JP2010045228A - Ohmic junction forming method for surface of conductive element material made of c12a7 electride - Google Patents

Ohmic junction forming method for surface of conductive element material made of c12a7 electride Download PDF

Info

Publication number
JP2010045228A
JP2010045228A JP2008208753A JP2008208753A JP2010045228A JP 2010045228 A JP2010045228 A JP 2010045228A JP 2008208753 A JP2008208753 A JP 2008208753A JP 2008208753 A JP2008208753 A JP 2008208753A JP 2010045228 A JP2010045228 A JP 2010045228A
Authority
JP
Japan
Prior art keywords
electride
phosphoric acid
element material
metal
ohmic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008208753A
Other languages
Japanese (ja)
Other versions
JP5106313B2 (en
Inventor
Hideo Hosono
秀雄 細野
Satoshi Matsuishi
聡 松石
Yoshitake Toda
喜丈 戸田
Masao Kin
聖雄 金
Masahiro Hirano
正浩 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2008208753A priority Critical patent/JP5106313B2/en
Publication of JP2010045228A publication Critical patent/JP2010045228A/en
Application granted granted Critical
Publication of JP5106313B2 publication Critical patent/JP5106313B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To form an ohmic surface whose interface has small deterioration even in an atmosphere so as to apply a C12A7 electride to an element such as a cold electron emission source and an organic EL. <P>SOLUTION: In a method of using a 12CaO-7Al<SB>2</SB>O<SB>3</SB>electride as a conductive element material and vapor-depositing metal on its surface to form an ohmic junction, an ohmic junction forming method for the surface of the conductive element material made of the C12A7 electride includes: subjecting the surface of the element material to phosphorous acid processing to modify it; and then vapor-depositing the metal on the surface of the element material to control the contact resistance of the interface between the element material surface and the metal to less than 0.5 Ωcm<SP>2</SP>. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、12CaO・7Al(以下、「C12A7」と記す)エレクトライドか
らなる導電性素子材料表面と蒸着金属とのオーミック接合の形成方法に関するものである
The present invention relates to a method for forming an ohmic junction between a surface of a conductive element made of 12CaO · 7Al 2 O 3 (hereinafter referred to as “C12A7”) electride and a deposited metal.

C12A7化合物は、結晶中のケージに包接された酸素イオン(「自由酸素イオン」と呼
ぶ)を還元処理することにより電子に置換することができる。該電子は、ケージ間を移動
するために、還元処理によりC12A7に電気伝導性を賦与することができる。電子含有
量が約1×1021cm−3を超えるC12A7では、その電気抵抗は温度の上昇ととも
に減少する金属型電気伝導となる(非特許文献1)。本明細書において、包接された酸素
イオンを、電子で部分的(1×1019個電子cm−3超2.3×1021個電子cm
未満)又は完全(2.3×1021個電子cm−3)に置換した化合物をC12A7エ
レクトライド(C12A7:e)と定義する。
The C12A7 compound can be replaced with electrons by reducing oxygen ions (referred to as “free oxygen ions”) included in the cage in the crystal. The electrons can impart electrical conductivity to C12A7 by reduction treatment in order to move between cages. In C12A7 in which the electron content exceeds about 1 × 10 21 cm −3 , the electric resistance becomes metal-type electric conduction that decreases with increasing temperature (Non-Patent Document 1). In this specification, the oxygen ions included are partially converted into electrons (over 1 × 10 19 electrons cm −3 and 2.3 × 10 21 electrons cm
A compound substituted with less than 3 ) or completely (2.3 × 10 21 electrons cm −3 ) is defined as C12A7 electride (C12A7: e ).

本発明者らは、単結晶や微粉末の静水圧プレス成形体をアルカリ金属又はアルカリ土類金
属蒸気中で700℃程度に保持する等の方法でC12A7に電気伝導性を賦与する方法と
該方法で得られた電子放出材料の発明について特許出願した(特許文献1)。また、原料
を溶融した後ガラス相状態の形成温度まで急冷する方法で電気伝導性C12A7結晶を製
造する方法の発明について特許出願した(特許文献2)。また、原料物質を溶融し、酸素
分圧10Pa以下の低酸素分圧の雰囲気中に保持した後、冷却凝固して導電性マイエナイ
ト型化合物を製造する方法の発明について特許出願した(特許文献3)。さらに、チタン
金属蒸気中でC12A7化合物を処理して室温での電気伝導度が5×10S/cmを超
えるC12A7エレクトライドを製造する方法と該方法で得られた電子放出材料の発明に
ついて特許出願した(特許文献4)。
The present inventors provide a method for imparting electrical conductivity to C12A7 by a method such as holding a hydrostatic press-molded body of single crystal or fine powder in an alkali metal or alkaline earth metal vapor at about 700 ° C. and the method. A patent application was filed for the invention of the electron-emitting material obtained in (Patent Document 1). In addition, a patent application was filed for an invention of a method for producing an electrically conductive C12A7 crystal by a method in which a raw material is melted and then rapidly cooled to a glass phase state forming temperature (Patent Document 2). Also, a patent application was filed for an invention of a method for producing a conductive mayenite type compound by melting a raw material and holding it in an atmosphere having a low oxygen partial pressure of 10 Pa or less and then cooling and solidifying it (Patent Document 3). . Furthermore, the invention relates to a method for producing a C12A7 electride having an electrical conductivity at room temperature exceeding 5 × 10 2 S / cm by treating a C12A7 compound in titanium metal vapor, and an invention of an electron emission material obtained by the method. Applied (Patent Document 4).

C12A7エレクトライドは、常温常圧で安定な物質であり、2.4eVという極めて小
さい仕事関数もつことから、FEDの冷電子放出源(非特許文献2)、PDPの2次電子
放出源、有機EL素子のための電子注入電極(非特許文献3)、熱電子発電素子(特許文
献5、6)等としての応用が期待されている。
C12A7 electride is a stable substance at normal temperature and pressure, and has a very small work function of 2.4 eV. Therefore, a cold electron emission source of FED (Non-patent Document 2), a secondary electron emission source of PDP, and an organic EL Application as an electron injection electrode (Non-patent Document 3) for a device, a thermionic power generation device (Patent Documents 5 and 6) and the like is expected.

これらの素子材料では、通常、その表面に真空蒸着により金属層を蒸着させて電極を形成
している。しかし、C12A7エレクトライドからなる素子材料表面に対向する金属電極
を蒸着させ、該素子材料と電極間に電圧を印加した場合には、10Ω・cm2以上の高い
接触抵抗が観測されるのみならず、そこを流れる電流の増加は印加した電圧の大きさに対
して非線形となる。すなわち、金属型伝導を示すC12A7エレクトライドを導電性素子
材料とする場合に、オーミック電極を作成するのが困難であった(以下、オーミック電極
が作成可能な表面を「オーミック表面」と呼ぶ。)。金属状態のC12A7エレクトライ
ドと金属との単純な界面(金属−金属接合)は、理論的には、オーミック接触になるはず
である。オーミック表面が得られない原因は、C12A7エレクトライド表面に電気絶縁
層が存在するためと考えられる(非特許文献4)。
In these element materials, a metal layer is usually deposited on the surface by vacuum deposition to form an electrode. However, when a metal electrode facing the element material surface made of C12A7 electride is vapor-deposited and a voltage is applied between the element material and the electrode, not only a high contact resistance of 10 Ω · cm 2 or more is observed. The increase in current flowing therethrough is non-linear with respect to the applied voltage. That is, when C12A7 electride showing metal-type conduction is used as the conductive element material, it is difficult to create an ohmic electrode (hereinafter, the surface on which the ohmic electrode can be created is referred to as “ohmic surface”). . A simple interface between a C12A7 electride in a metal state and a metal (metal-metal junction) should theoretically be an ohmic contact. The reason why the ohmic surface cannot be obtained is thought to be because an electrical insulating layer is present on the C12A7 electride surface (Non-patent Document 4).

再表2005−000741号公報Table 2005-000741 特開2005−314196号公報JP 2005-314196 A 再表2005−077859号公報No. 2005-0777859 WO2007/060890WO2007 / 060890 特開2007−037319号公報JP 2007-037319 A 特開2007−346326号公報JP 2007-346326 A S.Matsuishi, et al.,Science,301,626-629,(2003)S. Matsuishi, et al., Science, 301, 626-629, (2003) Y.Toda et al.,Adv.Mater.,16,pp.685-689,(2004)Y. Toda et al., Adv. Mater., 16, pp. 685-689, (2004) 宮川 仁 他、表面科学 Vol.29,No.1,pp.2-9,2008Hitoshi Miyagawa et al., Surface Science Vol.29, No.1, pp.2-9,2008 T. Kamiya, S. Aiba, M. Miyakawa, K. Nomura, S. Matsuishi, K. Hayashi, K. Ueda, M. Hirano and H. Hosono: Field-Induced Current Modulation in Nanoporous Semiconductor, Electron-Doped 12CaO・7Al2O3; Chem. Mater., 17, 6311-6316, (2005).T. Kamiya, S. Aiba, M. Miyakawa, K. Nomura, S. Matsuishi, K. Hayashi, K. Ueda, M. Hirano and H. Hosono: Field-Induced Current Modulation in Nanoporous Semiconductor, Electron-Doped 12CaO 7Al2O3; Chem. Mater., 17, 6311-6316, (2005).

C12A7エレクトライド層にオーミック表面電極を実現するために、表面を活性化する
手段としては、超高真空中で600〜900℃に加熱する方法、オゾン雰囲気中での紫外
線照射方法、アルゴンプラズマ照射方法などの物理的方法が考えられるが、大気中で長期
にオーミック表面を維持するのは困難である。
In order to realize an ohmic surface electrode in the C12A7 electride layer, as a means for activating the surface, a method of heating to 600 to 900 ° C. in an ultrahigh vacuum, an ultraviolet irradiation method in an ozone atmosphere, an argon plasma irradiation method However, it is difficult to maintain an ohmic surface for a long time in the atmosphere.

冷電子放出源や有機EL等の素子では、素子の動作に電流の注入が必要であり、素子材料
の界面に高抵抗の非オーミック接触が存在する場合、動作電圧の増大をもたらし、結果と
して、素子の低寿命化、消費電力の増大につながる。また、素子を長期間大気中で使用中
に特に、大気中の水分の影響により界面が劣化し、接触抵抗が増大することもある。それ
故、これらの素子へC12A7エレクトライドを応用するためには大気中でも界面が劣化
することが少ない、表面改質されたオーミック表面を形成することが課題になっている。
In an element such as a cold electron emission source or an organic EL, current injection is required for the operation of the element, and when a high resistance non-ohmic contact is present at the interface of the element material, the operation voltage is increased. This leads to a reduction in device life and an increase in power consumption. Further, when the device is used in the atmosphere for a long time, the interface may be deteriorated due to the influence of moisture in the atmosphere, and the contact resistance may be increased. Therefore, in order to apply C12A7 electride to these elements, it has been a problem to form a surface-modified ohmic surface that hardly deteriorates in the air even in the atmosphere.

そこで、発明者らは、鋭意研究の結果、第1に、リン酸水溶液にC12A7エレクトライ
ドを浸漬して表面改質処理する(以下、「リン酸処理」と呼ぶ)と、低抵抗のオーミック
表面が得られることを見いだした。リン酸処理後のC12A7エレクトライド表面に金(
Au)電極を蒸着すると、0.2Ω・cm2以下の低い接触抵抗を示すオーミック接触が得
られた。これは、リン酸処理により、C12A7エレクトライド表面の高抵抗層が取り除
かれ、本来の電気伝導性C12A7エレクトライド表面と金属の直接的な接合が得られた
ためである。接触抵抗の低下は金電極を他の金属、例えば、白金、In−Ga合金に代え
ても同様に見られた。
Therefore, as a result of diligent research, the inventors firstly applied a surface modification treatment by immersing C12A7 electride in a phosphoric acid aqueous solution (hereinafter referred to as “phosphoric acid treatment”), and thereby a low-resistance ohmic surface. I found out that Gold (on the surface of C12A7 electride after phosphoric acid treatment
When the Au) electrode was deposited, an ohmic contact showing a low contact resistance of 0.2 Ω · cm 2 or less was obtained. This is because the high resistance layer on the surface of the C12A7 electride was removed by the phosphoric acid treatment, and direct bonding between the original electrically conductive C12A7 electride surface and the metal was obtained. The decrease in contact resistance was similarly observed even when the gold electrode was replaced with another metal such as platinum or an In—Ga alloy.

第2に、リン酸処理後の表面は単に金属電極との接触抵抗が低くなるのみならず、耐水性
を有するように表面改質され、リン酸処理後のC12A7エレクトライドは水に不溶とな
ることを見いだした。これは、セメント原料のC12A7が、水に容易に水和・溶解する
のとは対照的である。この表面改質は、リン酸処理により、C12A7エレクトライド表
面の高抵抗層が除去されるだけでなく、該表面がリン酸イオン(PO4 3-)によって化学修飾
され、空気中の酸素や水分との反応が抑制されると考えられる。このような表面改質反応
は、前述の物理的活性化方法では生じない反応である。
Second, the surface after the phosphoric acid treatment is not only reduced in contact resistance with the metal electrode, but also surface-modified so as to have water resistance, and the C12A7 electride after the phosphoric acid treatment becomes insoluble in water. I found out. This is in contrast to the cement raw material C12A7, which easily hydrates and dissolves in water. In this surface modification, not only the high resistance layer on the surface of the C12A7 electride is removed by phosphoric acid treatment, but the surface is chemically modified with phosphate ions (PO 4 3− ), and oxygen and moisture in the air It is thought that the reaction with is suppressed. Such a surface modification reaction is a reaction that does not occur in the above-described physical activation method.

リン酸自体は電子伝導性を持たないが、リン酸基による修飾は該表面のごく薄い領域に限
られるため、C12A7エレクトライドの電子伝導性を阻害することはない。1段階の高
濃度のリン酸水溶液への浸漬処理によって高抵抗層の除去とリン酸基による修飾が同時に
生じるが、再度低濃度のリン酸水溶液へ浸漬することによってリン酸基による修飾のみを
付加してもよい。
Although phosphoric acid itself does not have electronic conductivity, modification with a phosphate group is limited to a very thin region of the surface, and thus does not inhibit the electronic conductivity of C12A7 electride. Although the removal of the high resistance layer and the modification with the phosphate group occur simultaneously by the immersion treatment in one step of the high concentration phosphoric acid aqueous solution, only the modification with the phosphate group is added by immersing in the low concentration phosphoric acid aqueous solution again. May be.

すなわち、本発明は、(1)12CaO・7Alエレクトライドを導電性素子材料
として、その表面に金属を蒸着してオーミック接合を形成する方法において、
該素子材料表面をリン酸処理して改質した後、該素子材料表面に金属を蒸着することによ
って、該素子材料表面と該金属との界面の接触抵抗を0.5Ω・cm未満とすることを
特徴とするC12A7エレクトライドからなる導電性素子材料表面に対するオーミック接
合形成方法、である。
That is, the present invention relates to (1) a method of forming an ohmic junction by vapor-depositing a metal on the surface of 12CaO · 7Al 2 O 3 electride as a conductive element material.
After the surface of the element material is modified by phosphoric acid treatment, a metal is deposited on the surface of the element material, so that the contact resistance at the interface between the element material surface and the metal is less than 0.5 Ω · cm 2 . An ohmic junction forming method for a conductive element material surface made of C12A7 electride.

また、本発明は、(2)リン酸濃度50重量%〜90重量%の水溶液に浸漬することによ
ってリン酸処理することを特徴とする上記(1)のオーミック接合形成方法、である。
The present invention is also (2) the method of forming an ohmic junction according to (1) above, wherein the phosphoric acid treatment is performed by immersing in an aqueous solution having a phosphoric acid concentration of 50 wt% to 90 wt%.

さらに、本発明は、(3)上記(2)のリン酸処理の後、さらにリン酸濃度3重量%〜1
0重量%の水溶液に浸漬することによってリン酸処理することを特徴とする上記(1)の
オーミック接合形成方法、である。
Furthermore, the present invention provides (3) a phosphoric acid concentration of 3 wt% to 1 after the phosphoric acid treatment of (2) above.
The method for forming an ohmic junction according to (1) above, wherein the phosphoric acid treatment is performed by immersing in a 0% by weight aqueous solution.

本発明の方法により、C12A7エレクトライドを導電性素子材料として用いる素子に、
接触抵抗の小さいオーミック接合を形成することが可能となった。
By the method of the present invention, an element using C12A7 electride as a conductive element material,
It became possible to form ohmic junctions with low contact resistance.

C12A7エレクトライドを電子放出源に使うには、C12A7エレクトライドの単結晶
をそのまま電極にする方法や、C12A7エレクトライドの微結晶を金属中に分散させて
電極にする方法などがある。また、支持部材の表面に形成して電子注入材料やコレクタ材
料として用いるには、PLD法やCVD法によるC12A7エレクトライドの蒸着、C1
2A7エレクトライドの微結晶を溶かした溶媒を支持部材の表面に塗布して乾燥させた後
に熱処理や機械的処理を施す方法、エアロゾルデポジション法により支持部材の表面にC
12A7エレクトライドの微結晶を散布した後に熱処理や機械的処理を施す方法、及びC
12A7エレクトライドの結晶を微粉末にして支持部材に焼結させる方法などがある。
In order to use C12A7 electride as an electron emission source, there are a method in which a single crystal of C12A7 electride is used as an electrode as it is, a method in which fine crystals of C12A7 electride are dispersed in a metal and used as an electrode. Also, in order to form on the surface of the support member and use it as an electron injection material or a collector material, vapor deposition of C12A7 electride by CLD method or CVD method, C1
A method in which a solvent in which 2A7 electride microcrystals are dissolved is applied to the surface of the support member and dried, followed by a heat treatment or a mechanical treatment, or C on the surface of the support member by an aerosol deposition method.
A method of performing heat treatment or mechanical treatment after spraying fine crystals of 12A7 electride, and C
There is a method in which crystals of 12A7 electride are made into fine powder and sintered to a support member.

C12A7エレクトライドを浸漬するリン酸水溶液は、リン酸(H3PO4)、亜リン酸(
3PO3)、次亜リン酸(H3PO2)、メタリン酸(HPO3)、またはこれらのNa、
K、NH4塩であるリン酸化合物の中から選択される1または2以上のリン酸水溶液を用
いることができる。その濃度は、処理温度、処理時間との関係で好ましい濃度を適宜選択
することができるが、50〜90重量%程度の高濃度が好ましい。90重量%を超えても
処理時間の短縮効果は少ない。
The phosphoric acid aqueous solution in which C12A7 electride is immersed is phosphoric acid (H 3 PO 4 ), phosphorous acid (
H 3 PO 3 ), hypophosphorous acid (H 3 PO 2 ), metaphosphoric acid (HPO 3 ), or their Na,
One or two or more phosphoric acid aqueous solutions selected from phosphoric acid compounds which are K and NH 4 salts can be used. A preferable concentration can be appropriately selected in relation to the processing temperature and processing time, but a high concentration of about 50 to 90% by weight is preferable. Even if it exceeds 90% by weight, the effect of shortening the treatment time is small.

上記リン酸水溶液の温度は室温以上100℃未満でよい。加温すれば表面反応は促進され
る。室温で表面改質処理する場合は、処理時間の観点からはリン酸水溶液の濃度はより好
ましくは70〜90重量%程度である。
The temperature of the phosphoric acid aqueous solution may be room temperature or higher and lower than 100 ° C. When heated, the surface reaction is accelerated. When the surface modification treatment is performed at room temperature, the concentration of the phosphoric acid aqueous solution is more preferably about 70 to 90% by weight from the viewpoint of treatment time.

上記リン酸水溶液への浸漬時間は、3秒〜30秒程度が好ましい。3秒未満では表面改質
処理の操作性が良くない。30秒を超えると表面層が過剰に溶解除去されるのでC12A
7エレクトライドの薄い層を使用する場合には好ましくない。リン酸水溶液への浸漬した
後、取り出してエタノール等のアルコール液に浸してから取り出し、C12A7エレクト
ライド表面から余剰のリン酸水溶液を取り除いて乾燥する。
The immersion time in the phosphoric acid aqueous solution is preferably about 3 to 30 seconds. If it is less than 3 seconds, the operability of the surface modification treatment is not good. If it exceeds 30 seconds, the surface layer is excessively dissolved and removed, so C12A
It is not preferred when using a thin layer of 7 electrides. After dipping in an aqueous phosphoric acid solution, the sample is taken out, dipped in an alcohol solution such as ethanol, taken out, and the excess phosphoric acid aqueous solution is removed from the surface of the C12A7 electride and dried.

上記の表面改質処理により高抵抗層が溶解除去されるとともに表面にリン酸基(PO)が
吸着し、修飾されると考えられる。このリン酸基による修飾は該表面のごく薄い領域に限
られる。また、ごく表面は水に不溶なリン酸アルミニウム(AlPOなど)に近い組成
の耐水性層になっていると考えられる。
It is considered that the high-resistance layer is dissolved and removed by the above surface modification treatment, and phosphate groups (PO 4 ) are adsorbed on the surface to be modified. This modification with phosphate groups is limited to a very thin area of the surface. Further, it is considered that the very surface is a water-resistant layer having a composition close to that of water-insoluble aluminum phosphate (such as AlPO 4 ).

特に、接合界面に耐水性を付与する場合には、上記リン酸水溶液への浸漬による表面改質
処理の後、さらに低濃度、好ましくは3〜10重量%程度のリン酸水溶液へ短時間浸漬し
て、表面に水に不溶なリン酸アルミニウム(AlPOなど)に近い組成の耐水性層を形
成することが好ましい。
In particular, when water resistance is imparted to the bonding interface, after surface modification treatment by immersion in the phosphoric acid aqueous solution, it is further immersed in a phosphoric acid aqueous solution of a lower concentration, preferably about 3 to 10% by weight for a short time. Thus, it is preferable to form a water-resistant layer having a composition close to that of aluminum phosphate (such as AlPO 4 ) that is insoluble in water on the surface.

上記リン酸水溶液への浸漬によるC12A7エレクトライドの表面改質処理により、C1
2A7エレクトライドを導電性素子材料として、その表面に金属を蒸着した場合、界面の
接触抵抗が0.5Ω・cm未満のオーミック接合を形成することができる。また、接合
界面における電気抵抗の増加率を100%/日未満とすることができる。
By the surface modification treatment of C12A7 electride by immersion in the phosphoric acid aqueous solution, C1
When 2A7 electride is used as a conductive element material and a metal is deposited on the surface thereof, an ohmic junction having an interface contact resistance of less than 0.5 Ω · cm 2 can be formed. Moreover, the increase rate of the electrical resistance at the bonding interface can be less than 100% / day.

CZ法で製造したC12A7単結晶を母結晶とし、チタン金属片とともに、シリカガラス
管中に真空封入し、1000℃、10時間焼成し、電気伝導性を付与したC12A7エレ
クトライドを製造した。このC12A7エレクトライドの電気伝導度は1000S・cm
−1、体積抵抗は0.05 Ωであった。このC12A7エレクトライドを1×1×5m
の小片に切り出した。この小片を85重量%リン酸水溶液に室温で10秒間浸漬した
後取り出した。その後、エタノールに浸すことでC12A7エレクトライド単結晶表面か
ら余剰のリン酸水溶液を取り除き大気中で自然乾燥した。
A C12A7 single crystal produced by the CZ method was used as a mother crystal, vacuum sealed in a silica glass tube together with a titanium metal piece, and fired at 1000 ° C. for 10 hours to produce C12A7 electride imparted with electrical conductivity. This C12A7 electride has an electric conductivity of 1000 S · cm.
−1 , volume resistance was 0.05Ω. This C12A7 electride is 1x1x5m
Cut into m 3 pieces. The small piece was immersed in an 85 wt% aqueous phosphoric acid solution at room temperature for 10 seconds and then taken out. Then, the excess phosphoric acid aqueous solution was removed from the C12A7 electride single crystal surface by immersing in ethanol, and it dried naturally in air | atmosphere.

リン酸処理した小片を真空蒸着装置内に入れて、その端面(1×1mm)に金電極を500
nm蒸着して接合を形成した。図1(a)に、測定したリン酸処理前及び処理後のC12A7
エレクトライド単結晶と金電極の間の電圧-電流特性(印加電圧―2〜2V )を示す。処
理前の試料では、電流が電圧に比例せず非線形となる非オーミック性を示し、1V印加時
の接触抵抗の値は12kΩ・cmと大きい。リン酸処理後の試料では電流が電圧に比例
するオーミック性を示し、1V印加時の抵抗値は12Ω・cmにまで低減された。
A small piece treated with phosphoric acid is placed in a vacuum deposition apparatus, and a gold electrode is placed on the end face (1 × 1 mm 2 ).
nm was deposited to form a bond. FIG. 1 (a) shows the measured C12A7 before and after the phosphoric acid treatment.
The voltage-current characteristic (applied voltage -2 to 2 V) between the electride single crystal and the gold electrode is shown. The sample before treatment shows non-ohmic properties in which the current is not proportional to the voltage and becomes non-linear, and the value of the contact resistance when 1 V is applied is as large as 12 kΩ · cm 2 . The sample after the phosphoric acid treatment showed an ohmic property in which the current was proportional to the voltage, and the resistance value when 1 V was applied was reduced to 12 Ω · cm 2 .

オーミック表面の持続性を検証するために、金電極を形成した1週間後に測定した電圧-電
流特性を図1(b)示す。処理前の試料では、1V印加時の接触抵抗値が170kΩ・cm
なり、オーミック性が見られないばかりか、金電極−C12A7エレクトライド間の電気
的接触の劣化が見られたが、リン酸処理後の試料では、依然、オーミック接触が得られ、
接触抵抗値の変化も見られなかった。
In order to verify the durability of the ohmic surface, the voltage-current characteristics measured one week after the gold electrode is formed are shown in FIG. In the sample before the treatment, the contact resistance value when 1 V was applied was 170 kΩ · cm 2 , and not only the ohmic property was observed, but the deterioration of the electrical contact between the gold electrode and the C12A7 electride was observed. In the treated sample, ohmic contact is still obtained,
There was no change in the contact resistance value.

実施例1の方法において、85重量%リン酸水溶液から取り出し、小片を4重量%リン酸
水溶液に5秒浸漬し、取り出し大気中で自然乾燥した以外は実施例1と同じ方法で接合を
形成した。測定したC12A7エレクトライド単結晶と金電極の間の電圧-電流特性は実
施例1とほぼ同じであった。
In the method of Example 1, a joint was formed in the same manner as in Example 1 except that it was taken out from the 85% by weight phosphoric acid aqueous solution, the small piece was immersed in a 4% by weight phosphoric acid aqueous solution for 5 seconds, and taken out naturally dried in the air. . The measured voltage-current characteristics between the C12A7 electride single crystal and the gold electrode were almost the same as in Example 1.

接合前に小片の表面の組成の分析を行うために、X線光電子分光(XPS)スペクトルを測
定した。図2に結果を示す。アルミニウムのピーク(Al2s及びAl2p)のピーク強
度を基準とすると、リン酸処理後、リン(P2s、P2p)及び酸素(O1s)のピーク
強度が増加していることがわかる。これは、リン酸基(PO)がC12A7表面に吸着し
ていることを示す。一方、Ca (Ca2p、Ca2s)のピーク強度に若干(〜15%
)の減少が見られることから、ごく表面は水に不溶なリン酸アルミニウム(AlPO
ど)に近い組成になっていると考えられる。
An X-ray photoelectron spectroscopy (XPS) spectrum was measured in order to analyze the composition of the surface of the pieces before bonding. The results are shown in FIG. Based on the peak intensity of aluminum peaks (Al2s and Al2p), it can be seen that the peak intensity of phosphorus (P2s, P2p) and oxygen (O1s) increases after the phosphoric acid treatment. This indicates that the phosphate group (PO 4 ) is adsorbed on the C12A7 surface. On the other hand, the peak intensity of Ca (Ca2p, Ca2s) is slightly (˜15%)
), The very surface is considered to have a composition close to that of water-insoluble aluminum phosphate (such as AlPO 4 ).

本発明の方法により接触抵抗の小さいオーミック接合を形成することが可能となったので
、FEDの冷電子放出源、PDPの2次電子放出源、有機EL素子のための電子注入電極
、熱電子発電素子等としてのC12A7エレクトライドの応用が促進される。
Since it is possible to form an ohmic junction with a low contact resistance by the method of the present invention, an FED cold electron emission source, a PDP secondary electron emission source, an electron injection electrode for an organic EL device, a thermionic power generation Application of C12A7 electride as an element or the like is promoted.

リン酸処理を施さない場合及び施した場合のC12A7エレクトライド単結晶と金電極の間の電圧−電流特性を示すグラフ((a)金電極取り付け直後。(b)金電極取り付け1週間後)。The graph which shows the voltage-current characteristic between the C12A7 electride single crystal and gold electrode with and without the phosphoric acid treatment ((a) immediately after the gold electrode is attached. (B) one week after the gold electrode is attached). リン酸処理を施さないC12A7エレクトライド単結晶の場合、及び低濃度リン酸水溶液によるリン酸処理を施した場合のC12A7エレクトライド単結晶のX線光電子分光(XPS)スペクトル(点線:処理前、実線:処理後)。X-ray photoelectron spectroscopy (XPS) spectrum of C12A7 electride single crystal in the case of C12A7 electride single crystal not subjected to phosphoric acid treatment and in the case of phosphoric acid treatment with a low concentration phosphoric acid aqueous solution (dotted line: solid line before treatment) :After treatment).

Claims (3)

12CaO・7Alエレクトライドを導電性素子材料として、その表面に金属を蒸
着してオーミック接合を形成する方法において、
該素子材料表面をリン酸処理して改質した後、該素子材料表面に金属を蒸着することによ
って、該素子材料表面と該金属との界面の接触抵抗を0.5Ω・cm未満とすることを
特徴とするC12A7エレクトライドからなる導電性素子材料表面に対するオーミック接
合形成方法。
In the method of forming ohmic junction by depositing metal on the surface of 12CaO · 7Al 2 O 3 electride as a conductive element material,
After the surface of the element material is modified by phosphoric acid treatment, a metal is deposited on the surface of the element material, so that the contact resistance at the interface between the element material surface and the metal is less than 0.5 Ω · cm 2 . A method for forming an ohmic junction with respect to the surface of a conductive element material made of C12A7 electride.
リン酸濃度50重量%〜90重量%の水溶液に浸漬することによってリン酸処理すること
を特徴とする請求項1記載のオーミック接合形成方法。
2. The ohmic junction forming method according to claim 1, wherein the phosphoric acid treatment is performed by immersing in an aqueous solution having a phosphoric acid concentration of 50 wt% to 90 wt%.
請求項2記載のリン酸処理の後、さらにリン酸濃度3重量%〜10重量%の水溶液に浸漬
することによってリン酸処理することを特徴とする請求項1記載のオーミック接合形成方
法。
The method of forming an ohmic junction according to claim 1, wherein after the phosphoric acid treatment according to claim 2, the phosphoric acid treatment is further performed by immersing in an aqueous solution having a phosphoric acid concentration of 3 wt% to 10 wt%.
JP2008208753A 2008-08-13 2008-08-13 Method for forming ohmic junction to the surface of conductive element material comprising C12A7 electride Active JP5106313B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008208753A JP5106313B2 (en) 2008-08-13 2008-08-13 Method for forming ohmic junction to the surface of conductive element material comprising C12A7 electride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008208753A JP5106313B2 (en) 2008-08-13 2008-08-13 Method for forming ohmic junction to the surface of conductive element material comprising C12A7 electride

Publications (2)

Publication Number Publication Date
JP2010045228A true JP2010045228A (en) 2010-02-25
JP5106313B2 JP5106313B2 (en) 2012-12-26

Family

ID=42016368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008208753A Active JP5106313B2 (en) 2008-08-13 2008-08-13 Method for forming ohmic junction to the surface of conductive element material comprising C12A7 electride

Country Status (1)

Country Link
JP (1) JP5106313B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012157462A1 (en) * 2011-05-13 2012-11-22 旭硝子株式会社 Method for producing member containing conductive mayenite compound
DE102012000718A1 (en) 2012-01-14 2013-07-18 Hans-Josef Sterzel Reversible electrical energy storage device such as reversible battery for fossil fuel propelled vehicle, has non-conductive, insulating depletion region that is formed in electride portion of n-type semiconductor portion
DE102012010302A1 (en) 2012-05-24 2013-11-28 Hans-Josef Sterzel Solid body arrangement for conversion of thermal power into electrical power to produce temperature difference for air conditioning of e.g. home, has emitter located at arrester hot side, and collector layer contacted by another arrester
WO2013191212A1 (en) * 2012-06-20 2013-12-27 国立大学法人東京工業大学 Organic electroluminescence element
DE102012015645A1 (en) 2012-08-07 2014-02-13 Hans-Josef Sterzel Reversible electrical energy storage device i.e. lithium-ion battery, for storing electrical energy for operating vehicle, has isolating narrow depletion zone formed in semiconducting volume that comprises wide band gap
DE102013000118A1 (en) 2013-01-04 2014-07-10 Hans-Josef Sterzel Electrolytic capacitor has current collectors, open porous electrodes made of n-type semiconductor and metallic conductor, liquid electrolyte and porous spacer for separating electrodes
WO2014163116A1 (en) * 2013-04-03 2014-10-09 旭硝子株式会社 Organic electroluminescent device
WO2014192701A1 (en) * 2013-05-28 2014-12-04 旭硝子株式会社 Semiconductor device and semiconductor device manufacturing method
US10249402B2 (en) 2012-06-20 2019-04-02 Tokyo Institute Of Technology C12A7 electride thin film fabrication method and C12A7 electride thin film

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0964174A (en) * 1995-08-18 1997-03-07 Mitsubishi Electric Corp Fabrication method of semiconductor device
JPH10209072A (en) * 1997-01-17 1998-08-07 Matsushita Electric Ind Co Ltd Formation of electrode of nitride compound semiconductor
JP2005116801A (en) * 2003-10-08 2005-04-28 Toshiba Corp Method for manufacturing semiconductor device
JP2009212520A (en) * 2008-03-03 2009-09-17 Samsung Mobile Display Co Ltd Thin-film transistor and flat panel display device equipped with it

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0964174A (en) * 1995-08-18 1997-03-07 Mitsubishi Electric Corp Fabrication method of semiconductor device
JPH10209072A (en) * 1997-01-17 1998-08-07 Matsushita Electric Ind Co Ltd Formation of electrode of nitride compound semiconductor
JP2005116801A (en) * 2003-10-08 2005-04-28 Toshiba Corp Method for manufacturing semiconductor device
JP2009212520A (en) * 2008-03-03 2009-09-17 Samsung Mobile Display Co Ltd Thin-film transistor and flat panel display device equipped with it

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6012042088; T.Kamiya et al: 'Field-Induced Current Modulation in Nanoporous Semiconductor, Electron-Doped 12CaO・7Al2O3' Chemistry of Materials Vol.17, No.25, 20051108, pp.6311-6316 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012157462A1 (en) * 2011-05-13 2012-11-22 旭硝子株式会社 Method for producing member containing conductive mayenite compound
DE102012000718A1 (en) 2012-01-14 2013-07-18 Hans-Josef Sterzel Reversible electrical energy storage device such as reversible battery for fossil fuel propelled vehicle, has non-conductive, insulating depletion region that is formed in electride portion of n-type semiconductor portion
DE102012010302A1 (en) 2012-05-24 2013-11-28 Hans-Josef Sterzel Solid body arrangement for conversion of thermal power into electrical power to produce temperature difference for air conditioning of e.g. home, has emitter located at arrester hot side, and collector layer contacted by another arrester
KR20150020577A (en) * 2012-06-20 2015-02-26 고쿠리츠다이가쿠호진 토쿄고교 다이가꾸 Organic electroluminescence element
WO2013191212A1 (en) * 2012-06-20 2013-12-27 国立大学法人東京工業大学 Organic electroluminescence element
JPWO2013191212A1 (en) * 2012-06-20 2016-05-26 国立大学法人東京工業大学 Organic electroluminescence device
US9368739B2 (en) 2012-06-20 2016-06-14 Tokyo Institute Of Technology Organic electroluminescence element
TWI589043B (en) * 2012-06-20 2017-06-21 Japan Science & Tech Agency Organic electroluminescent device
US10249402B2 (en) 2012-06-20 2019-04-02 Tokyo Institute Of Technology C12A7 electride thin film fabrication method and C12A7 electride thin film
KR102013125B1 (en) * 2012-06-20 2019-08-22 고쿠리츠켄큐카이하츠호진 카가쿠기쥬츠신코키코 Organic electroluminescence element
DE102012015645A1 (en) 2012-08-07 2014-02-13 Hans-Josef Sterzel Reversible electrical energy storage device i.e. lithium-ion battery, for storing electrical energy for operating vehicle, has isolating narrow depletion zone formed in semiconducting volume that comprises wide band gap
DE102013000118A1 (en) 2013-01-04 2014-07-10 Hans-Josef Sterzel Electrolytic capacitor has current collectors, open porous electrodes made of n-type semiconductor and metallic conductor, liquid electrolyte and porous spacer for separating electrodes
WO2014163116A1 (en) * 2013-04-03 2014-10-09 旭硝子株式会社 Organic electroluminescent device
WO2014192701A1 (en) * 2013-05-28 2014-12-04 旭硝子株式会社 Semiconductor device and semiconductor device manufacturing method
JP2015029038A (en) * 2013-05-28 2015-02-12 旭硝子株式会社 Semiconductor device and method of manufacturing the same

Also Published As

Publication number Publication date
JP5106313B2 (en) 2012-12-26

Similar Documents

Publication Publication Date Title
JP5106313B2 (en) Method for forming ohmic junction to the surface of conductive element material comprising C12A7 electride
US9001495B2 (en) High power and high energy electrodes using carbon nanotubes
JP2012009429A5 (en)
KR20140113437A (en) Sensor and sensing method
JP2010275186A5 (en)
JP2017510042A (en) Active cathode materials for secondary lithium cells and batteries
CN105070619A (en) Preparation method for carbon nanotube array cathode on Fe-based metal alloy substrate
Ray et al. Electrical and electronic properties of nitrogen doped amorphous carbon (a-CNx) thin films
TW201347282A (en) Carbon electrode devices for use with liquids and associated methods
Li et al. Enhancement of thermoelectric properties in Bi–Sb–Te alloy nanowires by pulsed electrodeposition
JP2014055313A (en) Mayenite composite material and electron emitting negative electrode
Li et al. Controllable Ag nanoparticle coated ZnO nanorod arrays on an alloy substrate with enhanced field emission performance
CN107937949B (en) Method for preparing two-dimensional layered vertical heterojunction
JP2018055926A (en) Sulfide solid battery
JP6667141B2 (en) Solid electrolyte containing oxynitride and secondary battery using the same
JP2016126993A (en) Carbon nanotube paste for high-output field-emission emitter, and manufacturing method thereof
KR20160019585A (en) Antibacterial film using fluorine functionalized graphene and fabrication method
JP5798279B1 (en) Method for manufacturing tungsten-based capacitor element
Liao et al. Tunable transport properties of n-type ZnO nanowires by Ti plasma immersion ion implantation
JP2014116509A (en) Thermoelectric power generation element and method of manufacturing thermoelectric power generation element
CN109476494B (en) Method for producing electronically crystallized mayenite type compound
CN103964417B (en) A kind of preparation method of the doped graphene containing Ge element
JP2010116303A (en) Substrate for growing carbon nanotube, transistor, and method for manufacturing substrate for growing carbon nanotube
WO2015166670A1 (en) Method for manufacturing tungsten-based capacitor element
WO2017046038A1 (en) Coated electrical conductors and methods for their manufacture

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120814

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120904

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120925

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121002

R150 Certificate of patent or registration of utility model

Ref document number: 5106313

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151012

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250