WO2014163403A1 - Coating composition containing composite aerogel and method for manufacturing same - Google Patents

Coating composition containing composite aerogel and method for manufacturing same Download PDF

Info

Publication number
WO2014163403A1
WO2014163403A1 PCT/KR2014/002859 KR2014002859W WO2014163403A1 WO 2014163403 A1 WO2014163403 A1 WO 2014163403A1 KR 2014002859 W KR2014002859 W KR 2014002859W WO 2014163403 A1 WO2014163403 A1 WO 2014163403A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating composition
airgel
composite airgel
composite
weight
Prior art date
Application number
PCT/KR2014/002859
Other languages
French (fr)
Korean (ko)
Inventor
홍순오
유영종
이재환
Original Assignee
주식회사 관평기술
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020130035707A external-priority patent/KR20130048738A/en
Priority claimed from KR1020130035708A external-priority patent/KR20130048739A/en
Priority claimed from KR1020130035709A external-priority patent/KR20130048740A/en
Priority claimed from KR1020130038011A external-priority patent/KR20130048746A/en
Priority claimed from KR1020130038006A external-priority patent/KR20130048741A/en
Priority claimed from KR1020130038008A external-priority patent/KR20130048743A/en
Priority claimed from KR1020130038007A external-priority patent/KR20130048742A/en
Priority claimed from KR1020130038009A external-priority patent/KR20130048744A/en
Priority claimed from KR1020130038012A external-priority patent/KR20130048747A/en
Priority claimed from KR1020130038010A external-priority patent/KR20130048745A/en
Priority claimed from KR1020130039734A external-priority patent/KR20130048748A/en
Priority claimed from KR1020130043917A external-priority patent/KR20130048754A/en
Application filed by 주식회사 관평기술 filed Critical 주식회사 관평기술
Publication of WO2014163403A1 publication Critical patent/WO2014163403A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/24Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing alkyl, ammonium or metal silicates; containing silica sols
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00482Coating or impregnation materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Definitions

  • the present invention relates to a heat insulating paint and a method for manufacturing the same, and more particularly to a coating composition containing a composite airgel and a method for producing the same.
  • This conventional insulating paint is not only difficult to evenly disperse the hollow ceramic powder in the paint, but when the paint containing the ceramic powder is left for a long time, there is a problem that the hollow ceramic powder and other fillers are separated into layers due to the weight difference. It is becoming. In addition, when applied in the form of paint, a problem arises that sufficient amount occurs during drying. For this reason, heat insulation property falls.
  • the thermal insulation properties of the paint are insignificant.
  • Korean Unexamined Patent Publication No. 2007-117413 discloses a method of manufacturing an inorganic binder and adding heat (vermiculite powder), auxiliary solid (titanium oxide), dispersant, and flow control agent to the inorganic binder to impart heat insulation to the paint. have.
  • the airgel with excellent thermal insulation in the paint in the form of a powder more specifically, the silica airgel or titanium dioxide airgel each included in the paint alone
  • the silica airgel and the titanium dioxide airgel are mixed and included in the paint to improve the thermal insulation of the paint.
  • silica airgel has a relatively low density
  • titanium dioxide airgel has a relatively high density
  • the heat insulation performance is lowered due to the concentration on the upper or lower side of the paint.
  • the above two materials are mixed and included in the paint, they are separated from each other in the drying process of the paint due to the difference in density, so that it is difficult to provide effective thermal insulation performance.
  • Patent Document 1 Republic of Korea Patent Publication No. 10-2010-0085472 (published Jul. 29, 2010) 'Super insulating airgel-containing paint containing an airgel'
  • the present invention has been made in order to solve the conventional problems as described above, but to be made to include a composite airgel in the coating composition, the composite airgel, the infrared blocking material containing carbon in the base material that can be formed as an airgel uniformly It is an object of the present invention to provide a coating composition and a method for producing the composite aerogel, characterized in that to be formed in an integrally bonded structure, to provide a better heat insulating performance than in the prior art. .
  • the coating composition containing the composite airgel according to the present invention comprises a resin liquid for coating formed of a liquid resin; A composite aerogel formed in a three-dimensional mesh structure forming a base material with an integral bonding structure in which an infrared ray blocking material is embedded, and added to the coating resin liquid in powder form; It is made, including, the infrared ray blocking material is carbon, or is characterized in that the carbon and titanium dioxide complex formed in a certain weight ratio.
  • the method for producing a coating composition containing a composite airgel according to the present invention while adding a powdered infrared ray blocking material to the mixed solution (sol) mixed with water to the base material, while stirring, adding carbon as the infrared ray blocking material or Combining and adding carbon and titanium dioxide in a predetermined weight ratio, stirring, and then forming a composite aerogel by adding a catalyst to gel the catalyst; Powdering the composite airgel and adding the resultant to the coating resin solution.
  • the present invention having the configuration as described above can provide the following technical and economic effects.
  • the thermal insulation performance is further improved compared to conventional paints due to the synergistic effect of the interaction between the integrally bonded airgel base material and the infrared ray blocking material. There is a technical effect that can provide.
  • the infrared ray blocking material is stirred in a powder state in a mixed solution (sol) mixed with the base material and water so as to be formed integrally in the process of gelation.
  • the coating composition according to the present invention a resin liquid for coating formed of a liquid resin capable of exhibiting a predetermined color;
  • the coating resin liquid is to be a basic material of the coating composition according to the present invention, and more specifically, a liquid acrylic resin, a silane resin, a siloxane resin, a phthalic acid resin, a vinyl chloride resin, an epoxy resin, It is preferable to form based on either urethane resin or amino alkyd resin.
  • the composite airgel is added to the resin solution for coating formed as described above, and the composite airgel is preferably added in a powder form and stirred, wherein the composite airgel blocks the base material and the infrared wavelength which can be formed in the airgel form.
  • Infrared shielding material is formed in a structure in which the combined body. It is preferable to mix the said coating resin liquid and the composite airgel in 40-95 weight% of said coating resin liquids at the ratio of 5 to 60 weight% of a composite airgel.
  • the base material is formed in a three-dimensional network structure
  • the infrared ray blocking material is a nano to several tens of micrometers smaller than the base material
  • the structure is inherently coupled to the three-dimensional network forming the base material.
  • the base material is preferably formed using any one of silica, alumina, polyimide, silica-titania, silica-carbon, vanadia, zirconia, and acetate cellulose, which can be formed in an airgel form.
  • a mixed solution (sol) in which water is mixed with the base material preferably made by mixing 10 to 50% by weight of the base material and 50 to 90% by weight of water.
  • the infrared ray blocking material may be used alone or in a mixture of carbon and other infrared ray blocking materials at a predetermined ratio. Carbon absorbs and scatters infrared rays to block heat by radiant heat, thereby improving thermal insulation performance of the composite aerogel. As carbon, graphite, carbon black, activated carbon, or the like may be used. The infrared blocking material may be used to form a size of nano to several tens of micrometers. The length of the carbon used as the infrared blocking material is preferably about 0.1 to 50 ⁇ m.
  • titanium dioxide may be used as another infrared ray blocking material. Titanium dioxide has the effect of blocking infrared rays like carbon, and thus, by forming a structure in which two or more infrared ray blocking materials are uniformly integrally bonded to the base material, the composite airgel can exhibit more excellent thermal insulation performance by providing density. . Titanium dioxide is preferably used in the form of a powder having a diameter of 300 to 500 nm. The blending ratio of titanium dioxide to 1 part by weight of carbon is preferably about 0.1 to 2 parts by weight, particularly preferably about 0.5 to 1 part by weight.
  • the base material and the infrared ray blocking material which are bonded at the nano to tens of microscopic particle levels, are not broken and maintained even when the powder is pulverized in the form of powder. It is done.
  • any functional material for thermal insulation may be additionally formed in the size of nano to several tens of micrometers to be combined with the base material in the same way.
  • the total amount of the infrared ray blocking material including the other insulating material is preferably about 0.5 to 10% by weight based on the total weight of the composite airgel finally formed.
  • the density is 0.09 to 0.025 g / cm 3 (based on silica), and most infrared ray blocking materials have a density of 4.1 g / cm 3 (based on titanium dioxide), so that they are simply mixed and included in the coating resin.
  • the base material has a problem in that the upper portion of the coating resin solution, the infrared blocking material sinks in the lower portion of the coating resin solution, but due to the bonding structure according to the present invention, the composite airgel is formed with an average density of both materials do.
  • both materials Due to the averaging of the bonding structure and density of the two materials in the dimension of nano to several tens of micrometers as described above, both materials are not separated from each other even during the drying process of the paint, and are kept in an integral structure, without being biased to a specific part of the paint. It is evenly distributed over the entire part, so that it can effectively block external thermal energy and infrared wavelengths.
  • the composition for controlling the viscosity is dry silica
  • the dry silica is also preferably formed into a nano-sized powder form and stirred in the resin solution for coating, the amount of the input is added in the minimum amount that can be maintained evenly distributed in the composite airgel during the drying process of the paint It is desirable to.
  • the dry silica is included in the range of 0.01 to 3% by weight in the total weight of the resin solution for paint containing the composite airgel.
  • the coating composition of the present invention may preferably further comprise a binder.
  • the binder may be used in combination with an organic binder or an inorganic binder or both. Since the composite airgel has a low density and hydrophobicity, it is preferable to form a coating composition by adding an organic binder and / or an inorganic binder to the coating resin liquid and the composite airgel.
  • an organic binder and an inorganic binder can be mixed and used in fixed ratio. This is because the organic binder alone is difficult to increase the content of the airgel in the composition, the inorganic binder alone is difficult to paint, and the inorganic binder itself is not preferable when the amount of use is high due to high thermal conductivity.
  • the most preferable range is to use by mixing 30 to 90% by weight of the organic binder and 10 to 70% by weight of the inorganic binder, it is possible to paint in this range, excellent heat insulation and good flame retardancy.
  • the thermal conductivity of the organic binder and the inorganic binder increases significantly as the content is increased after the coating composition is formed, it is preferable to add the organic binder and the inorganic binder in a minimum ratio to the extent that the coating composition is made, and the composite coating includes the entire air composition. It is preferable to add in the ratio of 5-50 weight% with respect to weight.
  • the organic binder is to increase paint adhesion and fluidity, it is preferable to use a binder such as polyurethane, acrylate copolymer, inorganic binder is to increase the adhesion of the paint and impart flame retardancy, potassium silicate, zinc phosphate Preference is given to using binders such as talc, magnesium oxide and the like.
  • crosslinking binder in the organic binder, and the crosslinking binder increases the viscosity when dispersed in water, thereby increasing the mixing and bonding of the organic binder and the inorganic binder and increasing the interfacial tension. Lower it significantly to allow the airgel to disperse easily
  • the water-soluble inorganic binder is preferably a binder such as micro cement, hemihydrate gypsum, silica fume, fumed silica, lime, calcium sulfoaluminate, and the water-soluble inorganic binder is hydrated with silica.
  • the pozzolanic reaction enhances the long-term strength of the coating, improves water tightness and durability, as well as tightly anchors low-density aerogels.
  • the coating composition of the present invention may further include a silicone antifoaming agent.
  • the coating composition of the present invention may further include a fiber so as to give a certain strength or more when dried.
  • the fibers preferably use fibers of 0.1 to 4 mm long.
  • the fiber at least one selected from polypropylene fiber, polyethylene fiber, silica fiber, alumina fiber, carbon fiber and glass fiber is used.
  • the method for preparing the coating composition is to form a composite airgel by adding and stirring a powdered infrared ray blocking material to a mixed solution (sol) in which water is mixed with a base material, and then gelling by adding a catalyst. Steps; Powdering the composite airgel and adding the resultant to the coating resin solution.
  • the mixed solution is formed by mixing the base material and water as described above, the base material is preferably blended 10 to 50% by weight in a proportion of 50 to 90% by weight of water.
  • the infrared blocking material is added and stirred, it is preferable that the infrared blocking material is formed in the form of powder of nano to several tens of micrometers size to the mixed solution and stirred.
  • the amount of the infrared shielding substance to the mixed solution is preferably added at a ratio of 0.0.5 to 2 parts by weight, more preferably 0.1 to 1 part by weight, particularly preferably 0.2 to 0.6 parts by weight with respect to 100 parts by weight of the mixed solution. It is desirable to.
  • the infrared blocking material is preferably used by using carbon or by combining carbon and titanium dioxide at a predetermined ratio, wherein the titanium dioxide is preferably formed to have a size of 300 to 500 nm and carbon of 0.1 to 50 ⁇ m. Do.
  • the infrared blocking material in the form of nano to several tens of micrometers powder is added to the gel by adding a catalyst to the stirred mixture, a composite airgel is formed.
  • An infrared ray blocking material of nano to several tens of micrometers is built into the dimensional network to be integrally coupled.
  • the base material and the infrared ray blocking material constituting the composite airgel are not separated from each other even if they are pulverized and formed into a powder, and are not separated even if included in the paint resin solution, so that the combined airgel can be kept intact.
  • Silica was used as a base material for forming the airgel, and carbon black was used as the infrared ray blocking material.
  • Hydro-gel after the aging process as described above is subjected to an impurity washing process to remove the sodium ions as impurities using water, wherein the water is prepared 10 liters, soaking the hydro-gel for 10 hours, sodium ions 10 liters of water are replaced every 2 hours.
  • HMDS Hexamethyldisilazane
  • N-hexane was used as the nonpolar organic solvent in relation to the solvent replacement.
  • hexane methyl disilazane is prepared 1 liter, n-hexane is 10 liters, the above two solutions (HMDS, n-hexane) to maintain the 65 degrees Celsius so that the impurity was washed in a container together Soak the hydrogel for 8 hours to allow surface modification and solvent replacement.
  • the hydro-gel is aerogelized, and by drying it for 5 hours at 100 degrees Celsius in the dryer, it is only possible to form a composite airgel.
  • Silica was used as the base material for forming the airgel, and carbon black and titanium dioxide were used as the infrared ray blocking material.
  • Example 1-1 Into the same mixed solution (silica 39% by weight + 61% by weight of water) in the same manner as in Example 1-1, carbon black and titanium dioxide were added and stirred at 1.25 grams each as an infrared ray blocking material. 2.5 grams of carbon black in powder form was added and stirred.
  • the titanium dioxide used was in the form of a spherical powder, the average diameter of about 405nm, carbon black was in the form of a powder, the average length was about 10 ⁇ m.
  • Example 1-1 The rest was carried out in the same manner as in Example 1-1, to obtain a composite airgel.
  • Example 1-1 The composite composition was prepared in Example 1-1 to prepare a coating composition having the composition shown in Table 1 below.
  • the obtained coating composition of the present invention was prepared in the form of a flat plate having a width of 25 cm, a length of 25 cm, and a thickness of 5 mm, and then completely dried, and then tested for thermal conductivity. As a result of the test, the thermal conductivity was found to be 35 mW / m.K.
  • Example 2 Using the composite airgel prepared in Example 1-2 was made a coating composition with the composition shown in Table 2 below.
  • the obtained coating composition of the present invention was prepared in the form of a flat plate having a width of 25 cm, a length of 25 cm, and a thickness of 5 mm, and then completely dried, and then tested for thermal conductivity. As a result of the test, the thermal conductivity was found to be 34.2 mW / m.K.
  • Example 3 a coating composition of the composition shown in Table 3 below was made as a control for comparison with Example 2-1.
  • a coating composition was prepared in the same manner as in Example 2-1, except that silica airgel was used instead of the composite airgel obtained in Example 1-1.
  • the obtained coating composition was prepared in the form of a flat plate having a width of 25 cm, a length of 25 cm, and a thickness of 5 mm, and then completely dried, and then tested for thermal conductivity. As a result of the test, the thermal conductivity was 39.44 mW / m.K.
  • the coating composition containing the composite airgel of the present invention can be seen that the thermal conductivity is significantly improved than when using a silica airgel.
  • the thermal conductivity of the coating composition using various insulating materials was tested, and the results were compared with the thermal conductivity of the coating composition according to the present invention.
  • thermal conductivity was tested by using a thermal insulation tex (manufactured by Samwha), Korund, and Nansulfate, which was commonly used as a thermal insulation paint.
  • the thermal conductivity of each thermal insulation paint was unified to 25 cm * 25 cm * 4 mm and tested. .
  • the thermal insulation was measured as a thermal conductivity of 75.59mW / m.K, Korund was measured 53.74mW / m.K, non-sulfate was measured to 84mW / m.K. Insulation paints are commercially available as described above was significantly higher thermal conductivity (that is, the thermal insulation performance was significantly lower) than the coating composition (Examples 2-1, 2-2) of the present invention.

Abstract

The present invention relates to a coating composition containing a composite aerogel and a method for manufacturing the same. The composite aerogel consists of a basic aerogel material uniformly integrated with an ultraviolet prevention material containing carbon so as to provide considerably improved thermal insulation due to the synergic effect of the interaction between the basic aerogel material and the ultraviolet prevention material compared to the conventional coating composition. Also, the basic material and the ultraviolet prevention material are integrated through the sol-gel process so as to simplify the additional procedure of combining the functional material and to make the combination strong and uniform, thus providing excellent thermal insulation and various functionalities.

Description

복합 에어로겔이 포함된 도료 조성물 및 그 제조방법Paint composition containing composite airgel and method for producing same
본 발명은 단열 도료 및 그 제조방법에 관한 것으로, 특히 복합 에어로겔이 포함된 도료 조성물 및 그 제조방법에 관한 것이다.The present invention relates to a heat insulating paint and a method for manufacturing the same, and more particularly to a coating composition containing a composite airgel and a method for producing the same.
기존의 단열 페인트로는 주로 SiO2(실리카)와 Al2O3(알루미나)를 주성분으로 하는 중공 세라믹 분말을 페인트에 혼합한 형태로 사용되어 왔다(대한민국 공개특허 제 2004-22985호 및 대한민국 공개특허 제 2001-372호).Conventional insulating paints have been used in the form of a mixture of hollow ceramic powder mainly composed of SiO 2 (silica) and Al 2 O 3 (alumina) in the paint (Korean Patent Laid-Open Publication No. 2004-22985 and Korean Laid-Open Patent) No. 2001-372).
이러한 종래의 단열페인트는 중공 세라믹 분말을 페인트에 고르게 분산시키기 어려울 뿐만 아니라, 세라믹 분말이 배합된 페인트를 장기간 방치하는 경우에, 중량차로 인한 중공 세라믹 분말과 기타 충전제들이 상하로 층분리 되는 문제가 발생되고 있다. 또한 도료 형태로 도포하면 건조 중에 충분리가 발생하는 문제가 발생한다. 이로 인하여 단열 특성이 저하된다.This conventional insulating paint is not only difficult to evenly disperse the hollow ceramic powder in the paint, but when the paint containing the ceramic powder is left for a long time, there is a problem that the hollow ceramic powder and other fillers are separated into layers due to the weight difference. It is becoming. In addition, when applied in the form of paint, a problem arises that sufficient amount occurs during drying. For this reason, heat insulation property falls.
또한, 이러한 형상으로 중공 세라믹 물질들은 충분한 단열효과를 제공하지 못하므로 페인트의 단열특성이 미미한 실정이다.In addition, since the hollow ceramic materials do not provide sufficient thermal insulation effect, the thermal insulation properties of the paint are insignificant.
한편, 대한민국 공개특허 제2007-117413호에는 무기바인더를 제조하여 무기바인더에 고형분(버미큘라이트 분말), 보조고형분(산화티타늄), 분산제 및 유동성조절제 등을 첨가하여 페인트에 단열성을 부여하는 방법이 제시되어 있다.Meanwhile, Korean Unexamined Patent Publication No. 2007-117413 discloses a method of manufacturing an inorganic binder and adding heat (vermiculite powder), auxiliary solid (titanium oxide), dispersant, and flow control agent to the inorganic binder to impart heat insulation to the paint. have.
그러나, 이러한 방법은 제조방법이 까다롭고, 많은 시간 및 비용이 요구될 뿐 아니라, 단열성도 미미하여 실효성이 떨어진다는 문제점이 있다.However, such a method has a problem in that the manufacturing method is difficult, requires a lot of time and cost, and is inferior in effectiveness due to its poor thermal insulation.
또 한편, 도료의 단열성을 더욱 향상시키기 위하여, 상기 도료에 단열성이 우수한 에어로겔을 분말 형태로 포함시킨 기술이 개시된 바 있는데, 보다 구체적으로 설명하면, 실리카 에어로겔 혹은 이산화티타늄 에어로겔을 각각 단독으로 도료에 포함시키거나, 상기 실리카 에어로겔과 이산화티타늄 에어로겔을 혼합하여 도료에 포함시켜 도료의 단열성을 향상시키고자 한 바 있다.On the other hand, in order to further improve the thermal insulation of the paint, there has been disclosed a technique in which the airgel with excellent thermal insulation in the paint in the form of a powder, more specifically, the silica airgel or titanium dioxide airgel each included in the paint alone Alternatively, the silica airgel and the titanium dioxide airgel are mixed and included in the paint to improve the thermal insulation of the paint.
그러나, 상기와 같이 도료에 에어로겔을 포함시킨 종래 기술은, 실리카 에어로겔은 밀도가 상대적으로 낮고, 이산화티타늄 에어로겔은 밀도가 상대적으로 커서, 도료의 상부 혹은 하부 일측에 몰리게 되어 단열성능이 떨어지는 문제점이 있으며, 위 두 물질을 혼합하여 도료에 포함시킨 경우에도 상기 밀도 차이로 인하여 도료의 건조과정에서 서로 분리되므로, 효과적인 단열성능을 제공하기 어렵다는 문제점도 있다.However, in the prior art including the airgel in the paint as described above, silica airgel has a relatively low density, titanium dioxide airgel has a relatively high density, there is a problem that the heat insulation performance is lowered due to the concentration on the upper or lower side of the paint. In addition, even when the above two materials are mixed and included in the paint, they are separated from each other in the drying process of the paint due to the difference in density, so that it is difficult to provide effective thermal insulation performance.
[선행기술문헌][Preceding technical literature]
[특허문헌][Patent Documents]
(특허문헌 1) 대한민국 공개특허 제10-2010-0085472호(2010.07.29 공개) '에어로겔을 포함하는 초단열성 에어로겔 함유 페인트'(Patent Document 1) Republic of Korea Patent Publication No. 10-2010-0085472 (published Jul. 29, 2010) 'Super insulating airgel-containing paint containing an airgel'
본 발명은 상기와 같은 종래의 문제점을 해결하기 위하여 안출한 것으로, 도료 조성물에 복합 에어로겔을 포함하여 이루어지도록 하되, 상기 복합 에어로겔은, 에어로겔로 형성가능한 모재에 카본을 포함하는 적외선 차단 물질이 균일하게 일체 결합된 구조로 형성되도록 함으로써, 종래에 비해 더욱 우수한 단열성능을 제공할 수 있도록 하는 것을 특징으로 하는, 복합 에어로겔이 포함된 도료 조성물 및 그 제조방법을 제공하고자 하는 데에 본 발명의 목적이 있다.The present invention has been made in order to solve the conventional problems as described above, but to be made to include a composite airgel in the coating composition, the composite airgel, the infrared blocking material containing carbon in the base material that can be formed as an airgel uniformly It is an object of the present invention to provide a coating composition and a method for producing the composite aerogel, characterized in that to be formed in an integrally bonded structure, to provide a better heat insulating performance than in the prior art. .
이하에서는 상기와 같은 목적을 달성하기 위한 본 발명의 해결수단을 제시하고자 한다.Hereinafter, to solve the present invention to achieve the above object.
본 발명에 의한 복합 에어로겔이 포함된 도료 조성물은 액상의 수지로 형성된 도료용 수지액; 모재를 형성하는 3차원 그물구조 내부에 적외선 차단물질이 내재되는 일체 결합구조로 형성되어 상기 도료용 수지액에 분말형태로 부가되는 복합 에어로겔; 을 포함하여 이루어지되, 상기 적외선 차단물질은 카본이거나, 혹은 카본과 이산화티타늄이 일정 중량비율로 복합형성된 것임을 특징으로 한다.The coating composition containing the composite airgel according to the present invention comprises a resin liquid for coating formed of a liquid resin; A composite aerogel formed in a three-dimensional mesh structure forming a base material with an integral bonding structure in which an infrared ray blocking material is embedded, and added to the coating resin liquid in powder form; It is made, including, the infrared ray blocking material is carbon, or is characterized in that the carbon and titanium dioxide complex formed in a certain weight ratio.
또한, 본 발명에 의한 복합 에어로겔이 포함된 도료 조성물의 제조방법은 모재에 물을 혼합한 혼합액(sol)에, 분말 형태의 적외선 차단물질을 부가하고 교반하되, 상기 적외선 차단물질로서 카본을 부가하거나 카본과 이산화티타늄을 일정 중량비율로 배합하여 부가하고 교반한 후, 촉매를 추가하여 겔(gel)화시킴으로써 복합 에어로겔을 형성하는 단계; 상기 복합 에어로겔을 분말화하여 도료용 수지액에 부가하는 단계를 포함한다.In addition, the method for producing a coating composition containing a composite airgel according to the present invention, while adding a powdered infrared ray blocking material to the mixed solution (sol) mixed with water to the base material, while stirring, adding carbon as the infrared ray blocking material or Combining and adding carbon and titanium dioxide in a predetermined weight ratio, stirring, and then forming a composite aerogel by adding a catalyst to gel the catalyst; Powdering the composite airgel and adding the resultant to the coating resin solution.
상기와 같은 구성으로 이루어지는 본 발명은 이하와 같은 기술적, 경제적 효과를 제공할 수 있다.The present invention having the configuration as described above can provide the following technical and economic effects.
첫째, 본 발명에 의한 도료 조성물에 포함되는 에어로겔을 형성하는 데 있어서, 기본적인 단열성능을 제공하는 에어로겔 모재를 기반으로 하여, 상기 모재와 적외선 파장을 차단하는 적외선 차단물질을 일체 결합한 복합구조로 형성하되, 상기 적외선 차단물질로 카본 혹은 카본과 이산화티타늄을 일정 중량비율로 혼합하여 이용함으로써, 상기 일체 결합된 에어로겔 모재와 적외선 차단물질의 상호작용에 의한 시너지 효과로 인하여 종래의 도료에 비하여 더욱 향상된 단열성능을 제공할 수 있는 기술적 효과가 있다.First, in forming the airgel included in the coating composition according to the present invention, based on the airgel base material that provides the basic thermal insulation performance, to form a composite structure integrally combining the base material and the infrared ray blocking material to block the infrared wavelength By using carbon or carbon and titanium dioxide mixed at a predetermined weight ratio as the infrared ray blocking material, the thermal insulation performance is further improved compared to conventional paints due to the synergistic effect of the interaction between the integrally bonded airgel base material and the infrared ray blocking material. There is a technical effect that can provide.
둘째, 상기 에어로겔 모재와 적외선 차단물질을 균일하게 일체 결합하는 데 있어서, 모재와 물을 혼합한 혼합액(sol)에 적외선 차단물질을 분말 상태로 교반하여 겔(gel)화가 이루어지는 과정에서 일체로 형성되도록 함으로써, 기능성 물질의 추가적인 결합이 간편하면서도 그 결합이 균일하고 견고하여, 우수한 단열성능은 물론이고 다양한 기능성을 용이하게 제공할 수 있는 기술적 효과가 있다.Secondly, in uniformly combining the airgel base material and the infrared ray blocking material, the infrared ray blocking material is stirred in a powder state in a mixed solution (sol) mixed with the base material and water so as to be formed integrally in the process of gelation. By doing so, the additional coupling of the functional material is simple, but the coupling is uniform and robust, and there is a technical effect that can easily provide various functionalities as well as excellent thermal insulation performance.
이하에서는 상기와 같은 효과를 기대할 수 있는 본 발명에 대하여 보다 구체적으로 설명하고자 한다.Hereinafter will be described in more detail with respect to the present invention that can expect the above effects.
먼저, 본 발명에 의한 도료 조성물은, 일정 색상이 현출가능한 액상의 수지로 형성된 도료용 수지액; 모재와 적외선 차단물질이 균일하게 일체 형성된 구조의 분말 형태로서 상기 액상의 도료용 수지액에 부가되는 복합 에어로겔; 을 포함하여 이루어진다.First, the coating composition according to the present invention, a resin liquid for coating formed of a liquid resin capable of exhibiting a predetermined color; A composite airgel added to the liquid paint liquid as a powder having a structure in which a base material and an infrared ray blocking material are uniformly formed; It is made, including.
상기 도료용 수지액은 본 발명에 의한 도료용 조성물의 기본 재료가 되는 것으로, 보다 구체적으로는 특정 색상이 현출되는 액상의 아크릴수지, 실란수지, 실록산수지, 프탈산수지, 염화비닐수지, 에폭시수지, 우레탄수지, 아미노알키드수지 중 어느 하나를 기반으로 하여 형성하는 것이 바람직하다.The coating resin liquid is to be a basic material of the coating composition according to the present invention, and more specifically, a liquid acrylic resin, a silane resin, a siloxane resin, a phthalic acid resin, a vinyl chloride resin, an epoxy resin, It is preferable to form based on either urethane resin or amino alkyd resin.
상기와 같이 형성되는 도료용 수지액에는 복합 에어로겔을 투입하게 되는데, 상기 복합 에어로겔은 분말 형태로 투입하여 교반하는 것이 바람직하며, 여기서, 상기 복합 에어로겔은, 에어로겔 형태로 형성가능한 모재와 적외선 파장을 차단하는 적외선 차단물질이 일체로 결합된 구조로 형성되어 있다. 상기 도료용 수지액과 복합 에어로겔은, 상기 도료용 수지액 40 내지 95중량%에 복합 에어로겔 5 내지 60중량%의 비율로 혼합하는 것이 바람직하다.The composite airgel is added to the resin solution for coating formed as described above, and the composite airgel is preferably added in a powder form and stirred, wherein the composite airgel blocks the base material and the infrared wavelength which can be formed in the airgel form. Infrared shielding material is formed in a structure in which the combined body. It is preferable to mix the said coating resin liquid and the composite airgel in 40-95 weight% of said coating resin liquids at the ratio of 5 to 60 weight% of a composite airgel.
상기 복합 에어로겔을 구성하는 모재와 적외선 차단물질의 결합구조에 대하여 보다 구체적으로 설명하면, 모재는 3차원의 네트워크 구조로 형성되어 있으며, 상기 적외선 차단물질은 모재보다 작은 나노 내지 수십 마이크로미터의 크기로서, 모재를 형성하는 3차원 네트워크에 내재되어 결합되는 구조로 되어 있다. More specifically with respect to the coupling structure of the base material and the infrared ray blocking material constituting the composite airgel, the base material is formed in a three-dimensional network structure, the infrared ray blocking material is a nano to several tens of micrometers smaller than the base material In addition, the structure is inherently coupled to the three-dimensional network forming the base material.
상기 모재는 에어로겔 형태로 형성가능한, 실리카, 알루미나, 폴리이미드, 실리카-티타니아, 실리카-카본, 바나디아, 지르코니아, 아세테이트 셀룰로오스 중에서 어느 하나를 이용하여 형성하는 것이 바람직하다. The base material is preferably formed using any one of silica, alumina, polyimide, silica-titania, silica-carbon, vanadia, zirconia, and acetate cellulose, which can be formed in an airgel form.
모재에 물을 혼합한 혼합액(sol), 바람직하게는 모재 10 내지 50중량%와 물 50 내지 90중량%를 혼합하여 만든다. A mixed solution (sol) in which water is mixed with the base material, preferably made by mixing 10 to 50% by weight of the base material and 50 to 90% by weight of water.
상기 적외선 차단물질은 카본을 단독으로 사용하거나, 또는 카본에 다른 적외선 차단물을 일정 비율로 혼합하여 사용할 수 있다. 카본은 적외선(infrared)을 흡수 및 산란시켜 복사열에 의한 열을 차단함으로써 복합 에어로겔의 단열성능을 향상시키게 된다. 카본으로는, 흑연(Graphite), 카본블랙(carbon black), 활성탄(activated carbon) 등이 모두 사용될 수 있다. 적외선 차단물질은 나노 내지 수십 마이크로 미터의 크기로 형성하여 사용할 수 있다. 적외선 차단물질로 사용되는 카본의 길이는 0.1 내지 50㎛ 정도가 바람직하다. The infrared ray blocking material may be used alone or in a mixture of carbon and other infrared ray blocking materials at a predetermined ratio. Carbon absorbs and scatters infrared rays to block heat by radiant heat, thereby improving thermal insulation performance of the composite aerogel. As carbon, graphite, carbon black, activated carbon, or the like may be used. The infrared blocking material may be used to form a size of nano to several tens of micrometers. The length of the carbon used as the infrared blocking material is preferably about 0.1 to 50㎛.
바람직하게는, 다른 적외선 차단물질로 이산화티타늄을 사용할 수 있다. 이산화티타늄은 카본과 같이 적외선을 차단하는 효과가 있으며, 이렇게 모재에 2개 이상의 적외선 차단 물질이 균일하게 일체 결합된 구조로 형성되도록 함으로써, 치밀성을 부여하여 복합 에어로겔이 더욱 우수한 단열성능을 나타낼 수 있다. 이산화티타늄은 바람직하게는 직경 300 내지 500nm 크기의 분말 형태로 사용한다. 카본 1 중량부에 대한 이산화티타늄의 배합 비율은 0.1 내지 2 중량부 정도가 바람직하며, 특히 바람직하게는 0.5 내지 1 중량부 정도가 좋다. Preferably, titanium dioxide may be used as another infrared ray blocking material. Titanium dioxide has the effect of blocking infrared rays like carbon, and thus, by forming a structure in which two or more infrared ray blocking materials are uniformly integrally bonded to the base material, the composite airgel can exhibit more excellent thermal insulation performance by providing density. . Titanium dioxide is preferably used in the form of a powder having a diameter of 300 to 500 nm. The blending ratio of titanium dioxide to 1 part by weight of carbon is preferably about 0.1 to 2 parts by weight, particularly preferably about 0.5 to 1 part by weight.
상기와 같이 나노 내지 수십 마이크로의 미세 입자 차원에서 결합이 이루어지는 모재와 적외선 차단물질은 분말 형태로 분쇄되더라도 그 결합이 깨어지지 아니하고 유지될 뿐 아니라 도료용 수지액에 포함되더라도 그 결합형태가 그대로 유지가능하게 되는 것이다. As described above, the base material and the infrared ray blocking material, which are bonded at the nano to tens of microscopic particle levels, are not broken and maintained even when the powder is pulverized in the form of powder. It is done.
또한 이밖에 적외선 차단물질이 아니더라도 기타 단열을 위한 기능성 물질이라면 어떠한 것이든 추가적으로 나노 내지 수십 마이크로미터의 크기로 형성하여 같은 방법으로 모재에 복합적으로 결합 가능하다. In addition, even if it is not an infrared blocking material, any functional material for thermal insulation may be additionally formed in the size of nano to several tens of micrometers to be combined with the base material in the same way.
기타 단열물질을 포함한 적외선 차단물질의 총량은 최종적으로 형성되는 복합 에어로겔 전체 중량 대비 0.5 내지 10중량% 정도가 바람직하다.The total amount of the infrared ray blocking material including the other insulating material is preferably about 0.5 to 10% by weight based on the total weight of the composite airgel finally formed.
상기 대부분의 모재는 에어로겔로 형성되면 밀도가 0.09 내지 0.025g/㎤(실리카 기준)이고, 대부분의 적외선 차단물질은 밀도가 4.1g/㎤(이산화티타늄 기준)이어서 단순 혼합하여 도료용 수지액에 포함시켰을 경우, 상기 모재는 도료용 수지액의 상부에, 상기 적외선 차단물질은 도료용 수지액의 하부에 가라앉는 문제점이 있었으나, 본 발명에 의한 결합구조로 인하여 복합 에어로겔은 양 물질의 평균밀도로 형성된다. When most of the base material is formed of an airgel, the density is 0.09 to 0.025 g / cm 3 (based on silica), and most infrared ray blocking materials have a density of 4.1 g / cm 3 (based on titanium dioxide), so that they are simply mixed and included in the coating resin. In this case, the base material has a problem in that the upper portion of the coating resin solution, the infrared blocking material sinks in the lower portion of the coating resin solution, but due to the bonding structure according to the present invention, the composite airgel is formed with an average density of both materials do.
위와 같이 나노 내지 수십 마이크로미터의 차원에서의 양 물질의 결합구조와 밀도의 평균화로 인하여 도료의 건조과정에서도 양 물질은 서로 분리되지 아니하고 일체 결합된 구조로 유지하면서 도료의 특정 부분에 치우치지 아니하고, 전체 부분에 균일하게 분포되어 외부의 열에너지와 적외선 파장을 효과적으로 차단할 수 있게 되는 것이다.Due to the averaging of the bonding structure and density of the two materials in the dimension of nano to several tens of micrometers as described above, both materials are not separated from each other even during the drying process of the paint, and are kept in an integral structure, without being biased to a specific part of the paint. It is evenly distributed over the entire part, so that it can effectively block external thermal energy and infrared wavelengths.
아울러, 상기와 같은 복합 에어로겔이 포함되는 도료용 수지액에는 그 점도를 조절하여 줌으로써, 상기 평균 밀도로 형성되는 복합 에어로겔이 보다 균일하게 분포되도록 하는 것도 가능한데, 상기 점도를 조절하기 위한 구성은 건식 실리카(fumed silica)를 이용하는 것이 바람직하다. 이때, 상기 건식 실리카 또한 나노 크기의 분말 형태로 형성하여 도료용 수지액에 교반하는 것이 바람직하며, 그 투입량은 도료의 건조과정에서 복합 에어로겔이 고루 분포된 상태로 유지될 수 있는 최소한의 양으로 투입하는 것이 바람직하다. 특히 바람직하게는 건식 실리카는 복합 에어로겔이 포함되는 도료용 수지액 전체 중량 중에 0.01~3중량% 범위로 포함되는 것이 좋다.In addition, by adjusting the viscosity in the coating resin liquid containing the composite airgel as described above, it is also possible to more uniformly distribute the composite airgel formed at the average density, the composition for controlling the viscosity is dry silica Preference is given to using fumed silica. At this time, the dry silica is also preferably formed into a nano-sized powder form and stirred in the resin solution for coating, the amount of the input is added in the minimum amount that can be maintained evenly distributed in the composite airgel during the drying process of the paint It is desirable to. Particularly preferably, the dry silica is included in the range of 0.01 to 3% by weight in the total weight of the resin solution for paint containing the composite airgel.
또한 본 발명의 도료 조성물은 바람직하게는 바인더를 더 포함할 수 있다. 바인더는 유기 바인더 또는 무기 바인더 또는 이 둘을 일정 비율로 배합하여 사용할 수 있다. 복합 에어로겔이 밀도가 낮고 소수성이므로 도료용 수지액과 복합 에어로겔에 유기 바인더 및/또는 무기 바인더를 추가하여 도료 조성물을 형성하는 것이 바람직하다. In addition, the coating composition of the present invention may preferably further comprise a binder. The binder may be used in combination with an organic binder or an inorganic binder or both. Since the composite airgel has a low density and hydrophobicity, it is preferable to form a coating composition by adding an organic binder and / or an inorganic binder to the coating resin liquid and the composite airgel.
특히 바람직하게는 유기 바인더와 무기 바인더를 일정 비율로 혼합하여 사용할 수 있다. 이는 유기 바인더 단독으로는 조성물 내 에어로겔 함량을 증대시키기 어렵고, 무기 바인더 단독으로는 도료화가 어려울 뿐만 아니라 무기 바인더 자체가 열전도율이 높아 사용량이 많아질 경우 바람직하지 않기 때문이다. 가장 바람직한 범위는, 유기 바인더 30 내지 90중량%와 무기 바인더 10 내지 70중량%를 배합하여 사용하는 것인데, 이 범위에서 도료화가 가능하면서 단열성이 우수하고 난연성까지 좋다. Especially preferably, an organic binder and an inorganic binder can be mixed and used in fixed ratio. This is because the organic binder alone is difficult to increase the content of the airgel in the composition, the inorganic binder alone is difficult to paint, and the inorganic binder itself is not preferable when the amount of use is high due to high thermal conductivity. The most preferable range is to use by mixing 30 to 90% by weight of the organic binder and 10 to 70% by weight of the inorganic binder, it is possible to paint in this range, excellent heat insulation and good flame retardancy.
유기 바인더와 무기 바인더는 도료 조성물의 도료화가 이루어진 이후 함량이 높아질수록 열전도율이 현격히 증가하므로, 도료 조성물의 도료화가 이루어질 정도의 최소한의 비율로 부가하는 것이 바람직하며, 복합 에어로겔이 포함된 전체 도료 조성물의 중량 대비 5 내지 50중량%의 비율로 부가하는 것이 바람직하다.Since the thermal conductivity of the organic binder and the inorganic binder increases significantly as the content is increased after the coating composition is formed, it is preferable to add the organic binder and the inorganic binder in a minimum ratio to the extent that the coating composition is made, and the composite coating includes the entire air composition. It is preferable to add in the ratio of 5-50 weight% with respect to weight.
상기 유기 바인더는 도료 접착력과 유동성을 증대시키는 것으로, 폴리우레탄, 아크릴레이트 코폴리머 등의 바인더를 사용하는 것이 바람직하고, 무기 바인더는 도료의 접착력을 증대시키고 난연성을 부여하는 것으로, 규산칼륨, 인산아연, 탈크, 산화마그네슘 등과 같은 바인더를 사용하는 것이 바람직하다.The organic binder is to increase paint adhesion and fluidity, it is preferable to use a binder such as polyurethane, acrylate copolymer, inorganic binder is to increase the adhesion of the paint and impart flame retardancy, potassium silicate, zinc phosphate Preference is given to using binders such as talc, magnesium oxide and the like.
또한, 유기 바인더 중에서 가교 바인더는 폴리아크릴아마이드, 폴리나프탈렌설포네이트를 사용하는 것이 바람직하며, 상기 가교 바인더는 물에 분산되면 점도를 증대시켜 유기 바인더 및 무기 바인더의 혼합 및 결합을 증대시키고 계면 장력을 크게 낮추어 에어로겔이 내부에 쉽게 분산되도록 한다.In addition, it is preferable to use polyacrylamide or polynaphthalenesulfonate as the crosslinking binder in the organic binder, and the crosslinking binder increases the viscosity when dispersed in water, thereby increasing the mixing and bonding of the organic binder and the inorganic binder and increasing the interfacial tension. Lower it significantly to allow the airgel to disperse easily
또한, 무기 바인더 중에서 수화성 무기 바인더는 마이크로 시멘트, 반수석고, 실리카 흄, 흄드 실리카, 석회, 칼슘설포알루미네이트 등의 바인더를 사용하는 것이 바람직하며, 상기 수화성 무기 바인더는 실리카와 수화작용을 하면서 포졸란 반응에 의하여 도료의 장기 강도를 증진시키고, 수밀성과 내구성도 증진시킬 뿐 아니라 밀도가 낮은 에어로겔을 조밀하게 고정시켜 주게 된다.In the inorganic binder, the water-soluble inorganic binder is preferably a binder such as micro cement, hemihydrate gypsum, silica fume, fumed silica, lime, calcium sulfoaluminate, and the water-soluble inorganic binder is hydrated with silica. The pozzolanic reaction enhances the long-term strength of the coating, improves water tightness and durability, as well as tightly anchors low-density aerogels.
또한 본 발명의 도료 조성물은 실리콘 소포제를 더 포함할 수 있다.In addition, the coating composition of the present invention may further include a silicone antifoaming agent.
또한 본 발명의 도료 조성물은 건조되었을 때에 일정 이상의 강도가 나오도록 섬유를 더 포함할 수 있다. 섬유는 바람직하게는 0.1 내지 4㎜ 길이의 섬유를 사용한다. 상기 섬유로, 바람직하게는 폴리프로필렌섬유, 폴리에틸렌섬유, 실리카섬유, 알루미나섬유, 탄소섬유, 유리섬유 중에서 선택된 하나 이상을 사용한다.In addition, the coating composition of the present invention may further include a fiber so as to give a certain strength or more when dried. The fibers preferably use fibers of 0.1 to 4 mm long. As the fiber, at least one selected from polypropylene fiber, polyethylene fiber, silica fiber, alumina fiber, carbon fiber and glass fiber is used.
이어서, 상기와 같은 구조로 형성되는 도료 조성물의 제조방법에 대하여 구체적으로 설명하고자 한다.Next, the manufacturing method of the coating composition formed with the above structure will be explained in detail.
먼저, 상기 도료 조성물의 제조방법은, 모재에 물을 혼합한 혼합액(sol)에, 분말 형태의 적외선 차단물질을 부가하고 교반한 후, 촉매를 추가하여 겔(gel)화시킴으로써 복합 에어로겔을 형성하는 단계와; 상기 복합 에어로겔을 분말화하여 도료용 수지액에 부가하는 단계를 포함한다. First, the method for preparing the coating composition is to form a composite airgel by adding and stirring a powdered infrared ray blocking material to a mixed solution (sol) in which water is mixed with a base material, and then gelling by adding a catalyst. Steps; Powdering the composite airgel and adding the resultant to the coating resin solution.
상기 혼합액은 상술한 바와 같이 모재와 물을 혼합하여 형성한 것으로, 모재는 10 내지 50 중량%에 물 50 내지 90중량%의 비율로 배합하여 혼합하는 것이 바람직하다.The mixed solution is formed by mixing the base material and water as described above, the base material is preferably blended 10 to 50% by weight in a proportion of 50 to 90% by weight of water.
상기와 같이 혼합액을 형성한 다음에, 적외선 차단물질을 부가하여 교반하게 되는데, 상기 적외선 차단물질은 나노 내지 수십 마이크로미터 크기의 분말 형태로 형성한 것을 혼합액에 부가하여 교반하는 것이 바람직하다. 상기 혼합액에 대한 적외선 차단물질의 양은 바람직하게는 혼합액 100 중량부에 대해 0.0.5 내지 2 중량부, 더욱 바람직하게는 0.1 내지 1 중량부, 특히 바람직하게는 0.2 내지 0.6 중량부의 비율로 부가하여 교반하는 것이 바람직하다.After forming the mixed solution as described above, the infrared blocking material is added and stirred, it is preferable that the infrared blocking material is formed in the form of powder of nano to several tens of micrometers size to the mixed solution and stirred. The amount of the infrared shielding substance to the mixed solution is preferably added at a ratio of 0.0.5 to 2 parts by weight, more preferably 0.1 to 1 part by weight, particularly preferably 0.2 to 0.6 parts by weight with respect to 100 parts by weight of the mixed solution. It is desirable to.
또한, 상기 적외선 차단물질은 카본을 이용하거나 카본과 이산화티타늄을 일정 비율로 배합하여 이용하는 것이 좋은데, 여기서, 상기 이산화티타늄은 300 내지 500nm, 카본은 0.1 내지 50㎛의 크기로 형성하여 사용하는 것이 바람직하다.In addition, the infrared blocking material is preferably used by using carbon or by combining carbon and titanium dioxide at a predetermined ratio, wherein the titanium dioxide is preferably formed to have a size of 300 to 500 nm and carbon of 0.1 to 50 μm. Do.
상기와 같이 나노 내지 수십 마이크로미터 크기의 분말 형태인 적외선 차단물질이 교반된 혼합액에 촉매를 추가하여 겔(gel)화시키게 되면 복합 에어로겔이 형성되는데, 상기 복합 에어로겔은 겔화되는 모재의 형성구조인 3차원 네트워크 내부에 나노 내지 수십 마이크로미터 크기의 적외선 차단물질이 내재되어 일체로 결합되는 구조로 이루어지게 된다.When the infrared blocking material in the form of nano to several tens of micrometers powder is added to the gel by adding a catalyst to the stirred mixture, a composite airgel is formed. An infrared ray blocking material of nano to several tens of micrometers is built into the dimensional network to be integrally coupled.
이에 따라, 상기 복합 에어로겔을 구성하는 모재와 적외선 차단물질은 분쇄하여 분말로 형성하더라도 서로 분리되지 아니할 뿐 아니라, 도료용 수지액에 포함시키더라도 분리되지 아니하고 결합된 상태를 그대로 유지할 수 있게 되는 것이다.Accordingly, the base material and the infrared ray blocking material constituting the composite airgel are not separated from each other even if they are pulverized and formed into a powder, and are not separated even if included in the paint resin solution, so that the combined airgel can be kept intact.
또한, 상기 적외선 차단물질이 교반된 혼합액에 촉매를 추가하여 겔화시켜 복합 에어로겔을 형성하는 과정과 관련하여서는 본 발명의 출원인이 선출원한 특허출원 제10-2014-0008687호에 따르기로 하며, 이에 따라 그 과정에 대한 상세한 설명은 생략하기로 한다.In addition, with respect to the process of forming a composite aerogel by gelling by adding a catalyst to the mixed solution in which the infrared blocking material is stirred, the patent application No. 10-2014-0008687 filed by the applicant of the present invention, accordingly Detailed description of the process will be omitted.
이하에서는 본 발명에 대한 구체적인 실시예에 대하여 설명하고자 한다.Hereinafter will be described with respect to specific embodiments of the present invention.
<실시예 1-1><Example 1-1>
복합 에어로겔 제조Composite Airgel Manufacturing
에어로겔을 형성하는 모재로 실리카를 사용하였으며, 적외선 차단물질은 카본블랙을 사용하였다.Silica was used as a base material for forming the airgel, and carbon black was used as the infrared ray blocking material.
혼합액은 실리카와 물을 혼합하여 형성하며, 보다 구체적으로는, 실리카(=물유리)는 39중량%, 물은 61중량%를 혼합하여 혼합액을 형성한다.The mixed liquid is formed by mixing silica and water. More specifically, the mixed liquid is formed by mixing 39% by weight of silica (= water glass) and 61% by weight of water.
상기와 같은 혼합액 450그램을 기준으로 분말 형태의 카본블랙을 2.5그램을 부가하여 교반하였다. 이때, 사용된 카본블랙은 분말 형태로서, 평균 길이가 약 10㎛ 이었다. Based on 450 g of the mixed solution as described above, 2.5 g of carbon black in powder form was added and stirred. At this time, the carbon black used was in the form of a powder, the average length was about 10㎛.
상기와 같이 카본블랙이 부가된 혼합액에 겔화를 위한 촉매로서 28부피%의 농도로 희석된 황산용액 35그램을 첨가한 후, 일정 시간을 경과시켜 겔화시켰다. 이때 상기 실리카, 물, 카본블랙, 황산용액은 라인믹서(line-mixer)에서 교반하는데, 본 실시예에서는 30초 후에 하이드로-겔 상태로 형성되었다. 상기 하이드로-겔은 숙성과정을 통하여 결합구조가 더욱 견고하게 형성되는데, 2부피%의 농도로 희석된 황산용액에 상기 하이드로-겔을 5시간 동안 담그어 숙성시켰다.As described above, 35 grams of sulfuric acid solution diluted to a concentration of 28% by volume was added to the mixed solution to which carbon black was added as a catalyst for gelation, and then gelled after a predetermined time. At this time, the silica, water, carbon black, sulfuric acid solution is stirred in a line-mixer (line-mixer), in this embodiment was formed in a hydro-gel state after 30 seconds. The hydro-gel is more robustly formed through the aging process, and the hydro-gel was immersed for 5 hours in sulfuric acid solution diluted to a concentration of 2% by volume.
상기와 같이 숙성과정을 거친 하이드로-겔은 물을 이용하여 불순물인 나트륨이온을 제거하는 불순물 세척과정을 거치게 되는데, 이때 상기 물은 10리터를 준비하고, 이에 하이드로-겔을 10시간동안 담그어 나트륨이온이 제거되도록 하고, 상기 10리터의 물은 2시간마다 교체하여 준다.Hydro-gel after the aging process as described above is subjected to an impurity washing process to remove the sodium ions as impurities using water, wherein the water is prepared 10 liters, soaking the hydro-gel for 10 hours, sodium ions 10 liters of water are replaced every 2 hours.
상기와 같이 불순물 세척과정을 통하여 불순물이 제거된 하이드로-겔은 표면개질 및 용매치환과정을 거치게 되는데, 본 실시예에서는 상기 표면개질과 관련하여 유기실란 화합물로서 헥산메틸디실라잔(HMDS : Hexamethyldisilazane)을 이용하였고, 상기 용매치환과 관련하여 비극성 유기용매로서 n-헥산을 이용하였다.The hydro-gel from which impurities are removed through the impurity washing process is subjected to surface modification and solvent replacement. In this embodiment, hexanemethyldisilazane (HMDS: Hexamethyldisilazane) is used as an organosilane compound in relation to the surface modification. N-hexane was used as the nonpolar organic solvent in relation to the solvent replacement.
보다 구체적으로, 상기 헥산메틸디실라잔은 1리터, n-헥산은 10리터를 준비하고, 위 두 용액(HMDS, n-헥산)을 섭씨 65도로 유지되도록 하여 함께 담은 용기에 상기 불순물이 세척된 하이드로-겔을 8시간 담그어 줌으로써 표면개질과 용매치환이 함께 이루어지도록 한다.More specifically, the hexane methyl disilazane is prepared 1 liter, n-hexane is 10 liters, the above two solutions (HMDS, n-hexane) to maintain the 65 degrees Celsius so that the impurity was washed in a container together Soak the hydrogel for 8 hours to allow surface modification and solvent replacement.
상기와 같은 표면개질 및 용매치환이 이루어지면, 상기 하이드로-겔은 에어로겔화되며, 이를 건조기에서 섭씨 100도로 5시간 동안 건조하여 줌으로써, 비로소 복합 에어로겔을 형성할 수 있게 되는 것이다.When the surface modification and solvent replacement as described above, the hydro-gel is aerogelized, and by drying it for 5 hours at 100 degrees Celsius in the dryer, it is only possible to form a composite airgel.
<실시예 1-2><Example 1-2>
복합 에어로겔 제조Composite Airgel Manufacturing
에어로겔을 형성하는 모재로 실리카를 사용하였으며, 적외선 차단물질로 카본블랙과 이산화티타늄을 사용하였다.Silica was used as the base material for forming the airgel, and carbon black and titanium dioxide were used as the infrared ray blocking material.
상기 실시예 1-1과 동일한 혼합액(실리카 39중량% + 물61중량%)에 450그램에 적외선 차단물질로 카본블랙과 이산화티타늄을 각각 1.25그램씩 부가하고 교반하였다. 한다.을 기준으로 분말 형태의 카본블랙을 2.5그램을 부가하여 교반하였다. Into the same mixed solution (silica 39% by weight + 61% by weight of water) in the same manner as in Example 1-1, carbon black and titanium dioxide were added and stirred at 1.25 grams each as an infrared ray blocking material. 2.5 grams of carbon black in powder form was added and stirred.
이때, 사용된 이산화티타늄은 구(球)형의 분말 형태로서 평균 직경 약 405nm 정도이며, 카본블랙은 분말 형태로서 평균 길이가 약 10㎛ 이었다. At this time, the titanium dioxide used was in the form of a spherical powder, the average diameter of about 405nm, carbon black was in the form of a powder, the average length was about 10㎛.
나머지는 실시예 1-1과 동일하게 실시하여 복합 에어로겔을 얻었다. The rest was carried out in the same manner as in Example 1-1, to obtain a composite airgel.
<실시예 2-1><Example 2-1>
도료 조성물 제조Paint Composition Preparation
실시예 1-1에서 제조된 복합 에어로겔을 이용하여 아래 표 1에 기재된 조성으로 도료 조성물을 만들었다.The composite composition was prepared in Example 1-1 to prepare a coating composition having the composition shown in Table 1 below.
표 1
번호 명칭 조성비율(중량비율)
1 실리카-카본 에어로겔 13.53
2 마이크로시멘트 3.60
3 반수석고 1.80
4 실리카 흄 0.54
5 흄드 실리카 0.13
6 석회 0.94
7 칼슘설포알루미네이트 0.31
8 폴리아크릴산 에스테르 4.58
9 인산아연 0.23
10 탈크 1.08
11 규산칼륨 0.01
12 산화마그네슘 0.06
13 붕산 0.23
14 이산화티타늄 0.23
15 실리콘 소포제 0.09
16 섬유(유리섬유, 2㎜) 0.01
17 폴리아크릴아마이드 0.27
18 폴리나프탈렌설포네이트 0.33
19 69.33
20 폴리우레탄 2.70
100
Table 1
number designation Composition ratio (weight ratio)
One Silica-Carbon Aerogels 13.53
2 Microcement 3.60
3 Half gypsum 1.80
4 Silica fume 0.54
5 Fumed silica 0.13
6 lime 0.94
7 Calcium sulfoaluminate 0.31
8 Polyacrylic acid ester 4.58
9 Zinc phosphate 0.23
10 Talc 1.08
11 Potassium silicate 0.01
12 Magnesium oxide 0.06
13 Boric acid 0.23
14 Titanium dioxide 0.23
15 Silicone antifoam 0.09
16 Fiber (glass fiber, 2 mm) 0.01
17 Polyacrylamide 0.27
18 Polynaphthalenesulfonate 0.33
19 water 69.33
20 Polyurethane 2.70
100
얻어진 본 발명의 도료 조성물을 가로 25cm, 세로 25cm, 두께 5㎜의 크기의 평판 형태로 제작한 다음, 완전 건조시킨 후에, 열전도율을 시험하였다. 시험 결과, 열전율이 35mW/m.K 로 나타났다.The obtained coating composition of the present invention was prepared in the form of a flat plate having a width of 25 cm, a length of 25 cm, and a thickness of 5 mm, and then completely dried, and then tested for thermal conductivity. As a result of the test, the thermal conductivity was found to be 35 mW / m.K.
<실시예 2-2><Example 2-2>
도료 조성물 제조Paint Composition Preparation
실시예 1-2에서 제조된 복합 에어로겔을 이용하여 아래 표 2에 기재된 조성으로 도료 조성물을 만들었다.Using the composite airgel prepared in Example 1-2 was made a coating composition with the composition shown in Table 2 below.
표 2
번호 명칭 조성비율(중량비율)
1 실리카-카본-이산화티타늄 에어로겔 13.53
2 마이크로시멘트 3.60
3 반수석고 1.80
4 실리카 흄 0.54
5 흄드 실리카 0.13
6 석회 0.94
7 칼슘설포알루미네이트 0.31
8 폴리아크릴산 에스테르 4.58
9 인산아연 0.23
10 탈크 1.08
11 규산칼륨 0.01
12 산화마그네슘 0.06
13 붕산 0.23
14 이산화티타늄 0.23
15 실리콘 소포제 0.09
16 섬유(유리섬유, 2㎜) 0.01
17 폴리아크릴아마이드 0.27
18 폴리나프탈렌설포네이트 0.33
19 69.33
20 폴리우레탄 2.70
100
TABLE 2
number designation Composition ratio (weight ratio)
One Silica-Carbon-Titanium Dioxide Airgel 13.53
2 Microcement 3.60
3 Half gypsum 1.80
4 Silica fume 0.54
5 Fumed silica 0.13
6 lime 0.94
7 Calcium sulfoaluminate 0.31
8 Polyacrylic acid ester 4.58
9 Zinc phosphate 0.23
10 Talc 1.08
11 Potassium Silicate 0.01
12 Magnesium oxide 0.06
13 Boric acid 0.23
14 Titanium dioxide 0.23
15 Silicone antifoam 0.09
16 Fiber (glass fiber, 2 mm) 0.01
17 Polyacrylamide 0.27
18 Polynaphthalenesulfonate 0.33
19 water 69.33
20 Polyurethane 2.70
100
얻어진 본 발명의 도료 조성물을 가로 25cm, 세로 25cm, 두께 5㎜의 크기의 평판 형태로 제작한 다음, 완전 건조시킨 후에, 열전도율을 시험하였다. 시험 결과, 열전율이 34.2mW/m.K 로 나타났다.The obtained coating composition of the present invention was prepared in the form of a flat plate having a width of 25 cm, a length of 25 cm, and a thickness of 5 mm, and then completely dried, and then tested for thermal conductivity. As a result of the test, the thermal conductivity was found to be 34.2 mW / m.K.
<비교예 1>Comparative Example 1
본 발명에 따라 제조된 복합 에어로겔이 열전도율 결과에 미치는 영향을 확인하기 위해, 상기 실시예 2-1와 비교하기 위한 대조군으로 아래 표 3과 같은 조성의 도료 조성물을 만들었다. 실시예 1-1에서 얻은 복합 에어로겔 대신 실리카 에어로겔을 사용하는 것을 제외하고는 실시예 2-1과 동일하게 도료 조성물을 만들었다.In order to confirm the effect of the composite airgel prepared according to the present invention on the thermal conductivity results, a coating composition of the composition shown in Table 3 below was made as a control for comparison with Example 2-1. A coating composition was prepared in the same manner as in Example 2-1, except that silica airgel was used instead of the composite airgel obtained in Example 1-1.
표 3
번호 명칭 조성비율(중량비율)
1 실리카 에어로겔 13.53
2 마이크로시멘트 3.60
3 반수석고 1.80
4 실리카 흄 0.54
5 흄드 실리카 0.13
6 석회 0.94
7 칼슘설포알루미네이트 0.31
8 폴리아크릴산 에스테르 4.58
9 인산아연 0.23
10 탈크 1.08
11 규산칼륨 0.01
12 산화마그네슘 0.06
13 붕산 0.23
14 이산화티타늄 0.23
15 실리콘 소포제 0.09
16 섬유(유리섬유, 2㎜) 0.01
17 폴리아크릴아마이드 0.27
18 폴리나프탈렌설포네이트 0.33
19 69.33
20 폴리우레탄 2.70
100
TABLE 3
number designation Composition ratio (weight ratio)
One Silica airgel 13.53
2 Microcement 3.60
3 Half gypsum 1.80
4 Silica fume 0.54
5 Fumed silica 0.13
6 lime 0.94
7 Calcium sulfoaluminate 0.31
8 Polyacrylic acid ester 4.58
9 Zinc phosphate 0.23
10 Talc 1.08
11 Potassium Silicate 0.01
12 Magnesium oxide 0.06
13 Boric acid 0.23
14 Titanium dioxide 0.23
15 Silicone antifoam 0.09
16 Fiber (glass fiber, 2 mm) 0.01
17 Polyacrylamide 0.27
18 Polynaphthalenesulfonate 0.33
19 water 69.33
20 Polyurethane 2.70
100
얻어진 도료 조성물을 가로 25cm, 세로 25cm, 두께 5㎜의 크기의 평판 형태로 제작한 다음, 완전 건조시킨 후에, 열전도율을 시험하였다. 시험 결과, 열전율이 39.44mW/m.K 로 나타났다.The obtained coating composition was prepared in the form of a flat plate having a width of 25 cm, a length of 25 cm, and a thickness of 5 mm, and then completely dried, and then tested for thermal conductivity. As a result of the test, the thermal conductivity was 39.44 mW / m.K.
본 발명의 복합 에어로겔이 포함된 도료 조성물이 실리카 에어로겔을 사용하는 경우보다 열전도율이 크게 향상됨을 확인할 수 있다.The coating composition containing the composite airgel of the present invention can be seen that the thermal conductivity is significantly improved than when using a silica airgel.
<비교예 2>Comparative Example 2
다양한 단열물질을 이용한 도료 조성물의 열전도율을 시험하고, 그 결과를 본 발명에 의한 도료 조성물의 열전도율과 비교하였다. The thermal conductivity of the coating composition using various insulating materials was tested, and the results were compared with the thermal conductivity of the coating composition according to the present invention.
먼저, 단열용 도료로서 상용되고 있는 단열텍스(삼화에서 제조), Korund, 난슐레이트를 이용하여 그 열전도율을 시험하였으며, 각 단열 도료의 시편은 25cm*25cm*4㎜로 통일하여 그 열전도율을 시험하였다.First, the thermal conductivity was tested by using a thermal insulation tex (manufactured by Samwha), Korund, and Nansulfate, which was commonly used as a thermal insulation paint. The thermal conductivity of each thermal insulation paint was unified to 25 cm * 25 cm * 4 mm and tested. .
상기 단열텍스는 열전도율이 75.59mW/m.K로 측정되었고, Korund는 53.74mW/m.K로 측정되었으며, 난슐레이트는 84mW/m.K로 측정되었다. 상기와 같이 상용되고 있는 단열용 도료들은 본 발명의 도료 조성물(실시예 2-1, 2-2)에 비해 열전도율이 현저히 높았다(즉, 단열 성능이 크게 떨어졌다). The thermal insulation was measured as a thermal conductivity of 75.59mW / m.K, Korund was measured 53.74mW / m.K, non-sulfate was measured to 84mW / m.K. Insulation paints are commercially available as described above was significantly higher thermal conductivity (that is, the thermal insulation performance was significantly lower) than the coating composition (Examples 2-1, 2-2) of the present invention.
본 발명은 상기와 같은 실시예에 한하여 설명하였으나, 본 발명의 기술적 사상을 벗어나지 아니하는 범위 내에서는 얼마든지 변경하여 실시할 수 있음은 물론이다.Although the present invention has been described with reference to the above embodiments, it can of course be changed and implemented within the scope not departing from the technical idea of the present invention.

Claims (20)

  1. 액상의 수지로 형성된 도료용 수지액; 모재를 형성하는 3차원 그물구조 내부에 적외선 차단물질이 내재되는 일체 결합구조로 형성되어 상기 도료용 수지액에 분말형태로 부가되는 복합 에어로겔; 을 포함하여 이루어지되, 상기 적외선 차단물질은 카본이거나 혹은 카본과 이산화티타늄이 일정 중량비율로 복합형성된 것임을 특징으로 하는, 복합 에어로겔이 포함된 도료 조성물.Paint liquid for coating formed of liquid resin; A composite aerogel formed in a three-dimensional mesh structure forming a base material with an integral bonding structure in which an infrared ray blocking material is embedded, and added to the coating resin liquid in powder form; It comprises, but the infrared blocking material is carbon, or carbon and titanium dioxide, characterized in that the composite formed by a certain weight ratio, a coating composition containing a composite airgel.
  2. 제1항에 있어서,The method of claim 1,
    상기 모재는, 에어로겔 형태로 형성가능한, 실리카, 알루미나, 폴리이미드, 실리카-티타니아, 실리카-카본, 바나디아, 지르코니아, 아세테이트 셀룰로오스 중 어느 하나를 이용하여 형성된 것을 특징으로 하는, 복합 에어로겔이 포함된 도료 조성물.The base material is formed using any one of silica, alumina, polyimide, silica-titania, silica-carbon, vanadia, zirconia, acetate cellulose, which can be formed in an airgel form, a composite airgel-containing paint Composition.
  3. 제1항에 있어서,The method of claim 1,
    상기 카본은, 흑연, 카본블랙, 활성탄 중 어느 하나인 것을 특징으로 하는, 복합 에어로겔이 포함된 도료 조성물.The carbon is a coating composition containing a composite airgel, characterized in that any one of graphite, carbon black, activated carbon.
  4. 제1항에 있어서,The method of claim 1,
    상기 적외선 차단물질은 상기 복합 에어로겔 중 0.5 내지 10중량%의 범위로 함유되는 것을 특징으로 하는, 복합 에어로겔이 포함된 도료 조성물.The infrared blocking material is in the composite airgel Paint composition comprising a composite airgel, characterized in that contained in the range of 0.5 to 10% by weight.
  5. 제1항에 있어서,The method of claim 1,
    상기 도료용 수지액은 아크릴수지, 실란수지, 실록산수지, 프탈산수지, 염화비닐수지, 에폭시수지, 우레탄수지, 아미노알키드수지 중에서 선택된 어느 하나로 형성됨을 특징으로 하는, 복합에어로겔이 포함된 도료 조성물.The coating resin solution is formed of any one selected from acrylic resins, silane resins, siloxane resins, phthalic acid resins, vinyl chloride resins, epoxy resins, urethane resins, amino alkyd resins, paint composition comprising a composite airgel.
  6. 제1항에 있어서,The method of claim 1,
    유기 바인더 및 무기 바인더 중에서 선택된 하나 이상의 바인더를 더 포함하는, 복합 에어로겔이 포함된 도료 조성물.A coating composition comprising a composite airgel, further comprising at least one binder selected from an organic binder and an inorganic binder.
  7. 제6항에 있어서,The method of claim 6,
    상기 포함되는 바인더는 유기 바인더 30 내지 90중량%와 무기 바인더 10 내지 70중량%로 배합된 것임을 특징으로 하는, 복합 에어로겔이 포함된 도료 조성물.The binder included is characterized in that it is blended with 30 to 90% by weight of the organic binder and 10 to 70% by weight of the inorganic binder, the coating composition containing a composite airgel.
  8. 제6항 또는 제7항에 있어서,The method according to claim 6 or 7,
    상기 유기 바인더는, 폴리우레탄, 아크릴레이트 코폴리머, 폴리아크릴아마이드, 폴리나트탈렌설포네이트 중에서 선택된 하나 이상인 것을 특징으로 하는, 복합 에어로겔이 포함된 도료 조성물.The organic binder is at least one selected from polyurethane, acrylate copolymer, polyacrylamide, polynaphthalenesulfonate, composite airgel coating composition comprising a.
  9. 제6항 또는 제7항에 있어서,The method according to claim 6 or 7,
    상기 무기 바인더는, 마이크로 시멘트, 반수석고, 실리카 흄, 흄드 실리카, 석회, 칼슘설포알루미네이트, 규산염, 실리카, 인산아연, 탈크, 산화마그네슘 중에서 선택된 하나 이상인 것을 특징으로 하는, 복합 에어로겔이 포함된 도료 조성물.The inorganic binder, micro cement, hemihydrate gypsum, silica fume, fumed silica, lime, calcium sulfoaluminate, silicate, silica, zinc phosphate, talc, magnesium oxide, characterized in that the paint containing a composite aerogel Composition.
  10. 제1항에 있어서,The method of claim 1,
    나노 크기의 분말 형태로 형성된 건식 실리카(fumed silica); 실리콘 소포제; 0.1 내지 4㎜ 길이의 섬유 중에서 선택된 하나 이상의 첨가제를 더 포함하는, 복합 에어로겔이 포함된 도료 조성물.Fumed silica formed in the form of nano-sized powder; Silicone antifoams; A coating composition comprising a composite airgel, further comprising at least one additive selected from 0.1 to 4 mm long fibers.
  11. 제10항에 있어서,The method of claim 10,
    상기 섬유는 폴리프로필렌섬유, 폴리에틸렌섬유, 실리카섬유, 알루미나섬유, 탄소섬유, 유리섬유 중에서 선택된 하나 이상인 것을 특징으로 하는, 복합 에어로겔이 포함된 도료 조성물.The fiber is at least one selected from polypropylene fiber, polyethylene fiber, silica fiber, alumina fiber, carbon fiber, glass fiber, composite airgel containing a coating composition.
  12. 모재에 물을 혼합한 혼합액(sol)에, 분말 형태의 적외선 차단물질을 부가하고 교반하되, 상기 적외선 차단물질로서 카본을 부가하거나 카본과 이산화티타늄을 일정 중량비율로 배합하여 부가하고 교반한 후, 촉매를 추가하여 겔(gel)화시킴으로써 복합 에어로겔을 형성하는 단계;To the mixed solution (sol) in which water is mixed with the base material, an infrared ray blocking material in the form of powder is added and stirred, and carbon is added as the infrared ray blocking material or carbon and titanium dioxide are mixed and added at a predetermined weight ratio, followed by stirring. Adding a catalyst to gel to form a composite airgel;
    상기 복합 에어로겔을 분말화하여 도료용 수지액에 부가하는 단계를 포함하는, 복합 에어로겔이 포함된 도료 조성물의 제조방법.Powdered composite airgel and adding to the resin solution for coating, comprising the composite airgel, a method for producing a coating composition comprising a.
  13. 제12항에 있어서,The method of claim 12,
    상기 모재는, 에어로겔 형태로 형성가능한, 실리카, 알루미나, 폴리이미드, 실리카-티타니아, 실리카-카본, 바나디아, 지르코니아, 아세테이트 셀룰로오스 중 어느 하나를 이용하는 것을 특징으로 하는, 복합 에어로겔이 포함된 도료 조성물의 제조방법.The base material, which can be formed in the form of an airgel, characterized in that any one of silica, alumina, polyimide, silica-titania, silica-carbon, vanadia, zirconia, acetate cellulose, composite airgel containing a coating composition of Manufacturing method.
  14. 제12항에 있어서,The method of claim 12,
    상기 혼합액은, 모재 10 내지 50중량%와 물 50 내지 90중량%의 비율로 혼합되어 이루어짐을 특징으로 하는, 복합 에어로겔이 포함된 도료 조성물의 제조방법.The mixed solution, characterized in that the mixture is made in a ratio of 10 to 50% by weight of the base material and 50 to 90% by weight of water, the method for producing a coating composition containing a composite airgel.
  15. 제12항에 있어서,The method of claim 12,
    상기 카본은 0.1 내지 50㎛ 크기의 분말 형태로 형성됨을 특징으로 하는, 복합 에어로겔이 포함된 도료 조성물의 제조방법.The carbon is characterized in that the powder is formed in the form of 0.1 to 50㎛ size, method of manufacturing a coating composition comprising a composite airgel.
  16. 제15항에 있어서,The method of claim 15,
    상기 카본은, 흑연, 카본블랙, 활성탄 중 어느 하나인 것을 특징으로 하는, 복합 에어로겔이 포함된 도료 조성물의 제조방법.The carbon is a method for producing a coating composition comprising a composite airgel, characterized in that any one of graphite, carbon black, activated carbon.
  17. 제12항 내지 제16항 중 어느 한 항에 있어서,The method according to any one of claims 12 to 16,
    상기 혼합액 100 중량부에 대해 상기 적외선 차단물질을 0.05 내지 2 중량부의 비율로 부가하는 것을 특징으로 하는, 복합 에어로겔이 포함된 도료 조성물의 제조방법.Method for producing a coating composition comprising a composite airgel, characterized in that for adding the infrared blocking material in a ratio of 0.05 to 2 parts by weight based on 100 parts by weight of the mixed solution.
  18. 제12항에 있어서,The method of claim 12,
    상기 이산화티타늄은 300 내지 500nm 크기의 분말 형태로 형성됨을 특징으로 하는, 복합 에어로겔이 포함된 도료 조성물의 제조방법.The titanium dioxide is characterized in that the powder is formed in the form of a 300 to 500nm size, a method for producing a coating composition comprising a composite airgel.
  19. 제12항에 있어서,The method of claim 12,
    상기 도료용 수지액 40 내지 95중량%와 복합 에어로겔 5 내지 60중량%의 비율로 혼합하는 것을 특징으로 하는, 복합 에어로겔이 포함된 도료 조성물의 제조방법.Method for producing a coating composition containing a composite airgel, characterized in that for mixing at a ratio of 40 to 95% by weight of the resin solution for paint and 5 to 60% by weight of a composite airgel.
  20. 제12항에 있어서,The method of claim 12,
    유기 바인더 및 무기 바인더 중에서 선택된 어느 하나 이상의 바인더를 상기 복합 에어로겔이 포함된 도료 조성물의 전체 중량 대비 5 내지 50중량%에 상당하는 중량으로 도료 조성물에 부가하는 단계를 더 포함하는, 복합 에어로겔이 포함된 도료 조성물의 제조방법.Adding at least one binder selected from an organic binder and an inorganic binder to the coating composition in a weight equivalent to 5 to 50% by weight relative to the total weight of the coating composition containing the composite airgel, comprising a composite airgel Method for producing a coating composition.
PCT/KR2014/002859 2013-04-02 2014-04-02 Coating composition containing composite aerogel and method for manufacturing same WO2014163403A1 (en)

Applications Claiming Priority (24)

Application Number Priority Date Filing Date Title
KR10-2013-0035707 2013-04-02
KR1020130035709A KR20130048740A (en) 2013-04-02 2013-04-02 Liquid curable composition
KR1020130035707A KR20130048738A (en) 2013-04-02 2013-04-02 Liquid curable composition
KR10-2013-0035708 2013-04-02
KR1020130035708A KR20130048739A (en) 2013-04-02 2013-04-02 Liquid curable composition
KR10-2013-0035709 2013-04-02
KR1020130038006A KR20130048741A (en) 2013-04-08 2013-04-08 Liquid curable composition
KR10-2013-0038008 2013-04-08
KR1020130038011A KR20130048746A (en) 2013-04-08 2013-04-08 Liquid curable composition
KR1020130038008A KR20130048743A (en) 2013-04-08 2013-04-08 Liquid curable composition
KR1020130038007A KR20130048742A (en) 2013-04-08 2013-04-08 Liquid curable composition
KR1020130038009A KR20130048744A (en) 2013-04-08 2013-04-08 Liquid curable composition
KR1020130038012A KR20130048747A (en) 2013-04-08 2013-04-08 Curable composition
KR1020130038010A KR20130048745A (en) 2013-04-08 2013-04-08 Liquid curable composition
KR10-2013-0038012 2013-04-08
KR10-2013-0038009 2013-04-08
KR10-2013-0038011 2013-04-08
KR10-2013-0038007 2013-04-08
KR10-2013-0038010 2013-04-08
KR10-2013-0038006 2013-04-08
KR10-2013-0039734 2013-04-11
KR1020130039734A KR20130048748A (en) 2013-04-11 2013-04-11 Liquid curable composition
KR10-2013-0043917 2013-04-22
KR1020130043917A KR20130048754A (en) 2013-04-22 2013-04-22 Curable composition

Publications (1)

Publication Number Publication Date
WO2014163403A1 true WO2014163403A1 (en) 2014-10-09

Family

ID=51658628

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/002859 WO2014163403A1 (en) 2013-04-02 2014-04-02 Coating composition containing composite aerogel and method for manufacturing same

Country Status (1)

Country Link
WO (1) WO2014163403A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105271212A (en) * 2015-11-30 2016-01-27 航天特种材料及工艺技术研究所 Graphene aerogel material and preparation method thereof
CN105645872A (en) * 2015-12-31 2016-06-08 卓达新材料科技集团有限公司 Titanium oxide and copper oxide aerogel foam cement
CN108276615A (en) * 2017-12-29 2018-07-13 华中科技大学 A kind of high heat conduction stratiform graphene composite material and preparation method
KR20200122072A (en) * 2019-04-17 2020-10-27 박찬덕 Floor and wall finish of concrete iron structure using environmentally friendly natural minerals Submersible functional paint composition
CN113929962A (en) * 2021-10-22 2022-01-14 航天特种材料及工艺技术研究所 Aerogel surface high-temperature-resistant composite coating and preparation method thereof
CN114773026A (en) * 2022-01-18 2022-07-22 苏州皮米新材料科技有限公司 Multilayer pre-oxidized fiber felt and nano aerogel coating combined heat insulation material and preparation method thereof
CN115895308A (en) * 2022-12-17 2023-04-04 沪宝新材料科技(上海)股份有限公司 Aerogel external wall thermal insulation coating and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090087324A (en) * 2008-02-12 2009-08-17 이재환 The powder paint of adiabatic
KR20100002101A (en) * 2009-05-18 2010-01-06 이재환 Aerogel coating
KR20100085472A (en) * 2009-01-20 2010-07-29 알이엠텍 주식회사 Super insulating paint comprising aerogel
KR20110086663A (en) * 2010-10-01 2011-07-29 이재환 Nano paint composition
KR101168246B1 (en) * 2011-12-27 2012-08-09 (주)청우산업개발 Functional paint

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090087324A (en) * 2008-02-12 2009-08-17 이재환 The powder paint of adiabatic
KR20100085472A (en) * 2009-01-20 2010-07-29 알이엠텍 주식회사 Super insulating paint comprising aerogel
KR20100002101A (en) * 2009-05-18 2010-01-06 이재환 Aerogel coating
KR20110086663A (en) * 2010-10-01 2011-07-29 이재환 Nano paint composition
KR101168246B1 (en) * 2011-12-27 2012-08-09 (주)청우산업개발 Functional paint

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105271212A (en) * 2015-11-30 2016-01-27 航天特种材料及工艺技术研究所 Graphene aerogel material and preparation method thereof
CN105645872A (en) * 2015-12-31 2016-06-08 卓达新材料科技集团有限公司 Titanium oxide and copper oxide aerogel foam cement
CN108276615A (en) * 2017-12-29 2018-07-13 华中科技大学 A kind of high heat conduction stratiform graphene composite material and preparation method
KR20200122072A (en) * 2019-04-17 2020-10-27 박찬덕 Floor and wall finish of concrete iron structure using environmentally friendly natural minerals Submersible functional paint composition
KR102283373B1 (en) 2019-04-17 2021-07-29 박찬덕 Floor and wall finish of concrete iron structure using environmentally friendly natural minerals Submersible functional paint composition
CN113929962A (en) * 2021-10-22 2022-01-14 航天特种材料及工艺技术研究所 Aerogel surface high-temperature-resistant composite coating and preparation method thereof
CN113929962B (en) * 2021-10-22 2023-02-17 航天特种材料及工艺技术研究所 Aerogel surface high-temperature-resistant composite coating and preparation method thereof
CN114773026A (en) * 2022-01-18 2022-07-22 苏州皮米新材料科技有限公司 Multilayer pre-oxidized fiber felt and nano aerogel coating combined heat insulation material and preparation method thereof
CN115895308A (en) * 2022-12-17 2023-04-04 沪宝新材料科技(上海)股份有限公司 Aerogel external wall thermal insulation coating and preparation method thereof

Similar Documents

Publication Publication Date Title
WO2014163403A1 (en) Coating composition containing composite aerogel and method for manufacturing same
KR20150114811A (en) A paint composition containing multiple aerogel and its menufacturing method
CN110845224B (en) High-strength anti-aging porcelain insulator and preparation method thereof
WO2015130105A1 (en) Room-temperature circulation asphalt composition and road paving method
WO2021194198A1 (en) Thermal insulation coating composition having excellent water resistance
CN109749463B (en) High-molecular fireproof and moistureproof plugging agent and preparation method and application thereof
CN108264840B (en) Novel anti-pollution flashover coating and preparation method thereof
WO2018048198A1 (en) Method for manufacturing silica aerogel and silica aerogel manufactured thereby
CN112521756B (en) High-mechanical-strength ceramizable organic silicon material and preparation method thereof
WO2019216510A1 (en) Composite of phase change material-containing microcapsules and silica, preparation method therefor, and non-flammable binder composition comprising same
WO2015060668A1 (en) Waterproof mortar composition and method for preparing same
CN113698804A (en) Crack-resistant and water-resistant all-inorganic coating and preparation method thereof
WO2018048197A1 (en) Method for manufacturing silica aerogel and silica aerogel manufactured thereby
WO2014112717A1 (en) Exterior insulation mortar for cold weather and method for constructing exterior insulation system using same
CN112409830A (en) Inorganic fireproof heat-insulating coating and preparation method thereof
CN103922639A (en) Special powder water-proofing agent for gypsum
WO2015068905A1 (en) Shear thickening fluid containing carbon nanoparticles and shock absorbing material comprising same
WO2015163502A1 (en) Inorganic expandable refractory composition
CN111363421A (en) Fluorine-silicon nano waterproof heat-insulation composite material and preparation method thereof
CN115368763B (en) Preparation method of modified silica sol for preparing transparent heat-preservation and heat-insulation film
CN110219201A (en) A kind of preparation method of basalt fibre paper
WO2019168361A1 (en) Functional aqueous paint composition having incombustibility, flame resistance, heat shielding, heat insulation and dew condensation prevention effects
CN113292312A (en) Waterproof and moistureproof ceramic tile and preparation method thereof
CN111187052B (en) Preparation method of nano ceramic long-life lane color coating
CN115093779B (en) Solvent-free transparent waterproof coating and preparation method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14779034

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14779034

Country of ref document: EP

Kind code of ref document: A1