터 결정 장치는 현재 레이어에 속한 예측 단위의 사이즈가 기 설정된 사이즈보다 클 때 상기 예측 단위를 복수개의 서브 단위들로 분할하고, 상기 서브 단위들 중 하나인 현재 서브 단위의 인터 레이어 예측을 위해 이용되는 참조 레이어에 속한 참조 서브 단위를 결정하고, 상기 참조 서브 단위의 인터 예측을 위한 움직임 벡터를 이용하여 상기 현재 서브 단위의 인터 예측을 위한 서브 움직임 벡터 예측 후보를 결정하는 예측 후보 결정부; 및 상기 서브 움직임 벡터 예측 후보를 포함하는 예측 후보들 중 하나를 이용하여 상기 현재 서브 단위의 인터 예측을 위한 움직임 벡터를 결정하는 움직임 벡터 결정부를 포함할 수 있다.
다양한 실시예에 따른 방법을 구현하기 위한 프로그램이 기록된 컴퓨터로 판독 가능한 기록매체가 제안된다.
이하 본 명세서에 기재된 다양한 실시 예들에서, ‘영상’은 정지 영상 뿐만 아니라 비디오와 같은 동영상을 포함하여 포괄적으로 지칭할 수 있다.
이하 '샘플'은, 영상의 샘플링 위치에 할당된 데이터로서 프로세싱 대상이 되는 데이터를 의미한다. 예를 들어, 공간영역의 영상에서 픽셀들이 샘플들일 수 있다. 다른 예로, 공간영역의 영상에서 픽셀별로 대응되는 레지듀얼들이 샘플들일 수 있다.
이하 블록의 타입은 정사각형 또는 직사각형일 수 있으며, 임의의 기하학적 형태일 수도 있다. 일정한 크기의 데이터 단위로 제한되는 것은 아니다. 일 실시예에 따른 블록은, 트리구조에 따른 부호화단위들 중에서는, 최대 부호화 단위, 부호화 단위(coding unit), 예측 단위(prediction unit), 변환 단위(transform unit) 등일 수 있다. 트리구조에 따른 부호화 단위들에 기초한 비디오 부복호화 방식은, 도 8 내지 도 20을 참조하여 후술한다.
또한 블록은 후술하는 용어와 관련하여 서브 단위, 현재 서브 단위, 참조 단위, 참조 서브 단위 등을 모두 포함할 수 있다.
이하 시그널링이란 신호의 전송 또는 수신을 의미할 수 있다. 예를 들면, 영상 데이터의 부호화를 수행하는 경우에 시그널링이란 부호화된 신호를 전송하는 것을 의미할 수 있다. 다른 예로, 영상 데이터의 복호화를 수행하는 경우에 시그널링이란 부호화된 신호를 수신하는 것을 의미할 수 있다.
이하 도 1a 내지 도 7을 참조하여, 다양한 실시 예에 따라 비디오 부호화 및 복호화의 수행과 관련하여 움직임 벡터를 결정하는 방법 및 장치가 개시된다. 또한, 도 8 내지 도 20을 참조하여, 앞서 제안한 비디오 부호화 기법 및 복호화 기법에 적용가능한 다양한 실시예에 따른 트리 구조의 부호화 단위에 기초한 비디오 부호화 기법 및 비디오 복호화 기법이 개시된다. 또한, 도 21 내지 도 27을 참조하여, 앞서 제안한 비디오 부호화 방법, 비디오 복호화 방법이 적용가능한 다양한 실시예들이 개시된다.
도 1a는 일 실시 예에 따른 움직임 벡터 결정 장치(10)의 블록도를 도시한다.
도 1a에 도시된 바와 같이, 움직임 벡터 결정 장치(10)는 예측 후보 결정부 (11) 및 움직임 벡터 결정부(12)를 포함할 수 있다. 그러나 도시된 구성요소보다 많은 구성요소에 의해 움직임 벡터 결정 장치(10)가 구현될 수도 있고, 도시된 구성요소보다 적은 구성요소에 의해 움직임 벡터 결정 장치(10)가 구현될 수도 있다.
움직임 벡터 결정 장치(10)는 현재 영상과 다른 영상 간의 유사성을 이용하여 인터 예측을 수행할 수 있다. 움직임 벡터 결정 장치(10)는 현재 영상보다 먼저 복원된 참조 영상 내에서, 현재 영상의 현재 블록에 대응되는 참조 블록을 검출할 수 있다. 현재 블록과 참조 블록 간의 좌표상의 거리는 움직임 벡터로 표현될 수 있고, 현재 블록과 참조 블록 간의 픽셀값들의 차이는 레지듀얼 데이터로 표현될 수 있다. 따라서 현재 블록에 대한 인터 예측에 의해 출력되는 정보는 현재 블록의 영상 정보가 아니라 참조 블록을 가리키는 인덱스, 움직임 벡터 및 레지듀얼 데이터일 수 있다.
움직임 벡터 결정 장치(10)는 현재 영상과 다른 영상 간의 유사성을 이용하여 인터 레이어 예측을 수행할 수 있다. 인터 레이어 예측을 수행할 때 현재 영상을 복원하기 위해 이용되는 참조 영상은 현재 영상이 속한 레이어와 다른 레이어에 속한 영상일 수 있다. 움직임 벡터 결정 장치(10)는 현재 영상보다 먼저 복원된 참조 영상 내에서, 현재 영상의 현재 블록과 유사한 참조 블록을 검출할 수 있다. 현재 블록과 참조 블록 간의 좌표상의 거리는 움직임 벡터로 표현될 수 있고, 현재 블록과 참조 블록 간의 픽셀값들의 차이는 레지듀얼 데이터로 표현될 수 있다. 따라서 현재 블록에 대한 인터 예측에 의해 출력되는 정보는 현재 블록의 영상 정보가 아니라 참조 영상을 가리키는 인덱스, 움직임 벡터 및 레지듀얼 데이터일 수 있다.
인터 레이어 움직임 예측은 인터 레이어 예측의 일 예일 수 있다. 일 실시 예에 따른 인터 레이어 움직임 예측은 참조 레이어의 참조 영상에 대한 인터 예측을 수행할 때 이용되는 움직임 벡터를 이용하여 현재 레이어의 현재 영상에 대한 인터 예측을 수행할 때 이용되는 움직임 벡터를 결정하는 동작을 포함할 수 있다.
인터 레이어 예측과 관련된 다중 레이어 영상에 대해 자세한 사항은 도 2 및 도 3에서 후술한다.
일 실시예에 따른 움직임 벡터 결정 장치(10)는 비디오의 각각의 영상의 블록별로 인터 예측 또는 인터 레이어 예측을 수행할 수 있다.
움직임 벡터 예측(Motion Vector Prediction), 블록 병합(PU Merging) 또는 AMVP(Advanced Motion Vector Prediction)를 위해서, 다른 블록의 움직임 벡터를 참조하여 현재 블록의 움직임 벡터가 결정될 수 있다. 다른 블록은 현재 블록과 다른 레이어의 블록을 포함할 수 있다.
일 실시예에 따른 움직임 벡터 결정 장치(10)는, 현재 블록에 시간적 또는 공간적으로 인접하는 다른 블록의 움직임 벡터를 참조하여 현재 블록의 움직임 벡터를 결정할 수 있다. 움직임 벡터 결정 장치(10)는, 현재 블록의 움직임 벡터의 참조대상이 될 수 있는 후보 블록들의 움직임 벡터들을 포함하는 예측 후보들을 결정할 수 있다. 움직임 벡터 결정 장치(10)는, 예측 후보들 중에서 선택된 하나의 움직임 벡터를 참조하여 현재 블록의 움직임 벡터를 결정할 수 있다.
일 실시 예에 따른 예측 단위는 부호화 단위(coding unit)로부터 분할되는 예측의 기본이 되는 단위를 의미할 수 있다.
일 실시 예에 따른 예측 단위는 부호화 단위로부터 분할이 시작되며 쿼드 트리 형태로 분할되지 않고 한번만 분할될 수 있다. 예를 들면, 하나의 부호화 단위가 복수개의 예측 단위로 분할될 수 있으며, 분할로 생성된 예측 단위는 다시 추가적으로 분할되지 않을 수 있다.
다른 실시 예에 따른 예측 단위는 서브 단위들로 분할될 수 있다. 예를 들면, 하나의 예측 단위가 복수개의 서브 단위들로 분리될 수 있다.
상술한 실시 예에서와 같이 하나의 예측 단위가 복수개의 서브 단위들로 분리된 경우, 각각의 서브 단위 별로 인트라 예측, 인터 예측 또는 인터 레이어 예측이 수행될 수 있다.
움직임 벡터는 디스페리티 벡터를 포함할 수 있다. 예를 들면, 현재 블록에 대응되는 참조 블록이 인트로 모드로 부호화된 경우 현재 블록과 참조 블록을 대응시키는 디스페리티 벡터는 현재 블록을 복호화할 때 이용되는 디스페리티 벡터일 수 있다.
인터 예측 또는 인터 레이어 예측이 수행될 때 움직임 벡터가 이용될 수 있다.
예를 들면, 움직임 벡터 결정 장치(10)는 현재 서브 단위를 인터 예측하기 위한 움직임 벡터를 이용하여 현재 서브 단위에 대응되는 참조 서브 단위를 결정할 수 있다. 이 때, 참조 서브 단위는 현재 서브 단위와 동일한 레이어에 포함될 수 있다. 그리고 부호화부는 결정된 참조 서브 단위와 현재 서브 단위의 픽셀값들의 차이를 레지듀얼 데이터로 표현할 수 있다. 부호화부는 현재 서브 단위의 영상 정보를 직접 출력하는 대신에, 참조 서브 단위를 가리키는 인덱스, 움직임 벡터 및 결정된 레지듀얼 데이터를 출력할 수 있다.
다른 예로, 움직임 벡터 결정 장치(10)는 현재 서브 단위를 인터 레이어 예측하기 위한 움직임 벡터를 이용하여 현재 서브 단위에 대응되는 참조 서브 단위를 결정할 수 있다. 이 때, 참조 서브 단위는 현재 서브 단위와 상이한 레이어에 포함될 수 있다. 그리고 부호화부는 결정된 참조 서브 단위와 현재 서브 단위의 픽셀값들의 차이를 레지듀얼 데이터로 표현할 수 있다. 부호화부는 현재 서브 단위의 영상 정보를 직접 출력하는 대신에, 참조 서브 단위를 가리키는 인덱스, 움직임 벡터 및 결정된 레지듀얼 데이터를 출력할 수 있다.
다른 예로, 움직임 벡터 결정 장치(10)는 현재 서브 단위를 인터 예측하기 위한 움직임 벡터를 결정하기 위해, 현재 서브 단위가 속한 레이어와 상이한 레이어에 포함된 참조 서브 단위의 인터 예측에 이용되는 움직임 벡터를 이용할 수 있다.
다른 예로, 인터 예측을 이용하여 현재 서브 단위를 복호화할 때, 움직임 벡터 결정 장치(10)는 현재 서브 단위의 움직임 벡터, 양자화된 변환 계수들 및 참조 서브 단위의 인덱스를 수신하여 현재 서브 단위의 레지듀얼 데이터를 복원할 수 있다. 그리고 복호화부는 인터 예측 또는 인터 레이어 예측을 통해 부호화된 현재 서브 단위에 대해 움직임 보상을 수행함으로써 현재 서브 단위를 복원할 수 있다.
다른 예로, 움직임 벡터 결정 장치(10)는 현재 서브 단위를 인터 레이어 예측하기 위한 움직임 벡터를 이용하여 현재 서브 단위에 대응되는 참조 서브 단위를 결정할 수 있다. 이 때, 참조 서브 단위는 현재 서브 단위와 상이한 레이어에 포함될 수 있다.
다른 예로, 움직임 벡터 결정 장치(10)는 현재 서브 단위를 인터 예측하기 위한 움직임 벡터를 결정하기 위해, 현재 서브 단위가 속한 레이어와 상이한 레이어에 포함된 참조 서브 단위의 인터 예측에 이용되는 움직임 벡터를 이용할 수 있다.
일 실시 예에 따른 서브 단위는 현재 레이어에 포함된 예측 단위가 분할되어 생성된 블록을 의미할 수 있다.
또한 일 실시 예에 따른 현재 서브 단위는 현재 부호화 또는 복호화되는 서브 단위를 의미할 수 있다.
또한, 일 실시 예에 따른 서브 움직임 벡터 예측 후보는 현재 서브 단위의 인터 예측 또는 인터 레이어 예측을 위해 이용되는 후보 움직임 벡터를 의미할 수 있다.
또한, 일 실시 예에 따른 예측 후보는 현재 서브 단위 또는 예측 단위의 인터 예측 또는 인터 레이어 예측을 위해 이용되는 후보 움직임 벡터를 의미할 수 있다. 일 실시 예에 따른 예측 후보는 상술한 서브 움직임 벡터 예측 후보를 포함할 수 있다.
또한, 일 실시 예에 따른 참조 단위는 현재 레이어에 포함된 예측 단위에 대응되는 블록을 의미할 수 있다. 참조 단위는 현재 레이어에 포함될 수도 있고, 참조 레이어에 포함될 수도 있다. 예를 들면, 참조 단위는 예측 단위에 대한 인터 예측 또는 인터 레이어 예측을 수행하기 위해 이용되는 참조 블록을 의미할 수 있다.
또한, 일 실시 예에 따른 참조 서브 단위는 참조 레이어에 포함된 참조 단위가 분할되어 생성된 블록을 의미할 수 있다.
일 실시예에 따른 예측 후보 결정부(11)는 현재 레이어에 속한 예측 단위의 사이즈가 기 설정된 사이즈보다 클 때 예측 단위를 복수개의 서브 단위들로 분할할 수 있다.
예를 들면, 예측 후보 결정부(11)는 현재 레이어에 속한 예측 단위의 사이즈가 8×8보다 클 때 예측 단위를 복수개의 서브 단위들로 분할할 수 있다. 이 경우 예측 단위의 크기가 8×8, 8×4 또는 4×8인 경우 예측 단위를 서브 단위로 분할하지 않고 예측 단위별로 움직임 벡터가 결정될 수 있다.
다른 예로, 예측 후보 결정부(11)는 현재 레이어에 속한 예측 단위의 사이즈가 4×4보다 클 때 예측 단위를 복수개의 서브 단위들로 분할할 수 있다.
다른 예로, 예측 후보 결정부(11)는 예측 단위의 가로 사이즈(width)와 세로 사이즈(height)의 합이 12가 아닐 때, 예측 단위를 복수개의 서브 단위들로 분할할 수 있다.
다른 예로, 예측 후보 결정부(11)는 예측 단위의 가로 사이즈(width)와 세로 사이즈(height)의 합이 12보다 클 때, 예측 단위를 복수개의 서브 단위들로 분할할 수 있다.
다른 예로, 예측 후보 결정부(11)는 예측 단위의 사이즈가 8×4도 아니고, 4×8도 아닐 때 예측 단위를 복수개의 서브 단위들로 분할할 수 있다.
다른 예로, 예측 후보 결정부(11)는 예측 단위의 사이즈가 8×4도 아니고, 4×8도 아니고, 8×8도 아닐 때 예측 단위를 복수개의 서브 단위들로 분할할 수 있다.
다른 예로, 예측 후보 결정부(11)는 예측 단위의 사이즈가 2N×2N인 경우에 한하여 예측 단위를 복수개의 서브 단위들로 분할할 수 있다.
다른 예로, 예측 후보 결정부(11)는 예측 단위의 사이즈가 N×N보다 큰 경우에 한하여 예측 단위를 복수개의 서브 단위들로 분할할 수 있다.
일 실시 예에 따른 예측 후보 결정부(11)는 예측 단위의 사이즈가 기 설정된 사이즈 이하인 경우 예측 단위를 서브 단위들로 분할하지 않을 수 있다. 이 경우 비디오 부호화부 또는 비디오 복호화부는 예측 단위별로 인터 레이어 예측 또는 인터 예측을 수행할 수 있다.
2N×2N, 2N×N, N×2N, N×N은 부호화 단위, 예측 단위, 서브 단위 등의 사이즈를 의미할 수 있다. 예를 들면, 부호화 단위의 사이즈가 2N×2N이고, 부호화 단위의 크기는 8×8이상 64×64 이하인 경우 N은 4, 8, 16, 32 중 하나의 값이 될 수 있다. 다른 예로, 부호화 단위의 사이즈가 2N×2N이고, 예측 단위의 사이즈가 2N×2N인 경우 하나의 부호화 단위에 하나의 예측 단위만 존재할 수 있다. 다른 예로, 부호화 단위의 사이즈가 2N×2N이고, 예측 단위의 사이즈가 N×2N인 경우 하나의 부호화 단위에 두 개의 예측 단위가 존재할 수 있다.
일 실시 예에 따른 예측 후보 결정부(11)가 예측 단위를 복수개의 서브 단위들로 분할할 때 최소 서브 단위의 사이즈는 기 설정된 사이즈일 수 있다.
예를 들면, 예측 후보 결정부(11)가 예측 단위를 복수개의 서브 단위들로 분할할 때 최소 서브 단위의 사이즈는 8×8일 수 있다.
다른 예로, 예측 후보 결정부(11)가 예측 단위를 복수개의 서브 단위들로 분할할 때 최소 서브 단위의 사이즈는 4×4, 4×8, 8×4 중 적어도 하나일 수 있다.
일 실시 예에 따른 예측 후보 결정부(11)는 예측 단위를 복수개의 서브 단위들로 분할할 때, 예측 단위를 예측 단위의 사이즈에 따라 기 설정된 개수의 서브 단위들로 분할할 수 있다.
예를 들면, 예측 단위의 사이즈가 16×16인 경우 예측 단위는 기 설정된 개수인 4개의 서브 단위들로 분할될 수 있다.
다른 예로, 예측 단위의 사이즈가 32×16인 경우 예측 단위는 기 설정된 개수인 8개의 서브 단위들로 분할될 수 있다.
다른 예로, 예측 단위 사이즈가 2N×2N인 경우 예측 단위는 기 설정된 개수인 8개의 서브 단위들로 분할될 수 있다.
다른 예로, 예측 단위 사이즈가 2N×N인 경우 예측 단위는 기 설정된 개수인 4개의 서브 단위들로 분할될 수 있다.
다른 예로, 예측 단위 사이즈가 N×2N인 경우 예측 단위는 기 설정된 개수인 16개의 서브 단위들로 분할될 수 있다.
일 실시 예에 따른 서브 단위의 최소 사이즈는 미리 결정되어 있을 수 있다.
일 실시 예에 따른 예측 후보 결정부(11)는 예측 단위 사이즈가 2N×2N일 때 예측 단위를 16개의 서브 단위로 나누고, 예측 단위 사이즈가 N×2N이거나 2N×N일 때 예측 단위를 8개의 서브 단위로 나눌 수 있다.
일 실시 예에 따른 예측 후보 결정부(11)는 예측 단위 사이즈가 16×16, 16×8 또는 8×16인 경우 예측 단위를 8×8 사이즈의 서브 단위로 분할하고, 예측 단위 사이즈가 8×8, 8×4 또는 4×8인 경우 예측 단위를 서브 단위로 분할하지 않을 수 있다.
다른 예로, 예측 후보 결정부(11)는 중복되는 면적 없이 예측 단위에 포함될 수 있는 8×8 블록의 최대 개수의 서브 단위들로 예측 단위를 분할할 수 있다.
다른 예로, 예측 후보 결정부(11)는 중복되는 면적 없이 예측 단위에 포함될 수 있는 기 설정된 사이즈인 블록의 최대 개수의 서브 단위들로 예측 단위를 분할할 수 있다.
예측 단위를 복수개의 서브 단위들로 분할할지 여부를 결정할 때 이용되는 일 실시 예에 따른 기 설정된 사이즈는 시그널링될 수 있다.
예를 들면, 예측 후보 결정부(11)는 기 설정된 사이즈를 수신된 비트스트림을 파싱하여 획득할 수 있다. 그리고 예측 후보 결정부(11)는 수신된 비트스트림을 파싱하여 획득한 기 설정된 사이즈보다 예측 단위의 사이즈가 클 때 예측 단위를 복수개의 서브 단위들로 분할할 수 있다.
다른 예로, 비디오 부호화 장치(20)는 예측 단위를 복수개의 서브 단위들로 분할할지 여부를 결정할 때 이용되는 일 실시 예에 따른 기 설정된 사이즈를 비트스트림을 통해 외부로 송신할 수 있다.
일 실시 예에 따른 기 설정된 사이즈는 VPS(Video Parameter Set), SPS(Sequence Parameter Set), PPS(Picture Parameter Set) 및 슬라이스 세그먼트 헤더(Slice segment header) 중 적어도 하나에 의해 시그널링 될 수 있다.
일 실시 예에 따른 예측 후보 결정부(11)는 서브 단위들 중 하나인 현재 서브 단위의 인터 레이어 예측을 위해 이용되는 참조 레이어에 속한 참조 서브 단위를 결정할 수 있다.
영상은 복수개의 레이어의 영상을 포함할 수 있다. 현재 레이어에 속한 현재 서브 단위를 복원하기 위해서 참조 레이어에 속한 참조 서브 단위가 이용될 수 있다. 예를 들면, 예측 후보 결정부(11)는 참조 서브 단위의 인터 예측을 위한 움직임 벡터를 이용하여 현재 서브 단위의 인터 예측을 위한 움직임 벡터를 결정할 수 있다.
일 실시 예에 따른 예측 후보 결정부(11)는 현재 서브 단위에 대응되는 참조 서브 단위를 결정할 때 디스페리티 벡터를 이용할 수 있다. 현재 레이어의 현재 블록과 참조 레이어의 참조 블록을 대응시킬 때 디스페리티 벡터가 이용될 수 있다.
현재 단위에 대응되는 참조 단위는 복수개의 참조 서브 단위들로 분할될 수 있다. 그리고 복수개의 참조 서브 단위들 중 하나의 참조 서브 단위가 현재 서브 단위에 대응될 수 있다.
현재 레이어에 속한 예측 단위의 인터 레이어 예측을 위해 이용되는 참조 레이어에 속한 블록을 참조 단위라고 할 때, 참조 서브 단위는 참조 단위를 분할하여 획득될 수 있다.
일 실시 예에 따른 예측 후보 결정부(11)는 참조 서브 단위의 인터 예측을 위한 움직임 벡터를 이용하여 현재 서브 단위의 인터 예측을 위한 서브 움직임 벡터 예측 후보를 결정할 수 있다.
참조 서브 단위의 인터 예측을 위해 제 1 움직임 벡터가 이용될 수 있다. 그리고 현재 서브 단위의 인터 예측을 위해 제 2 움직임 벡터가 이용될 수 있다. 서브 움직임 벡터 예측 후보는 현재 서브 단위의 인터 예측을 위해 이용될 수 있다. 서브 움직임 벡터 예측 후보는 제 1 움직임 벡터를 이용하여 결정될 수 있다. 예를 들면, 예측 후보 결정부(11)는 제 1 움직임 벡터를 서브 움직임 벡터 예측 후보로 결정할 수 있다.
또한, 서브 움직임 벡터 예측 후보는 현재 서브 단위의 인터 예측을 위한 후보 움직임 벡터들 중 하나일 수 있다. 예를 들면, 서브 움직임 벡터 예측 후보는 제 2 움직임 벡터와 동일할 수 있다.
일 실시 예에 따른 움직임 벡터 결정 장치(10)는 제 1 움직임 벡터를 이용하여 제 2 움직임 벡터를 결정할 수 있다.
구체적으로, 예측 후보 결정부(11)는 제 1 움직임 벡터를 제 2 움직임 벡터를 결정하기 위한 예측 후보들에 포함시킬 수 있다. 움직임 벡터 결정부(12)는 예측 후보들에 포함된 움직임 벡터들 중에서 현재 서브 단위의 인터 예측을 위해 이용되는 움직임 벡터를 선택할 수 있다.
일 실시 예에 따른 비디오 부호화 장치(20) 또는 비디오 복호화 장치(25)는 현재 영상보다 시간상 앞서거나 뒤늦은 영상에 포함된 현재 서브 단위에 대응되는 블록들 중에서 현재 서브 단위가 참조할 후보 블록을 결정할 수 있다. 그리고 일 실시 예에 따른 비디오 부호화 장치(20) 또는 비디오 복호화 장치(25)는 현재 서브 단위가 참조할 후보 블록을 결정하기 위해서 이용되는 움직임 벡터를 예측 후보들의 움직임 벡터들 중에서 선택할 수 있다. 참조 서브 단위의 인터 예측을 위해 제 1 움직임 벡터는 예측 후보들에 포함될 수 있다.
일 실시 예에 따른 움직임 벡터 결정부(12)는 서브 움직임 벡터 예측 후보를 포함하는 예측 후보들 중 하나를 이용하여 현재 서브 단위의 인터 예측을 위한 움직임 벡터를 결정할 수 있다.
예를 들면, 움직임 벡터 결정부(12)는 예측 후보 결정부(11)에서 결정한 서브 움직임 벡터 예측 후보를 현재 서브 단위의 인터 예측 또는 인트라 예측을 위한 움직임 벡터로 결정할 수 있다. 다른 예로, 움직임 벡터 결정부(12)는 참조 서브 단위의 인터 예측에 이용되는 움직임 벡터를 현재 서브 단위의 인터 예측에 이용되는 움직임 벡터로 결정할 수 있다. 다른 예로, 인터 예측을 수행하는 단위가 예측 단위가 아닌 서브 단위인 경우, 움직임 벡터 결정부(12)는 예측 후보 결정부(11)에서 결정된 참조 서브 단위의 인터 예측을 위한 움직임 벡터를 현재 서브 단위의 인터 예측을 위한 움직임 벡터로 결정할 수 있다.
일 실시예에 따른 움직임 벡터 결정부(12)는, 현재 서브 단위의 움직임 벡터를 예측하기 위해 참조되는 블록들의 후보 움직임 벡터들을 포함하는 예측 후보들을 생성할 수 있다.
일 실시예에 따른 움직임 벡터 결정부(12)는, 예측 후보들에 포함된 후보 움직임 벡터들 중에서 적어도 하나의 후보 움직임 벡터를 선택하고, 선택된 후보 움직임 벡터를 이용하여 현재 블록의 움직임 벡터를 결정할 수 있다. 움직임 벡터 결정부(12)는, 적어도 하나의 후보 움직임 벡터를 그대로 복사하거나 조합하거나 변형하여 현재 블록의 움직임 벡터를 결정할 수 있다.
상술한 바와 같이 움직임 벡터 결정 장치(10)는 예측 단위를 서브 단위로 분할하여 분할된 서브 단위별로 움직임 벡터를 결정할 수 있다.
그리고 도 2에서 후술하는 바와 같이 비디오 부호화부 또는 비디오 복호화부는 움직임 벡터 결정 장치(10)에서 결정된 움직임 벡터를 이용하여 서브 단위 별로 인터 예측 또는 인터 레이어 예측을 수행할 수 있다.
일 실시 예에 따른 움직임 벡터 결정 장치(10)를 이용하여, 예측 단위보다 작은 서브 단위별로 인터 예측 또는 인터 레이어 예측을 수행할 경우 예측 단위 별로 예측을 수행하는 경우보다 높은 화질의 영상이 획득될 수 있다.
일 실시 예에 따른 움직임 벡터 결정 장치(10)는 인터 예측 또는 인터 레이어 예측을 서브 단위로 수행할 경우 다른 후보 움직임 벡터가 현재 서브 단위의 움직임 벡터인지 여부에 대한 판단 없이 현재 서브 단위의 움직임 벡터를 참조 서브 단위의 움직임 벡터로 결정할 수 있다.
도 1b는 일 실시 예에 따른 움직임 벡터 결정 방법의 흐름도를 도시한다.
단계 S11에서 예측 부호 결정부(11)는 현재 레이어에 속한 예측 단위의 사이즈가 기 설정된 사이즈보다 클 때 예측 단위를 복수개의 서브 단위들로 분할한다.
예를 들면 기 설정된 사이즈는 8×8일 수 있다. 기 설정된 사이즈가 8×8인 경우 예측 후보 결정부(11)는 현재 레이어에 속한 예측 단위의 사이즈가 8×8보다 클 때 예측 단위를 복수개의 서브 단위들로 분할할 수 있다.
일 실시 예에 따른 기 설정된 사이즈는 시그널링 될 수 있다. 따라서 일 실시 예에 따른 예측 후보 결정부(11)는 기 설정된 사이즈를 수신된 비트스트림을 파싱하여 획득하고, 획득한 기 설정된 사이즈보다 예측 단위의 사이즈가 클 때 예측 단위를 복수개의 서브 단위들로 분할할 수 있다.
단계 S12에서 예측 부호 결정부(11)는 단계 S11에서 분할된 서브 단위들 중 하나인 현재 서브 단위의 인터 레이어 예측을 위해 이용되는 참조 레이어에 속한 참조 서브 단위를 결정한다.
예측 부호 결정부(11)는 현재 서브 단위와 상이한 레이어에 포함된 참조 서브 단위를 결정할 수 있다. 그리고 예측 부호 결정부(11)는 결정된 참조 서브 단위의 인터 예측을 위한 움직임 벡터를 획득할 수 있다.
예측 부호 결정부(11)는 참조 서브 단위를 결정할 때, 현재 서브 단위와 참조 서브 단위를 대응시키는 디스페리티 벡터를 이용할 수 있다.
또한, 단계 S13에서 후술하는 바와 같이, 예측 부호 결정부(11)는 획득한 움직임 벡터를 이용하여 현재 서브 단위의 인터 예측을 위한 서브 움직임 벡터 예측 후보를 결정할 수 있다.
또한, 도 7a에서 후술하는 바와 같이 참조 서브 단위의 부호화 방식이 인트라 모드인 경우 참조 서브 단위의 샘플 값이 현재 서브 단위를 부호화 또는 복호화 하기 위해 이용될 수 있다.
단계 S13에서 예측 부호 결정부(11)는 단계 S12에서 결정된 참조 서브 단위의 인터 예측을 위한 움직임 벡터를 이용하여 현재 서브 단위의 인터 예측을 위한 서브 움직임 벡터 예측 후보를 결정한다.
예측 부호 결정부(11)는 현재 서브 단위의 인터 예측에 이용되는 서브 움직임 벡터 예측 후보를 결정하기 위해, 참조 서브 단위의 움직임 벡터를 이용할 수 있다.
예를 들면, 예측 부호 결정부(11)는 단계 S12에서 결정된 참조 서브 단위의 인터 예측을 위한 움직임 벡터를 현재 서브 단위의 인터 예측을 위한 서브 움직임 벡터 예측 후보로 결정할 수 있다.
서브 움직임 벡터 예측 후보는 단계 S12에서 결정된 참조 서브 단위의 인터 예측을 위한 움직임 벡터 외에 다른 후보 움직임 벡터를 포함할 수 있다.
단계 S14에서 움직임 벡터 결정부(12)는 단계 S13에서 결정된 서브 움직임 벡터 예측 후보를 포함하는 예측 후보들 중 하나를 이용하여 현재 서브 단위의 인터 예측을 위한 움직임 벡터를 결정한다.
예를 들면, 인터 예측을 수행하는 단위가 예측 단위가 아니라 서브 단위인 경우, 움직임 벡터 결정부(12)는 단계 S12에서 결정된 참조 서브 단위의 인터 예측을 위한 움직임 벡터를 현재 서브 단위의 인터 예측을 위한 움직임 벡터로 결정할 수 있다.
또한, 후술하는 바와 같이 부호화부 또는 복호화부는 단계 S14에서 결정된 움직임 벡터를 이용하여 현재 서브 단위에 대한 움직임 보상을 수행할 수 있다. 단계 S14에서 결정한 움직임 벡터를 이용한 움직임 보상을 통해서 현재 서브 단위의 부호화 또는 복호화가 수행될 수 있다. 움직임 보상은, 현재 영상의 움직임 벡터를 이용하여 결정된 참조 영상과, 현재 영상의 레지듀얼 성분을 합성하여 현재 영상의 복원 영상을 재구성하는 동작을 의미할 수 있다.
도 2a는 일 실시 예에 따른 움직임 벡터 결정 방법을 수반한 비디오 부호화 장치(20)의 블록도를 도시한다.
도 2a에 도시된 바와 같이, 비디오 부호화 장치(20)는 제 2 레이어 부호화부(18) 및 제 1 레이어 부호화부(24)를 포함할 수 있다. 제 2 레이어 부호화부(18)는 예측부(22) 및 변환 양자화부(23)를 포함할 수 있다. 예측부(22)는 일 실시 예에 따른 움직임 벡터 결정 장치(10) 및 레지듀얼 생성부(21)를 포함할 수 있다. 그러나 도시된 구성요소보다 많은 구성요소에 의해 비디오 부호화 장치(20)가 구현될 수도 있고, 도시된 구성요소보다 적은 구성요소에 의해 비디오 부호화 장치(20)가 구현될 수도 있다.
비디오 부호화 장치(20)는 데이터 스트림을 생성할 수 있다. 비디오 부호화 장치(20)가 생성하는 데이터 스트림은 NAL (Network Abstraction Layer) 유닛들로 구성될 수 있다.
NAL 유닛은 비트스트림을 구성하는 기본 단위인 네트워크 추상화 계층 유닛을 의미할 수 있다. 또한, 하나 이상의 NAL 유닛들이 데이터 스트림을 구성할 수 있다. 비디오 부호화 장치(20)는 하나 이상의 NAL 유닛들로 구성된 데이터 스트림을 외부로 송신할 수 있다.
일 실시 예에 따른 NAL 유닛은 두 바이트의 헤더 정보를 포함할 수 있다. 또한 일 실시 예에 따른 비디오 부호화 장치(20)는 각각의 NAL 유닛에 포함된 두 바이트의 헤더 정보를 포함시킴으로써 각각의 NAL 유닛 내부의 데이터에 대한 대략적인 정보를 확인할 수 있다.
이하 비디오 부호화 장치(20)가 수행하는 구체적인 부호화 과정에 대해서 설명한다.
다양한 실시예에 따른 비디오 부호화 장치(20)는 스케일러블 비디오 코딩(Scalable Video Coding) 방식에 따라 다수의 영상시퀀스들을 레이어별로 분류하여 각각 부호화하고, 레이어별로 부호화된 데이터를 포함하는 별개의 스트림을 출력할 수 있다. 또한, 비디오 부호화 장치(20)는 레이어별로 출력된 비트스트림을 하나의 비트스트림으로 다중화하여 출력할 수도 있다.
다양한 실시예에 따른 비디오 부호화 장치(20)는 스케일러블 비디오 코딩(Scalable Video Coding) 방식에 따라 다수의 영상시퀀스들을 레이어별로 분류하여 각각 부호화하고, 레이어별로 부호화된 데이터를 포함하는 별개의 스트림을 출력할 수 있다. 비디오 부호화 장치(20)는 제 1 레이어 영상 시퀀스와 제 2 레이어 영상 시퀀스를 서로 다른 레이어로 부호화할 수 있다.
제 1 레이어 부호화부(24)는 제 1 레이어 영상들을 부호화하고, 제 1 레이어 영상들의 부호화 데이터를 포함하는 제 1 레이어 스트림을 출력할 수 있다.
제 2 레이어 부호화부(18)는 제 2 레이어 영상들을 부호화하고, 제 2 레이어 영상들의 부호화 데이터를 포함하는 제 2 레이어 스트림을 출력할 수 있다.
예를 들어, 공간적 스케일러빌러티(Spatial Scalability)에 기반한 스케일러블 비디오 코딩 방식에 따르면, 저해상도 영상들이 제 1 레이어 영상들로서 부호화되고, 고해상도 영상들이 제 2 레이어 영상들로서 부호화될 수 있다. 제 1 레이어 영상들의 부호화 결과가 제 1 레이어 스트림으로 출력되고, 제 2 레이어 영상들의 부호화 결과가 제 2 레이어 스트림으로 출력될 수 있다.
다른 예로, 다시점 비디오가 스케일러블 비디오 코딩 방식에 따라 부호화될 수 있다. 좌시점 영상들은 제 2 레이어 영상들로서 부호화되고, 우시점 영상들은 제 1 레이어 영상들로서 부호화될 수 있다. 또는, 중앙시점 영상들, 좌시점 영상들과 우시점 영상들이 각각 부호화되고, 이 중에서 중앙시점 영상들은 제 1 레이어 영상들로서 부호화되고, 좌시점 영상들은 제 2 레이어 영상들, 우시점 영상들은 제 3 레이어 영상들로서 부호화될 수 있다.
다른 예로, 시간적 스케일러빌러티에 기반한 시간 계층적 예측(Temporal Hierarchical Prediction)에 따라 스케일러블 비디오 코딩 방식이 수행될 수 있다. 기본 프레임 레이트의 영상들을 부호화하여 생성된 부호화 정보를 포함하는 제 1 레이어 스트림이 출력될 수 있다. 프레임 레이트별로 시간적 계층(temporal level)이 분류되고 각 시간적 계층이 각 레이어로 부호화될 수 있다. 기본 프레임 레이트의 영상들을 참조하여 고속 프레임 레이트의 영상들을 더 부호화하여, 고속 프레임 레이트의 부호화 정보를 포함하는 제 2 레이어 스트림이 출력될 수 있다.
또한, 제 1 레이어와 다수의 제 2 레이어들에 대한 스케일러블 비디오 코딩이 수행될 수 있다. 제 2 레이어가 셋 이상인 경우, 제 1 레이어 영상들과 첫번째 제 2 레이어 영상들, 두번째 제 2 레이어 영상들, ..., K번째 제 2 레이어 영상들이 부호화될 수도 있다. 이에 따라 제 1 레이어 영상들의 부호화 결과가 제 1 레이어 스트림으로 출력되고, 첫번째, 두번째, ..., K번째 제 2 레이어 영상들의 부호화 결과가 각각 첫번째, 두번째, ..., K번째 제 2 레이어 스트림으로 출력될 수 있다.
비디오 부호화 장치(20)는 제 1 레이어 영상들을 참조하여 제 2 레이어 영상들을 예측하는 인터 레이어 예측(Inter-layer Prediction)을 수행할 수 있다. 예를 들면, 비디오 부호화 장치(20)는 제 1 레이어 영상들을 참조하여 제 2 레이어 영상들을 예측할 수 있고, 제 1 레이어는 제 2 레이어를 부호화할 때 참조되는 레이어를 의미할 수 있다. 따라서 제 1 레이어는 제 2 레이어에, 제 2 레이어는 제 1 레이어에 각각 대응될 수 있다.
다양한 실시예에 따른 비디오 부호화 장치(20)는, 제 1 레이어 영상들에 대해 인터 예측 또는 인트라 예측을 포함하는 소스 코딩 동작들을 수행하여 심볼 데이터를 생성할 수 있다. 예를 들어, 비디오 부호화 장치(20)는, 제 1 레이어 영상들의 데이터 단위의 샘플들에 대해 인터 예측 또는 인트라 예측, 변환, 양자화를 수행하여 심볼데이터를 생성하고 심볼데이터에 대해 엔트로피 부호화를 수행하여 제 1 레이어 스트림을 생성할 수 있다.
비디오 부호화 장치(20)는, 트리 구조의 부호화 단위들에 기초하여 제 2 레이어 영상들을 부호화할 수 있다. 비디오 부호화 장치(20)는, 제 2 레이어 영상의 부호화 단위의 샘플들에 대해 예측, 변환, 양자화를 수행하여 심볼데이터를 생성하고 심볼데이터에 대해 엔트로피 부호화를 수행하여 제 2 레이어 스트림을 생성할 수 있다.
다양한 실시예에 따른 비디오 부호화 장치(20)는, 제 1 레이어 영상의 복원샘플을 이용하여, 제 2 레이어 영상을 예측하는 인터 레이어 예측을 수행할 수 있다. 비디오 부호화 장치(20)는, 인터 레이어 예측 구조를 통해 제 2 레이어 영상시퀀스 중 제 2 레이어 원본영상을 부호화하기 위해, 제 1 레이어 복원영상을 이용하여 제 2 레이어 예측영상을 생성하고, 제 2 레이어 원본영상과 제 2 레이어 예측영상 간의 예측 오차를 부호화할 수 있다.
비디오 부호화 장치(20)는, 제 2 레이어 영상을 부호화 단위 또는 예측 단위와 같은 블록별로 인터 레이어 예측을 수행할 수 있다. 제 2 레이어 영상의 블록이 참조할 제 1 레이어 영상의 블록을 결정할 수 있다. 예를 들어, 제 2 레이어 영상에서 현재 블록의 위치에 상응하여 위치하는 제 1 레이어 영상의 복원블록이 결정될 수 있다. 비디오 부호화 장치(20)는, 제 2 레이어 블록에 상응하는 제 1 레이어 복원블록을 이용하여, 제 2 레이어 예측블록을 결정할 수 있다.
일 실시 예에 따라, 제 2 레이어가 제 1 레이어를 참조하여 인터 레이어 예측을 수행할 때에는 제 2 레이어는 현재 레이어라고 지칭할 수 있고, 제 1 레이어는 참조 레이어라고 지칭할 수 있다.
일 실시 예에 따라, 향상 레이어가 기본 레이어를 참조하여 인터 레이어 예측을 수행할 때에는 현재 레이어는 향상 레이어이고, 참조 레이어는 기본 레이어일 수 있다.
일 실시 예에 따라, 제 2 레이어가 제 1 레이어를 참조하여 인터 레이어 예측을 수행할 때에 비디오 부호화 장치(20)는 제 1 레이어 영상을 제 2 레이어 영상보다 먼저 부호화할 수 있다.
일 실시 예에 따라, 향상 레이어가 기본 레이어를 참조하여 인터 레이어 예측을 수행할 때에는 비디오 부호화 장치(20)는 기본 레이어 영상을 향상 레이어 영상보다 먼저 부호화할 수 있다.
다양한 실시예에 따른 비디오 부호화 장치(20)는 각 레이어마다, 비디오의 각각의 영상의 블록별로 부호화할 수 있다.
이하 비디오 부호화 장치(20)가 수행하는 구체적인 부호화 과정에 대해서 설명한다.
일 실시 예에 따른 움직임 벡터 결정 장치(10)는 예측 단위 또는 현재 서브 단위의 인터 예측 또는 인터 레이어 예측을 위한 움직임 벡터를 결정할 수 있다.
일 실시 예에 따른 움직임 벡터 결정 장치(10)는 현재 서브 단위와 공간적으로 인접하는 이웃 블록들, 또는 현재 영상과 시간상 앞서거나 뒤늦은 영상들 중에서 현재 서브 단위와 동일한 위치에 존재하는 블록들, 또는 현재 서브 단위에 대응되는 참조 레이어에 포함된 참조 서브 단위 중에서 현재 서브 단위가 참조할 후보 블록들을 결정할 수 있다. 그리고 일 실시 예에 따른 움직임 벡터 결정 장치(10)는 결정된 후보 블록의 움직임 벡터를 이용하여 현재 서브 블록의 움직임 벡터를 결정할 수 있다.
움직임 벡터 결정 장치(10)의 구체적인 동작은 도 1a에서 상술하였다.
일 실시 예에 따른 레지듀얼 생성부(21)는 현재 블록과 동일한 레이어에 포함된 참조 영상 내에서 현재 블록의 움직임 벡터가 가리키는 참조 블록을 이용하여, 참조 블록과 현재 블록 간의 레지듀얼 데이터를 생성할 수 있다. 예를 들면, 레지듀얼 생성부(21)는 움직임 벡터 결정 장치(10)에서 결정된 움직임 벡터가 가리키는 참조 블록을 결정하고, 현재 서브 단위와 참조 블록 간의 레지듀얼 데이터를 생성할 수 있다. 이 경우 현재 서브 단위와 참조 블록은 모두 현재 레이어에 포함될 수 있다.
일 실시 예에 따른 레지듀얼 생성부(21)는 현재 블록과 상이한 레이어에 포함된 참조 영상 내에서 현재 블록의 움직임 벡터가 가리키는 참조 블록을 이용하여, 참조 블록과 현재 블록 간의 레지듀얼 데이터를 생성할 수 있다. 예를 들면, 레지듀얼 생성부(21)는 움직임 벡터 결정 장치(10)에서 결정된 움직임 벡터가 가리키는 참조 블록을 결정하고, 현재 서브 단위와 참조 블록 간의 레지듀얼 데이터를 생성할 수 있다. 이 경우 현재 서브 단위는 현재 레이어에, 참조 블록은 참조 레이어에 포함될 수 있다.
따라서 예측부(22)는 블록별로 인터 예측 또는 인터 레이어 예측을 수행한 결과, 블록별로 레지듀얼 데이터를 출력할 수 있다. 예를 들면, 예측부(22)는 현재 서브 단위별로 인터 예측 또는 인터 레이어 예측을 수행한 결과에 따른 레지듀얼 데이터를 출력할 수 있다.
일 실시 예에 따른 변환 양자화부(23)는 예측부(22)가 출력한 레지듀얼 데이터에 대해 변환 및 양자화를 수행하여 양자화된 변환계수들을 생성할 수 있다. 변환양자화부(23)는, 예측부(22)로부터 수신한 블록별 레지듀얼 데이터에 대해 변환 및 양자화를 수행하여, 블록별로 양자화된 변환계수들을 생성할 수 있다.
비디오 부호화 장치(20)는, 변환양자화부(23)에 의해 생성된 양자화된 변환계수에 대해 엔트로피 부호화를 수행하여 부호화된 비트스트림을 출력할 수 있다. 또한, 예측부(22)로부터 참조인덱스, 움직임 벡터 등도 출력된 경우에, 비디오 부호화 장치(20)는, 양자화된 변환계수 뿐만 아니라 참조인덱스, 움직임 벡터에 대해서도 엔트로피 부호화를 수행하여 비트스트림을 출력할 수 있다.
일 실시 예에 따른 비디오 부호화 장치(20)는 결정된 움직임 벡터에 대한 데이터를 전송할 때 병합(merge) 모드 또는 AMVP(Advanced Motion Vector Prediction)를 이용할 수 있다. 일 실시 예에 따른 비디오 부호화 장치(20)는 움직임 벡터를 결정하기 위한 주변 블록들의 리스트를 구성하고, 리스트 내의 블록들 중 어떤 블록을 선택할지에 대한 정보인 선택 정보를 비디오 복호화 장치(25)로 전송함으로써 움직임 관련 데이터의 양을 줄일 수 있다. 또한, 비디오 부호화 장치(20)는 병합 모드 또는 AMVP를 이용하여 예측 단위로 전송되는 움직임 정보의 양을 줄일 수 있다. 움직임 정보는 움직임 벡터에 대한 정보를 포함할 수 있다.
일 실시 예에 따른 병합 모드는 참조 블록을 이용하여 현재 블록의 움직임 벡터를 결정하는 방법이다. 일 실시 예에 따른 비디오 부호화 장치(20)는 병합 모드에 의할 때, 현재 블록의 주변에 위치한 블록인 하나 이상의 공간적 후보 블록을 결정할 수 있다. 또한, 일 실시 예에 따른 비디오 부호화 장치(20)는 병합 모드에 의할 때, 현재 블록과 다른 시간의 픽쳐에 포함되는 블록인 하나 이상의 시간적 후보 블록을 결정할 수 있다. 또한, 일 실시 예에 따른 비디오 부호화 장치(20)는 병합 모드에 의할 때, 참조 레이어에 포함된 하나 이상의 후보 블록을 결정할 수 있다. 비디오 부호화 장치(20)는 후보 블록을 결정할 때 디스페리티 벡터를 이용할 수 있다. 여기서 디스페리티 벡터는 현재 블록과 후보 블록을 대응시키는데 이용되는 움직임 벡터를 의미할 수 있다. 또한, 일 실시 예에 따른 비디오 부호화 장치(20)는 참조 블록의 움직임 벡터를 이용하여 참조 레이어에 포함된 후보 블록을 결정할 수 있다.
일 실시 예에 따른 비디오 부호화 장치(20)는 상술한 방식으로 결정된 후보 블록들을 조합하여, 현재 블록의 움직임 벡터를 결정할 때 이용되는 후보 블록들을 결정할 수 있다.
일 실시 예에 따른 후보 블록들은 참조 픽쳐에 포함될 수 있다. 하나 이상의 참조 픽쳐들은 두 개의 리스트에 포함될 수 있다. 두 개의 리스트를 각각 참조 픽쳐 리스트 0, 참조 픽쳐 리스트 1이라고 할 때, 참조 픽쳐 리스트 0에 포함된 참조 픽쳐 내의 후보 블록으로부터 획득한 제 1 움직임 벡터와, 참조 픽쳐 리스트 1에 포함된 참조 픽쳐 내의 후보 블록으로부터 획득한 제 2 움직임 벡터를 이용하여 현재 블록의 움직임 벡터를 결정할 수 있다. 예를 들면 제 1 움직임 벡터와 제 2 움직임 벡터 중 하나의 움직임 벡터가 현재 블록의 움직임 벡터가 될 수 있다. 다른 예로, 제 1 움직임 벡터와 제 2 움직임 벡터가 조합되어 결정된 새로움 움직임 벡터가 현재 블록의 움직임 벡터로 결정될 수 있다.
일 실시 예에 따른 AMVP 모드는 차분 움직임 벡터, 참조 픽쳐 구분 정보 및 참조 인덱스 중 적어도 하나를 이용하여 현재 블록을 복원하는 방법을 의미할 수 있다.
일 실시 예에 따른 차분 움직임 벡터는 두 움직임 벡터 간의 차이 값에 대응하는 값을 의미할 수 있다. 예를 들면, 비디오 부호화 장치(20)는 현재 블록을 복원하기 위해 참조되는 두 개의 움직임 벡터를 이용하여 움직임 벡터의 차분값을 전송할 수 있다.
일 실시 예에 따른 참조 픽쳐 구분 정보는 현재 블록의 인터 예측 또는 인터 레이어 예측을 수행할 때 이용되는 참조 블록이 포함되는 픽쳐가 포함된 리스트를 나타낼 수 있다. 예를 들면, 참조 픽쳐 구분 정보는 인터 예측이 수행되는 경우 L0에 포함된 후보 블록들을 이용하는지, L1에 포함된 후보 블록들을 이용하는지, L1 및 L2에 포함된 후보 블록들을 모두 이용하는지 나타낼 수 있다.
일 실시 예에 따른 참조 인덱스는 현재 블록의 인터 예측 또는 인터 레이어 예측을 수행할 때 이용되는 픽쳐 리스트 내의 참조 픽쳐를 나타내는 인덱스를 의미할 수 있다.
일 실시 예에 따른 비디오 부호화 장치(20)는 결정된 움직임 벡터에 대한 데이터를 병합 모드를 이용하여 전송할 때 병합 인덱스(merge index)를 시그널링할 수 있다.
예를 들면, 비디오 부호화 장치(20)는 움직임 예측을 수행한 블록들 중에서 현재 블록의 움직임 벡터를 결정할 때 이용되는 후보 블록들을 결정할 수 있다. 비디오 부호화 장치(20)는 후보 블록들 중에서 선택된 블록을 가리키는 정보인 병합 인덱스를 비디오 복호화 장치(25)로 전송할 수 있다.
일 실시 예에 따른 비디오 부호화 장치(20)는 AMVP를 이용하여 결정된 움직임 벡터에 대한 데이터를 전송하기 위해서 차분 움직임 벡터, 참조 픽쳐 구분 정보 및 참조 인덱스 중 적어도 하나를 시그널링할 수 있다.
일 실시예에 따른 비디오 부호화 장치(20)는, 움직임 벡터 결정 장치(10), 레지듀얼 생성부(21) 및 변환 양자화부(23)를 총괄적으로 제어하는 중앙 프로세서(미도시)를 포함할 수 있다. 또는, 움직임 벡터 결정 장치(10), 레지듀얼 생성부(21) 및 변환 양자화부(23)가 각각의 자체 프로세서(미도시)에 의해 작동되며, 프로세서(미도시)들이 상호 유기적으로 작동함에 따라 비디오 부호화 장치(20)가 전체적으로 작동될 수도 있다. 또는, 일 실시예에 따른 비디오 부호화 장치(20)의 외부 프로세서(미도시)의 제어에 따라, 움직임 벡터 결정 장치(10), 레지듀얼 생성부(21) 및 변환 양자화부(23)가 제어될 수도 있다.
일 실시예에 따른 비디오 부호화 장치(20)는, 움직임 벡터 결정 장치(10), 레지듀얼 생성부(21) 및 변환 양자화부(23)의 입출력 데이터가 저장되는 하나 이상의 데이터 저장부(미도시)를 포함할 수 있다. 비디오 부호화 장치(20)는, 데이터 저장부(미도시)의 데이터 입출력을 관할하는 메모리 제어부(미도시)를 포함할 수도 있다.
일 실시예에 따른 비디오 부호화 장치(20)는, 비디오 부호화 결과를 출력하기 위해, 내부에 탑재된 비디오 인코딩 프로세서 또는 외부 비디오 인코딩 프로세서와 연계하여 작동함으로써, 변환을 포함한 비디오 부호화 동작을 수행할 수 있다. 일 실시예에 따른 비디오 부호화 장치(20)의 내부 비디오 인코딩 프로세서는, 별개의 프로세서 뿐만 아니라, 비디오 부호화 장치(20) 또는 중앙 연산 장치, 그래픽 연산 장치가 비디오 인코딩 프로세싱 모듈을 포함함으로써 기본적인 비디오 부호화 동작을 구현하는 경우도 포함할 수 있다.
도 2b는 일 실시 예에 따른 움직임 벡터 결정 방법을 수반한 비디오 복호화 장치(25)의 블록도를 도시한다.
도 2b에 도시된 바와 같이, 비디오 복호화 장치(25)는 기본 레이어 복호화부(29) 및 향상 레이어 복호화부(19)를 포함할 수 있다. 향상 레이어 복호화부(19)는 역양자화 역변환부(28) 및 움직임 보상부(27)을 포함할 수 있다. 움직임 보상부(27)는 일 실시예에 따른 움직임 벡터 결정 장치(10) 및 블록 복원부(26)를 포함할 수 있다. 그러나 도시된 구성요소보다 많은 구성요소에 의해 비디오 복호화 장치(25)가 구현될 수도 있고, 도시된 구성요소보다 적은 구성요소에 의해 비디오 복호화 장치(25)가 구현될 수도 있다.
일 실시 예에 따른 비디오 복호화 장치(25)는 현재 블록에 대해 복호화를 수행할 수 있다. 현재 블록은 예측 단위 및 현재 서브 단위를 포함할 수 있다.
또한, 일 실시 예에 따른 비디오 복호화 장치(25)는 현재 블록에 대해 복호화를 수행할 때, 후보 블록의 움직임 벡터를 이용할 수 있다. 후보 블록은 참조 단위 및 참조 서브 단위를 포함할 수 있다.
다양한 실시예에 따른 비디오 복호화 장치(25)는, 스케일러블 부호화 방식에 따라 레이어별로 비트스트림들을 수신할 수 있다. 비디오 복호화 장치(25)가 수신하는 비트스트림들의 레이어의 개수가 한정되는 것은 아니다. 하지만, 설명의 편의를 위해 이하 비디오 복호화 장치(25)의 제 1 레이어 복호화부(29)가 제 1 레이어 스트림을 수신하여 복호화하고, 제 2 레이어 복호화부(19)가 제 2 레이어 스트림을 수신하여 복호화하는 실시예에 대해 상술한다.
예를 들어, 공간적 스케일러빌러티에 기반한 비디오 복호화 장치(25)는, 서로 다른 해상도의 영상시퀀스가 서로 다른 레이어로 부호화된 스트림을 수신할 수 있다. 제 1 레이어 스트림을 복호화하여 저해상도 영상시퀀스가 복원되고, 제 2 레이어 스트림을 복호화하여 고해상도 영상 시퀀스가 복원될 수 있다.
다른 예로, 다시점 비디오가 스케일러블 비디오 코딩 방식에 따라 복호화될 수 있다. 스테레오스코픽 비디오 스트림이 다수 레이어로 수신된 경우에, 제 1 레이어 스트림을 복호화하여 좌시점 영상들이 복원될 수 있다. 제 1 레이어 스트림에 제 2 레이어 스트림을 더 복호화하여 우시점 영상들이 복원될 수 있다.
또는 다시점 비디오 스트림이 다수 레이어로 수신된 경우에, 제 1 레이어 스트림을 복호화하여 중앙시점 영상들이 복원될 수 있다. 제 1 레이어 스트림에 제 2 레이어 스트림을 더 복호화하여 좌시점 영상들이 복원될 수 있다. 제 1 레이어 스트림에 제3 레이어 스트림을 더 복호화하여 우시점 영상들이 복원될 수 있다.
다른 예로, 시간적 스케일러빌러티에 기반한 스케일러블 비디오 코딩 방식이 수행될 수 있다. 제 1 레이어 스트림을 복호화하여 기본 프레임 레이트의 영상들이 복원될 수 있다. 제 1 레이어 스트림에 제 2 레이어 스트림을 더 복호화하여 고속 프레임 레이트의 영상들이 복원될 수 있다.
또한, 제 2 레이어가 셋 이상인 경우, 제 1 레이어 스트림으로부터 제 1 레이어 영상들이 복원되고, 제 1 레이어 복원영상들을 참조하여 제 2 레이어 스트림을 더 복호화하면 제 2 레이어 영상들이 더 복원될 수 있다. 제 2 레이어 복원영상을 참조하여 K번째 레이어 스트림을 더 복호화하면 K번째 레이어 영상들이 더 복원될 수도 있다.
비디오 복호화 장치(25)는, 제 1 레이어 스트림과 제 2 레이어 스트림으로부터 제 1 레이어 영상들 및 제 2 레이어 영상들의 부호화된 데이터를 획득하고, 더하여 인터 예측에 의해 생성된 모션 벡터 및 인터 레이어 예측에 의해 생성된 예측 정보를 더 획득할 수 있다.
예를 들어 비디오 복호화 장치(25)는 각 레이어별로 인터 예측된 데이터를 복호화하고, 다수 레이어 간에 인터 레이어 예측된 데이터를 복호화할 수 있다. 부호화 단위 또는 예측 단위를 기초로 움직임 보상(Motion Compensation) 및 인터 레이어 복호화를 통한 복원이 수행될 수도 있다.
각 레이어 스트림에 대해서는 동일 레이어의 인터 예측을 통해 예측된 복원영상들을 참조하여, 현재영상을 위한 움직임 보상을 수행함으로써, 영상들을 복원할 수 있다. 움직임 보상은, 현재 영상의 모션 벡터를 이용하여 결정된 참조영상과, 현재 영상의 레지듀얼 성분을 합성하여 현재 영상의 복원 영상을 재구성하는 동작을 의미한다.
또한, 비디오 복호화 장치(25)는 인터 레이어 예측을 통해 예측된 제 2 레이어 영상을 복호화하기 위해 제 1 레이어 영상들의 예측 정보를 참조하여 인터 레이어 복호화를 수행할 수도 있다. 인터 레이어 복호화는, 현재 영상의 예측정보를 결정하기 위하여 다른 레이어의 참조블록의 예측 정보를 이용하여 현재 영상의 예측정보를 재구성하는 동작을 의미한다.
다양한 실시예에 따른 비디오 복호화 장치(25)는 제 2 레이어 영상들을 참조하여 예측된 제3 레이어 영상들을 복원하기 위한 인터 레이어 복호화를 수행할 수도 있다. 인터 레이어 예측 구조는 추후 도 3을 참조하여 상술한다.
다만, 다양한 실시예에 따른 제 2 레이어 복호화부(19)가, 제 1 레이어 영상시퀀스를 참조하지 않고도, 제 2 레이어 스트림을 복호화할 수도 있다. 따라서, 제 2 레이어 복호화부(19)가 제 2 레이어 영상 시퀀스를 복호화하기 위해, 인터 레이어 예측을 수행한다고 제한적으로 해석하지 않도록 유의하여야 한다.
비디오 복호화 장치(25)는 비디오의 각각의 영상의 블록별로 복호화한다. 블록은, 트리구조에 따른 부호화단위들 중에서는, 최대 부호화 단위, 부호화 단위, 예측 단위, 변환 단위 등일 수 있다.
제 1 레이어 복호화부(29)는, 파싱된 제 1 레이어 영상의 부호화 심볼들을 이용하여, 제 1 레이어 영상을 복호화할 수 있다. 비디오 복호화 장치(25)가 트리 구조의 부호화 단위들을 기초로 부호화된 스트림들을 수신한다면, 제 1 레이어 복호화부(29)는, 제 1 레이어 스트림의 최대 부호화 단위마다, 트리 구조의 부호화 단위들을 기초로 복호화를 수행할 수 있다.
제 1 레이어 복호화부(29)는, 최대 부호화 단위마다 엔트로피 복호화를 수행하여, 부호화 정보와 부호화된 데이터를 획득할 수 있다. 제 1 레이어 복호화부(29)는, 스트림으로부터 획득한 부호화된 데이터에 대해 역양자화, 역변환을 수행하여, 레지듀얼 성분을 복원할 수 있다. 다른 실시예에 따른 제 1 레이어 복호화부(29)는, 양자화된 변환계수들의 비트스트림을 직접 수신할 수도 있다. 양자화된 변환계수들에 대해 역양자화, 역변환을 수행한 결과, 영상들의 레지듀얼 성분이 복원될 수도 있다.
제 1 레이어 복호화부(29)는, 동일 레이어 영상들 간에 움직임 보상을 통해, 예측영상을 결정하고, 예측영상과 레지듀얼 성분을 결합하여 제 1 레이어 영상들을 복원할 수 있다.
제 2 레이어 복호화부(19)는 인터 레이어 예측 구조에 따르면, 제 1 레이어 복원영상의 샘플들을 이용하여 제 2 레이어 예측영상을 생성할 수 있다. 제 2 레이어 복호화부(19)는 제 2 레이어 스트림을 복호화하여, 인터 레이어 예측에 따른 예측 오차를 획득할 수 있다. 제 2 레이어 복호화부(19)는, 제 2 레이어 예측영상에 예측 오차를 결합함으로써 제 2 레이어 복원영상을 생성할 수 있다.
제 2 레이어 복호화부(19)는, 제 1 레이어 복호화부(29)에서 복호화된 제 1 레이어 복원영상을 이용하여 제 2 레이어 예측영상을 결정할 수 있다. 제 2 레이어 복호화부(19)는, 인터 레이어 예측 구조에 따라, 제 2 레이어 영상의 부호화 단위 또는 예측 단위와 같은 블록이 참조할 제 1 레이어 영상의 블록을 결정할 수 있다. 예를 들어, 제 2 레이어 영상에서 현재 블록의 위치에 상응하여 위치하는 제 1 레이어 영상의 복원블록이 결정될 수 있다. 제 2 레이어 복호화부(19)는, 제 2 레이어 블록에 상응하는 제 1 레이어 복원블록을 이용하여, 제 2 레이어 예측블록을 결정할 수 있다.
제 2 레이어 복호화부(19)는, 인터 레이어 예측 구조에 따라 제 1 레이어 복원블록을 이용하여 결정된 제 2 레이어 예측블록을, 제 2 레이어 원본블록의 인터 레이어 예측을 위한 참조영상으로서 이용할 수도 있다. 이 경우에 제 2 레이어 복호화부(19)는, 제 1 레이어 복원영상을 이용하여 결정한 제 2 레이어 예측블록의 샘플값과 인터 레이어 예측에 따른 레지듀얼 성분을 합성함으로써, 제 2 레이어 블록을 복원할 수 있다.
일 실시 예에 따라, 제 2 레이어가 제 1 레이어를 참조하여 인터 레이어 예측을 수행할 때에는 제 2 레이어는 현재 레이어이고, 제 1 레이어는 참조 레이어일 수 있다.
일 실시 예에 따라, 향상 레이어가 기본 레이어를 참조하여 인터 레이어 예측을 수행할 때에는 현재 레이어는 향상 레이어라고 지칭할 수 있고, 참조 레이어는 기본 레이어라고 지칭할 수 있다.
일 실시 예에 따라, 제 2 레이어가 제 1 레이어를 참조하여 인터 레이어 예측을 수행할 때에 비디오 복호화 장치(25)는 제 1 레이어 영상을 제 2 레이어 영상보다 먼저 복호화할 수 있다.
일 실시 예에 따라, 향상 레이어가 기본 레이어를 참조하여 인터 레이어 예측을 수행할 때에는 비디오 복호화 장치(25)는 기본 레이어 영상을 향상 레이어 영상보다 먼저 복호화할 수 있다.비디오 복호화 장치(25)는 데이터 스트림을 수신할 수 있다. 비디오 복호화 장치(25)가 수신하는 데이터 스트림은 NAL (Network Abstraction Layer) 유닛들로 구성될 수 있다.
NAL 유닛은 비트스트림을 구성하는 기본 단위인 네트워크 추상화 계층 유닛을 의미할 수 있다. 또한, 하나 이상의 NAL 유닛들이 데이터 스트림을 구성할 수 있다. 비디오 복호화 장치(25)는 하나 이상의 NAL (Network Abstraction Layer) 유닛들로 구성된 데이터 스트림을 외부로부터 수신할 수 있다.
비디오 복호화 장치(25)는 데이터 스트림을 수신하여 데이터 스트림을 NAL 유닛 단위로 분리한 후, 분리된 각각의 NAL 유닛을 디코딩할 수 있다.
각각의 NAL 유닛은 두 바이트의 헤더 정보를 포함할 수 있다. 또한 비디오 복호화 장치(25)는 각각의 NAL 유닛에 포함된 두 바이트의 헤더 정보를 디코딩함으로써 각각의 NAL 유닛 내부의 데이터에 대한 대략적인 정보를 확인할 수 있다.
다양한 실시예에 따른 비디오 복호화 장치(25)는, 기본 레이어 영상들에 대해 인터 예측 또는 인트라 예측을 포함하는 소스 코딩 동작들을 수행하여 심볼 데이터를 생성할 수 있다. 예를 들어, 비디오 복호화 장치(25)는, 기본 레이어 영상들의 데이터 단위의 샘플들에 대해 인터 예측 또는 인트라 예측, 변환, 양자화를 수행하여 심볼데이터를 생성하고 심볼데이터에 대해 엔트로피 부호화를 수행하여 기본 레이어 스트림을 생성할 수 있다.
또한, 비디오 복호화 장치(25)는 비디오 복호화를 수행함에 있어서 필터링 과정을 수행할 수 있다.
일 실시 예에 따른 비디오 복호화 장치(25)는 인터 예측 또는 인트라 예측이 수행되어 생성된 심볼 데이터에 대해 필터링을 수행하여 향상된 예측이 수행된 심볼데이터를 생성할 수 있다.
다른 실시 예에 따른 비디오 복호화 장치(25)는 복원된 영상 신호에 대해 필터링을 수행하여 향상된 복원 영상 신호를 생성할 수 있다.
다른 실시 예에 따른 비디오 복호화 장치(25)는 인루프 필터링이 수행되는 과정에서 디블로킹 필터링 과정 및 SAO 수행과정 외에 추가적인 필터링 과정을 수행할 수 있다.
이하 비디오 복호화 장치(25)가 수행하는 구체적인 복호화 과정에 대해서 설명한다.
움직임 벡터 결정 장치(10)의 동작은 도 1a에서 상술하였다.
비디오 복호화 장치(25)는, 현재 블록의 참조인덱스와 양자화된 변환계수들, 및 후보 블록의 움직임 벡터를 수신할 수 있다. 역양자화 역변환부(28)는, 수신된 현재 블록의 양자화된 변환계수들에 대해 역양자화 및 역변환을 수행하여 현재 블록의 레지듀얼 데이터를 복원할 수 있다.
움직임 보상부(27)는 인터 예측을 통해 부호화된 현재 블록에 대해 움직임 보상을 수행함으로써 현재 블록을 복원할 수 있다.
움직임 벡터 결정 장치(10)는, 블록별로 움직임 벡터를 결정할 수 있다. 움직임 벡터 결정 장치(10)는 움직임 벡터 예측을 위해 현재 블록 예측을 위한 하나 이상의 후보 움직임 벡터가 포함된 예측 후보들을 결정할 수 있다. 후보 블록은 콜로케이티드 블록이나 이웃블록을 포함할 수 있다. 움직임 벡터 결정 장치(10)는, 예측 후보들에 포함된 후보 움직임 벡터들 중에서 하나의 참조 움직임 벡터를 결정할 수 있다.
움직임 벡터 결정 장치(10)는, 예측 후보들에 포함된 움직임 벡터들 중에서 최적의 후보 움직임 벡터를 선택하여 참조 움직임 벡터를 결정하고, 참조 움직임 벡터를 이용하여 현재 블록의 움직임 벡터를 예측하여 결정할 수 있다.
블록 복원부(26)는, 비디오 복호화 장치(25)가 수신한 현재 블록의 참조인덱스가 가리키는 현재 블록의 참조 영상을 결정할 수 있다. 움직임 벡터 결정 장치(10)에서 결정된 현재 블록의 움직임 벡터가 참조 영상 내에서 가리키는 참조블록을 결정하고, 참조블록과 현재 블록의 레지듀얼 데이터를 합성하여 현재 블록을 복원할 수 있다.
이에 따라 움직임 보상부(27)는, 블록별로 움직임 보상을 수행한 결과 블록별로 복원하고 복원된 블록들을 포함하는 현재영상을 복원할 수 있다. 이에 따라 비디오 복호화 장치(25)에서, 영상들이 복원됨에 따라 영상시퀀스를 포함하는 비디오가 복원될 수 있다.
비디오 복호화 장치(25)는, 블록들이 복원됨에 따라 복원된 현재 블록 및 복원된 블록들을 포함하는 복원영상에 대해 디블로킹 필터링을 수행하는 인루프 필터링부를 더 포함할 수도 있다.
비디오 복호화 장치(25)는 부호화된 비디오스트림을 수신하여 비디오스트림을 복호화하여 비디오를 복원할 수도 있다. 이 경우 비디오 복호화 장치(25)는 수신한 비디오스트림을 파싱하여 비디오스트림으로부터 현재 블록의 참조인덱스와 양자화된 변환계수들, 및 후보 블록의 움직임 벡터를 추출할 수 있다. 또한, 비디오 복호화 장치(25)는, 비트스트림을 수신하여 비트스트림에 대해 엔트로피 복호화를 수행하여, 비트스트림으로부터 현재 블록의 참조인덱스와 양자화된 변환계수들, 및 후보 블록의 움직임 벡터를 파싱하여 추출하는 수신부를 더 포함할 수도 있다.
또한 도 2a를 참조하여 전술한 비디오 부호화 장치(20)에서 다른 영상의 인터예측을 위해 참조될 복원영상을 생성하기 위해서, 비디오 부호화 장치(20)에 비디오 복호화 장치(25)가 결합될 수도 있다. 이 경우 비디오 복호화 장치(25)는, 비디오 부호화 장치(20)에서 인터예측, 변환 및 양자화를 통해 생성하여 출력한 현재 블록의 참조인덱스와 양자화된 변환계수들, 및 후보 블록의 움직임 벡터를 수신하고, 역양자화 역변환부(28) 및 움직임 보상부(27)을 통해 최종적으로 복원된 현재영상을 출력할 수 있다. 비디오 복호화 장치(25)가 출력한 복원영상은 비디오 부호화 장치(20)의 다른 영상의 인터예측을 위한 참조 영상으로 이용될 수 있다.
일 실시 예에 따른 비디오 복호화 장치(25)는 움직임 벡터에 대한 데이터를 수신할 때 병합(merge) 모드 인지 AMVP(Advanced Motion Vector Prediction)인지에 따라 다르게 동작할 수 있다.
병합 모드 및 AMVP에 대해서는 도 2a에서 상술하였다.
일 실시 예에 따른 비디오 복호화 장치(25)는 수신된 비트스트림을 파싱하여 예측 모드가 병합 모드인지 AMVP인지 결정할 수 있다.
예측 모드가 병합 모드인 경우 일 실시 예에 따른 비디오 복호화 장치(25)는 수신된 비트스트림으로부터 병합 인덱스를 획득할 수 있다. 그리고 병합 인덱스를 파싱하여 현재 블록의 움직임 벡터를 결정할 수 있다. 그리고 결정된 움직임 벡터를 이용하여 현재 블록을 복원할 수 있다.
일 실시 예에 따른 병합 인덱스는 비디오 부호화 장치(20)에서 병합 모드를 이용하여 결정된 움직임 벡터에 대한 데이터를 전송할 때 이용되는 데이터를 의미할 수 있다.
예측 모드가 AMVP인 경우 일 실시 예에 따른 비디오 복호화 장치(25)는 수신된 비트스트림으로부터 차분 움직임 벡터, 참조 픽쳐 구분 정보 및 참조 인덱스 중 적어도 하나를 획득할 수 있다. 그리고 획득한 정보를 파싱하여 현재 블록의 움직임 벡터를 결정할 수 있다. 그리고 결정된 움직임 벡터를 이용하여 현재 블록을 복원할 수 있다.
일 실시예에 따른 움직임 벡터 결정 장치(10)에서, 비디오 데이터가 분할되는 블록들이 트리 구조의 부호화 단위들로 분할되고, 부호화 단위에 대한 인터 예측을 위한 예측 단위들이 이용되는 경우가 있음은 전술한 바와 같다. 이하 도 8 내지 20을 참조하여, 일 실시예에 따른 트리 구조의 부호화 단위 및 변환 단위에 기초한 비디오 부호화 방법 및 그 장치, 비디오 복호화 방법 및 그 장치가 개시된다.
일 실시예에 따른 비디오 복호화 장치(25)는 움직임 벡터 결정 장치(10), 블록 복원부(26) 및 역양자화 역변환부(28)를 총괄적으로 제어하는 중앙 프로세서(미도시)를 포함할 수 있다. 또는, 움직임 벡터 결정 장치(10), 블록 복원부(26) 및 역양자화 역변환부(28)가 각각의 자체 프로세서(미도시)에 의해 작동되며, 프로세서(미도시)들이 상호 유기적으로 작동함에 따라 비디오 복호화 장치(25)가 전체적으로 작동될 수도 있다. 또는, 일 실시예에 따른 비디오 복호화 장치(25)의 외부 프로세서(미도시)의 제어에 따라, 움직임 벡터 결정 장치(10), 블록 복원부(26) 및 역양자화 역변환부(28)가 제어될 수도 있다.
일 실시예에 따른 비디오 복호화 장치(25)는, 움직임 벡터 결정 장치(10), 블록 복원부(26) 및 역양자화 역변환부(28)의 입출력 데이터가 저장되는 하나 이상의 데이터 저장부(미도시)를 포함할 수 있다. 비디오 복호화 장치(25)는, 데이터 저장부(미도시)의 데이터 입출력을 관할하는 메모리 제어부(미도시)를 포함할 수도 있다.
일 실시예에 따른 비디오 복호화 장치(25)는, 비디오 복호화를 통해 비디오를 복원하기 위해, 내부에 탑재된 비디오 디코딩 프로세서 또는 외부 비디오 디코딩 프로세서와 연계하여 작동함으로써, 역변환을 포함한 비디오 복호화 동작을 수행할 수 있다. 일 실시예에 따른 비디오 복호화 장치(25)의 내부 비디오 디코딩 프로세서는, 별개의 프로세서 뿐만 아니라, 비디오 복호화 장치(25) 또는 중앙 연산 장치, 그래픽 연산 장치가 비디오 디코딩 프로세싱 모듈을 포함함으로써 기본적인 비디오 복호화 동작을 구현하는 경우도 포함할 수도 있다. 이하, 일 실시 예에 따른 비디오 복호화 장치(25)에서 구현 가능한 다양한 실시 예들을 도 3 내지 도 7b를 참조하여 후술한다.
도 3 은 다양한 실시예에 따른 인터 레이어 예측 구조(30)를 도시한다.
이하 도 3을 참조하여 다양한 실시예에 따른 비디오 부호화 장치(20)에서 수행될 수 있는 인터 레이어 예측 구조를 상술한다.
도 3은 다양한 실시예에 따른 인터 레이어 예측 구조를 도시한다.
일 실시예에 따른 비디오 부호화 장치(20)는, 도 3에 도시된 다시점 비디오 예측 구조의 재생순서(30)에 따라 기본시점 영상들, 좌시점 영상들 및 우시점 영상들을 예측 부호화할 수 있다.
관련기술에 따른 다시점 비디오 예측 구조의 재생순서(30)에 따르면, 가로 방향으로 동일시점(View)의 영상들이 배열되어 있다. 따라서 'Left'로 표기된 좌시점 영상들이 가로 방향으로 일렬로 배열되고, 'Center'로 표기된 기본시점 영상들이 가로 방향으로 일렬로 배열되고, 'Right'로 표기된 우시점 영상들이 가로 방향으로 일렬로 배열되고 있다. 기본시점 영상들은, 좌시점/우시점 영상들에 대비하여, 중앙시점 영상들일 수 있다.
또한, 세로 방향으로 POC 순서가 동일한 영상들이 배열된다. 영상의 POC 순서는 비디오를 구성하는 영상들의 재생순서를 나타낸다. 다시점 비디오 예측 구조(30)에서 표시되어 있는 'POC X'는, 해당 열에 위치한 영상들의 상대적인 재생순서를 나타내며, X의 숫자가 작을수록 재생순서가 앞서고, 커질수록 재생순서가 늦어진다.
따라서 관련기술에 따른 다시점 비디오 예측 구조의 재생순서(30)에 따르면, 'Left'로 표기된 좌시점 영상들이 POC 순서(재생순서)에 따라 가로 방향으로 배열되고, 'Center'로 표기된 기본시점 영상들이 POC 순서(재생순서)에 따라 가로 방향으로 배열되고, 'Right'로 표기된 우시점 영상들이 POC 순서(재생순서)에 따라 가로 방향으로 배열되고 있다. 또한, 기본시점 영상과 동일한 열(column)에 위치한 좌시점 영상 및 우시점 영상은, 모두 시점은 다르지만 POC 순서(재생순서)가 동일한 영상들이다.
각 시점별로, 4개의 연속 영상들이 하나의 GOP(Group of Picture)를 구성하고 있다. 각 GOP는 연속하는 앵커픽처들 사이의 영상들과 하나의 앵커픽처(Key Picture)을 포함한다.
앵커픽처는 랜덤 억세스 포인트(Random Access Point)로, 비디오를 재생할 때 영상의 재생 순서, 즉 POC 순서에 따라 배열된 영상들 중에서 임의로 재생 위치가 선택되면, 재생 위치에서 POC순서가 가장 인접하는 앵커픽처가 재생된다. 기본시점 영상들은 기본시점 앵커픽처들(31, 32, 33, 34, 35)을 포함하고, 좌시점 영상들은 좌시점 앵커픽처들(131, 132, 133, 134, 135)을 포함하고, 우시점 영상들은 우시점 앵커픽처들(231, 232, 233, 234, 235)을 포함한다.
다시점 영상들은 GOP 순서대로 재생되고 예측(복원)될 수 있다. 먼저 다시점 비디오 예측 구조의 재생순서(30)에 따르면, 각 시점별로, GOP 0에 포함된 영상들이 재생된 후, GOP 1에 포함된 영상들이 재생될 수 있다. 즉, GOP 0, GOP 1, GOP 2, GOP 3의 순으로, 각 GOP에 포함된 영상들이 재생될 수 있다. 또한, 다시점 비디오 예측 구조의 코딩순서에 따르면, 각 시점별로, GOP 0에 포함된 영상들이 예측(복원)된 후, GOP 1에 포함된 영상들이 예측(복원)될 수 있다. 즉, GOP 0, GOP 1, GOP 2, GOP 3의 순으로, 각 GOP에 포함된 영상들이 예측(복원)될 수 있다.
다시점 비디오 예측 구조의 재생순서(30)에 따르면, 영상들에 대해 시점간 예측(인터 레이어 예측) 및 인터 예측이 모두 수행된다. 다시점 비디오 예측 구조에서, 화살표가 시작하는 영상이 참조 영상이고, 화살표가 끝나는 영상이 참조 영상을 이용하여 예측되는 영상이다.
기본시점 영상들의 예측 결과는 부호화된 후 기본시점 영상스트림의 형태로 출력되고, 부가시점 영상들의 예측 결과는 부호화된 후 레이어 비트스트림의 형태로 출력될 수 있다. 또한 좌시점 영상들의 예측부호화 결과는 기본 레이어 비트스트림으로, 우시점 영상들의 예측부호화 결과는 향상 레이어 비트스트림으로 출력될 수 있다.
기본시점 영상들에 대해서는 인터 예측만이 수행된다. 즉, I-픽처타입인 앵커픽처들(31, 32, 33, 34, 35)은 다른 영상들을 참조하지 않지만, B-픽처타입 및 b-픽처타입인 나머지 영상은 다른 기본시점 영상들을 참조하여 예측된다. B-픽처타입 영상들은 POC 순서가 앞서는 I-픽처타입 앵커픽처과 뒤따르는 I-픽처타입 앵커픽처를 참조하여 예측된다. b-픽처타입 영상들은 POC 순서가 앞서는 I-픽처타입 앵커픽처과 뒤따르는 B-픽처타입 영상을 참조하거나, POC 순서가 앞서는 B-픽처타입 영상과 뒤따르는 I-픽처타입 앵커픽처를 참조하여 예측된다.
좌시점 영상들 및 우시점 영상들에 대해서는 각각, 다른 시점 영상들을 참조하는 시점간 예측(인터 레이어 예측) 및 동일 시점 영상들을 참조하는 인터 예측이 수행된다.
좌시점 앵커픽처들(131, 132, 133, 134, 135)에 대해, 각각 POC순서가 동일한 기본시점 앵커픽처(31, 32, 33, 34, 35)을 참조하여 시점간 예측(인터 레이어 예측)이 수행될 수 있다. 우시점 앵커픽처들(231, 232, 233, 234, 235)에 대해서는, 각각 POC순서가 동일한 기본시점 영상(31, 32, 33, 34, 35) 또는 좌시점 앵커픽처(131, 132, 133, 134, 135)을 참조하여 시점 간 예측이 수행될 수 있다. 또한, 좌시점 영상들 및 우시점 영상들 중 앵커픽처(131, 132, 133, 134, 135, 231, 232, 233, 234, 235)가 아닌 나머지 영상들에 대해서도, POC가 동일한 다른시점 영상을 참조하는 시점간 예측(인터 레이어 예측)이 수행될 수 있다.
좌시점 영상들 및 우시점 영상들 중 앵커픽처들(131, 132, 133, 134, 135, 231, 232, 233, 234, 235)이 아닌 나머지 영상들은 동일시점 영상들을 참조하여 예측된다.
다만, 좌시점 영상들 및 우시점 영상들은 각각, 동일시점의 부가시점 영상들 중에서 재생순서가 선행하는 앵커픽처를 참조하여 예측되지 않을 수 있다. 즉, 현재 좌시점 영상의 인터 예측을 위해, 현재 좌시점 영상보다 재생순서가 선행하는 좌시점 앵커픽처를 제외한 좌시점 영상들이 참조될 수 있다. 마찬가지로, 현재 우시점 영상의 인터 예측을 위해, 현재 우시점 영상보다 재생순서가 선행하는 우시점 앵커픽처를 제외한 우시점 영상들이 참조될 수 있다.
또한, 현재 좌시점 영상의 인터 예측을 위해, 현재 좌시점 영상이 속한 현재 GOP보다 선행하는 이전 GOP에 속하는 좌시점 영상은 참조하지 않고, 현재 GOP에 속하지만 현재 좌시점 영상보다 먼저 복원될 좌시점 영상을 참조하여 예측이 수행되는 것이 바람직하다. 우시점 영상의 경우도 마찬가지다.
다양한 실시예에 따른 비디오 복호화 장치(25)는, 도 3에 도시된 다시점 비디오 예측 구조의 재생순서(30)에 따라 기본시점 영상들, 좌시점 영상들 및 우시점 영상들을 복원할 수 있다.
좌시점 영상들은, 기본시점 영상들을 참조하는 시점간 디스패리티 보상과 좌시점 영상들을 참조하는 인터 움직임 보상을 통해 복원될 수 있다. 우시점 영상들은, 기본시점 영상들 및 좌시점 영상들을 참조하는 시점간 디스패리티 보상과 우시점 영상들을 참조하는 인터 움직임 보상을 통해 복원될 수 있다. 좌시점 영상들 및 우시점 영상들의 디스패리티 보상 및 움직임 보상을 위해 참조 영상들이 먼저 복원되어야 한다.
좌시점 영상의 인터 움직임 보상을 위해, 복원된 좌시점의 참조 영상을 참조하는 인터 움직임 보상을 통해 좌시점 영상들이 복원될 수 있다. 우시점 영상의 인터 움직임 보상을 위해, 복원된 우시점의 참조 영상을 참조하는 인터 움직임 보상을 통해, 우시점 영상들이 복원될 수 있다.
또한, 현재 좌시점 영상의 인터 움직임 보상을 위해, 현재 좌시점 영상이 속한 현재 GOP보다 선행하는 이전 GOP에 속하는 좌시점 영상은 참조하지 않고, 현재 GOP에 속하지만 현재 좌시점 영상보다 먼저 복원될 좌시점 영상만 참조되는 것이 바람직하다. 우시점 영상의 경우도 마찬가지다.
또한, 다양한 실시예에 따른 비디오 복호화 장치(25)는 다시점 영상을 부/복호화 하기 위해서 디스패리티 보상(또는, 인터 레이어 예측 보상)을 수행할 뿐 아니라, 시점간 움직임 벡터 예측을 통해 영상간 움직임 보상(또는, 인터 레이어 움직임 예측 보상)을 수행할 수도 있다.
도 4a 및 4b는 다양한 실시 예에 따른 움직임 벡터 결정 방법을 도시한다.
도 4a는 현재 레이어에 속한 현재 서브 단위(44)의 제 2 움직임 벡터(48)를 결정하는 방법을 설명한다.
현재 레이어(40)는 예측 단위(42)를 포함할 수 있다. 예측 단위(42)는 복수개의 서브 단위(43)들로 분할될 수 있다.
일 실시 예에 따른 예측 후보 결정부(11)는 현재 서브 단위에 대응되는 참조 서브 단위를 결정할 때 현재 서브 단위에 포함된 픽셀을 이용할 수 있다.
예를 들면, 예측 후보 결정부(11)는 현재 서브 단위(44) 내부의 소정의 위치의 픽셀인 제 1 픽셀에 대응되는 참조 단위(45) 내의 픽셀인 제 2 픽셀을 디스페리티 벡터(49)를 이용하여 결정할 수 있다. 그리고 제 2 픽셀을 포함하는 참조 서브 단위(46)를 현재 서브 단위(44)에 대응되는 참조 서브 단위(46)로 결정할 수 있다.
일 실시 예에 따른 현재 서브 단위(44) 내부의 소정의 위치의 픽셀은 현재 서브 단위(44)의 좌상단에 위치할 수 있다. 다른 실시 예에 따른 현재 서브 단위(44) 내부의 소정의 위치의 픽셀은 현재 서브 단위(44)의 중앙에 위치할 수 있다. 다른 실시 예에 따른 현재 서브 단위(44) 내부의 소정의 위치의 픽셀은 현재 서브 단위(44)의 픽셀들 중 예측 단위의 중앙에 가장 가까운 픽셀일 수 있다.
일 실시 예에 따른 디스페리티 벡터(49)는 예측 단위(42)와 참조 단위(45)를 대응시킬 수 있다. 또는 일 실시 예에 따른 디스페리티 벡터(49)는 현재 서브 단위(44)와 참조 서브 단위(46)를 대응시킬 수 있다. 일 실시 예에 따른 디스페리티 벡터는 예측 단위별로 결정될 수도 있고, 서브 단위(43)별로 결정될 수도 있다.
제 1 움직임 벡터(47)는 참조 서브 단위(46)의 인터 예측을 위해 이용되는 움직임 벡터를 의미할 수 있다. 그리고 제 2 움직임 벡터(48)는 현재 서브 단위(44)의 인터 예측을 위해 이용되는 움직임 벡터를 의미할 수 있다.
일 실시 예에 따른 움직임 벡터 결정 장치(10)는 서브 단위(43)로 예측이 수행될 경우 제 1 움직임 벡터(47)를 제 2 움직임 벡터(48)로 결정할 수 있다.
다른 실시 예에 따른 움직임 벡터 결정 장치(10)는 현재 서브 단위(44)의 인터 예측을 위한 서브 움직임 벡터 예측 후보를 제 1 움직임 벡터(47)를 이용하여 결정할 수 있다.
예를 들면, 움직임 벡터 결정 장치(10)는 제 1 움직임 벡터(47)를 제 2 움직임 벡터(48)를 정하기 위한 후보 움직임 벡터로 이용할 수 있다. 일 실시 예에 따른 움직임 벡터 결정 장치(10)는 제 1 움직임 벡터(47)를 서브 움직임 벡터 예측 후보로 결정할 수 있다. 또한, 서브 움직임 벡터 예측 후보는 현재 서브 단위(44)의 인터 예측을 위한 후보 움직임 벡터들 중 하나일 수 있다. 움직임 벡터 결정 장치(10)는 제 1 움직임 벡터(47)를 제 2 움직임 벡터(48)를 결정하기 위한 예측 후보들에 포함시킬 수 있다. 그리고 움직임 벡터 결정 장치(10)는 예측 후보들에 포함된 움직임 벡터들 중에서 현재 서브 단위(44)의 인터 예측 또는 인터 레이어 예측을 위해 이용되는 움직임 벡터를 선택할 수 있다.
일 실시 예에 따라 움직임 벡터 결정 장치(10)가 참조 서브 단위(46)의 움직임 벡터를 정할 때, 참조 서브 단위(46)의 주변에 위치한 블록 또는 참조 서브 단위(46)의 내에 위치한 블록을 이용할 수 있다.
다른 실시 예에 따라 움직임 벡터 결정 장치(10)는 참조 서브 단위(46) 내의 소정의 위치의 픽셀을 포함하는 블록의 움직임 벡터를 예측하여 참조 서브 단위(46)의 움직임 벡터를 결정할 수 있다.
예를 들면, 움직임 벡터 결정 장치(10)는 참조 서브 단위(46)의 좌상단의 픽셀을 포함하는 기 설정된 크기의 블록의 움직임 벡터를 예측하여 참조 서브 단위(46)의 움직임 벡터를 결정할 수 있다.
다른 예로, 움직임 벡터 결정 장치(10)는 참조 서브 단위(46) 내의 중앙의 픽셀을 포함하는 기 설정된 크기의 블록의 움직임 벡터를 예측하여 참조 서브 단위(46)의 움직임 벡터를 결정할 수 있다.
다른 예로, 움직임 벡터 결정 장치(10)는 참조 서브 단위(46) 내의 픽셀들 중 참조 단위(45)의 중앙에 가장 가까운 픽셀을 포함하는 기 설정된 크기의 블록의 움직임 벡터를 예측하여 참조 서브 단위(46)의 움직임 벡터를 결정할 수 있다.
일 실시 예에 따른 움직임 벡터 결정 장치(10)는 인터 예측 또는 인터 레이어 예측을 서브 단위(43)로 수행할 경우 다른 후보 움직임 벡터가 제 1 움직임 벡터(47)인지 여부에 대한 판단 없이, 제 2 움직임 벡터(48)를 제 1 움직임 벡터(47)로 결정할 수 있다.
도 4b는 참조 서브 단위(46)의 움직임 벡터를 결정하는 방법의 일 실시 예를 설명하는 도면이다.
일 실시 예에 따라 움직임 벡터 결정 장치(10)는 참조 서브 단위(46) 내의 소정의 위치의 픽셀을 포함하는 블록의 움직임 벡터를 예측하여 참조 서브 단위(46)의 움직임 벡터를 결정할 수 있다.
예를 들면, 움직임 벡터 결정 장치(10)는 참조 서브 단위(46) 내의 픽셀들 중 참조 단위(45)의 중앙에 가장 가까운 픽셀을 포함하는 기 설정된 크기의 블록의 움직임 벡터를 예측하여 참조 서브 단위(46)의 움직임 벡터를 결정할 수 있다. 서브 단위(46) 내의 픽셀들 중 참조 단위(45)의 중앙에 가장 가까운 픽셀은 제 1 픽셀(57), 제 2 픽셀(58), 제 3 픽셀(59), 제 4 픽셀(60) 중 하나일 수 있다.
다른 실시 예에 따라 움직임 벡터 결정 장치(10)는 참조 단위(45)가 4개의 블록으로 나뉘었을 때, 제 1 픽셀(57) 내지 제 4 픽셀(60) 중 참조 서브 단위(46)가 포함하는 픽셀에 대응되는 움직임 벡터를 제 1 움직임 벡터(47)로 결정할 수 있다. 예를 들면 참조 서브 단위(46)가 포함하는 픽셀이 제 1 픽셀(57)인 경우 제 1 픽셀(57)에 대응되는 움직임 벡터를 제 1 움직임 벡터(47)로 결정할 수 있다.
다른 실시 예에 따라 움직임 벡터 결정 장치(10)는 참조 단위(45)가 4개의 블록으로 나위었을 때, 제 1 픽셀(57) 내지 제 4 픽셀(60)중 참조 서브 단위(46)가 포함하는 픽셀에 대응되는 기 설정된 크기인 블록의 움직임 벡터를 제 1 움직임 벡터(47)로 결정할 수 있다.
도 5a 내지 도 5f는 다양한 실시 예에 따른 예측 단위를 분할하는 방법을 도시한다.
도 5a는 예측 후보 결정부(11)가 정사각형 사이즈인 제 1 예측 단위(51)를 4개의 서브 단위들로 분할하는 일 실시 예를 나타낸다.
예를 들면, 제 1 예측 단위(51)의 크기는 16×16일 수 있다.
다른 예로, 제 1 예측 단위(51)의 크기는 2N×2N일 수 있다.
다른 예로, 제 1 예측 단위(51)의 크기는 16×16 이상일 수 있다. 서브 단위의 최소 사이즈가 8×8인 경우 제 1 예측 단위(51)의 크기가 16×16 미만인 경우 4개의 서브 단위들로 분할될 수 없으므로, 제 1 예측 단위(51)의 크기는 16×16 이상일 수 있다.
도 5b는 예측 후보 결정부(11)가 정사각형 사이즈인 제 2 예측 단위(52)를 16개의 서브 단위들로 분할하는 일 실시 예를 나타낸다.
예를 들면, 제 2 예측 단위(52)의 크기는 64×64일 수 있다.
다른 예로, 제 2 예측 단위(52)의 크기는 2N×2N일 수 있다.
다른 예로, 제 2 예측 단위(52)의 크기는 32×32 이상일 수 있다. 서브 단위의 최소 사이즈가 8×8인 경우 제 2 예측 단위(52)의 크기가 32×32 미만인 경우 16개의 서브 단위들로 분할될 수 없으므로, 제 2 예측 단위(52)의 크기는 32×32 이상일 수 있다.
도 5c는 예측 후보 결정부(11)가 직사각형 사이즈인 제 3 예측 단위(53)를 2개의 서브 단위들로 분할하는 일 실시 예를 나타낸다.
예를 들면, 제 3 예측 단위(53)의 크기는 64×32일 수 있다.
다른 예로, 제 3 예측 단위(53)의 크기는 2N×N일 수 있다.
다른 예로, 제 3 예측 단위(53)의 크기는 16×8 이상일 수 있다. 서브 단위의 최소 사이즈가 8×8인 경우 제 3 예측 단위(53)의 크기가 16×8 미만인 경우 2개의 서브 단위들로 분할될 수 없으므로, 제 3 예측 단위(53)의 크기는 16×8 이상일 수 있다.
도 5d는 예측 후보 결정부(11)가 직사각형 사이즈인 제 4 예측 단위(54)를 2개의 서브 단위들로 분할하는 일 실시 예를 나타낸다.
예를 들면, 제 4 예측 단위(54)의 크기는 32×64일 수 있다.
다른 예로, 제 4 예측 단위(54)의 크기는 N×2N일 수 있다.
다른 예로, 제 4 예측 단위(54)의 크기는 8×16 이상일 수 있다. 서브 단위의 최소 사이즈가 8×8인 경우 제 4 예측 단위(54)의 크기가 8×16 미만인 경우 2개의 서브 단위들로 분할될 수 없으므로, 제 4 예측 단위(54)의 크기는 8×16 이상일 수 있다.
도 5e는 예측 후보 결정부(11)가 직사각형 사이즈인 제 5 예측 단위(55)를 8개의 서브 단위들로 분할하는 일 실시 예를 나타낸다.
예를 들면, 제 5 예측 단위(55)의 크기는 32×16일 수 있다.
다른 예로, 제 5 예측 단위(55)의 크기는 2N×N일 수 있다.
다른 예로, 제 5 예측 단위(55)의 크기는 32×16 이상일 수 있다. 서브 단위의 최소 사이즈가 8×8인 경우 제 5 예측 단위(55)의 크기가 32×16 미만인 경우 8개의 서브 단위들로 분할될 수 없으므로, 제 5 예측 단위(55)의 크기는 32×16 이상일 수 있다.
도 5f는 예측 후보 결정부(11)가 직사각형 사이즈인 제 6 예측 단위(56)를 8개의 서브 단위들로 분할하는 일 실시 예를 나타낸다.
예를 들면, 제 6 예측 단위(56)의 크기는 32×64일 수 있다.
다른 예로, 제 6 예측 단위(56)의 크기는 N×2N일 수 있다.
다른 예로, 제 6 예측 단위(56)의 크기는 16×32 이상일 수 있다. 서브 단위의 최소 사이즈가 8×8인 경우 제 6 예측 단위(56)의 크기가 16×32 미만인 경우 8개의 서브 단위들로 분할될 수 없으므로, 제 6 예측 단위(56)의 크기는 16×32 이상일 수 있다.
도 6a 내지 도6c는 다양한 실시 예에 따른 움직임 벡터 결정 방법에 대한 신택스 또는 시맨틱을 도시한다.
도 6a는 서브 단위에 대한 움직임 벡터를 결정하는 방법과 관련하여 서브 단위의 최소 크기에 대한 신텍스 요소를 설명하기 위한 도면이다.
제 1 신택스 요소(61)는 현재 레이어의 아이디가 0이 아닌 경우 현재 레이어의 아이디에 대응되는 인터 레이어 움직임 벡터 예측과 관련된 플래그를 파싱하는 것을 나타낸다.
제 2 신택스 요소(62)는 예측 단위를 서브 단위로 분할할 때 서브 단위의 사이즈를 파싱하는 것을 나타낸다. 서브 단위의 사이즈를 sub_pb_size라고 할 때, “log2(sub_pb_size)-3”의 값이 시그널링된다. 시그널링되는 값이 0이상인 조건을 만족하려면, 서브 단위 사이즈는 8이상일 수 있다. 따라서 서브 단위의 최소 사이즈는 8×8일 수 있다.
도 6b는 서브 단위로 예측을 수행하는지 여부를 결정하는 방법에 대한 시맨틱을 설명하기 위한 도면이다.
변수 N을 결정함에 있어서, 머지 후보 리스트(merge candidate list)가 이용될 수 있다.
예를 들면, 제 1 시맨틱(63)에서 나타내는 바와 같이, 예측 단위의 가로 사이즈와 세로 사이즈의 합이 12인 경우 변수 N을 결정할 때, HEVC에서 이용되는 머지 후보 리스트가 이용될 수 있다. 그러나 제 2 시맨틱(64)에서 나타내는 바와 같이 예측 단위의 가로 사이즈와 세로 사이즈의 합이 12가 아닌 경우 변수 N을 결정할 때, HEVC에서 이용되는 머지 후보 리스트보다 확장된 머지 후보 리스트가 이용될 수 있다.
일 실시 예에 따른 인터 예측을 수행하기 위해서 HEVC에서 이용되는 머지 후보 리스트보다 확장된 머지 후보 리스트가 이용될 때, 예측 단위를 복수개의 서브 단위들로 분할하는 동작이 수행될 수 있다.
따라서 일 실시 예에 따른 인터 예측이 수행될 때 서브 단위로 예측이 수행되는지 여부는 예측 단위의 가로 사이즈와 세로 사이즈의 합에 따라서 달라질 수 있다.
예를 들면, 예측 단위의 가로 사이즈와 세로 사이즈의 합이 12와 동일한 경우에는 예측 단위에서 인터 예측이 수행되나, 서브 단위에서는 인터 예측이 수행되지 않을 수 있다. 다른 예로, 예측 단위의 사이즈가 8×4 또는 4×8인 경우에는 예측 단위에서 인터 예측이 수행되나, 서브 단위에서는 인터 예측이 수행되지 않을 수 있다.
다른 예로, 예측 단위의 가로 사이즈와 세로 사이즈의 합이 12와 동일하지 않은 경우에는 서브 단위별로 인터 예측이 수행될 수 있다. 다른 예로, 예측 단위의 사이즈가 16×8인 경우 서브 단위별로 인터 예측이 수행될 수 있다.
도 6c는 기 설정된 서브 단위의 사이즈와 예측 단위의 사이즈를 비교하여 인터 예측 또는 인터 레이어 예측이 수행되는 단위의 크기를 결정하는 방법과 관련된 시맨틱이다.
도 6c에서 nSbW는 서브 단위의 가로 사이즈를, nPbW는 현재 부호화 또는 복호화되는 예측 단위의 가로 사이즈를, nSbH는 서브 단위의 세로 사이즈를, nPbH는 현재 부호화 또는 복호화되는 예측 단위의 세로 사이즈를, SubPbSize는 기 설정된 서브 단위 사이즈를, minSize는 최소 서브 단위 사이즈를 의미할 수 있다.
일 실시 예에 따른 움직임 벡터 결정 장치(10)는 현재 부호화 또는 복호화되는 예측 단위의 사이즈와 기 설정된 서브 단위의 사이즈를 비교하여 서브 단위의 사이즈를 결정할 수 있다.
예를 들면, 제 3 시맨틱(65)에 나타난 바와 같이 움직임 벡터 결정 장치(10)는 현재 부호화 또는 복호화되는 예측 단위의 가로 사이즈가 기 설정된 서브 단위의 가로 사이즈보다 작거나 같을 경우, 서브 단위의 가로 사이즈를 예측 단위의 가로 사이즈와 동일하도록 결정할 수 있다.
다른 예로, 제 3 시맨틱(65)에 나타난 바와 같이 움직임 벡터 결정 장치(10)는 현재 부호화 또는 복호화되는 예측 단위의 가로 사이즈가 기 설정된 서브 단위의 가로 사이즈보다 클 경우, 서브 단위의 가로 사이즈를 미리 결정된 최소 사이즈로 결정할 수 있다.
다른 예로, 제 4 시맨틱(66)에 나타난 바와 같이 움직임 벡터 결정 장치(10)는 현재 부호화 또는 복호화되는 예측 단위의 세로 사이즈가 기 설정된 서브 단위의 세로 사이즈보다 작거나 같을 경우, 서브 단위의 세로 사이즈를 예측 단위의 세로 사이즈와 동일하도록 결정할 수 있다.
다른 예로, 제 4 시맨틱(66)에 나타난 바와 같이 움직임 벡터 결정 장치(10)는 현재 부호화 또는 복호화되는 예측 단위의 세로 사이즈가 기 설정된 서브 단위의 세로 사이즈보다 클 경우, 서브 단위의 세로 사이즈를 미리 결정된 최소 사이즈로 결정할 수 있다.
도 7a는 일 실시 예에 따른 움직임 벡터 결정 방법을 참조 단위의 인트라 예측 영역과 관련하여 설명하기 위한 도면이다.
현재 레이어(70)에 포함된 예측 단위(72)는 서브 단위(73)들로 분할될 수 있다.
예측 단위(72)는 참조 레이어(71)에 포함된 참조 단위(75)에 대응될 수 있다. 예를 들면, 움직임 벡터 결정 장치(10)는 제 1 디스페리티 벡터(77)를 이용하여 예측 단위(72)를 참조 단위(75)에 대응시킬 수 있다.
제 1 디스페리티 벡터(77)와 제 2 디스페리티 벡터(78)는 관련성이 있을 수 있다. 예를 들면, 예측 단위(72)에 대응되는 참조 단위(75)를 결정할 때 이용되는 제 1 디스페리티 벡터(77)는 현재 서브 단위(74)에 대응되는 제 2 참조 서브 단위(79)를 결정할 때 이용되는 제 2 디스페리티 벡터(78)와 동일할 수 있다. 다른 예로, 움직임 벡터 결정 장치(10)는 제 1 디스페리트 벡터(77)를 이용하여 제 2 디스페리티 벡터(78)를 결정할 수 있다.
현재 레이어(70)에 포함된 현재 서브 단위(74)에 대응되는 참조 레이어(71)에 포함된 제 2 참조 서브 단위(79)의 부호화 모드는 인트라 모드일 수 있다.
제 2 참조 서브 단위(79)가 인트라 모드로 부호화된 경우 제 2 참조 서브 단위(79)에 대응되는 움직임 벡터는 없을 수 있다.
따라서 현재 서브 단위(74)에 대응되는 제 2 참조 서브 단위(79)의 부호화 모드가 인트라 모드인 경우, 움직임 벡터 결정 장치(10)는 제 2 디스페리티 벡터(78)를 현재 서브 단위(74)의 예측을 위해 이용되는 움직임 벡터로 결정할 수 있다. 예를 들면, 제 2 참조 서브 단위(79)의 부호화 모드가 인트라 모드인 경우, 비디오 복호화 장치(25)는 제 2 디스페리티 벡터(78) 이용하여 인터 레이어 예측을 수행하여 현재 서브 단위(74)를 복호화할 수 있다. 일 실시 예에 따른 비디오 복호화 장치(25)가 제 2 디스페리티 벡터(78) 이용하여 인터 레이어 예측을 수행한 경우, 현재 서브 단위(74)의 픽셀 값은 제 2 참조 서브 단위(79)의 픽셀값과 동일할 수 있다.
도 7b는 일 실시 예에 따른 참조 블록의 분할 방법을 설명하기 위한 도면이다.
참조 단위(75)는 참조 레이어(71) 영상에서 소정의 경계선상에 위치할 수 있다. 따라서 움직임 벡터 결정 장치(10)는 참조 단위(75)를 복수개의 블록들로 분할할 때 소정의 경계선을 고려할 수 있다.
움직임 벡터 결정 장치(10)가 참조 단위(75)를 복수개의 블록들로 분할할 때 고려하는 일 실시 예에 따른 소정의 경계선은 부호화 단위에 의해 형성될 수 있다. 참조 영상의 부호화를 위한 부호화 단위들을 구분하는 경계선을 고려하여, 움직임 벡터 결정 장치(10)는 참조 단위(75)를 복수개의 블록들로 분할할 수 있다.
예를 들면, 움직임 벡터 결정 장치(10)는 부호화 단위에 의해 형성되는 경계선(80)에 따라 참조 단위(75)가 복수개의 블록들로 분할되도록 제 1 참조 서브 단위(14) 내지 제 4 참조 서브 단위(17)의 크기를 조절할 수 있다.
구체적으로 픽셀을 이용하여 참조 서브 단위를 결정하는 방법은 도 4에서 상술한 바를 참조할 수 있다.
또한, 참조 서브 단위가 결정된 이후 움직임 벡터를 결정하기 위한 방법은 도 1 내지 도 2b에서 상술한 바를 참조할 수 있다.
도 8 은 본 발명의 일 실시예에 따라 트리 구조에 따른 부호화 단위에 기초한 비디오 부호화 장치(100)의 블록도를 도시한다.
일 실시예에 따라 트리 구조에 따른 부호화 단위에 기초한 비디오 예측을 수반하는 비디오 부호화 장치(100)는 부호화 단위 결정부(120) 및 출력부(130)를 포함한다. 이하 설명의 편의를 위해, 일 실시예에 따라 트리 구조에 따른 부호화 단위에 기초한 비디오 예측을 수반하는 비디오 부호화 장치(100)는 '비디오 부호화 장치(100)'로 축약하여 지칭한다.
부호화 단위 결정부(120)는 영상의 현재 픽처를 위한 최대 크기의 부호화 단위인 최대 부호화 단위에 기반하여 현재 픽처를 구획할 수 있다. 현재 픽처가 최대 부호화 단위보다 크다면, 현재 픽처의 영상 데이터는 적어도 하나의 최대 부호화 단위로 분할될 수 있다. 일 실시예에 따른 최대 부호화 단위는 크기 32x32, 64x64, 128x128, 256x256 등의 데이터 단위로, 가로 및 세로 크기가 2의 자승인 정사각형의 데이터 단위일 수 있다.
일 실시예에 따른 부호화 단위는 최대 크기 및 심도로 특징지어질 수 있다. 심도란 최대 부호화 단위로부터 부호화 단위가 공간적으로 분할한 횟수를 나타내며, 심도가 깊어질수록 심도별 부호화 단위는 최대 부호화 단위로부터 최소 부호화 단위까지 분할될 수 있다. 최대 부호화 단위의 심도가 최상위 심도이며 최소 부호화 단위가 최하위 부호화 단위로 정의될 수 있다. 최대 부호화 단위는 심도가 깊어짐에 따라 심도별 부호화 단위의 크기는 감소하므로, 상위 심도의 부호화 단위는 복수 개의 하위 심도의 부호화 단위를 포함할 수 있다.
전술한 바와 같이 부호화 단위의 최대 크기에 따라, 현재 픽처의 영상 데이터를 최대 부호화 단위로 분할하며, 각각의 최대 부호화 단위는 심도별로 분할되는 부호화 단위들을 포함할 수 있다. 일 실시예에 따른 최대 부호화 단위는 심도별로 분할되므로, 최대 부호화 단위에 포함된 공간 영역(spatial domain)의 영상 데이터가 심도에 따라 계층적으로 분류될 수 있다.
최대 부호화 단위의 높이 및 너비를 계층적으로 분할할 수 있는 총 횟수를 제한하는 최대 심도 및 부호화 단위의 최대 크기가 미리 설정되어 있을 수 있다.
부호화 단위 결정부(120)는, 심도마다 최대 부호화 단위의 영역이 분할된 적어도 하나의 분할 영역을 부호화하여, 적어도 하나의 분할 영역 별로 최종 부호화 결과가 출력될 심도를 결정한다. 즉 부호화 단위 결정부(120)는, 현재 픽처의 최대 부호화 단위마다 심도별 부호화 단위로 영상 데이터를 부호화하여 가장 작은 부호화 오차가 발생하는 심도를 선택하여 최종 심도로 결정한다. 결정된 최종 심도 및 최대 부호화 단위별 영상 데이터는 출력부(130)로 출력된다.
최대 부호화 단위 내의 영상 데이터는 최대 심도 이하의 적어도 하나의 심도에 따라 심도별 부호화 단위에 기반하여 부호화되고, 각각의 심도별 부호화 단위에 기반한 부호화 결과가 비교된다. 심도별 부호화 단위의 부호화 오차의 비교 결과 부호화 오차가 가장 작은 심도가 선택될 수 있다. 각각의 최대화 부호화 단위마다 적어도 하나의 최종 심도가 결정될 수 있다.
최대 부호화 단위의 크기는 심도가 깊어짐에 따라 부호화 단위가 계층적으로 분할되어 분할되며 부호화 단위의 개수는 증가한다. 또한, 하나의 최대 부호화 단위에 포함되는 동일한 심도의 부호화 단위들이라 하더라도, 각각의 데이터에 대한 부호화 오차를 측정하고 하위 심도로의 분할 여부가 결정된다. 따라서, 하나의 최대 부호화 단위에 포함되는 데이터라 하더라도 위치에 따라 심도별 부호화 오차가 다르므로 위치에 따라 최종 심도가 달리 결정될 수 있다. 따라서, 하나의 최대 부호화 단위에 대해 최종 심도가 하나 이상 설정될 수 있으며, 최대 부호화 단위의 데이터는 하나 이상의 최종 심도의 부호화 단위에 따라 구획될 수 있다.
따라서, 일 실시예에 따른 부호화 단위 결정부(120)는, 현재 최대 부호화 단위에 포함되는 트리 구조에 따른 부호화 단위들이 결정될 수 있다. 일 실시예에 따른 '트리 구조에 따른 부호화 단위들'은, 현재 최대 부호화 단위에 포함되는 모든 심도별 부호화 단위들 중, 최종 심도로 결정된 심도의 부호화 단위들을 포함한다. 최종 심도의 부호화 단위는, 최대 부호화 단위 내에서 동일 영역에서는 심도에 따라 계층적으로 결정되고, 다른 영역들에 대해서는 독립적으로 결정될 수 있다. 마찬가지로, 현재 영역에 대한 최종 심도는, 다른 영역에 대한 최종 심도와 독립적으로 결정될 수 있다.
일 실시예에 따른 최대 심도는 최대 부호화 단위로부터 최소 부호화 단위까지의 분할 횟수와 관련된 지표이다. 일 실시예에 따른 제 1 최대 심도는, 최대 부호화 단위로부터 최소 부호화 단위까지의 총 분할 횟수를 나타낼 수 있다. 일 실시예에 따른 제 2 최대 심도는 최대 부호화 단위로부터 최소 부호화 단위까지의 심도 레벨의 총 개수를 나타낼 수 있다. 예를 들어, 최대 부호화 단위의 심도가 0이라고 할 때, 최대 부호화 단위가 1회 분할된 부호화 단위의 심도는 1로 설정되고, 2회 분할된 부호화 단위의 심도가 2로 설정될 수 있다. 이 경우, 최대 부호화 단위로부터 4회 분할된 부호화 단위가 최소 부호화 단위라면, 심도 0, 1, 2, 3 및 4의 심도 레벨이 존재하므로 제 1 최대 심도는 4, 제 2 최대 심도는 5로 설정될 수 있다.
최대 부호화 단위의 예측 부호화 및 변환이 수행될 수 있다. 예측 부호화 및 변환도 마찬가지로, 최대 부호화 단위마다, 최대 심도 이하의 심도마다 심도별 부호화 단위를 기반으로 수행된다.
최대 부호화 단위가 심도별로 분할될 때마다 심도별 부호화 단위의 개수가 증가하므로, 심도가 깊어짐에 따라 생성되는 모든 심도별 부호화 단위에 대해 예측 부호화 및 변환을 포함한 부호화가 수행되어야 한다. 이하 설명의 편의를 위해 적어도 하나의 최대 부호화 단위 중 현재 심도의 부호화 단위를 기반으로 예측 부호화 및 변환을 설명하겠다.
일 실시예에 따른 비디오 부호화 장치(100)는, 영상 데이터의 부호화를 위한 데이터 단위의 크기 또는 형태를 다양하게 선택할 수 있다. 영상 데이터의 부호화를 위해서는 예측 부호화, 변환, 엔트로피 부호화 등의 단계를 거치는데, 모든 단계에 걸쳐서 동일한 데이터 단위가 사용될 수도 있으며, 단계별로 데이터 단위가 변경될 수도 있다.
예를 들어 비디오 부호화 장치(100)는, 영상 데이터의 부호화를 위한 부호화 단위 뿐만 아니라, 부호화 단위의 영상 데이터의 예측 부호화를 수행하기 위해, 부호화 단위와 다른 데이터 단위를 선택할 수 있다.
최대 부호화 단위의 예측 부호화를 위해서는, 일 실시예에 따른 최종 심도의 부호화 단위, 즉 더 이상한 분할되지 않는 부호화 단위를 기반으로 예측 부호화가 수행될 수 있다. 이하, 예측 부호화의 기반이 되는 더 이상한 분할되지 않는 부호화 단위를 '예측 단위'라고 지칭한다. 예측 단위가 분할된 파티션은, 예측 단위 및 예측 단위의 높이 및 너비 중 적어도 하나가 분할된 데이터 단위를 포함할 수 있다. 파티션은 부호화 단위의 예측 단위가 분할된 형태의 데이터 단위이고, 예측 단위는 부호화 단위와 동일한 크기의 파티션일 수 있다.
예를 들어, 크기 2Nx2N(단, N은 양의 정수)의 부호화 단위가 더 이상 분할되지 않는 경우, 크기 2Nx2N의 예측 단위가 되며, 파티션의 크기는 2Nx2N, 2NxN, Nx2N, NxN 등일 수 있다. 일 실시예에 따른 파티션 모드는 예측 단위의 높이 또는 너비가 대칭적 비율로 분할된 대칭적 파티션들뿐만 아니라, 1:n 또는 n:1과 같이 비대칭적 비율로 분할된 파티션들, 기하학적인 형태로 분할된 파티션들, 임의적 형태의 파티션들 등을 선택적으로 포함할 수도 있다.
예측 단위의 예측 모드는, 인트라 모드, 인터 모드 및 스킵 모드 중 적어도 하나일 수 있다. 예를 들어 인트라 모드 및 인터 모드는, 2Nx2N, 2NxN, Nx2N, NxN 크기의 파티션에 대해서 수행될 수 있다. 또한, 스킵 모드는 2Nx2N 크기의 파티션에 대해서만 수행될 수 있다. 부호화 단위 이내의 하나의 예측 단위마다 독립적으로 부호화가 수행되어 부호화 오차가 가장 작은 예측 모드가 선택될 수 있다.
또한, 일 실시예에 따른 비디오 부호화 장치(100)는, 영상 데이터의 부호화를 위한 부호화 단위 뿐만 아니라, 부호화 단위와 다른 데이터 단위를 기반으로 부호화 단위의 영상 데이터의 변환을 수행할 수 있다. 부호화 단위의 변환을 위해서는, 부호화 단위보다 작거나 같은 크기의 변환 단위를 기반으로 변환이 수행될 수 있다. 예를 들어 변환 단위는, 인트라 모드를 위한 데이터 단위 및 인터 모드를 위한 변환 단위를 포함할 수 있다.
일 실시예에 따른 트리 구조에 따른 부호화 단위와 유사한 방식으로, 부호화 단위 내의 변환 단위도 재귀적으로 더 작은 크기의 변환 단위로 분할되면서, 부호화 단위의 잔여 영상 데이터가 변환 심도에 따라 트리 구조에 따른 변환 단위에 따라 구획될 수 있다.
일 실시예에 따른 변환 단위에 대해서도, 부호화 단위의 높이 및 너비가 분할하여 변환 단위에 이르기까지의 분할 횟수를 나타내는 변환 심도가 설정될 수 있다. 예를 들어, 크기 2Nx2N의 현재 부호화 단위의 변환 단위의 크기가 2Nx2N이라면 변환 심도 0, 변환 단위의 크기가 NxN이라면 변환 심도 1, 변환 단위의 크기가 N/2xN/2이라면 변환 심도 2로 설정될 수 있다. 즉, 변환 단위에 대해서도 변환 심도에 따라 트리 구조에 따른 변환 단위가 설정될 수 있다.
심도별 분할 정보는, 심도 뿐만 아니라 예측 관련 정보 및 변환 관련 정보가 필요하다. 따라서, 부호화 단위 결정부(120)는 최소 부호화 오차를 발생시킨 심도 뿐만 아니라, 예측 단위를 파티션으로 분할한 파티션 모드, 예측 단위별 예측 모드, 변환을 위한 변환 단위의 크기 등을 결정할 수 있다.
일 실시예에 따른 최대 부호화 단위의 트리 구조에 따른 부호화 단위 및 예측단위/파티션, 및 변환 단위의 결정 방식에 대해서는, 도 9 내지 19를 참조하여 상세히 후술한다.
부호화 단위 결정부(120)는 심도별 부호화 단위의 부호화 오차를 라그랑지 곱(Lagrangian Multiplier) 기반의 율-왜곡 최적화 기법(Rate-Distortion Optimization)을 이용하여 측정할 수 있다.
출력부(130)는, 부호화 단위 결정부(120)에서 결정된 적어도 하나의 심도에 기초하여 부호화된 최대 부호화 단위의 영상 데이터 및 심도별 분할정보를 비트스트림 형태로 출력한다.
부호화된 영상 데이터는 영상의 잔여 영상 데이터의 부호화 결과일 수 있다.
심도별 분할정보는, 심도 정보, 예측 단위의 파티션 모드 정보, 예측 모드 정보, 변환 단위의 분할 정보 등을 포함할 수 있다.
최종 심도 정보는, 현재 심도로 부호화하지 않고 하위 심도의 부호화 단위로 부호화할지 여부를 나타내는 심도별 분할 정보를 이용하여 정의될 수 있다. 현재 부호화 단위의 현재 심도가 심도라면, 현재 부호화 단위는 현재 심도의 부호화 단위로 부호화되므로 현재 심도의 분할 정보는 더 이상 하위 심도로 분할되지 않도록 정의될 수 있다. 반대로, 현재 부호화 단위의 현재 심도가 심도가 아니라면 하위 심도의 부호화 단위를 이용한 부호화를 시도해보아야 하므로, 현재 심도의 분할 정보는 하위 심도의 부호화 단위로 분할되도록 정의될 수 있다.
현재 심도가 심도가 아니라면, 하위 심도의 부호화 단위로 분할된 부호화 단위에 대해 부호화가 수행된다. 현재 심도의 부호화 단위 내에 하위 심도의 부호화 단위가 하나 이상 존재하므로, 각각의 하위 심도의 부호화 단위마다 반복적으로 부호화가 수행되어, 동일한 심도의 부호화 단위마다 재귀적(recursive) 부호화가 수행될 수 있다.
하나의 최대 부호화 단위 안에 트리 구조의 부호화 단위들이 결정되며 심도의 부호화 단위마다 적어도 하나의 분할정보가 결정되어야 하므로, 하나의 최대 부호화 단위에 대해서는 적어도 하나의 분할정보가 결정될 수 있다. 또한, 최대 부호화 단위의 데이터는 심도에 따라 계층적으로 구획되어 위치 별로 심도가 다를 수 있으므로, 데이터에 대해 심도 및 분할정보가 설정될 수 있다.
따라서, 일 실시예에 따른 출력부(130)는, 최대 부호화 단위에 포함되어 있는 부호화 단위, 예측 단위 및 최소 단위 중 적어도 하나에 대해, 해당 심도 및 부호화 모드에 대한 부호화 정보를 할당될 수 있다.
일 실시예에 따른 최소 단위는, 최하위 심도인 최소 부호화 단위가 4분할된 크기의 정사각형의 데이터 단위이다. 일 실시예에 따른 최소 단위는, 최대 부호화 단위에 포함되는 모든 부호화 단위, 예측 단위, 파티션 단위 및 변환 단위 내에 포함될 수 있는 최대 크기의 정사각 데이터 단위일 수 있다.
예를 들어 출력부(130)를 통해 출력되는 부호화 정보는, 심도별 부호화 단위별 부호화 정보와 예측 단위별 부호화 정보로 분류될 수 있다. 심도별 부호화 단위별 부호화 정보는, 예측 모드 정보, 파티션 크기 정보를 포함할 수 있다. 예측 단위별로 전송되는 부호화 정보는 인터 모드의 추정 방향에 관한 정보, 인터 모드의 참조 영상 인덱스에 관한 정보, 움직임 벡터에 관한 정보, 인트라 모드의 크로마 성분에 관한 정보, 인트라 모드의 보간 방식에 관한 정보 등을 포함할 수 있다.
픽처, 슬라이스 또는 GOP별로 정의되는 부호화 단위의 최대 크기에 관한 정보 및 최대 심도에 관한 정보는 비트스트림의 헤더, 시퀀스 파라미터 세트 또는 픽처 파라미터 세트 등에 삽입될 수 있다.
또한 현재 비디오에 대해 허용되는 변환 단위의 최대 크기에 관한 정보 및 변환 단위의 최소 크기에 관한 정보도, 비트스트림의 헤더, 시퀀스 파라미터 세트 또는 픽처 파라미터 세트 등을 통해 출력될 수 있다. 출력부(130)는, 예측과 관련된 참조정보, 예측정보, 슬라이스 타입 정보 등을 부호화하여 출력할 수 있다.
비디오 부호화 장치(100)의 가장 간단한 형태의 실시예에 따르면, 심도별 부호화 단위는 한 계층 상위 심도의 부호화 단위의 높이 및 너비를 반분한 크기의 부호화 단위이다. 즉, 현재 심도의 부호화 단위의 크기가 2Nx2N이라면, 하위 심도의 부호화 단위의 크기는 NxN 이다. 또한, 2Nx2N 크기의 현재 부호화 단위는 NxN 크기의 하위 심도 부호화 단위를 최대 4개 포함할 수 있다.
따라서, 비디오 부호화 장치(100)는 현재 픽처의 특성을 고려하여 결정된 최대 부호화 단위의 크기 및 최대 심도를 기반으로, 각각의 최대 부호화 단위마다 최적의 형태 및 크기의 부호화 단위를 결정하여 트리 구조에 따른 부호화 단위들을 구성할 수 있다. 또한, 각각의 최대 부호화 단위마다 다양한 예측 모드, 변환 방식 등으로 부호화할 수 있으므로, 다양한 영상 크기의 부호화 단위의 영상 특성을 고려하여 최적의 부호화 모드가 결정될 수 있다.
따라서, 영상의 해상도가 매우 높거나 데이터량이 매우 큰 영상을 기존 매크로블록 단위로 부호화한다면, 픽처당 매크로블록의 수가 과도하게 많아진다. 이에 따라, 매크로블록마다 생성되는 압축 정보도 많아지므로 압축 정보의 전송 부담이 커지고 데이터 압축 효율이 감소하는 경향이 있다. 따라서, 일 실시예에 따른 비디오 부호화 장치는, 영상의 크기를 고려하여 부호화 단위의 최대 크기를 증가시키면서, 영상 특성을 고려하여 부호화 단위를 조절할 수 있으므로, 영상 압축 효율이 증대될 수 있다.
도 2a를 참조하여 전술한 비디오 부호화 장치(20)는, 멀티 레이어 비디오의 레이어들마다 싱글 레이어 영상들의 부호화를 위해, 레이어 개수만큼의 비디오 부호화 장치(100)들을 포함할 수 있다.
비디오 부호화 장치(100)가 제 1 레이어 영상들을 부호화하는 경우에, 부호화 단위 결정부(120)는 최대 부호화 단위마다 트리 구조에 따른 부호화 단위별로 영상간 예측을 위한 예측단위를 결정하고, 예측단위마다 영상간 예측을 수행할 수 있다.
비디오 부호화 장치(100)가 제 2 레이어 영상들을 부호화하는 경우에도, 부호화 단위 결정부(120)는 최대 부호화 단위마다 트리 구조에 따른 부호화 단위 및 예측단위를 결정하고, 예측단위마다 인터 예측을 수행할 수 있다.
비디오 부호화 장치(100)는, 제 1 레이어 영상과 제 2 레이어 영상 간의 휘도 차를 보상하기 위해 휘도 차를 부호화할 수 있다. 다만, 부호화 단위의 부호화 모드에 따라 휘도 수행 여부가 결정될 수 있다. 예를 들어, 크기 2Nx2N의 예측 단위에 대해서만 휘도보상이 수행될 수 있다.
도 9 는 다양한 실시예에 따라 트리 구조에 따른 부호화 단위에 기초한 비디오 복호화 장치(200)의 블록도를 도시한다.
일 실시예에 따라 트리 구조에 따른 부호화 단위에 기초한 비디오 예측을 수반하는 비디오 복호화 장치(200)는 수신부(210), 영상 데이터 및 부호화 정보 추출부(220) 및 영상 데이터 복호화부(230)를 포함한다. 이하 설명의 편의를 위해, 일 실시예에 따라 트리 구조에 따른 부호화 단위에 기초한 비디오 예측을 수반하는 비디오 복호화 장치(200)는 '비디오 복호화 장치(200)'로 축약하여 지칭한다.
일 실시예에 따른 비디오 복호화 장치(200)의 복호화 동작을 위한 부호화 단위, 심도, 예측 단위, 변환 단위, 각종 분할정보 등 각종 용어의 정의는, 도 8 및 비디오 부호화 장치(100)를 참조하여 전술한 바와 동일하다.
수신부(210)는 부호화된 비디오에 대한 비트스트림을 수신하여 파싱한다. 영상 데이터 및 부호화 정보 추출부(220)는 파싱된 비트스트림으로부터 최대 부호화 단위별로 트리 구조에 따른 부호화 단위들에 따라 부호화 단위마다 부호화된 영상 데이터를 추출하여 영상 데이터 복호화부(230)로 출력한다. 영상 데이터 및 부호화 정보 추출부(220)는 현재 픽처에 대한 헤더, 시퀀스 파라미터 세트 또는 픽처 파라미터 세트로부터 현재 픽처의 부호화 단위의 최대 크기에 관한 정보를 추출할 수 있다.
또한, 영상 데이터 및 부호화 정보 추출부(220)는 파싱된 비트스트림으로부터 최대 부호화 단위별로 트리 구조에 따른 부호화 단위들에 대한 최종 심도 및 분할정보를 추출한다. 추출된 최종 심도 및 분할정보는 영상 데이터 복호화부(230)로 출력된다. 즉, 비트열의 영상 데이터를 최대 부호화 단위로 분할하여, 영상 데이터 복호화부(230)가 최대 부호화 단위마다 영상 데이터를 복호화하도록 할 수 있다.
최대 부호화 단위별 심도 및 분할정보는, 하나 이상의 심도 정보에 대해 설정될 수 있으며, 심도별 분할정보는, 해당 부호화 단위의 파티션 모드 정보, 예측 모드 정보 및 변환 단위의 분할 정보 등을 포함할 수 있다. 또한, 심도 정보로서, 심도별 분할 정보가 추출될 수도 있다.
영상 데이터 및 부호화 정보 추출부(220)가 추출한 최대 부호화 단위별 심도 및 분할정보는, 일 실시예에 따른 비디오 부호화 장치(100)와 같이 부호화단에서, 최대 부호화 단위별 심도별 부호화 단위마다 반복적으로 부호화를 수행하여 최소 부호화 오차를 발생시키는 것으로 결정된 심도 및 분할정보다. 따라서, 비디오 복호화 장치(200)는 최소 부호화 오차를 발생시키는 부호화 방식에 따라 데이터를 복호화하여 영상을 복원할 수 있다.
일 실시예에 따른 심도 및 부호화 모드에 대한 부호화 정보는, 해당 부호화 단위, 예측 단위 및 최소 단위 중 소정 데이터 단위에 대해 할당되어 있을 수 있으므로, 영상 데이터 및 부호화 정보 추출부(220)는 소정 데이터 단위별로 심도 및 분할정보를 추출할 수 있다. 소정 데이터 단위별로, 해당 최대 부호화 단위의 심도 및 분할정보가 기록되어 있다면, 동일한 심도 및 분할정보를 갖고 있는 소정 데이터 단위들은 동일한 최대 부호화 단위에 포함되는 데이터 단위로 유추될 수 있다.
영상 데이터 복호화부(230)는 최대 부호화 단위별 심도 및 분할정보에 기초하여 각각의 최대 부호화 단위의 영상 데이터를 복호화하여 현재 픽처를 복원한다. 즉 영상 데이터 복호화부(230)는, 최대 부호화 단위에 포함되는 트리 구조에 따른 부호화 단위들 가운데 각각의 부호화 단위마다, 판독된 파티션 모드, 예측 모드, 변환 단위에 기초하여 부호화된 영상 데이터를 복호화할 수 있다. 복호화 과정은 인트라 예측 및 움직임 보상을 포함하는 예측 과정, 및 역변환 과정을 포함할 수 있다.
영상 데이터 복호화부(230)는, 심도별 부호화 단위의 예측 단위의 파티션 모드 정보 및 예측 모드 정보에 기초하여, 부호화 단위마다 각각의 파티션 및 예측 모드에 따라 인트라 예측 또는 움직임 보상을 수행할 수 있다.
또한, 영상 데이터 복호화부(230)는, 최대 부호화 단위별 역변환을 위해, 부호화 단위별로 트리 구조에 따른 변환 단위 정보를 판독하여, 부호화 단위마다 변환 단위에 기초한 역변환을 수행할 수 있다. 역변환을 통해, 부호화 단위의 공간 영역의 화소값이 복원할 수 있다.
영상 데이터 복호화부(230)는 심도별 분할 정보를 이용하여 현재 최대 부호화 단위의 심도를 결정할 수 있다. 만약, 분할 정보가 현재 심도에서 더 이상 분할되지 않음을 나타내고 있다면 현재 심도가 심도다. 따라서, 영상 데이터 복호화부(230)는 현재 최대 부호화 단위의 영상 데이터에 대해 현재 심도의 부호화 단위를 예측 단위의 파티션 모드, 예측 모드 및 변환 단위 크기 정보를 이용하여 복호화할 수 있다.
즉, 부호화 단위, 예측 단위 및 최소 단위 중 소정 데이터 단위에 대해 설정되어 있는 부호화 정보를 관찰하여, 동일한 분할 정보를 포함한 부호화 정보를 보유하고 있는 데이터 단위가 모여, 영상 데이터 복호화부(230)에 의해 동일한 부호화 모드로 복호화할 하나의 데이터 단위로 간주될 수 있다. 이런 식으로 결정된 부호화 단위마다 부호화 모드에 대한 정보를 획득하여 현재 부호화 단위의 복호화가 수행될 수 있다.
도 2b를 참조하여 전술한 비디오 복호화 장치(25)는, 수신된 제 1 레이어 영상스트림 및 제 2 레이어 영상스트림을 복호화하여 제 1 레이어 영상들 및 제 2 레이어 영상들을 복원하기 위해, 비디오 복호화 장치(200)를 시점 개수만큼 포함할 수 있다.
제 1 레이어 영상스트림이 수신된 경우에는, 비디오 복호화 장치(200)의 영상데이터 복호화부(230)는, 추출부(220)에 의해 제 1 레이어 영상스트림으로부터 추출된 제 1 레이어 영상들의 샘플들을 최대 부호화 단위의 트리 구조에 따른 부호화 단위들로 나눌 수 있다. 영상데이터 복호화부(230)는 제 1 레이어 영상들의 샘플들의 트리 구조에 따른 부호화 단위들마다, 영상간 예측을 위한 예측단위별로 움직임 보상을 수행하여 제 1 레이어 영상들을 복원할 수 있다.
제 2 레이어 영상스트림이 수신된 경우에는, 비디오 복호화 장치(200)의 영상데이터 복호화부(230)는, 추출부(220)에 의해 제 2 레이어 영상스트림으로부터 추출된 제 2 레이어 영상들의 샘플들을 최대 부호화 단위의 트리 구조에 따른 부호화 단위들로 나눌 수 있다. 영상데이터 복호화부(230)는, 제 2 레이어 영상들의 샘플들의 부호화 단위들마다 영상간 예측을 위한 예측단위별로 움직임 보상을 수행하여 제 2 레이어 영상들을 복원할 수 있다.
추출부(220)는, 제 1 레이어 영상과 제 2 레이어 영상 간의 휘도 차를 보상하기 위해 휘도 오차와 관련된 정보를 비트스트림으로부터 획득할 수 있다. 다만, 부호화 단위의 부호화 모드에 따라 휘도 수행 여부가 결정될 수 있다. 예를 들어, 크기 2Nx2N의 예측 단위에 대해서만 휘도보상이 수행될 수 있다.
결국, 비디오 복호화 장치(200)는, 부호화 과정에서 최대 부호화 단위마다 재귀적으로 부호화를 수행하여 최소 부호화 오차를 발생시킨 부호화 단위에 대한 정보를 획득하여, 현재 픽처에 대한 복호화에 이용할 수 있다. 즉, 최대 부호화 단위마다 최적 부호화 단위로 결정된 트리 구조에 따른 부호화 단위들의 부호화된 영상 데이터의 복호화가 가능해진다.
따라서, 높은 해상도의 영상 또는 데이터량이 과도하게 많은 영상이라도 부호화단으로부터 전송된 최적 분할정보를 이용하여, 영상의 특성에 적응적으로 결정된 부호화 단위의 크기 및 부호화 모드에 따라 효율적으로 영상 데이터를 복호화하여 복원할 수 있다.
도 10 은 다양한 실시예에 따른 부호화 단위의 개념을 도시한다.
부호화 단위의 예는, 부호화 단위의 크기는 너비x높이로 표현되며, 크기 64x64인 부호화 단위부터, 32x32, 16x16, 8x8를 포함할 수 있다. 크기 64x64의 부호화 단위는 크기 64x64, 64x32, 32x64, 32x32의 파티션들로 분할될 수 있고, 크기 32x32의 부호화 단위는 크기 32x32, 32x16, 16x32, 16x16의 파티션들로, 크기 16x16의 부호화 단위는 크기 16x16, 16x8, 8x16, 8x8의 파티션들로, 크기 8x8의 부호화 단위는 크기 8x8, 8x4, 4x8, 4x4의 파티션들로 분할될 수 있다.
비디오 데이터(310)에 대해서는, 해상도는 1920x1080, 부호화 단위의 최대 크기는 64, 최대 심도가 2로 설정되어 있다. 비디오 데이터(320)에 대해서는, 해상도는 1920x1080, 부호화 단위의 최대 크기는 64, 최대 심도가 3로 설정되어 있다. 비디오 데이터(330)에 대해서는, 해상도는 352x288, 부호화 단위의 최대 크기는 16, 최대 심도가 1로 설정되어 있다. 도 10에 도시된 최대 심도는, 최대 부호화 단위로부터 최소 부호화 단위까지의 총 분할 횟수를 나타낸다.
해상도가 높거나 데이터량이 많은 경우 부호화 효율의 향상 뿐만 아니라 영상 특성을 정확히 반형하기 위해 부호화 사이즈의 최대 크기가 상대적으로 큰 것이 바람직하다. 따라서, 비디오 데이터(330)에 비해, 해상도가 높은 비디오 데이터(310, 320)는 부호화 사이즈의 최대 크기가 64로 선택될 수 있다.
비디오 데이터(310)의 최대 심도는 2이므로, 비디오 데이터(310)의 부호화 단위(315)는 장축 크기가 64인 최대 부호화 단위로부터, 2회 분할하며 심도가 두 계층 깊어져서 장축 크기가 32, 16인 부호화 단위들까지 포함할 수 있다. 반면, 비디오 데이터(330)의 최대 심도는 1이므로, 비디오 데이터(330)의 부호화 단위(335)는 장축 크기가 16인 부호화 단위들로부터, 1회 분할하며 심도가 한 계층 깊어져서 장축 크기가 8인 부호화 단위들까지 포함할 수 있다.
비디오 데이터(320)의 최대 심도는 3이므로, 비디오 데이터(320)의 부호화 단위(325)는 장축 크기가 64인 최대 부호화 단위로부터, 3회 분할하며 심도가 세 계층 깊어져서 장축 크기가 32, 16, 8인 부호화 단위들까지 포함할 수 있다. 심도가 깊어질수록 세부 정보의 표현능력이 향상될 수 있다.
도 11 은 다양한 실시예에 따른 부호화 단위에 기초한 영상 부호화부(400)의 블록도를 도시한다.
일 실시예에 따른 영상 부호화부(400)는, 비디오 부호화 장치(100)의 픽처 부호화부(120)에서 영상 데이터를 부호화하는데 거치는 작업들을 수행한다. 즉, 인트라 예측부(420)는 현재 영상(405) 중 인트라 모드의 부호화 단위에 대해 예측 단위별로 인트라 예측을 수행하고, 인터 예측부(415)는 인터 모드의 부호화 단위에 대해 예측단위별로 현재 영상(405) 및 복원 픽처 버퍼(410)에서 획득된 참조 영상을 이용하여 인터 예측을 수행한다. 현재 영상(405)은 최대부호화 단위로 분할된 후 순차적으로 인코딩이 수행될 수 있다. 이때, 최대 부호화 단위가 트리 구조로 분할될 부호화 단위에 대해 인코딩을 수행될 수 있다.
인트라 예측부(420) 또는 인터 예측부(415)로부터 출력된 각 모드의 부호화 단위에 대한 예측 데이터를 현재 영상(405)의 인코딩되는 부호화 단위에 대한 데이터로부터 빼줌으로써 잔여 영상 데이터를 생성하고, 잔여 영상 데이터는 변환부(425) 및 양자화부(430)를 거쳐 변환 단위별로 양자화된 변환 계수로 출력된다. 양자화된 변환 계수는 역양자화부(445), 역변환부(450)을 통해 공간 영역의 잔여 영상 데이터로 복원된다. 복원된 공간 영역의 잔여 영상 데이터는 인트라 예측부(420) 또는 인터 예측부(415)로부터 출력된 각 모드의 부호화 단위에 대한 예측 데이터와 더해짐으로써 현재 영상(405)의 부호화 단위에 대한 공간 영역의 데이터로 복원된다. 복원된 공간 영역의 데이터는 디블로킹부(455) 및 SAO 수행부(460)를 거쳐 복원 영상으로 생성된다. 생성된 복원 영상은 복원 픽쳐 버퍼(410)에 저장된다. 복원 픽처 버퍼(410)에 저장된 복원 영상들은 다른 영상의 인터예측을 위한 참조 영상으로 이용될 수 있다. 변환부(425) 및 양자화부(430)에서 양자화된 변환 계수는 엔트로피 부호화부(435)를 거쳐 비트스트림(440)으로 출력될 수 있다.
일 실시예에 따른 영상 부호화부(400)가 비디오 부호화 장치(100)에 적용되기 위해서, 영상 부호화부(400)의 구성 요소들인 인터 예측부(415), 인트라 예측부(420), 변환부(425), 양자화부(430), 엔트로피 부호화부(435), 역양자화부(445), 역변환부(450), 디블로킹부(455) 및 SAO 수행부(460)가 최대 부호화 단위마다 트리 구조에 따른 부호화 단위들 중 각각의 부호화 단위에 기반한 작업을 수행할 수 있다.
특히, 인트라 예측부(420)및 인터예측부(415) 는 현재 최대 부호화 단위의 최대 크기 및 최대 심도를 고려하여 트리 구조에 따른 부호화 단위들 중 각각의 부호화 단위의 파티션 모드 및 예측 모드를 결정하며, 변환부(425)는 트리 구조에 따른 부호화 단위들 중 각각의 부호화 단위 내의 쿼드 트리에 따른 변환 단위의 분할 여부를 결정할 수 있다.
도 12 는 다양한 실시예에 따른 부호화 단위에 기초한 영상 복호화부(500)의 블록도를 도시한다.
엔트로피 복호화부(515)는 비트스트림(505)으로부터 복호화 대상인 부호화된 영상 데이터 및 복호화를 위해 필요한 부호화 정보를 파싱한다. 부호화된 영상 데이터는 양자화된 변환계수로서, 역양자화부(520) 및 역변환부(525)는 양자화된 변환 계수로부터 잔여 영상 데이터를 복원한다.
인트라 예측부(540)는 인트라 모드의 부호화 단위에 대해 예측 단위 별로 인트라 예측을 수행한다. 인터 예측부(535)는 현재 영상 중 인터 모드의 부호화 단위에 대해 예측 단위 별로 복원 픽처 버퍼(530)에서 획득된 참조 영상을 이용하여 인터 예측을 수행한다.
인트라 예측부(540) 또는 인터 예측부(535)를 거친 각 모드의 부호화 단위에 대한 예측 데이터와 잔여 영상 데이터가 더해짐으로써 현재 영상(405)의 부호화 단위에 대한 공간 영역의 데이터가 복원되고, 복원된 공간 영역의 데이터는 디블로킹부(545) 및 SAO 수행부(550)를 거쳐 복원 영상(560)으로 출력될 수 있다. 또한, 복원 픽쳐 버퍼(530)에 저장된 복원 영상들은 참조 영상으로서 출력될 수 있다.
비디오 복호화 장치(200)의 픽처 복호화부(230)에서 영상 데이터를 복호화하기 위해, 일 실시예에 따른 영상 복호화부(500)의 엔트로피 복호화부(515) 이후의 단계별 작업들이 수행될 수 있다.
영상 복호화부(500)가 일 실시예에 따른 비디오 복호화 장치(200)에 적용되기 위해서, 영상 복호화부(500)의 구성 요소들인 엔트로피 복호화부(515), 역양자화부(520), 역변환부(525), 인트라 예측부(540), 인터 예측부(535), 디블로킹부(545) 및 SAO 수행부(550)가 최대 부호화 단위마다 트리 구조에 따른 부호화 단위들 중 각각의 부호화 단위에 기반하여 작업을 수행할 수 있다.
특히, 인트라 예측부(540)및 인터 예측부(535)는 트리 구조에 따른 부호화 단위들 중 각각의 부호화 단위마다 파티션 모드 및 예측 모드를 결정하며, 역변환부(525)는 부호화 단위마다 쿼드 트리구조에 따른 변환단위의 분할 여부를 결정할 수 있다.
도 10의 부호화 동작 및 도 11의 복호화 동작은 각각 단일 레이어에서의 비디오스트림 부호화 동작 및 복호화 동작을 상술한 것이다. 따라서, 도 2a의 비디오 부호화 장치(20)가 둘 이상의 레이어의 비디오스트림을 부호화한다면, 레이어별로 영상부호화부(400)를 포함할 수 있다. 유사하게, 도 2b의 비디오 복호화 장치(25)가 둘 이상의 레이어의 비디오스트림을 복호화한다면, 레이어별로 영상복호화부(500)를 포함할 수 있다.
도 13 는 다양한 실시예에 따른 심도별 부호화 단위 및 파티션을 도시한다.
일 실시예에 따른 비디오 부호화 장치(100) 및 일 실시예에 따른 비디오 복호화 장치(200)는 영상 특성을 고려하기 위해 계층적인 부호화 단위를 사용한다. 부호화 단위의 최대 높이 및 너비, 최대 심도는 영상의 특성에 따라 적응적으로 결정될 수도 있으며, 사용자의 요구에 따라 다양하게 설정될 수도 있다. 미리 설정된 부호화 단위의 최대 크기에 따라, 심도별 부호화 단위의 크기가 결정될 수 있다.
일 실시예에 따른 부호화 단위의 계층 구조(600)는 부호화 단위의 최대 높이 및 너비가 64이며, 최대 심도가 3인 경우를 도시하고 있다. 이 때, 최대 심도는 최대 부호화 단위로부터 최소 부호화 단위까지의 총 분할 횟수를 나타낸다. 일 실시예에 따른 부호화 단위의 계층 구조(600)의 세로축을 따라서 심도가 깊어지므로 심도별 부호화 단위의 높이 및 너비가 각각 분할한다. 또한, 부호화 단위의 계층 구조(600)의 가로축을 따라, 각각의 심도별 부호화 단위의 예측 부호화의 기반이 되는 예측 단위 및 파티션이 도시되어 있다.
즉, 부호화 단위(610)는 부호화 단위의 계층 구조(600) 중 최대 부호화 단위로서 심도가 0이며, 부호화 단위의 크기, 즉 높이 및 너비가 64x64이다. 세로축을 따라 심도가 깊어지며, 크기 32x32인 심도 1의 부호화 단위(620), 크기 16x16인 심도 2의 부호화 단위(630), 크기 8x8인 심도 3의 부호화 단위(640)가 존재한다. 크기 8x8인 심도 3의 부호화 단위(640)는 최소 부호화 단위이다.
각각의 심도별로 가로축을 따라, 부호화 단위의 예측 단위 및 파티션들이 배열된다. 즉, 심도 0의 크기 64x64의 부호화 단위(610)가 예측 단위라면, 예측 단위는 크기 64x64의 부호화 단위(610)에 포함되는 크기 64x64의 파티션(610), 크기 64x32의 파티션들(612), 크기 32x64의 파티션들(614), 크기 32x32의 파티션들(616)로 분할될 수 있다.
마찬가지로, 심도 1의 크기 32x32의 부호화 단위(620)의 예측 단위는, 크기 32x32의 부호화 단위(620)에 포함되는 크기 32x32의 파티션(620), 크기 32x16의 파티션들(622), 크기 16x32의 파티션들(624), 크기 16x16의 파티션들(626)로 분할될 수 있다.
마찬가지로, 심도 2의 크기 16x16의 부호화 단위(630)의 예측 단위는, 크기 16x16의 부호화 단위(630)에 포함되는 크기 16x16의 파티션(630), 크기 16x8의 파티션들(632), 크기 8x16의 파티션들(634), 크기 8x8의 파티션들(636)로 분할될 수 있다.
마찬가지로, 심도 3의 크기 8x8의 부호화 단위(640)의 예측 단위는, 크기 8x8의 부호화 단위(640)에 포함되는 크기 8x8의 파티션(640), 크기 8x4의 파티션들(642), 크기 4x8의 파티션들(644), 크기 4x4의 파티션들(646)로 분할될 수 있다.
일 실시예에 따른 비디오 부호화 장치(100)의 부호화 단위 결정부(120)는, 최대 부호화 단위(610)의 심도를 결정하기 위해, 최대 부호화 단위(610)에 포함되는 각각의 심도의 부호화 단위마다 부호화를 수행하여야 한다.
동일한 범위 및 크기의 데이터를 포함하기 위한 심도별 부호화 단위의 개수는, 심도가 깊어질수록 심도별 부호화 단위의 개수도 증가한다. 예를 들어, 심도 1의 부호화 단위 한 개가 포함하는 데이터에 대해서, 심도 2의 부호화 단위는 네 개가 필요하다. 따라서, 동일한 데이터의 부호화 결과를 심도별로 비교하기 위해서, 한 개의 심도 1의 부호화 단위 및 네 개의 심도 2의 부호화 단위를 이용하여 각각 부호화되어야 한다.
각각의 심도별 부호화를 위해서는, 부호화 단위의 계층 구조(600)의 가로축을 따라, 심도별 부호화 단위의 예측 단위들마다 부호화를 수행하여, 해당 심도에서 가장 작은 부호화 오차인 대표 부호화 오차가 선택될 수다. 또한, 부호화 단위의 계층 구조(600)의 세로축을 따라 심도가 깊어지며, 각각의 심도마다 부호화를 수행하여, 심도별 대표 부호화 오차를 비교하여 최소 부호화 오차가 검색될 수 있다. 최대 부호화 단위(610) 중 최소 부호화 오차가 발생하는 심도 및 파티션이 최대 부호화 단위(610)의 심도 및 파티션 모드로 선택될 수 있다.
도 14 은 다양한 실시예에 따른, 부호화 단위 및 변환 단위의 관계를 도시한다.
일 실시예에 따른 비디오 부호화 장치(100) 또는 일 실시예에 따른 비디오 복호화 장치(200)는, 최대 부호화 단위마다 최대 부호화 단위보다 작거나 같은 크기의 부호화 단위로 영상을 부호화하거나 복호화한다. 부호화 과정 중 변환을 위한 변환 단위의 크기는 각각의 부호화 단위보다 크지 않은 데이터 단위를 기반으로 선택될 수 있다.
예를 들어, 일 실시예에 따른 비디오 부호화 장치(100) 또는 일 실시예에 따른 비디오 복호화 장치(200)에서, 현재 부호화 단위(710)가 64x64 크기일 때, 32x32 크기의 변환 단위(720)를 이용하여 변환이 수행될 수 있다.
또한, 64x64 크기의 부호화 단위(710)의 데이터를 64x64 크기 이하의 32x32, 16x16, 8x8, 4x4 크기의 변환 단위들로 각각 변환을 수행하여 부호화한 후, 원본과의 오차가 가장 적은 변환 단위가 선택될 수 있다.
도 15 은 다양한 실시예에 따라, 심도별 부호화 정보들을 도시한다.
일 실시예에 따른 비디오 부호화 장치(100)의 출력부(130)는 분할정보로서, 각각의 심도의 부호화 단위마다 파티션 모드에 관한 정보(800), 예측 모드에 관한 정보(810), 변환 단위 크기에 대한 정보(820)를 부호화하여 전송할 수 있다.
파티션 모드에 대한 정보(800)는, 현재 부호화 단위의 예측 부호화를 위한 데이터 단위로서, 현재 부호화 단위의 예측 단위가 분할된 파티션의 형태에 대한 정보를 나타낸다. 예를 들어, 크기 2Nx2N의 현재 부호화 단위 CU_0는, 크기 2Nx2N의 파티션(802), 크기 2NxN의 파티션(804), 크기 Nx2N의 파티션(806), 크기 NxN의 파티션(808) 중 어느 하나의 타입으로 분할되어 이용될 수 있다. 이 경우 현재 부호화 단위의 파티션 모드에 관한 정보(800)는 크기 2Nx2N의 파티션(802), 크기 2NxN의 파티션(804), 크기 Nx2N의 파티션(806) 및 크기 NxN의 파티션(808) 중 하나를 나타내도록 설정된다.
예측 모드에 관한 정보(810)는, 각각의 파티션의 예측 모드를 나타낸다. 예를 들어 예측 모드에 관한 정보(810)를 통해, 파티션 모드에 관한 정보(800)가 가리키는 파티션이 인트라 모드(812), 인터 모드(814) 및 스킵 모드(816) 중 하나로 예측 부호화가 수행되는지 여부가 설정될 수 있다.
또한, 변환 단위 크기에 관한 정보(820)는 현재 부호화 단위를 어떠한 변환 단위를 기반으로 변환을 수행할지 여부를 나타낸다. 예를 들어, 변환 단위는 제 1 인트라 변환 단위 크기(822), 제 2 인트라 변환 단위 크기(824), 제 1 인터 변환 단위 크기(826), 제 2 인터 변환 단위 크기(828) 중 하나일 수 있다.
일 실시예에 따른 비디오 복호화 장치(200)의 영상 데이터 및 부호화 정보 추출부(210)는, 각각의 심도별 부호화 단위마다 파티션 모드에 관한 정보(800), 예측 모드에 관한 정보(810), 변환 단위 크기에 대한 정보(820)를 추출하여 복호화에 이용할 수 있다.
도 16 는 다양한 실시예에 따른 심도별 부호화 단위를 도시한다.
심도의 변화를 나타내기 위해 분할 정보가 이용될 수 있다. 분할 정보는 현재 심도의 부호화 단위가 하위 심도의 부호화 단위로 분할될지 여부를 나타낸다.
심도 0 및 2N_0x2N_0 크기의 부호화 단위(900)의 예측 부호화를 위한 예측 단위(910)는 2N_0x2N_0 크기의 파티션 모드(912), 2N_0xN_0 크기의 파티션 모드(914), N_0x2N_0 크기의 파티션 모드(916), N_0xN_0 크기의 파티션 모드(918)을 포함할 수 있다. 예측 단위가 대칭적 비율로 분할된 파티션들(912, 914, 916, 918)만이 예시되어 있지만, 전술한 바와 같이 파티션 모드는 이에 한정되지 않고 비대칭적 파티션, 임의적 형태의 파티션, 기하학적 형태의 파티션 등을 포함할 수 있다.
파티션 모드마다, 한 개의 2N_0x2N_0 크기의 파티션, 두 개의 2N_0xN_0 크기의 파티션, 두 개의 N_0x2N_0 크기의 파티션, 네 개의 N_0xN_0 크기의 파티션마다 반복적으로 예측 부호화가 수행되어야 한다. 크기 2N_0x2N_0, 크기 N_0x2N_0 및 크기 2N_0xN_0 및 크기 N_0xN_0의 파티션에 대해서는, 인트라 모드 및 인터 모드로 예측 부호화가 수행될 수 있다. 스킵 모드는 크기 2N_0x2N_0의 파티션에 예측 부호화가 대해서만 수행될 수 있다.
크기 2N_0x2N_0, 2N_0xN_0 및 N_0x2N_0의 파티션 모드(912, 914, 916) 중 하나에 의한 부호화 오차가 가장 작다면, 더 이상 하위 심도로 분할할 필요 없다.
크기 N_0xN_0의 파티션 모드(918)에 의한 부호화 오차가 가장 작다면, 심도 0를 1로 변경하며 분할하고(920), 심도 2 및 크기 N_0xN_0의 파티션 모드의 부호화 단위들(930)에 대해 반복적으로 부호화를 수행하여 최소 부호화 오차를 검색해 나갈 수 있다.
심도 1 및 크기 2N_1x2N_1 (=N_0xN_0)의 부호화 단위(930)의 예측 부호화를 위한 예측 단위(940)는, 크기 2N_1x2N_1의 파티션 모드(942), 크기 2N_1xN_1의 파티션 모드(944), 크기 N_1x2N_1의 파티션 모드(946), 크기 N_1xN_1의 파티션 모드(948)을 포함할 수 있다.
또한, 크기 N_1xN_1 크기의 파티션 모드(948)에 의한 부호화 오차가 가장 작다면, 심도 1을 심도 2로 변경하며 분할하고(950), 심도 2 및 크기 N_2xN_2의 부호화 단위들(960)에 대해 반복적으로 부호화를 수행하여 최소 부호화 오차를 검색해 나갈 수 있다.
최대 심도가 d인 경우, 심도별 부호화 단위는 심도 d-1일 때까지 설정되고, 분할 정보는 심도 d-2까지 설정될 수 있다. 즉, 심도 d-2로부터 분할(970)되어 심도 d-1까지 부호화가 수행될 경우, 심도 d-1 및 크기 2N_(d-1)x2N_(d-1)의 부호화 단위(980)의 예측 부호화를 위한 예측 단위(990)는, 크기 2N_(d-1)x2N_(d-1)의 파티션 모드(992), 크기 2N_(d-1)xN_(d-1)의 파티션 모드(994), 크기 N_(d-1)x2N_(d-1)의 파티션 모드(996), 크기 N_(d-1)xN_(d-1)의 파티션 모드(998)을 포함할 수 있다.
파티션 모드 가운데, 한 개의 크기 2N_(d-1)x2N_(d-1)의 파티션, 두 개의 크기 2N_(d-1)xN_(d-1)의 파티션, 두 개의 크기 N_(d-1)x2N_(d-1)의 파티션, 네 개의 크기 N_(d-1)xN_(d-1)의 파티션마다 반복적으로 예측 부호화를 통한 부호화가 수행되어, 최소 부호화 오차가 발생하는 파티션 모드가 검색될 수 있다.
크기 N_(d-1)xN_(d-1)의 파티션 모드(998)에 의한 부호화 오차가 가장 작더라도, 최대 심도가 d이므로, 심도 d-1의 부호화 단위 CU_(d-1)는 더 이상 하위 심도로의 분할 과정을 거치지 않으며, 현재 최대 부호화 단위(900)에 대한 심도가 심도 d-1로 결정되고, 파티션 모드는 N_(d-1)xN_(d-1)로 결정될 수 있다. 또한 최대 심도가 d이므로, 심도 d-1의 부호화 단위(952)에 대해 분할 정보는 설정되지 않는다.
데이터 단위(999)은, 현재 최대 부호화 단위에 대한 '최소 단위'라 지칭될 수 있다. 일 실시예에 따른 최소 단위는, 최하위 심도인 최소 부호화 단위가 4분할된 크기의 정사각형의 데이터 단위일 수 있다. 이러한 반복적 부호화 과정을 통해, 일 실시예에 따른 비디오 부호화 장치(100)는 부호화 단위(900)의 심도별 부호화 오차를 비교하여 가장 작은 부호화 오차가 발생하는 심도를 선택하여, 심도를 결정하고, 해당 파티션 모드 및 예측 모드가 심도의 부호화 모드로 설정될 수 있다.
이런 식으로 심도 0, 1, ..., d-1, d의 모든 심도별 최소 부호화 오차를 비교하여 오차가 가장 작은 심도가 선택되어 심도로 결정될 수 있다. 심도, 및 예측 단위의 파티션 모드 및 예측 모드는 분할정보로써 부호화되어 전송될 수 있다. 또한, 심도 0으로부터 심도에 이르기까지 부호화 단위가 분할되어야 하므로, 심도의 분할 정보만이 '0'으로 설정되고, 심도를 제외한 심도별 분할 정보는 '1'로 설정되어야 한다.
일 실시예에 따른 비디오 복호화 장치(200)의 영상 데이터 및 부호화 정보 추출부(220)는 부호화 단위(900)에 대한 심도 및 예측 단위에 관한 정보를 추출하여 부호화 단위(912)를 복호화하는데 이용할 수 있다. 일 실시예에 따른 비디오 복호화 장치(200)는 심도별 분할 정보를 이용하여 분할 정보가 '0'인 심도를 심도로 파악하고, 해당 심도에 대한 분할정보를 이용하여 복호화에 이용할 수 있다.
도 17, 18 및 19는 다양한 실시예에 따른, 부호화 단위, 예측 단위 및 변환 단위의 관계를 도시한다.
부호화 단위(1010)는, 최대 부호화 단위에 대해 일 실시예에 따른 비디오 부호화 장치(100)가 결정한 심도별 부호화 단위들이다. 예측 단위(1060)는 부호화 단위(1010) 중 각각의 심도별 부호화 단위의 예측 단위들의 파티션들이며, 변환 단위(1070)는 각각의 심도별 부호화 단위의 변환 단위들이다.
심도별 부호화 단위들(1010)은 최대 부호화 단위의 심도가 0이라고 하면, 부호화 단위들(1012, 1054)은 심도가 1, 부호화 단위들(1014, 1016, 1018, 1028, 1050, 1052)은 심도가 2, 부호화 단위들(1020, 1022, 1024, 1026, 1030, 1032, 1048)은 심도가 3, 부호화 단위들(1040, 1042, 1044, 1046)은 심도가 4이다.
예측 단위들(1060) 중 일부 파티션(1014, 1016, 1022, 1032, 1048, 1050, 1052, 1054)는 부호화 단위가 분할된 형태이다. 즉, 파티션(1014, 1022, 1050, 1054)은 2NxN의 파티션 모드며, 파티션(1016, 1048, 1052)은 Nx2N의 파티션 모드, 파티션(1032)은 NxN의 파티션 모드다. 심도별 부호화 단위들(1010)의 예측 단위 및 파티션들은 각각의 부호화 단위보다 작거나 같다.
변환 단위들(1070) 중 일부(1052)의 영상 데이터에 대해서는 부호화 단위에 비해 작은 크기의 데이터 단위로 변환 또는 역변환이 수행된다. 또한, 변환 단위(1014, 1016, 1022, 1032, 1048, 1050, 1052, 1054)는 예측 단위들(1060) 중 해당 예측 단위 및 파티션와 비교해보면, 서로 다른 크기 또는 형태의 데이터 단위이다. 즉, 일 실시예에 따른 비디오 부호화 장치(100) 및 일 실시예에 다른 비디오 복호화 장치(200)는 동일한 부호화 단위에 대한 인트라 예측/움직임 추정/움직임 보상 작업, 및 변환/역변환 작업이라 할지라도, 각각 별개의 데이터 단위를 기반으로 수행할 수 있다.
이에 따라, 최대 부호화 단위마다, 영역별로 계층적인 구조의 부호화 단위들마다 재귀적으로 부호화가 수행되어 최적 부호화 단위가 결정됨으로써, 재귀적 트리 구조에 따른 부호화 단위들이 구성될 수 있다. 부호화 정보는 부호화 단위에 대한 분할 정보, 파티션 모드 정보, 예측 모드 정보, 변환 단위 크기 정보를 포함할 수 있다. 이하 표 1은, 일 실시예에 따른 비디오 부호화 장치(100) 및 일 실시예에 따른 비디오 복호화 장치(200)에서 설정할 수 있는 일례를 나타낸다.
표 1
Figure PCTKR2014006770-appb-T000001
일 실시예에 따른 비디오 부호화 장치(100)의 출력부(130)는 트리 구조에 따른 부호화 단위들에 대한 부호화 정보를 출력하고, 일 실시예에 따른 비디오 복호화 장치(200)의 부호화 정보 추출부(220)는 수신된 비트스트림으로부터 트리 구조에 따른 부호화 단위들에 대한 부호화 정보를 추출할 수 있다.
분할 정보는 현재 부호화 단위가 하위 심도의 부호화 단위들로 분할되는지 여부를 나타낸다. 현재 심도 d의 분할 정보가 0이라면, 현재 부호화 단위가 현재 부호화 단위가 하위 부호화 단위로 더 이상 분할되지 않는 심도가 심도이므로, 심도에 대해서 파티션 모드 정보, 예측 모드, 변환 단위 크기 정보가 정의될 수 있다. 분할 정보에 따라 한 단계 더 분할되어야 하는 경우에는, 분할된 4개의 하위 심도의 부호화 단위마다 독립적으로 부호화가 수행되어야 한다.
예측 모드는, 인트라 모드, 인터 모드 및 스킵 모드 중 하나로 나타낼 수 있다. 인트라 모드 및 인터 모드는 모든 파티션 모드에서 정의될 수 있으며, 스킵 모드는 파티션 모드 2Nx2N에서만 정의될 수 있다.
파티션 모드 정보는, 예측 단위의 높이 또는 너비가 대칭적 비율로 분할된 대칭적 파티션 모드 2Nx2N, 2NxN, Nx2N 및 NxN 과, 비대칭적 비율로 분할된 비대칭적 파티션 모드 2NxnU, 2NxnD, nLx2N, nRx2N를 나타낼 수 있다. 비대칭적 파티션 모드 2NxnU 및 2NxnD는 각각 높이가 1:3 및 3:1로 분할된 형태이며, 비대칭적 파티션 모드 nLx2N 및 nRx2N은 각각 너비가 1:3 및 3:1로 분할된 형태를 나타낸다.
변환 단위 크기는 인트라 모드에서 두 종류의 크기, 인터 모드에서 두 종류의 크기로 설정될 수 있다. 즉, 변환 단위 분할 정보가 0 이라면, 변환 단위의 크기가 현재 부호화 단위의 크기 2Nx2N로 설정된다. 변환 단위 분할 정보가 1이라면, 현재 부호화 단위가 분할된 크기의 변환 단위가 설정될 수 있다. 또한 크기 2Nx2N인 현재 부호화 단위에 대한 파티션 모드가 대칭형 파티션 모드이라면 변환 단위의 크기는 NxN, 비대칭형 파티션 모드이라면 N/2xN/2로 설정될 수 있다.
일 실시예에 따른 트리 구조에 따른 부호화 단위들의 부호화 정보는, 심도의 부호화 단위, 예측 단위 및 최소 단위 단위 중 적어도 하나에 대해 할당될 수 있다. 심도의 부호화 단위는 동일한 부호화 정보를 보유하고 있는 예측 단위 및 최소 단위를 하나 이상 포함할 수 있다.
따라서, 인접한 데이터 단위들끼리 각각 보유하고 있는 부호화 정보들을 확인하면, 동일한 심도의 부호화 단위에 포함되는지 여부가 확인될 수 있다. 또한, 데이터 단위가 보유하고 있는 부호화 정보를 이용하면 해당 심도의 부호화 단위를 확인할 수 있으므로, 최대 부호화 단위 내의 심도들의 분포가 유추될 수 있다.
따라서 이 경우 현재 부호화 단위가 주변 데이터 단위를 참조하여 예측하기 경우, 현재 부호화 단위에 인접하는 심도별 부호화 단위 내의 데이터 단위의 부호화 정보가 직접 참조되어 이용될 수 있다.
또 다른 실시예로, 현재 부호화 단위가 주변 부호화 단위를 참조하여 예측 부호화가 수행되는 경우, 인접하는 심도별 부호화 단위의 부호화 정보를 이용하여, 심도별 부호화 단위 내에서 현재 부호화 단위에 인접하는 데이터가 검색됨으로써 주변 부호화 단위가 참조될 수도 있다.
도 20 은 표 1의 부호화 모드 정보에 따른 부호화 단위, 예측 단위 및 변환 단위의 관계를 도시한다.
최대 부호화 단위(1300)는 심도의 부호화 단위들(1302, 1304, 1306, 1312, 1314, 1316, 1318)을 포함한다. 이 중 하나의 부호화 단위(1318)는 심도의 부호화 단위이므로 분할 정보가 0으로 설정될 수 있다. 크기 2Nx2N의 부호화 단위(1318)의 파티션 모드 정보는, 파티션 모드 2Nx2N(1322), 2NxN(1324), Nx2N(1326), NxN(1328), 2NxnU(1332), 2NxnD(1334), nLx2N(1336) 및 nRx2N(1338) 중 하나로 설정될 수 있다.
변환 단위 분할 정보(TU size flag)는 변환 인덱스의 일종으로서, 변환 인덱스에 대응하는 변환 단위의 크기는 부호화 단위의 예측 단위 타입 또는 파티션 모드에 따라 변경될 수 있다.
예를 들어, 파티션 모드 정보가 대칭형 파티션 모드 2Nx2N(1322), 2NxN(1324), Nx2N(1326) 및 NxN(1328) 중 하나로 설정되어 있는 경우, 변환 단위 분할 정보가 0이면 크기 2Nx2N의 변환 단위(1342)가 설정되고, 변환 단위 분할 정보가 1이면 크기 NxN의 변환 단위(1344)가 설정될 수 있다.
파티션 모드 정보가 비대칭형 파티션 모드 2NxnU(1332), 2NxnD(1334), nLx2N(1336) 및 nRx2N(1338) 중 하나로 설정된 경우, 변환 단위 분할 정보(TU size flag)가 0이면 크기 2Nx2N의 변환 단위(1352)가 설정되고, 변환 단위 분할 정보가 1이면 크기 N/2xN/2의 변환 단위(1354)가 설정될 수 있다.
도 19 를 참조하여 전술된 변환 단위 분할 정보(TU size flag)는 0 또는 1의 값을 갖는 플래그이지만, 일 실시예에 따른 변환 단위 분할 정보가 1비트의 플래그로 한정되는 것은 아니며 설정에 따라 0, 1, 2, 3.. 등으로 증가하며 변환 단위가 계층적으로 분할될 수도 있다. 변환 단위 분할 정보는 변환 인덱스의 한 실시예로써 이용될 수 있다.
이 경우, 일 실시예에 따른 변환 단위 분할 정보를 변환 단위의 최대 크기, 변환 단위의 최소 크기와 함께 이용하면, 실제로 이용된 변환 단위의 크기가 표현될 수 있다. 일 실시예에 따른 비디오 부호화 장치(100)는, 최대 변환 단위 크기 정보, 최소 변환 단위 크기 정보 및 최대 변환 단위 분할 정보를 부호화할 수 있다. 부호화된 최대 변환 단위 크기 정보, 최소 변환 단위 크기 정보 및 최대 변환 단위 분할 정보는 SPS에 삽입될 수 있다. 일 실시예에 따른 비디오 복호화 장치(200)는 최대 변환 단위 크기 정보, 최소 변환 단위 크기 정보 및 최대 변환 단위 분할 정보를 이용하여, 비디오 복호화에 이용할 수 있다.
예를 들어, (a) 현재 부호화 단위가 크기 64x64이고, 최대 변환 단위 크기는 32x32이라면, (a-1) 변환 단위 분할 정보가 0일 때 변환 단위의 크기가 32x32, (a-2) 변환 단위 분할 정보가 1일 때 변환 단위의 크기가 16x16, (a-3) 변환 단위 분할 정보가 2일 때 변환 단위의 크기가 8x8로 설정될 수 있다.
다른 예로, (b) 현재 부호화 단위가 크기 32x32이고, 최소 변환 단위 크기는 32x32이라면, (b-1) 변환 단위 분할 정보가 0일 때 변환 단위의 크기가 32x32로 설정될 수 있으며, 변환 단위의 크기가 32x32보다 작을 수는 없으므로 더 이상의 변환 단위 분할 정보가 설정될 수 없다.
또 다른 예로, (c) 현재 부호화 단위가 크기 64x64이고, 최대 변환 단위 분할 정보가 1이라면, 변환 단위 분할 정보는 0 또는 1일 수 있으며, 다른 변환 단위 분할 정보가 설정될 수 없다.
따라서, 최대 변환 단위 분할 정보를 'MaxTransformSizeIndex', 최소 변환 단위 크기를 'MinTransformSize', 변환 단위 분할 정보가 0인 경우의 변환 단위 크기를 'RootTuSize'라고 정의할 때, 현재 부호화 단위에서 가능한 최소 변환 단위 크기 'CurrMinTuSize'는 아래 관계식 (1) 과 같이 정의될 수 있다.
CurrMinTuSize
= max (MinTransformSize, RootTuSize/(2^MaxTransformSizeIndex)) ... (1)
현재 부호화 단위에서 가능한 최소 변환 단위 크기 'CurrMinTuSize'와 비교하여, 변환 단위 분할 정보가 0인 경우의 변환 단위 크기인 'RootTuSize'는 시스템상 채택 가능한 최대 변환 단위 크기를 나타낼 수 있다. 즉, 관계식 (1)에 따르면, 'RootTuSize/(2^MaxTransformSizeIndex)'는, 변환 단위 분할 정보가 0인 경우의 변환 단위 크기인 'RootTuSize'를 최대 변환 단위 분할 정보에 상응하는 횟수만큼 분할한 변환 단위 크기이며, 'MinTransformSize'는 최소 변환 단위 크기이므로, 이들 중 작은 값이 현재 현재 부호화 단위에서 가능한 최소 변환 단위 크기 'CurrMinTuSize'일 수 있다.
일 실시예에 따른 최대 변환 단위 크기 RootTuSize는 예측 모드에 따라 달라질 수도 있다.
예를 들어, 현재 예측 모드가 인터 모드라면 RootTuSize는 아래 관계식 (2)에 따라 결정될 수 있다. 관계식 (2)에서 'MaxTransformSize'는 최대 변환 단위 크기, 'PUSize'는 현재 예측 단위 크기를 나타낸다.
RootTuSize = min(MaxTransformSize, PUSize) ......... (2)
즉 현재 예측 모드가 인터 모드라면, 변환 단위 분할 정보가 0인 경우의 변환 단위 크기인 'RootTuSize'는 최대 변환 단위 크기 및 현재 예측 단위 크기 중 작은 값으로 설정될 수 있다.
현재 파티션 단위의 예측 모드가 예측 모드가 인트라 모드라면 모드라면 'RootTuSize'는 아래 관계식 (3)에 따라 결정될 수 있다. 'PartitionSize'는 현재 파티션 단위의 크기를 나타낸다.
RootTuSize = min(MaxTransformSize, PartitionSize) ...........(3)
즉 현재 예측 모드가 인트라 모드라면, 변환 단위 분할 정보가 0인 경우의 변환 단위 크기인 'RootTuSize'는 최대 변환 단위 크기 및 현재 파티션 단위 크기 중 작은 값으로 설정될 수 있다.
다만, 파티션 단위의 예측 모드에 따라 변동하는 일 실시예에 따른 현재 최대 변환 단위 크기 'RootTuSize'는 일 실시예일 뿐이며, 현재 최대 변환 단위 크기를 결정하는 요인이 이에 한정되는 것은 아님을 유의하여야 한다.
도 8 내지 20를 참조하여 전술된 트리 구조의 부호화 단위들에 기초한 비디오 부호화 기법에 따라, 트리 구조의 부호화 단위들마다 공간영역의 영상 데이터가 부호화되며, 트리 구조의 부호화 단위들에 기초한 비디오 복호화 기법에 따라 최대 부호화 단위마다 복호화가 수행되면서 공간 영역의 영상 데이터가 복원되어, 픽처 및 픽처 시퀀스인 비디오가 복원될 수 있다. 복원된 비디오는 재생 장치에 의해 재생되거나, 저장 매체에 저장되거나, 네트워크를 통해 전송될 수 있다.
한편, 상술한 본 발명의 실시예들은 컴퓨터에서 실행될 수 있는 프로그램으로 작성가능하고, 컴퓨터로 읽을 수 있는 기록매체를 이용하여 상기 프로그램을 동작시키는 범용 디지털 컴퓨터에서 구현될 수 있다. 상기 컴퓨터로 읽을 수 있는 기록매체는 마그네틱 저장매체(예를 들면, 롬, 플로피 디스크, 하드디스크 등), 광학적 판독 매체(예를 들면, 시디롬, 디브이디 등)와 같은 저장매체를 포함한다.
설명의 편의를 위해 앞서 전술된 비디오 부호화 방법 및/또는 비디오 부호화 방법은, '본 발명의 비디오 부호화 방법'으로 통칭한다. 또한, 앞서 전술된 비디오 복호화 방법 및/또는 비디오 복호화 방법은 '본 발명의 비디오 복호화 방법'으로 지칭한다
또한, 앞서 전술된 비디오 부호화 장치(20), 비디오 부호화 장치(100) 또는 영상 부호화부(400)로 구성된 비디오 부호화 장치는, '본 발명의 비디오 부호화 장치'로 통칭한다. 또한, 앞서 전술된 비디오 복호화 장치(25), 비디오 복호화 장치(200) 또는 영상 복호화부(500)로 구성된 비디오 복호화 장치는, '본 발명의 비디오 복호화 장치'로 통칭한다.
일 실시예에 따른 프로그램이 저장되는 컴퓨터로 판독 가능한 저장매체가 디스크(26000)인 실시예를 이하 상술한다.
도 21은 다양한 실시예에 따른 프로그램이 저장된 디스크(26000)의 물리적 구조를 예시한다. 저장매체로서 전술된 디스크(26000)는, 하드드라이브, 시디롬(CD-ROM) 디스크, 블루레이(Blu-ray) 디스크, DVD 디스크일 수 있다. 디스크(26000)는 다수의 동심원의 트랙(tr)들로 구성되고, 트랙들은 둘레 방향에 따라 소정 개수의 섹터(Se)들로 분할된다. 상기 전술된 일 실시예에 따른 프로그램을 저장하는 디스크(26000) 중 특정 영역에, 전술된 양자화 파라미터 결정 방법, 비디오 부호화 방법 및 비디오 복호화 방법을 구현하기 위한 프로그램이 할당되어 저장될 수 있다.
전술된 비디오 부호화 방법 및 비디오 복호화 방법을 구현하기 위한 프로그램을 저장하는 저장매체를 이용하여 달성된 컴퓨터 시스템이 도 22를 참조하여 후술된다.
도 22는 디스크(26000)를 이용하여 프로그램을 기록하고 판독하기 위한 디스크드라이브(26800)를 도시한다. 컴퓨터 시스템(26700)은 디스크드라이브(26800)를 이용하여 본 발명의 비디오 부호화 방법 및 비디오 복호화 방법 중 적어도 하나를 구현하기 위한 프로그램을 디스크(26000)에 저장할 수 있다. 디스크(26000)에 저장된 프로그램을 컴퓨터 시스템(26700)상에서 실행하기 위해, 디스크 드라이브(26800)에 의해 디스크(26000)로부터 프로그램이 판독되고, 프로그램이 컴퓨터 시스템(26700)에게로 전송될 수 있다.
도 21 및 22에서 예시된 디스크(26000) 뿐만 아니라, 메모리 카드, 롬 카세트, SSD(Solid State Drive)에도 본 발명의 비디오 부호화 방법 및 비디오 복호화 방법 중 적어도 하나를 구현하기 위한 프로그램이 저장될 수 있다.
전술된 실시예에 따른 비디오 부호화 방법 및 비디오 복호화 방법이 적용된 시스템이 후술된다.
도 23은 컨텐트 유통 서비스(content distribution service)를 제공하기 위한 컨텐트 공급 시스템(content supply system)(11000)의 전체적 구조를 도시한다. 통신시스템의 서비스 영역은 소정 크기의 셀들로 분할되고, 각 셀에 베이스 스테이션이 되는 무선 기지국(11700, 11800, 11900, 12000)이 설치된다.
컨텐트 공급 시스템(11000)은 다수의 독립 디바이스들을 포함한다. 예를 들어, 컴퓨터(12100), PDA(Personal Digital Assistant)(12200), 카메라(12300) 및 휴대폰(12500)과 같은 독립디바이스들이, 인터넷 서비스 공급자(11200), 통신망(11400), 및 무선 기지국(11700, 11800, 11900, 12000)을 거쳐 인터넷(11100)에 연결된다.
그러나, 컨텐트 공급 시스템(11000)은 도 24에 도시된 구조에만 한정되는 것이 아니며, 디바이스들이 선택적으로 연결될 수 있다. 독립 디바이스들은 무선 기지국(11700, 11800, 11900, 12000)을 거치지 않고 통신망(11400)에 직접 연결될 수도 있다.
비디오 카메라(12300)는 디지털 비디오 카메라와 같이 비디오 영상을 촬영할 수 있는 촬상 디바이스이다. 휴대폰(12500)은 PDC(Personal Digital Communications), CDMA(code division multiple access), W-CDMA(wideband code division multiple access), GSM(Global System for Mobile Communications), 및 PHS(Personal Handyphone System)방식과 같은 다양한 프로토콜들 중 적어도 하나의 통신방식을 채택할 수 있다.
비디오 카메라(12300)는 무선기지국(11900) 및 통신망(11400)을 거쳐 스트리밍 서버(11300)에 연결될 수 있다. 스트리밍 서버(11300)는 사용자가 비디오 카메라(12300)를 사용하여 전송한 컨텐트를 실시간 방송으로 스트리밍 전송할 수 있다. 비디오 카메라(12300)로부터 수신된 컨텐트는 비디오 카메라(12300) 또는 스트리밍 서버(11300)에 의해 부호화될 수 있다. 비디오 카메라(12300)로 촬영된 비디오 데이터는 컴퓨터(12100)을 거쳐 스트리밍 서버(11300)로 전송될 수도 있다.
카메라(12600)로 촬영된 비디오 데이터도 컴퓨터(12100)를 거쳐 스트리밍 서버(11300)로 전송될 수도 있다. 카메라(12600)는 디지털 카메라와 같이 정지영상과 비디오 영상을 모두 촬영할 수 있는 촬상 장치이다. 카메라(12600)로부터 수신된 비디오 데이터는 카메라(12600) 또는 컴퓨터(12100)에 의해 부호화될 수 있다. 비디오 부호화 및 복호화를 위한 소프트웨어는 컴퓨터(12100)가 억세스할 수 있는 시디롬 디스크, 플로피디스크, 하드디스크 드라이브, SSD , 메모리 카드와 같은 컴퓨터로 판독 가능한 기록 매체에 저장될 수 있다.
또한 휴대폰(12500)에 탑재된 카메라에 의해 비디오가 촬영된 경우, 비디오 데이터가 휴대폰(12500)으로부터 수신될 수 있다.
비디오 데이터는, 비디오 카메라(12300), 휴대폰(12500) 또는 카메라(12600)에 탑재된 LSI(Large scale integrated circuit) 시스템에 의해 부호화될 수 있다.
일 실시예에 따른 컨텐트 공급 시스템(11000)에서, 예를 들어 콘서트의 현장녹화 컨텐트와 같이, 사용자가 비디오 카메라(12300), 카메라(12600), 휴대폰(12500) 또는 다른 촬상 디바이스를 이용하여 녹화된 컨텐트가 부호화되고, 스트리밍 서버(11300)로 전송된다. 스트리밍 서버(11300)는 컨텐트 데이터를 요청한 다른 클라이언트들에게 컨텐트 데이터를 스트리밍 전송할 수 있다.
클라이언트들은 부호화된 컨텐트 데이터를 복호화할 수 있는 디바이스이며, 예를 들어 컴퓨터(12100), PDA(12200), 비디오 카메라(12300) 또는 휴대폰(12500)일 수 있다. 따라서, 컨텐트 공급 시스템(11000)은, 클라이언트들이 부호화된 컨텐트 데이터를 수신하여 재생할 수 있도록 한다. 또한 컨텐트 공급 시스템(11000)은, 클라이언트들이 부호화된 컨텐트 데이터를 수신하여 실시간으로 복호화하고 재생할 수 있도록 하여, 개인방송(personal broadcasting)이 가능하게 한다.
컨텐트 공급 시스템(11000)에 포함된 독립 디바이스들의 부호화 동작 및 복호화 동작에 본 발명의 비디오 부호화 장치 및 비디오 복호화 장치가 적용될 수 있다.
도 24 및 25을 참조하여 컨텐트 공급 시스템(11000) 중 휴대폰(12500)의 일 실시예가 상세히 후술된다.
도 24은, 다양한 실시예에 따른 본 발명의 비디오 부호화 방법 및 비디오 복호화 방법이 적용되는 휴대폰(12500)의 외부 구조를 도시한다. 휴대폰(12500)은 기능이 제한되어 있지 않고 응용 프로그램을 통해 상당 부분의 기능을 변경하거나 확장할 수 있는 스마트폰일 수 있다.
휴대폰(12500)은, 무선기지국(12000)과 RF신호를 교환하기 위한 내장 안테나(12510)을 포함하고, 카메라(12530)에 의해 촬영된 영상들 또는 안테나(12510)에 의해 수신되어 복호화된 영상들을 디스플레이하기 위한 LCD(Liquid Crystal Display), OLED(Organic Light Emitting Diodes)화면 같은 디스플레이화면(12520)를 포함한다. 스마트폰(12510)은 제어버튼, 터치패널을 포함하는 동작 패널(12540)를 포함한다. 디스플레이화면(12520)이 터치스크린인 경우, 동작 패널(12540)은 디스플레이화면(12520)의 터치감지패널을 더 포함한다. 스마트폰(12510)은 음성, 음향을 출력하기 위한 스피커(12580) 또는 다른 형태의 음향출력부와, 음성, 음향이 입력되는 마이크로폰(12550) 또는 다른 형태의 음향입력부를 포함한다. 스마트폰(12510)은 비디오 및 정지영상을 촬영하기 위한 CCD 카메라와 같은 카메라(12530)를 더 포함한다. 또한, 스마트폰(12510)은 카메라(12530)에 의해 촬영되거나 이메일(E-mail)로 수신되거나 다른 형태로 획득된 비디오나 정지영상들과 같이, 부호화되거나 복호화된 데이터를 저장하기 위한 저장매체(12570); 그리고 저장매체(12570)를 휴대폰(12500)에 장착하기 위한 슬롯(12560)을 포함할 수 있다. 저장매체(12570)는 SD카드 또는 플라스틱 케이스에 내장된 EEPROM(electrically erasable and programmable read only memory)와 같은 다른 형태의 플래쉬 메모리일 수 있다.
도 25은 휴대폰(12500)의 내부 구조를 도시한다. 디스플레이화면(12520) 및 동작 패널(12540)로 구성된 휴대폰(12500)의 각 파트를 조직적으로 제어하기 위해, 전력공급회로(12700), 동작입력제어부(12640), 영상부호화부(12720), 카메라 인터페이스(12630), LCD제어부(12620), 영상복호화부(12690), 멀티플렉서/디멀티플렉서(multiplexer/demultiplexer)(12680), 기록/판독부(12670), 변조/복조(modulation/demodulation)부(12660) 및 음향처리부(12650)가, 동기화 버스(12730)를 통해 중앙제어부(12710)에 연결된다.
사용자가 전원 버튼을 동작하여 '전원꺼짐' 상태에서 '전원켜짐' 상태로 설정하면, 전력공급회로(12700)는 배터리팩으로부터 휴대폰(12500)의 각 파트에 전력을 공급함으로써, 휴대폰(12500)가 동작 모드로 셋팅될 수 있다.
중앙제어부(12710)는 CPU, ROM(Read Only Memory) 및 RAM(Random Access Memory)을 포함한다.
휴대폰(12500)이 외부로 통신데이터를 송신하는 과정에서는, 중앙제어부(12710)의 제어에 따라 휴대폰(12500)에서 디지털 신호가 생성된다, 예를 들어, 음향처리부(12650)에서는 디지털 음향신호가 생성되고, 영상 부호화부(12720)에서는 디지털 영상신호가 생성되며, 동작 패널(12540) 및 동작 입력제어부(12640)를 통해 메시지의 텍스트 데이터가 생성될 수 있다. 중앙제어부(12710)의 제어에 따라 디지털 신호가 변조/복조부(12660)에게 전달되면, 변조/복조부(12660)는 디지털 신호의 주파수대역을 변조하고, 통신회로(12610)는 대역변조된 디지털 음향신호에 대해 D/A변환(Digital-Analog conversion) 및 주파수변환(frequency conversion) 처리를 수행한다. 통신회로(12610)로부터 출력된 송신신호는 안테나(12510)를 통해 음성통신기지국 또는 무선기지국(12000)으로 송출될 수 있다.
예를 들어, 휴대폰(12500)이 통화 모드일 때 마이크로폰(12550)에 의해 획득된 음향신호는, 중앙제어부(12710)의 제어에 따라 음향처리부(12650)에서 디지털 음향신호로 변환된다. 생성된 디지털 음향신호는 변조/복조부(12660) 및 통신회로(12610)를 거쳐 송신신호로 변환되고, 안테나(12510)를 통해 송출될 수 있다.
데이터통신 모드에서 이메일과 같은 텍스트 메시지가 전송되는 경우, 동작 패널(12540)을 이용하여 메시지의 텍스트 데이터가 입력되고, 텍스트 데이터가 동작 입력제어부(12640)를 통해 중앙제어부(12610)로 전송된다. 중앙제어부(12610)의 제어에 따라, 텍스트 데이터는 변조/복조부(12660) 및 통신회로(12610)를 통해 송신신호로 변환되고, 안테나(12510)를 통해 무선기지국(12000)에게로 송출된다.
데이터통신 모드에서 영상 데이터를 전송하기 위해, 카메라(12530)에 의해 촬영된 영상 데이터가 카메라 인터페이스(12630)를 통해 영상부호화부(12720)로 제공된다. 카메라(12530)에 의해 촬영된 영상 데이터는 카메라 인터페이스(12630) 및 LCD제어부(12620)를 통해 디스플레이화면(12520)에 곧바로 디스플레이될 수 있다.
영상부호화부(12720)의 구조는, 전술된 본 발명의 비디오 부호화 장치의 구조와 상응할 수 있다. 영상부호화부(12720)는, 카메라(12530)로부터 제공된 영상 데이터를, 전술된 본 발명의 비디오 부호화 방식에 따라 부호화하여, 압축 부호화된 영상 데이터로 변환하고, 부호화된 영상 데이터를 다중화/역다중화부(12680)로 출력할 수 있다. 카메라(12530)의 녹화 중에 휴대폰(12500)의 마이크로폰(12550)에 의해 획득된 음향신호도 음향처리부(12650)를 거쳐 디지털 음향데이터로 변환되고, 디지털 음향데이터는 다중화/역다중화부(12680)로 전달될 수 있다.
다중화/역다중화부(12680)는 음향처리부(12650)로부터 제공된 음향데이터와 함께 영상부호화부(12720)로부터 제공된 부호화된 영상 데이터를 다중화한다. 다중화된 데이터는 변조/복조부(12660) 및 통신회로(12610)를 통해 송신신호로 변환되고, 안테나(12510)를 통해 송출될 수 있다.
휴대폰(12500)이 외부로부터 통신데이터를 수신하는 과정에서는, 안테나(12510)를 통해 수신된 신호를 주파수복원(frequency recovery) 및 A/D변환(Analog-Digital conversion) 처리를 통해 디지털 신호를 변환한다. 변조/복조부(12660)는 디지털 신호의 주파수대역을 복조한다. 대역복조된 디지털 신호는 종류에 따라 비디오 복호화부(12690), 음향처리부(12650) 또는 LCD제어부(12620)로 전달된다.
휴대폰(12500)은 통화 모드일 때, 안테나(12510)를 통해 수신된 신호를 증폭하고 주파수변환 및 A/D변환(Analog-Digital conversion) 처리를 통해 디지털 음향 신호를 생성한다. 수신된 디지털 음향 신호는, 중앙제어부(12710)의 제어에 따라 변조/복조부(12660) 및 음향처리부(12650)를 거쳐 아날로그 음향 신호로 변환되고, 아날로그 음향 신호가 스피커(12580)를 통해 출력된다.
데이터통신 모드에서 인터넷의 웹사이트로부터 억세스된 비디오 파일의 데이터가 수신되는 경우, 안테나(12510)를 통해 무선기지국(12000)으로부터 수신된 신호는 변조/복조부(12660)의 처리결과 다중화된 데이터를 출력하고, 다중화된 데이터는 다중화/역다중화부(12680)로 전달된다.
안테나(12510)를 통해 수신한 다중화된 데이터를 복호화하기 위해, 다중화/역다중화부(12680)는 다중화된 데이터를 역다중화하여 부호화된 비디오 데이터스트림과 부호화된 오디오 데이터스트림을 분리한다. 동기화 버스(12730)에 의해, 부호화된 비디오 데이터스트림은 비디오 복호화부(12690)로 제공되고, 부호화된 오디오 데이터스트림은 음향처리부(12650)로 제공된다.
영상복호화부(12690)의 구조는, 전술된 본 발명의 비디오 복호화 장치의 구조와 상응할 수 있다. 영상복호화부(12690)는 전술된 본 발명의 비디오 복호화 방법을 이용하여, 부호화된 비디오 데이터를 복호화하여 복원된 비디오 데이터를 생성하고, 복원된 비디오 데이터를 LCD제어부(1262)를 거쳐 디스플레이화면(1252)에게 복원된 비디오 데이터를 제공할 수 있다.
이에 따라 인터넷의 웹사이트로부터 억세스된 비디오 파일의 비디오 데이터가 디스플레이화면(1252)에서 디스플레이될 수 있다. 이와 동시에 음향처리부(1265)도 오디오 데이터를 아날로그 음향 신호로 변환하고, 아날로그 음향 신호를 스피커(1258)로 제공할 수 있다. 이에 따라, 인터넷의 웹사이트로부터 억세스된 비디오 파일에 포함된 오디오 데이터도 스피커(1258)에서 재생될 수 있다.
휴대폰(1250) 또는 다른 형태의 통신단말기는 본 발명의 비디오 부호화 장치 및 비디오 복호화 장치를 모두 포함하는 송수신 단말기이거나, 전술된 본 발명의 비디오 부호화 장치만을 포함하는 송신단말기이거나, 본 발명의 비디오 복호화 장치만을 포함하는 수신단말기일 수 있다.
본 발명의 통신시스템은 도 24를 참조하여 전술한 구조에 한정되지 않는다. 예를 들어, 도 26은 다양한 실시예에 따른 통신시스템이 적용된 디지털 방송 시스템을 도시한다. 도 26의 일 실시예에 따른 디지털 방송 시스템은, 본 발명의 비디오 부호화 장치 및 비디오 복호화 장치를 이용하여, 위성 또는 지상파 네트워크를 통해 전송되는 디지털 방송을 수신할 수 있다.
구체적으로 보면, 방송국(12890)은 전파를 통해 비디오 데이터스트림을 통신위성 또는 방송위성(12900)으로 전송한다. 방송위성(12900)은 방송신호를 전송하고, 방송신호는 가정에 있는 안테나(12860)에 의해 위성방송수신기로 수신된다. 각 가정에서, 부호화된 비디오스트림은 TV수신기(12810), 셋탑박스(set-top box)(12870) 또는 다른 디바이스에 의해 복호화되어 재생될 수 있다.
재생장치(12830)에서 본 발명의 비디오 복호화 장치가 구현됨으로써, 재생장치(12830)가 디스크 및 메모리 카드와 같은 저장매체(12820)에 기록된 부호화된 비디오스트림을 판독하여 복호화할 수 있다. 이에 따라 복원된 비디오 신호는 예를 들어 모니터(12840)에서 재생될 수 있다.
위성/지상파 방송을 위한 안테나(12860) 또는 케이블TV 수신을 위한 케이블 안테나(12850)에 연결된 셋탑박스(12870)에도, 본 발명의 비디오 복호화 장치가 탑재될 수 있다. 셋탑박스(12870)의 출력데이터도 TV모니터(12880)에서 재생될 수 있다.
다른 예로, 셋탑박스(12870) 대신에 TV수신기(12810) 자체에 본 발명의 비디오 복호화 장치가 탑재될 수도 있다.
적절한 안테나(12910)를 구비한 자동차(12920)가 위성(12800) 또는 무선기지국(11700)으로부터 송출되는 신호를 수신할 수도 있다. 자동차(12920)에 탑재된 자동차 네비게이션 시스템(12930)의 디스플레이 화면에 복호화된 비디오가 재생될 수 있다.
비디오 신호는, 본 발명의 비디오 부호화 장치에 의해 부호화되어 저장매체에 기록되어 저장될 수 있다. 구체적으로 보면, DVD 레코더에 의해 영상 신호가 DVD디스크(12960)에 저장되거나, 하드디스크 레코더(12950)에 의해 하드디스크에 영상 신호가 저장될 수 있다. 다른 예로, 비디오 신호는 SD카드(12970)에 저장될 수도 있다. 하드디스크 레코더(12950)가 일 실시예에 따른 본 발명의 비디오 복호화 장치를 구비하면, DVD디스크(12960), SD카드(12970) 또는 다른 형태의 저장매체에 기록된 비디오 신호가 모니터(12880)에서 재생될 수 있다.
자동차 네비게이션 시스템(12930)은 도 26의 카메라(12530), 카메라 인터페이스(12630) 및 영상 부호화부(12720)를 포함하지 않을 수 있다. 예를 들어, 컴퓨터(12100) 및 TV수신기(12810)도, 도 26의 카메라(12530), 카메라 인터페이스(12630) 및 영상 부호화부(12720)를 포함하지 않을 수 있다.
도 27은 다양한 실시예에 따른 비디오 부호화 장치 및 비디오 복호화 장치를 이용하는 클라우드 컴퓨팅 시스템의 네트워크 구조를 도시한다.
본 발명의 클라우드 컴퓨팅 시스템은 클라우드 컴퓨팅 서버(14100), 사용자 DB(14100), 컴퓨팅 자원(14200) 및 사용자 단말기를 포함하여 이루어질 수 있다.
클라우드 컴퓨팅 시스템은, 사용자 단말기의 요청에 따라 인터넷과 같은 정보 통신망을 통해 컴퓨팅 자원의 온 디맨드 아웃소싱 서비스를 제공한다. 클라우드 컴퓨팅 환경에서, 서비스 제공자는 서로 다른 물리적인 위치에 존재하는 데이터 센터의 컴퓨팅 자원를 가상화 기술로 통합하여 사용자들에게 필요로 하는 서비스를 제공한다. 서비스 사용자는 어플리케이션(Application), 스토리지(Storage), 운영체제(OS), 보안(Security) 등의 컴퓨팅 자원을 각 사용자 소유의 단말에 설치하여 사용하는 것이 아니라, 가상화 기술을 통해 생성된 가상 공간상의 서비스를 원하는 시점에 원하는 만큼 골라서 사용할 수 있다.
특정 서비스 사용자의 사용자 단말기는 인터넷 및 이동통신망을 포함하는 정보통신망을 통해 클라우드 컴퓨팅 서버(14100)에 접속한다. 사용자 단말기들은 클라우드 컴퓨팅 서버(14100)로부터 클라우드 컴퓨팅 서비스 특히, 동영상 재생 서비스를 제공받을 수 있다. 사용자 단말기는 데스트탑 PC(14300), 스마트TV(14400), 스마트폰(14500), 노트북(14600), PMP(Portable Multimedia Player)(14700), 태블릿 PC(14800) 등, 인터넷 접속이 가능한 모든 전자 기기가 될 수 있다.
클라우드 컴퓨팅 서버(14100)는 클라우드 망에 분산되어 있는 다수의 컴퓨팅 자원(14200)을 통합하여 사용자 단말기에게 제공할 수 있다. 다수의 컴퓨팅 자원(14200)은 여러가지 데이터 서비스를 포함하며, 사용자 단말기로부터 업로드된 데이터를 포함할 수 있다. 이런 식으로 클라우드 컴퓨팅 서버(14100)는 여러 곳에 분산되어 있는 동영상 데이터베이스를 가상화 기술로 통합하여 사용자 단말기가 요구하는 서비스를 제공한다.
사용자 DB(14100)에는 클라우드 컴퓨팅 서비스에 가입되어 있는 사용자 정보가 저장된다. 여기서, 사용자 정보는 로그인 정보와, 주소, 이름 등 개인 신용 정보를 포함할 수 있다. 또한, 사용자 정보는 동영상의 인덱스(Index)를 포함할 수 있다. 여기서, 인덱스는 재생을 완료한 동영상 목록과, 재생 중인 동영상 목록과, 재생 중인 동영상의 정지 시점 등을 포함할 수 있다.
사용자 DB(14100)에 저장된 동영상에 대한 정보는, 사용자 디바이스들 간에 공유될 수 있다. 따라서 예를 들어 노트북(14600)으로부터 재생 요청되어 노트북(14600)에게 소정 동영상 서비스를 제공한 경우, 사용자 DB(14100)에 소정 동영상 서비스의 재생 히스토리가 저장된다. 스마트폰(14500)으로부터 동일한 동영상 서비스의 재생 요청이 수신되는 경우, 클라우드 컴퓨팅 서버(14100)는 사용자 DB(14100)을 참조하여 소정 동영상 서비스를 찾아서 재생한다. 스마트폰(14500)이 클라우드 컴퓨팅 서버(14100)를 통해 동영상 데이터스트림을 수신하는 경우, 동영상 데이터스트림을 복호화하여 비디오를 재생하는 동작은, 앞서 도 24을 참조하여 전술한 휴대폰(12500)의 동작과 유사하다.
클라우드 컴퓨팅 서버(14100)는 사용자 DB(14100)에 저장된 소정 동영상 서비스의 재생 히스토리를 참조할 수도 있다. 예를 들어, 클라우드 컴퓨팅 서버(14100)는 사용자 단말기로부터 사용자 DB(14100)에 저장된 동영상에 대한 재생 요청을 수신한다. 동영상이 그 전에 재생 중이었던 것이면, 클라우드 컴퓨팅 서버(14100)는 사용자 단말기로의 선택에 따라 처음부터 재생하거나, 이전 정지 시점부터 재생하느냐에 따라 스트리밍 방법이 달라진다. 예를 들어, 사용자 단말기가 처음부터 재생하도록 요청한 경우에는 클라우드 컴퓨팅 서버(14100)가 사용자 단말기에게 해당 동영상을 첫 프레임부터 스트리밍 전송한다. 반면, 단말기가 이전 정지시점부터 이어서 재생하도록 요청한 경우에는, 클라우드 컴퓨팅 서버(14100)가 사용자 단말기에게 해당 동영상을 정지시점의 프레임부터 스트리밍 전송한다.
이 때 사용자 단말기는, 전술한 본 발명의 비디오 복호화 장치를 포함할 수 있다. 다른 예로, 사용자 단말기는, 전술한 본 발명의 비디오 부호화 장치를 포함할 수 있다. 또한, 사용자 단말기는, 전술한 본 발명의 비디오 부호화 장치 및 비디오 복호화 장치를 모두 포함할 수도 있다.
전술된 비디오 부호화 방법 및 비디오 복호화 방법, 비디오 부호화 장치 및 비디오 복호화 장치가 활용되는 다양한 실시예들이 도 21 내지 도 27에서 전술되었다. 하지만, 전술된 비디오 부호화 방법 및 비디오 복호화 방법이 저장매체에 저장되거나 비디오 부호화 장치 및 비디오 복호화 장치가 디바이스에서 구현되는 다양한 실시예들은, 도 21 내지 도 27의 실시예들에 한정되지 않는다.
이제까지 개시된 다양한 실시예들이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 명세서에서 개시된 실시예들의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 실시예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 명세서의 개시 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 명세서의 개시범위에 포함된 것으로 해석되어야 할 것이다.

Claims (13)

  1. 현재 레이어에 속한 예측 단위의 사이즈가 기 설정된 사이즈보다 클 때 상기 예측 단위를 복수개의 서브 단위들로 분할하는 단계;
    상기 서브 단위들 중 하나인 현재 서브 단위의 인터 레이어 예측을 위해 이용되는 참조 레이어에 속한 참조 서브 단위를 결정하는 단계;
    상기 참조 서브 단위의 인터 예측을 위한 움직임 벡터를 이용하여 상기 현재 서브 단위의 인터 예측을 위한 서브 움직임 벡터 예측 후보를 결정하는 단계; 및
    상기 서브 움직임 벡터 예측 후보를 포함하는 예측 후보들 중 하나를 이용하여 상기 현재 서브 단위의 인터 예측을 위한 움직임 벡터를 결정하는 단계를 포함하는 움직임 벡터 결정 방법.
  2. 제 1 항에 있어서,
    상기 기 설정된 사이즈는 8×8을 포함하는 움직임 벡터 결정 방법.
  3. 제 1 항에 있어서,
    상기 움직임 벡터를 결정하는 단계는
    상기 참조 서브 단위의 인터 예측을 위한 움직임 벡터를 상기 현재 서브 단위의 인터 예측을 위한 움직임 벡터로 결정하는 단계를 포함하는 움직임 벡터 결정 방법.
  4. 제 1 항에 있어서, 상기 움직임 벡터 결정 방법은
    상기 참조 서브 단위의 부호화 방식이 인트라 모드인 경우,
    상기 현재 서브 단위의 인터 레이어 예측을 위한 디스페리티 벡터를 이용하여 상기 서브 움직임 벡터 예측 후보를 결정하는 단계를 더 포함하는 움직임 벡터 결정 방법.
  5. 제 1 항에 있어서,
    상기 예측 단위를 복수개의 서브 단위들로 분할하는 단계는
    상기 기 설정된 사이즈를 시그널링하는 단계; 및
    상기 시그널링된 기 설정된 사이즈보다 상기 예측 단위의 사이즈가 클 때 상기 예측 단위를 상기 복수개의 서브 단위들로 분할하는 단계를 포함하는 움직임 벡터 결정 방법.
  6. 제 5 항에 있어서, 상기 움직임 벡터 결정 방법은
    비트스트림을 수신하는 단계를 더 포함하고,
    상기 기 설정된 사이즈를 시그널링하는 단계는
    상기 비트스트림으로부터 상기 기 설정된 사이즈를 파싱(parsing)하는 단계를 포함하는 움직임 벡터 결정 방법.
  7. 제 1 항에 있어서,
    상기 예측 단위를 복수개의 서브 단위들로 분할하는 단계는
    상기 예측 단위의 가로 사이즈(width)와 세로 사이즈(height)의 합이 12보다클 때 상기 예측 단위를 상기 복수개의 서브 단위들로 분할하는 단계를 포함하는 움직임 벡터 결정 방법.
  8. 제 1 항에 있어서, 상기 움직임 벡터 결정 방법은
    상기 결정된 움직임 벡터를 이용하여 상기 현재 서브 단위에 대한 움직임 보상을 수행하는 단계를 더 포함하는 움직임 벡터 결정 방법.
  9. 현재 레이어에 속한 예측 단위의 사이즈가 기 설정된 사이즈보다 클 때 상기 예측 단위를 복수개의 서브 단위들로 분할하고,
    상기 서브 단위들 중 하나인 현재 서브 단위의 인터 레이어 예측을 위해 이용되는 참조 레이어에 속한 참조 서브 단위를 결정하고,
    상기 참조 서브 단위의 인터 예측을 위한 움직임 벡터를 이용하여 상기 현재 서브 단위의 인터 예측을 위한 서브 움직임 벡터 예측 후보를 결정하는 예측 후보 결정부; 및
    상기 서브 움직임 벡터 예측 후보를 포함하는 예측 후보들 중 하나를 이용하여 상기 현재 서브 단위의 인터 예측을 위한 움직임 벡터를 결정하는 움직임 벡터 결정부를 포함하는 움직임 벡터 결정 장치.
  10. 제 9 항에 있어서,
    상기 기 설정된 사이즈는 8×8을 포함하는 움직임 벡터 결정 장치.
  11. 제 9 항에 있어서,
    상기 예측 후보 결정부는
    상기 참조 서브 단위의 부호화 방식이 인트라 모드인 경우,
    상기 현재 서브 단위의 인터 레이어 예측을 위한 디스페리티 벡터를 이용하여 상기 서브 움직임 벡터 예측 후보를 결정하는 움직임 벡터 결정 장치.
  12. 제 9 항에 있어서,
    상기 예측 후보 결정부는
    상기 예측 단위의 가로 사이즈(width)와 세로 사이즈(height)의 합이 12보다 클 때 상기 예측 단위를 상기 복수개의 서브 단위들로 분할하는 움직임 벡터 결정 장치.
  13. 제 1 항에 따른 방법을 구현하기 위한 프로그램이 기록된 컴퓨터로 판독 가능한 기록 매체.
PCT/KR2014/006770 2013-07-24 2014-07-24 움직임 벡터 결정 방법 및 그 장치 WO2015012622A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP14829473.9A EP3016392A4 (en) 2013-07-24 2014-07-24 Method for determining motion vector and apparatus therefor
US14/906,953 US20160173904A1 (en) 2013-07-24 2014-07-24 Method for determining motion vector and apparatus therefor
CN201480052699.4A CN105594212B (zh) 2013-07-24 2014-07-24 用于确定运动矢量的方法及其设备

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201361857780P 2013-07-24 2013-07-24
US61/857,780 2013-07-24

Publications (1)

Publication Number Publication Date
WO2015012622A1 true WO2015012622A1 (ko) 2015-01-29

Family

ID=52393566

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/006770 WO2015012622A1 (ko) 2013-07-24 2014-07-24 움직임 벡터 결정 방법 및 그 장치

Country Status (5)

Country Link
US (1) US20160173904A1 (ko)
EP (1) EP3016392A4 (ko)
KR (1) KR102216128B1 (ko)
CN (1) CN105594212B (ko)
WO (1) WO2015012622A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190273922A1 (en) * 2016-11-21 2019-09-05 Panasonic Intellectual Property Corporation Of America Encoder, decoder, encoding method, and decoding method
US20190273931A1 (en) * 2016-11-21 2019-09-05 Panasonic Intellectual Property Corporation Of America Encoder, decoder, encoding method, and decoding method
US11350091B2 (en) 2016-11-21 2022-05-31 Panasonic Intellectual Property Corporation Of America Encoder, decoder, encoding method, and decoding method

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015093449A1 (ja) * 2013-12-19 2015-06-25 シャープ株式会社 マージ候補導出装置、画像復号装置及び画像符号化装置
KR102281282B1 (ko) 2013-12-26 2021-07-23 삼성전자주식회사 서브블록 기반 예측을 수행하는 인터 레이어 비디오 복호화 방법 및 그 장치 및 서브블록 기반 예측을 수행하는 인터 레이어 비디오 부호화 방법 및 그 장치
CN107431815B (zh) * 2015-03-13 2021-03-26 Lg 电子株式会社 处理视频信号的方法及其设备
EP3355585A1 (en) * 2015-11-24 2018-08-01 Samsung Electronics Co., Ltd. Image encoding method and device, and image decoding method and device
EP3685576A1 (en) * 2017-09-22 2020-07-29 V-Nova International Limited Obtaining a target representation of a time sample of a signal
CN109660800B (zh) * 2017-10-12 2021-03-12 北京金山云网络技术有限公司 运动估计方法、装置、电子设备及计算机可读存储介质
WO2020185128A1 (en) * 2019-03-12 2020-09-17 Huawei Technologies Co., Ltd. Design for distributed decoding refresh in video coding
CN110505485B (zh) * 2019-08-23 2021-09-17 北京达佳互联信息技术有限公司 运动补偿方法、装置、计算机设备以及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080070216A (ko) * 2007-01-25 2008-07-30 삼성전자주식회사 인접 블록의 움직임 벡터를 이용한 움직임 벡터 추정 방법및 그 장치
KR20090103663A (ko) * 2008-03-28 2009-10-01 삼성전자주식회사 움직임 벡터 정보의 부호화/복호화 방법 및 장치
KR20120011428A (ko) * 2010-07-29 2012-02-08 에스케이 텔레콤주식회사 블록 분할예측을 이용한 영상 부호화/복호화 방법 및 장치
KR20120135296A (ko) * 2010-03-30 2012-12-12 후지쯔 가부시끼가이샤 화상 처리 장치 및 화상 처리 방법
KR20130079261A (ko) * 2011-12-30 2013-07-10 (주)휴맥스 3차원 영상 부호화 방법 및 장치, 및 복호화 방법 및 장치

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4990927B2 (ja) * 2008-03-28 2012-08-01 三星電子株式会社 動きベクトル情報の符号化/復号化方法及び装置
JP2011259093A (ja) * 2010-06-07 2011-12-22 Sony Corp 画像復号化装置と画像符号化装置およびその方法とプログラム
KR20120080122A (ko) * 2011-01-06 2012-07-16 삼성전자주식회사 경쟁 기반의 다시점 비디오 부호화/복호화 장치 및 방법
US9860528B2 (en) * 2011-06-10 2018-01-02 Hfi Innovation Inc. Method and apparatus of scalable video coding
EP3657796A1 (en) * 2011-11-11 2020-05-27 GE Video Compression, LLC Efficient multi-view coding using depth-map estimate for a dependent view
WO2014039778A2 (en) * 2012-09-07 2014-03-13 Vid Scale, Inc. Reference picture lists modification
US20140086328A1 (en) * 2012-09-25 2014-03-27 Qualcomm Incorporated Scalable video coding in hevc
WO2015003383A1 (en) * 2013-07-12 2015-01-15 Mediatek Singapore Pte. Ltd. Methods for inter-view motion prediction
US9693077B2 (en) * 2013-12-13 2017-06-27 Qualcomm Incorporated Controlling sub prediction unit (sub-PU) motion parameter inheritance (MPI) in three dimensional (3D) HEVC or other 3D coding

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080070216A (ko) * 2007-01-25 2008-07-30 삼성전자주식회사 인접 블록의 움직임 벡터를 이용한 움직임 벡터 추정 방법및 그 장치
KR20090103663A (ko) * 2008-03-28 2009-10-01 삼성전자주식회사 움직임 벡터 정보의 부호화/복호화 방법 및 장치
KR20120135296A (ko) * 2010-03-30 2012-12-12 후지쯔 가부시끼가이샤 화상 처리 장치 및 화상 처리 방법
KR20120011428A (ko) * 2010-07-29 2012-02-08 에스케이 텔레콤주식회사 블록 분할예측을 이용한 영상 부호화/복호화 방법 및 장치
KR20130079261A (ko) * 2011-12-30 2013-07-10 (주)휴맥스 3차원 영상 부호화 방법 및 장치, 및 복호화 방법 및 장치

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190273922A1 (en) * 2016-11-21 2019-09-05 Panasonic Intellectual Property Corporation Of America Encoder, decoder, encoding method, and decoding method
US20190273931A1 (en) * 2016-11-21 2019-09-05 Panasonic Intellectual Property Corporation Of America Encoder, decoder, encoding method, and decoding method
US11350091B2 (en) 2016-11-21 2022-05-31 Panasonic Intellectual Property Corporation Of America Encoder, decoder, encoding method, and decoding method
US11399176B2 (en) * 2016-11-21 2022-07-26 Panasonic Intellectual Property Corporation Of America Encoder, decoder, encoding method, and decoding method
US11736693B2 (en) 2016-11-21 2023-08-22 Panasonic Intellectual Property Corporation Of America Encoder, decoder, encoding method, and decoding method
US11889078B2 (en) 2016-11-21 2024-01-30 Panasonic Intellectual Property Corporation Of America Encoder, decoder, encoding method, and decoding method

Also Published As

Publication number Publication date
KR102216128B1 (ko) 2021-02-16
CN105594212B (zh) 2019-04-16
KR20150012223A (ko) 2015-02-03
EP3016392A1 (en) 2016-05-04
EP3016392A4 (en) 2017-04-26
US20160173904A1 (en) 2016-06-16
CN105594212A (zh) 2016-05-18

Similar Documents

Publication Publication Date Title
WO2015137783A1 (ko) 인터 레이어 비디오의 복호화 및 부호화를 위한 머지 후보 리스트 구성 방법 및 장치
WO2015099506A1 (ko) 서브블록 기반 예측을 수행하는 인터 레이어 비디오 복호화 방법 및 그 장치 및 서브블록 기반 예측을 수행하는 인터 레이어 비디오 부호화 방법 및 그 장치
WO2013115560A1 (ko) 공간 서브영역별로 비디오를 부호화하는 방법 및 그 장치, 공간 서브영역별로 비디오를 복호화하는 방법 및 그 장치
WO2014030920A1 (ko) 트리 구조의 부호화 단위에 기초한 예측 정보의 인터-레이어 비디오 부호화 방법 및 그 장치, 트리 구조의 부호화 단위에 기초한 예측 정보의 인터-레이어 비디오 복호화 방법 및 그 장치
WO2015152608A4 (ko) 서브블록 기반 예측을 수행하는 인터 레이어 비디오 복호화 방법 및 그 장치 및 서브블록 기반 예측을 수행하는 인터 레이어 비디오 부호화 방법 및 그 장치
WO2014163467A1 (ko) 랜덤 엑세스를 위한 멀티 레이어 비디오 부호화 방법 및 그 장치, 랜덤 엑세스를 위한 멀티 레이어 비디오 복호화 방법 및 그 장치
WO2013162311A1 (ko) 다시점 비디오 예측을 위한 참조픽처세트를 이용하는 다시점 비디오 부호화 방법 및 그 장치, 다시점 비디오 예측을 위한 참조픽처세트를 이용하는 다시점 비디오 복호화 방법 및 그 장치
WO2014109594A1 (ko) 휘도차를 보상하기 위한 인터 레이어 비디오 부호화 방법 및 그 장치, 비디오 복호화 방법 및 그 장치
WO2015012622A1 (ko) 움직임 벡터 결정 방법 및 그 장치
WO2014007590A1 (ko) 랜덤 억세스를 위한 멀티 레이어 비디오 부호화 방법 및 그 장치, 랜덤 억세스를 위한 멀티 레이어 비디오 복호화 방법 및 그 장치
WO2015053601A1 (ko) 멀티 레이어 비디오 부호화 방법 및 그 장치, 멀티 레이어 비디오 복호화 방법 및 그 장치
WO2015133866A1 (ko) 서브 블록 기반 예측을 수행하는 인터 레이어 비디오 복호화 방법 및 그 장치 및 서브 블록 기반 예측을 수행하는 인터 레이어 비디오 부호화 방법 및 그 장치
WO2015053598A1 (ko) 멀티 레이어 비디오 부호화 방법 및 장치, 멀티 레이어 비디오 복호화 방법 및 장치
WO2016117930A1 (ko) 인터 레이어 비디오 복호화 방법 및 그 장치 및 인터 레이어 비디오 부호화 방법 및 그 장치
WO2013157817A1 (ko) 트리 구조의 부호화 단위에 기초한 다시점 비디오 부호화 방법 및 그 장치, 트리 구조의 부호화 단위에 기초한 다시점 비디오 복호화 방법 및 그 장치
WO2014163458A1 (ko) 인터 레이어 복호화 및 부호화 방법 및 장치를 위한 인터 예측 후보 결정 방법
WO2014163460A1 (ko) 계층 식별자 확장에 따른 비디오 스트림 부호화 방법 및 그 장치, 계층 식별자 확장에 따른 따른 비디오 스트림 복호화 방법 및 그 장치
WO2015053597A1 (ko) 멀티 레이어 비디오 부호화 방법 및 장치, 멀티 레이어 비디오 복호화 방법 및 장치
WO2016072753A1 (ko) 샘플 단위 예측 부호화 장치 및 방법
WO2015005749A1 (ko) 인터 레이어 비디오 복호화 및 부호화 장치 및 방법을 위한 블록 기반 디스패리티 벡터 예측 방법
WO2015194896A1 (ko) 휘도차를 보상하기 위한 인터 레이어 비디오 부호화 방법 및 그 장치, 비디오 복호화 방법 및 그 장치
WO2013162251A1 (ko) 다시점 비디오 예측을 위한 참조리스트를 이용하는 다시점 비디오 부호화 방법 및 그 장치, 다시점 비디오 예측을 위한 참조리스트를 이용하는 다시점 비디오 복호화 방법 및 그 장치
WO2014171769A1 (ko) 시점 합성 예측을 이용한 다시점 비디오 부호화 방법 및 그 장치, 다시점 비디오 복호화 방법 및 그 장치
WO2015009113A1 (ko) 인터 레이어 비디오 복호화 및 부호화 장치 및 방법을 위한 깊이 영상의 화면내 예측 방법
WO2014129872A1 (ko) 메모리 대역폭 및 연산량을 고려한 스케일러블 비디오 부호화 장치 및 방법, 스케일러블 비디오 복호화 장치 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14829473

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14906953

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014829473

Country of ref document: EP