WO2014163116A1 - Organic electroluminescent device - Google Patents

Organic electroluminescent device Download PDF

Info

Publication number
WO2014163116A1
WO2014163116A1 PCT/JP2014/059759 JP2014059759W WO2014163116A1 WO 2014163116 A1 WO2014163116 A1 WO 2014163116A1 JP 2014059759 W JP2014059759 W JP 2014059759W WO 2014163116 A1 WO2014163116 A1 WO 2014163116A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic electroluminescence
amorphous
layer
thin film
electride
Prior art date
Application number
PCT/JP2014/059759
Other languages
French (fr)
Japanese (ja)
Inventor
俊成 渡邉
宮川 直通
伊藤 和弘
暁 渡邉
光井 彰
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Publication of WO2014163116A1 publication Critical patent/WO2014163116A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • H10K50/171Electron injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/464Lateral top-gate IGFETs comprising only a single gate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/466Lateral bottom-gate IGFETs comprising only a single gate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/10Transparent electrodes, e.g. using graphene
    • H10K2102/101Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]

Definitions

  • the present invention relates to an organic electroluminescence device.
  • Organic electroluminescence devices are widely used for displays, backlights, lighting applications, and the like.
  • an organic electroluminescence device has a semiconductor element and an organic electroluminescence element.
  • the semiconductor element has a role of controlling the operation (on / off, etc.) of the organic electroluminescence element.
  • An organic electroluminescent element has an anode, a cathode, and an organic layer disposed between these electrodes.
  • the organic layer has a light emitting layer.
  • the organic layer further has a hole injection layer and / or a hole transport layer, and an electron injection layer and / or an electron transport layer.
  • the hole injection layer and the hole transport layer are disposed between the anode and the light emitting layer, and have a role of selectively injecting holes into the light emitting layer.
  • the electron injection layer and the electron transport layer are disposed between the cathode and the light emitting layer and have a role of selectively injecting electrons into the light emitting layer. Therefore, by arranging these layers, the light emission efficiency of the organic electroluminescence element can be increased (Patent Document 1).
  • a material such as lithium fluoride (LiF) is usually used for the electron injection layer.
  • lithium fluoride is originally an insulating material
  • the thickness of the layer needs to be extremely thin (for example, 0.1 nm to 0.4 nm).
  • it is difficult to form such an extremely thin film For example, if the film thickness becomes too thin, it becomes difficult to obtain a layered thin film.
  • the film thickness is thick, an electron injection layer having sufficient conductivity cannot be obtained.
  • lithium fluoride has a problem that it is relatively unstable and easily deteriorates when exposed to the atmosphere. For this reason, it is necessary to handle the electron injection layer made of lithium fluoride in a controlled environment, and as a result, the manufacturing process becomes complicated.
  • the organic electroluminescence element and further the organic electroluminescence device are used. There is a possibility that desired light emission characteristics cannot be obtained or the reliability of the organic electroluminescence device is lowered.
  • the present invention has been made in view of such a background, and an object of the present invention is to provide an organic electroluminescence device having better stability and higher reliability than conventional ones.
  • a semiconductor element An organic electroluminescence element; Have The organic electroluminescence device includes an organic electroluminescence device including a thin film of an amorphous solid material containing calcium, aluminum, and oxygen.
  • the organic electroluminescence element has an anode, an organic layer, and a cathode
  • the thin film of the amorphous solid material may be included in the organic layer or the cathode.
  • the thin film of the amorphous solid material may be composed of amorphous C12A7 electride.
  • the semiconductor element may include a thin film transistor having a semiconductor layer.
  • the semiconductor layer may include amorphous silicon, polysilicon, single crystal silicon, an oxide semiconductor, or an organic semiconductor.
  • the oxide semiconductor may include In, Ga, and Zn.
  • the semiconductor element may have a part of a semiconductor substrate as a semiconductor region.
  • FIG. 1 is a cross-sectional view schematically illustrating a configuration of an organic electroluminescence device according to an embodiment of the present invention. It is the figure which showed typically the example of 1 structure of the organic electroluminescent element. It is the figure which showed typically the example of another structure of the organic electroluminescent element. It is the figure which showed schematically the wiring circuit of the 1st organic electroluminescent apparatus. It is the schematic diagram which showed the conceptual structure of the amorphous C12A7 electride. It is the figure which showed schematically the flow of the film-forming method of the thin film of an amorphous C12A7 electride.
  • FIG. 3 is a cross-sectional view schematically showing an example of a semiconductor device configured by a top gate structure-top contact method.
  • FIG. 3 is a cross-sectional view schematically showing an example of a semiconductor device configured by a top gate structure-bottom contact method.
  • FIG. 3 is a cross-sectional view schematically showing an example of a semiconductor device configured by a bottom gate structure-top contact method.
  • FIG. 6 is a cross-sectional view schematically showing an example of a semiconductor device configured by a bottom gate structure-bottom contact method. It is sectional drawing which showed schematically the structure of the organic electroluminescent apparatus by another Example of this invention.
  • FIG. 1 the cross section of the organic electroluminescent apparatus (1st organic electroluminescent apparatus) by one Example of this invention is shown typically.
  • the first organic electroluminescence device 1 includes a semiconductor element 100 (see a region surrounded by a square frame in FIG. 1) formed on a substrate 110, and an organic electroluminescence element 200 (FIG. 1). (Refer to the area surrounded by a round frame).
  • the first organic electroluminescence device 1 is shown as an active matrix method, but the first organic electroluminescence device 1 may be a passive matrix method.
  • the first organic electroluminescence device 1 includes a first passivation layer 10 formed on the substrate 110 and a second passivation layer 20 formed on the organic electroluminescence element 200. Have.
  • the passivation layers 10 and 20 may be made of an insulator such as silicon oxide (SiO x ), silicon nitride (SiN x ), silicon oxynitride (SiO x N y ), and ceramics. However, the first and second passivation layers 10 and 20 may be omitted.
  • the semiconductor element 100 has a role of controlling the operation of the organic electroluminescence element 200.
  • the type of the semiconductor element 100 is not particularly limited.
  • the semiconductor element 100 may include, for example, a field effect transistor such as a thin film transistor as shown in FIG.
  • the first thin film transistor (driving transistor) 101 includes a semiconductor layer 105, a source electrode 120, a drain electrode 122, and a gate electrode 124.
  • the second thin film transistor (switching transistor) 102 has a similar structure.
  • the organic electroluminescence element 200 has a lower electrode 210, an organic layer 220, and an upper electrode 230.
  • the organic layer 220 includes a plurality of layers including a light emitting layer.
  • FIG. 2 schematically shows an example of an enlarged view of the organic electroluminescence element.
  • the organic electroluminescence element 200A has an anode 210a as a lower electrode, an organic layer 220a, and a cathode 230a as an upper electrode.
  • the organic layer 220a is configured by laminating a hole injection layer 223a, a hole transport layer 224a, a light emitting layer 225a, an electron transport layer 226a, and an electron injection layer 227a in this order from the anode 210a side.
  • the hole injection layer 223a, the hole transport layer 224a, and / or the electron transport layer 226a may be omitted.
  • the hole injection layer 223a, the hole transport layer 224a, and / or the electron transport layer 226a may not be a layer made of an organic substance. That is, the hole injection layer 223a, the hole transport layer 224a, and / or the electron transport layer 226a may be a layer made of an inorganic material.
  • the lower side of the organic electroluminescence element 200A is a light extraction surface.
  • the upper side of the organic electroluminescent element 200A is the light extraction surface.
  • both the anode 210a and the cathode 230a are transparent electrodes, light can be extracted from both the upper side and the lower side.
  • Such a transparent electrode may be made of a transparent metal oxide such as ITO (indium tin oxide).
  • FIG. 3 schematically shows another configuration example of the organic electroluminescence element.
  • the organic electroluminescence element 200B has a cathode 210b as a lower electrode, an organic layer 220b, and an anode 230b as an upper electrode.
  • the organic layer 220b is configured by laminating an electron injection layer 227b, an electron transport layer 226b, a light emitting layer 225b, a hole transport layer 224b, and a hole injection layer 223b in this order from the cathode 210b side.
  • the hole injection layer 223b, the hole transport layer 224b, and / or the electron transport layer 226b may be omitted.
  • the lower side of the organic electroluminescence element 200B is a light extraction surface.
  • the upper side of the organic electroluminescence element 200A is the light extraction surface.
  • both the cathode 210b and the anode 230b are transparent electrodes, light can be extracted from both the upper side and the lower side.
  • Such a transparent electrode may be made of a transparent metal oxide such as ITO (indium tin oxide).
  • the organic electroluminescence element 200 (and 200A, 200B; the same applies hereinafter) is disposed on the first and second thin film transistors 101, 102.
  • the lower electrode 210 of the organic electroluminescence element 200 is connected to the drain electrode 122 of the first thin film transistor 101.
  • FIG. 4 schematically shows a wiring circuit of the first organic electroluminescence device 1 shown in FIG.
  • the first organic electroluminescence device 1 includes a gate wiring 320, a data wiring 322, and a driving wiring 324.
  • the gate wiring 320 is composed of a plurality of wirings parallel to each other.
  • the data wiring 322 is composed of a plurality of wirings parallel to each other.
  • the drive wiring 324 includes a plurality of wirings parallel to each other.
  • the gate wiring 220, the data wiring 222, and the drive wiring 324 are electrically insulated from each other.
  • the gate electrode 124 of the second thin film transistor 102 is connected to the gate wiring 320, and the source electrode 120 of the second thin film transistor 102 is connected to the data wiring 322.
  • the drain electrode 122 of the second thin film transistor 102 is connected to the capacitor 326 and the gate electrode 124 of the first thin film transistor 101.
  • the source electrode 120 of the first thin film transistor 101 is connected to the drive wiring 324, and the drain electrode 122 of the first thin film transistor 101 is connected to the organic electroluminescence element 200.
  • the first organic electroluminescence device 1 includes a thin film of an amorphous solid material containing calcium, aluminum, and oxygen (hereinafter simply referred to as “amorphous thin film”) in any of the organic electroluminescence elements 200. It has a feature of including.
  • the organic layers 220, 220a, and 220b may include such an amorphous thin film.
  • the electron injection layers 227a and 227b may include amorphous thin films.
  • the cathodes 230a and 210b in FIG. 2 or 3 may include an amorphous thin film.
  • the molar ratio of Al / Ca is preferably 0.5 to 4.7, more preferably 0.6 to 3, and further preferably 0.8 to 2.5.
  • the composition analysis of the thin film can be performed by XPS method, EPMA method, EDX method or the like.
  • the amorphous thin film may be an electride of oxide containing calcium and aluminum.
  • the amorphous thin film preferably contains electrons in an electron density range of 2.0 ⁇ 10 18 cm ⁇ 3 to 2.3 ⁇ 10 21 cm ⁇ 3 .
  • the amorphous thin film preferably absorbs light at a photon energy position of 4.6 eV.
  • An amorphous thin film shows semiconductor electrical characteristics and has a low work function.
  • the work function may be 2.4 to 4.5 eV, or 2.8 to 3.2 eV.
  • Such an amorphous thin film may be composed of, for example, an amorphous C12A7 electride thin film.
  • the amorphous C12A7 electride used as the electron injection layers 227a and 227b of the organic electroluminescence element 200 exhibits good conductivity. Therefore, when amorphous C12A7 electride is used as the electron injection layers 227a and 227b, it is not necessary to reduce the thickness of the layer to the order of less than nm, unlike the conventional lithium fluoride electron injection layer.
  • amorphous C12A7 electride is a stable ceramic material and does not deteriorate or deteriorate even when exposed to the atmosphere. Therefore, when amorphous C12A7 electride is used as the electron injection layers 227a and 227b, the problem of handling in a controlled environment as in the case of a conventional lithium fluoride electron injection layer is solved.
  • amorphous C12A7 electride has a low work function. Therefore, in the organic electroluminescence element 200, it is possible to lower the electron injection barrier from the cathodes 230a and 210b to the light emitting layers 225a and 225b, the organic electroluminescence element 200 having high luminous efficiency, and further the first organic electroluminescence. Device 100 can be obtained.
  • amorphous C12A7 electride has a large ionization potential. Therefore, amorphous C12A7 electride has a so-called hole blocking effect. That is, holes that have not recombined with electrons in the light emitting layers 225a and 225b are prevented from passing through the electron transport layers 226a and 226b and reaching the cathodes 230a and 210b, and the recombination probability of electrons and holes is increased. Therefore, in this invention, an organic EL element with high luminous efficiency can be obtained.
  • the first organic electroluminescence device 100 is unlikely to have a reduced reliability or a desired light emission characteristic unlike the conventional organic electroluminescence device, and handling is difficult. It is possible to provide an organic electroluminescence device that is easy and reliable.
  • amorphous thin film is an amorphous C12A7 electride thin film.
  • Crystal C12A7 means a crystal of 12CaO ⁇ 7Al 2 O 3 and an isomorphous compound having a crystal structure equivalent to this.
  • the mineral name of this compound is “mayenite”.
  • the crystalline C12A7 in the present invention is a compound in which some or all of Ca atoms and / or Al atoms in the C12A7 crystal skeleton are substituted with other atoms within a range in which the cage structure formed by the skeleton of the crystal lattice is maintained.
  • the same type compound may be used in which some or all of the free oxygen ions in the cage are replaced with other anions.
  • C12A7 is sometimes denoted as Ca 12 Al 14 O 33 or Ca 24 Al 28 O 66.
  • Examples of the isomorphous compound include, but are not limited to, the following compounds (1) to (5).
  • metal atoms such as Sr, Mg, and / or Ba.
  • a compound in which some or all of Ca atoms are substituted with Sr is strontium aluminate Sr 12 Al 14 O 33 , and calcium strontium aluminum is used as a mixed crystal in which the mixing ratio of Ca and Sr is arbitrarily changed.
  • Nate Ca 12-x Sr X Al 14 O 33 (x is an integer of 1 to 11; in the case of an average value, it is a number greater than 0 and less than 12) (2) A homomorphic compound in which some or all of the Al atoms in the crystal are substituted with one or more atoms selected from the group consisting of Si, Ge, Ga, In, and B. For example, like Ca 12 Al 10 Si 4 O 35 .
  • a part of metal atoms and / or nonmetal atoms (excluding oxygen atoms) in the 12CaO.7Al 2 O 3 crystal is Ti, One or more transition metal atoms or typical metal atoms selected from the group consisting of V, Cr, Mn, Fe, Co, Ni, and Cu, alkali metal atoms such as Li, Na, and K, or Ce, Pr, Nd , Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, and Yb. The same type compound substituted with one or more rare earth atoms selected from the group consisting of Yb. (4) A compound in which some or all of the free oxygen ions included in the cage are replaced with other anions.
  • anions include, for example, one or more selected from the group consisting of H ⁇ , H 2 ⁇ , H 2 ⁇ , O ⁇ , O 2 ⁇ , OH ⁇ , F ⁇ , Cl ⁇ , and S 2 ⁇ .
  • anions and nitrogen (N) anions There are anions and nitrogen (N) anions.
  • N nitrogen
  • the “crystalline C12A7 electride” means that in the above-mentioned “crystalline C12A7”, free oxygen ions included in the cage (in the case of having other anions included in the cage, the anions) ) Means a compound in which part or all of them are substituted with electrons.
  • crystalline C12A7 electride shows electroconductivity.
  • crystalline C12A7 in which all free oxygen ions are replaced with electrons may be expressed as [Ca 24 Al 28 O 64 ] 4+ (4e ⁇ ).
  • amorphous C12A7 electride means an amorphous solid substance having a composition equivalent to that of crystalline C12A7 electride, consisting of solvation having amorphous C12A7 as a solvent and electrons as a solute. means.
  • FIG. 5 conceptually shows the structure of the amorphous C12A7 electride.
  • each cage shares a plane and is three-dimensionally stacked to form a crystal lattice, and electrons are included in a part of these cages.
  • a characteristic partial structure called bipolaron 550 is present in a dispersed state in a solvent 520 made of amorphous C12A7.
  • the bipolarlon 550 is configured such that two cages 530 are adjacent to each other, and an electron (solute) 540 is included in each cage 530.
  • the state of the amorphous C12A7 electride is not limited to the above, and two electrons (solutes) 540 may be included in one cage 530. Further, a plurality of these cages may be aggregated, and the aggregated cage can be regarded as a microcrystal. Therefore, a state in which the microcrystal is included in the amorphous is also regarded as amorphous in the present invention.
  • Amorphous C12A7 electride exhibits electrical conductivity and has a low work function.
  • the work function may be 2.4 to 4.5 eV, or 3 to 4 eV.
  • the work function of the amorphous C12A7 electride is preferably 2.8 to 3.2 eV.
  • Amorphous C12A7 electride has a high ionization potential.
  • the ionization potential may be 7.0 to 9.0 eV, or 7.5 to 8.5 eV.
  • Bipolarlon 550 has almost no light absorption in the range of visible light with a photon energy of 1.55 eV to 3.10 eV, and shows light absorption in the vicinity of 4.6 eV. Therefore, the amorphous C12A7 electride thin film is transparent in visible light. Further, by measuring the light absorption characteristics of the sample to be inspected and measuring the light absorption coefficient in the vicinity of 4.6 eV, whether or not the bipolaron 550 is present in the sample, that is, the sample is amorphous C12A7 elect You can check if you have a ride.
  • two adjacent cages 530 constituting the bipolaron 550 are Raman-active, and show a characteristic peak in the vicinity of 186 cm ⁇ 1 in the Raman spectroscopic measurement.
  • C12A7 electride means a concept including both the above-mentioned “crystalline C12A7 electride” and “amorphous C12A7 electride”.
  • “Crystalline C12A7 electride” includes Ca atoms, Al atoms, and O atoms, the molar ratio of Ca: Al is in the range of 13:13 to 11:15, and the molar ratio of Ca: Al is 12 It is preferably in the range of 5: 13.5 to 11.5: 14.5, and more preferably in the range of 12.2: 13.8 to 11.8: 14.2.
  • the “amorphous C12A7 electride” includes Ca atoms, Al atoms, and O atoms, and the molar ratio of Ca: Al is in the range of 13:12 to 11:16.
  • the molar ratio of Ca: Al is 13:13 to 11:15 is preferable, and 12.5: 13.5 to 11.5: 14.5 is more preferable.
  • the thin film of “amorphous C12A7 electride” is composed of Ca, Al, and O in the above composition range at 67% or more, preferably 80% or more, more preferably 95% or more of the whole. preferable.
  • anode 210a As the anode 210a, a metal or a metal oxide is usually used.
  • the material used preferably has a work function of 4 eV or more. As described above, when the light extraction surface of the organic electroluminescence element 200A is on the anode 210a side, the anode 210a needs to be transparent.
  • the anode 210a may be a metal material such as aluminum, silver, tin, gold, carbon, iron, cobalt, nickel, copper, zinc, tungsten, vanadium, and alloys thereof.
  • the anode 210a is made of, for example, ITO, antimony oxide (Sb 2 O 3 ), zirconium oxide (ZrO 2 ), tin oxide (SnO 2 ), zinc oxide (ZnO), IZO (Indium Zinc Oxide), AZO (ZnO—Al 2 O 3 : zinc oxide doped with aluminum), GZO (ZnO—Ga 2 O 3 : zinc oxide doped with gallium), Nb-doped TiO 2 , Ta-doped TiO 2 , and IWZO It may also be a metal oxide material such as (In 2 O 3 —WO 3 —ZnO: indium oxide doped with tungsten trioxide and zinc oxide).
  • the film forming method of the anode 210a is not particularly limited.
  • the anode 210a may be formed by a known film forming technique such as a vapor deposition method, a sputtering method, or a coating method.
  • the thickness of the anode 210a is in the range of 2 nm to 150 nm, and when the metal material is used as the transparent electrode, the thickness of the anode 120 is preferably in the range of 2 nm to 50 nm.
  • the hole injection layer 223a is selected from materials having hole injection properties.
  • the hole injection layer 223a may be an organic material such as CuPc and starburst amine.
  • the hole injection layer 223a may be a metal oxide material, for example, an oxide including at least one metal selected from molybdenum, tungsten, rhenium, vanadium, indium, tin, zinc, gallium, titanium, and aluminum. good.
  • the upper electrode formed on the organic layer is formed by sputtering
  • the characteristics of the organic EL element deteriorate due to sputtering damage of the organic layer. Since sputtering resistance is higher than that of the material, sputtering damage to the organic layer can be reduced by forming a metal oxide film over the organic material.
  • hole injection layer 223a various known materials can be used as the hole injection layer 223a. Note that the hole injection layer 223a may be omitted.
  • the film forming method of the hole injection layer 223a is not particularly limited.
  • the hole injection layer 223a may be formed by a dry process such as an evaporation method or a transfer method.
  • the hole injection layer 223a may be formed by a wet process such as a spin coating method, a spray coating method, or a gravure printing method.
  • the thickness of the hole injection layer 223a is in the range of 1 nm to 50 nm.
  • the hole transport layer 224a is selected from materials having hole transport properties.
  • the hole transport layer 224a may be, for example, an arylamine compound, an amine compound containing a carbazole group, and an amine compound containing a fluorene derivative.
  • the hole transport layer 224a includes 4,4′-bis [N- (naphthyl) -N-phenyl-amino] biphenyl ( ⁇ -NPD), N, N′-bis (3-methylphenyl)- (1,1′-biphenyl) -4,4′-diamine (TPD), 2-TNATA, 4,4 ′, 4 ′′ -tris (N- (3-methylphenyl) N-phenylamino) triphenylamine ( MTDATA), 4,4′-N, N′-dicarbazole biphenyl (CBP), spiro-NPD, spiro-TPD, spiro-TAD, TNB, and the like.
  • hole transport layer 224a various known materials can be used as the hole transport layer 224a. Note that the hole transport layer 224a may be omitted.
  • the hole transport layer 224a can be formed using a conventional general film formation process.
  • the thickness of the hole transport layer 224a is in the range of 1 nm to 100 nm.
  • the light emitting layer 225a may be made of any material known as a light emitting material for a general organic electroluminescence element.
  • the light-emitting layer 225a includes, for example, epidridine, 2,5-bis [5,7-di-t-pentyl-2-benzoxazolyl] thiophene, 2,2 '-(1,4-phenylenedivinylene) bisbenzo Thiazole, 2,2 ′-(4,4′-biphenylene) bisbenzothiazole, 5-methyl-2- ⁇ 2- [4- (5-methyl-2-benzoxazolyl) phenyl] vinyl ⁇ benzoxazole, 2,5-bis (5-methyl-2-benzoxazolyl) thiophene, anthracene, naphthalene, phenanthrene, pyrene, chrysene, perylene, perinone, 1,4-diphenylbutadiene, tetraphenylbutadiene, coumarin, acridine, stilbene, 2- (4-biphenyl) -6-phenylbenzoxazole, aluminum
  • various known materials can be used for the light emitting layer 225a.
  • the light emitting layer 225a may be formed by a dry process such as an evaporation method or a transfer method.
  • the light-emitting layer 225a may be formed by a wet process such as a spin coating method, a spray coating method, or a gravure printing method.
  • the thickness of the light emitting layer 225a is in the range of 1 nm to 100 nm.
  • the light emitting layer 225a may also be used as a hole transport layer or an electron transport layer.
  • the electron transport layer 226a is made of an organic material such as tris (8-quinolinolato) aluminum (Alq3). In general, however, organic materials such as Alq3 can easily degrade when exposed to air.
  • the electron transport layer 226a it is preferable to use a metal oxide material as the electron transport layer 226a.
  • These metal oxide materials may be in an amorphous form, in a crystalline form, or in a mixed phase of an amorphous and crystalline phase.
  • the metal oxide material is preferably in an amorphous form. This is because an amorphous metal oxide material can easily provide a relatively flat film.
  • the electron affinity of these metal oxide materials is preferably 2.8 to 5.0 eV, more preferably 3.0 to 4.0 eV, and further preferably 3.1 to 3.5 eV. preferable.
  • the electron affinity is 2.8 eV or more, the electron injection characteristics are high, and the light emission efficiency of the organic electroluminescence element is improved. Further, when the electron affinity is 5.0 eV or less, it is easy to obtain sufficient light emission from the organic electroluminescence element.
  • the electron transport layer 226a When these metal oxide materials are used as the electron transport layer 226a, the effect of improving the stability of the layer and facilitating handling can be obtained as compared with the case of using an organic material such as Alq3.
  • the Alq3 material has a property of relatively high hole mobility.
  • any of the aforementioned metal oxide materials has a relatively small hole mobility and can selectively transport only electrons. For this reason, when these metal oxide materials are used as the electron transport layer 226a, it becomes possible to further increase the light emission efficiency of the organic electroluminescence element.
  • the thickness of the electron transport layer 226a made of these metal oxide materials may be 1 nm to 2000 nm, preferably 100 nm to 2000 nm, more preferably 200 nm to 1000 nm, and 300 nm to 500 nm. More preferably.
  • the above metal oxide material has an electron mobility of 1 to 10 cm 2 V ⁇ 1 s ⁇ 1 and is several orders of magnitude larger. Is possible.
  • it is possible to suppress the short circuit of an organic electroluminescent element.
  • the thickness of the inorganic electron transport layer exceeds 2000 nm, it takes a long time to produce a thin film, and thus the produced organic electroluminescence element is expensive.
  • the method for forming the electron transport layer 226a is not particularly limited.
  • a known film formation technique such as a vapor deposition method, a sputtering method, or a coating method may be used.
  • the electron transport layer 160 may be omitted.
  • Electrode injection layer 227a As described above, amorphous C12A7 electride may be used for the electron injection layer 227a.
  • the thickness of the conventional electron injection layer 227a is, for example, in the range of 0.1 nm to 0.4 nm. This is because, as described above, LiF that has been conventionally used as an electron injection layer has high resistance and cannot be used as a conductive member unless it is made extremely thin.
  • the electron injection layer 227a made of amorphous C12A7 electride has conductivity, there is no restriction on the film thickness. Therefore, the electron injection layer 227a having a relatively uniform thickness can be formed relatively easily.
  • the electron injection layer 227a made of amorphous C12A7 electride has a thickness in the range of about 1 nm to 50 nm, for example. It may be 30 nm or less, or 20 nm or less. It may be 2 nm or more, 4 nm or more, or 9 nm or more.
  • amorphous C12A7 electride is a ceramic material and is stable without being altered even when exposed to the atmosphere. Therefore, when amorphous C12A7 electride is used as the electron injection layer 227a, the problem that handling must be performed in a controlled environment like a conventional lithium fluoride electron injection layer is solved. As a result, it is possible to obtain an organic electroluminescence element 200A that is easy to handle and highly reliable.
  • the cathode 230a is usually made of a metal material.
  • the cathode 230a may be, for example, aluminum, silver, gold, magnesium, calcium, titanium, yttrium, lithium, gadolinium, ytterbium, ruthenium, manganese, molybdenum, vanadium, chromium, tantalum, and alloys thereof.
  • the cathode 230a is formed of, for example, ITO, antimony oxide (Sb 2 O 3 ), zirconium oxide (ZrO 2 ), tin oxide (SnO 2 ), zinc oxide (ZnO), IZO (Indium Zinc Oxide), AZO (ZnO—Al 2 O 3 : zinc oxide doped with aluminum), GZO (ZnO—Ga 2 O 3 : zinc oxide doped with gallium), Nb-doped TiO 2 , Ta-doped TiO 2 , and IWZO It may also be a metal oxide material such as (In 2 O 3 —WO 3 —ZnO: indium oxide doped with tungsten trioxide and zinc oxide).
  • the film formation method of the cathode 230a is not particularly limited.
  • the cathode 230a may be formed by, for example, a vapor deposition method (vacuum vapor deposition method, electron beam vapor deposition method), an ion plating method, a laser ablation method, a sputtering method, or the like.
  • the thickness of the cathode 230a is in the range of 2 nm to 150 nm.
  • the thickness of the cathode 230a is preferably in the range of 2 nm to 50 nm.
  • the cathode 230a may be formed of an amorphous C12A7 electride thin film.
  • the configuration of the cathode 210b in FIG. 3 is also described in the same manner as described above.
  • FIG. 6 schematically shows a flow of a method for forming a thin film of amorphous C12A7 electride.
  • the method for forming a thin film of amorphous C12A7 electride is as follows: Preparing a target of crystalline C12A7 electride having an electron density of 2.0 ⁇ 10 18 cm ⁇ 3 to 2.3 ⁇ 10 21 cm ⁇ 3 (S110); A step of forming a film on the cathode or the electron transport layer by a vapor deposition method in an atmosphere having an oxygen partial pressure of less than 0.1 Pa using the target (S120); Have
  • the target is composed of crystalline C12A7 electride.
  • the method for producing the target made of crystalline C12A7 electride is not particularly limited.
  • the target may be manufactured using, for example, a conventional method for manufacturing a bulk crystalline C12A7 electride.
  • a crystalline C12A7 sintered body is heat-treated at about 1150 to 1460 ° C., preferably about 1200 to 1400 ° C. in the presence of a reducing agent such as Ti, Al, Ca, or C.
  • a target made of C12A7 electride may be manufactured.
  • a green compact formed by compressing a crystalline C12A7 powder may be used as a target.
  • a crystalline C12A7 sintered body is effectively heat-treated at 1230 to 1415 ° C.
  • the area of the main surface is preferably 1900 mm 2 or more, more preferably 4400mm 2 or more, more preferably 7800mm 2 or more, particularly preferably can be used, for example at 31400Mm 2 or more.
  • a target having a thickness of preferably 2 to 15 mm, more preferably 2.5 to 13 mm, still more preferably 3 to 10 mm, and particularly preferably 3 to 8 mm can be used.
  • the diameter is preferably 50 mm or more, more preferably 75 mm or more, further preferably 100 mm or more, and particularly preferably 200 mm or more.
  • the diameter of the long side is preferably 50 mm or more, more preferably 75 mm or more, further preferably 100 mm or more, and particularly preferably 200 mm or more.
  • the height of the cylinder is preferably 50 mm or more, more preferably 75 mm or more, further preferably 100 mm or more, and particularly preferably 200 mm or more.
  • the electron density of the target that is, crystalline C12A7 electride is in the range of 2.0 ⁇ 10 18 cm ⁇ 3 to 2.3 ⁇ 10 21 cm ⁇ 3 .
  • the electron density of the crystalline C12A7 electride is preferably 1 ⁇ 10 19 cm ⁇ 3 or more, more preferably 1 ⁇ 10 20 cm ⁇ 3 or more, further preferably 5 ⁇ 10 20 cm ⁇ 3 or more, and 1 ⁇ 10 21 cm ⁇ 3 or more is particularly preferable.
  • the higher the electron density of the crystalline C12A7 electride constituting the target the easier it is to obtain an amorphous C12A7 electride having a lower work function.
  • the electron density of the crystalline C12A7 electride is more preferably 1.4 ⁇ 10 21 cm ⁇ 3 or more, and 1.7 ⁇ 10 21 cm ⁇ 3 or more is more preferable, and 2 ⁇ 10 21 cm ⁇ 3 or more is particularly preferable.
  • the electron density of the crystalline C12A7 electride is 2.3 ⁇ 10 21 cm ⁇ 3 .
  • the electron density of the crystalline C12A7 electride is less than 2.0 ⁇ 10 18 cm ⁇ 3 , the electron density of the amorphous C12A7 electride thin film obtained by film formation becomes small.
  • the electron density of C12A7 electride can be measured by the iodine titration method.
  • the electron density of the crystalline C12A7 electride can be measured by a light absorption measurement method. Since the crystalline C12A7 electride has a specific light absorption around 2.8 eV, the electron density can be determined by measuring the absorption coefficient. In particular, when the sample is a sintered body, it is convenient to use the diffuse reflection method after pulverizing the sintered body into a powder.
  • the obtained target is used as a raw material source when an amorphous C12A7 electride thin film is formed in the next step.
  • the surface of the target may be polished by mechanical means before use.
  • a bulk body of crystalline C12A7 electride obtained by a conventional method may have a very thin film (foreign matter) on the surface.
  • the composition of the obtained thin film may deviate from a desired composition ratio.
  • such a problem can be significantly suppressed by carrying out the polishing treatment of the target surface.
  • vapor deposition refers to vapor deposition of a target material including a physical vapor deposition (PVD) method, a PLD method, a sputtering method, and a vacuum deposition method, and then depositing this material on a substrate.
  • PVD physical vapor deposition
  • PLD physical vapor deposition
  • sputtering method a sputtering method
  • vacuum deposition method a vacuum deposition method
  • the sputtering method is particularly preferable.
  • a thin film can be formed relatively uniformly in a large area.
  • the sputtering method includes a DC (direct current) sputtering method, a high frequency sputtering method, a helicon wave sputtering method, an ion beam sputtering method, a magnetron sputtering method, and the like.
  • process S120 will be described by taking as an example the case where film formation is performed by a sputtering method.
  • the temperature of the deposition target substrate when forming a thin film of amorphous C12A7 electride is not particularly limited, and any temperature in the range of room temperature to, for example, 700 ° C. may be adopted. It should be noted that when depositing a thin film of amorphous C12A7 electride, it is not necessary to “positively” heat the substrate. However, there may be a case where the temperature of the deposition target substrate rises “incidentally” due to the radiant heat of the vapor deposition source. For example, the temperature of the deposition target substrate may be 500 ° C. or lower, or 200 ° C. or lower.
  • the oxygen partial pressure during film formation is less than 0.1 Pa.
  • the oxygen partial pressure is preferably 0.05 Pa or less, preferably 0.01 Pa or less, more preferably 1 ⁇ 10 ⁇ 3 Pa or less, and preferably 1 ⁇ 10 ⁇ 4 Pa or less. More preferably, it is particularly preferably 1 ⁇ 10 ⁇ 5 Pa or less.
  • oxygen partial pressure is 0.1 Pa or more, oxygen is taken into the deposited thin film, which may reduce the electron density.
  • the hydrogen partial pressure during film formation is preferably less than 0.004 Pa. If it is 0.004 Pa or more, hydrogen or OH component is taken into the formed thin film, and the electron density of the amorphous C12A7 electride thin film may be lowered.
  • the sputtering gas used is not particularly limited.
  • the sputtering gas may be an inert gas or a rare gas.
  • the inert gas eg, N 2 gas.
  • examples of the rare gas include He (helium), Ne (neon), Ar (argon), Kr (krypton), and Xe (xenon). These may be used alone or in combination with other gases.
  • the sputtering gas may be a reducing gas such as NO (nitrogen monoxide).
  • the pressure of the sputtering gas is not particularly limited, and can be freely selected so that a desired thin film can be obtained.
  • the pressure P (Pa) of the sputtering gas (pressure in the chamber) is such that when the distance between the substrate and the target is t (m) and the diameter of the gas molecule is d (m), 8.9 ⁇ 10 ⁇ 22 / (td 2 ) ⁇ P ⁇ 4.5 ⁇ 10 ⁇ 20 / (td 2 ) (3) Formula It may be selected to satisfy.
  • the mean free path of the sputtered particles becomes substantially equal to the distance between the target and the substrate, and the sputtered particles are suppressed from reacting with the remaining oxygen.
  • a sputtering method apparatus it is possible to use an inexpensive and simple vacuum apparatus having a relatively high back pressure.
  • an amorphous C12A7 electride thin film for the cathode 230a and / or the electron injection layer 227a can be formed.
  • the obtained thin film has a composition of C12A7 by the composition analysis of a thin film.
  • the thin film is an amorphous C12A7 electride by measuring the light absorption characteristics of the sample and determining the presence or absence of light absorption near the photon energy of 4.6 eV. Can do.
  • the thin film is amorphous C12A7 electride by determining the presence or absence of a characteristic peak in the vicinity of 186 cm ⁇ 1 in Raman spectroscopic measurement. Can do.
  • the method of forming an amorphous C12A7 electride thin film has been briefly described by taking the sputtering method as an example.
  • the method for forming the amorphous C12A7 electride thin film is not limited to this, and the above-described two steps (steps S110 and S120) may be appropriately changed, or various steps may be added. It is clear.
  • a pre-sputtering process (a target dry etching process) may be performed on the target before starting the film formation of the amorphous C12A7 electride by the sputtering method.
  • the surface of the target is cleaned, and it becomes easy to form a thin film having a desired composition in the subsequent film formation process (main film formation).
  • the target when the target is used for a long time, oxygen is taken into the surface of the target, and the electron density of the crystalline C12A7 electride constituting the target may decrease.
  • the composition of the target when the target is used for a long time, the composition of the target may deviate from the initial composition due to the difference in sputtering rate of each component constituting the target (ie, crystalline C12A7 electride).
  • the composition may deviate from a desired value even in the formed thin film.
  • the pre-sputtering process may be performed, for example, before performing a new film formation or whenever the target usage time reaches a predetermined value.
  • the gas used in the pre-sputtering process may be the same as or different from the sputtering gas used in the main film formation.
  • the gas used for the pre-sputtering process is preferably He (helium), Ne (neon), N 2 (nitrogen), Ar (argon), and / or NO (nitrogen monoxide).
  • the amorphous C12A7 electride thin film formed by such a method has an electron density in the range of 2.0 ⁇ 10 18 cm ⁇ 3 to 2.3 ⁇ 10 21 cm ⁇ 3 . It exhibits light absorption at a photon energy position of 6 eV.
  • the electron density is more preferably 1 ⁇ 10 19 cm ⁇ 3 or more, and further preferably 1 ⁇ 10 20 cm ⁇ 3 or more.
  • the light absorption value at a position of 4.6 eV may be 100 cm ⁇ 1 or more. It may be 200 cm ⁇ 1 or more.
  • the electron density of the amorphous C12A7 electride thin film can be measured by the above-mentioned iodine titration method.
  • the density of the bipolaron can be calculated by halving the measured electron density.
  • the thin film of amorphous C12A7 electride has conductivity due to hopping conduction of electrons in the cage.
  • the DC conductivity at room temperature of the amorphous C12A7 electride thin film may be 10 ⁇ 9 to 10 ⁇ 1 S ⁇ cm ⁇ 1 , and 10 ⁇ 7 to 10 ⁇ 3 S ⁇ cm ⁇ . 1 may be sufficient.
  • the amorphous C12A7 electride thin film may have, as a partial structure, an F + center in which one electron is captured in an oxygen vacancy.
  • the F + center is configured by a plurality of Ca 2+ ions surrounded by one electron and does not have a cage.
  • the F + center has light absorption in the visible light range of 1.55 eV to 3.10 eV centered on 3.3 eV.
  • the concentration of F + center is less than 5 ⁇ 10 18 cm ⁇ 3 , the transparency of the thin film is increased, which is preferable.
  • the concentration of the F + center is more preferably 1 ⁇ 10 18 cm ⁇ 3 or less, and further preferably 1 ⁇ 10 17 cm ⁇ 3 or less. Note that the concentration of the F + center can be measured by a signal intensity having a g value of 1.998 in ESR.
  • the ratio of the light absorption coefficient at a position of 3.3 eV to the light absorption coefficient at a photon energy position of 4.6 eV may be 0.35 or less.
  • the amorphous C12A7 electride thin film does not have a crystal grain boundary, it has excellent flatness.
  • the root mean square roughness (RMS) of the surface of the amorphous C12A7 electride thin film may be 0.1 to 10 nm, and preferably 0.2 to 5 nm.
  • RMS root mean square roughness
  • the electron injection layer 227a and / or the cathode 230a is formed of an amorphous C12A7 electride thin film having an RMS of 2 nm or less, the characteristics of the organic electroluminescent element 200A are more preferable.
  • the RMS when the RMS is 10 nm or more, the characteristics of the organic electroluminescence element 200A may be deteriorated, so that it is necessary to add a polishing process or the like.
  • RMS can be measured using, for example, an atomic force microscope.
  • composition of the amorphous C12A7 electride thin film may be different from the stoichiometric ratio of C12A7, or may be different from the composition ratio of the target used in the production.
  • the organic electroluminescence element 200 may have any of the following configurations. (1) The substrate, the anode, and the cathode are arranged in this order, and the substrate side is the light extraction surface, and an amorphous thin film exists between the anode and the cathode, or constitutes the cathode. (2) The substrate, the anode, and the cathode are arranged in this order, and the cathode side is the light extraction surface, and an amorphous thin film exists between the anode and the cathode or constitutes the cathode.
  • a substrate, a cathode, and an anode are provided in this order, and the substrate side is a light extraction surface, and an amorphous thin film exists between the anode and the cathode, or constitutes the cathode.
  • a substrate, a cathode, and an anode are provided in this order, and the anode side is a light extraction surface, and an amorphous thin film exists between the anode and the cathode or constitutes the cathode.
  • the material of the substrate 110 on which the semiconductor element 100 is disposed is not particularly limited. However, when the light extraction surface of the organic electroluminescence device 1 is the substrate 110 side, the substrate 110 is made of a transparent material.
  • the transparent material for example, a glass substrate, a plastic substrate, a resin substrate, or the like can be used.
  • the material of the semiconductor layer 105 constituting the semiconductor element 100 is not particularly limited.
  • the semiconductor layer 105 may be made of a general semiconductor material such as amorphous silicon, polysilicon, single crystal silicon, oxide semiconductor, or organic semiconductor.
  • oxide semiconductor examples include oxides of transition metals such as In, Ti, Nb, Sn, Zn, Gd, Cd, Zr, Y, La, and Ta, SrTiO 3 , CaTiO 3 , ZnO ⁇ Rh 2 O 3. , CuGaO 2 , and oxides such as SrCu 2 O 2 .
  • the oxide semiconductor may include at least one oxide of In, Sn, Zn, Ga, and Cd.
  • the oxide semiconductor preferably includes at least one oxide of In, Sn, Zn, and Ga, and includes an oxide including at least one of In, Ga, and Zn (eg, an In—O-based oxide). ) Is more preferable.
  • the oxide semiconductor may include at least two of In, Ga, and Zn, for example, all oxides.
  • oxide semiconductors examples include IGZO (In—Ga—Zn—O), ITO (In—Sn—O), ISZO (In—Si—Zn—O), IGO (In—Ga—O), ITZO (In—Sn—Zn—O), IZO (In—Zn—O), IHZO (In—Hf—Zn—O), and the like.
  • a film formed using such an oxide semiconductor may be amorphous, crystalline, or in a state containing amorphous and crystalline.
  • the semiconductor element 100 in the first organic electroluminescence device 1 shown in FIG. 1, that is, the thin film transistors 101 and 102, is configured by a so-called top gate structure-top contact method.
  • the arrangement structure of the thin film transistors is not limited to this.
  • top gate structure-top contact system (i) top gate structure-bottom contact system, (iii) bottom gate structure-top contact system, and (iii) There is a bottom gate structure-bottom contact system.
  • FIG. 7 shows an example of a semiconductor device configured by a top gate structure-top contact method.
  • the semiconductor element 700 formed over the substrate 710 includes a semiconductor layer 705, a source electrode 720 and a drain electrode 722, a gate insulating layer 730, and a gate electrode 724.
  • the gate electrode 724 is disposed on the semiconductor layer 705 (top gate structure), and the source electrode 720 and the drain electrode 722 are also disposed on the semiconductor layer 705 (top contact method).
  • FIG. 8 shows an example of a semiconductor device configured by a top gate structure-bottom contact method.
  • a semiconductor element 800 formed over a substrate 810 includes a semiconductor layer 805, a source electrode 820 and a drain electrode 822, a gate insulating layer 830, and a gate electrode 824.
  • the gate electrode 824 is disposed on the semiconductor layer 805 (top gate structure).
  • the source electrode 820 and the drain electrode 822 are disposed below the semiconductor layer 805 (bottom contact method).
  • FIG. 9 shows an example of a semiconductor device configured by a bottom gate structure-top contact method.
  • a semiconductor element 900 formed over a substrate 910 includes a semiconductor layer 905, a source electrode 920 and a drain electrode 922, a gate insulating layer 930, and a gate electrode 924.
  • the gate electrode 924 is disposed below the semiconductor layer 905 (bottom gate structure).
  • the source electrode 920 and the drain electrode 922 are disposed above the semiconductor layer 905 (top contact method).
  • FIG. 10 shows an example of a semiconductor device configured by a bottom gate structure-bottom contact method.
  • the semiconductor element 1000 formed over the substrate 1010 includes a semiconductor layer 1005, a source electrode 1020 and a drain electrode 1022, a gate insulating layer 1030, and a gate electrode 1024.
  • the gate electrode 1024 is disposed below the semiconductor layer 1005 (bottom gate structure).
  • the source electrode 1020 and the drain electrode 1022 are also disposed below the semiconductor layer 1005 (bottom contact method).
  • the semiconductor element may be a channel etch type or a channel protection type.
  • the semiconductor element in the organic electroluminescence device of the present invention may be arranged in any of these modes.
  • FIG. 11 schematically shows a cross section of an organic electroluminescence device (second organic electroluminescence device) according to another embodiment of the present invention.
  • the second organic electroluminescence device 1101 basically has the same configuration as the first organic electroluminescence device 1 shown in FIG. Therefore, in FIG. 11, the same reference numerals used in FIG. 1 plus 1100 are used for the same members as in FIG.
  • the configuration of the semiconductor element 1200 is greatly different from that of the first organic electroluminescence device 1. That is, in the second organic electroluminescence device 1101, the semiconductor element 1200, that is, the first and second thin film transistors 1201 and 1202 are configured by a so-called bottom gate structure-top contact method.
  • any one of the organic electroluminescence elements 1300 includes a thin film of an amorphous solid material containing calcium, aluminum, and oxygen. It will be apparent that the same effects as those of the first organic electroluminescence device 1 can be obtained.
  • an organic electroluminescence device (third organic electroluminescence device, fourth organic electroluminescence device) according to another embodiment of the present invention will be described.
  • the third organic electroluminescence device includes a semiconductor element formed using a semiconductor substrate.
  • a known structure formed using a semiconductor substrate can be used as the semiconductor element.
  • a part of the semiconductor substrate may be used as the semiconductor region.
  • Other structures (source electrode, drain electrode, gate electrode, etc.) may be known structures.
  • the semiconductor substrate for example, a silicon substrate, a germanium substrate, or the like may be used.
  • a single crystal semiconductor substrate (a single crystal silicon substrate or a single crystal germanium substrate) may be used.
  • the gate insulating layer is not particularly limited, but a thermal oxide film is preferably used.
  • the fourth organic electroluminescence device includes a semiconductor element formed using an SOI (Silicon On Insulator) substrate.
  • the SOI substrate has a structure in which an insulating layer (for example, SiO 2 or the like) exists between a semiconductor substrate (for example, a silicon substrate) and a surface layer semiconductor layer (for example, a surface layer silicon layer).
  • the surface semiconductor layer is preferably made of a single crystal semiconductor.
  • An SOI substrate has a structure in which a crystalline semiconductor film (preferably a single crystal semiconductor film) is provided directly or indirectly on a substrate different from a semiconductor substrate such as a glass substrate, a plastic substrate, a resin substrate, or a ceramic substrate. May be. In this case, the crystalline semiconductor film corresponds to the surface semiconductor layer.
  • a known configuration formed using an SOI substrate can be used.
  • a semiconductor layer may be formed using a surface semiconductor layer.
  • Other structures may be known structures.
  • the gate insulating layer is not particularly limited, but a thermal oxide film can be used.
  • the organic electroluminescence element 200 may be used as the organic electroluminescence element.
  • the third organic electroluminescence device preferably has a configuration in which light is extracted from the surface opposite to the semiconductor substrate. That is, it is preferable to use the organic electroluminescence element 200 having the light extraction surface on the side opposite to the semiconductor substrate.
  • the semiconductor substrate may be thin so that light can be transmitted.
  • the thinned semiconductor substrate may be bonded to a transparent substrate.
  • the fourth organic electroluminescence device when the SOI substrate has a configuration in which an insulating layer exists between the semiconductor substrate and the surface semiconductor layer, the same configuration as that of the third organic electroluminescence device (opposite to the semiconductor substrate). A structure in which light is extracted from the side surface, and a structure in which light can be transmitted by making the semiconductor substrate thin.
  • the semiconductor elements included in the third and fourth organic electroluminescence devices have a top gate structure.
  • the first organic electroluminescence device 1 is used. It will be clear that the same effect can be obtained.
  • the organic electroluminescence device of the present invention is used as an image display device, for example, a mobile phone display, a personal digital assistant (PDA), a computer display, an automobile information display, a TV monitor, a digital camera viewfinder, a head mounted display ( HMD) and the like.
  • the organic electroluminescence device of the present invention is used as various light emitting light sources, such as lighting devices (home lighting, interior lighting), clocks and backlights for liquid crystals, billboard advertisements, traffic lights, light sources for optical storage media, electronic It is used as a light source for photocopiers, a light source for optical communication processors, a light source for optical sensors, and the like.
  • each patterned electrode may be formed with a light emitting layer that is patterned so as to correspond to the emission wavelengths of red (R), green (G), and blue (B).
  • a display panel capable of full color display is realized.
  • a dye conversion method using a blue light emitting layer and a dye conversion layer may be used.
  • the present invention can be applied to an organic electroluminescence element or the like.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

An organic electroluminescent device which comprises a semiconductor element and an organic electroluminescent element, and which is characterized in that the organic electroluminescent element contains a thin film of an amorphous solid substance that contains calcium, aluminum and oxygen.

Description

有機エレクトロルミネッセンス装置Organic electroluminescence device
 本発明は、有機エレクトロルミネッセンス装置に関する。 The present invention relates to an organic electroluminescence device.
 有機エレクトロルミネッセンス装置は、ディスプレイ、バックライト、および照明用途等に広く用いられている。 Organic electroluminescence devices are widely used for displays, backlights, lighting applications, and the like.
 一般に、有機エレクトロルミネッセンス装置は、半導体素子および有機エレクトロルミネッセンス素子を有する。 Generally, an organic electroluminescence device has a semiconductor element and an organic electroluminescence element.
 半導体素子は、有機エレクトロルミネッセンス素子の動作(オン/オフなど)を制御する役割を有する。有機エレクトロルミネッセンス素子は、陽極と、陰極と、これらの電極間に設置された有機層とを有する。有機層は、発光層を有する。 The semiconductor element has a role of controlling the operation (on / off, etc.) of the organic electroluminescence element. An organic electroluminescent element has an anode, a cathode, and an organic layer disposed between these electrodes. The organic layer has a light emitting layer.
 両電極間に電圧を印加すると、それぞれの電極から、発光層にホールおよび電子が注入される。このホールと電子が発光層内で再結合された際に、結合エネルギーが生じ、この結合エネルギーによって発光層中の有機発光材料が励起される。励起した発光材料が基底状態に戻る際に発光が生じるため、これを利用することにより、発光機能が得られる。 When a voltage is applied between both electrodes, holes and electrons are injected from each electrode into the light emitting layer. When these holes and electrons are recombined in the light emitting layer, binding energy is generated, and the organic light emitting material in the light emitting layer is excited by this binding energy. Since light is emitted when the excited light emitting material returns to the ground state, a light emitting function can be obtained by using this.
 なお、通常の場合、有機層は、さらに、ホール注入層および/またはホール輸送層、ならびに電子注入層および/または電子輸送層を有する。ホール注入層およびホール輸送層は、陽極と発光層の間に配置され、発光層にホールを選択的に注入する役割を有する。また、電子注入層および電子輸送層は、陰極と発光層の間に配置され、発光層に電子を選択的に注入する役割を有する。従って、これらの層を配置することにより、有機エレクトロルミネッセンス素子の発光効率を高めることができる(特許文献1)。 In a normal case, the organic layer further has a hole injection layer and / or a hole transport layer, and an electron injection layer and / or an electron transport layer. The hole injection layer and the hole transport layer are disposed between the anode and the light emitting layer, and have a role of selectively injecting holes into the light emitting layer. The electron injection layer and the electron transport layer are disposed between the cathode and the light emitting layer and have a role of selectively injecting electrons into the light emitting layer. Therefore, by arranging these layers, the light emission efficiency of the organic electroluminescence element can be increased (Patent Document 1).
特開平11-102787号公報JP-A-11-102787
 前述のように構成される有機エレクトロルミネッセンス素子において、通常、電子注入層には、フッ化リチウム(LiF)のような材料が使用される。 In the organic electroluminescence element configured as described above, a material such as lithium fluoride (LiF) is usually used for the electron injection layer.
 しかしながら、フッ化リチウムは、元来絶縁材料であるため、この材料を有機エレクトロルミネッセンス素子の電子注入層として使用するには、層の厚さを極めて薄くする必要がある(例えば、0.1nm~0.4nm)。しかしながら、しばしば、このような極めて薄い薄膜を形成することは難しい場合がある。例えば、膜厚が薄くなりすぎると、層状の薄膜を得ることが難しくなる。一方、膜厚が厚い場合、十分な導電性を有する電子注入層を得ることができなくなる。 However, since lithium fluoride is originally an insulating material, in order to use this material as an electron injection layer of an organic electroluminescence device, the thickness of the layer needs to be extremely thin (for example, 0.1 nm to 0.4 nm). However, often it is difficult to form such an extremely thin film. For example, if the film thickness becomes too thin, it becomes difficult to obtain a layered thin film. On the other hand, when the film thickness is thick, an electron injection layer having sufficient conductivity cannot be obtained.
 また、フッ化リチウムは、比較的安定性が悪く、大気に触れると容易に劣化してしまうという問題がある。このため、フッ化リチウム製の電子注入層のハンドリングは、制御された環境下で実施する必要があり、その結果、製造プロセスが煩雑となる。 Also, lithium fluoride has a problem that it is relatively unstable and easily deteriorates when exposed to the atmosphere. For this reason, it is necessary to handle the electron injection layer made of lithium fluoride in a controlled environment, and as a result, the manufacturing process becomes complicated.
 さらに、このようなフッ化リチウムの特性により、電子注入層に十分な導電性が得られなかった場合、あるいは電子注入層に劣化が生じた場合、有機エレクトロルミネッセンス素子、さらには有機エレクトロルミネッセンス装置に所望の発光特性が得られなくなったり、有機エレクトロルミネッセンス装置の信頼性が低下したりする可能性がある。 Furthermore, due to such characteristics of lithium fluoride, when sufficient conductivity is not obtained in the electron injection layer, or when the electron injection layer is deteriorated, the organic electroluminescence element and further the organic electroluminescence device are used. There is a possibility that desired light emission characteristics cannot be obtained or the reliability of the organic electroluminescence device is lowered.
 本発明は、このような背景に鑑みなされたものであり、本発明では、従来に比べて良好な安定性を有し、高い信頼性を有する有機エレクトロルミネッセンス装置を提供することを目的とする。 The present invention has been made in view of such a background, and an object of the present invention is to provide an organic electroluminescence device having better stability and higher reliability than conventional ones.
 本発明では、
 半導体素子と、
 有機エレクトロルミネッセンス素子と、
 を有し、
 前記有機エレクトロルミネッセンス素子は、カルシウム、アルミニウム、および酸素を含む非晶質固体物質の薄膜を含むことを特徴とする有機エレクトロルミネッセンス装置が提供される。
In the present invention,
A semiconductor element;
An organic electroluminescence element;
Have
The organic electroluminescence device includes an organic electroluminescence device including a thin film of an amorphous solid material containing calcium, aluminum, and oxygen.
 ここで、本発明による有機エレクトロルミネッセンス装置において、前記有機エレクトロルミネッセンス素子は、陽極、有機層、および陰極を有し、
 前記非晶質固体物質の薄膜は、前記有機層または前記陰極に含まれても良い。
Here, in the organic electroluminescence device according to the present invention, the organic electroluminescence element has an anode, an organic layer, and a cathode,
The thin film of the amorphous solid material may be included in the organic layer or the cathode.
 また、本発明による有機エレクトロルミネッセンス装置において、前記非晶質固体物質の薄膜は、非晶質C12A7エレクトライドで構成されても良い。 In the organic electroluminescence device according to the present invention, the thin film of the amorphous solid material may be composed of amorphous C12A7 electride.
 また、本発明による有機エレクトロルミネッセンス装置において、前記半導体素子は、半導体層を有する薄膜トランジスタを有しても良い。 In the organic electroluminescence device according to the present invention, the semiconductor element may include a thin film transistor having a semiconductor layer.
 また、本発明による有機エレクトロルミネッセンス装置において、前記半導体層は、アモルファスシリコン、ポリシリコン、単結晶シリコン、酸化物半導体、または有機半導体を有しても良い。 In the organic electroluminescence device according to the present invention, the semiconductor layer may include amorphous silicon, polysilicon, single crystal silicon, an oxide semiconductor, or an organic semiconductor.
 また、本発明による有機エレクトロルミネッセンス装置において、前記酸化物半導体は、In、Ga、およびZnを含んでも良い。 In the organic electroluminescence device according to the present invention, the oxide semiconductor may include In, Ga, and Zn.
 また、本発明による有機エレクトロルミネッセンス装置において、前記半導体素子は、半導体基板の一部を半導体領域として有しても良い。 In the organic electroluminescence device according to the present invention, the semiconductor element may have a part of a semiconductor substrate as a semiconductor region.
 本発明では、従来に比べて良好な安定性を有し、高い信頼性を有する有機エレクトロルミネッセンス装置を提供することができる。 In the present invention, it is possible to provide an organic electroluminescence device having better stability and higher reliability than conventional ones.
本発明の一実施例による有機エレクトロルミネッセンス装置の構成を概略的に示した断面図である。1 is a cross-sectional view schematically illustrating a configuration of an organic electroluminescence device according to an embodiment of the present invention. 有機エレクトロルミネッセンス素子の一構成例を模式的に示した図である。It is the figure which showed typically the example of 1 structure of the organic electroluminescent element. 有機エレクトロルミネッセンス素子の別の構成例を模式的に示した図である。It is the figure which showed typically the example of another structure of the organic electroluminescent element. 第1の有機エレクトロルミネッセンス装置の配線回路を概略的に示した図である。It is the figure which showed schematically the wiring circuit of the 1st organic electroluminescent apparatus. 非晶質C12A7エレクトライドの概念的な構造を示した模式図である。It is the schematic diagram which showed the conceptual structure of the amorphous C12A7 electride. 非晶質C12A7エレクトライドの薄膜の成膜方法のフローを概略的に示した図である。It is the figure which showed schematically the flow of the film-forming method of the thin film of an amorphous C12A7 electride. トップゲート構造-トップコンタクト方式で構成された半導体素子の一例を模式的に示した断面図である。FIG. 3 is a cross-sectional view schematically showing an example of a semiconductor device configured by a top gate structure-top contact method. トップゲート構造-ボトムコンタクト方式で構成された半導体素子の一例を模式的に示した断面図である。FIG. 3 is a cross-sectional view schematically showing an example of a semiconductor device configured by a top gate structure-bottom contact method. ボトムゲート構造-トップコンタクト方式で構成された半導体素子の一例を模式的に示した断面図である。FIG. 3 is a cross-sectional view schematically showing an example of a semiconductor device configured by a bottom gate structure-top contact method. ボトムゲート構造-ボトムコンタクト方式で構成された半導体素子の一例を模式的に示した断面図である。FIG. 6 is a cross-sectional view schematically showing an example of a semiconductor device configured by a bottom gate structure-bottom contact method. 本発明の別の実施例による有機エレクトロルミネッセンス装置の構成を概略的に示した断面図である。It is sectional drawing which showed schematically the structure of the organic electroluminescent apparatus by another Example of this invention.
 以下、図面を参照して、本発明の構成について詳しく説明する。 Hereinafter, the configuration of the present invention will be described in detail with reference to the drawings.
 (本発明の一実施例による有機エレクトロルミネッセンス装置について)
 図1には、本発明の一実施例による有機エレクトロルミネッセンス装置(第1の有機エレクトロルミネッセンス装置)の断面を模式的に示す。
(About the organic electroluminescence device according to one embodiment of the present invention)
In FIG. 1, the cross section of the organic electroluminescent apparatus (1st organic electroluminescent apparatus) by one Example of this invention is shown typically.
 図1に示すように、第1の有機エレクトロルミネッセンス装置1は、基板110上に形成された半導体素子100(図1の四角枠で囲まれた領域参照)と、有機エレクトロルミネッセンス素子200(図1の丸枠で囲まれた領域参照)と、を備える。 As shown in FIG. 1, the first organic electroluminescence device 1 includes a semiconductor element 100 (see a region surrounded by a square frame in FIG. 1) formed on a substrate 110, and an organic electroluminescence element 200 (FIG. 1). (Refer to the area surrounded by a round frame).
 なお、図1では、第1の有機エレクトロルミネッセンス装置1は、アクティブマトリックス方式として示されているが、第1の有機エレクトロルミネッセンス装置1は、パッシブマトリックス方式であっても良い。 In FIG. 1, the first organic electroluminescence device 1 is shown as an active matrix method, but the first organic electroluminescence device 1 may be a passive matrix method.
 また、図1の例では、第1の有機エレクトロルミネッセンス装置1は、基板110上に形成された第1のパッシベーション層10、および有機エレクトロルミネッセンス素子200上に形成された第2のパッシベーション層20を有する。 In the example of FIG. 1, the first organic electroluminescence device 1 includes a first passivation layer 10 formed on the substrate 110 and a second passivation layer 20 formed on the organic electroluminescence element 200. Have.
 パッシベーション層10、20は、例えば、酸化シリコン(SiO)、窒化シリコン(SiN)、酸窒化シリコン(SiO)、およびセラミックスなどの絶縁体で構成されても良い。ただし、第1および第2のパッシベーション層10、20は、省略されても良い。 The passivation layers 10 and 20 may be made of an insulator such as silicon oxide (SiO x ), silicon nitride (SiN x ), silicon oxynitride (SiO x N y ), and ceramics. However, the first and second passivation layers 10 and 20 may be omitted.
 半導体素子100は、有機エレクトロルミネッセンス素子200の動作を制御する役割を有する。 The semiconductor element 100 has a role of controlling the operation of the organic electroluminescence element 200.
 半導体素子100の種類は、特に限られない。半導体素子100は、例えば、図1に示されているような、薄膜トランジスタのような電界効果型トランジスタを有しても良い。 The type of the semiconductor element 100 is not particularly limited. The semiconductor element 100 may include, for example, a field effect transistor such as a thin film transistor as shown in FIG.
 図1の例では、半導体素子100として、2つの薄膜トランジスタ101、102が示されている。第1の薄膜トランジスタ(駆動用トランジスタ)101は、半導体層105、ソース電極120、ドレイン電極122、およびゲート電極124を有する。第2の薄膜トランジスタ(スイッチング用トランジスタ)102も、同様の構成を有する。 In the example of FIG. 1, two thin film transistors 101 and 102 are shown as the semiconductor element 100. The first thin film transistor (driving transistor) 101 includes a semiconductor layer 105, a source electrode 120, a drain electrode 122, and a gate electrode 124. The second thin film transistor (switching transistor) 102 has a similar structure.
 一方、有機エレクトロルミネッセンス素子200は、下部電極210、有機層220、および上部電極230を有する。通常の場合、有機層220は、発光層を含む複数の層で構成される。 On the other hand, the organic electroluminescence element 200 has a lower electrode 210, an organic layer 220, and an upper electrode 230. In a normal case, the organic layer 220 includes a plurality of layers including a light emitting layer.
 図2には、有機エレクトロルミネッセンス素子の拡大図の一例を模式的に示す。 FIG. 2 schematically shows an example of an enlarged view of the organic electroluminescence element.
 図2に示すように、この有機エレクトロルミネッセンス素子200Aは、下部電極としての陽極210a、有機層220a、および上部電極としての陰極230aを有する。 As shown in FIG. 2, the organic electroluminescence element 200A has an anode 210a as a lower electrode, an organic layer 220a, and a cathode 230a as an upper electrode.
 有機層220aは、陽極210aの側から順に、ホール注入層223a、ホール輸送層224a、発光層225a、電子輸送層226a、および電子注入層227aを積層することにより構成される。 The organic layer 220a is configured by laminating a hole injection layer 223a, a hole transport layer 224a, a light emitting layer 225a, an electron transport layer 226a, and an electron injection layer 227a in this order from the anode 210a side.
 ただし、ホール注入層223a、ホール輸送層224aおよび/または電子輸送層226aは、省略されても良い。 However, the hole injection layer 223a, the hole transport layer 224a, and / or the electron transport layer 226a may be omitted.
 また、ホール注入層223a、ホール輸送層224aおよび/または電子輸送層226aは、それ自体が有機物からなる層でなくても良い。すなわち、ホール注入層223a、ホール輸送層224aおよび/または電子輸送層226aは、無機物からなる層であって良い。 Further, the hole injection layer 223a, the hole transport layer 224a, and / or the electron transport layer 226a may not be a layer made of an organic substance. That is, the hole injection layer 223a, the hole transport layer 224a, and / or the electron transport layer 226a may be a layer made of an inorganic material.
 ここで、陽極210aとして、透明電極を使用した場合、有機エレクトロルミネッセンス素子200Aの下側が光取り出し面となる。逆に、陰極230aとして、透明電極を使用した場合、有機エレクトロルミネッセンス素子200Aの上側が光取り出し面となる。さらに、陽極210aおよび陰極230aをともに透明電極とした場合、上側および下側の両方から、光を取り出すことができる。 Here, when a transparent electrode is used as the anode 210a, the lower side of the organic electroluminescence element 200A is a light extraction surface. Conversely, when a transparent electrode is used as the cathode 230a, the upper side of the organic electroluminescent element 200A is the light extraction surface. Furthermore, when both the anode 210a and the cathode 230a are transparent electrodes, light can be extracted from both the upper side and the lower side.
 そのような透明電極は、例えばITO(インジウムスズ酸化物)のような透明金属酸化物で構成されても良い。 Such a transparent electrode may be made of a transparent metal oxide such as ITO (indium tin oxide).
 図3には、有機エレクトロルミネッセンス素子の別の構成例を模式的に示す。 FIG. 3 schematically shows another configuration example of the organic electroluminescence element.
 図3に示すように、この有機エレクトロルミネッセンス素子200Bは、下部電極としての陰極210b、有機層220b、および上部電極としての陽極230bを有する。 As shown in FIG. 3, the organic electroluminescence element 200B has a cathode 210b as a lower electrode, an organic layer 220b, and an anode 230b as an upper electrode.
 有機層220bは、陰極210bの側から順に、電子注入層227b、電子輸送層226b、発光層225b、ホール輸送層224b、およびホール注入層223bを積層することにより構成される。 The organic layer 220b is configured by laminating an electron injection layer 227b, an electron transport layer 226b, a light emitting layer 225b, a hole transport layer 224b, and a hole injection layer 223b in this order from the cathode 210b side.
 ただし、この場合も、ホール注入層223b、ホール輸送層224bおよび/または電子輸送層226bは、省略されても良い。 However, also in this case, the hole injection layer 223b, the hole transport layer 224b, and / or the electron transport layer 226b may be omitted.
 ここで、陰極210bとして、透明電極を使用した場合、有機エレクトロルミネッセンス素子200Bの下側が光取り出し面となる。逆に、陽極230bとして、透明電極を使用した場合、有機エレクトロルミネッセンス素子200Aの上側が光取り出し面となる。さらに、陰極210bおよび陽極230bをともに透明電極とした場合、上側および下側の両方から、光を取り出すことができる。 Here, when a transparent electrode is used as the cathode 210b, the lower side of the organic electroluminescence element 200B is a light extraction surface. Conversely, when a transparent electrode is used as the anode 230b, the upper side of the organic electroluminescence element 200A is the light extraction surface. Furthermore, when both the cathode 210b and the anode 230b are transparent electrodes, light can be extracted from both the upper side and the lower side.
 そのような透明電極は、例えばITO(インジウムスズ酸化物)のような透明金属酸化物で構成されても良い。 Such a transparent electrode may be made of a transparent metal oxide such as ITO (indium tin oxide).
 ここで、再度図1を参照すると、有機エレクトロルミネッセンス素子200(および200A、200B。以下同じ)は、第1および第2の薄膜トランジスタ101、102の上部に配置される。 Here, referring to FIG. 1 again, the organic electroluminescence element 200 (and 200A, 200B; the same applies hereinafter) is disposed on the first and second thin film transistors 101, 102.
 有機エレクトロルミネッセンス素子200の下部電極210は、第1の薄膜トランジスタ101のドレイン電極122と接続される。 The lower electrode 210 of the organic electroluminescence element 200 is connected to the drain electrode 122 of the first thin film transistor 101.
 図4には、図1に示した第1の有機エレクトロルミネッセンス装置1の配線回路を概略的に示す。 FIG. 4 schematically shows a wiring circuit of the first organic electroluminescence device 1 shown in FIG.
 図4に示すように、第1の有機エレクトロルミネッセンス装置1は、ゲート配線320、データ配線322、および駆動配線324を有する。 As shown in FIG. 4, the first organic electroluminescence device 1 includes a gate wiring 320, a data wiring 322, and a driving wiring 324.
 ゲート配線320は、相互に平行な複数の配線で構成される。データ配線322は、相互に平行な複数の配線で構成される。同様に、駆動配線324は、相互に平行な複数の配線で構成される。ゲート配線220、データ配線222、および駆動配線324は、相互に電気的に絶縁されている。 The gate wiring 320 is composed of a plurality of wirings parallel to each other. The data wiring 322 is composed of a plurality of wirings parallel to each other. Similarly, the drive wiring 324 includes a plurality of wirings parallel to each other. The gate wiring 220, the data wiring 222, and the drive wiring 324 are electrically insulated from each other.
 第2の薄膜トランジスタ102のゲート電極124は、ゲート配線320に接続されており、第2の薄膜トランジスタ102のソース電極120は、データ配線322に接続されている。また、第2の薄膜トランジスタ102のドレイン電極122は、キャパシタ326および第1の薄膜トランジスタ101のゲート電極124に接続される。第1の薄膜トランジスタ101のソース電極120は、駆動配線324に接続され、第1の薄膜トランジスタ101のドレイン電極122は、有機エレクトロルミネッセンス素子200に接続される。 The gate electrode 124 of the second thin film transistor 102 is connected to the gate wiring 320, and the source electrode 120 of the second thin film transistor 102 is connected to the data wiring 322. The drain electrode 122 of the second thin film transistor 102 is connected to the capacitor 326 and the gate electrode 124 of the first thin film transistor 101. The source electrode 120 of the first thin film transistor 101 is connected to the drive wiring 324, and the drain electrode 122 of the first thin film transistor 101 is connected to the organic electroluminescence element 200.
 ここで、第1の有機エレクトロルミネッセンス装置1は、有機エレクトロルミネッセンス素子200のいずれかに、カルシウム、アルミニウム、および酸素を含む非晶質固体物質の薄膜(以下、単に「非晶質の薄膜」と称する)を含むという特徴を有する。 Here, the first organic electroluminescence device 1 includes a thin film of an amorphous solid material containing calcium, aluminum, and oxygen (hereinafter simply referred to as “amorphous thin film”) in any of the organic electroluminescence elements 200. It has a feature of including.
 例えば、有機エレクトロルミネッセンス素子200は、有機層220、220a、220bがそのような非晶質の薄膜を含んでも良い。例えば、図2または図3において、電子注入層227a、227bが非晶質の薄膜を含んでも良い。あるいは、これに加えてまたはこれとは別に、有機エレクトロルミネッセンス素子200は、図2または図3における陰極230a、210bが、非晶質の薄膜を含んでも良い。 For example, in the organic electroluminescence element 200, the organic layers 220, 220a, and 220b may include such an amorphous thin film. For example, in FIG. 2 or FIG. 3, the electron injection layers 227a and 227b may include amorphous thin films. Alternatively or additionally, in the organic electroluminescent element 200, the cathodes 230a and 210b in FIG. 2 or 3 may include an amorphous thin film.
 非晶質の薄膜において、Al/Caのモル比は、好ましくは0.5~4.7であり、より好ましくは0.6~3であり、さらに好ましくは0.8~2.5である。薄膜の組成分析は、XPS法、EPMA法またはEDX法等により行うことができる。 In the amorphous thin film, the molar ratio of Al / Ca is preferably 0.5 to 4.7, more preferably 0.6 to 3, and further preferably 0.8 to 2.5. . The composition analysis of the thin film can be performed by XPS method, EPMA method, EDX method or the like.
 非晶質の薄膜は、カルシウムおよびアルミニウムを含む酸化物のエレクトライドであって良い。非晶質の薄膜は、電子密度が2.0×1018cm-3以上2.3×1021cm-3以下の範囲で電子を含むことが好ましい。また、非晶質の薄膜は、4.6eVの光子エネルギー位置において光吸収を示すことが好ましい。 The amorphous thin film may be an electride of oxide containing calcium and aluminum. The amorphous thin film preferably contains electrons in an electron density range of 2.0 × 10 18 cm −3 to 2.3 × 10 21 cm −3 . The amorphous thin film preferably absorbs light at a photon energy position of 4.6 eV.
 非晶質の薄膜は、半導体的な電気的特性を示し、低い仕事関数を有する。仕事関数は2.4~4.5eVであっても良く、2.8~3.2eVであっても良い。 An amorphous thin film shows semiconductor electrical characteristics and has a low work function. The work function may be 2.4 to 4.5 eV, or 2.8 to 3.2 eV.
 そのような非晶質の薄膜は、例えば、非晶質C12A7エレクトライドの薄膜で構成されても良い。 Such an amorphous thin film may be composed of, for example, an amorphous C12A7 electride thin film.
 後に詳しく説明するように、有機エレクトロルミネッセンス素子200の電子注入層227a、227bとして使用される非晶質C12A7エレクトライドは、良好な導電性を示す。従って、電子注入層227a、227bとして非晶質C12A7エレクトライドを使用した場合、従来のフッ化リチウム製電子注入層のように、層の厚さをnm未満のオーダーまで薄くする必要がなくなる。 As will be described in detail later, the amorphous C12A7 electride used as the electron injection layers 227a and 227b of the organic electroluminescence element 200 exhibits good conductivity. Therefore, when amorphous C12A7 electride is used as the electron injection layers 227a and 227b, it is not necessary to reduce the thickness of the layer to the order of less than nm, unlike the conventional lithium fluoride electron injection layer.
 また、非晶質C12A7エレクトライドは、安定なセラミック材料であり、大気に触れても変質したり、劣化したりすることはない。従って、電子注入層227a、227bとして非晶質C12A7エレクトライドを使用した場合、従来のフッ化リチウム製電子注入層のように、制御された環境下でハンドリングを行わなければならないという問題が解消される。 In addition, amorphous C12A7 electride is a stable ceramic material and does not deteriorate or deteriorate even when exposed to the atmosphere. Therefore, when amorphous C12A7 electride is used as the electron injection layers 227a and 227b, the problem of handling in a controlled environment as in the case of a conventional lithium fluoride electron injection layer is solved. The
 さらに、非晶質C12A7エレクトライドは、低い仕事関数を有する。従って、有機エレクトロルミネッセンス素子200では、陰極230a、210bから発光層225a、225bへの電子注入障壁を低下することが可能となり、発光効率の高い有機エレクトロルミネッセンス素子200、さらには第1の有機エレクトロルミネッセンス装置100を得ることができる。 Furthermore, amorphous C12A7 electride has a low work function. Therefore, in the organic electroluminescence element 200, it is possible to lower the electron injection barrier from the cathodes 230a and 210b to the light emitting layers 225a and 225b, the organic electroluminescence element 200 having high luminous efficiency, and further the first organic electroluminescence. Device 100 can be obtained.
 加えて、非晶質C12A7エレクトライドは、大きいイオン化ポテンシャルを有する。従って、非晶質C12A7エレクトライドはいわゆるホールブロック効果を有する。すなわち、発光層225a、225bで電子と再結合しなかったホールが電子輸送層226a、226bを通過し陰極230a、210bに到達することを防ぎ、電子とホールの再結合確率が高くなる。そのため、本発明では、発光効率の高い有機EL素子を得ることができる。 In addition, amorphous C12A7 electride has a large ionization potential. Therefore, amorphous C12A7 electride has a so-called hole blocking effect. That is, holes that have not recombined with electrons in the light emitting layers 225a and 225b are prevented from passing through the electron transport layers 226a and 226b and reaching the cathodes 230a and 210b, and the recombination probability of electrons and holes is increased. Therefore, in this invention, an organic EL element with high luminous efficiency can be obtained.
 有機エレクトロルミネッセンス素子200の陰極230a、210bとして、非晶質C12A7エレクトライドの薄膜を使用した場合も、同様の効果が得られる。 The same effect can be obtained when an amorphous C12A7 electride thin film is used as the cathodes 230a and 210b of the organic electroluminescence element 200.
 このような特徴により、第1の有機エレクトロルミネッセンス装置100では、従来の有機エレクトロルミネッセンス装置のように、信頼性が低下したり、所望の発光特性が得られなくなったりすることが生じ難く、ハンドリングが容易で、信頼性の高い有機エレクトロルミネッセンス装置を提供することが可能になる。 Due to such features, the first organic electroluminescence device 100 is unlikely to have a reduced reliability or a desired light emission characteristic unlike the conventional organic electroluminescence device, and handling is difficult. It is possible to provide an organic electroluminescence device that is easy and reliable.
 なお、以降の記載では、非晶質の薄膜が非晶質C12A7エレクトライドの薄膜である場合を想定して、各構成および特徴について説明する。 In the following description, each configuration and feature will be described assuming that the amorphous thin film is an amorphous C12A7 electride thin film.
 (用語の定義について)
 ここで、本発明において、有機エレクトロルミネッセンス素子に含まれる非晶質C12A7エレクトライド、およびこれに関連する用語について説明しておく。
(Term definition)
Here, in this invention, the amorphous C12A7 electride contained in an organic electroluminescent element, and the term relevant to this are demonstrated.
 (結晶質C12A7)
 本願において、「結晶質C12A7」とは、12CaO・7Alの結晶、およびこれと同等の結晶構造を有する同型化合物を意味する。本化合物の鉱物名は、「マイエナイト」である。
(Crystalline C12A7)
In the present application, “crystalline C12A7” means a crystal of 12CaO · 7Al 2 O 3 and an isomorphous compound having a crystal structure equivalent to this. The mineral name of this compound is “mayenite”.
 本発明における結晶質C12A7は、結晶格子の骨格により形成されるケージ構造が保持される範囲で、C12A7結晶骨格のCa原子および/またはAl原子の一部乃至全部が他の原子に置換された化合物、ならびにケージ中のフリー酸素イオンの一部乃至全部が他の陰イオンに置換された同型化合物であっても良い。なお、C12A7は、Ca12Al1433またはCa24Al2866と表記されることがある。 The crystalline C12A7 in the present invention is a compound in which some or all of Ca atoms and / or Al atoms in the C12A7 crystal skeleton are substituted with other atoms within a range in which the cage structure formed by the skeleton of the crystal lattice is maintained. In addition, the same type compound may be used in which some or all of the free oxygen ions in the cage are replaced with other anions. Incidentally, C12A7 is sometimes denoted as Ca 12 Al 14 O 33 or Ca 24 Al 28 O 66.
 同型化合物としては、これに限られるものではないが、例えば、下記の(1)~(5)の化合物が例示される。
(1)結晶中のCa原子の一部乃至全部が、Sr、Mg、および/またはBaなどの金属原子に置換された同型化合物。例えば、Ca原子の一部乃至全部がSrに置換された化合物としては、ストロンチウムアルミネートSr12Al1433があり、CaとSrの混合比が任意に変化された混晶として、カルシウムストロンチウムアルミネートCa12-xSrAl1433(xは1~11の整数;平均値の場合は0超12未満の数)などがある。
(2)結晶中のAl原子の一部ないし全部が、Si、Ge、Ga、In、およびBからなる群から選択される一種以上の原子に置換された同型化合物。例えば、Ca12Al10Si35などが挙げられる。
(3)12CaO・7Alの結晶(上記(1)、(2)の化合物を含む)中の金属原子および/または非金属原子(ただし、酸素原子を除く)の一部が、Ti、V、Cr、Mn、Fe、Co、Ni、およびCuからなる群から選択される一種以上の遷移金属原子もしくは典型金属原子、Li、Na、およびKなどのアルカリ金属原子、またはCe、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、およびYbからなる群から選択される一種以上の希土類原子と置換された同型化合物。
(4)ケージに包接されているフリー酸素イオンの一部乃至全部が、他の陰イオンに置換された化合物。他の陰イオンとしては、例えば、H、H 、H2-、O、O 、OH、F、Cl、およびS2-からなる群から選択される一種以上の陰イオンや、窒素(N)の陰イオンなどがある。
(5)ケージの骨格の酸素の一部が、窒素(N)などで置換された化合物。
Examples of the isomorphous compound include, but are not limited to, the following compounds (1) to (5).
(1) Isomorphic compounds in which some or all of the Ca atoms in the crystal are substituted with metal atoms such as Sr, Mg, and / or Ba. For example, a compound in which some or all of Ca atoms are substituted with Sr is strontium aluminate Sr 12 Al 14 O 33 , and calcium strontium aluminum is used as a mixed crystal in which the mixing ratio of Ca and Sr is arbitrarily changed. Nate Ca 12-x Sr X Al 14 O 33 (x is an integer of 1 to 11; in the case of an average value, it is a number greater than 0 and less than 12)
(2) A homomorphic compound in which some or all of the Al atoms in the crystal are substituted with one or more atoms selected from the group consisting of Si, Ge, Ga, In, and B. For example, like Ca 12 Al 10 Si 4 O 35 .
(3) A part of metal atoms and / or nonmetal atoms (excluding oxygen atoms) in the 12CaO.7Al 2 O 3 crystal (including the compounds of (1) and (2) above) is Ti, One or more transition metal atoms or typical metal atoms selected from the group consisting of V, Cr, Mn, Fe, Co, Ni, and Cu, alkali metal atoms such as Li, Na, and K, or Ce, Pr, Nd , Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, and Yb. The same type compound substituted with one or more rare earth atoms selected from the group consisting of Yb.
(4) A compound in which some or all of the free oxygen ions included in the cage are replaced with other anions. Other anions include, for example, one or more selected from the group consisting of H , H 2 , H 2− , O , O 2 , OH , F , Cl , and S 2− . There are anions and nitrogen (N) anions.
(5) A compound in which part of oxygen in the cage skeleton is substituted with nitrogen (N) or the like.
 (結晶質C12A7エレクトライド)
 本願において、「結晶質C12A7エレクトライド」とは、前述の「結晶質C12A7」において、ケージに包接されたフリー酸素イオン(ケージに包接された他の陰イオンを有する場合は、当該陰イオン)の一部乃至全部が電子に置換された化合物を意味する。
(Crystalline C12A7 electride)
In the present application, the “crystalline C12A7 electride” means that in the above-mentioned “crystalline C12A7”, free oxygen ions included in the cage (in the case of having other anions included in the cage, the anions) ) Means a compound in which part or all of them are substituted with electrons.
 結晶質C12A7エレクトライドにおいて、ケージに包接された電子は、ケージに緩く束縛され、結晶中を自由に動くことができる。このため、結晶質C12A7エレクトライドは、導電性を示す。特に、全てのフリー酸素イオンが電子で置き換えられた結晶質C12A7は、[Ca24Al28644+(4e)と表記されることがある。 In the crystalline C12A7 electride, the electrons included in the cage are loosely bound in the cage and can move freely in the crystal. For this reason, crystalline C12A7 electride shows electroconductivity. In particular, crystalline C12A7 in which all free oxygen ions are replaced with electrons may be expressed as [Ca 24 Al 28 O 64 ] 4+ (4e ).
 (非晶質C12A7エレクトライド)
 本願において、「非晶質C12A7エレクトライド」とは、結晶質C12A7エレクトライドと同等の組成を有し、非晶質C12A7を溶媒とし、電子を溶質とする溶媒和からなる非晶質固体物質を意味する。
(Amorphous C12A7 electride)
In the present application, “amorphous C12A7 electride” means an amorphous solid substance having a composition equivalent to that of crystalline C12A7 electride, consisting of solvation having amorphous C12A7 as a solvent and electrons as a solute. means.
 図5には、非晶質C12A7エレクトライドの構造を概念的に示す。 FIG. 5 conceptually shows the structure of the amorphous C12A7 electride.
 一般に、結晶質C12A7エレクトライドでは、それぞれのケージが面を共有して3次元的に積み重なることにより、結晶格子が構成され、それらのケージの一部に電子が包接される。これに対して、非晶質C12A7エレクトライドの場合、図5に示すように、非晶質C12A7からなる溶媒520中に、バイポーラロン550と呼ばれる特徴的な部分構造が分散された状態で存在する。バイポーラロン550は、2つのケージ530が隣接し、さらにそれぞれのケージ530に、電子(溶質)540が包接されて構成されている。ただし、非晶質C12A7エレクトライドの状態は上記に限られず、ひとつのケージ530に2つの電子(溶質)540が包接されてもよい。また、これらのケージが複数凝集した状態でもよく、凝集したケージは微結晶とみなすこともできるため、非晶質中に微結晶が含まれた状態も本発明において非晶質とみなす。 Generally, in the crystalline C12A7 electride, each cage shares a plane and is three-dimensionally stacked to form a crystal lattice, and electrons are included in a part of these cages. In contrast, in the case of amorphous C12A7 electride, as shown in FIG. 5, a characteristic partial structure called bipolaron 550 is present in a dispersed state in a solvent 520 made of amorphous C12A7. . The bipolarlon 550 is configured such that two cages 530 are adjacent to each other, and an electron (solute) 540 is included in each cage 530. However, the state of the amorphous C12A7 electride is not limited to the above, and two electrons (solutes) 540 may be included in one cage 530. Further, a plurality of these cages may be aggregated, and the aggregated cage can be regarded as a microcrystal. Therefore, a state in which the microcrystal is included in the amorphous is also regarded as amorphous in the present invention.
 非晶質C12A7エレクトライドは、導電性を示し、低い仕事関数を有する。仕事関数は2.4~4.5eVであっても良く、3~4eVであっても良い。非晶質C12A7エレクトライドの仕事関数は、2.8~3.2eVであるのが好ましい。また、非晶質C12A7エレクトライドは、高いイオン化ポテンシャルを有する。イオン化ポテンシャルは7.0~9.0eVであっても良く、7.5~8.5eVであっても良い。 Amorphous C12A7 electride exhibits electrical conductivity and has a low work function. The work function may be 2.4 to 4.5 eV, or 3 to 4 eV. The work function of the amorphous C12A7 electride is preferably 2.8 to 3.2 eV. Amorphous C12A7 electride has a high ionization potential. The ionization potential may be 7.0 to 9.0 eV, or 7.5 to 8.5 eV.
 バイポーラロン550は、光子エネルギーが1.55eV~3.10eVの可視光の範囲では光吸収がほとんどなく、4.6eV付近で光吸収を示す。従って、非晶質C12A7エレクトライドの薄膜は可視光において透明である。また、被検査対象であるサンプルの光吸収特性を測定し、4.6eV付近の光吸収係数を測定することにより、サンプル中にバイポーラロン550が存在するかどうか、すなわちサンプルが非晶質C12A7エレクトライドを有するかどうかを確認することができる。 Bipolarlon 550 has almost no light absorption in the range of visible light with a photon energy of 1.55 eV to 3.10 eV, and shows light absorption in the vicinity of 4.6 eV. Therefore, the amorphous C12A7 electride thin film is transparent in visible light. Further, by measuring the light absorption characteristics of the sample to be inspected and measuring the light absorption coefficient in the vicinity of 4.6 eV, whether or not the bipolaron 550 is present in the sample, that is, the sample is amorphous C12A7 elect You can check if you have a ride.
 また、バイポーラロン550を構成する隣接する2つのケージ530は、ラマン活性であり、ラマン分光測定の際に186cm-1付近に特徴的なピークを示す。 Further, two adjacent cages 530 constituting the bipolaron 550 are Raman-active, and show a characteristic peak in the vicinity of 186 cm −1 in the Raman spectroscopic measurement.
 (C12A7エレクトライド)
 本願において、「C12A7エレクトライド」とは、前述の「結晶質C12A7エレクトライド」および「非晶質C12A7エレクトライド」の両方を含む概念を意味する。
(C12A7 electride)
In the present application, “C12A7 electride” means a concept including both the above-mentioned “crystalline C12A7 electride” and “amorphous C12A7 electride”.
 なお、結晶質C12A7エレクトライド」は、Ca原子、Al原子、およびO原子を含み、Ca:Alのモル比が13:13~11:15の範囲であり、Ca:Alのモル比は、12.5:13.5~11.5:14.5の範囲であることが好ましく、12.2:13.8~11.8:14.2の範囲であることがより好ましい。 “Crystalline C12A7 electride” includes Ca atoms, Al atoms, and O atoms, the molar ratio of Ca: Al is in the range of 13:13 to 11:15, and the molar ratio of Ca: Al is 12 It is preferably in the range of 5: 13.5 to 11.5: 14.5, and more preferably in the range of 12.2: 13.8 to 11.8: 14.2.
 また、「非晶質C12A7エレクトライド」は、Ca原子、Al原子、およびO原子を含み、Ca:Alのモル比が13:12~11:16の範囲であり、Ca:Alのモル比は、13:13~11:15の範囲であることが好ましく、12.5:13.5~11.5:14.5の範囲であることがより好ましい。また、「非晶質C12A7エレクトライド」の薄膜は、全体の67%以上、好ましくは80%以上、より好ましくは95%以上が上記組成範囲にあるCa、Al、およびOで構成されることが好ましい。 The “amorphous C12A7 electride” includes Ca atoms, Al atoms, and O atoms, and the molar ratio of Ca: Al is in the range of 13:12 to 11:16. The molar ratio of Ca: Al is 13:13 to 11:15 is preferable, and 12.5: 13.5 to 11.5: 14.5 is more preferable. Further, the thin film of “amorphous C12A7 electride” is composed of Ca, Al, and O in the above composition range at 67% or more, preferably 80% or more, more preferably 95% or more of the whole. preferable.
 (有機エレクトロルミネッセンス素子100の各層の構成について)
 次に、図1に示した有機エレクトロルミネッセンス素子200を構成する各層の構成について詳しく説明する。なお、以下の説明では、明確化のため、各部材には、図2に示した有機エレクトロルミネッセンス素子200Aの構成部材に付された参照符号を使用する。
(About the structure of each layer of the organic electroluminescence element 100)
Next, the structure of each layer which comprises the organic electroluminescent element 200 shown in FIG. 1 is demonstrated in detail. In the following description, for the sake of clarity, the reference numerals attached to the constituent members of the organic electroluminescence element 200A shown in FIG.
 (陽極210a)
 陽極210aとしては、通常、金属または金属酸化物が使用される。使用材料は、仕事関数が4eV以上であるものが好ましい。なお、前述のように、有機エレクトロルミネッセンス素子200Aの光取り出し面を陽極210a側とする場合、陽極210aは、透明である必要がある。
(Anode 210a)
As the anode 210a, a metal or a metal oxide is usually used. The material used preferably has a work function of 4 eV or more. As described above, when the light extraction surface of the organic electroluminescence element 200A is on the anode 210a side, the anode 210a needs to be transparent.
 陽極210aは、例えば、アルミニウム、銀、錫、金、炭素、鉄、コバルト、ニッケル、銅、亜鉛、タングステン、バナジウム、およびそれらの合金のような金属材料であっても良い。あるいは、陽極210aは、例えば、ITO、アンチモン酸化物(Sb)、ジルコニウム酸化物(ZrO)、スズ酸化物(SnO)、亜鉛酸化物(ZnO)、IZO(Indium Zinc Oxide)、AZO(ZnO-Al:アルミニウムがドーピングされた亜鉛酸化物)、GZO(ZnO-Ga:ガリウムがドーピングされた亜鉛酸化物)、NbドープTiO、TaドープTiO、およびIWZO(In-WO-ZnO:三酸化タングステンおよび酸化亜鉛がドーピングされたインジウム酸化物)等の金属酸化物材料であっても良い。 The anode 210a may be a metal material such as aluminum, silver, tin, gold, carbon, iron, cobalt, nickel, copper, zinc, tungsten, vanadium, and alloys thereof. Alternatively, the anode 210a is made of, for example, ITO, antimony oxide (Sb 2 O 3 ), zirconium oxide (ZrO 2 ), tin oxide (SnO 2 ), zinc oxide (ZnO), IZO (Indium Zinc Oxide), AZO (ZnO—Al 2 O 3 : zinc oxide doped with aluminum), GZO (ZnO—Ga 2 O 3 : zinc oxide doped with gallium), Nb-doped TiO 2 , Ta-doped TiO 2 , and IWZO It may also be a metal oxide material such as (In 2 O 3 —WO 3 —ZnO: indium oxide doped with tungsten trioxide and zinc oxide).
 陽極210aの成膜方法は、特に限られない。陽極210aは、蒸着法、スパッタリング法、塗布法等の公知の成膜技術により、形成しても良い。 The film forming method of the anode 210a is not particularly limited. The anode 210a may be formed by a known film forming technique such as a vapor deposition method, a sputtering method, or a coating method.
 典型的には、陽極210aの厚さは、2nm~150nmの範囲であり、透明電極として金属材料を使用する場合の陽極120の厚さは、2nm~50nmの範囲であるのが好ましい。 Typically, the thickness of the anode 210a is in the range of 2 nm to 150 nm, and when the metal material is used as the transparent electrode, the thickness of the anode 120 is preferably in the range of 2 nm to 50 nm.
 図3における陽極230bの構成も上記と同様に説明される。 The structure of the anode 230b in FIG.
 (ホール注入層223a)
 ホール注入層223aは、ホール注入性を有する材料から選定される。
(Hole injection layer 223a)
The hole injection layer 223a is selected from materials having hole injection properties.
 ホール注入層223aは、有機材料、例えば、CuPcおよびスターバーストアミン等であっても良い。あるいは、ホール注入層223aは、金属酸化物材料、例えば、モリブデン、タングステン、レニウム、バナジウム、インジウム、スズ、亜鉛、ガリウム、チタンおよびアルミニウムから選定された少なくとも一つの金属を含む酸化物であっても良い。 The hole injection layer 223a may be an organic material such as CuPc and starburst amine. Alternatively, the hole injection layer 223a may be a metal oxide material, for example, an oxide including at least one metal selected from molybdenum, tungsten, rhenium, vanadium, indium, tin, zinc, gallium, titanium, and aluminum. good.
 一般に、有機層の上に成膜される上部電極をスパッタリング法により成膜する場合、有機層のスパッタダメージにより有機EL素子の特性が劣化することが知られているが、金属酸化物は、有機材料よりもスパッタ耐性が高いため、有機材料の上に金属酸化物を成膜することで、有機層へのスパッタダメージを軽減することができる。 In general, when the upper electrode formed on the organic layer is formed by sputtering, it is known that the characteristics of the organic EL element deteriorate due to sputtering damage of the organic layer. Since sputtering resistance is higher than that of the material, sputtering damage to the organic layer can be reduced by forming a metal oxide film over the organic material.
 この他にも、ホール注入層223aとして、公知の各種材料を使用することができる。なお、ホール注入層223aは、省略しても良い。 In addition, various known materials can be used as the hole injection layer 223a. Note that the hole injection layer 223a may be omitted.
 ホール注入層223aの成膜方法は、特に限られない。ホール注入層223aは、蒸着法または転写法などの乾式プロセスで成膜しても良い。あるいは、ホール注入層223aは、スピンコート法、スプレーコート法、グラビア印刷法などの湿式プロセスで成膜しても良い。 The film forming method of the hole injection layer 223a is not particularly limited. The hole injection layer 223a may be formed by a dry process such as an evaporation method or a transfer method. Alternatively, the hole injection layer 223a may be formed by a wet process such as a spin coating method, a spray coating method, or a gravure printing method.
 典型的には、ホール注入層223aの厚さは、1nm~50nmの範囲である。 Typically, the thickness of the hole injection layer 223a is in the range of 1 nm to 50 nm.
 図3におけるホール注入層223bの構成も上記と同様に説明される。 The configuration of the hole injection layer 223b in FIG.
 (ホール輸送層224a)
 ホール輸送層224aは、ホール輸送性を有する材料から選定される。
(Hole transport layer 224a)
The hole transport layer 224a is selected from materials having hole transport properties.
 ホール輸送層224aは、例えば、アリールアミン系化合物、カルバゾール基を含むアミン化合物、およびフルオレン誘導体を含むアミン化合物などであっても良い。具体的には、ホール輸送層224aは、4,4’-ビス[N-(ナフチル)-N-フェニル-アミノ]ビフェニル(α-NPD)、N,N’-ビス(3-メチルフェニル)-(1,1’-ビフェニル)-4,4’-ジアミン(TPD)、2-TNATA、4,4’,4”-トリス(N-(3-メチルフェニル)N-フェニルアミノ)トリフェニルアミン(MTDATA)、4,4’-N,N’-ジカルバゾールビフェニル(CBP)、スピロ-NPD、スピロ-TPD、スピロ-TAD、TNBなどであっても良い。 The hole transport layer 224a may be, for example, an arylamine compound, an amine compound containing a carbazole group, and an amine compound containing a fluorene derivative. Specifically, the hole transport layer 224a includes 4,4′-bis [N- (naphthyl) -N-phenyl-amino] biphenyl (α-NPD), N, N′-bis (3-methylphenyl)- (1,1′-biphenyl) -4,4′-diamine (TPD), 2-TNATA, 4,4 ′, 4 ″ -tris (N- (3-methylphenyl) N-phenylamino) triphenylamine ( MTDATA), 4,4′-N, N′-dicarbazole biphenyl (CBP), spiro-NPD, spiro-TPD, spiro-TAD, TNB, and the like.
 この他にも、ホール輸送層224aとして、公知の各種材料を使用することができる。なお、ホール輸送層224aは、省略しても良い。 In addition, various known materials can be used as the hole transport layer 224a. Note that the hole transport layer 224a may be omitted.
 ホール輸送層224aは、従来の一般的な成膜プロセスを用いて成膜することができる。 The hole transport layer 224a can be formed using a conventional general film formation process.
 典型的には、ホール輸送層224aの厚さは、1nm~100nmの範囲である。 Typically, the thickness of the hole transport layer 224a is in the range of 1 nm to 100 nm.
 図3におけるホール輸送層224bの構成も上記と同様に説明される。 The structure of the hole transport layer 224b in FIG.
 (発光層225a)
 発光層225aは、一般的な有機エレクトロルミネッセンス素子用の発光材料として知られるいかなる材料で構成されても良い。
(Light emitting layer 225a)
The light emitting layer 225a may be made of any material known as a light emitting material for a general organic electroluminescence element.
 発光層225aは、例えば、エピドリジン、2,5-ビス[5,7-ジ-t-ペンチル-2-ベンゾオキサゾリル]チオフェン、2,2’-(1,4-フェニレンジビニレン)ビスベンゾチアゾール、2,2’-(4,4’-ビフェニレン)ビスベンゾチアゾール、5-メチル-2-{2-[4-(5-メチル-2-ベンゾオキサゾリル)フェニル]ビニル}ベンゾオキサゾール、2,5-ビス(5-メチル-2-ベンゾオキサゾリル)チオフェン、アントラセン、ナフタレン、フェナントレン、ピレン、クリセン、ペリレン、ペリノン、1,4-ジフェニルブタジエン、テトラフェニルブタジエン、クマリン、アクリジン、スチルベン、2-(4-ビフェニル)-6-フェニルベンゾオキサゾール、アルミニウムトリスオキシン、マグネシウムビスオキシン、ビス(ベンゾ-8-キノリノール)亜鉛、ビス(2-メチル-8-キノリノラールト)アルミニウムオキサイド、インジウムトリスオキシン、アルミニウムトリス(5-メチルオキシン)、リチウムオキシン、ガリウムトリスオキシン、カルシウムビス(5-クロロオキシン)、ポリ亜鉛-ビス(8-ヒドロキシ-5-キノリノリル)メタン、ジリチウムエピンドリジオン、亜鉛ビスオキシン、1,2-フタロペリノン、1,2-ナフタロペリノン等であっても良い。 The light-emitting layer 225a includes, for example, epidridine, 2,5-bis [5,7-di-t-pentyl-2-benzoxazolyl] thiophene, 2,2 '-(1,4-phenylenedivinylene) bisbenzo Thiazole, 2,2 ′-(4,4′-biphenylene) bisbenzothiazole, 5-methyl-2- {2- [4- (5-methyl-2-benzoxazolyl) phenyl] vinyl} benzoxazole, 2,5-bis (5-methyl-2-benzoxazolyl) thiophene, anthracene, naphthalene, phenanthrene, pyrene, chrysene, perylene, perinone, 1,4-diphenylbutadiene, tetraphenylbutadiene, coumarin, acridine, stilbene, 2- (4-biphenyl) -6-phenylbenzoxazole, aluminum trisoxine, magne Umbisoxin, bis (benzo-8-quinolinol) zinc, bis (2-methyl-8-quinolinolalt) aluminum oxide, indium trisoxin, aluminum tris (5-methyloxin), lithium oxine, gallium trisoxin, calcium bis ( 5-chlorooxin), polyzinc-bis (8-hydroxy-5-quinolinolyl) methane, dilithium epindridione, zinc bisoxin, 1,2-phthaloperinone, 1,2-naphthaloperinone, and the like.
 この他にも、発光層225aとして、公知の各種材料を使用することができる。 In addition, various known materials can be used for the light emitting layer 225a.
 発光層225aは、蒸着法または転写法などの乾式プロセスで成膜しても良い。あるいは、発光層225aは、スピンコート法、スプレーコート法、グラビア印刷法などの湿式プロセスで成膜しても良い。 The light emitting layer 225a may be formed by a dry process such as an evaporation method or a transfer method. Alternatively, the light-emitting layer 225a may be formed by a wet process such as a spin coating method, a spray coating method, or a gravure printing method.
 典型的には、発光層225aの厚さは、1nm~100nmの範囲である。また、発光層225aは、ホール輸送層や電子輸送層と兼用されても良い。 Typically, the thickness of the light emitting layer 225a is in the range of 1 nm to 100 nm. The light emitting layer 225a may also be used as a hole transport layer or an electron transport layer.
 図3における発光層225bの構成も上記と同様に説明される。 The configuration of the light emitting layer 225b in FIG.
 (電子輸送層226a)
 通常の場合、電子輸送層226aは、トリス(8-キノリノラト)アルミニウム(Alq3)のような有機材料で構成される。しかしながら、一般に、Alq3のような有機材料は、空気に触れると容易に劣化してしまうことがある。
(Electron transport layer 226a)
Normally, the electron transport layer 226a is made of an organic material such as tris (8-quinolinolato) aluminum (Alq3). In general, however, organic materials such as Alq3 can easily degrade when exposed to air.
 このため、電子輸送層226aとして、金属酸化物材料を使用することが好ましい。 For this reason, it is preferable to use a metal oxide material as the electron transport layer 226a.
 電子輸送層226a用の金属酸化物材料としては、例えば、xZnO-(1-x)SiO(x=0.5~0.9が好ましい)、xIn-(1-x)SiO(x=0.4~0.8が好ましい)、xSnO-(1-x)SiO(x=0.4~0.8が好ましい)、ZnO、In-Ga-Zn-O(In:Ga:Zn:O=1~4:1:1:1が好ましい)、In-Zn-O、Zn-Mg-O、Zn-Mg-Ga-OおよびSnO等がある。 Examples of the metal oxide material for the electron transport layer 226a include xZnO— (1-x) SiO 2 (x = 0.5 to 0.9 is preferable), xIn 2 O 3 — (1-x) SiO 2. (Preferably x = 0.4 to 0.8), xSnO 2 — (1-x) SiO 2 (preferably x = 0.4 to 0.8), ZnO, In—Ga—Zn—O (In: Ga: Zn: O = 1 to 4: 1: 1: 1 are preferred), In—Zn—O, Zn—Mg—O, Zn—Mg—Ga—O, SnO 2 and the like.
 これらの金属酸化物材料は、アモルファスの形態であっても良く、結晶質の形態であっても良く、あるいはアモルファスと結晶質相の混合相の形態であっても良い。 These metal oxide materials may be in an amorphous form, in a crystalline form, or in a mixed phase of an amorphous and crystalline phase.
 特に、金属酸化物材料は、アモルファスの形態であることが好ましい。アモルファスの金属酸化物材料では、比較的平坦な膜を容易に得ることができるからである。 In particular, the metal oxide material is preferably in an amorphous form. This is because an amorphous metal oxide material can easily provide a relatively flat film.
 これらの金属酸化物材料の電子親和力は、2.8~5.0eVであることが好ましく、3.0~4.0eVであることがより好ましく、3.1~3.5eVであることがさらに好ましい。電子親和力が2.8eV以上であると、電子注入特性が高く、有機エレクトロルミネッセンス素子の発光効率が向上する。また、電子親和力が5.0eV以下であると、有機エレクトロルミネッセンス素子から十分な発光が得られ易い。 The electron affinity of these metal oxide materials is preferably 2.8 to 5.0 eV, more preferably 3.0 to 4.0 eV, and further preferably 3.1 to 3.5 eV. preferable. When the electron affinity is 2.8 eV or more, the electron injection characteristics are high, and the light emission efficiency of the organic electroluminescence element is improved. Further, when the electron affinity is 5.0 eV or less, it is easy to obtain sufficient light emission from the organic electroluminescence element.
 電子輸送層226aとしてこれらの金属酸化物材料を使用した場合、Alq3のような有機物を使用した場合に比べて、層の安定性が向上し、ハンドリングが容易になるという効果が得られる。 When these metal oxide materials are used as the electron transport layer 226a, the effect of improving the stability of the layer and facilitating handling can be obtained as compared with the case of using an organic material such as Alq3.
 また、Alq3材料は、比較的ホールの移動度が高いという性質がある。これに対して、前述の金属酸化物材料は、いずれも、ホールの移動度が比較的小さく、電子のみを選択的に輸送することができる。このため、これらの金属酸化物材料を電子輸送層226aとして使用した場合、有機エレクトロルミネッセンス素子の発光効率をよりいっそう高めることが可能になる。 Also, the Alq3 material has a property of relatively high hole mobility. On the other hand, any of the aforementioned metal oxide materials has a relatively small hole mobility and can selectively transport only electrons. For this reason, when these metal oxide materials are used as the electron transport layer 226a, it becomes possible to further increase the light emission efficiency of the organic electroluminescence element.
 また、これらの金属酸化物材料からなる電子輸送層226aの厚さは、1nm~2000nmであっても良く、100nm~2000nmであることが好ましく、200nm~1000nmであることがより好ましく、300nm~500nmであることがさらに好ましい。通常のAlq3のような有機電子輸送層と比較して、上述の金属酸化物材料は、電子移動度が1~10cm V-1-1と数桁大きいので、前述のように厚みを大きくすることが可能である。また、このような厚みとすることで、有機電子輸送層を用いる場合と比較して、有機エレクトロルミネッセンス素子の短絡を抑制することが可能である。無機電子輸送層の厚みが2000nmを超えると、薄膜の作製に長時間を要するため、作製される有機エレクトロルミネッセンス素子が高コストとなる。 The thickness of the electron transport layer 226a made of these metal oxide materials may be 1 nm to 2000 nm, preferably 100 nm to 2000 nm, more preferably 200 nm to 1000 nm, and 300 nm to 500 nm. More preferably. Compared with a normal organic electron transport layer such as Alq3, the above metal oxide material has an electron mobility of 1 to 10 cm 2 V −1 s −1 and is several orders of magnitude larger. Is possible. Moreover, by setting it as such thickness, compared with the case where an organic electron carrying layer is used, it is possible to suppress the short circuit of an organic electroluminescent element. When the thickness of the inorganic electron transport layer exceeds 2000 nm, it takes a long time to produce a thin film, and thus the produced organic electroluminescence element is expensive.
 電子輸送層226aの成膜方法は、特に限られない。前述のような金属酸化物材料を成膜する場合、例えば、蒸着法、スパッタリング法、塗布法等の公知の成膜技術を使用しても良い。 The method for forming the electron transport layer 226a is not particularly limited. In the case of forming a metal oxide material as described above, for example, a known film formation technique such as a vapor deposition method, a sputtering method, or a coating method may be used.
 なお、電子輸送層160は、省略しても良い。 Note that the electron transport layer 160 may be omitted.
 図3における電子輸送層226bの構成も上記と同様に説明される。 The configuration of the electron transport layer 226b in FIG.
 (電子注入層227a)
 前述のように、電子注入層227aには、非晶質C12A7エレクトライドが使用されても良い。
(Electron injection layer 227a)
As described above, amorphous C12A7 electride may be used for the electron injection layer 227a.
 従来の電子注入層227aの厚さは、例えば、0.1nm~0.4nmの範囲である。これは、前述のように、従来から電子注入層として使用されているLiFは、抵抗が高く、極めて薄い状態にしなければ、導電性部材として使用することができないからである。 The thickness of the conventional electron injection layer 227a is, for example, in the range of 0.1 nm to 0.4 nm. This is because, as described above, LiF that has been conventionally used as an electron injection layer has high resistance and cannot be used as a conductive member unless it is made extremely thin.
 これに対して、非晶質C12A7エレクトライドで構成される電子注入層227aは、導電性を有するため、そのような膜厚の制約はない。従って、比較的均一な厚さの電子注入層227aを比較的容易に形成することができる。 On the other hand, since the electron injection layer 227a made of amorphous C12A7 electride has conductivity, there is no restriction on the film thickness. Therefore, the electron injection layer 227a having a relatively uniform thickness can be formed relatively easily.
 非晶質C12A7エレクトライド製の電子注入層227aは、例えば、約1nm~50nmの範囲の厚さを有する。30nm以下でも良く、20nm以下でも良い。2nm以上でも良く、4nm以上でも良く、9nm以上でも良い。 The electron injection layer 227a made of amorphous C12A7 electride has a thickness in the range of about 1 nm to 50 nm, for example. It may be 30 nm or less, or 20 nm or less. It may be 2 nm or more, 4 nm or more, or 9 nm or more.
 前述のように、非晶質C12A7エレクトライドは、セラミック材料であり、大気に触れても変質することなく安定である。従って、電子注入層227aとして非晶質C12A7エレクトライドを使用した場合、従来のフッ化リチウム製電子注入層のように、制御された環境下でハンドリングを行わなければならないという問題が解消される。その結果、ハンドリングが容易で、信頼性の高い有機エレクトロルミネッセンス素子200Aを得ることが可能となる。 As described above, amorphous C12A7 electride is a ceramic material and is stable without being altered even when exposed to the atmosphere. Therefore, when amorphous C12A7 electride is used as the electron injection layer 227a, the problem that handling must be performed in a controlled environment like a conventional lithium fluoride electron injection layer is solved. As a result, it is possible to obtain an organic electroluminescence element 200A that is easy to handle and highly reliable.
 図3における電子注入層227bの構成も上記と同様に説明される。 The structure of the electron injection layer 227b in FIG.
 (陰極230a)
 陰極230aは、通常、金属材料で構成される。
(Cathode 230a)
The cathode 230a is usually made of a metal material.
 陰極230aは、例えば、アルミニウム、銀、金、マグネシウム、カルシウム、チタニウム、イットリウム、リチウム、ガドリニウム、イッテルビウム、ルテニウム、マンガン、モリブデン、バナジウム、クロム、タンタル、およびこれらの合金であっても良い。あるいは、陰極230aは、例えば、ITO、アンチモン酸化物(Sb)、ジルコニウム酸化物(ZrO)、スズ酸化物(SnO)、亜鉛酸化物(ZnO)、IZO(Indium Zinc Oxide)、AZO(ZnO-Al:アルミニウムがドーピングされた亜鉛酸化物)、GZO(ZnO-Ga:ガリウムがドーピングされた亜鉛酸化物)、NbドープTiO、TaドープTiO、およびIWZO(In-WO-ZnO:三酸化タングステンおよび酸化亜鉛がドーピングされたインジウム酸化物)等の金属酸化物材料であっても良い。 The cathode 230a may be, for example, aluminum, silver, gold, magnesium, calcium, titanium, yttrium, lithium, gadolinium, ytterbium, ruthenium, manganese, molybdenum, vanadium, chromium, tantalum, and alloys thereof. Alternatively, the cathode 230a is formed of, for example, ITO, antimony oxide (Sb 2 O 3 ), zirconium oxide (ZrO 2 ), tin oxide (SnO 2 ), zinc oxide (ZnO), IZO (Indium Zinc Oxide), AZO (ZnO—Al 2 O 3 : zinc oxide doped with aluminum), GZO (ZnO—Ga 2 O 3 : zinc oxide doped with gallium), Nb-doped TiO 2 , Ta-doped TiO 2 , and IWZO It may also be a metal oxide material such as (In 2 O 3 —WO 3 —ZnO: indium oxide doped with tungsten trioxide and zinc oxide).
 陰極230aの成膜方法は、特に限られない。陰極230aは、例えば、蒸着法(真空蒸着法、電子ビーム蒸着法)、イオンプレーティング法、レーザーアブレーション法、またはスパッタリング法等により、成膜しても良い。 The film formation method of the cathode 230a is not particularly limited. The cathode 230a may be formed by, for example, a vapor deposition method (vacuum vapor deposition method, electron beam vapor deposition method), an ion plating method, a laser ablation method, a sputtering method, or the like.
 典型的には、陰極230aの厚さは、2nm~150nmの範囲である。透明電極として金属材料を使用する場合の陰極230aの厚さは、2nm~50nmの範囲であるのが好ましい。 Typically, the thickness of the cathode 230a is in the range of 2 nm to 150 nm. When a metal material is used as the transparent electrode, the thickness of the cathode 230a is preferably in the range of 2 nm to 50 nm.
 なお、前述のように、陰極230aは、非晶質C12A7エレクトライドの薄膜で構成されても良い。 As described above, the cathode 230a may be formed of an amorphous C12A7 electride thin film.
 図3における陰極210bの構成も、上記と同様に説明される。 The configuration of the cathode 210b in FIG. 3 is also described in the same manner as described above.
 (電子注入層227aの成膜方法)
 ここで、電子注入層227a用の非晶質C12A7エレクトライドの薄膜の成膜方法の一例について説明する。なお、陰極230aが非晶質C12A7エレクトライドの薄膜で構成される場合、そのような陰極230aも、同様の方法で成膜することができる。
(Film formation method of electron injection layer 227a)
Here, an example of a method for forming a thin film of amorphous C12A7 electride for the electron injection layer 227a will be described. Note that when the cathode 230a is formed of an amorphous C12A7 electride thin film, the cathode 230a can also be formed by a similar method.
 図6には、非晶質C12A7エレクトライドの薄膜の成膜方法のフローを概略的に示す。 FIG. 6 schematically shows a flow of a method for forming a thin film of amorphous C12A7 electride.
 図6に示すように、非晶質C12A7エレクトライドの薄膜の成膜方法は、
 電子密度が2.0×1018cm-3~2.3×1021cm-3の結晶質C12A7エレクトライドのターゲットを準備する工程(S110)と、
 前記ターゲットを用いて、酸素分圧が0.1Pa未満の雰囲気下で、気相蒸着法により、陰極または電子輸送層上に成膜を行う工程(S120)と、
 を有する。
As shown in FIG. 6, the method for forming a thin film of amorphous C12A7 electride is as follows:
Preparing a target of crystalline C12A7 electride having an electron density of 2.0 × 10 18 cm −3 to 2.3 × 10 21 cm −3 (S110);
A step of forming a film on the cathode or the electron transport layer by a vapor deposition method in an atmosphere having an oxygen partial pressure of less than 0.1 Pa using the target (S120);
Have
 以下、それぞれの工程について詳しく説明する。 Hereinafter, each process will be described in detail.
 (工程S110)
 まず、以降の工程S120で使用される成膜用のターゲットが準備される。
(Process S110)
First, a deposition target used in the subsequent step S120 is prepared.
 ターゲットは、結晶質C12A7エレクトライドで構成される。 The target is composed of crystalline C12A7 electride.
 結晶質C12A7エレクトライド製のターゲットの製造方法は、特に限られない。ターゲットは、例えば、従来のバルク状の結晶質C12A7エレクトライドの製造方法を用いて製造しても良い。例えば、結晶質C12A7の焼結体を、Ti、Al、CaまたはCなどの還元剤の存在下で、1150~1460℃程度、好ましくは、1200~1400℃程度に加熱処理することにより、結晶質C12A7エレクトライド製のターゲットを製造しても良い。結晶質C12A7の粉体を圧縮して成形した圧粉体をターゲットとして用いてもよい。結晶質C12A7の焼結体を、カーボンおよび金属アルミニウムの存在下で、焼結体と金属アルミニウムが接触しない状態に保ちながら、1230~1415℃で加熱処理することにより、効率的に大面積の結晶質C12A7エレクトライド製のターゲットを作製できる。本発明においては、その主表面の面積が、好ましくは1900mm以上、より好ましくは4400mm以上、さらに好ましくは7800mm以上、特に好ましくは31400mm以上であるターゲットを用いることができる。また本発明においては、その厚みが、好ましくは2~15mm、より好ましくは2.5~13mm、さらに好ましくは3~10mm、特に好ましくは3~8mmであるターゲットを用いることができる。 The method for producing the target made of crystalline C12A7 electride is not particularly limited. The target may be manufactured using, for example, a conventional method for manufacturing a bulk crystalline C12A7 electride. For example, a crystalline C12A7 sintered body is heat-treated at about 1150 to 1460 ° C., preferably about 1200 to 1400 ° C. in the presence of a reducing agent such as Ti, Al, Ca, or C. A target made of C12A7 electride may be manufactured. A green compact formed by compressing a crystalline C12A7 powder may be used as a target. A crystalline C12A7 sintered body is effectively heat-treated at 1230 to 1415 ° C. in the presence of carbon and metallic aluminum while keeping the sintered body and metallic aluminum in contact with each other. A target made of quality C12A7 electride can be produced. In the present invention, the area of the main surface is preferably 1900 mm 2 or more, more preferably 4400mm 2 or more, more preferably 7800mm 2 or more, particularly preferably can be used, for example at 31400Mm 2 or more. In the present invention, a target having a thickness of preferably 2 to 15 mm, more preferably 2.5 to 13 mm, still more preferably 3 to 10 mm, and particularly preferably 3 to 8 mm can be used.
 円板の平型ターゲットにおいては、その直径は、50mm以上が好ましく、75mm以上がより好ましく、100mm以上がさらに好ましく、200mm以上が特に好ましい。長方形の平型ターゲットにおいては、その長辺の径は、50mm以上が好ましく、75mm以上がより好ましく、100mm以上がさらに好ましく、200mm以上が特に好ましい。円筒型ターゲットにおいては、その円筒の高さは、50mm以上が好ましく、75mm以上がより好ましく、100mm以上がさらに好ましく、200mm以上が特に好ましい。 In the flat target of a disc, the diameter is preferably 50 mm or more, more preferably 75 mm or more, further preferably 100 mm or more, and particularly preferably 200 mm or more. In the rectangular flat target, the diameter of the long side is preferably 50 mm or more, more preferably 75 mm or more, further preferably 100 mm or more, and particularly preferably 200 mm or more. In the cylindrical target, the height of the cylinder is preferably 50 mm or more, more preferably 75 mm or more, further preferably 100 mm or more, and particularly preferably 200 mm or more.
 ここで、このターゲット、すなわち結晶質C12A7エレクトライドの電子密度は、2.0×1018cm-3~2.3×1021cm-3の範囲である。結晶質C12A7エレクトライドの電子密度は、1×1019cm-3以上であることが好ましく、1×1020cm-3以上がより好ましく、5×1020cm-3以上がさらに好ましく、1×1021cm-3以上が特に好ましい。ターゲットを構成する結晶質C12A7エレクトライドの電子密度が高いほど、低い仕事関数を有する非晶質C12A7エレクトライドが得られやすくなる。特に、仕事関数が3.0eV以下である非晶質C12A7エレクトライドを得るには、結晶質C12A7エレクトライドの電子密度は、1.4×1021cm-3以上がより好ましく、1.7×1021cm-3以上がさらに好ましく、2×1021cm-3以上が特に好ましい。特に、すべてのフリー酸素イオン(他の陰イオンを有する場合は当該陰イオン)が電子で置換された場合、結晶質C12A7エレクトライドの電子密度は、2.3×1021cm-3となる。結晶質C12A7エレクトライドの電子密度が2.0×1018cm-3を下回ると、成膜によって得られる非晶質C12A7エレクトライド薄膜の電子密度が小さくなる。 Here, the electron density of the target, that is, crystalline C12A7 electride is in the range of 2.0 × 10 18 cm −3 to 2.3 × 10 21 cm −3 . The electron density of the crystalline C12A7 electride is preferably 1 × 10 19 cm −3 or more, more preferably 1 × 10 20 cm −3 or more, further preferably 5 × 10 20 cm −3 or more, and 1 × 10 21 cm −3 or more is particularly preferable. The higher the electron density of the crystalline C12A7 electride constituting the target, the easier it is to obtain an amorphous C12A7 electride having a lower work function. In particular, in order to obtain an amorphous C12A7 electride having a work function of 3.0 eV or less, the electron density of the crystalline C12A7 electride is more preferably 1.4 × 10 21 cm −3 or more, and 1.7 × 10 21 cm −3 or more is more preferable, and 2 × 10 21 cm −3 or more is particularly preferable. In particular, when all the free oxygen ions (or other anions when they have other anions) are replaced with electrons, the electron density of the crystalline C12A7 electride is 2.3 × 10 21 cm −3 . When the electron density of the crystalline C12A7 electride is less than 2.0 × 10 18 cm −3 , the electron density of the amorphous C12A7 electride thin film obtained by film formation becomes small.
 なお、C12A7エレクトライドの電子密度は、ヨウ素滴定法により、測定することができる。 In addition, the electron density of C12A7 electride can be measured by the iodine titration method.
 このヨウ素滴定法は、5mol/lのヨウ素水溶液中にC12A7エレクトライド製サンプルを浸漬し、塩酸を加えて溶解させた後、この溶液中に含まれる未反応ヨウ素の量を、チオ硫酸ナトリウムで滴定検出する方法である。この場合、サンプルの溶解により、ヨウ素水溶液中のヨウ素は、以下の反応によりイオン化する:
 
  I+e→2I   (1)式
 
 また、チオ硫酸ナトリウムでヨウ素水溶液を滴定した場合、
 
  2Na+I→2NaI+Na   (2)式
 
の反応により、未反応のヨウ素がヨウ化ナトリウムに変化する。最初の溶液中に存在するヨウ素量から、(2)式で滴定検出されたヨウ素量を差し引くことにより、(1)式の反応で消費されたヨウ素量が算定される。これにより、C12A7エレクトライドのサンプル中の電子密度を測定することができる。ヨウ素滴定法は、C12A7エレクトライドが結晶質または非晶質のいずれにおいても適用可能である。
In this iodine titration method, a C12A7 electride sample was immersed in a 5 mol / l iodine aqueous solution and dissolved by adding hydrochloric acid, and then the amount of unreacted iodine contained in this solution was titrated with sodium thiosulfate. It is a method of detection. In this case, due to dissolution of the sample, iodine in the aqueous iodine solution is ionized by the following reaction:

I 2 + e → 2I (1) Formula
When titrating an aqueous iodine solution with sodium thiosulfate,

2Na 2 S 2 O 3 + I 2 → 2NaI + Na 2 S 4 O 6 (2) Formula
By this reaction, unreacted iodine is changed to sodium iodide. By subtracting the amount of iodine detected by titration from equation (2) from the amount of iodine present in the initial solution, the amount of iodine consumed in the reaction of equation (1) is calculated. Thereby, the electron density in the sample of C12A7 electride can be measured. The iodine titration method can be applied regardless of whether the C12A7 electride is crystalline or amorphous.
 結晶質C12A7エレクトライドの電子密度は、光吸収測定法により、測定することができる。結晶質C12A7エレクトライドは、2.8eV付近に特有の光吸収を有するので、その吸収係数を測定することにより、電子密度を求めることができる。特に、試料が焼結体である場合は、焼結体を粉砕して、粉末としたのち、拡散反射法を用いると簡便である。 The electron density of the crystalline C12A7 electride can be measured by a light absorption measurement method. Since the crystalline C12A7 electride has a specific light absorption around 2.8 eV, the electron density can be determined by measuring the absorption coefficient. In particular, when the sample is a sintered body, it is convenient to use the diffuse reflection method after pulverizing the sintered body into a powder.
 得られたターゲットは、次工程で非晶質C12A7エレクトライドの薄膜を成膜する際の原料ソースとして使用される。 The obtained target is used as a raw material source when an amorphous C12A7 electride thin film is formed in the next step.
 なお、ターゲットの表面は、使用前に、機械的手段等により研磨されても良い。 Note that the surface of the target may be polished by mechanical means before use.
 一般に、従来の方法で得られた結晶質C12A7エレクトライドのバルク体は、表面に、ごく薄い被膜(異物)を有する場合がある。表面にこのような被膜が形成されたターゲットをそのまま使用して、成膜処理を実施した場合、得られる薄膜の組成が所望の組成比から逸脱する可能性がある。しかしながら、ターゲット表面の研磨処理を実施しておくことにより、このような問題を有意に抑制することができる。 Generally, a bulk body of crystalline C12A7 electride obtained by a conventional method may have a very thin film (foreign matter) on the surface. When a film forming process is performed using a target having such a film formed on the surface as it is, the composition of the obtained thin film may deviate from a desired composition ratio. However, such a problem can be significantly suppressed by carrying out the polishing treatment of the target surface.
 (工程S120)
 次に、前述の工程S110において作製されたターゲットを用いて、気相蒸着法により、電子輸送層上に成膜が行われる。
(Process S120)
Next, film formation is performed on the electron transport layer by a vapor deposition method using the target prepared in the above-described step S110.
 本願において、「気相蒸着法」とは、物理気相成膜(PVD)法、PLD法、スパッタリング法、および真空蒸着法を含む、ターゲット原料を気化させてからこの原料を基板上に堆積させる成膜方法の総称を意味する。 In the present application, “vapor deposition” refers to vapor deposition of a target material including a physical vapor deposition (PVD) method, a PLD method, a sputtering method, and a vacuum deposition method, and then depositing this material on a substrate. This is a general term for film formation methods.
 「気相蒸着法」の中でも、特に、スパッタリング法が好ましい。スパッタリング法では、大面積領域に、比較的均一に薄膜を成膜することができる。なお、スパッタリング法には、DC(直流)スパッタリング法、高周波スパッタリング法、ヘリコン波スパッタリング法、イオンビームスパッタリング法、およびマグネトロンスパッタリング法等が含まれる。 Among the “vapor deposition methods”, the sputtering method is particularly preferable. In the sputtering method, a thin film can be formed relatively uniformly in a large area. The sputtering method includes a DC (direct current) sputtering method, a high frequency sputtering method, a helicon wave sputtering method, an ion beam sputtering method, a magnetron sputtering method, and the like.
 以下、スパッタリング法により成膜を行う場合を例に、工程S120について説明する。 Hereinafter, the process S120 will be described by taking as an example the case where film formation is performed by a sputtering method.
 非晶質C12A7エレクトライドの薄膜を成膜する際の被成膜基板の温度は、特に限られず、室温~例えば700℃までの範囲の、いかなる温度を採用しても良い。なお、非晶質C12A7エレクトライドの薄膜を成膜する際に、基板を必ずしも「積極的に」加熱する必要はないことに留意する必要がある。ただし、蒸着源の輻射熱によって、被成膜基板の温度が「付随的に」上昇する場合はあり得る。例えば、被成膜基板の温度は、500℃以下であっても良く、200℃以下であっても良い。 The temperature of the deposition target substrate when forming a thin film of amorphous C12A7 electride is not particularly limited, and any temperature in the range of room temperature to, for example, 700 ° C. may be adopted. It should be noted that when depositing a thin film of amorphous C12A7 electride, it is not necessary to “positively” heat the substrate. However, there may be a case where the temperature of the deposition target substrate rises “incidentally” due to the radiant heat of the vapor deposition source. For example, the temperature of the deposition target substrate may be 500 ° C. or lower, or 200 ° C. or lower.
 成膜時の酸素分圧は、0.1Pa未満である。酸素分圧は、0.05Pa以下であることが好ましく、0.01Pa以下であることが好ましく、1×10-3Pa以下であることがより好ましく、1×10-4Pa以下であることがさらに好ましく、1×10-5Pa以下であることが特に好ましい。酸素分圧が0.1Pa以上になると、成膜された薄膜に酸素が取り込まれ、電子密度が低下するおそれがある。 The oxygen partial pressure during film formation is less than 0.1 Pa. The oxygen partial pressure is preferably 0.05 Pa or less, preferably 0.01 Pa or less, more preferably 1 × 10 −3 Pa or less, and preferably 1 × 10 −4 Pa or less. More preferably, it is particularly preferably 1 × 10 −5 Pa or less. When the oxygen partial pressure is 0.1 Pa or more, oxygen is taken into the deposited thin film, which may reduce the electron density.
 一方、成膜時の水素分圧は、0.004Pa未満であることが好ましい。0.004Pa以上であると、成膜された薄膜中に水素またはOH成分が取り込まれ、非晶質C12A7エレクトライド薄膜の電子密度が低下する可能性がある。 On the other hand, the hydrogen partial pressure during film formation is preferably less than 0.004 Pa. If it is 0.004 Pa or more, hydrogen or OH component is taken into the formed thin film, and the electron density of the amorphous C12A7 electride thin film may be lowered.
 使用されるスパッタガスとしては、特に限られない。スパッタガスは、不活性ガスまたは希ガスであっても良い。不活性ガスとしては、例えば、Nガスが挙げられる。また、希ガスとしては、He(ヘリウム)、Ne(ネオン)、Ar(アルゴン)、Kr(クリプトン)、およびXe(キセノン)が挙げられる。これらは、単独で使用しても、他のガスと併用しても良い。あるいは、スパッタガスは、NO(一酸化窒素)のような還元性ガスであっても良い。 The sputtering gas used is not particularly limited. The sputtering gas may be an inert gas or a rare gas. The inert gas, eg, N 2 gas. In addition, examples of the rare gas include He (helium), Ne (neon), Ar (argon), Kr (krypton), and Xe (xenon). These may be used alone or in combination with other gases. Alternatively, the sputtering gas may be a reducing gas such as NO (nitrogen monoxide).
 スパッタガスの圧力(チャンバー内の圧力)は、特に限られず、所望の薄膜が得られるように、自由に選定することができる。特に、スパッタガス(チャンバー内の圧力)の圧力P(Pa)は、基板とターゲットの間の距離をt(m)とし、ガス分子の直径をd(m)としたとき、
 
 8.9×10-22/(td)<P<4.5×10-20/(td)  (3)式
 
を満たすように選定されても良い。この場合、スパッタ粒子の平均自由行程が、ターゲット~基板間の距離とほぼ等しくなり、スパッタ粒子が残存酸素と反応することが抑制される。また、この場合、スパッタリング法の装置として、背圧が比較的高く、安価で簡易的な真空装置を用いることが可能となる。
The pressure of the sputtering gas (pressure in the chamber) is not particularly limited, and can be freely selected so that a desired thin film can be obtained. In particular, the pressure P (Pa) of the sputtering gas (pressure in the chamber) is such that when the distance between the substrate and the target is t (m) and the diameter of the gas molecule is d (m),

8.9 × 10 −22 / (td 2 ) <P <4.5 × 10 −20 / (td 2 ) (3) Formula
It may be selected to satisfy. In this case, the mean free path of the sputtered particles becomes substantially equal to the distance between the target and the substrate, and the sputtered particles are suppressed from reacting with the remaining oxygen. In this case, as a sputtering method apparatus, it is possible to use an inexpensive and simple vacuum apparatus having a relatively high back pressure.
 以上の工程により、陰極230aおよび/または電子注入層227a用の、非晶質C12A7エレクトライドの薄膜を形成することができる。 Through the above steps, an amorphous C12A7 electride thin film for the cathode 230a and / or the electron injection layer 227a can be formed.
 なお、得られた薄膜がC12A7の組成を有することは、薄膜の組成分析により確認することができる。例えば、XPS法、EPMA法またはEDX法等により、薄膜のCa/Al比を測定することにより、薄膜がC12A7の組成を有するかどうかを評価することができる。膜厚が100nm以下の場合はXPS法、100nm以上の場合はEPMA法、3μm以上の場合はEDX法による分析が可能である。また、薄膜が非晶質C12A7エレクトライドであることは、前述のように、サンプルの光吸収特性を測定し、4.6eVの光子エネルギー付近での光吸収の有無を判定することにより確認することができる。 In addition, it can confirm that the obtained thin film has a composition of C12A7 by the composition analysis of a thin film. For example, it is possible to evaluate whether the thin film has a composition of C12A7 by measuring the Ca / Al ratio of the thin film by XPS method, EPMA method, EDX method or the like. Analysis by the XPS method is possible when the film thickness is 100 nm or less, EPMA method when the film thickness is 100 nm or more, and EDX method when it is 3 μm or more. In addition, as described above, it is confirmed that the thin film is an amorphous C12A7 electride by measuring the light absorption characteristics of the sample and determining the presence or absence of light absorption near the photon energy of 4.6 eV. Can do.
 なお、膜厚が比較的厚い場合は、ラマン分光測定において、186cm-1付近における特徴的なピークの有無を判定することによっても、薄膜が非晶質C12A7エレクトライドであるかどうかを確認することができる。 When the film thickness is relatively large, it is confirmed whether or not the thin film is amorphous C12A7 electride by determining the presence or absence of a characteristic peak in the vicinity of 186 cm −1 in Raman spectroscopic measurement. Can do.
 以上、スパッタリング法を例に、非晶質C12A7エレクトライドの薄膜を成膜する方法について、簡単に説明した。しかしながら、非晶質C12A7エレクトライドの薄膜の成膜方法は、これに限られるものではなく、前述の2つの工程(工程S110およびS120)を適宜変更したり、あるいは各種工程を追加しても良いことは明らかである。 In the above, the method of forming an amorphous C12A7 electride thin film has been briefly described by taking the sputtering method as an example. However, the method for forming the amorphous C12A7 electride thin film is not limited to this, and the above-described two steps (steps S110 and S120) may be appropriately changed, or various steps may be added. It is clear.
 例えば、前述の工程S120において、スパッタリング法により、非晶質C12A7エレクトライドの成膜を開始する前に、ターゲットに対して、プレスパッタリング処理(ターゲットのドライエッチング処理)が実施されても良い。 For example, in the above-described step S120, a pre-sputtering process (a target dry etching process) may be performed on the target before starting the film formation of the amorphous C12A7 electride by the sputtering method.
 プレスパッタリング処理を実施することにより、ターゲットの表面が清浄化され、その後の成膜処理(本成膜)において、所望の組成の薄膜を形成することが容易となる。 By performing the pre-sputtering process, the surface of the target is cleaned, and it becomes easy to form a thin film having a desired composition in the subsequent film formation process (main film formation).
 例えば、ターゲットを長時間使用すると、ターゲットの表面に酸素が取り込まれ、ターゲットを構成する結晶質C12A7エレクトライドの電子密度が低下する場合がある。このようなターゲットを使用した場合、成膜された薄膜においても、電子密度が低下するおそれがある。また、ターゲットを長時間使用すると、ターゲット(すなわち結晶質C12A7エレクトライド)を構成する各成分のスパッタ速度の違いにより、ターゲットの組成が、最初の組成から逸脱するおそれがある。このようなターゲットを使用した場合、成膜された薄膜においても、組成が所望の値から逸脱するおそれがある。 For example, when the target is used for a long time, oxygen is taken into the surface of the target, and the electron density of the crystalline C12A7 electride constituting the target may decrease. When such a target is used, there is a possibility that the electron density is lowered even in the formed thin film. Further, when the target is used for a long time, the composition of the target may deviate from the initial composition due to the difference in sputtering rate of each component constituting the target (ie, crystalline C12A7 electride). When such a target is used, the composition may deviate from a desired value even in the formed thin film.
 しかしながら、プレスパッタリング処理を実施することにより、このような問題が抑制される。プレスパッタリング処理は、例えば、新たな成膜を実施する前、あるいはターゲットの使用時間が所定の値に到達する度に、実施されても良い。 However, such a problem is suppressed by performing the pre-sputtering process. The pre-sputtering process may be performed, for example, before performing a new film formation or whenever the target usage time reaches a predetermined value.
 なお、プレスパッタリング処理に使用されるガスは、本成膜の際に使用されるスパッタガスと同一であっても異なっていても良い。 Note that the gas used in the pre-sputtering process may be the same as or different from the sputtering gas used in the main film formation.
 特に、プレスパッタリング処理に使用されるガスは、He(ヘリウム)、Ne(ネオン)、N(窒素)、Ar(アルゴン)、および/またはNO(一酸化窒素)であることが好ましい。 In particular, the gas used for the pre-sputtering process is preferably He (helium), Ne (neon), N 2 (nitrogen), Ar (argon), and / or NO (nitrogen monoxide).
 この他にも、工程S110およびS120の各種変更、ならびに新たな工程の追加が可能である。 In addition, various changes in steps S110 and S120 and addition of new steps are possible.
 このような方法を経て成膜された非晶質C12A7エレクトライドの薄膜は、電子密度が2.0×1018cm-3以上2.3×1021cm-3以下の範囲であり、4.6eVの光子エネルギー位置において光吸収を示す。電子密度は1×1019cm-3以上がより好ましく、1×1020cm-3以上がさらに好ましい。4.6eVの位置での光吸収値は、100cm-1以上であっても良い。200cm-1以上であっても良い。 The amorphous C12A7 electride thin film formed by such a method has an electron density in the range of 2.0 × 10 18 cm −3 to 2.3 × 10 21 cm −3 . It exhibits light absorption at a photon energy position of 6 eV. The electron density is more preferably 1 × 10 19 cm −3 or more, and further preferably 1 × 10 20 cm −3 or more. The light absorption value at a position of 4.6 eV may be 100 cm −1 or more. It may be 200 cm −1 or more.
 なお、非晶質C12A7エレクトライドの薄膜の電子密度は、前述のヨウ素滴定法により測定することができる。ちなみに、非晶質C12A7エレクトライドの薄膜において、バイポーラロンの密度は、測定された電子密度を1/2倍することにより算定することができる。 The electron density of the amorphous C12A7 electride thin film can be measured by the above-mentioned iodine titration method. Incidentally, in the amorphous C12A7 electride thin film, the density of the bipolaron can be calculated by halving the measured electron density.
 非晶質C12A7エレクトライドの薄膜は、ケージ中の電子のホッピング伝導により、導電性を有する。非晶質C12A7エレクトライドの薄膜の、室温での直流電気伝導率は、10-9~10-1S・cm-1であっても良く、また、10-7~10-3S・cm-1であっても良い。 The thin film of amorphous C12A7 electride has conductivity due to hopping conduction of electrons in the cage. The DC conductivity at room temperature of the amorphous C12A7 electride thin film may be 10 −9 to 10 −1 S · cm −1 , and 10 −7 to 10 −3 S · cm −. 1 may be sufficient.
 非晶質C12A7エレクトライドの薄膜は、バイポーラロン74のほかに、部分構造として、酸素欠損に電子が一つ捕獲された、Fセンターを有することがある。Fセンターは複数のCa2+イオンに1つの電子が取り囲まれて構成されており、ケージは有さない。Fセンターは3.3eVを中心として、1.55eV~3.10eVの可視光の範囲で光吸収を有する。 In addition to the bipolaron 74, the amorphous C12A7 electride thin film may have, as a partial structure, an F + center in which one electron is captured in an oxygen vacancy. The F + center is configured by a plurality of Ca 2+ ions surrounded by one electron and does not have a cage. The F + center has light absorption in the visible light range of 1.55 eV to 3.10 eV centered on 3.3 eV.
 Fセンターの濃度が5×1018cm-3未満であると、薄膜の透明性が高まるため、好ましい。Fセンターの濃度が、1×1018cm-3以下であるとより好ましく、1×1017cm-3以下であるとさらに好ましい。なお、Fセンターの濃度は、ESRにおける、g値1.998の信号強度により測定できる。 When the concentration of F + center is less than 5 × 10 18 cm −3 , the transparency of the thin film is increased, which is preferable. The concentration of the F + center is more preferably 1 × 10 18 cm −3 or less, and further preferably 1 × 10 17 cm −3 or less. Note that the concentration of the F + center can be measured by a signal intensity having a g value of 1.998 in ESR.
 非晶質C12A7エレクトライドの薄膜において、4.6eVの光子エネルギー位置における光吸収係数に対する、3.3eVの位置における光吸収係数の比は、0.35以下であっても良い。 In the amorphous C12A7 electride thin film, the ratio of the light absorption coefficient at a position of 3.3 eV to the light absorption coefficient at a photon energy position of 4.6 eV may be 0.35 or less.
 また、非晶質C12A7エレクトライドの薄膜は、結晶粒界を有さないため、平坦性に優れている。非晶質C12A7エレクトライドの薄膜の表面の自乗平均面粗さ(RMS)は、0.1~10nmであっても良く、0.2~5nmであることが好ましい。RMSが2nm以下の非晶質C12A7エレクトライドの薄膜で、電子注入層227aおよび/または陰極230aが構成された場合、有機エレクトロルミネッセンス素子200Aの特性が向上するため、より好ましい。また、RMSが10nm以上の場合、有機エレクトロルミネッセンス素子200Aの特性が低下するおそれがあるため、研磨工程などを追加する必要が生じる。RMSは、例えば、原子間力顕微鏡を用いて測定することができる。 Moreover, since the amorphous C12A7 electride thin film does not have a crystal grain boundary, it has excellent flatness. The root mean square roughness (RMS) of the surface of the amorphous C12A7 electride thin film may be 0.1 to 10 nm, and preferably 0.2 to 5 nm. When the electron injection layer 227a and / or the cathode 230a is formed of an amorphous C12A7 electride thin film having an RMS of 2 nm or less, the characteristics of the organic electroluminescent element 200A are more preferable. Further, when the RMS is 10 nm or more, the characteristics of the organic electroluminescence element 200A may be deteriorated, so that it is necessary to add a polishing process or the like. RMS can be measured using, for example, an atomic force microscope.
 非晶質C12A7エレクトライドの薄膜の組成は、C12A7の化学量論比と異なっていても良く、製造の際に用いたターゲットの組成比と異なっていても良い。 The composition of the amorphous C12A7 electride thin film may be different from the stoichiometric ratio of C12A7, or may be different from the composition ratio of the target used in the production.
 有機エレクトロルミネッセンス素子200は、以下のいずれかの構成であっても良い。
(1)基板、陽極、および陰極をこの順に有し、基板側を光取出し面とする構成であり、非晶質の薄膜が、陽極と陰極の間に存在するか、または陰極を構成する。
(2)基板、陽極、および陰極をこの順に有し、陰極側を光取出し面とする構成であり、非晶質の薄膜が、陽極と陰極の間に存在するか、または陰極を構成する。
(3)基板、陰極、および陽極をこの順に有し、基板側を光取出し面とする構成であり、非晶質の薄膜が、陽極と陰極の間に存在するか、または陰極を構成する。
(4)基板、陰極、および陽極をこの順に有し、陽極側を光取出し面とする構成であり、非晶質の薄膜が、陽極と陰極の間に存在するか、または陰極を構成する。
上記(1)~(4)のいずれにおいても、非晶質の薄膜は、陰極と、陰極と陽極の間に存在する発光層と、の間に存在することが好ましい。
The organic electroluminescence element 200 may have any of the following configurations.
(1) The substrate, the anode, and the cathode are arranged in this order, and the substrate side is the light extraction surface, and an amorphous thin film exists between the anode and the cathode, or constitutes the cathode.
(2) The substrate, the anode, and the cathode are arranged in this order, and the cathode side is the light extraction surface, and an amorphous thin film exists between the anode and the cathode or constitutes the cathode.
(3) A substrate, a cathode, and an anode are provided in this order, and the substrate side is a light extraction surface, and an amorphous thin film exists between the anode and the cathode, or constitutes the cathode.
(4) A substrate, a cathode, and an anode are provided in this order, and the anode side is a light extraction surface, and an amorphous thin film exists between the anode and the cathode or constitutes the cathode.
In any of the above (1) to (4), it is preferable that the amorphous thin film exists between the cathode and the light emitting layer existing between the cathode and the anode.
 (半導体素子100について)
 次に、半導体素子100について、簡単に説明する。
(About the semiconductor element 100)
Next, the semiconductor element 100 will be briefly described.
 (基板110)
 上部に半導体素子100が配置される基板110の材質は、特に限られない。ただし、有機エレクトロルミネッセンス装置1の光取り出し面を基板110側とする場合、基板110は、透明材料で構成される。
(Substrate 110)
The material of the substrate 110 on which the semiconductor element 100 is disposed is not particularly limited. However, when the light extraction surface of the organic electroluminescence device 1 is the substrate 110 side, the substrate 110 is made of a transparent material.
 透明材料としては、例えば、ガラス基板、プラスチック基板、および樹脂基板等が使用できる。 As the transparent material, for example, a glass substrate, a plastic substrate, a resin substrate, or the like can be used.
 (半導体層105)
 半導体素子100を構成する半導体層105の材料は、特に限られない。半導体層105は、例えば、アモルファスシリコン、ポリシリコン、単結晶シリコン、酸化物半導体、または有機半導体など、一般的な半導体材料で構成されても良い。
(Semiconductor layer 105)
The material of the semiconductor layer 105 constituting the semiconductor element 100 is not particularly limited. The semiconductor layer 105 may be made of a general semiconductor material such as amorphous silicon, polysilicon, single crystal silicon, oxide semiconductor, or organic semiconductor.
 酸化物半導体としては、例えばIn、Ti、Nb、Sn、Zn、Gd、Cd、Zr、Y、La、およびTa等の遷移金属の酸化物や、SrTiO、CaTiO、ZnO・Rh、CuGaO、およびSrCu等の酸化物が挙げられる。 Examples of the oxide semiconductor include oxides of transition metals such as In, Ti, Nb, Sn, Zn, Gd, Cd, Zr, Y, La, and Ta, SrTiO 3 , CaTiO 3 , ZnO · Rh 2 O 3. , CuGaO 2 , and oxides such as SrCu 2 O 2 .
 例えば、酸化物半導体は、In、Sn、Zn、Ga、およびCdのうちの少なくとも1種の酸化物を含んでも良い。酸化物半導体は、In、Sn、Zn、およびGaのうちの少なくとも1種の酸化物を含むことが好ましく、In、Ga、およびZnのうちの少なくとも1種を含む酸化物(例えばIn-O系)を含むことがより好ましい。 For example, the oxide semiconductor may include at least one oxide of In, Sn, Zn, Ga, and Cd. The oxide semiconductor preferably includes at least one oxide of In, Sn, Zn, and Ga, and includes an oxide including at least one of In, Ga, and Zn (eg, an In—O-based oxide). ) Is more preferable.
 例えば、酸化物半導体は、In、Ga、およびZnのうちの少なくとも2種、例えば全ての酸化物を含んでも良い。 For example, the oxide semiconductor may include at least two of In, Ga, and Zn, for example, all oxides.
 そのような酸化物半導体の一例は、IGZO(In-Ga-Zn-O)、ITO(In-Sn-O)、ISZO(In-Si-Zn-O)、IGO(In-Ga-O)、ITZO(In-Sn-Zn-O)、IZO(In-Zn-O)、およびIHZO(In-Hf-Zn-O)等である。このような酸化物半導体で構成される膜は、非晶質であっても良く、結晶質であっても良く、非晶質と結晶質とを含む状態であっても良い。 Examples of such oxide semiconductors include IGZO (In—Ga—Zn—O), ITO (In—Sn—O), ISZO (In—Si—Zn—O), IGO (In—Ga—O), ITZO (In—Sn—Zn—O), IZO (In—Zn—O), IHZO (In—Hf—Zn—O), and the like. A film formed using such an oxide semiconductor may be amorphous, crystalline, or in a state containing amorphous and crystalline.
 なお、図1に示した第1の有機エレクトロルミネッセンス装置1における半導体素子100、すなわち薄膜トランジスタ101、102は、いわゆるトップゲート構造-トップコンタクト方式で構成されている。しかしながら、薄膜トランジスタの配置構造は、これに限られるものではない。 Note that the semiconductor element 100 in the first organic electroluminescence device 1 shown in FIG. 1, that is, the thin film transistors 101 and 102, is configured by a so-called top gate structure-top contact method. However, the arrangement structure of the thin film transistors is not limited to this.
 ここで、半導体素子の配置構造には、例えば、(i)トップゲート構造-トップコンタクト方式、(ii)トップゲート構造-ボトムコンタクト方式、(iii)ボトムゲート構造-トップコンタクト方式、および(iii)ボトムゲート構造-ボトムコンタクト方式、等が存在する。 Here, for example, (i) top gate structure-top contact system, (ii) top gate structure-bottom contact system, (iii) bottom gate structure-top contact system, and (iii) There is a bottom gate structure-bottom contact system.
 図7~図10を参照して、これらの配置構造について簡単に説明する。 These arrangement structures will be briefly described with reference to FIGS.
 まず、図7には、トップゲート構造-トップコンタクト方式で構成された半導体素子の一例を示す。 First, FIG. 7 shows an example of a semiconductor device configured by a top gate structure-top contact method.
 図7に示すように、基板710上に形成された半導体素子700は、半導体層705と、ソース電極720およびドレイン電極722と、ゲート絶縁層730と、ゲート電極724とを有する。 7, the semiconductor element 700 formed over the substrate 710 includes a semiconductor layer 705, a source electrode 720 and a drain electrode 722, a gate insulating layer 730, and a gate electrode 724.
 この例では、ゲート電極724は、半導体層705の上部に配置されており(トップゲート構造)、ソース電極720およびドレイン電極722も、半導体層705の上部に配置されている(トップコンタクト方式)。 In this example, the gate electrode 724 is disposed on the semiconductor layer 705 (top gate structure), and the source electrode 720 and the drain electrode 722 are also disposed on the semiconductor layer 705 (top contact method).
 次に、図8には、トップゲート構造-ボトムコンタクト方式で構成された半導体素子の一例を示す。 Next, FIG. 8 shows an example of a semiconductor device configured by a top gate structure-bottom contact method.
 図8に示すように、基板810上に形成された半導体素子800は、半導体層805と、ソース電極820およびドレイン電極822と、ゲート絶縁層830と、ゲート電極824とを有する。 As shown in FIG. 8, a semiconductor element 800 formed over a substrate 810 includes a semiconductor layer 805, a source electrode 820 and a drain electrode 822, a gate insulating layer 830, and a gate electrode 824.
 この例では、ゲート電極824は、半導体層805の上部に配置されている(トップゲート構造)。一方、ソース電極820およびドレイン電極822は、半導体層805の下側に配置されている(ボトムコンタクト方式)。 In this example, the gate electrode 824 is disposed on the semiconductor layer 805 (top gate structure). On the other hand, the source electrode 820 and the drain electrode 822 are disposed below the semiconductor layer 805 (bottom contact method).
 次に、図9には、ボトムゲート構造-トップコンタクト方式で構成された半導体素子の一例を示す。 Next, FIG. 9 shows an example of a semiconductor device configured by a bottom gate structure-top contact method.
 図9に示すように、基板910上に形成された半導体素子900は、半導体層905と、ソース電極920およびドレイン電極922と、ゲート絶縁層930と、ゲート電極924とを有する。 As shown in FIG. 9, a semiconductor element 900 formed over a substrate 910 includes a semiconductor layer 905, a source electrode 920 and a drain electrode 922, a gate insulating layer 930, and a gate electrode 924.
 この例では、ゲート電極924は、半導体層905の下側に配置されている(ボトムゲート構造)。一方、ソース電極920およびドレイン電極922は、半導体層905の上側に配置されている(トップコンタクト方式)。 In this example, the gate electrode 924 is disposed below the semiconductor layer 905 (bottom gate structure). On the other hand, the source electrode 920 and the drain electrode 922 are disposed above the semiconductor layer 905 (top contact method).
 次に、図10には、ボトムゲート構造-ボトムコンタクト方式で構成された半導体素子の一例を示す。 Next, FIG. 10 shows an example of a semiconductor device configured by a bottom gate structure-bottom contact method.
 図10に示すように、基板1010上に形成された半導体素子1000は、半導体層1005と、ソース電極1020およびドレイン電極1022と、ゲート絶縁層1030と、ゲート電極1024とを有する。 As shown in FIG. 10, the semiconductor element 1000 formed over the substrate 1010 includes a semiconductor layer 1005, a source electrode 1020 and a drain electrode 1022, a gate insulating layer 1030, and a gate electrode 1024.
 この例では、ゲート電極1024は、半導体層1005の下側に配置されている(ボトムゲート構造)。一方、ソース電極1020およびドレイン電極1022も、半導体層1005の下側に配置されている(ボトムコンタクト方式)。 In this example, the gate electrode 1024 is disposed below the semiconductor layer 1005 (bottom gate structure). On the other hand, the source electrode 1020 and the drain electrode 1022 are also disposed below the semiconductor layer 1005 (bottom contact method).
 半導体素子は、チャネルエッチ型であっても、チャネル保護型であっても良い。 The semiconductor element may be a channel etch type or a channel protection type.
 このように、半導体素子の配置構造には、各種態様が存在する。本発明における有機エレクトロルミネッセンス装置における半導体素子は、これらのいかなる態様で配置されても良い。 As described above, there are various modes in the arrangement structure of the semiconductor elements. The semiconductor element in the organic electroluminescence device of the present invention may be arranged in any of these modes.
 図11には、本発明の別の実施例による有機エレクトロルミネッセンス装置(第2の有機エレクトロルミネッセンス装置)の断面を模式的に示す。 FIG. 11 schematically shows a cross section of an organic electroluminescence device (second organic electroluminescence device) according to another embodiment of the present invention.
 図11に示すように、第2の有機エレクトロルミネッセンス装置1101は、基本的に、図1に示した第1の有機エレクトロルミネッセンス装置1と同様の構成を有する。従って、図11において、図10と同様の部材には、図1で使用した参照符号に1100を加えた参照符号が使用されている。 As shown in FIG. 11, the second organic electroluminescence device 1101 basically has the same configuration as the first organic electroluminescence device 1 shown in FIG. Therefore, in FIG. 11, the same reference numerals used in FIG. 1 plus 1100 are used for the same members as in FIG.
 ただし、この第2の有機エレクトロルミネッセンス装置1101では、半導体素子1200の構成が、第1の有機エレクトロルミネッセンス装置1とは大きく異なっている。すなわち、この第2の有機エレクトロルミネッセンス装置1101では、半導体素子1200、すなわち第1および第2の薄膜トランジスタ1201、1202は、いわゆるボトムゲート構造-トップコンタクト方式で構成されている。 However, in the second organic electroluminescence device 1101, the configuration of the semiconductor element 1200 is greatly different from that of the first organic electroluminescence device 1. That is, in the second organic electroluminescence device 1101, the semiconductor element 1200, that is, the first and second thin film transistors 1201 and 1202 are configured by a so-called bottom gate structure-top contact method.
 このような構成の半導体素子1200を有する第2の有機エレクトロルミネッセンス装置1101においても、有機エレクトロルミネッセンス素子1300のいずれかに、カルシウム、アルミニウム、および酸素を含む非晶質固体物質の薄膜が含まれる限り、第1の有機エレクトロルミネッセンス装置1と同様の効果が得られることは明らかであろう。 Also in the second organic electroluminescence device 1101 having the semiconductor element 1200 having such a configuration, any one of the organic electroluminescence elements 1300 includes a thin film of an amorphous solid material containing calcium, aluminum, and oxygen. It will be apparent that the same effects as those of the first organic electroluminescence device 1 can be obtained.
 次に、本発明の別の実施例による有機エレクトロルミネッセンス装置(第3の有機エレクトロルミネッセンス装置、第4の有機エレクトロルミネッセンス装置)について説明する。 Next, an organic electroluminescence device (third organic electroluminescence device, fourth organic electroluminescence device) according to another embodiment of the present invention will be described.
 第3の有機エレクトロルミネッセンス装置は、半導体基板を用いて形成した半導体素子を備える。半導体素子としては、半導体基板を用いて形成される公知の構成を用いることができる。例えば、半導体基板の一部を半導体領域として用いればよい。その他の構成(ソース電極、ドレイン電極、およびゲート電極など)は公知の構成を適用すればよい。半導体基板としては、例えばシリコン基板、ゲルマニウム基板などを用いればよい。好ましくは、単結晶半導体基板(単結晶シリコン基板、単結晶ゲルマニウム基板)を用いればよい。また、ゲート絶縁層は、特に限定されないが、熱酸化膜を用いることが好ましい。 The third organic electroluminescence device includes a semiconductor element formed using a semiconductor substrate. A known structure formed using a semiconductor substrate can be used as the semiconductor element. For example, a part of the semiconductor substrate may be used as the semiconductor region. Other structures (source electrode, drain electrode, gate electrode, etc.) may be known structures. As the semiconductor substrate, for example, a silicon substrate, a germanium substrate, or the like may be used. Preferably, a single crystal semiconductor substrate (a single crystal silicon substrate or a single crystal germanium substrate) may be used. The gate insulating layer is not particularly limited, but a thermal oxide film is preferably used.
 第4の有機エレクトロルミネッセンス装置は、SOI(Silicon On Insulator)基板を用いて形成した半導体素子を備える。SOI基板は、半導体基板(例えばシリコン基板)と表層半導体層(例えば表層シリコン層)との間に、絶縁層(例えばSiOなど)が存在する構造である。表層半導体層は、単結晶半導体からなることが好ましい。また、SOI基板は、ガラス基板、プラスチック基板、樹脂基板およびセラミックス基板など半導体基板とは異なる基板の上に、直接または間接的に結晶半導体膜(好ましくは単結晶半導体膜)を設けた構成であってもよい。この場合、結晶半導体膜が上記表層半導体層に対応する。 The fourth organic electroluminescence device includes a semiconductor element formed using an SOI (Silicon On Insulator) substrate. The SOI substrate has a structure in which an insulating layer (for example, SiO 2 or the like) exists between a semiconductor substrate (for example, a silicon substrate) and a surface layer semiconductor layer (for example, a surface layer silicon layer). The surface semiconductor layer is preferably made of a single crystal semiconductor. An SOI substrate has a structure in which a crystalline semiconductor film (preferably a single crystal semiconductor film) is provided directly or indirectly on a substrate different from a semiconductor substrate such as a glass substrate, a plastic substrate, a resin substrate, or a ceramic substrate. May be. In this case, the crystalline semiconductor film corresponds to the surface semiconductor layer.
 半導体素子としては、SOI基板を用いて形成される公知の構成を用いることができる。例えば、表層半導体層を用いて、半導体層を形成すればよい。その他の構成(ソース電極、ドレイン電極、およびゲート電極など)は公知の構成を適用すればよい。また、ゲート絶縁層は、特に限定されないが、熱酸化膜を用いることができる。 As the semiconductor element, a known configuration formed using an SOI substrate can be used. For example, a semiconductor layer may be formed using a surface semiconductor layer. Other structures (source electrode, drain electrode, gate electrode, etc.) may be known structures. The gate insulating layer is not particularly limited, but a thermal oxide film can be used.
 第3および第4の有機エレクトロルミネッセンス装置において、有機エレクトロルミネッセンス素子としては、上記有機エレクトロルミネッセンス素子200を用いればよい。 In the third and fourth organic electroluminescence devices, the organic electroluminescence element 200 may be used as the organic electroluminescence element.
 第3の有機エレクトロルミネッセンス装置は、半導体基板と逆側の面から光を取り出す構成が好ましい。すなわち、半導体基板と逆側を光取り出し面とする有機エレクトロルミネッセンス素子200を用いることが好ましい。 The third organic electroluminescence device preferably has a configuration in which light is extracted from the surface opposite to the semiconductor substrate. That is, it is preferable to use the organic electroluminescence element 200 having the light extraction surface on the side opposite to the semiconductor substrate.
 第3の有機エレクトロルミネッセンス装置において、光を透過することができるように、半導体基板を薄くしてもよい。薄くした半導体基板は、透明な基板に接着する構成としてもよい。半導体基板が光を透過することができる構成の第3の有機エレクトロルミネッセンス装置を、例えばヘッドマウントディスプレイのような眼鏡型のディスプレイとして用いることで、ディスプレイの画像を視認するとともに、眼鏡を通過して外の様子を視認することができる。 In the third organic electroluminescence device, the semiconductor substrate may be thin so that light can be transmitted. The thinned semiconductor substrate may be bonded to a transparent substrate. By using the third organic electroluminescence device having a configuration in which the semiconductor substrate can transmit light as a glasses-type display such as a head-mounted display, the image on the display is visually confirmed and the glasses are passed through. You can see the outside.
 また、第4の有機エレクトロルミネッセンス装置において、半導体基板と表層半導体層との間に絶縁層が存在する構成のSOI基板である場合は、第3の有機エレクトロルミネッセンス装置と同じ構成(半導体基板と逆側の面から光を取り出す構成、半導体基板を薄くして光を透過できる構成)を取ることができる。 Further, in the fourth organic electroluminescence device, when the SOI substrate has a configuration in which an insulating layer exists between the semiconductor substrate and the surface semiconductor layer, the same configuration as that of the third organic electroluminescence device (opposite to the semiconductor substrate). A structure in which light is extracted from the side surface, and a structure in which light can be transmitted by making the semiconductor substrate thin.
 また、第3および第4の有機エレクトロルミネッセンス装置が備える半導体素子は、トップゲート構造になる。 Further, the semiconductor elements included in the third and fourth organic electroluminescence devices have a top gate structure.
 第3および第4の有機エレクトロルミネッセンス装置においても、有機エレクトロルミネッセンス素子のいずれかに、カルシウム、アルミニウム、および酸素を含む非晶質固体物質の薄膜が含まれる限り、第1の有機エレクトロルミネッセンス装置1と同様の効果が得られることは明らかであろう。 Also in the third and fourth organic electroluminescence devices, as long as any of the organic electroluminescence elements includes a thin film of an amorphous solid material containing calcium, aluminum, and oxygen, the first organic electroluminescence device 1 is used. It will be clear that the same effect can be obtained.
 本発明の有機エレクトロルミネッセンス装置は、画像表示装置として用いられ、例えば、携帯電話ディスプレイ、パーソナルデジタルアシスタント(PDA)、コンピュータディスプレイ、自動車の情報ディスプレイ、TVモニター、デジタルカメラのビューファインダー、ヘッドマウントディスプレイ(HMD)等で用いられる。また、本発明の有機エレクトロルミネッセンス装置は、各種発光光源として用いられ、例えば、照明装置(家庭用照明、車内照明)、時計や液晶用バックライト、看板広告、信号機、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等で用いられる。 The organic electroluminescence device of the present invention is used as an image display device, for example, a mobile phone display, a personal digital assistant (PDA), a computer display, an automobile information display, a TV monitor, a digital camera viewfinder, a head mounted display ( HMD) and the like. The organic electroluminescence device of the present invention is used as various light emitting light sources, such as lighting devices (home lighting, interior lighting), clocks and backlights for liquid crystals, billboard advertisements, traffic lights, light sources for optical storage media, electronic It is used as a light source for photocopiers, a light source for optical communication processors, a light source for optical sensors, and the like.
 本発明において、パターニングされた電極毎に、赤(R)、緑(G)、青(B)の発光波長に対応するようにそれぞれパターニングされた発光層が形成されていて良い。これによって、フルカラー表示が可能なディスプレイパネルが実現される。このような表示方式以外の式としては、青色発光層及び色素変換層を用いた色素変換方式を用いてもよい。また、白色に発光する複数の有機エレクトロルミネッセンス素子の各々に対応させて、カラーフィルタが設けられた構造を採用しても良い。 In the present invention, each patterned electrode may be formed with a light emitting layer that is patterned so as to correspond to the emission wavelengths of red (R), green (G), and blue (B). Thereby, a display panel capable of full color display is realized. As a formula other than such a display method, a dye conversion method using a blue light emitting layer and a dye conversion layer may be used. Moreover, you may employ | adopt the structure in which the color filter was provided corresponding to each of the some organic electroluminescent element which light-emits white.
 本発明は、有機エレクトロルミネッセンス素子等に適用することができる。 The present invention can be applied to an organic electroluminescence element or the like.
 また、本願は、2013年4月3日に出願した日本国特許出願2013-077415号、および2013年7月2日に出願した日本国特許出願2013-138987号に基づく優先権を主張するものであり同日本国出願の全内容を本願に参照により援用する。 This application claims priority based on Japanese Patent Application No. 2013-077415 filed on April 3, 2013 and Japanese Patent Application No. 2013-138987 filed on July 2, 2013. The entire contents of the same Japanese application are incorporated herein by reference.
 1    第1の有機エレクトロルミネッセンス装置
 10   第1のパッシベーション層
 20   第2のパッシベーション層
 100  半導体素子
 101  第1の薄膜トランジスタ
 102  第2の薄膜トランジスタ
 105  半導体層
 110  基板
 120  ソース電極
 122  ドレイン電極
 124  ゲート電極
 200  有機エレクトロルミネッセンス素子
 200A、200B 有機エレクトロルミネッセンス素子
 210  下部電極
 210a 陽極
 210b 陰極
 220  有機層
 220a、220b 有機層
 223a、223b ホール注入層
 224a、224b ホール輸送層
 225a、225b 発光層
 226a、226b 電子輸送層
 227a、227b 電子注入層
 230  上部電極
 230a 陰極
 230b 陽極
 320  ゲート配線
 322  データ配線
 324  駆動配線
 326  キャパシタ
 520  溶媒(非晶質C12A7)
 530  ケージ
 540  電子(溶質)
 550  バイポーラロン
 700、800、900、1000  半導体素子
 705、805、905、1005 半導体層
 710、810、910、1010 基板
 720、820、920、1020 ソース電極
 722、822、922、1022 ドレイン電極
 724、824、924、1024 ゲート電極
 730、830、930、1030 ゲート絶縁層
 1101 第2の有機エレクトロルミネッセンス装置
 1110 第1のパッシベーション層
 1120 第2のパッシベーション層
 1200 半導体素子
 1201 第1の薄膜トランジスタ
 1202 第2の薄膜トランジスタ
 1205 半導体層
 1210 基板
 1220 ソース電極
 1222 ドレイン電極
 1224 ゲート電極
 1300 有機エレクトロルミネッセンス素子
 1310 下部電極
 1320 有機層
 1330 上部電極
 

 
DESCRIPTION OF SYMBOLS 1 1st organic electroluminescent apparatus 10 1st passivation layer 20 2nd passivation layer 100 Semiconductor element 101 1st thin-film transistor 102 2nd thin-film transistor 105 Semiconductor layer 110 Substrate 120 Source electrode 122 Drain electrode 124 Gate electrode 200 Organic electro Luminescent element 200A, 200B Organic electroluminescent element 210 Lower electrode 210a Anode 210b Cathode 220 Organic layer 220a, 220b Organic layer 223a, 223b Hole injection layer 224a, 224b Hole transport layer 225a, 225b Light emitting layer 226a, 226b Electron transport layer 227a, 227b Electron injection layer 230 Upper electrode 230a Cathode 230b Anode 320 Gate wiring 322 Data wiring 24 drive wiring 326 capacitor 520 solvent (amorphous C12A7)
530 Cage 540 Electron (solute)
550 Bipolaron 700, 800, 900, 1000 Semiconductor element 705, 805, 905, 1005 Semiconductor layer 710, 810, 910, 1010 Substrate 720, 820, 920, 1020 Source electrode 722, 822, 922, 1022 Drain electrode 724, 824 , 924, 1024 Gate electrode 730, 830, 930, 1030 Gate insulating layer 1101 Second organic electroluminescence device 1110 First passivation layer 1120 Second passivation layer 1200 Semiconductor element 1201 First thin film transistor 1202 Second thin film transistor 1205 Semiconductor layer 1210 Substrate 1220 Source electrode 1222 Drain electrode 1224 Gate electrode 1300 Organic electroluminescence element 1310 Lower electrode 1320 Organic layer 1330 Upper electrode

Claims (7)

  1.  半導体素子と、
     有機エレクトロルミネッセンス素子と、
     を有し、
     前記有機エレクトロルミネッセンス素子は、カルシウム、アルミニウム、および酸素を含む非晶質固体物質の薄膜を含むことを特徴とする有機エレクトロルミネッセンス装置。
    A semiconductor element;
    An organic electroluminescence element;
    Have
    The organic electroluminescence device includes a thin film of an amorphous solid material containing calcium, aluminum, and oxygen.
  2.  前記有機エレクトロルミネッセンス素子は、陽極、有機層、および陰極を有し、
     前記非晶質固体物質の薄膜は、前記有機層または前記陰極に含まれることを特徴とする請求項1に記載の有機エレクトロルミネッセンス装置。
    The organic electroluminescence element has an anode, an organic layer, and a cathode,
    The organic electroluminescence device according to claim 1, wherein the thin film of the amorphous solid material is included in the organic layer or the cathode.
  3.  前記非晶質固体物質の薄膜は、非晶質C12A7エレクトライドで構成されることを特徴とする請求項1または2に記載の有機エレクトロルミネッセンス装置。 3. The organic electroluminescence device according to claim 1, wherein the thin film of the amorphous solid material is composed of amorphous C12A7 electride.
  4.  前記半導体素子は、半導体層を有する薄膜トランジスタを有することを特徴とする請求項1乃至3のいずれか一つに記載の有機エレクトロルミネッセンス装置。 4. The organic electroluminescence device according to claim 1, wherein the semiconductor element includes a thin film transistor having a semiconductor layer.
  5.  前記半導体層は、アモルファスシリコン、ポリシリコン、単結晶シリコン、酸化物半導体、または有機半導体を有することを特徴とする請求項4に記載の有機エレクトロルミネッセンス装置。 The organic electroluminescent device according to claim 4, wherein the semiconductor layer includes amorphous silicon, polysilicon, single crystal silicon, an oxide semiconductor, or an organic semiconductor.
  6.  前記酸化物半導体は、In、Ga、およびZnを含むことを特徴とする請求項5に記載の有機エレクトロルミネッセンス装置。 6. The organic electroluminescence device according to claim 5, wherein the oxide semiconductor contains In, Ga, and Zn.
  7.  前記半導体素子は、半導体としての機能を有する基板の一部を半導体領域として有することを特徴とする請求項1乃至3のいずれか一つに記載の有機エレクトロルミネッセンス装置。
     
    The organic electroluminescence device according to claim 1, wherein the semiconductor element includes a part of a substrate having a function as a semiconductor as a semiconductor region.
PCT/JP2014/059759 2013-04-03 2014-04-02 Organic electroluminescent device WO2014163116A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013077415 2013-04-03
JP2013-077415 2013-04-03
JP2013-138987 2013-07-02
JP2013138987 2013-07-02

Publications (1)

Publication Number Publication Date
WO2014163116A1 true WO2014163116A1 (en) 2014-10-09

Family

ID=51658408

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/059759 WO2014163116A1 (en) 2013-04-03 2014-04-02 Organic electroluminescent device

Country Status (1)

Country Link
WO (1) WO2014163116A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015098458A1 (en) * 2013-12-26 2015-07-02 国立大学法人東京工業大学 Metal oxide thin film, organic electroluminescence element provided with thin film, solar cell, and organic solar cell
WO2018189216A1 (en) * 2017-04-11 2018-10-18 Basf Se Composite material comprising an electride compound

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0541285A (en) * 1991-08-07 1993-02-19 Ricoh Co Ltd Electroluminescence element
JP2010045228A (en) * 2008-08-13 2010-02-25 Japan Science & Technology Agency Ohmic junction forming method for surface of conductive element material made of c12a7 electride
JP2013048248A (en) * 2008-09-19 2013-03-07 Semiconductor Energy Lab Co Ltd Display device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0541285A (en) * 1991-08-07 1993-02-19 Ricoh Co Ltd Electroluminescence element
JP2010045228A (en) * 2008-08-13 2010-02-25 Japan Science & Technology Agency Ohmic junction forming method for surface of conductive element material made of c12a7 electride
JP2013048248A (en) * 2008-09-19 2013-03-07 Semiconductor Energy Lab Co Ltd Display device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HIDEO HOSONO ET AL.: "Sankabutsu TFT Kudo Yuki EL yo Denshi Chunyuso Busshitsu: Amorphous C12A7 Electride", 2013 NEN <DAI 60 KAI> JSAP SPRING MEETING KOEN YOKOSHU, vol. 60, 11 March 2013 (2013-03-11), pages 29P-G13 - 1 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015098458A1 (en) * 2013-12-26 2015-07-02 国立大学法人東京工業大学 Metal oxide thin film, organic electroluminescence element provided with thin film, solar cell, and organic solar cell
JPWO2015098458A1 (en) * 2013-12-26 2017-03-23 国立研究開発法人科学技術振興機構 METAL OXIDE THIN FILM, ORGANIC ELECTROLUMINESCENT DEVICE EQUIPPED WITH THIN FILM, SOLAR CELL, AND ORGANIC SOLAR CELL
US11094909B2 (en) 2013-12-26 2021-08-17 Japan Science And Technology Agency Thin film of metal oxide, organic electroluminescent device including the thin film, photovoltaic cell including the thin film and organic photovoltaic cell including the thin film
WO2018189216A1 (en) * 2017-04-11 2018-10-18 Basf Se Composite material comprising an electride compound

Similar Documents

Publication Publication Date Title
US11871590B2 (en) Thin film of metal oxide, organic electroluminescent device including thin film, photovoltaic cell including thin film, and manufacturing method of thin film
KR102013125B1 (en) Organic electroluminescence element
TWI651433B (en) Metal oxide film, organic electroluminescence device having the film, solar cell and organic solar cell
TWI599030B (en) Organic light-emitting element
JP6149725B2 (en) Semiconductor device and manufacturing method of semiconductor device
CN108293281B (en) Method for manufacturing photoelectric conversion element
WO2010082241A1 (en) Organic el element and method for manufacturing same
WO2014163116A1 (en) Organic electroluminescent device
WO2015098225A1 (en) Semiconductor device and method for manufacturing semiconductor device
JP6417632B2 (en) ORGANIC LIGHT EMITTING ELEMENT AND MANUFACTURING METHOD
CN111129358A (en) Method for manufacturing photoelectric conversion element
JP2004158315A (en) Electrode substrate for organic electroluminescent element, and organic el light emitting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14778907

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14778907

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP