WO2014163041A1 - Transfer film and substrate with relief structure - Google Patents

Transfer film and substrate with relief structure Download PDF

Info

Publication number
WO2014163041A1
WO2014163041A1 PCT/JP2014/059465 JP2014059465W WO2014163041A1 WO 2014163041 A1 WO2014163041 A1 WO 2014163041A1 JP 2014059465 W JP2014059465 W JP 2014059465W WO 2014163041 A1 WO2014163041 A1 WO 2014163041A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
film
transfer layer
transfer
shape
Prior art date
Application number
PCT/JP2014/059465
Other languages
French (fr)
Japanese (ja)
Inventor
山田絵美
田中正太郎
鈴木基之
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2014520082A priority Critical patent/JPWO2014163041A1/en
Publication of WO2014163041A1 publication Critical patent/WO2014163041A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/30Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer formed with recesses or projections, e.g. hollows, grooves, protuberances, ribs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/16Layered products comprising a layer of synthetic resin specially treated, e.g. irradiated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/12Photovoltaic modules

Definitions

  • the present invention relates to a transfer film for forming a siloxane layer having a concavo-convex shape on a surface thereof on a large-area substrate and a substrate with a concavo-convex structure having a concavo-convex shape formed on the surface.
  • Various substrates such as various semiconductor substrates, glass substrates, and metal substrates are used as substrates for LEDs, solar cell substrates, and liquid crystal display devices.
  • pattern processing in order to improve the functions of substrates and products obtained by using substrates, it is required to perform pattern processing to impart functions such as antistatic, antireflection, antifouling, and light scattering to the substrate surface. ing.
  • the pattern processing of the substrate surface is widely performed by the lithography method or the imprint method.
  • Lithography is a technology that forms a desired shape on the surface of a substrate by irradiating the photosensitive resin coated on the substrate with light through a mask and then developing it. This is a very important technology in the semiconductor manufacturing process. It is.
  • the imprint method is a method of imparting a shape to the surface by pressing a mold having a shape inverted from a target shape against a workpiece. Specifically, an ultraviolet curable resin or a thermoplastic resin is applied on the substrate, and a shape is imparted by pressing a mold against the resin.
  • the resin is cured by irradiating with ultraviolet rays in a state where the mold is pressed, and then the mold is peeled to obtain a target shape.
  • a thermoplastic resin the thermoplastic resin applied on the substrate is heated above the glass transition temperature of the thermoplastic resin, the heated mold is pressed on the resin, and then cooled to below the glass transition temperature, The mold is peeled off to obtain the target shape.
  • the imprint method is a method that can be patterned by a very simple process of pressing a mold, and therefore is widely studied.
  • the pattern obtained by these methods consists of organic substances, when pattern formation with an inorganic material is required, the substrate itself may be etched using the pattern obtained by these methods as a resist. .
  • the functional layer formed by patterning the surface is required to have very high heat resistance and light transmittance depending on the process and use of the substrate.
  • a gallium nitride (GaN) layer as a light emitting layer needs to be epitaxially grown on the substrate, and the substrate is exposed to a high temperature exceeding 1,000 ° C. in the process.
  • GaN gallium nitride
  • the substrate is exposed to a high temperature exceeding 1,000 ° C. in the process.
  • Light transmittance is required.
  • siloxane material is attracting attention as one of the materials that satisfy these requirements.
  • Siloxane is a material similar to glass, characterized in that the bond between silicon and oxygen is continuous and does not have a crystal structure, and is less susceptible to decomposition and yellowing at higher temperatures than organic resins.
  • the siloxane material can be produced by a so-called sol-gel method in which a solution containing silicon alkoxide is heated at a high temperature of several hundred degrees.
  • sol-gel method When a siloxane material is produced using the sol-gel method, it can be converted into siloxane by pouring a silicon alkoxide solution into a mold and then curing. Therefore, it is easy to use a material with high heat resistance and relatively low energy. It is possible to form a pattern.
  • Patent Document 1 A method in which a solution containing silicon alkoxide has been applied onto a substrate and solidified by pressing a mold (Patent Document 1), and a pattern is formed with a resist using a resin having a siloxane structure imparted with ultraviolet curability
  • Patent Document 2 An example in which an uneven shape layer of siloxane is formed by the method (Patent Document 2) has been reported.
  • an alkoxysilane having a silanol group, or a siloxane oligomer / polymer obtained by dehydration polycondensation thereof is heated to remove the solvent, and further, dehydration condensation of a hydroxyl group or alkoxy group directly bonded to a silicon atom or
  • siloxane is obtained by proceeding with crosslinking by dealcoholization condensation.
  • an object of the present invention is to provide a transfer film for easily forming on a substrate a siloxane layer capable of maintaining a shape formed on a surface even when heated at a high temperature.
  • the transfer film of the present invention that achieves the above-mentioned object is a transfer film in which a transfer layer containing a siloxane composition is laminated on a support film having a concavo-convex shape on the surface, and the siloxane composition is a photoacid generator Or it is a transfer film containing a photobase generator.
  • a transfer layer containing a siloxane composition having a concavo-convex shape excellent in heat resistance and light resistance can be easily formed on the substrate surface.
  • (A) It is a cross-sectional schematic diagram of the transfer film containing the support body film which has regular uneven
  • (B) It is a cross-sectional schematic diagram of the transfer film containing the support body film which has random uneven
  • (C) It is a cross-sectional schematic diagram of the transfer film containing the support body film which has an uneven
  • D It is a cross-sectional schematic diagram of the transfer film containing the support body film which has spherical uneven
  • (A) It is a cross-sectional schematic diagram of the board
  • (B) It is the cross-sectional schematic of the board
  • (C) It is the cross-sectional schematic of the board
  • (D) It is a cross-sectional schematic diagram of the board
  • the transfer film of the present invention comprises a support film 1 having a concavo-convex shape on the surface and a transfer layer 2 comprising a siloxane composition laminated on the surface having the concavo-convex shape of the support film. Composed. After the substrate is covered with the transfer film so that the transfer layer 2 side of the transfer film is in contact with the substrate, only the support film is removed from the transfer film, so that the surface of the substrate 9 is transferred to the transfer layer as shown in FIG. A laminate coated with 2 can be obtained.
  • the surface of the transfer layer 2 has a concavo-convex shape in which the concavo-convex shape of the support film 1 is reversed, a substrate with a concavo-convex structure having a concavo-convex shape on the surface is obtained. In this way, it is possible to easily form an uneven shape on the surface of a large area substrate.
  • the uneven surface shape of the support film may be a geometric shape or a random shape.
  • Examples of the surface uneven shape include a prism shape, a diffraction grating, a moth-eye shape, a polygonal prism shape, a polygonal cone shape, a cylindrical shape, a conical shape, a hemispherical shape, a truncated pyramid shape, a truncated cone shape, and an inverted shape thereof. This is not the case.
  • FIGS. 1A to 1 (d) show examples of the transfer film of the present invention.
  • FIG.1 (a) is an example of the transfer film containing the support body film which has regular uneven
  • FIG.1 (b) is an example of the transfer film containing the support body film which has a random uneven
  • FIG.1 (c) is an example of the transfer film containing the support body film which has an uneven
  • FIG.1 (d) is an example of the transfer film containing the support body film which has a spherical uneven
  • the surface irregularity of the support film has a typical pitch of preferably 0.01 to 50 ⁇ m, more preferably 0.05 to 30 ⁇ m, and further preferably 0.1 to 20 ⁇ m.
  • the representative pitch refers to the pitch of a repeated shape when the uneven shape is a geometric shape, and the average value of 10 arbitrarily selected pitches when it is a random shape.
  • the pitch is a horizontal distance 3 between points indicating the maximum depths of two adjacent concave portions in the transfer layer.
  • the horizontal distance 3 between the center points is set as the pitch.
  • the transfer layer and the support film are difficult to peel off due to the large surface area of the interface, or the target shape cannot be obtained because it easily bites foreign matter. There is.
  • the representative pitch is larger than 50 ⁇ m, the function may not be exhibited because the density of the uneven shape is low.
  • the aspect ratio of the concavo-convex shape of the support film is preferably 0.01 to 3, more preferably 0.05 to 2, still more preferably 0.3 to 2, and 0.5 to 1 is particularly preferred.
  • the aspect ratio is a value obtained by dividing the depth 5 of the concave portion by the width 4 of the concave portion of the support film, as described with reference to FIG.
  • the width 4 of the concave portion takes the maximum distance among the concave portions.
  • the depth 5 of the recess is a vertical distance between the minimum position of the recess of the support film and the adjacent maximum position.
  • the vertical distance formed by the concave portion on the higher side and the concave portion is defined as the depth of the concave portion.
  • corrugated shape of a support body film is not constant, the average value of the aspect ratio of 10 uneven
  • the aspect ratio of the concavo-convex shape is smaller than 0.01, the concavo-convex shape is very low, and the shape effect may be difficult to obtain.
  • the aspect ratio is larger than 3, the releasability between the support film and the transfer layer is lowered, and it becomes difficult to form an accurate shape by tearing or falling when transferring. There is a case.
  • the representative pitch and aspect ratio of the support film can be measured by observation with a scanning electron microscope.
  • a scanning electron microscope When observing with a scanning electron microscope, if the surface irregularities are arranged in a line, cut with a microtome in a direction perpendicular to the extending direction of the line and observe the cross section.
  • the uneven shape on the surface is discretely arranged, cut with a microtome so as to pass through the center position of the discrete uneven shape, and observe the cross section.
  • the uneven structure on the surface of the transfer layer after transfer may be observed.
  • the uneven structure on the surface of the transfer layer can be observed as described later using a laser microscope, AFM, or the like.
  • the method for forming the uneven shape on the support film is not particularly limited, and it is possible to apply a known method such as a thermal imprint method, a UV imprint method, coating, etching, or patterning by a self-organized product. .
  • the thickness of the support film used in the present invention is preferably 5 to 500 ⁇ m, more preferably 25 to 300 ⁇ m, and further preferably 40 to 125 ⁇ m. If the thickness is less than 5 ⁇ m, the transfer layer may be transferred and the substrate may not be accurately coated. On the other hand, when the thickness exceeds 500 ⁇ m, the support film becomes rigid and may not be able to follow the shape of the substrate.
  • the distance of the portion having the maximum thickness including the uneven shape on the surface is defined as the thickness of the support film. That is, when it demonstrates using FIG. 1, the distance 6 of the maximum point of the uneven
  • the material of the support film is not particularly limited as long as it can withstand the solvent removal of the transfer layer and the heating during the transfer to the substrate.
  • polyester resins such as polyethylene terephthalate, polyethylene-2,6-naphthalate, polypropylene terephthalate, polybutylene terephthalate, cyclohexanedimethanol copolymerized polyester, isophthalic acid copolymerized polyester, spiroglycol copolymerized polyester, fluorene copolymerized polyester;
  • Polyolefin resins such as polystyrene, polypropylene, polyisobutylene, polybutene, polymethylpentene, and cyclic polyolefin copolymers; polyamide resins, polyimide resins, polyether resins, polyesteramide resins, polyetherester resins, acrylic resins, polyurethane resins, polycarbonate resins Alternatively, polyvinyl chloride resin or the like can be used.
  • the support film may be a single layer or a multilayer.
  • the surface in contact with the transfer layer is preferably a polyolefin resin or an acrylic resin.
  • a layer made of a resin other than the above can be laminated.
  • a base conditioner in order to give coatability and releasability to the surface of the support film in contact with the transfer layer, a base conditioner, an undercoat agent, a silicone release coating agent, a fluorine release coating agent, etc. You may perform the process which apply
  • the appropriate state means that the surface free energy of the surface on which the transfer layer of the support film is formed is 23 to 70 mN / m.
  • the transfer layer contains a siloxane composition
  • the siloxane composition contains a photoacid generator or a photobase generator.
  • the siloxane composition is a composition containing a siloxane compound, and may contain organosilane or a hydrolysis product thereof in addition to the siloxane compound.
  • a siloxane compound is a compound that contains two or more consecutive siloxane bonds in the structure.
  • the siloxane compound may have an organic functional group directly bonded to a silicon atom as a partial structure, or may partially include a silica structure not having an organic functional group directly bonded to a silicon atom.
  • the weight average molecular weight of the siloxane compound is not particularly limited, but is preferably 500 to 100,000 in terms of polystyrene measured by GPC.
  • the siloxane compound can be synthesized by solidifying a siloxane sol synthesized by subjecting one or more organosilanes represented by the following chemical formula (1) to a hydrolysis reaction and a polycondensation reaction by heating and pressing.
  • R 1 represents any one of hydrogen, an alkyl group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, and an aryl group having 6 to 15 carbon atoms, and a plurality of R 1 may be the same or different.
  • R 2 represents any one of hydrogen, an alkyl group having 1 to 6 carbon atoms, an acyl group having 1 to 6 carbon atoms, and an aryl group having 6 to 15 carbon atoms, and a plurality of R 2 may be the same or different.
  • n represents an integer of 0 to 3.
  • the alkyl group, alkenyl group and aryl group of R 1 may be either unsubstituted or substituted, and can be selected according to the characteristics of the composition.
  • Specific examples of the alkyl group include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, t-butyl group, n-hexyl group, n-decyl group, trifluoromethyl group, 3, 3 , 3-trifluoropropyl group, 3-glycidoxypropyl group, 2- (3,4-epoxycyclohexyl) ethyl group, [(3-ethyl3-oxetanyl) methoxy] propyl group, 3-aminopropyl group, 3 -Mercaptopropyl group, 3-isocyanatopropyl group and the like.
  • alkenyl group examples include a vinyl group, a 3-acryloxypropyl group, and a 3-methacryloxypropyl group.
  • aryl group examples include phenyl, tolyl, p-hydroxyphenyl, 1- (p-hydroxyphenyl) ethyl, 2- (p-hydroxyphenyl) ethyl, 4-hydroxy-5- (p -Hydroxyphenylcarbonyloxy) pentyl group, naphthyl group and the like.
  • the alkyl group, acyl group and aryl group of R 2 may be either unsubstituted or substituted, and can be selected according to the characteristics of the composition.
  • the alkyl group include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, n-pentyl group, and n-hexyl group.
  • the acyl group include an acetyl group, a propinoyl group, a butyroyl group, a pentanoyl group, and a hexanoyl group.
  • Specific examples of the aryl group include a phenyl group and a naphthyl group.
  • N in the chemical formula (1) represents an integer of 0 to 3.
  • organosilane represented by the chemical formula (1) include tetrafunctional silanes such as tetramethoxysilane, tetraethoxysilane, tetrabutoxysilane, tetraacetoxysilane, and tetraphenoxysilane; methyltrimethoxysilane, methyltriethoxy Silane, methyltriisopropoxysilane, methyltrin-butoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, ethyltriisopropoxysilane, ethyltrin-butoxysilane, n-propyltrimethoxysilane, n-propyltriethoxysilane, n-butyltrimethoxysilane, n-butyltriethoxysilane, n-hexyltrimethoxysilane, n-hexyltriethoxys
  • organosilanes may be used alone or in combination of two or more.
  • monofunctional silane, bifunctional silane and trifunctional having an organic functional group directly bonded to a silicon atom with respect to the entire organosilane It is preferable that at least one of silanes is contained in an amount of 5 to 100% in terms of the number of silicon atoms.
  • At least one of trifunctional silane and tetrafunctional silane is 40 to 100 in terms of the number of silicon atoms with respect to the whole organosilane. %, Preferably 70 to 100%, more preferably 90 to 100%.
  • silica particles may be added to the transfer layer in order to improve scratch resistance and hardness.
  • the transfer layer is made of acrylic for improving mold release properties, leveling agents, and resin-based substrates for improving mold releasability and wettability. Resin etc. may be included.
  • the siloxane composition constituting the transfer layer contains a photoacid generator or a photobase generator capable of generating an acid or a base by light irradiation.
  • a crosslinking reaction proceeds by dehydration condensation of the hydroxyl group at the terminal of the siloxane compound as represented by the chemical formula (2) to form a network.
  • R 1 represents any one of hydrogen, an alkyl group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, and an aryl group having 6 to 15 carbon atoms, and a plurality of R 1 may be the same or different.
  • R 2 represents any one of hydrogen, an alkyl group having 1 to 6 carbon atoms, an acyl group having 1 to 6 carbon atoms, and an aryl group having 6 to 15 carbon atoms, and a plurality of R 2 may be the same or different.
  • m represents a natural number.
  • the hydroxyl group at the terminal of the siloxane compound contained in the siloxane composition is cross-linked to increase the molecular weight, It is necessary to form a network of density.
  • the uneven shape layer formed of a siloxane compound having a low molecular weight is more likely to cause a decrease in viscosity than the dehydration condensation, and the uneven shape is flattened. There was a case.
  • the inventors have intensively studied, and as a result, came up with the idea of proceeding the crosslinking reaction of the siloxane compound under a temperature condition that does not cause a decrease in viscosity before the heat treatment of the uneven layer. .
  • it is a method of suppressing a decrease in viscosity during heat treatment by promoting a dehydration condensation reaction of a siloxane compound in an unheated state with an acid catalyst or a base catalyst to form a network.
  • the pot life of the siloxane sol used for forming the transfer layer on the support film can be extended by generating an acid or base having a catalytic effect by light irradiation.
  • a photoacid generator is preferable, and a photobase generator is preferable from the viewpoint that the siloxane crosslinking reaction rate can be further increased. I found.
  • Photoacid generators include sulfonium photoacid generators, iodonium salt photoacid generators, selenium salt photoacid generators, diazonium salt photoacid generators, phosphoric acid photoacid generators, and triazine photoacid generators. Generators, acetophenone derivative compounds, metallocene complexes, iron arene complexes, and the like are known. From the viewpoint of solubility in a solution and generation efficiency of an acid component, a sulfonium photoacid generator is preferred.
  • the photoacid generator examples include CPI-100P, CPI-101A, CPI-200K, CPI-210S manufactured by San Apro Co., Ltd., WPAG-336, WPAG-367, WPAG-370, WPAG manufactured by Wako Pure Chemical Industries, Ltd. -469, WPI-113, WPI-116, WPI-124, WPI-170, CIPAG-II, EEPAG manufactured by Ibitsu Corporation, PAI-101, DTS-102, DTS-103, DTS-105 manufactured by Midori Chemical Co., Ltd. SP-170 manufactured by Adeka Corporation can be mentioned.
  • the photobase generator is roughly classified into a nonionic photobase generator and an ionic photobase generator.
  • an ionic photobase generator particularly one that generates a pKa8 or higher base compound is preferred.
  • Specific examples of the photobase generator include PBG-SA1, SA-1B manufactured by San Apro Co., Ltd., WPBG-266, WPBG-300, WPBG-082, WPBG-140 manufactured by Wako Pure Chemical Industries, Ltd. , EITMG and the like.
  • the wavelength at which the generation of acid or base is activated is preferably 365 nm or less.
  • the amount of the photoacid generator contained in the transfer layer is preferably 0.2 to 5.0% by mass, and preferably 0.3 to 2.5% by mass when the entire transfer layer is 100% by mass. Is more preferably 0.4 to 0.9% by mass.
  • the content of the photoacid generator is less than 0.2% by mass, the amount of acid generated by the photoacid generator is small, and it may be difficult to obtain a sufficient shape retention effect.
  • the content of the photoacid generator is more than 5.0% by mass, a portion having a different refractive index is generated in the transfer layer due to a local reaction due to acid generation or a residue after the reaction of the photoacid generator. As a result, it may become cloudy or the leveling property may be lowered due to an increase in viscosity due to the progress of the cross-linking reaction, and the transfer layer may easily be uneven in thickness or undulate.
  • the amount of the photobase generator contained in the transfer layer is preferably 0.05 to 10% by mass, more preferably 0.1 to 5% by mass, when the entire transfer layer is 100% by mass.
  • the content of the photobase generator is less than 0.05% by mass, the amount of base generated by the photobase generator is small, and it may be difficult to obtain a sufficient shape retention effect.
  • the content of the photobase generator is more than 10% by mass, the photobase generator cannot be completely dissolved and a uniform transfer layer cannot be formed, or the viscosity of the coating solution increases due to the crosslinking reaction.
  • the transfer layer may become cloudy due to a decrease in life or a residue of the photobase generator.
  • the uneven thickness of the transfer layer is easily reflected in the uneven thickness of the remaining film of the transfer layer.
  • the residual film thickness of the transfer layer is a minimum value of the thickness between the surface of the transfer layer in contact with the substrate and the surface of the transfer layer in contact with the support film. To explain with reference to the drawings, the distances represented by 8 in FIGS. 1A to 1D are the remaining film thicknesses.
  • a value obtained by dividing the residual film thickness difference represented by the difference between the maximum value and the minimum value obtained by measuring the residual film thickness at 10 points by the average value of the residual film thickness that is, (((residual film The residual film thickness non-uniformity (%) is defined as the difference in residual film thickness indicated by the difference between the maximum value and the minimum value obtained by measuring the thickness at 10 points) / (average value of residual film thickness)) ⁇ 100.
  • the residual film thickness unevenness is preferably less than 25%, more preferably less than 15%.
  • the transfer layer may be caused to cause transfer unevenness or defects when pressed in contact with the substrate, or the shape size may be reduced when etching the uneven shape formed on the substrate. It may become uneven.
  • the residual film thickness of the transfer layer is measured by cutting the transfer film with a microtome and imaging and measuring the cross section with a scanning electron microscope.
  • the siloxane sol contains a siloxane composition and a solvent.
  • the solvent is not particularly limited as long as it has a solubility capable of obtaining a solution of a siloxane sol having an appropriate concentration to be used for coating, but it is an organic solvent from the point that repellency hardly occurs on the film. Is preferred.
  • high boiling alcohols such as diacetone alcohol and 3-methyl-3-methoxy-1-butanol
  • glycols such as ethylene glycol and propylene glycol
  • ethylene glycol monomethyl ether ethylene glycol monomethyl ether acetate, propylene glycol monomethyl ether, Propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether, propylene glycol monoethyl ether acetate, propylene glycol monopropyl ether, propylene glycol monobutyl ether, diethyl ether, diisopropyl ether, di-n-butyl ether, diphenyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether,
  • the Ethers such as tylene glycol ethyl methyl ether and dipropylene glycol dimethyl ether; ketones such as methyl ethyl ketone, methyl isobutyl ketone, di
  • diacetone alcohol propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monopropyl ether, propylene glycol monomethyl ether acetate, diisobutyl ether, di-n- A solvent selected from butyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol ethyl methyl ether, dipropylene glycol dimethyl ether, methyl isobutyl ketone, diisobutyl ketone and butyl acetate is preferred.
  • a method for applying the siloxane sol for example, gravure coating, roll coating, spin coating, die coating, bar coating, screen coating, blade coating, air knife coating, dip coating, spray coating, and the like may be selected as appropriate. .
  • the support film coated with the siloxane sol is dried by heating or reduced pressure.
  • the heating temperature is preferably 20 ° C. or higher and 180 ° C. or lower.
  • the heating temperature is lower than 20 ° C.
  • the transfer film loses its flexibility due to polymerization of siloxane due to heating, cracks occur, curl due to the difference in thermal expansion coefficient between the support film and the transfer layer, The uneven shape of the film surface may collapse.
  • the reduced pressure condition may be set as appropriate as long as the shape of the transfer film does not collapse, and the pressure is preferably reduced to 10 kPa. Furthermore, you may heat and dry simultaneously with pressure reduction.
  • the thickness of the transfer layer is preferably from 0.01 to 20 ⁇ m, more preferably from 0.03 to 10 ⁇ m, still more preferably from 0.05 to 5 ⁇ m.
  • the thickness of the transfer layer is smaller than 0.01 ⁇ m, the height of the concavo-convex shape formed on the substrate is lowered, and it may be difficult to obtain the effect of the concavo-convex shape.
  • the thickness of the transfer layer is greater than 20 ⁇ m, when heat treatment is performed on the substrate, film stress may occur and cracks may occur.
  • the thickness of the transfer layer is the portion where the transfer layer is thickest on the transfer film, that is, the support layer when it is placed horizontally with the opposite side of the transfer film to the opposite side.
  • the distance between the lowest position of the recess on the surface of the boundary with the transfer layer 2 on the film 1 and the outermost surface of the transfer layer is defined as the thickness 7 of the transfer layer.
  • the thickness of the transfer layer is measured by cutting the transfer film with a microtome and imaging and measuring the cross section with a scanning electron microscope.
  • Transfer method A method for transferring a transfer layer to a substrate using the transfer film of the present invention will be described.
  • the surface of the transfer film of the present invention on the transfer layer side is brought into contact with the substrate to obtain a laminate, and after pressing and / or heating the laminate, the support film is peeled off to form an uneven shape on the substrate surface.
  • the transfer layer can be applied. This process is called transfer.
  • Examples of the pressure applied during transfer include, but are not limited to, nip rolls and press machines.
  • the pressure applied to the laminate is preferably 1 kPa to 50 MPa. If the pressure is less than 1 kPa, transfer defects are likely to occur due to the inclusion of bubbles between the substrate and the transfer film. If the pressure exceeds 50 MPa, the concavo-convex shape of the mold film may be broken or the substrate may be cracked.
  • a buffer material can be used between the support film of the laminate and a pressure plate, a pressure roll, or the like.
  • the cushioning material By using the cushioning material, the transfer layer can be transferred with high accuracy without entraining air or the like.
  • the buffer material fluorine rubber, silicon rubber, ethylene propylene rubber, isobutylene isoprene rubber, acrylonitrile butadiene rubber, or the like can be used.
  • heating can be performed together with pressurization.
  • Crosslinked transfer film After forming a transfer layer on a support film having a concavo-convex shape, by irradiating with light, the photoacid generator or photobase generator contained in the siloxane composition is activated to generate an acid or base, The siloxane compound contained in the transfer layer can be crosslinked.
  • the crosslinked transfer layer is referred to as a crosslinked transfer layer.
  • a transfer film in which the transfer layer is crosslinked is called a crosslinked transfer film.
  • the wavelength of the light to be irradiated is in a wavelength range suitable for the absorption band of the photoacid generator or photobase generator contained, but it is possible to prevent coloration due to residues or absorption bands of the photoacid generator or photobase generator, and siloxane. From the viewpoint of extending the pot life of the sol, a wavelength band of 365 nm or less is preferable.
  • the total amount of light irradiation is preferably 100 to 5,000 mJ / cm 2 , more preferably 200 to 3,000 mJ / cm 2 , and still more preferably 300 to 1,500 mJ / cm 2 . If the total amount of light irradiation is less than 100 mJ / cm 2 , the photoacid generator or photobase generator may not be sufficiently activated, and the crosslinking reaction may not proceed sufficiently. On the other hand, when the total amount of light irradiation is more than 5,000 mJ / cm 2 , irradiation may take time or the support film may be deteriorated.
  • the crosslinked transfer film of the present invention is a crosslinked transfer film in which a crosslinked transfer layer containing a siloxane composition is laminated on a support film having a concavo-convex shape, and P1 / P2 obtained from an FT-IR spectrum of the crosslinked transfer layer.
  • the value of is 0.12 or more.
  • FT-IR spectrum of the crosslinked transfer film as shown in FIG. 3 a peak attributed to the stretching vibration of the siloxane bond Si-O-Si is observed 960cm -1 ⁇ 1,250cm -1.
  • the position of a low wave number close to 960 cm ⁇ 1 is attributed to siloxane having a high crosslinking density and close to crystallinity. Therefore, the value of P1 / P2 shows the ratio of the thing with a high crosslinking density in all the siloxane bonds.
  • the cross-linked transfer film of the present invention preferably has a P1 / P2 value of 0.12 or more.
  • P1 / P2 When the value of P1 / P2 is less than 0.12, the ratio of the one having a high crosslinking density in the siloxane bond is low. Therefore, when the substrate having the concavo-convex structure obtained by transferring the transfer layer is processed at a high temperature In addition, the uneven structure is broken by heat.
  • the FT-IR spectrum for calculating P1 and P2 is, for example, FTIR Fourier Transform Infrared Spectrophotometer FT / IR-6100typeA manufactured by JASCO Corporation, and using an ATR reflector equipped with a Ge prism. Measurement can be performed under the conditions of 400 to 4,000 cm ⁇ 1 , resolution of 4 cm ⁇ 1 , and number of integrations of 128 times.
  • the spectrum obtained by the measurement is analyzed using an analysis program in the measurement software. First, after the spectrum obtained with ATR correction, near 960 cm -1 is a peak of the siloxane bonds in the primary differential, read the wave number takes a minimum value in the vicinity of 2090 cm @ -1 (in FIG. 3, 15) .
  • the areas of P1 and P2 are calculated in a manner in which the area below the base line is ignored, and further P1 / P2 is calculated.
  • the area calculation range of P1 is 960 to 1,020 cm ⁇ 1
  • the calculation range of P2 is 960 to 1,200 cm ⁇ 1 .
  • the surface on the transfer layer side of the transfer film of the present invention is brought into contact with the substrate to pressurize and / or heat, and substrate / transfer layer / support A laminate of the film is obtained, and the laminate is crosslinked by generating an acid from a photoacid generator contained in the transfer layer or a base from the photobase generator by irradiating the laminate with light.
  • light may be irradiated from either side of the substrate or the support film, or light may be irradiated from both sides.
  • the transfer layer can be crosslinked with the photoacid generator or the photobase generator within the concavo-convex shape of the support film, it is advantageous for maintaining the concavo-convex shape.
  • the dehydration reaction is easily promoted between the substrate and the transfer layer, it is advantageous for improving the adhesion between the substrate and the transfer layer.
  • it can preserve
  • the total amount of light irradiated on the laminated body of the substrate / transfer layer / support film preferably 200 ⁇ 10,000mJ / cm 2, more preferably 300 ⁇ 8,000mJ / cm 2, is 500 ⁇ 5,000 mJ / cm 2 Further preferred. If the total irradiation amount is less than 200 mJ / cm 2 , the energy may be insufficient to activate the photoacid generator or photobase generator, and the activation may not be sufficient. When the total irradiation amount is greater than 10,000 mJ / cm 2 , a long time may be required for activation.
  • the surface on the transfer layer side of the transfer film of the present invention is brought into contact with the substrate and pressurized and / or heated. Then, a laminate of the substrate / transfer layer / support film is obtained, and the transfer layer is crosslinked by irradiating light to the substrate / transfer layer laminate obtained by peeling the support film from the laminate. To do.
  • light may be irradiated from either side of the substrate or the transfer layer, or light may be irradiated from both sides.
  • the transfer layer can be directly irradiated with light, energy loss due to the support film can be reduced, and acid or base can be generated more efficiently. Moreover, since it can preserve
  • the total amount of light irradiated on the laminated body of the substrate / transfer layer is preferably 100 ⁇ 10,000 / cm 2, more preferably 200 ⁇ 8,000 mJ / cm 2, more preferably 300 ⁇ 5,000mJ / cm 2. When the total irradiation amount is less than 100 mJ / cm 2 , the energy may be insufficient to activate the photoacid generator or photobase generator, and the activation may not be sufficient. When the total irradiation amount is more than 10,000 mJ / cm 2 , it may be required for a long time for activation.
  • a substrate with a concavo-convex structure in which a cross-linked transfer layer having a concavo-convex shape on the surface and containing a siloxane composition is laminated on the substrate can be obtained with higher heat resistance by heat treatment at a high temperature.
  • the heat treatment may be performed on the substrate / transfer layer / support film laminate or the substrate / transfer layer two-layer laminate from which the support film has been peeled off.
  • the support film is peeled in advance before the heat treatment, it is preferably peeled at a temperature equal to or lower than the temperature during pressurization in the transfer step.
  • the shape of the transfer layer may collapse, or the releasability from the support film may be reduced.
  • the heat treatment temperature can be appropriately set according to the heat resistance, chemical resistance and reliability required for the cross-linked transfer layer having an uneven shape.
  • the temperature of the heat treatment is preferably 1,000 to 1,500 ° C. because the temperature is about 1,100 ° C. in the epitaxial growth process. 1,100 to 1,400 ° C. is more preferable.
  • the heat treatment temperature is less than 1,000 ° C., the formed uneven shape may not be maintained during the epitaxial growth process and may collapse.
  • the heat treatment temperature exceeds 1,500 ° C., cracks may occur during the heat treatment, or curl may occur due to a difference in thermal expansion from the substrate.
  • the heat treatment temperature is preferably 700 to 1,500 ° C.
  • the heat treatment temperature is lower than 700 ° C., organic substances may remain in the transfer layer or may not be sufficiently densified, and the etching rate may not be lowered. If the heat treatment temperature is higher than 1,500 ° C., cracks may occur in the transfer layer.
  • the heat treatment temperature is preferably 150 to 700 ° C., more preferably 200 to 400 ° C.
  • the heat treatment temperature is lower than 150 ° C., the crosslinking reaction of siloxane is insufficient and the heat resistance may be lowered, or the shape may be easily broken.
  • the heat treatment temperature exceeds 700 ° C., the organic functional group directly bonded to the silicon atom of siloxane is lost, and the refractive index may not be adjusted.
  • pre-baking is performed at a temperature lower than the high temperature heat treatment temperature or plasma irradiation is performed to preliminarily crosslink. You may make it progress.
  • the substrate with a concavo-convex structure thus obtained has a concavo-convex shape with high heat resistance, it can be used as an antireflection plate or a light scattering plate assumed to be used in a high temperature environment. Further, when the transfer layer is sufficiently cross-linked, it can be used as an etching resist film, so that it can also be used for manufacturing a patterned sapphire substrate that contributes to improving the light extraction efficiency of the LED. Furthermore, it can be used for the outermost surface of an LED or the like to improve the light extraction efficiency, or can be used for a member such as a solar cell panel to improve the power generation efficiency.
  • the shape of the concavo-convex structure formed on the substrate was evaluated by the concavo-convex width size and the concavo-convex height.
  • the uneven width size is a horizontal distance 10 between two adjacent local minimum values as shown in FIG.
  • the uneven height is a vertical distance 11 between the adjacent maximum and minimum positions of the uneven shape as shown in FIG.
  • the vertical distance between the minimum position on the higher side and the top is defined as the uneven height.
  • both the uneven width size and the uneven height were 1 ⁇ m or more, they were measured with a laser microscope VK9700 manufactured by Keyence Corporation.
  • the measurement magnification was 1,500 times when the uneven width size and uneven height were smaller than 1 ⁇ m and less than 20 ⁇ m, and 500 times when 20 ⁇ m or more.
  • observation and measurement were performed in a tapping mode of an atomic force microscope model number ICON ICON manufactured by Bruker AXS Co., Ltd.
  • the observation visual field was defined by the concave / convex width size in order to put a plurality of concave / convex shapes into the observation visual field.
  • the measurement visual field is 0.1 ⁇ m ⁇ 0.1 ⁇ m, and when it is 0.02 ⁇ m or more and less than 0.1 ⁇ m, 0.5 ⁇ m ⁇ 0.5 ⁇ m, 0.1 ⁇ m or more and 0.2 ⁇ m When it is less than 2 ⁇ m ⁇ 2 ⁇ m, when it is 0.2 ⁇ m or more, it is 5 ⁇ m ⁇ 5 ⁇ m.
  • the software NanoScope Analysis Ver. 1.40 was used. As the measurement points, five points were arbitrarily selected, and values obtained by averaging the measurement values at the five points were defined as the uneven height and the uneven width, respectively.
  • the shape evaluation after the heat treatment is the height retention ratio of the unevenness height before and after the heat treatment when the unevenness height before the heat treatment is 100% (that is, (the unevenness height after the heat treatment / the unevenness height before the heat treatment) ⁇ 100 (%)), the unevenness width before and after heat treatment when the unevenness width before heat treatment is 100% is defined as the width retention ratio (that is, (unevenness width after heat treatment / unevenness width before heat treatment) ⁇ 100 (%))
  • the shape retention was evaluated.
  • the criteria for shape evaluation after the heat treatment were defined and described as follows.
  • both the height retention ratio and the width retention ratio are 90% or more and 100% or less 3: At least one of the height retention ratio and the width retention ratio is 50% or more and less than 90% 2: The height retention ratio and the width retention ratio are both Less than 50%, and at least one is 10% or more and less than 50% 1: Both the height retention ratio and the width retention ratio are less than 10%.
  • the transfer film was cut with a microtome so that the thickness direction could be observed, and the remaining film thickness was measured by observing the cross section with a scanning electron microscope.
  • the measurement magnification is 100,000 times when the transfer layer thickness is less than 0.5 ⁇ m, 50,000 times when the transfer layer thickness is 0.5 ⁇ m or more and less than 1.0 ⁇ m, and 20,000 when 1.0 ⁇ m or more and less than 2.0 ⁇ m. In the case of 2.0 times or more and less than 10 ⁇ m, 5,000 times, in the case of 10 ⁇ m or more and less than 20 ⁇ m, 2,500 times, and in the case of 20 ⁇ m or more, 500 times.
  • the number of measurement points was arbitrary 10, and the residual film thickness unevenness was calculated by the method described in the column of [Photoacid generator and photobase generator], and the value was evaluated according to the following evaluation criteria. 3: Less than 15% thickness variation 2: More than 15% thickness variation and less than 25% 1: More than 25% thickness variation.
  • Example 1 A support polyolefin film having a concavo-convex shape formed by thermal imprinting on one side of a 100 ⁇ m-thick “Zeonor Film” (registered trademark) model number ZF14 made by Nippon Zeon Co., Ltd., which is a cyclic polyolefin resin, was used.
  • a prism-shaped nickel electroforming mold having a pitch of 5 ⁇ m and a height of 2.5 ⁇ m was used. After holding the mold pressed against the support film for 30 seconds under the conditions of a mold temperature of 180 ° C. and a pressure of 2.0 MPa, the mold was cooled to 100 ° C. to release the pressure, and the support film was released.
  • the apparatus used was a 2-ton vacuum heater press model number MKP-150TV-WH manufactured by Mikado Technos.
  • Photo-acid produced by San-Apro Co., Ltd. was prepared by dissolving polymethylsilsesquioxane SR-13 manufactured by Konishi Chemical Industries, Ltd. in propylene glycol monopropyl ether (hereinafter referred to as PGPE) to a concentration of 20% by mass.
  • PGPE propylene glycol monopropyl ether
  • a siloxane sol was prepared by adding a generator CPI-200K (sulfonium photoacid generator) so that the solid content was 0.5 mass% relative to the polymethylsilsesquioxane ratio.
  • the obtained siloxane sol was applied to the surface of the support film with the irregular shape formed using a spin coater model 1H-DX2 manufactured by Mikasa Co., Ltd., and dried at 90 ° C.
  • the transfer layer surface of the obtained transfer film was irradiated with UV of 500 mJ / cm 2 to activate the photoacid generator of the transfer layer to promote the crosslinking reaction of siloxane, thereby obtaining a crosslinked transfer film.
  • UV irradiation a light source unit Multilight ML-251A / B for USHIO INC. Exposure apparatus was used.
  • a cross-linked transfer film was laminated on non-alkali glass EAGLE 2000 (30 mm ⁇ 30 mm, thickness 0.63 mm) manufactured by Corning Japan Co., Ltd. prepared as a substrate so that the surface of the cross-linked transfer layer was in contact with the substrate. Further, a model number F200 manufactured by Kinyo Co., Ltd. was laminated as a buffer material on the support film surface of the crosslinked transfer film, and pressed for 10 seconds at a press temperature of 20 ° C. and a press pressure of 1.38 MPa in the configuration of glass substrate / crosslinked transfer film / buffer material. The apparatus used was a 2-ton vacuum heater press model number MKP-150TV-WH manufactured by Mikado Technos. Then, the film as a support was peeled off at room temperature to obtain a substrate with a concavo-convex structure comprising a glass substrate / crosslinked transfer layer.
  • Example 2 A crosslinked transfer film and a substrate with a concavo-convex structure were obtained in the same manner as in Example 1 except that the solid content of the photoacid generator CPI-200K was 0.2% by mass.
  • Example 3 A crosslinked transfer film and a substrate with a concavo-convex structure were obtained in the same manner as in Example 1 except that the solid content of the photoacid generator CPI-200K was 5.0 mass%.
  • Example 4 A crosslinked transfer film and a substrate with a concavo-convex structure were obtained in the same manner as in Example 1 except that the solid content of the photoacid generator CPI-200K was 0.3% by mass.
  • Example 5 A crosslinked transfer film and a substrate with a concavo-convex structure were obtained in the same manner as in Example 1 except that the solid content of the photoacid generator CPI-200K was 2.5% by mass.
  • Example 6 A crosslinked transfer film and a substrate with an uneven structure were obtained in the same manner as in Example 1 except that the solid content of the photoacid generator CPI-200K was 0.4 mass%.
  • Example 7 A crosslinked transfer film was obtained in the same manner as in Example 1 except that the solid content of the photoacid generator CPI-200K was 0.9% by mass. Subsequently, the non-alkali glass EAGLE2000 (30 mm ⁇ 30 mm, thickness 0.63 mm) manufactured by Corning Japan Co., Ltd. prepared as a substrate was laminated so that the surface of the cross-linked transfer layer was in contact with the substrate. Pressed with a cross-linked transfer film configuration. The press was laminated using a VA-420H type laminator manufactured by Taisei Laminator Co., Ltd. at a roll thrust of 0.2 MPa, a conveyance speed of 3 m / min, and a press temperature of 20 ° C. After lamination, the support film was peeled off to obtain a substrate with a concavo-convex structure comprising a glass substrate / crosslinked transfer layer.
  • Example 8 A crosslinked transfer film was obtained in the same manner as in Example 1 except that the UV irradiation amount was 100 mJ / cm 2 . Thereafter, a substrate with an uneven structure was obtained in the same manner as in Example 7.
  • Example 9 A crosslinked transfer film was obtained in the same manner as in Example 1 except that the UV irradiation amount was 200 mJ / cm 2 . Thereafter, a substrate with an uneven structure was obtained in the same manner as in Example 7.
  • Example 10 A substrate with a concavo-convex structure was obtained in the same manner as in Example 1 except that the support film was an acrylic resin film and the UV irradiation amount to the transfer film was 1,500 mJ / cm 2 .
  • the support film was produced by the following method. On a PET film “Lumirror” (registered trademark) model number U34 manufactured by Toray Industries, Inc. having a thickness of 100 ⁇ m, an ultraviolet curable acrylic resin “Aronix” (registered trademark) UV3701 manufactured by Toagosei Co., Ltd. was applied in a thickness of 10 ⁇ m.
  • UV of 1,000 mJ / cm 2 is irradiated from the PET film surface to form an acrylic system.
  • the resin was cured. Thereafter, the interface between the mold and the acrylic resin was peeled off to obtain a support film having a concavo-convex shape formed on the surface of the acrylic resin.
  • Example 11 A film having a thickness of 60 ⁇ m formed by melt extrusion of a resin of “TOPAS” (registered trademark) model 6013 manufactured by Polyplastics Co., Ltd., which is a cyclic polyolefin resin, is used as a support film, and the UV irradiation amount to the transfer film is determined. Except having set it as 300 mJ / cm ⁇ 2 >, it carried out similarly to Example 1, and obtained the board
  • TOPAS registered trademark
  • Example 12 Instead of performing UV irradiation in Example 1, instead of performing UV irradiation at 1,000 mJ / cm 2 from the support film side of the substrate / transfer film laminate obtained by laminating the transfer film on the substrate instead. A substrate with an uneven structure was obtained in the same manner as in Example 1.
  • Example 13 Transfer of the substrate / transfer layer laminate obtained by peeling the support film from the substrate / transfer film laminate obtained by laminating the transfer film on the substrate instead of UV irradiation in Example 1
  • a substrate with a concavo-convex structure was obtained in the same manner as in Example 1 except that UV irradiation was performed at 750 mJ / cm 2 from the layer side.
  • the mold used for thermal imprinting has a shape of a regular square pyramid having a side of 20 ⁇ m and a height of 10 ⁇ m, and having a pitch of 20 ⁇ m that is adjacent to each other and adjoining the apex and side of each other, and a siloxane sol A substrate with an uneven structure was obtained in the same manner as in Example 1 except that the polymethylsilsesquioxane concentration was 40% by mass.
  • Example 15 The same procedure as in Example 14 was performed except that the heat treatment temperature of the substrate with an uneven structure was 600 ° C.
  • Example 16 The mold used for thermal imprinting was such that convex square pillars each having a side of 2 ⁇ m and a height of 700 nm were arranged in a lattice shape with a pitch of 4 ⁇ m, and the polymethylsilsesquioxane concentration of the siloxane sol was 15 A substrate with a concavo-convex structure was obtained in the same manner as in Example 1 except that the mass% was used.
  • Example 17 The same procedure as in Example 16 was performed except that the heat treatment temperature of the substrate with an uneven structure was 600 ° C.
  • Example 18 A substrate with a concavo-convex structure was obtained in the same manner as in Example 1 except that the mold used for thermal imprinting was a convex hemispherical shape having a diameter of 4 ⁇ m, a height of 2 ⁇ m, and a pitch of 4.5 ⁇ m.
  • Example 19 A substrate with a concavo-convex structure was obtained in the same manner as in Example 1 except that the mold used for thermal imprinting was a blazed diffraction grating with a pitch of 556 nm.
  • a mold used for thermal imprinting has a shape in which spheroids having a convex width of 0.25 ⁇ m, a height of 0.3 ⁇ m, and a pitch of 0.3 ⁇ m are discretely arranged in a regular triangle shape (hereinafter referred to as a spheroid).
  • a substrate with a concavo-convex structure was obtained in the same manner as in Example 1 except that the discretely arranged shape was referred to as a moth-eye shape) and the polymethylsilsesquioxane concentration of the siloxane sol was 10% by mass. .
  • Example 21 A mold used for thermal imprinting is supported in the same manner as in Example 1 except that a regular square pyramid having a side of 5 ⁇ m and a height of 12 ⁇ m is arranged in a regular triangle shape with a pitch of 30 ⁇ m. A body film was obtained.
  • Polyphenylsilsesquioxane SR-23 manufactured by Konishi Chemical Industry Co., Ltd. was dissolved in PGPE so as to be 20% by mass.
  • a siloxane sol was prepared by mixing so that the sun ratio was 0.3% by mass.
  • a transfer film was prepared in the same manner as in Example 1, and then a crosslinked transfer film was prepared by irradiating UV of 2,000 mJ / cm 2 from the transfer layer side. To obtain a substrate with an uneven structure.
  • Example 22 Example 1 except that the mold used for thermal imprinting is a hemispherical convex shape having a diameter of 0.05 ⁇ m and a height of 0.04 ⁇ m arranged discretely in a regular triangle shape with a pitch of 0.07 ⁇ m.
  • a support film was obtained.
  • a siloxane polymer obtained by copolymerizing KBM-13 (methyltrimethoxysilane) and KBM-403 (3-glycidoxypropyltrimethoxysilane) manufactured by Shin-Etsu Chemical Co., Ltd.
  • a siloxane sol was prepared by dissolving in PGPE so as to have a polymer concentration of 5% by mass, and adding CIPAG-II manufactured by Ibitsu Co., Ltd. as a photoacid generator to a siloxane polymer ratio of 0.5% by mass. Subsequently, after producing a transfer film in the same manner as in Example 1, a crosslinked transfer film was produced by irradiating UV at 750 mJ / cm 2 from the transfer layer side, and transferred to the substrate in the same manner as in Example 7. Thus, a substrate with an uneven structure was obtained.
  • the photoacid generator was CPI-110B (sulfonium photoacid generator) manufactured by San-Apro Co., Ltd., and the content was 0.6% by mass. A substrate was obtained.
  • the photoacid generator was WPI-113 (iodonium salt photoacid generator) manufactured by Wako Pure Chemical Industries, Ltd., its content was 5.0 mass%, and the UV irradiation amount was 3,000 mJ / cm 2 . Except for this, a crosslinked transfer film and a substrate with an uneven structure were obtained in the same manner as in Example 1.
  • the photoacid generator was TFE-triazine (triazine photoacid generator) manufactured by Sanwa Chemical Co., Ltd., and its content was 5.0% by mass. A structured substrate was obtained.
  • a siloxane sol was prepared by dissolving polymethylphenylsilsesquioxane SR-3321 manufactured by Konishi Chemical Industry Co., Ltd. in PGPE at a concentration of 20% by mass, and a photoacid generator CPI-200K (sulfonium-based light manufactured by San Apro Co., Ltd.).
  • a cross-linked transfer film and a substrate with a concavo-convex structure were obtained in the same manner as in Example 1 except that the acid generator was added so that the solid content was 0.8% by mass relative to SR-3321.
  • Example 27 A siloxane sol was copolymerized with Shin-Etsu Chemical Co., Ltd. KBE-13 (methyltriethoxysilane), KBE-04 (tetraethoxysilane) and KBE-22 (dimethyldiethoxysilane) at a molar ratio of 65/20/15.
  • the siloxane polymer thus obtained was made into a solution having a siloxane polymer concentration of 20% by mass with PGPE, and a photoacid generator CPI-200K (sulfonium photoacid generator) manufactured by San Apro Co., Ltd. was used with a siloxane polymer ratio of 0.8% by mass.
  • a cross-linked transfer film and a substrate with a concavo-convex structure were obtained in the same manner as in Example 1 except that it was added so as to be prepared.
  • the mold used for thermal imprinting is a cylindrical shape having a diameter of 230 nm and a height of 200 nm that is discretely arranged in a regular triangle shape having a pitch of 460 nm, the substrate is a silicon substrate, and the heat treatment temperature of the substrate with a concavo-convex structure
  • a crosslinked transfer film and a substrate with a concavo-convex structure were obtained in the same manner as in Example 7 except that the temperature was 800 ° C.
  • Example 29 A crosslinked transfer film and a substrate with an uneven structure were obtained in the same manner as in Example 28 except that the substrate was a sapphire substrate and the heat treatment temperature of the substrate with an uneven structure was 1,000 ° C.
  • Example 30 A crosslinked transfer film and a substrate with an uneven structure were obtained in the same manner as in Example 1 except that the substrate was a gallium nitride substrate.
  • Example 31 A siloxane sol was prepared by dissolving polymethylsilsesquioxane SR-13 manufactured by Konishi Chemical Industry Co., Ltd. in PGPE to a concentration of 20% by mass, and a photobase generator WPBG- manufactured by Wako Pure Chemical Industries, Ltd. A substrate with a concavo-convex structure was obtained in the same manner as in Example 28 except that 266 was added so that the solid content was 0.1% by mass of the methylsiloxane polymer ratio.
  • Example 32 A siloxane sol was prepared by dissolving polyphenylsilsesquioxane SR-23 manufactured by Konishi Chemical Industry Co., Ltd. in PGPE to a concentration of 20% by mass, and a photobase generator WPBG- manufactured by Wako Pure Chemical Industries, Ltd. A substrate with a concavo-convex structure was obtained in the same manner as in Example 1 except that 300 was added so that the solid content was 0.05% by mass of the methylsiloxane polymer ratio.
  • Example 33 A support film in the same manner as in Example 1 except that the mold used for the thermal imprint was a cylindrical shape having a diameter of 6 ⁇ m and a height of 9 ⁇ m arranged discretely in a regular triangle shape with a pitch of 12 ⁇ m.
  • KBM-13 methyltrimethoxysilane
  • KBM-403 3-glycidoxypropyltrimethoxysilane
  • KBM-202SS diphenyldimethoxysilane
  • siloxane polymer obtained by copolymerization was made into a solution having a polymer concentration of 20% by mass with PGPE, and a photobase generator EIPBG manufactured by Ibitsu Co., Ltd. was added so as to have a siloxane polymer ratio of 5.0% by mass to obtain a siloxane sol. Prepared. Subsequently, after a transfer film was obtained in the same manner as in Example 1, a crosslinked transfer film was prepared by irradiating 250 mJ / cm 2 UV from the transfer layer side, and transferred to the substrate in the same manner as in Example 7. Thus, a substrate with an uneven structure was obtained.
  • Example 34 The molar ratio of KBM-13, KBM-403 and KBM-202SS was set to 70/25/5, the photobase generator EIPBG manufactured by Ibaitsu Co., Ltd. was set to 0.05% by mass, and the light irradiation amount was 750 mJ / cm. A substrate with a concavo-convex structure was obtained in the same manner as in Example 33 except that 2 .
  • the transfer layer was prepared in the same manner as in Example 1 except that it was prepared by applying UV curable acrylic resin “Aronix” (registered trademark) UV3701 manufactured by Toagosei Co., Ltd. to a thickness of 10 ⁇ m. Most of the transfer layer remained on the support film without being transferred to the substrate, and the partially transferred layer also had very weak adhesion to the substrate, resulting in peeling from the substrate.
  • UV curable acrylic resin “Aronix” registered trademark
  • UV3701 registered trademark
  • siloxane sol Polymethylsilsesquioxane SR-13 manufactured by Konishi Chemical Industries, Ltd. was dissolved in PGPE at a concentration of 20% by mass to prepare a siloxane sol. The obtained siloxane sol was applied to the surface of the support film on which the irregular shape was formed using a spin coater model 1H-DX2 manufactured by Mikasa Co., Ltd., and dried at 90 ° C. for 2 minutes to obtain a transfer film. .
  • the transfer film was laminated on non-alkali glass EAGLE 2000 (30 mm ⁇ 30 mm, thickness 0.63 mm) manufactured by Corning Japan Co., Ltd. prepared as a substrate so that the surface of the transfer layer was in contact with the substrate. Further, a model number F200 manufactured by Kinyo Co., Ltd. was laminated as a buffer material on the support film surface of the cross-linked transfer film, and pressed for 10 seconds at a press temperature of 20 ° C. and a press pressure of 1.38 MPa in the configuration of glass substrate / transfer film / buffer material. The apparatus used was a 2-ton vacuum heater press model number MKP-150TV-WH manufactured by Mikado Technos.
  • the film as a support was peeled off at room temperature to obtain a substrate with a concavo-convex structure comprising a glass substrate / transfer layer.
  • the obtained laminate was heat-treated at 250 ° C., but the uneven shape was flattened by the heat treatment.
  • the siloxane sol was the same as Comparative Example 2 except that the thermal acid generator SI-100L (sulfonium thermal acid generator) manufactured by Sanshin Chemical Industry Co., Ltd. was contained at a siloxane mass ratio of 0.5% by mass.
  • a laminate comprising a glass substrate / transfer layer was obtained. When the obtained laminate was heat-treated at 250 ° C., the uneven shape was destroyed by the heat treatment, and the height was lowered.
  • Tables 1 and 2 show the evaluation results of the transfer films, cross-linked transfer films, and substrates with concavo-convex structures prepared in Examples 1 to 34 and Comparative Examples 1 to 5.

Abstract

A transfer film configured from a support film having a relief pattern on the surface and a transfer layer containing a siloxane composition, said siloxane composition containing a photoacid generator or a photobase generator. The purpose of the present invention is to provide a transfer film or cross-linked transfer film for easily forming a siloxane layer, the surface relief pattern of which does not easily collapse, on a substrate with a large area. The invention also provides a substrate with a relief structure having a cross-linked transfer layer.

Description

転写フィルムおよび凹凸構造付基板Transfer film and substrate with uneven structure
 本発明は、大面積の基板に、表面に凹凸形状を有するシロキサン層を形成するための転写フィルムおよび表面に凹凸形状が形成された凹凸構造付基板に関する。 The present invention relates to a transfer film for forming a siloxane layer having a concavo-convex shape on a surface thereof on a large-area substrate and a substrate with a concavo-convex structure having a concavo-convex shape formed on the surface.
 LEDや太陽電池基板ならびに液晶表示装置等の基板として、各種半導体基板、ガラス基板および金属基板等様々な基板が使用されている。近年では基板や、基板を使用して得られる製品の機能向上のため、基板表面に、帯電防止、反射防止、防汚、光散乱等の機能を付与するためのパターン加工をすることが求められている。 Various substrates such as various semiconductor substrates, glass substrates, and metal substrates are used as substrates for LEDs, solar cell substrates, and liquid crystal display devices. In recent years, in order to improve the functions of substrates and products obtained by using substrates, it is required to perform pattern processing to impart functions such as antistatic, antireflection, antifouling, and light scattering to the substrate surface. ing.
 基板表面のパターン加工は、リソグラフィー法や、インプリント法によって広く実施されている。リソグラフィー法は、基板上に塗布した感光性樹脂に、マスクを通して光を照射し、その後現像することにより、基板の表面に目的の形状を形成する技術であり、半導体製造工程において非常に重要な技術である。一方、インプリント法は、目的の形状を反転した形状のモールドを、被加工体に押し付けることにより、表面に形状を付与する方法である。具体的には、基板上に紫外線硬化樹脂または熱可塑性樹脂を塗布し、その樹脂にモールドを押し付けることにより形状を付与する。紫外線硬化樹脂を使用する場合は、モールドを押圧した状態で紫外線照射して樹脂を硬化させた後、モールドを剥離して目的形状を得る。熱可塑性樹脂を使用する場合は、基板上に塗布した熱可塑性樹脂を、熱可塑性樹脂のガラス転移温度以上に加熱し、その樹脂に加熱したモールドを押圧し、その後ガラス転移温度未満まで冷却後、モールドを剥離して目的形状を得る。インプリント法は、型の押し付けという非常にシンプルな工程でパターニング可能な方法であるため、広く展開が検討されている。なお、これらの方法で得られるパターンは有機物からなるものであるため、無機材料でのパターン形成が求められる場合は、これらの手法で得られたパターンをレジストとして、基板そのものをエッチングすることもある。 The pattern processing of the substrate surface is widely performed by the lithography method or the imprint method. Lithography is a technology that forms a desired shape on the surface of a substrate by irradiating the photosensitive resin coated on the substrate with light through a mask and then developing it. This is a very important technology in the semiconductor manufacturing process. It is. On the other hand, the imprint method is a method of imparting a shape to the surface by pressing a mold having a shape inverted from a target shape against a workpiece. Specifically, an ultraviolet curable resin or a thermoplastic resin is applied on the substrate, and a shape is imparted by pressing a mold against the resin. In the case of using an ultraviolet curable resin, the resin is cured by irradiating with ultraviolet rays in a state where the mold is pressed, and then the mold is peeled to obtain a target shape. When using a thermoplastic resin, the thermoplastic resin applied on the substrate is heated above the glass transition temperature of the thermoplastic resin, the heated mold is pressed on the resin, and then cooled to below the glass transition temperature, The mold is peeled off to obtain the target shape. The imprint method is a method that can be patterned by a very simple process of pressing a mold, and therefore is widely studied. In addition, since the pattern obtained by these methods consists of organic substances, when pattern formation with an inorganic material is required, the substrate itself may be etched using the pattern obtained by these methods as a resist. .
 一方で、表面のパターン加工によって形成される機能層は、基板を使用する工程や用途によっては、非常に高い耐熱性や光透過性を求められる。たとえば、LED製造に使用されるサファイア基板の場合、基板上に発光層としての窒化ガリウム(GaN)層をエピタキシャル成長させる必要があり、その工程において基板は1,000℃を超える高温にさらされる。また、LEDや太陽電池といった用途に用いられる場合は、使用中、発光した光によって非常に高温になったり、屋外の環境下で太陽光にさらされる苛酷な環境におかれたりする一方で、高い光透過性が求められる。 On the other hand, the functional layer formed by patterning the surface is required to have very high heat resistance and light transmittance depending on the process and use of the substrate. For example, in the case of a sapphire substrate used for LED manufacturing, a gallium nitride (GaN) layer as a light emitting layer needs to be epitaxially grown on the substrate, and the substrate is exposed to a high temperature exceeding 1,000 ° C. in the process. In addition, when used in applications such as LEDs and solar cells, it becomes very hot during use or is exposed to severe sunlight exposed to sunlight in an outdoor environment. Light transmittance is required.
 これらの要求を満たす材料のひとつとしてシロキサン材料が注目されている。シロキサンはケイ素と酸素の結合が連続し、かつ、結晶構造を持たないことを特徴とする、ガラスと類似した材料であり、有機樹脂と比較して高温での分解や黄変が起こりにくい。さらに、シロキサン材料は、シリコンアルコキシドを含む溶液を数百度の高温で加熱する、所謂ゾルゲル法で製造することができる。ゾルゲル法を用いてシロキサン材料を製造する場合、シリコンアルコキシド溶液を型に流し込んだ後に硬化させることでシロキサンに転換することが可能なため、耐熱性の高い材料を用いて、比較的低エネルギーで簡便にパターンを形成することが可能である。これまでにシリコンアルコキシドを含む溶液を基板上に塗布し、型を押圧して固化する方法(特許文献1)、紫外線硬化性を付与したシロキサン構造を有する樹脂を使用してレジストによってパターンを形成する方法(特許文献2)でシロキサンの凹凸形状層を形成した例が報告されている。 A siloxane material is attracting attention as one of the materials that satisfy these requirements. Siloxane is a material similar to glass, characterized in that the bond between silicon and oxygen is continuous and does not have a crystal structure, and is less susceptible to decomposition and yellowing at higher temperatures than organic resins. Furthermore, the siloxane material can be produced by a so-called sol-gel method in which a solution containing silicon alkoxide is heated at a high temperature of several hundred degrees. When a siloxane material is produced using the sol-gel method, it can be converted into siloxane by pouring a silicon alkoxide solution into a mold and then curing. Therefore, it is easy to use a material with high heat resistance and relatively low energy. It is possible to form a pattern. A method in which a solution containing silicon alkoxide has been applied onto a substrate and solidified by pressing a mold (Patent Document 1), and a pattern is formed with a resist using a resin having a siloxane structure imparted with ultraviolet curability An example in which an uneven shape layer of siloxane is formed by the method (Patent Document 2) has been reported.
特開平11-314927号公報JP 11-314927 A 特開2006-154037号公報JP 2006-154037 A
 ゾルゲル法は、シラノール基を有するアルコキシシラン、またはそれらを脱水重縮合して得られるシロキサンオリゴマー/ポリマーを加熱して溶媒を除去し、さらにはケイ素原子に直結したヒドロキシル基またはアルコキシ基の脱水縮合または脱アルコール縮合によって架橋を進行させてシロキサンを得る方法である。この方法で高い耐熱性や耐光性を有する材料を得るためには、可能な限り架橋反応を進行させて、多くのシロキサン結合を形成することが重要である。しかしながら、架橋反応を十分に進行させるために、凹凸形状を賦形したシロキサン層を数百度まで加熱すると、未架橋状態のシロキサン材料は粘度が低下してしまい、シロキサン層の表面形状が崩れるという課題があった。 In the sol-gel method, an alkoxysilane having a silanol group, or a siloxane oligomer / polymer obtained by dehydration polycondensation thereof is heated to remove the solvent, and further, dehydration condensation of a hydroxyl group or alkoxy group directly bonded to a silicon atom or In this method, siloxane is obtained by proceeding with crosslinking by dealcoholization condensation. In order to obtain a material having high heat resistance and light resistance by this method, it is important to advance a crosslinking reaction as much as possible to form many siloxane bonds. However, when the siloxane layer shaped to have a concavo-convex shape is heated to several hundred degrees in order to sufficiently advance the crosslinking reaction, the viscosity of the uncrosslinked siloxane material decreases, and the surface shape of the siloxane layer collapses. was there.
 本発明の目的は、これらの問題点に鑑み、高温で加熱しても表面に賦形した形状を保持できるシロキサン層を、基板上に簡便に形成するための転写フィルムを提供することにある。 In view of these problems, an object of the present invention is to provide a transfer film for easily forming on a substrate a siloxane layer capable of maintaining a shape formed on a surface even when heated at a high temperature.
 上述した目的を達成する本発明の転写フィルムは、シロキサン組成物を含む転写層が、表面に凹凸形状を有する支持体フィルムに積層された転写フィルムであって、該シロキサン組成物が光酸発生剤または光塩基発生剤を含む転写フィルムである。 The transfer film of the present invention that achieves the above-mentioned object is a transfer film in which a transfer layer containing a siloxane composition is laminated on a support film having a concavo-convex shape on the surface, and the siloxane composition is a photoacid generator Or it is a transfer film containing a photobase generator.
 本発明によれば、耐熱性や耐光性に優れた凹凸形状を有するシロキサン組成物を含む転写層を、基板表面に簡便に形成することできる。 According to the present invention, a transfer layer containing a siloxane composition having a concavo-convex shape excellent in heat resistance and light resistance can be easily formed on the substrate surface.
(a)規則的な凹凸形状を有する支持体フィルムを含む転写フィルムの断面概略図である。(b)ランダムな凹凸形状を有する支持体フィルムを含む転写フィルムの断面概略図である。(c)凹凸形状の凸部および凹部に平坦領域をもつ凹凸形状を有する支持体フィルムを含む転写フィルムの断面概略図である。(d)球状の凹凸形状を有する支持体フィルムを含む転写フィルムの断面概略図である。(A) It is a cross-sectional schematic diagram of the transfer film containing the support body film which has regular uneven | corrugated shape. (B) It is a cross-sectional schematic diagram of the transfer film containing the support body film which has random uneven | corrugated shape. (C) It is a cross-sectional schematic diagram of the transfer film containing the support body film which has an uneven | corrugated shape which has a flat area | region in an uneven | corrugated shaped convex part and a recessed part. (D) It is a cross-sectional schematic diagram of the transfer film containing the support body film which has spherical uneven | corrugated shape. (a)規則的な形状を有する凹凸構造付基板の断面概略図である。(b)ランダムな凹凸形状を有する凹凸構造付基板の断面概略図である。(c)凹凸形状の凸部および凹部に平坦領域をもつ凹凸構造付基板の断面概略図である。(d)球状の凹凸形状を有する凹凸構造付基板の断面概略図である。(A) It is a cross-sectional schematic diagram of the board | substrate with an uneven structure which has a regular shape. (B) It is the cross-sectional schematic of the board | substrate with an uneven structure which has random uneven | corrugated shape. (C) It is the cross-sectional schematic of the board | substrate with an uneven structure which has a flat area | region in the convex part and concave part of an uneven shape. (D) It is a cross-sectional schematic diagram of the board | substrate with an uneven structure which has a spherical uneven shape. P1/P2を算出するためのFT-IRスペクトルである。It is an FT-IR spectrum for calculating P1 / P2.
 以下、図面等を参照しながら、本発明の転写フィルムについてさらに詳しく説明する。 Hereinafter, the transfer film of the present invention will be described in more detail with reference to the drawings.
 本発明の転写フィルムは、図1に示すように、表面に凹凸形状を有する支持体フィルム1と、該支持体フィルムの凹凸形状を有する表面上に積層されたシロキサン組成物を含む転写層2で構成される。該転写フィルムの転写層2側が基板に接するように、基板を転写フィルムで被覆した後、転写フィルムから支持体フィルムのみを除去することによって、図2に示すように、基板9の表面が転写層2で被覆された積層体を得ることができる。転写層2の表面は、支持体フィルム1の凹凸形状を反転した形状の凹凸形状を有しているので、表面に凹凸形状を有する凹凸構造付基板が得られる。このようにして、大面積の基板の表面に凹凸形状を簡便に形成することができる。 As shown in FIG. 1, the transfer film of the present invention comprises a support film 1 having a concavo-convex shape on the surface and a transfer layer 2 comprising a siloxane composition laminated on the surface having the concavo-convex shape of the support film. Composed. After the substrate is covered with the transfer film so that the transfer layer 2 side of the transfer film is in contact with the substrate, only the support film is removed from the transfer film, so that the surface of the substrate 9 is transferred to the transfer layer as shown in FIG. A laminate coated with 2 can be obtained. Since the surface of the transfer layer 2 has a concavo-convex shape in which the concavo-convex shape of the support film 1 is reversed, a substrate with a concavo-convex structure having a concavo-convex shape on the surface is obtained. In this way, it is possible to easily form an uneven shape on the surface of a large area substrate.
 [支持体フィルムの表面凹凸形状]
 支持体フィルムの表面凹凸形状は、幾何学形状であってもよいし、ランダム形状であってもよい。表面凹凸形状としては、たとえば、プリズム形状、回折格子、モスアイ形状、多角柱形状、多角錘形状、円柱形状、円錐形状、半球状、多角錘台形状、円錐台形状、およびその反転形状等が挙げられるがこの限りではない。
[Uneven surface shape of support film]
The uneven surface shape of the support film may be a geometric shape or a random shape. Examples of the surface uneven shape include a prism shape, a diffraction grating, a moth-eye shape, a polygonal prism shape, a polygonal cone shape, a cylindrical shape, a conical shape, a hemispherical shape, a truncated pyramid shape, a truncated cone shape, and an inverted shape thereof. This is not the case.
 図1(a)~(d)に本発明の転写フィルムの例を示す。図1(a)は、規則的な凹凸形状を有する支持体フィルムを含む転写フィルムの例である。図1(b)は、ランダムな凹凸形状を有する支持体フィルムを含む転写フィルムの例である。図1(c)は、凹凸形状の凸部および凹部に平坦領域をもつ凹凸形状を有する支持体フィルムを含む転写フィルムの例である。図1(d)は、球状の凹凸形状を有する支持体フィルムを含む転写フィルムの例である。図1(a)~(d)の転写フィルムを基板に積層して、転写層を基板に転写することにより、図2(a)~(d)に示す凹凸構造付基板を得ることができる。 1 (a) to 1 (d) show examples of the transfer film of the present invention. Fig.1 (a) is an example of the transfer film containing the support body film which has regular uneven | corrugated shape. FIG.1 (b) is an example of the transfer film containing the support body film which has a random uneven | corrugated shape. FIG.1 (c) is an example of the transfer film containing the support body film which has an uneven | corrugated shape which has an uneven | corrugated shaped convex part and a flat area | region in a recessed part. FIG.1 (d) is an example of the transfer film containing the support body film which has a spherical uneven | corrugated shape. By laminating the transfer films shown in FIGS. 1A to 1D on a substrate and transferring the transfer layer to the substrate, the substrate with an uneven structure shown in FIGS. 2A to 2D can be obtained.
 支持体フィルムの表面凹凸形状は、代表ピッチが0.01~50μmであることが好ましく、0.05~30μmであることがより好ましく、0.1~20μmであることがさらに好ましい。代表ピッチとは、凹凸形状が幾何学的形状の場合は、繰り返される形状のピッチをさし、ランダム形状の場合は任意に選んだ10点のピッチの平均値をさす。なお、ピッチとは、図1に示すように、転写層において隣接する2つの凹部のそれぞれの最大の深さを示す点の間の水平距離3である。また、凹形状の底部が図1(c)のように平坦であったり、図1(d)のように曲線であったりする場合、その中心点間の水平距離3をピッチとする。代表ピッチが0.01μmよりも小さい場合、界面の表面積が大きくなるために転写層と支持体フィルムが剥離しにくくなったり、異物をかみこみやすいために目的とする形状を得られなかったりする場合がある。一方、代表ピッチが50μmよりも大きい場合、凹凸形状の密度が低いために機能を発現できない場合がある。 The surface irregularity of the support film has a typical pitch of preferably 0.01 to 50 μm, more preferably 0.05 to 30 μm, and further preferably 0.1 to 20 μm. The representative pitch refers to the pitch of a repeated shape when the uneven shape is a geometric shape, and the average value of 10 arbitrarily selected pitches when it is a random shape. As shown in FIG. 1, the pitch is a horizontal distance 3 between points indicating the maximum depths of two adjacent concave portions in the transfer layer. When the bottom of the concave shape is flat as shown in FIG. 1C or curved as shown in FIG. 1D, the horizontal distance 3 between the center points is set as the pitch. When the representative pitch is smaller than 0.01 μm, the transfer layer and the support film are difficult to peel off due to the large surface area of the interface, or the target shape cannot be obtained because it easily bites foreign matter. There is. On the other hand, when the representative pitch is larger than 50 μm, the function may not be exhibited because the density of the uneven shape is low.
 支持体フィルムの凹凸形状のアスペクト比は、0.01~3であることが好ましく、0.05~2であることがより好ましく、0.3~2であることがさらに好ましく、0.5~1であることが特に好ましい。アスペクト比とは、図1を用いて説明すると、支持体フィルムの凹部の幅4で凹部の深さ5を除した値である。凹形状の底部が、図1(c)のように平坦であったり、図1(d)のように曲線であったりする場合、凹部の幅4はその凹部のうちの、最大の距離をとるものとする。凹部の深さ5は、支持体フィルムの凹部の極小位置とその隣接する極大位置の垂直距離である。凹部の両隣の極大位置の高さがそれぞれ異なる場合は、より高い側の極大位置と凹部がなす垂直距離を凹部の深さとする。また、支持体フィルムの凹凸形状のアスペクト比が一定でない場合は、任意に選んだ10点の凹凸形状のアスペクト比の平均値をとってアスペクト比の値とする。凹凸形状のアスペクト比が0.01よりも小さい場合、凹凸形状が非常に低く、形状の効果が得られにくい場合がある。一方、アスペクト比が3よりも大きい場合は、支持体フィルムと転写層の離型性が低下して、転写時に形状が引きちぎられたり、倒れたりして正確な形状を形成することが困難になる場合がある。 The aspect ratio of the concavo-convex shape of the support film is preferably 0.01 to 3, more preferably 0.05 to 2, still more preferably 0.3 to 2, and 0.5 to 1 is particularly preferred. The aspect ratio is a value obtained by dividing the depth 5 of the concave portion by the width 4 of the concave portion of the support film, as described with reference to FIG. When the concave bottom is flat as shown in FIG. 1 (c) or curved as shown in FIG. 1 (d), the width 4 of the concave portion takes the maximum distance among the concave portions. Shall. The depth 5 of the recess is a vertical distance between the minimum position of the recess of the support film and the adjacent maximum position. When the heights of the local maximum positions on both sides of the concave portion are different from each other, the vertical distance formed by the concave portion on the higher side and the concave portion is defined as the depth of the concave portion. Moreover, when the aspect ratio of the uneven | corrugated shape of a support body film is not constant, the average value of the aspect ratio of 10 uneven | corrugated shapes arbitrarily selected is taken as a value of an aspect ratio. When the aspect ratio of the concavo-convex shape is smaller than 0.01, the concavo-convex shape is very low, and the shape effect may be difficult to obtain. On the other hand, when the aspect ratio is larger than 3, the releasability between the support film and the transfer layer is lowered, and it becomes difficult to form an accurate shape by tearing or falling when transferring. There is a case.
 支持体フィルムの代表ピッチおよびアスペクト比は、走査型電子顕微鏡で観察して計測することができる。走査型電子顕微鏡で観察する場合は、表面の凹凸形状がライン状に配置されている場合は、ラインの延長方向に対して垂直方向にミクロトームでカットし、断面を観察する。表面の凹凸形状が離散的に配置されている場合は、離散凹凸形状の中心位置を通るようにミクロトームでカットし、断面を観察する。また、基板上に転写した転写層表面は、支持体フィルムの凹凸形状の反転形状になるため、転写後の転写層表面の凹凸構造を観察してもよい。転写層表面の凹凸構造は、レーザー顕微鏡、AFM等を用いて、後述のようにして観察することができる。 The representative pitch and aspect ratio of the support film can be measured by observation with a scanning electron microscope. When observing with a scanning electron microscope, if the surface irregularities are arranged in a line, cut with a microtome in a direction perpendicular to the extending direction of the line and observe the cross section. When the uneven shape on the surface is discretely arranged, cut with a microtome so as to pass through the center position of the discrete uneven shape, and observe the cross section. In addition, since the surface of the transfer layer transferred onto the substrate has an inverted shape of the uneven shape of the support film, the uneven structure on the surface of the transfer layer after transfer may be observed. The uneven structure on the surface of the transfer layer can be observed as described later using a laser microscope, AFM, or the like.
 支持体フィルムに凹凸形状を賦形する方法は特に限定されず、熱インプリント法、UVインプリント法、塗工、エッチング、自己組織化物によるパターニングなどの既知の方法を適用することが可能である。 The method for forming the uneven shape on the support film is not particularly limited, and it is possible to apply a known method such as a thermal imprint method, a UV imprint method, coating, etching, or patterning by a self-organized product. .
 [支持体フィルム]
 本発明に用いられる支持体フィルムの厚さは、5~500μmが好ましく、25~300μmがより好ましく、40~125μmがさらに好ましい。厚さが5μmより薄い場合、転写層を転写する際に縒れてしまい、基板を正確に被覆できない場合がある。一方、厚さが500μmを超える場合は、支持体フィルムが剛直になり、基板の形状に追従できなくなる場合がある。表面の凹凸形状を含む厚さが最大の部分の距離を、支持体フィルムの厚さとする。すなわち、図1を用いて説明すると、支持体フィルムの凹凸形状凸部の極大点と、支持体フィルムの反対側の表面の距離6を支持体フィルムの厚さとする。
[Support film]
The thickness of the support film used in the present invention is preferably 5 to 500 μm, more preferably 25 to 300 μm, and further preferably 40 to 125 μm. If the thickness is less than 5 μm, the transfer layer may be transferred and the substrate may not be accurately coated. On the other hand, when the thickness exceeds 500 μm, the support film becomes rigid and may not be able to follow the shape of the substrate. The distance of the portion having the maximum thickness including the uneven shape on the surface is defined as the thickness of the support film. That is, when it demonstrates using FIG. 1, the distance 6 of the maximum point of the uneven | corrugated shaped convex part of a support film and the surface on the opposite side of a support film is made into the thickness of a support film.
 該支持体フィルムの材質は、転写層の溶媒除去や、基板への転写の際の加熱に耐えうるものであれば特に限定されない。例えば、ポリエチレンテレフタレート、ポリエチレン-2,6-ナフタレート、ポリプロピレンテレフタレート、ポリブチレンテレフタレート、シクロヘキサンジメタノール共重合ポリエステル、イソフタル酸共重合ポリエステル、スピログリコール共重合ポリエステル、フルオレン共重合ポリエステル等のポリエステル樹脂;ポリエチレン、ポリスチレン、ポリプロピレン、ポリイソブチレン、ポリブテン、ポリメチルペンテン、環状ポリオレフィン共重合体等のポリオレフィン樹脂;ポリアミド樹脂、ポリイミド樹脂、ポリエーテル樹脂、ポリエステルアミド樹脂、ポリエーテルエステル樹脂、アクリル樹脂、ポリウレタン樹脂、ポリカーボネート樹脂、あるいはポリ塩化ビニル樹脂等を用いることができる。転写層となるシロキサンゾルの塗工性と、転写層と支持体フィルムの離型性を両立できる観点からポリオレフィン樹脂またはアクリル樹脂が好ましい。 The material of the support film is not particularly limited as long as it can withstand the solvent removal of the transfer layer and the heating during the transfer to the substrate. For example, polyester resins such as polyethylene terephthalate, polyethylene-2,6-naphthalate, polypropylene terephthalate, polybutylene terephthalate, cyclohexanedimethanol copolymerized polyester, isophthalic acid copolymerized polyester, spiroglycol copolymerized polyester, fluorene copolymerized polyester; Polyolefin resins such as polystyrene, polypropylene, polyisobutylene, polybutene, polymethylpentene, and cyclic polyolefin copolymers; polyamide resins, polyimide resins, polyether resins, polyesteramide resins, polyetherester resins, acrylic resins, polyurethane resins, polycarbonate resins Alternatively, polyvinyl chloride resin or the like can be used. A polyolefin resin or an acrylic resin is preferable from the viewpoint of achieving both the coatability of the siloxane sol serving as the transfer layer and the releasability of the transfer layer and the support film.
 また、支持体フィルムは単層であってもよいし、多層からなるものであってもよい。多層からなるものである場合は、転写層と接する表面がポリオレフィン樹脂またはアクリル樹脂であることが好ましい。 Further, the support film may be a single layer or a multilayer. In the case of a multilayer structure, the surface in contact with the transfer layer is preferably a polyolefin resin or an acrylic resin.
 さらには、支持体フィルムの表面を適切な状態にするために、上記以外の樹脂からなる層を積層することもできる。さらにはこれらの支持体フィルムの転写層と接する面には、塗工性や離型性を付与するために、下地調整剤や下塗り剤、シリコーン系離型コート剤やフッ素系離型コート剤などを塗布する処理を施したり、金やプラチナといった貴金属をその表面にスパッタリング処理したりしてもよい。なお、ここでいう適切な状態、とは、支持体フィルムの転写層を形成する表面の表面自由エネルギーが23~70mN/mであることをいう。表面自由エネルギーがこの範囲に入るように表面状態を調整することで、支持体フィルム上に転写層を形成する際にハジキ等の欠点が発生することを防止でき、また、転写する際の支持体フィルムと転写層の離型性を良くすることができる。 Furthermore, in order to bring the surface of the support film into an appropriate state, a layer made of a resin other than the above can be laminated. Furthermore, in order to give coatability and releasability to the surface of the support film in contact with the transfer layer, a base conditioner, an undercoat agent, a silicone release coating agent, a fluorine release coating agent, etc. You may perform the process which apply | coats, and may carry out the sputtering process to the surface of noble metals, such as gold | metal | money and platinum. Here, the appropriate state means that the surface free energy of the surface on which the transfer layer of the support film is formed is 23 to 70 mN / m. By adjusting the surface state so that the surface free energy falls within this range, it is possible to prevent the occurrence of defects such as repellency when forming the transfer layer on the support film, and the support during transfer The mold releasability between the film and the transfer layer can be improved.
 [転写層材料]
 本発明の転写フィルムにおいて転写層は、シロキサン組成物を含み、該シロキサン組成物が光酸発生剤または光塩基発生剤を含むことを特徴とする。シロキサン組成物とは、シロキサン化合物を含む組成物であって、シロキサン化合物以外にオルガノシランや、その加水分解生成物を含んでもよい。シロキサン化合物は、2つ以上の連続したシロキサン結合を構造内に含む化合物である。シロキサン化合物は、部分構造としてケイ素原子に直接結合する有機官能基を持つものであっても、ケイ素原子に直接結合する有機官能基を持たないシリカ構造を一部含むものであってもよい。シロキサン化合物の重量平均分子量は、特に制限されないが、GPCで測定されるポリスチレン換算で500~100,000であることが好ましい。シロキサン化合物は、下記化学式(1)で表されるオルガノシランの1種類以上を加水分解反応および重縮合反応させることによって合成されるシロキサンゾルを、加熱加圧によって固化することによって合成できる。
[Transfer layer material]
In the transfer film of the present invention, the transfer layer contains a siloxane composition, and the siloxane composition contains a photoacid generator or a photobase generator. The siloxane composition is a composition containing a siloxane compound, and may contain organosilane or a hydrolysis product thereof in addition to the siloxane compound. A siloxane compound is a compound that contains two or more consecutive siloxane bonds in the structure. The siloxane compound may have an organic functional group directly bonded to a silicon atom as a partial structure, or may partially include a silica structure not having an organic functional group directly bonded to a silicon atom. The weight average molecular weight of the siloxane compound is not particularly limited, but is preferably 500 to 100,000 in terms of polystyrene measured by GPC. The siloxane compound can be synthesized by solidifying a siloxane sol synthesized by subjecting one or more organosilanes represented by the following chemical formula (1) to a hydrolysis reaction and a polycondensation reaction by heating and pressing.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
式中、Rは水素、炭素数1~10のアルキル基、炭素数2~10のアルケニル基および炭素数6~15のアリール基のいずれかを表し、複数のRはそれぞれ同じでも異なっていてもよい。Rは水素、炭素数1~6のアルキル基、炭素数1~6のアシル基および炭素数6~15のアリール基のいずれかを表し、複数のRはそれぞれ同じでも異なっていてもよい。nは0から3の整数を表す。 In the formula, R 1 represents any one of hydrogen, an alkyl group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, and an aryl group having 6 to 15 carbon atoms, and a plurality of R 1 may be the same or different. May be. R 2 represents any one of hydrogen, an alkyl group having 1 to 6 carbon atoms, an acyl group having 1 to 6 carbon atoms, and an aryl group having 6 to 15 carbon atoms, and a plurality of R 2 may be the same or different. . n represents an integer of 0 to 3.
 化学式(1)で表されるオルガノシランにおいて、Rのアルキル基、アルケニル基、アリール基はいずれも無置換体、置換体のどちらでもよく、組成物の特性に応じて選択できる。アルキル基の具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、t-ブチル基、n-ヘキシル基、n-デシル基、トリフルオロメチル基、3,3,3-トリフルオロプロピル基、3-グリシドキシプロピル基、2-(3,4-エポキシシクロヘキシル)エチル基、[(3-エチル3-オキセタニル)メトキシ]プロピル基、3-アミノプロピル基、3-メルカプトプロピル基、3-イソシアネートプロピル基等が挙げられる。アルケニル基の具体例としては、ビニル基、3-アクリロキシプロピル基、3-メタクリロキシプロピル基等が挙げられる。アリール基の具体例としては、フェニル基、トリル基、p-ヒドロキシフェニル基、1-(p-ヒドロキシフェニル)エチル基、2-(p-ヒドロキシフェニル)エチル基、4-ヒドロキシ-5-(p-ヒドロキシフェニルカルボニルオキシ)ペンチル基、ナフチル基等が挙げられる。 In the organosilane represented by the chemical formula (1), the alkyl group, alkenyl group and aryl group of R 1 may be either unsubstituted or substituted, and can be selected according to the characteristics of the composition. Specific examples of the alkyl group include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, t-butyl group, n-hexyl group, n-decyl group, trifluoromethyl group, 3, 3 , 3-trifluoropropyl group, 3-glycidoxypropyl group, 2- (3,4-epoxycyclohexyl) ethyl group, [(3-ethyl3-oxetanyl) methoxy] propyl group, 3-aminopropyl group, 3 -Mercaptopropyl group, 3-isocyanatopropyl group and the like. Specific examples of the alkenyl group include a vinyl group, a 3-acryloxypropyl group, and a 3-methacryloxypropyl group. Specific examples of the aryl group include phenyl, tolyl, p-hydroxyphenyl, 1- (p-hydroxyphenyl) ethyl, 2- (p-hydroxyphenyl) ethyl, 4-hydroxy-5- (p -Hydroxyphenylcarbonyloxy) pentyl group, naphthyl group and the like.
 化学式(1)で表されるオルガノシランにおいてRのアルキル基、アシル基、アリール基はいずれも無置換体、置換体のどちらでもよく、組成物の特性に応じて選択できる。アルキル基の具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、n-ペンチル基、n-ヘキシル基が挙げられる。アシル基の具体例としては、アセチル基、プロピノイル基、ブチロイル基、ペンタノイル基、ヘキサノイル基が挙げられる。アリール基の具体例としてはフェニル基、ナフチル基等が挙げられる。 In the organosilane represented by the chemical formula (1), the alkyl group, acyl group and aryl group of R 2 may be either unsubstituted or substituted, and can be selected according to the characteristics of the composition. Specific examples of the alkyl group include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, n-pentyl group, and n-hexyl group. Specific examples of the acyl group include an acetyl group, a propinoyl group, a butyroyl group, a pentanoyl group, and a hexanoyl group. Specific examples of the aryl group include a phenyl group and a naphthyl group.
 化学式(1)のnは0から3の整数を表す。n=0の場合は4官能性シラン、n=1の場合は3官能性シラン、n=2の場合は2官能性シラン、n=3の場合は1官能性シランである。 N in the chemical formula (1) represents an integer of 0 to 3. A tetrafunctional silane when n = 0, a trifunctional silane when n = 1, a bifunctional silane when n = 2, and a monofunctional silane when n = 3.
 化学式(1)で表されるオルガノシランの具体例としては、テトラメトキシシラン、テトラエトキシシラン、テトラブトキシシラン、テトラアセトキシシラン、テトラフェノキシシランなどの4官能性シラン;メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリイソプロポキシシラン、メチルトリn-ブトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、エチルトリイソプロポキシシラン、エチルトリn-ブトキシシラン、n-プロピルトリメトキシシラン、n-プロピルトリエトキシシラン、n-ブチルトリメトキシシラン、n-ブチルトリエトキシシラン、n-ヘキシルトリメトキシシラン、n-ヘキシルトリエトキシシラン、デシルトリメトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、トリフルオロメチルトリメトキシシラン、トリフルオロメチルトリエトキシシラン、3,3,3-トリフルオロプロピルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-メルカプトプロピルトリエトキシシランなどの3官能性シラン;ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジメチルジアセトキシシラン、ジn-ブチルジメトキシシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、3-メルカプトプロピルメチルジメトキシシラン、3-アミノプロピルジエトキシメチルシランなどの2官能性シラン;トリメチルメトキシシラン、トリn-ブチルエトキシシランなどの1官能性シランが挙げられる。 Specific examples of the organosilane represented by the chemical formula (1) include tetrafunctional silanes such as tetramethoxysilane, tetraethoxysilane, tetrabutoxysilane, tetraacetoxysilane, and tetraphenoxysilane; methyltrimethoxysilane, methyltriethoxy Silane, methyltriisopropoxysilane, methyltrin-butoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, ethyltriisopropoxysilane, ethyltrin-butoxysilane, n-propyltrimethoxysilane, n-propyltriethoxysilane, n-butyltrimethoxysilane, n-butyltriethoxysilane, n-hexyltrimethoxysilane, n-hexyltriethoxysilane, decyltrimethoxysilane, vinyltrimethoxysilane, vinylto Ethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-acryloxypropyltrimethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, trifluoromethyltrimethoxysilane, trifluoromethyl Triethoxysilane, 3,3,3-trifluoropropyltrimethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltri Trifunctional silanes such as ethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-mercaptopropyltriethoxysilane; dimethyldimethoxysilane, dimethyldie Xysilane, dimethyldiacetoxysilane, di-n-butyldimethoxysilane, diphenyldimethoxysilane, diphenyldiethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-methacryloxypropylmethyl Bifunctional such as dimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, 3-mercaptopropylmethyldimethoxysilane, 3-aminopropyldiethoxymethylsilane And monofunctional silanes such as trimethylmethoxysilane and tri-n-butylethoxysilane.
 これらのオルガノシランは単独で使用しても、2種類以上を組み合わせて使用してもよい。転写フィルム上でのクラック防止に有効な柔軟性を付与するためには、オルガノシラン全体に対して、ケイ素原子に直接結合する有機官能基を有する1官能性シラン、2官能性シランおよび3官能性シランの少なくともいずれか1種をケイ素原子数比で5~100%含むことが好ましい。 These organosilanes may be used alone or in combination of two or more. In order to give flexibility effective in preventing cracks on the transfer film, monofunctional silane, bifunctional silane and trifunctional having an organic functional group directly bonded to a silicon atom with respect to the entire organosilane It is preferable that at least one of silanes is contained in an amount of 5 to 100% in terms of the number of silicon atoms.
 一方で、基板上に形成した凹凸形状の耐熱性向上のためには、オルガノシラン全体に対して、3官能性シランおよび4官能性シランの少なくともいずれか1種をケイ素原子数比で40~100%含むことが好ましく、70~100%含むことがより好ましく、90~100%含むことがさらに好ましい。 On the other hand, in order to improve the heat resistance of the concavo-convex shape formed on the substrate, at least one of trifunctional silane and tetrafunctional silane is 40 to 100 in terms of the number of silicon atoms with respect to the whole organosilane. %, Preferably 70 to 100%, more preferably 90 to 100%.
 ここで、ケイ素原子数比とは、4官能性シランを例にして説明すると、転写層に含まれるケイ素原子数に対する、前述の化学式(1)におけるn=0で表される4官能性シランのケイ素原子数の比率である。 Here, the silicon atom number ratio is described by taking a tetrafunctional silane as an example, and the tetrafunctional silane represented by n = 0 in the above chemical formula (1) with respect to the number of silicon atoms contained in the transfer layer. It is the ratio of the number of silicon atoms.
 化学式(1)で示されるオルガノシランの有機官能基数nは、29SiNMRで分析することができる。29SiNMRによる測定において、n=0の4官能性シランは-90~-120ppm、n=1の3官能性シランは-55~-70ppm、n=2の2官能性シランは0~-25ppm、n=3の1官能性シランは20~0ppmにシグナルを示す。これらの各シグナルのエリア値のすべてを合計して、転写層に含まれるケイ素原子数の合計のエリア値を求める。1官能性シラン、2官能性シラン、3官能性シランおよび4官能性シランそれぞれのシグナルのエリア値をケイ素原子数の合計のエリア値で除することで、それぞれのケイ素原子数比を得る。 The number of organic functional groups n of the organosilane represented by the chemical formula (1) can be analyzed by 29 SiNMR. As measured by 29 SiNMR, n = 0 tetrafunctional silane is −90 to −120 ppm, n = 1 trifunctional silane is −55 to −70 ppm, n = 2 bifunctional silane is 0 to −25 ppm, A monofunctional silane with n = 3 shows a signal at 20-0 ppm. All the area values of these signals are summed to obtain the total area value of the number of silicon atoms contained in the transfer layer. By dividing the area value of the signal of each of the monofunctional silane, the bifunctional silane, the trifunctional silane, and the tetrafunctional silane by the total area value of the number of silicon atoms, each silicon atom number ratio is obtained.
 また、転写層には擦過性や硬度向上のために、シリカ粒子を添加してもよい。また、転写層には、支持体フィルムとの離型性や、濡れ性の向上を目的とした離型剤、レベリング剤、樹脂系の基板との密着性や耐クラック性を向上させるためのアクリル樹脂等を含んでいてもよい。 In addition, silica particles may be added to the transfer layer in order to improve scratch resistance and hardness. In addition, the transfer layer is made of acrylic for improving mold release properties, leveling agents, and resin-based substrates for improving mold releasability and wettability. Resin etc. may be included.
 [光酸発生剤と光塩基発生剤]
 転写層を構成するシロキサン組成物は、光照射によって酸または塩基を発生することができる光酸発生剤または光塩基発生剤を含む。
[Photoacid generator and photobase generator]
The siloxane composition constituting the transfer layer contains a photoacid generator or a photobase generator capable of generating an acid or a base by light irradiation.
 シロキサン組成物は、化学式(2)に示されるようなシロキサン化合物の末端のヒドロキシル基の脱水縮合によって架橋反応が進行し、ネットワークを形成する。 In the siloxane composition, a crosslinking reaction proceeds by dehydration condensation of the hydroxyl group at the terminal of the siloxane compound as represented by the chemical formula (2) to form a network.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
式中、Rは水素、炭素数1~10のアルキル基、炭素数2~10のアルケニル基および炭素数6~15のアリール基のいずれかを表し、複数のRはそれぞれ同じでも異なっていてもよい。Rは水素、炭素数1~6のアルキル基、炭素数1~6のアシル基および炭素数6~15のアリール基のいずれかを表し、複数のRはそれぞれ同じでも異なっていてもよい。mは自然数を表す。 In the formula, R 1 represents any one of hydrogen, an alkyl group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, and an aryl group having 6 to 15 carbon atoms, and a plurality of R 1 may be the same or different. May be. R 2 represents any one of hydrogen, an alkyl group having 1 to 6 carbon atoms, an acyl group having 1 to 6 carbon atoms, and an aryl group having 6 to 15 carbon atoms, and a plurality of R 2 may be the same or different. . m represents a natural number.
 従来技術において、基板上にシロキサン組成物で形成した凹凸形状層に高い耐熱性を持たせるためには、シロキサン組成物に含まれるシロキサン化合物末端のヒドロキシル基を架橋させて、分子量を大きくし、高密度のネットワークを形成させることが必要である。しかしながら、脱水縮合反応を進行させるにあたって、熱処理を施した場合、分子量の小さいシロキサン化合物で形成された凹凸形状層は、脱水縮合よりも粘度低下が引き起こされる方が速く、凹凸形状が平坦化してしまう場合があった。 In the prior art, in order to impart high heat resistance to the concavo-convex shape layer formed of the siloxane composition on the substrate, the hydroxyl group at the terminal of the siloxane compound contained in the siloxane composition is cross-linked to increase the molecular weight, It is necessary to form a network of density. However, when a heat treatment is performed to advance the dehydration condensation reaction, the uneven shape layer formed of a siloxane compound having a low molecular weight is more likely to cause a decrease in viscosity than the dehydration condensation, and the uneven shape is flattened. There was a case.
 この課題を解決するために発明者らは鋭意検討を重ねた結果、凹凸形状層の熱処理前に、粘度低下が引き起こされない程度の温度条件下でシロキサン化合物の架橋反応を進行させる着想に至った。具体的には、酸触媒または塩基触媒によって、非加熱の状態でシロキサン化合物の脱水縮合反応を促進させてネットワークを形成することにより、熱処理時の粘度低下を抑制するという方法である。特に光照射によって、触媒効果のある酸または塩基を発生させることで、支持体フィルム上に転写層を形成するために用いるシロキサンゾルのポットライフを延長することができる。また、シロキサンゾルへの溶解性や触媒効果のある酸の発生効率の観点からは、光酸発生剤が好ましく、シロキサン架橋反応速度をより速めることができるという観点からは光塩基発生剤が好ましいことを見出した。 In order to solve this problem, the inventors have intensively studied, and as a result, came up with the idea of proceeding the crosslinking reaction of the siloxane compound under a temperature condition that does not cause a decrease in viscosity before the heat treatment of the uneven layer. . Specifically, it is a method of suppressing a decrease in viscosity during heat treatment by promoting a dehydration condensation reaction of a siloxane compound in an unheated state with an acid catalyst or a base catalyst to form a network. The pot life of the siloxane sol used for forming the transfer layer on the support film can be extended by generating an acid or base having a catalytic effect by light irradiation. Further, from the viewpoint of solubility in siloxane sol and generation efficiency of acid having a catalytic effect, a photoacid generator is preferable, and a photobase generator is preferable from the viewpoint that the siloxane crosslinking reaction rate can be further increased. I found.
 光酸発生剤としては、スルホニウム系光酸発生剤、ヨードニウム塩系光酸発生剤、セレニウム塩系光酸発生剤、ジアゾニウム塩系光酸発生剤、リン酸系光酸発生剤、トリアジン系光酸発生剤、アセトフェノン誘導体化合物、メタロセン錯体、鉄アレーン錯体等が知られている。溶液への溶解性と酸成分の発生効率の観点から、スルホニウム系光酸発生剤が好ましい。光酸発生剤の具体例としては、サンアプロ株式会社製CPI-100P、CPI-101A、CPI-200K、CPI-210S、和光純薬工業株式会社製WPAG-336、WPAG-367、WPAG-370、WPAG-469、WPI-113、WPI-116、WPI-124、WPI-170、アイバイツ株式会社製CTPAG-II、EEPAG、みどり化学株式会社製PAI-101、DTS-102、DTS-103、DTS-105、アデカ株式会社製SP-170等が挙げられる。 Photoacid generators include sulfonium photoacid generators, iodonium salt photoacid generators, selenium salt photoacid generators, diazonium salt photoacid generators, phosphoric acid photoacid generators, and triazine photoacid generators. Generators, acetophenone derivative compounds, metallocene complexes, iron arene complexes, and the like are known. From the viewpoint of solubility in a solution and generation efficiency of an acid component, a sulfonium photoacid generator is preferred. Specific examples of the photoacid generator include CPI-100P, CPI-101A, CPI-200K, CPI-210S manufactured by San Apro Co., Ltd., WPAG-336, WPAG-367, WPAG-370, WPAG manufactured by Wako Pure Chemical Industries, Ltd. -469, WPI-113, WPI-116, WPI-124, WPI-170, CIPAG-II, EEPAG manufactured by Ibitsu Corporation, PAI-101, DTS-102, DTS-103, DTS-105 manufactured by Midori Chemical Co., Ltd. SP-170 manufactured by Adeka Corporation can be mentioned.
 一方、光塩基発生剤は、大きく分けて非イオン型光塩基発生剤とイオン型光塩基発生剤が知られている。溶液の溶解性、塩基成分の発生効率、および発生する塩基の強さの観点から、イオン型光塩基発生剤、特にpKa8以上の塩基化合物を発生するものが好ましい。光塩基発生剤の具体例としては、サンアプロ株式会社製PBG-SA1、SA-1B、和光純薬工業株式会社製WPBG-266、WPBG-300、WPBG-082、WPBG-140、アイバイツ株式会社製EIPBG、EITMG等が挙げられる。光酸発生剤または光塩基発生剤において、シロキサンゾルのポットライフの観点から、酸または塩基の発生が活性化される波長は365nm以下であることが好ましい。 On the other hand, the photobase generator is roughly classified into a nonionic photobase generator and an ionic photobase generator. From the viewpoint of the solubility of the solution, the generation efficiency of the base component, and the strength of the generated base, an ionic photobase generator, particularly one that generates a pKa8 or higher base compound is preferred. Specific examples of the photobase generator include PBG-SA1, SA-1B manufactured by San Apro Co., Ltd., WPBG-266, WPBG-300, WPBG-082, WPBG-140 manufactured by Wako Pure Chemical Industries, Ltd. , EITMG and the like. In the photoacid generator or photobase generator, from the viewpoint of the pot life of the siloxane sol, the wavelength at which the generation of acid or base is activated is preferably 365 nm or less.
 転写層に含まれる光酸発生剤量は、転写層全体を100質量%としたとき、0.2~5.0質量%であることが好ましく、0.3~2.5質量%であることがより好ましく、0.4~0.9質量%であることがさらに好ましい。光酸発生剤の含有量が0.2質量%よりも少ない場合は、光酸発生剤によって発生する酸の量が少なく、十分な形状保持効果を得ることが難しい場合がある。一方、光酸発生剤の含有量が5.0質量%より多い場合は、酸発生による局所的な反応や、光酸発生剤の反応後の残渣によって転写層中に屈折率の異なる箇所が生成して白濁したり、架橋反応進行による粘度上昇が原因でレベリング性が低下して転写層に厚みムラやうねりができやすくなったりする場合がある。 The amount of the photoacid generator contained in the transfer layer is preferably 0.2 to 5.0% by mass, and preferably 0.3 to 2.5% by mass when the entire transfer layer is 100% by mass. Is more preferably 0.4 to 0.9% by mass. When the content of the photoacid generator is less than 0.2% by mass, the amount of acid generated by the photoacid generator is small, and it may be difficult to obtain a sufficient shape retention effect. On the other hand, when the content of the photoacid generator is more than 5.0% by mass, a portion having a different refractive index is generated in the transfer layer due to a local reaction due to acid generation or a residue after the reaction of the photoacid generator. As a result, it may become cloudy or the leveling property may be lowered due to an increase in viscosity due to the progress of the cross-linking reaction, and the transfer layer may easily be uneven in thickness or undulate.
 転写層に含まれる光塩基発生剤の量は、転写層全体を100質量%としたとき0.05~10質量%であることが好ましく、0.1~5質量%であることがより好ましい。光塩基発生剤の含有量が0.05質量%よりも少ない場合は、光塩基発生剤によって発生する塩基の量が少なく、十分な形状保持効果を得ることが難しい場合がある。一方、光塩基発生剤の含有量が10質量%より多い場合は、光塩基発生剤が溶解しきれずに均一な転写層を形成することができなかったり、架橋反応による粘度上昇で塗液のポットライフが低下したり、光塩基発生剤の残渣等により転写層が白濁する場合がある。 The amount of the photobase generator contained in the transfer layer is preferably 0.05 to 10% by mass, more preferably 0.1 to 5% by mass, when the entire transfer layer is 100% by mass. When the content of the photobase generator is less than 0.05% by mass, the amount of base generated by the photobase generator is small, and it may be difficult to obtain a sufficient shape retention effect. On the other hand, when the content of the photobase generator is more than 10% by mass, the photobase generator cannot be completely dissolved and a uniform transfer layer cannot be formed, or the viscosity of the coating solution increases due to the crosslinking reaction. The transfer layer may become cloudy due to a decrease in life or a residue of the photobase generator.
 特に転写層の厚みムラは、転写層の残膜厚みムラに反映されやすい。転写層の残膜厚みとは、転写層の基板と接する側の表面と、転写層の支持体フィルムと接する側の表面との間の厚みの極小値である。図を用いて説明すると、図1(a)~(d)においてそれぞれ8で表される距離が残膜厚みである。また、残膜厚みを10点計測して得られた最大値と最小値の差で示される残膜厚み差を、残膜厚みの平均値で除算して得られる値、すなわち、((残膜厚みを10点計測して得られた最大値と最小値の差で示される残膜厚み差)/(残膜厚みの平均値))×100、を残膜厚みムラ(%)とする。 Especially, the uneven thickness of the transfer layer is easily reflected in the uneven thickness of the remaining film of the transfer layer. The residual film thickness of the transfer layer is a minimum value of the thickness between the surface of the transfer layer in contact with the substrate and the surface of the transfer layer in contact with the support film. To explain with reference to the drawings, the distances represented by 8 in FIGS. 1A to 1D are the remaining film thicknesses. Further, a value obtained by dividing the residual film thickness difference represented by the difference between the maximum value and the minimum value obtained by measuring the residual film thickness at 10 points by the average value of the residual film thickness, that is, (((residual film The residual film thickness non-uniformity (%) is defined as the difference in residual film thickness indicated by the difference between the maximum value and the minimum value obtained by measuring the thickness at 10 points) / (average value of residual film thickness)) × 100.
 残膜厚みムラは25%未満が好ましく、15%未満がより好ましい。残膜厚みムラが25%以上となる場合、転写層を基板と接触させて押圧する際に転写ムラや欠点の発生原因となったり、基板に形成した凹凸形状をエッチング処理する際に形状サイズが不均一になったりする場合がある。なお、転写層の残膜厚みは、転写フィルムをミクロトームで切削し、その断面を走査型電子顕微鏡で撮像および計測することにより測定する。 The residual film thickness unevenness is preferably less than 25%, more preferably less than 15%. When the residual film thickness unevenness is 25% or more, the transfer layer may be caused to cause transfer unevenness or defects when pressed in contact with the substrate, or the shape size may be reduced when etching the uneven shape formed on the substrate. It may become uneven. The residual film thickness of the transfer layer is measured by cutting the transfer film with a microtome and imaging and measuring the cross section with a scanning electron microscope.
 [転写層の形成]
 支持体フィルム上に転写層を形成する方法としては、溶媒で希釈したシロキサンゾルを支持体フィルム上に塗工し、乾燥する方法が、膜厚の調整がしやすく、支持体フィルムの厚み等に影響を受けにくいため好ましい。
[Formation of transfer layer]
As a method of forming a transfer layer on a support film, a method of coating a siloxane sol diluted with a solvent on a support film and drying it is easy to adjust the film thickness, and the thickness of the support film, etc. It is preferable because it is hardly affected.
 シロキサンゾルは、シロキサン組成物および溶媒を含有する。溶媒としては、塗工に用いるのに適切な濃度のシロキサンゾルの溶液が得られる溶解性を有するものであれば特に限定されないが、フィルム上でハジキが発生しにくいという点から有機溶媒であることが好ましい。例えば、ジアセトンアルコール、3-メチル-3-メトキシ-1-ブタノールなどの高沸点アルコール類;エチレングリコール、プロピレングリコールなどのグリコール類;エチレングリコールモノメチルエーテル、エチレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテル、プロピレングリコールモノエチルエーテルアセテート、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、ジエチルエーテル、ジイソプロピルエーテル、ジn-ブチルエーテル、ジフェニルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールエチルメチルエーテル、ジプロピレングリコールジメチルエーテルなどのエーテル類;メチルエチルケトン、メチルイソブチルケトン、ジイソプロピルケトン、ジイソブチルケトン、シクロペンタノン、シクロヘキサノン、2-ヘプタノン、3-ヘプタノンなどのケトン類;ジメチルホルムアミド、ジメチルアセトアミドなどのアミド類;酢酸エチル、酢酸ブチル、エチルアセテート、エチルセロソルブアセテート、3-メチル-3-メトキシ-1-ブタノールアセテートなどのエステル類;トルエン、キシレン、ヘキサン、シクロヘキサン、メシチレン、ジイソプロピルベンゼンなどの芳香族あるいは脂肪族炭化水素;γ-ブチロラクトン、N-メチル-2-ピロリドン、ジメチルスルホキシドなどを挙げることができる。 The siloxane sol contains a siloxane composition and a solvent. The solvent is not particularly limited as long as it has a solubility capable of obtaining a solution of a siloxane sol having an appropriate concentration to be used for coating, but it is an organic solvent from the point that repellency hardly occurs on the film. Is preferred. For example, high boiling alcohols such as diacetone alcohol and 3-methyl-3-methoxy-1-butanol; glycols such as ethylene glycol and propylene glycol; ethylene glycol monomethyl ether, ethylene glycol monomethyl ether acetate, propylene glycol monomethyl ether, Propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether, propylene glycol monoethyl ether acetate, propylene glycol monopropyl ether, propylene glycol monobutyl ether, diethyl ether, diisopropyl ether, di-n-butyl ether, diphenyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, The Ethers such as tylene glycol ethyl methyl ether and dipropylene glycol dimethyl ether; ketones such as methyl ethyl ketone, methyl isobutyl ketone, diisopropyl ketone, diisobutyl ketone, cyclopentanone, cyclohexanone, 2-heptanone and 3-heptanone; dimethylformamide, dimethylacetamide Amides such as ethyl acetate, butyl acetate, ethyl acetate, ethyl cellosolve acetate, esters such as 3-methyl-3-methoxy-1-butanol acetate; aromatics such as toluene, xylene, hexane, cyclohexane, mesitylene, diisopropylbenzene Aliphatic or aliphatic hydrocarbons; γ-butyrolactone, N-methyl-2-pyrrolidone, dimethyl sulfoxide, etc. .
 シロキサン組成物の溶解性、およびシロキサンゾルの塗布性の点から、ジアセトンアルコール、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノメチルエーテルアセテート、ジイソブチルエーテル、ジn-ブチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールエチルメチルエーテル、ジプロピレングリコールジメチルエーテル、メチルイソブチルケトン、ジイソブチルケトンおよび酢酸ブチルから選ばれた溶媒が好ましい。 From the viewpoint of the solubility of the siloxane composition and the coating property of the siloxane sol, diacetone alcohol, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monopropyl ether, propylene glycol monomethyl ether acetate, diisobutyl ether, di-n- A solvent selected from butyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol ethyl methyl ether, dipropylene glycol dimethyl ether, methyl isobutyl ketone, diisobutyl ketone and butyl acetate is preferred.
 シロキサンゾルを塗工する方法としては、例えばグラビアコート、ロールコート、スピンコート、ダイコート、バーコート、スクリーンコート、ブレードコート、エアーナイフコート、ディップコート、スプレーコートなどから適宜選択して適用すればよい。 As a method for applying the siloxane sol, for example, gravure coating, roll coating, spin coating, die coating, bar coating, screen coating, blade coating, air knife coating, dip coating, spray coating, and the like may be selected as appropriate. .
 塗工後、シロキサンゾルが塗工された支持体フィルムを加熱や減圧によって乾燥する。加熱乾燥する場合、加熱温度は20℃以上180℃以下が好ましい。加熱温度が20℃より低い場合は、乾燥に多大な時間が必要となる場合がある。一方180℃より高い温度に加熱すると、加熱によるシロキサンの重合により転写フィルムの柔軟性が失われてクラックが発生したり、支持体フィルムと転写層の熱膨張係数の差からカールしたり、支持体フィルム表面の凹凸形状が崩れたりする場合がある。減圧乾燥する場合、減圧条件は、転写フィルムの形状が崩れない範囲で適宜設定すればよく、10kPaまで減圧することが好ましい。さらには減圧と同時に加熱して乾燥してもよい。 After coating, the support film coated with the siloxane sol is dried by heating or reduced pressure. In the case of heating and drying, the heating temperature is preferably 20 ° C. or higher and 180 ° C. or lower. When the heating temperature is lower than 20 ° C., a long time may be required for drying. On the other hand, when heated to a temperature higher than 180 ° C., the transfer film loses its flexibility due to polymerization of siloxane due to heating, cracks occur, curl due to the difference in thermal expansion coefficient between the support film and the transfer layer, The uneven shape of the film surface may collapse. In the case of drying under reduced pressure, the reduced pressure condition may be set as appropriate as long as the shape of the transfer film does not collapse, and the pressure is preferably reduced to 10 kPa. Furthermore, you may heat and dry simultaneously with pressure reduction.
 転写層の厚みは、0.01~20μmが好ましく、0.03~10μmがより好ましく、0.05~5μmがさらに好ましい。転写層の厚みが0.01μmよりも薄い場合、基板上に形成される凹凸形状の高さが低くなり、凹凸形状の効果を得ることが難しい場合がある。一方で、転写層の厚みが20μmよりも厚い場合、基板上で熱処理した場合に、膜応力が発生してクラックが起こる場合がある。転写層の厚みとは、転写フィルム上で転写層がもっとも厚くなる部分、すなわち図1を用いて説明すると、支持体フィルムの転写層と反対の面を下にして水平に置いた場合に支持体フィルム1上の転写層2との境界の面の凹みの最も下の位置と、転写層の最表面の間の距離を転写層の厚み7とする。転写層の厚みは、転写フィルムをミクロトームで切削し、その断面を走査型電子顕微鏡で撮像および計測することにより測定する。 The thickness of the transfer layer is preferably from 0.01 to 20 μm, more preferably from 0.03 to 10 μm, still more preferably from 0.05 to 5 μm. When the thickness of the transfer layer is smaller than 0.01 μm, the height of the concavo-convex shape formed on the substrate is lowered, and it may be difficult to obtain the effect of the concavo-convex shape. On the other hand, when the thickness of the transfer layer is greater than 20 μm, when heat treatment is performed on the substrate, film stress may occur and cracks may occur. The thickness of the transfer layer is the portion where the transfer layer is thickest on the transfer film, that is, the support layer when it is placed horizontally with the opposite side of the transfer film to the opposite side. The distance between the lowest position of the recess on the surface of the boundary with the transfer layer 2 on the film 1 and the outermost surface of the transfer layer is defined as the thickness 7 of the transfer layer. The thickness of the transfer layer is measured by cutting the transfer film with a microtome and imaging and measuring the cross section with a scanning electron microscope.
 [転写方法]
 本発明の転写フィルムを用い、転写層を基板に転写する方法について述べる。本発明の転写フィルムの転写層側の面を基板に接触させて積層体を得、該積層体を加圧および/または加熱した後、支持体フィルムのみを剥離することで基板表面に凹凸形状を有する転写層を付与することができる。この工程を転写と呼ぶ。
[Transfer method]
A method for transferring a transfer layer to a substrate using the transfer film of the present invention will be described. The surface of the transfer film of the present invention on the transfer layer side is brought into contact with the substrate to obtain a laminate, and after pressing and / or heating the laminate, the support film is peeled off to form an uneven shape on the substrate surface. The transfer layer can be applied. This process is called transfer.
 転写の際の加圧は、例えば、ニップロールや、プレス機によるものなどが挙げられるがこれらに限定されるものではない。前記積層体に加圧する圧力は1kPa~50MPaが好ましい。圧力が1kPa未満であると、基板と転写フィルムの間で気泡をかみ込むなどして転写欠点が生じやすい。圧力が50MPaを超えると、型フィルムの凹凸形状が崩れたり、基板が割れたりする場合がある。 Examples of the pressure applied during transfer include, but are not limited to, nip rolls and press machines. The pressure applied to the laminate is preferably 1 kPa to 50 MPa. If the pressure is less than 1 kPa, transfer defects are likely to occur due to the inclusion of bubbles between the substrate and the transfer film. If the pressure exceeds 50 MPa, the concavo-convex shape of the mold film may be broken or the substrate may be cracked.
 また、加圧する際には、前記積層体の支持体フィルムと加圧プレートや加圧ロール等との間に緩衝材を用いることもできる。緩衝材を使用することによって空気等を噛み込むことなく精度良く転写層を転写できる。緩衝材としては、フッ素ゴム、シリコンゴム、エチレンプロピレンゴム、イソブチレンイソプレンゴム、アクリロニトリルブタジエンゴムなどが使用できる。また、基板に転写層を十分に密着させるために、加圧とともに加熱することもできる。 Further, when pressurizing, a buffer material can be used between the support film of the laminate and a pressure plate, a pressure roll, or the like. By using the cushioning material, the transfer layer can be transferred with high accuracy without entraining air or the like. As the buffer material, fluorine rubber, silicon rubber, ethylene propylene rubber, isobutylene isoprene rubber, acrylonitrile butadiene rubber, or the like can be used. In addition, in order to sufficiently adhere the transfer layer to the substrate, heating can be performed together with pressurization.
 転写法を用いて、表面に凹凸形状を有する架橋転写層が基板上に積層された凹凸構造付基板を得る方法としては、(1)転写フィルムに光を照射して転写層を架橋させることにより架橋転写フィルムを得た後、該架橋転写フィルムを基板に積層し、続いて支持体フィルムを剥離する方法、(2)転写フィルムを基板に積層した後、光を照射して転写層を架橋させ、続いて支持体フィルムを剥離する方法、(3)転写フィルムを基板に積層した後、支持体フィルムを剥離することにより、基板と転写層からなる積層体を得、続いて光を照射して転写層を架橋させる方法などがある。 As a method of obtaining a substrate with a concavo-convex structure in which a cross-linked transfer layer having a concavo-convex shape on the surface is obtained by using a transfer method, (1) by irradiating the transfer film with light to cross-link the transfer layer After obtaining the cross-linked transfer film, the cross-linked transfer film is laminated on the substrate, and then the support film is peeled off. (2) After the transfer film is laminated on the substrate, light is irradiated to cross-link the transfer layer. Then, a method of peeling the support film, (3) After laminating the transfer film on the substrate, peeling the support film to obtain a laminate composed of the substrate and the transfer layer, followed by irradiation with light There is a method of crosslinking the transfer layer.
 [架橋転写フィルム]
 凹凸形状を有する支持体フィルム上に転写層を形成した後、光照射することで、シロキサン組成物に含まれる光酸発生剤または光塩基発生剤を活性化させて酸または塩基を発生させて、転写層に含まれるシロキサン化合物を架橋させることができる。ここで、架橋された転写層を架橋転写層と呼ぶ。また、転写層が架橋された転写フィルムを架橋転写フィルムと呼ぶ。
[Crosslinked transfer film]
After forming a transfer layer on a support film having a concavo-convex shape, by irradiating with light, the photoacid generator or photobase generator contained in the siloxane composition is activated to generate an acid or base, The siloxane compound contained in the transfer layer can be crosslinked. Here, the crosslinked transfer layer is referred to as a crosslinked transfer layer. A transfer film in which the transfer layer is crosslinked is called a crosslinked transfer film.
 照射する光の波長は、含有する光酸発生剤または光塩基発生剤の吸収帯に適した波長範囲であるが、光酸発生剤や光塩基発生剤の残渣や吸収帯による着色防止と、シロキサンゾルのポットライフ延長の観点から、365nm以下の波長帯であることが好ましい。 The wavelength of the light to be irradiated is in a wavelength range suitable for the absorption band of the photoacid generator or photobase generator contained, but it is possible to prevent coloration due to residues or absorption bands of the photoacid generator or photobase generator, and siloxane. From the viewpoint of extending the pot life of the sol, a wavelength band of 365 nm or less is preferable.
 光照射総量は、100~5,000mJ/cmであることが好ましく、200~3,000mJ/cmであることがより好ましく、300~1,500mJ/cmであることがさらに好ましい。光照射総量が100mJ/cmよりも少ない場合、光酸発生剤または光塩基発生剤が十分に活性化されず、架橋反応が十分に進行できない場合がある。一方、光照射総量が5,000mJ/cmよりも多い場合、照射に時間がかかったり、支持体フィルムが劣化したりする場合がある。 The total amount of light irradiation is preferably 100 to 5,000 mJ / cm 2 , more preferably 200 to 3,000 mJ / cm 2 , and still more preferably 300 to 1,500 mJ / cm 2 . If the total amount of light irradiation is less than 100 mJ / cm 2 , the photoacid generator or photobase generator may not be sufficiently activated, and the crosslinking reaction may not proceed sufficiently. On the other hand, when the total amount of light irradiation is more than 5,000 mJ / cm 2 , irradiation may take time or the support film may be deteriorated.
 [FT-IRでの評価]
 本発明の架橋転写フィルムは、シロキサン組成物を含む架橋転写層が凹凸形状を有する支持体フィルムに積層された架橋転写フィルムであって、該架橋転写層のFT-IRスペクトルから得られるP1/P2の値が0.12以上であることを特徴とする。図3に示されるような架橋転写フィルムのFT-IRスペクトルにおいては、960cm-1~1,250cm-1にシロキサン結合Si-O-Siの伸縮振動に帰属されるピークが観察される。このピークの両端である960cm-1付近の極小値14と1,250cm-1付近の極小値15とを結ぶ線分をベースラインとして、960cm-1から1,020cm-1の間のピーク面積をP1、同様に960cm-1から1,200cm-1の間のピーク面積をP2とする。シロキサンは、非晶質物質であるため、Si-O-Siの結合角にはバラツキがある。そのため、FT-IRスペクトルは960~1,250cm-1付近にさまざまな結合角に対応したピークが重畳してブロードな波形として観察される。重畳したピークにおいて、960cm-1に近い低波数の位置は、架橋密度が高く、結晶性に近いシロキサンに帰属される。したがって、P1/P2の値は、全シロキサン結合中における架橋密度の高いものの割合を示す。
[Evaluation with FT-IR]
The crosslinked transfer film of the present invention is a crosslinked transfer film in which a crosslinked transfer layer containing a siloxane composition is laminated on a support film having a concavo-convex shape, and P1 / P2 obtained from an FT-IR spectrum of the crosslinked transfer layer. The value of is 0.12 or more. In FT-IR spectrum of the crosslinked transfer film as shown in FIG. 3, a peak attributed to the stretching vibration of the siloxane bond Si-O-Si is observed 960cm -1 ~ 1,250cm -1. The line segment connecting the minima 14 and 2090 cm @ -1 minimum value 15 in the vicinity of the vicinity of 960 cm -1 which is the opposite ends of the peak as a baseline, the peak area between 1,020Cm -1 from 960 cm -1 Similarly, let P1 be a peak area between 960 cm −1 and 1,200 cm −1 . Since siloxane is an amorphous substance, the bond angle of Si—O—Si varies. Therefore, the FT-IR spectrum is observed as a broad waveform in which peaks corresponding to various coupling angles are superimposed in the vicinity of 960 to 1,250 cm −1 . In the superimposed peak, the position of a low wave number close to 960 cm −1 is attributed to siloxane having a high crosslinking density and close to crystallinity. Therefore, the value of P1 / P2 shows the ratio of the thing with a high crosslinking density in all the siloxane bonds.
 本発明の架橋転写フィルムは、P1/P2の値が0.12以上であることが好ましい。P1/P2の値が0.12未満である場合は、シロキサン結合に占める架橋密度の高いものの割合が低いために、該転写層を転写して得られる凹凸構造を有する基板を高温で処理した際に、熱によって凹凸構造が崩れてしまう。 The cross-linked transfer film of the present invention preferably has a P1 / P2 value of 0.12 or more. When the value of P1 / P2 is less than 0.12, the ratio of the one having a high crosslinking density in the siloxane bond is low. Therefore, when the substrate having the concavo-convex structure obtained by transferring the transfer layer is processed at a high temperature In addition, the uneven structure is broken by heat.
 P1、P2を算出するFT-IRスペクトルは、例えば、日本分光株式会社製FTIRフーリエ変換赤外分光光度計FT/IR-6100typeAを用い、Ge製プリズムを搭載したATR反射装置を用いて、波数範囲400~4,000cm-1、分解能4cm-1、積算回数128回の条件で測定することができる。測定で得られたスペクトルを、測定ソフトウェアにある解析用プログラムを用いて解析する。まず、得られたスペクトルをATR補正した後、1次微分してシロキサン結合のピークである960cm-1付近、1,250cm-1付近の極小値をとる波数を読み取る(図3中14、15)。読み取った波数をベース計算範囲として、ベースラインより下を無視させた形でP1、P2それぞれの面積を算出し、さらにP1/P2を算出する。このとき、P1の面積計算範囲は960~1,020cm-1、P2の計算範囲は960~1,200cm-1とする。 The FT-IR spectrum for calculating P1 and P2 is, for example, FTIR Fourier Transform Infrared Spectrophotometer FT / IR-6100typeA manufactured by JASCO Corporation, and using an ATR reflector equipped with a Ge prism. Measurement can be performed under the conditions of 400 to 4,000 cm −1 , resolution of 4 cm −1 , and number of integrations of 128 times. The spectrum obtained by the measurement is analyzed using an analysis program in the measurement software. First, after the spectrum obtained with ATR correction, near 960 cm -1 is a peak of the siloxane bonds in the primary differential, read the wave number takes a minimum value in the vicinity of 2090 cm @ -1 (in FIG. 3, 15) . Using the read wave number as the base calculation range, the areas of P1 and P2 are calculated in a manner in which the area below the base line is ignored, and further P1 / P2 is calculated. At this time, the area calculation range of P1 is 960 to 1,020 cm −1 , and the calculation range of P2 is 960 to 1,200 cm −1 .
 一方、転写フィルムを基板に積層した後、光を照射する場合は、本発明の転写フィルムの転写層側の面を基板に接触させて加圧および/または加熱し、基板/転写層/支持体フィルムの積層体を得、該積層体に光照射することで転写層に含まれる光酸発生剤から酸を、または光塩基発生剤から塩基を発生させることにより、転写層の架橋を行う。光照射を行う際、基板が光を透過するものであれば、基板および支持体フィルムのいずれの側から光を照射してもよいし、両面から光を照射してもよい。本態様によれば、支持体フィルムの凹凸形状内で光酸発生剤または光塩基発生剤による転写層の架橋を行うことができるため、凹凸形状の保持に有利である。また、基板と転写層の間でも脱水反応が促進されやすいため、基板と転写層の密着力向上にも有利である。また、架橋する前の状態で保存できるため、転写フィルムのライフ延長にも効果が期待できる。基板/転写層/支持体フィルムの積層体に照射する光の総量は200~10,000mJ/cmが好ましく、300~8,000mJ/cmがより好ましく、500~5,000mJ/cmがさらに好ましい。照射総量が200mJ/cmより少ない場合は、光酸発生剤または光塩基発生剤を活性化させるにはエネルギーが不十分で十分に活性化できない場合がある。照射総量が10,000mJ/cmより多い場合は、活性化に長い時間が必要となる場合がある。 On the other hand, when light is irradiated after laminating the transfer film on the substrate, the surface on the transfer layer side of the transfer film of the present invention is brought into contact with the substrate to pressurize and / or heat, and substrate / transfer layer / support A laminate of the film is obtained, and the laminate is crosslinked by generating an acid from a photoacid generator contained in the transfer layer or a base from the photobase generator by irradiating the laminate with light. When performing light irradiation, as long as the substrate transmits light, light may be irradiated from either side of the substrate or the support film, or light may be irradiated from both sides. According to this aspect, since the transfer layer can be crosslinked with the photoacid generator or the photobase generator within the concavo-convex shape of the support film, it is advantageous for maintaining the concavo-convex shape. In addition, since the dehydration reaction is easily promoted between the substrate and the transfer layer, it is advantageous for improving the adhesion between the substrate and the transfer layer. Moreover, since it can preserve | save in the state before bridge | crosslinking, an effect can be anticipated also in the life extension of a transfer film. The total amount of light irradiated on the laminated body of the substrate / transfer layer / support film preferably 200 ~ 10,000mJ / cm 2, more preferably 300 ~ 8,000mJ / cm 2, is 500 ~ 5,000 mJ / cm 2 Further preferred. If the total irradiation amount is less than 200 mJ / cm 2 , the energy may be insufficient to activate the photoacid generator or photobase generator, and the activation may not be sufficient. When the total irradiation amount is greater than 10,000 mJ / cm 2 , a long time may be required for activation.
 また、転写フィルムを基板に積層した積層体から支持体フィルムを剥離した後、光を照射する場合は、本発明の転写フィルムの転写層側の面を基板に接触させて加圧および/または加熱し、基板/転写層/支持体フィルムの積層体を得、該積層体から支持体フィルムを剥離して得られる基板/転写層の積層体に対して光を照射することにより、転写層を架橋する。光照射を行う際、基板が光を透過するものであれば、基板および転写層のいずれの側から光照射してもよいし、両面から光を照射してもよい。本態様によれば、転写層に直接光を照射することが可能であるため、支持体フィルムによるエネルギーロスを低減することができ、より効率良く酸または塩基を発生することが可能になる。また、架橋する前の状態で保存できるため、転写フィルムのライフ延長にも効果が期待できる。基板/転写層の積層体に照射する光の総量は、100~10,000mJ/cmが好ましく、200~8,000mJ/cmがより好ましく、300~5,000mJ/cmがさらに好ましい。照射総量が100mJ/cmより少ない場合は、光酸発生剤または光塩基発生剤を活性化させるにはエネルギーが不十分で十分に活性化できない場合がある。照射総量が10,000mJ/cmより多い場合は、活性化に長時間必要となる場合がある。 In addition, when the support film is peeled off from the laminate in which the transfer film is laminated on the substrate and then irradiated with light, the surface on the transfer layer side of the transfer film of the present invention is brought into contact with the substrate and pressurized and / or heated. Then, a laminate of the substrate / transfer layer / support film is obtained, and the transfer layer is crosslinked by irradiating light to the substrate / transfer layer laminate obtained by peeling the support film from the laminate. To do. When performing light irradiation, as long as the substrate transmits light, light may be irradiated from either side of the substrate or the transfer layer, or light may be irradiated from both sides. According to this aspect, since the transfer layer can be directly irradiated with light, energy loss due to the support film can be reduced, and acid or base can be generated more efficiently. Moreover, since it can preserve | save in the state before bridge | crosslinking, an effect can be anticipated also in the life extension of a transfer film. The total amount of light irradiated on the laminated body of the substrate / transfer layer is preferably 100 ~ 10,000 / cm 2, more preferably 200 ~ 8,000 mJ / cm 2, more preferably 300 ~ 5,000mJ / cm 2. When the total irradiation amount is less than 100 mJ / cm 2 , the energy may be insufficient to activate the photoacid generator or photobase generator, and the activation may not be sufficient. When the total irradiation amount is more than 10,000 mJ / cm 2 , it may be required for a long time for activation.
 [凹凸構造付基板の熱処理]
 シロキサン組成物を含み、表面に凹凸形状を有する架橋転写層が基板上に積層された凹凸構造付基板は、高温で熱処理することで、より高い耐熱性を得ることが可能になる。熱処理は、基板/転写層/支持体フィルムの積層体に対して行っても、支持体フィルムを剥離した基板/転写層の2層積層体に対して行ってもよい。基板/転写層の2層積層体を得るために、熱処理前に支持体フィルムを前もって剥離する場合は、転写工程における加圧時の温度以下の温度で剥離することが好ましい。剥離する際の温度が、加圧時の温度より高い場合、転写層の形状が崩れたり、支持体フィルムからの離型性が低下したりする場合がある。
[Heat treatment of substrate with uneven structure]
A substrate with a concavo-convex structure in which a cross-linked transfer layer having a concavo-convex shape on the surface and containing a siloxane composition is laminated on the substrate can be obtained with higher heat resistance by heat treatment at a high temperature. The heat treatment may be performed on the substrate / transfer layer / support film laminate or the substrate / transfer layer two-layer laminate from which the support film has been peeled off. In order to obtain a two-layer laminate of substrate / transfer layer, when the support film is peeled in advance before the heat treatment, it is preferably peeled at a temperature equal to or lower than the temperature during pressurization in the transfer step. When the temperature at the time of peeling is higher than the temperature at the time of pressurization, the shape of the transfer layer may collapse, or the releasability from the support film may be reduced.
 熱処理温度は凹凸形状を有する架橋転写層に必要とされる耐熱性、耐薬品性および信頼性に応じて適宜設定することができる。たとえば、凹凸構造付基板をLED製造で使用するパターン付きサファイア基板に加工する場合、エピタキシャル成長工程において約1,100℃の高温になるため、熱処理温度は、1,000~1,500℃が好ましく、1,100~1,400℃がより好ましい。熱処理温度が1,000℃未満の場合、形成した凹凸形状が、エピタキシャル成長工程中で保持できずに崩れてしまう場合がある。熱処理温度が1,500℃を超える場合は、熱処理中にクラックが発生したり、基板との熱膨張の差でカールしたりする場合がある。 The heat treatment temperature can be appropriately set according to the heat resistance, chemical resistance and reliability required for the cross-linked transfer layer having an uneven shape. For example, when a substrate with a concavo-convex structure is processed into a patterned sapphire substrate used in LED production, the temperature of the heat treatment is preferably 1,000 to 1,500 ° C. because the temperature is about 1,100 ° C. in the epitaxial growth process. 1,100 to 1,400 ° C. is more preferable. When the heat treatment temperature is less than 1,000 ° C., the formed uneven shape may not be maintained during the epitaxial growth process and may collapse. When the heat treatment temperature exceeds 1,500 ° C., cracks may occur during the heat treatment, or curl may occur due to a difference in thermal expansion from the substrate.
 一方、凹凸構造付基板の凹凸構造を、エッチングレートの低い無機材料または結晶材料をエッチングするためのマスクとして使用する場合、エッチング対象の材料を基板として用いるが、凹凸構造は基板よりもエッチングレートを低くする必要がある。そのためには、転写層中の有機成分を焼散させて緻密な二酸化ケイ素膜にすることが有効であるため、熱処理温度は700~1,500℃であることが好ましい。熱処理温度が700℃未満の場合、転写層中に有機物が残留したり、十分に緻密化されなかったりして、エッチングレートが低くならない場合がある。熱処理温度が1,500℃より高い温度では転写層にクラックが発生する場合がある。 On the other hand, when the concavo-convex structure of the substrate with a concavo-convex structure is used as a mask for etching an inorganic material or a crystal material having a low etching rate, the material to be etched is used as the substrate, but the concavo-convex structure has an etching rate higher than that of the substrate. Need to be low. For this purpose, it is effective to disperse the organic components in the transfer layer to form a dense silicon dioxide film. Therefore, the heat treatment temperature is preferably 700 to 1,500 ° C. When the heat treatment temperature is lower than 700 ° C., organic substances may remain in the transfer layer or may not be sufficiently densified, and the etching rate may not be lowered. If the heat treatment temperature is higher than 1,500 ° C., cracks may occur in the transfer layer.
 さらに、凹凸構造付基板を太陽電池等の表面で光の反射や透過を制御するために使用する場合は、数百度の耐熱性と高い光透過性、屈折率の調整が必要になる。この場合の熱処理温度は、150~700℃であることが好ましく、200~400℃であることがより好ましい。熱処理温度が150℃よりも低い場合は、シロキサンの架橋反応が不十分で耐熱性が低下したり、形状が崩れやすかったりする場合がある。一方で熱処理温度が700℃を超える場合は、シロキサンのケイ素原子に直接結合する有機官能基が失われ、屈折率の調整ができなくなる場合がある。なお、熱処理に際しては、急激な温度変化による基板や転写層のクラックや剥がれを防止するために、高温熱処理温度よりも低い温度でプレベークしたり、プラズマ照射したりすることで、予備的に架橋を進行させてもよい。 Furthermore, when a substrate with a concavo-convex structure is used to control the reflection and transmission of light on the surface of a solar cell or the like, it is necessary to adjust the heat resistance of several hundred degrees, high light transmission, and refractive index. In this case, the heat treatment temperature is preferably 150 to 700 ° C., more preferably 200 to 400 ° C. When the heat treatment temperature is lower than 150 ° C., the crosslinking reaction of siloxane is insufficient and the heat resistance may be lowered, or the shape may be easily broken. On the other hand, when the heat treatment temperature exceeds 700 ° C., the organic functional group directly bonded to the silicon atom of siloxane is lost, and the refractive index may not be adjusted. During heat treatment, in order to prevent cracking and peeling of the substrate and transfer layer due to a rapid temperature change, pre-baking is performed at a temperature lower than the high temperature heat treatment temperature or plasma irradiation is performed to preliminarily crosslink. You may make it progress.
 [凹凸構造付基板の用途例]
 このようにして得られた凹凸構造付基板は、耐熱性の高い凹凸形状を持つため、高温環境での使用を想定した反射防止板や、光散乱板として使用することができる。また、転写層を十分に架橋させた場合は、エッチングレジスト膜として使用できるため、LEDの光取り出し効率向上に寄与するパターン付きサファイア基板の製造に使用することもできる。さらにはLED等の最表面に用いて光取り出し効率を向上させたり、太陽電池パネル等の部材に用いて発電効率を向上させたりすることが可能である。
[Application example of substrate with uneven structure]
Since the substrate with a concavo-convex structure thus obtained has a concavo-convex shape with high heat resistance, it can be used as an antireflection plate or a light scattering plate assumed to be used in a high temperature environment. Further, when the transfer layer is sufficiently cross-linked, it can be used as an etching resist film, so that it can also be used for manufacturing a patterned sapphire substrate that contributes to improving the light extraction efficiency of the LED. Furthermore, it can be used for the outermost surface of an LED or the like to improve the light extraction efficiency, or can be used for a member such as a solar cell panel to improve the power generation efficiency.
 本発明を実施例に基づいて具体的に説明するが、本発明は実施例のみに限定されるものではない。 The present invention will be specifically described based on examples, but the present invention is not limited to the examples.
 (1)凹凸構造の形状の評価
 (1-1)基板の準備
 基板の表面に付着したゴミをブロワーで除去した後、株式会社魁半導体製卓上真空プラズマ装置を用いて、15000VACで5分間プラズマ照射した。その後、アズワン株式会社製3周波超音波洗浄機型番VS-100IIIを使用して、純水に浸漬した基板を45kHzで10分間、2回洗浄した。洗浄後、基板に付着している純水はブロワーで除去した。
(1) Evaluation of the shape of the concavo-convex structure (1-1) Preparation of substrate After removing dust adhering to the surface of the substrate with a blower, plasma irradiation was performed at 15000 VAC for 5 minutes using a tabletop vacuum plasma device manufactured by Sakai Semiconductor Co., Ltd. did. Thereafter, the substrate immersed in pure water was washed twice at 45 kHz for 10 minutes using a three-frequency ultrasonic cleaner No. VS-100III manufactured by ASONE CORPORATION. After cleaning, pure water adhering to the substrate was removed with a blower.
 (1-2)転写方法
 20mm×20mmサイズの転写フィルムまたは架橋転写フィルムの転写層表面を、(1-1)で準備した被転写に接触させ、プレスした後、支持体フィルムを剥離して凹凸構造付基板を得た。
(1-2) Transfer Method The transfer layer surface of a 20 mm × 20 mm size transfer film or a cross-linked transfer film is brought into contact with the transfer target prepared in (1-1), pressed, and then the support film is peeled off to form irregularities. A structured substrate was obtained.
 (1-3)熱処理方法
 上記のようにして得られた凹凸構造付基板を、炉内温度50℃に設定したヤマト科学株式会社マッフル炉FP410内に入れ、10℃/分の速度で所定の温度まで昇温させた後、1時間所定温度で熱処理した。処理後、炉内が25℃になるまで放冷した。
(1-3) Heat treatment method The substrate with a concavo-convex structure obtained as described above is placed in a Yamato Scientific Co., Ltd. muffle furnace FP410 set at a furnace temperature of 50 ° C., at a predetermined temperature of 10 ° C./min. After the temperature was raised to 1, heat treatment was performed at a predetermined temperature for 1 hour. After the treatment, the furnace was allowed to cool to 25 ° C.
 (1-4)形状の観察および評価方法
 基板上に形成された凹凸構造の形状は、凹凸幅サイズと凹凸高さで評価した。ここで、凹凸幅サイズとは、図2に示すように、2つの隣接する極小値間の水平距離10である。また、凹凸高さとは、図2に示すように、凹凸形状の隣接する極大位置と極小位置の間の垂直距離11である。頂部の両隣の極小位置のなす高さがそれぞれ異なる場合は、より高い側の極小位置と頂部とがなす垂直距離を凹凸高さとする。
(1-4) Shape Observation and Evaluation Method The shape of the concavo-convex structure formed on the substrate was evaluated by the concavo-convex width size and the concavo-convex height. Here, the uneven width size is a horizontal distance 10 between two adjacent local minimum values as shown in FIG. The uneven height is a vertical distance 11 between the adjacent maximum and minimum positions of the uneven shape as shown in FIG. When the heights between the minimum positions on both sides of the top are different from each other, the vertical distance between the minimum position on the higher side and the top is defined as the uneven height.
 凹凸幅サイズおよび凹凸高さのいずれも1μm以上であるときは、キーエンス株式会社製レーザー顕微鏡VK9700で測定した。測定倍率は、凹凸幅サイズおよび凹凸高さの小さい方が1μm以上20μm未満のときは1,500倍、20μm以上のときは500倍とした。 When both the uneven width size and the uneven height were 1 μm or more, they were measured with a laser microscope VK9700 manufactured by Keyence Corporation. The measurement magnification was 1,500 times when the uneven width size and uneven height were smaller than 1 μm and less than 20 μm, and 500 times when 20 μm or more.
 一方、凹凸幅サイズおよび凹凸高さのいずれかが1μm未満のときは、ブルカーエイエックスエス株式会社製原子間力顕微鏡型番Dimension ICONのタッピングモードで観察および測定した。観察視野は、複数の凹凸形状を観察視野に入れるため凹凸幅サイズで規定した。すなわち、凹凸幅サイズが0.02μm未満のときは測定視野を0.1μm×0.1μm、0.02μm以上0.1μm未満のときは0.5μm×0.5μm、0.1μm以上0.2μm未満のときは2μm×2μm、0.2μm以上のときは5μm×5μmとした。測定にはブルカーエイエックスエス株式会社のソフトウェアNanoScope Analysis Ver.1.40を使用した。測定点は任意に5点を選択し、その5点の計測値を平均した値をそれぞれ凹凸高さおよび凹凸幅とした。 On the other hand, when any of the uneven width size and the uneven height was less than 1 μm, observation and measurement were performed in a tapping mode of an atomic force microscope model number ICON ICON manufactured by Bruker AXS Co., Ltd. The observation visual field was defined by the concave / convex width size in order to put a plurality of concave / convex shapes into the observation visual field. That is, when the uneven width size is less than 0.02 μm, the measurement visual field is 0.1 μm × 0.1 μm, and when it is 0.02 μm or more and less than 0.1 μm, 0.5 μm × 0.5 μm, 0.1 μm or more and 0.2 μm When it is less than 2 μm × 2 μm, when it is 0.2 μm or more, it is 5 μm × 5 μm. For the measurement, the software NanoScope Analysis Ver. 1.40 was used. As the measurement points, five points were arbitrarily selected, and values obtained by averaging the measurement values at the five points were defined as the uneven height and the uneven width, respectively.
 熱処理後の形状評価は、熱処理前の凹凸高さを100%としたときの熱処理前後の凹凸高さを高さ保持率(すなわち、(熱処理後の凹凸高さ/熱処理前の凹凸高さ)×100(%))、熱処理前の凹凸幅を100%としたときの熱処理前後の凹凸幅を幅保持率(すなわち、(熱処理後の凹凸幅/熱処理前の凹凸幅)×100(%))として形状保持性を評価した。熱処理後の形状評価の基準は以下のように定め、表記した。
4:高さ保持率および幅保持率ともに90%以上100%以下
3:高さ保持率および幅保持率の少なくとも一方が50%以上90%未満
2:高さ保持率および幅保持率がいずれも50%未満であり、かつ少なくとも一方が10%以上50%未満
1:高さ保持率および幅保持率がいずれも10%未満。
The shape evaluation after the heat treatment is the height retention ratio of the unevenness height before and after the heat treatment when the unevenness height before the heat treatment is 100% (that is, (the unevenness height after the heat treatment / the unevenness height before the heat treatment) × 100 (%)), the unevenness width before and after heat treatment when the unevenness width before heat treatment is 100% is defined as the width retention ratio (that is, (unevenness width after heat treatment / unevenness width before heat treatment) × 100 (%)) The shape retention was evaluated. The criteria for shape evaluation after the heat treatment were defined and described as follows.
4: Both the height retention ratio and the width retention ratio are 90% or more and 100% or less 3: At least one of the height retention ratio and the width retention ratio is 50% or more and less than 90% 2: The height retention ratio and the width retention ratio are both Less than 50%, and at least one is 10% or more and less than 50% 1: Both the height retention ratio and the width retention ratio are less than 10%.
 (2)転写フィルムの残膜厚みムラの評価
 厚み方向が観察できるように転写フィルムをミクロトームで切削し、断面を走査型電子顕微鏡を用いて観察することにより残膜厚みを測定した。測定倍率は、転写層厚みが0.5μm未満の場合は100,000倍、0.5μm以上1.0μm未満の場合は50,000倍、1.0μm以上2.0μm未満の場合は20,000倍、2.0μm以上10μm未満の場合は5,000倍、10μm以上20μm未満の場合は2,500倍、20μm以上の場合は500倍とした。測定点数は任意の10点とし、前記[光酸発生剤と光塩基発生剤]の欄に記載の方法で残膜厚みムラを算出し、その値を以下の評価基準に従って評価した。
3:厚みムラ15%未満
2:厚みムラ15%以上25%未満
1:厚みムラ25%以上。
(2) Evaluation of uneven thickness of transfer film remaining film The transfer film was cut with a microtome so that the thickness direction could be observed, and the remaining film thickness was measured by observing the cross section with a scanning electron microscope. The measurement magnification is 100,000 times when the transfer layer thickness is less than 0.5 μm, 50,000 times when the transfer layer thickness is 0.5 μm or more and less than 1.0 μm, and 20,000 when 1.0 μm or more and less than 2.0 μm. In the case of 2.0 times or more and less than 10 μm, 5,000 times, in the case of 10 μm or more and less than 20 μm, 2,500 times, and in the case of 20 μm or more, 500 times. The number of measurement points was arbitrary 10, and the residual film thickness unevenness was calculated by the method described in the column of [Photoacid generator and photobase generator], and the value was evaluated according to the following evaluation criteria.
3: Less than 15% thickness variation 2: More than 15% thickness variation and less than 25% 1: More than 25% thickness variation.
 (3)FT-IRでの架橋評価
 架橋転写フィルム、または、凹凸構造付基板上の転写層のFT-IRスペクトルを、日本分光株式会社製FT-IRフーリエ変換赤外分光光度計FT/IR-6100typeAを用いて測定した。測定は、日本分光株式会社のソフトウェアSpectra Manager Version2の測定プログラムを用い、Ge製プリズムを搭載したATR PRO650Gを用いて、波数範囲400~4,000cm-1、分解能4cm-1、積算回数128回の条件で行った。測定で得られたスペクトルから、明細書中に記載の方法で、P1およびP2の面積を求め、P1/P2を算出した。
(3) Crosslinking evaluation by FT-IR The FT-IR spectrum of a cross-linked transfer film or a transfer layer on a substrate with a concavo-convex structure was measured using a FT-IR Fourier transform infrared spectrophotometer FT / IR- manufactured by JASCO Corporation. Measurement was performed using 6100 type A. Measurement, using the measurement program software Spectra Manager Version2 of JASCO Corporation, using ATR PRO650G equipped with Ge made prism, wave number range 400 ~ 4,000 cm -1, resolution 4 cm -1, 128 cumulative of Performed under conditions. From the spectrum obtained by the measurement, the areas of P1 and P2 were determined by the method described in the specification, and P1 / P2 was calculated.
 [実施例1]
 環状ポリオレフィン系樹脂である日本ゼオン株式会社製“ゼオノアフィルム”(登録商標)型番ZF14の厚さ100μmのフィルムの片面に熱インプリントで凹凸形状を賦形したものを支持体フィルムに用いた。熱インプリントには、ピッチ5μm、高さ2.5μmのプリズム形状のニッケル電鋳金型を使用した。金型温度180℃、圧力2.0MPaの条件で、金型を支持体フィルムに30秒間押圧して保持した後、100℃まで冷却して圧力を開放し、支持体フィルムを離型した。装置はミカドテクノス株式会社製2ton真空ヒータープレス型番MKP-150TV-WHを用いた。
[Example 1]
A support polyolefin film having a concavo-convex shape formed by thermal imprinting on one side of a 100 μm-thick “Zeonor Film” (registered trademark) model number ZF14 made by Nippon Zeon Co., Ltd., which is a cyclic polyolefin resin, was used. For the thermal imprinting, a prism-shaped nickel electroforming mold having a pitch of 5 μm and a height of 2.5 μm was used. After holding the mold pressed against the support film for 30 seconds under the conditions of a mold temperature of 180 ° C. and a pressure of 2.0 MPa, the mold was cooled to 100 ° C. to release the pressure, and the support film was released. The apparatus used was a 2-ton vacuum heater press model number MKP-150TV-WH manufactured by Mikado Technos.
 小西化学工業株式会社製ポリメチルシルセスキオキサンSR-13をプロピレングリコールモノプロピルエーテル(以下PGPEと記す)に、濃度が20質量%となるように溶解させたものに、サンアプロ株式会社製光酸発生剤CPI-200K(スルホニウム系光酸発生剤)を、固形分がポリメチルシルセスキオキサン比0.5質量%となるように添加し、シロキサンゾルを調製した。得られたシロキサンゾルを、ミカサ株式会社製スピンコーター型番1H-DX2を用いて支持体フィルムの凹凸形状が賦形された表面に塗布し、90℃で2分乾燥して転写フィルムを得た。得られた転写フィルムの転写層表面からUVを500mJ/cm照射して転写層の光酸発生剤を活性化してシロキサンの架橋反応を促進させて架橋転写フィルムを得た。UV照射は、ウシオ電機株式会社露光装置用光源ユニットマルチライトML-251A/Bを用いた。 Photo-acid produced by San-Apro Co., Ltd. was prepared by dissolving polymethylsilsesquioxane SR-13 manufactured by Konishi Chemical Industries, Ltd. in propylene glycol monopropyl ether (hereinafter referred to as PGPE) to a concentration of 20% by mass. A siloxane sol was prepared by adding a generator CPI-200K (sulfonium photoacid generator) so that the solid content was 0.5 mass% relative to the polymethylsilsesquioxane ratio. The obtained siloxane sol was applied to the surface of the support film with the irregular shape formed using a spin coater model 1H-DX2 manufactured by Mikasa Co., Ltd., and dried at 90 ° C. for 2 minutes to obtain a transfer film. The transfer layer surface of the obtained transfer film was irradiated with UV of 500 mJ / cm 2 to activate the photoacid generator of the transfer layer to promote the crosslinking reaction of siloxane, thereby obtaining a crosslinked transfer film. For UV irradiation, a light source unit Multilight ML-251A / B for USHIO INC. Exposure apparatus was used.
 基板として準備したコーニングジャパン株式会社製無アルカリガラスEAGLE2000(30mm×30mm、厚さ0.63mm)に、架橋転写フィルムを架橋転写層表面が基板に接触するように積層した。さらに架橋転写フィルムの支持体フィルム面に緩衝材として金陽社製型番F200を積層し、ガラス基板/架橋転写フィルム/緩衝材の構成で、プレス温度20℃、プレス圧力1.38MPaで10秒間プレスした。装置は、ミカドテクノス株式会社製2ton真空ヒータープレス型番MKP-150TV-WHを用いた。その後、室温で支持体としてのフィルムを剥離して、ガラス基板/架橋転写層からなる凹凸構造付基板を得た。 A cross-linked transfer film was laminated on non-alkali glass EAGLE 2000 (30 mm × 30 mm, thickness 0.63 mm) manufactured by Corning Japan Co., Ltd. prepared as a substrate so that the surface of the cross-linked transfer layer was in contact with the substrate. Further, a model number F200 manufactured by Kinyo Co., Ltd. was laminated as a buffer material on the support film surface of the crosslinked transfer film, and pressed for 10 seconds at a press temperature of 20 ° C. and a press pressure of 1.38 MPa in the configuration of glass substrate / crosslinked transfer film / buffer material. The apparatus used was a 2-ton vacuum heater press model number MKP-150TV-WH manufactured by Mikado Technos. Then, the film as a support was peeled off at room temperature to obtain a substrate with a concavo-convex structure comprising a glass substrate / crosslinked transfer layer.
 [実施例2]
 光酸発生剤CPI-200Kの固形分含有量を0.2質量%とした以外は実施例1と同様に架橋転写フィルムおよび凹凸構造付基板を得た。
[Example 2]
A crosslinked transfer film and a substrate with a concavo-convex structure were obtained in the same manner as in Example 1 except that the solid content of the photoacid generator CPI-200K was 0.2% by mass.
 [実施例3]
 光酸発生剤CPI-200Kの固形分含有量を5.0質量%とした以外は実施例1と同様に架橋転写フィルムおよび凹凸構造付基板を得た。
[Example 3]
A crosslinked transfer film and a substrate with a concavo-convex structure were obtained in the same manner as in Example 1 except that the solid content of the photoacid generator CPI-200K was 5.0 mass%.
 [実施例4]
 光酸発生剤CPI-200Kの固形分含有量を0.3質量%とした以外は実施例1と同様に架橋転写フィルムおよび凹凸構造付基板を得た。
[Example 4]
A crosslinked transfer film and a substrate with a concavo-convex structure were obtained in the same manner as in Example 1 except that the solid content of the photoacid generator CPI-200K was 0.3% by mass.
 [実施例5]
 光酸発生剤CPI-200Kの固形分含有量を2.5質量%とした以外は実施例1と同様にして架橋転写フィルムおよび凹凸構造付基板を得た。
[Example 5]
A crosslinked transfer film and a substrate with a concavo-convex structure were obtained in the same manner as in Example 1 except that the solid content of the photoacid generator CPI-200K was 2.5% by mass.
 [実施例6]
 光酸発生剤CPI-200Kの固形分含有量を0.4質量%とした以外は実施例1と同様にして架橋転写フィルムおよび凹凸構造付基板を得た。
[Example 6]
A crosslinked transfer film and a substrate with an uneven structure were obtained in the same manner as in Example 1 except that the solid content of the photoacid generator CPI-200K was 0.4 mass%.
 [実施例7]
 光酸発生剤CPI-200Kの固形分含有量を0.9質量%とした以外は実施例1と同様にして架橋転写フィルムを得た。続いて、基板として準備したコーニングジャパン株式会社製無アルカリガラスEAGLE2000(30mm×30mm、厚さ0.63mm)に、架橋転写フィルムを架橋転写層表面が基板に接触するように積層し、ガラス基板/架橋転写フィルムの構成でプレスした。プレスは、大成ラミネーター株式会社製VA-420H型ラミネーターを用いて、ロール推力0.2MPa、搬送速度3m/min、プレス温度20℃でラミネートした。ラミネート後、支持体フィルムを剥離してガラス基板/架橋転写層からなる凹凸構造付基板を得た。 
[Example 7]
A crosslinked transfer film was obtained in the same manner as in Example 1 except that the solid content of the photoacid generator CPI-200K was 0.9% by mass. Subsequently, the non-alkali glass EAGLE2000 (30 mm × 30 mm, thickness 0.63 mm) manufactured by Corning Japan Co., Ltd. prepared as a substrate was laminated so that the surface of the cross-linked transfer layer was in contact with the substrate. Pressed with a cross-linked transfer film configuration. The press was laminated using a VA-420H type laminator manufactured by Taisei Laminator Co., Ltd. at a roll thrust of 0.2 MPa, a conveyance speed of 3 m / min, and a press temperature of 20 ° C. After lamination, the support film was peeled off to obtain a substrate with a concavo-convex structure comprising a glass substrate / crosslinked transfer layer.
 [実施例8]
 UV照射量を100mJ/cmとしたこと以外は実施例1と同様にして架橋転写フィルムを得た。その後実施例7と同様にして凹凸構造付基板を得た。
[Example 8]
A crosslinked transfer film was obtained in the same manner as in Example 1 except that the UV irradiation amount was 100 mJ / cm 2 . Thereafter, a substrate with an uneven structure was obtained in the same manner as in Example 7.
 [実施例9]
 UV照射量を200mJ/cmとしたこと以外は実施例1と同様にして架橋転写フィルムを得た。その後実施例7と同様にして凹凸構造付基板を得た。
[Example 9]
A crosslinked transfer film was obtained in the same manner as in Example 1 except that the UV irradiation amount was 200 mJ / cm 2 . Thereafter, a substrate with an uneven structure was obtained in the same manner as in Example 7.
 [実施例10]
 支持体フィルムをアクリル系樹脂フィルムとし、転写フィルムへのUV照射量を1,500mJ/cmとしたこと以外は実施例1と同様にして凹凸構造付基板を得た。なお、支持体フィルムは以下の方法で作製した。厚み100μmの東レ株式会社製PETフィルム“ルミラー”(登録商標)型番U34上に、東亞合成株式会社製紫外線硬化型アクリル系樹脂“アロニックス”(登録商標)UV3701を厚さ10μmで塗布した。該紫外線硬化型アクリル系樹脂層に、ピッチ5μm、高さ2.5μmのプリズム形状を有するニッケル電鋳金型を重ねたあと、PETフィルム面から1,000mJ/cmのUVを照射してアクリル系樹脂を硬化させた。その後、金型とアクリル樹脂の界面を剥離し、アクリル樹脂表面に凹凸形状が形成された支持体フィルムを得た。
[Example 10]
A substrate with a concavo-convex structure was obtained in the same manner as in Example 1 except that the support film was an acrylic resin film and the UV irradiation amount to the transfer film was 1,500 mJ / cm 2 . The support film was produced by the following method. On a PET film “Lumirror” (registered trademark) model number U34 manufactured by Toray Industries, Inc. having a thickness of 100 μm, an ultraviolet curable acrylic resin “Aronix” (registered trademark) UV3701 manufactured by Toagosei Co., Ltd. was applied in a thickness of 10 μm. After superposing a nickel electroforming mold having a prism shape with a pitch of 5 μm and a height of 2.5 μm on the ultraviolet curable acrylic resin layer, UV of 1,000 mJ / cm 2 is irradiated from the PET film surface to form an acrylic system. The resin was cured. Thereafter, the interface between the mold and the acrylic resin was peeled off to obtain a support film having a concavo-convex shape formed on the surface of the acrylic resin.
 [実施例11]
 環状ポリオレフィン系樹脂であるポリプラスチックス株式会社製“TOPAS”(登録商標)型番6013の樹脂を溶融押出法で製膜した厚さ60μmのフィルムを支持体フィルムとし、転写フィルムへのUV照射量を300mJ/cmとしたこと以外は実施例1と同様にして凹凸構造付基板を得た。
[Example 11]
A film having a thickness of 60 μm formed by melt extrusion of a resin of “TOPAS” (registered trademark) model 6013 manufactured by Polyplastics Co., Ltd., which is a cyclic polyolefin resin, is used as a support film, and the UV irradiation amount to the transfer film is determined. Except having set it as 300 mJ / cm < 2 >, it carried out similarly to Example 1, and obtained the board | substrate with an uneven structure.
 [実施例12]
 実施例1におけるUV照射を行わず、その代わりに転写フィルムを基板に積層して得られた基板/転写フィルムの積層体の支持体フィルム側からUVを1,000mJ/cm照射した以外は実施例1と同様にして凹凸構造付基板を得た。
[Example 12]
Instead of performing UV irradiation in Example 1, instead of performing UV irradiation at 1,000 mJ / cm 2 from the support film side of the substrate / transfer film laminate obtained by laminating the transfer film on the substrate instead. A substrate with an uneven structure was obtained in the same manner as in Example 1.
 [実施例13]
 実施例1におけるUV照射を行わず、その代わりに転写フィルムを基板に積層して得られた基板/転写フィルムの積層体から支持体フィルムを剥離して得た基板/転写層の積層体の転写層側からUVを750mJ/cm照射した以外は実施例1と同様にして凹凸構造付基板を得た。
[Example 13]
Transfer of the substrate / transfer layer laminate obtained by peeling the support film from the substrate / transfer film laminate obtained by laminating the transfer film on the substrate instead of UV irradiation in Example 1 A substrate with a concavo-convex structure was obtained in the same manner as in Example 1 except that UV irradiation was performed at 750 mJ / cm 2 from the layer side.
 [実施例14]
 熱インプリントに使用する金型を、一辺20μm、高さ10μmの正四角錘形状が、隣り合う四角錘と互いに頂点および辺それぞれを接して存在したピッチ20μmの形状としたこと、およびシロキサンゾルのポリメチルシルセスキオキサン濃度を40質量%としたこと以外は実施例1と同様にして凹凸構造付基板を得た。
[Example 14]
The mold used for thermal imprinting has a shape of a regular square pyramid having a side of 20 μm and a height of 10 μm, and having a pitch of 20 μm that is adjacent to each other and adjoining the apex and side of each other, and a siloxane sol A substrate with an uneven structure was obtained in the same manner as in Example 1 except that the polymethylsilsesquioxane concentration was 40% by mass.
 [実施例15]
 凹凸構造付基板の熱処理温度を600℃としたこと以外は実施例14と同様に実施した。
[Example 15]
The same procedure as in Example 14 was performed except that the heat treatment temperature of the substrate with an uneven structure was 600 ° C.
 [実施例16]
 熱インプリントに使用する金型を、一辺2μm、高さ700nmの凸型四角柱が、ピッチ4μmで格子状に配置されたものとしたこと、およびシロキサンゾルのポリメチルシルセスキオキサン濃度を15質量%としたこと以外は実施例1と同様にして凹凸構造付基板を得た。
[Example 16]
The mold used for thermal imprinting was such that convex square pillars each having a side of 2 μm and a height of 700 nm were arranged in a lattice shape with a pitch of 4 μm, and the polymethylsilsesquioxane concentration of the siloxane sol was 15 A substrate with a concavo-convex structure was obtained in the same manner as in Example 1 except that the mass% was used.
 [実施例17]
 凹凸構造付基板の熱処理温度を600℃としたこと以外は実施例16と同様に実施した。
[Example 17]
The same procedure as in Example 16 was performed except that the heat treatment temperature of the substrate with an uneven structure was 600 ° C.
 [実施例18]
 熱インプリントに使用する金型を、直径4μm、高さ2μm、ピッチ4.5μmの凸型半球形状としたこと以外は実施例1と同様にして凹凸構造付基板を得た。
[Example 18]
A substrate with a concavo-convex structure was obtained in the same manner as in Example 1 except that the mold used for thermal imprinting was a convex hemispherical shape having a diameter of 4 μm, a height of 2 μm, and a pitch of 4.5 μm.
 [実施例19]
 熱インプリントに使用する金型を、ピッチ556nmのブレーズド回折格子としたこと以外は実施例1と同様にして凹凸構造付基板を得た。
[Example 19]
A substrate with a concavo-convex structure was obtained in the same manner as in Example 1 except that the mold used for thermal imprinting was a blazed diffraction grating with a pitch of 556 nm.
 [実施例20]
 熱インプリントに使用する金型を、凸部の幅0.25μm、高さ0.3μm、ピッチ0.3μmの回転楕円体を正三角形状に離散的に配置した形状(以降、回転楕円体を離散的に配置した形状をモスアイ形状と記す)としたこと、およびシロキサンゾルのポリメチルシルセスキオキサン濃度を10質量%としたこと以外は実施例1と同様にして凹凸構造付基板を得た。
[Example 20]
A mold used for thermal imprinting has a shape in which spheroids having a convex width of 0.25 μm, a height of 0.3 μm, and a pitch of 0.3 μm are discretely arranged in a regular triangle shape (hereinafter referred to as a spheroid). A substrate with a concavo-convex structure was obtained in the same manner as in Example 1 except that the discretely arranged shape was referred to as a moth-eye shape) and the polymethylsilsesquioxane concentration of the siloxane sol was 10% by mass. .
 [実施例21]
 熱インプリントに使用する金型を、一辺5μm、高さ12μmの正四角錘で、ピッチが30μmで正三角形状に離散的に配置されたものとしたこと以外は実施例1と同様にして支持体フィルムを得た。また、小西化学工業株式会社製ポリフェニルシルセスキオキサンSR-23をPGPEに20質量%となるように溶解させたものに、光酸発生剤としてアイバイツ株式会社製EEPAGを、ポリフェニルシルセスキオキサン比0.3質量%となるように混合してシロキサンゾルを調製した。続いて、実施例1と同様にして、転写フィルムを作製した後、転写層側から2,000mJ/cmのUVを照射して架橋転写フィルムを作製し、実施例7と同様の方法で基板に転写して凹凸構造付基板を得た。
[Example 21]
A mold used for thermal imprinting is supported in the same manner as in Example 1 except that a regular square pyramid having a side of 5 μm and a height of 12 μm is arranged in a regular triangle shape with a pitch of 30 μm. A body film was obtained. In addition, Polyphenylsilsesquioxane SR-23 manufactured by Konishi Chemical Industry Co., Ltd. was dissolved in PGPE so as to be 20% by mass. A siloxane sol was prepared by mixing so that the sun ratio was 0.3% by mass. Subsequently, a transfer film was prepared in the same manner as in Example 1, and then a crosslinked transfer film was prepared by irradiating UV of 2,000 mJ / cm 2 from the transfer layer side. To obtain a substrate with an uneven structure.
 [実施例22]
 熱インプリントに使用する金型を、直径0.05μm、高さ0.04μmの半球凸形状が、ピッチ0.07μmで正三角形状に離散的に配置されたものとしたこと以外は実施例1と同様にして支持体フィルムを得た。また、信越化学工業株式会社製KBM-13(メチルトリメトキシシラン)およびKBM-403(3-グリシドキシプロピルトリメトキシシラン)をモル比70/30で共重合して得られたシロキサンポリマーを、PGPEにポリマー濃度5質量%となるように溶解させ、光酸発生剤としてアイバイツ株式会社製CTPAG-IIをシロキサンポリマー比0.5質量%となるように添加してシロキサンゾルを調製した。続いて、実施例1と同様にして、転写フィルムを作製した後、転写層側から750mJ/cmのUVを照射して架橋転写フィルムを作製し、実施例7と同様の方法で基板に転写して凹凸構造付基板を得た。
[Example 22]
Example 1 except that the mold used for thermal imprinting is a hemispherical convex shape having a diameter of 0.05 μm and a height of 0.04 μm arranged discretely in a regular triangle shape with a pitch of 0.07 μm. In the same manner as above, a support film was obtained. Further, a siloxane polymer obtained by copolymerizing KBM-13 (methyltrimethoxysilane) and KBM-403 (3-glycidoxypropyltrimethoxysilane) manufactured by Shin-Etsu Chemical Co., Ltd. at a molar ratio of 70/30, A siloxane sol was prepared by dissolving in PGPE so as to have a polymer concentration of 5% by mass, and adding CIPAG-II manufactured by Ibitsu Co., Ltd. as a photoacid generator to a siloxane polymer ratio of 0.5% by mass. Subsequently, after producing a transfer film in the same manner as in Example 1, a crosslinked transfer film was produced by irradiating UV at 750 mJ / cm 2 from the transfer layer side, and transferred to the substrate in the same manner as in Example 7. Thus, a substrate with an uneven structure was obtained.
 [実施例23]
 光酸発生剤をサンアプロ株式会社製CPI-110B(スルホニウム系光酸発生剤)とし、その含有量を0.6質量%としたこと以外は実施例1と同様にして架橋転写フィルムおよび凹凸構造付基板を得た。
[Example 23]
The photoacid generator was CPI-110B (sulfonium photoacid generator) manufactured by San-Apro Co., Ltd., and the content was 0.6% by mass. A substrate was obtained.
 [実施例24]
 光酸発生剤を和光純薬工業株式会社製WPI-113(ヨードニウム塩系光酸発生剤)、その含有量を5.0質量%としたことおよびUV照射量を3,000mJ/cmとしたこと以外は実施例1と同様にして架橋転写フィルムおよび凹凸構造付基板を得た。
[Example 24]
The photoacid generator was WPI-113 (iodonium salt photoacid generator) manufactured by Wako Pure Chemical Industries, Ltd., its content was 5.0 mass%, and the UV irradiation amount was 3,000 mJ / cm 2 . Except for this, a crosslinked transfer film and a substrate with an uneven structure were obtained in the same manner as in Example 1.
 [実施例25]
 光酸発生剤を三和ケミカル株式会社製TFE-トリアジン(トリアジン系光酸発生剤)とし、その含有量を5.0質量%としたこと以外は実施例1と同様にして架橋転写フィルムおよび凹凸構造付基板を得た。
[Example 25]
The photoacid generator was TFE-triazine (triazine photoacid generator) manufactured by Sanwa Chemical Co., Ltd., and its content was 5.0% by mass. A structured substrate was obtained.
 [実施例26]
 シロキサンゾルを、小西化学工業株式会社製ポリメチルフェニルシルセスキオキサンSR-3321をPGPEに20質量%の濃度で溶解させたものに、サンアプロ株式会社製光酸発生剤CPI-200K(スルホニウム系光酸発生剤)を、固形分がSR-3321比0.8質量%となるように添加して調製したこと以外は実施例1と同様にして架橋転写フィルムおよび凹凸構造付基板を得た。
[Example 26]
A siloxane sol was prepared by dissolving polymethylphenylsilsesquioxane SR-3321 manufactured by Konishi Chemical Industry Co., Ltd. in PGPE at a concentration of 20% by mass, and a photoacid generator CPI-200K (sulfonium-based light manufactured by San Apro Co., Ltd.). A cross-linked transfer film and a substrate with a concavo-convex structure were obtained in the same manner as in Example 1 except that the acid generator was added so that the solid content was 0.8% by mass relative to SR-3321.
 [実施例27]
 シロキサンゾルを、信越化学工業株式会社製KBE-13(メチルトリエトキシシラン)、KBE-04(テトラエトキシシラン)およびKBE-22(ジメチルジエトキシシラン)をモル比65/20/15で共重合して得られたシロキサンポリマーを、PGPEでシロキサンポリマー濃度20質量%の溶液とし、サンアプロ株式会社製光酸発生剤CPI-200K(スルホニウム系光酸発生剤)を、シロキサンポリマー比0.8質量%となるように添加して調製したこと以外は実施例1と同様にして架橋転写フィルムおよび凹凸構造付基板を得た。
[Example 27]
A siloxane sol was copolymerized with Shin-Etsu Chemical Co., Ltd. KBE-13 (methyltriethoxysilane), KBE-04 (tetraethoxysilane) and KBE-22 (dimethyldiethoxysilane) at a molar ratio of 65/20/15. The siloxane polymer thus obtained was made into a solution having a siloxane polymer concentration of 20% by mass with PGPE, and a photoacid generator CPI-200K (sulfonium photoacid generator) manufactured by San Apro Co., Ltd. was used with a siloxane polymer ratio of 0.8% by mass. A cross-linked transfer film and a substrate with a concavo-convex structure were obtained in the same manner as in Example 1 except that it was added so as to be prepared.
 [実施例28]
 熱インプリントに使用する金型を、直径230nm、高さ200nmの円柱形状が、ピッチ460nmの正三角形状に離散的に配置されたものとし、基板をシリコン基板とし、凹凸構造付基板の熱処理温度を800℃としたこと以外は実施例7と同様にして架橋転写フィルムおよび凹凸構造付基板を得た。
[Example 28]
The mold used for thermal imprinting is a cylindrical shape having a diameter of 230 nm and a height of 200 nm that is discretely arranged in a regular triangle shape having a pitch of 460 nm, the substrate is a silicon substrate, and the heat treatment temperature of the substrate with a concavo-convex structure A crosslinked transfer film and a substrate with a concavo-convex structure were obtained in the same manner as in Example 7 except that the temperature was 800 ° C.
 [実施例29]
 基板をサファイア基板とし、凹凸構造付基板の熱処理温度を1,000℃としたこと以外は実施例28と同様にして架橋転写フィルムおよび凹凸構造付基板を得た。
[Example 29]
A crosslinked transfer film and a substrate with an uneven structure were obtained in the same manner as in Example 28 except that the substrate was a sapphire substrate and the heat treatment temperature of the substrate with an uneven structure was 1,000 ° C.
 [実施例30]
 基板を窒化ガリウム基板としたこと以外は実施例1と同様にして架橋転写フィルムよび凹凸構造付基板を得た。
[Example 30]
A crosslinked transfer film and a substrate with an uneven structure were obtained in the same manner as in Example 1 except that the substrate was a gallium nitride substrate.
 [実施例31]
 シロキサンゾルを、小西化学工業株式会社製ポリメチルシルセスキオキサンSR-13をPGPEに、濃度20質量%となるように溶解させたものに、和光純薬工業株式会社製光塩基発生剤WPBG-266を、固形分がメチルシロキサンポリマー比0.1質量%となるように添加して調製したこと以外は実施例28と同様にして凹凸構造付基板を得た。
[Example 31]
A siloxane sol was prepared by dissolving polymethylsilsesquioxane SR-13 manufactured by Konishi Chemical Industry Co., Ltd. in PGPE to a concentration of 20% by mass, and a photobase generator WPBG- manufactured by Wako Pure Chemical Industries, Ltd. A substrate with a concavo-convex structure was obtained in the same manner as in Example 28 except that 266 was added so that the solid content was 0.1% by mass of the methylsiloxane polymer ratio.
 [実施例32]
 シロキサンゾルを、小西化学工業株式会社製ポリフェニルシルセスキオキサンSR-23をPGPEに、濃度20質量%となるように溶解させたものに、和光純薬工業株式会社製光塩基発生剤WPBG-300を、固形分がメチルシロキサンポリマー比0.05質量%となるように添加して調製したこと以外は実施例1と同様にして凹凸構造付基板を得た。
[Example 32]
A siloxane sol was prepared by dissolving polyphenylsilsesquioxane SR-23 manufactured by Konishi Chemical Industry Co., Ltd. in PGPE to a concentration of 20% by mass, and a photobase generator WPBG- manufactured by Wako Pure Chemical Industries, Ltd. A substrate with a concavo-convex structure was obtained in the same manner as in Example 1 except that 300 was added so that the solid content was 0.05% by mass of the methylsiloxane polymer ratio.
 [実施例33]
 熱インプリントに使用する金型を、直径6μm、高さ9μmの円柱形状が、ピッチ12μmで正三角形状に離散的に配置されたものとしたこと以外は実施例1と同様にして支持体フィルムを得た。また、信越化学工業株式会社製KBM-13(メチルトリメトキシシラン)、KBM-403(3-グリシドキシプロピルトリメトキシシラン)およびKBM-202SS(ジフェニルジメトキシシラン)をモル比50/25/25で共重合して得られたシロキサンポリマーを、PGPEでポリマー濃度20質量%の溶液とし、アイバイツ株式会社製光塩基発生剤EIPBGをシロキサンポリマー比5.0質量%となるように添加してシロキサンゾルを調製した。続いて、実施例1と同様にして、転写フィルムを得た後、転写層側から250mJ/cmのUVを照射して架橋転写フィルムを作製し、実施例7と同様の方法で基板に転写して凹凸構造付基板を得た。
[Example 33]
A support film in the same manner as in Example 1 except that the mold used for the thermal imprint was a cylindrical shape having a diameter of 6 μm and a height of 9 μm arranged discretely in a regular triangle shape with a pitch of 12 μm. Got. Further, KBM-13 (methyltrimethoxysilane), KBM-403 (3-glycidoxypropyltrimethoxysilane) and KBM-202SS (diphenyldimethoxysilane) manufactured by Shin-Etsu Chemical Co., Ltd. at a molar ratio of 50/25/25 The siloxane polymer obtained by copolymerization was made into a solution having a polymer concentration of 20% by mass with PGPE, and a photobase generator EIPBG manufactured by Ibitsu Co., Ltd. was added so as to have a siloxane polymer ratio of 5.0% by mass to obtain a siloxane sol. Prepared. Subsequently, after a transfer film was obtained in the same manner as in Example 1, a crosslinked transfer film was prepared by irradiating 250 mJ / cm 2 UV from the transfer layer side, and transferred to the substrate in the same manner as in Example 7. Thus, a substrate with an uneven structure was obtained.
 [実施例34]
 KBM-13、KBM-403およびKBM-202SSのモル比を、70/25/5とし、アイバイツ株式会社製光塩基発生剤EIPBGを0.05質量%としたこと、および光照射量を750mJ/cmとしたこと以外は実施例33と同様にして凹凸構造付基板を得た。
[Example 34]
The molar ratio of KBM-13, KBM-403 and KBM-202SS was set to 70/25/5, the photobase generator EIPBG manufactured by Ibaitsu Co., Ltd. was set to 0.05% by mass, and the light irradiation amount was 750 mJ / cm. A substrate with a concavo-convex structure was obtained in the same manner as in Example 33 except that 2 .
 [比較例1]
 転写層を、東亞合成株式会社製紫外線硬化型アクリル系樹脂“アロニックス”(登録商標)UV3701を厚さ10μmに塗布することにより作製したこと以外は実施例1と同様にした。転写層は大部分が基板に転写されずに支持体フィルム上に残り、一部転写されたものも基板との密着力が非常に弱く、基板から剥離してしまう結果となった。
[Comparative Example 1]
The transfer layer was prepared in the same manner as in Example 1 except that it was prepared by applying UV curable acrylic resin “Aronix” (registered trademark) UV3701 manufactured by Toagosei Co., Ltd. to a thickness of 10 μm. Most of the transfer layer remained on the support film without being transferred to the substrate, and the partially transferred layer also had very weak adhesion to the substrate, resulting in peeling from the substrate.
 [比較例2]
 環状ポリオレフィン系樹脂である日本ゼオン株式会社製“ゼオノアフィルム”(登録商標)型番ZF14の厚さ100μmのフィルムの片面に熱インプリントで賦形したものを支持体フィルムに用いた。熱インプリントには、ピッチ5μm、高さ2.5μmのプリズム形状のニッケル電鋳金型を使用した。金型温度180℃、圧力2.0MPaの条件で、金型をフィルムに30秒間押圧して保持した後、100℃まで冷却して圧力を開放し、支持体フィルムを離型した。装置はミカドテクノス株式会社製2ton真空ヒータープレス型番MKP-150TV-WHを用いた。
[Comparative Example 2]
What was formed by thermal imprinting on one side of a 100 μm-thick “Zeonor Film” (registered trademark) model number ZF14 made by Nippon Zeon Co., Ltd., which is a cyclic polyolefin resin, was used as the support film. For the thermal imprinting, a prism-shaped nickel electroforming mold having a pitch of 5 μm and a height of 2.5 μm was used. The mold was pressed against the film for 30 seconds under the conditions of a mold temperature of 180 ° C. and a pressure of 2.0 MPa, then cooled to 100 ° C. to release the pressure, and the support film was released. The apparatus used was a 2-ton vacuum heater press model number MKP-150TV-WH manufactured by Mikado Technos.
 小西化学工業株式会社製ポリメチルシルセスキオキサンSR-13をPGPEに、濃度20質量%で溶解させてシロキサンゾルを調製した。得られたシロキサンゾルを、ミカサ株式会社製スピンコーター型番1H-DX2を用いて、支持体フィルムの凹凸形状が賦形された表面に塗布し、90℃で2分乾燥して転写フィルムを得た。 Polymethylsilsesquioxane SR-13 manufactured by Konishi Chemical Industries, Ltd. was dissolved in PGPE at a concentration of 20% by mass to prepare a siloxane sol. The obtained siloxane sol was applied to the surface of the support film on which the irregular shape was formed using a spin coater model 1H-DX2 manufactured by Mikasa Co., Ltd., and dried at 90 ° C. for 2 minutes to obtain a transfer film. .
 基板として準備したコーニングジャパン株式会社製無アルカリガラスEAGLE2000(30mm×30mm、厚さ0.63mm)に、転写フィルムを転写層表面が基板に接触するように積層した。さらに架橋転写フィルムの支持体フィルム面に緩衝材として金陽社製型番F200を積層し、ガラス基板/転写フィルム/緩衝材の構成で、プレス温度20℃、プレス圧力1.38MPaで10秒間プレスした。装置は、ミカドテクノス株式会社製2ton真空ヒータープレス型番MKP-150TV-WHを用いた。その後、室温で支持体としてのフィルムを剥離して、ガラス基板/転写層からなる凹凸構造付基板を得た。得られた積層体を250℃で熱処理したが、凹凸形状は熱処理で崩れて平坦になった。 The transfer film was laminated on non-alkali glass EAGLE 2000 (30 mm × 30 mm, thickness 0.63 mm) manufactured by Corning Japan Co., Ltd. prepared as a substrate so that the surface of the transfer layer was in contact with the substrate. Further, a model number F200 manufactured by Kinyo Co., Ltd. was laminated as a buffer material on the support film surface of the cross-linked transfer film, and pressed for 10 seconds at a press temperature of 20 ° C. and a press pressure of 1.38 MPa in the configuration of glass substrate / transfer film / buffer material. The apparatus used was a 2-ton vacuum heater press model number MKP-150TV-WH manufactured by Mikado Technos. Thereafter, the film as a support was peeled off at room temperature to obtain a substrate with a concavo-convex structure comprising a glass substrate / transfer layer. The obtained laminate was heat-treated at 250 ° C., but the uneven shape was flattened by the heat treatment.
 [比較例3]
 支持体フィルムにシロキサンを塗布、乾燥した後、得られた転写フィルムの転写層表面からUVを500mJ/cm照射したこと以外は比較例2と同様にしてガラス基板/転写層からなる積層体を得た。得られた積層体を250℃で熱処理したが、凹凸形状は熱処理で崩れて平坦になった。
[Comparative Example 3]
After applying siloxane to the support film and drying, a laminate comprising a glass substrate / transfer layer was prepared in the same manner as in Comparative Example 2 except that UV was applied to the transfer layer surface of the obtained transfer film by 500 mJ / cm 2. Obtained. The obtained laminate was heat-treated at 250 ° C., but the uneven shape was flattened by the heat treatment.
 [比較例4]
 比較例2と同様にして転写層を基板に転写した後、転写層側からUVを500mJ/cm照射して凹凸構造付基板とした。得られた積層体を250℃で熱処理したが、凹凸形状は熱処理で崩れて平坦になった。
[Comparative Example 4]
After the transfer layer was transferred to the substrate in the same manner as in Comparative Example 2, UV was irradiated from the transfer layer side to 500 mJ / cm 2 to obtain a substrate with an uneven structure. The obtained laminate was heat-treated at 250 ° C., but the uneven shape was flattened by the heat treatment.
 [比較例5]
 シロキサンゾルを、三新化学工業株式会社製熱酸発生剤SI-100L(スルホニウム系熱酸発生剤)をシロキサン質量比0.5質量%で含むものとしたこと以外は比較例2と同様にしてガラス基板/転写層からなる積層体を得た。得られた積層体を250℃で熱処理したところ、凹凸形状は熱処理で崩れ、高さが低くなった。
[Comparative Example 5]
The siloxane sol was the same as Comparative Example 2 except that the thermal acid generator SI-100L (sulfonium thermal acid generator) manufactured by Sanshin Chemical Industry Co., Ltd. was contained at a siloxane mass ratio of 0.5% by mass. A laminate comprising a glass substrate / transfer layer was obtained. When the obtained laminate was heat-treated at 250 ° C., the uneven shape was destroyed by the heat treatment, and the height was lowered.
 実施例1~34および比較例1~5で作製した転写フィルム、架橋転写フィルム、および凹凸構造付基板の評価結果を表1、2に示す。 Tables 1 and 2 show the evaluation results of the transfer films, cross-linked transfer films, and substrates with concavo-convex structures prepared in Examples 1 to 34 and Comparative Examples 1 to 5.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
1:支持体フィルム
2:転写層
3:凹凸形状のピッチ
4:凹凸形状の凹部分の幅
5:凹凸形状の凹部分の深さ
6:支持体フィルム厚み
7:転写層厚み
8:残膜厚み
9:基板
10:凹凸幅
11:凹凸高さ
12:転写フィルムのFT-IRスペクトル
13:架橋転写フィルムのFT-IRスペクトル
14:転写フィルムのシロキサン結合を示すピークの低波数端極小値
15:転写フィルムのシロキサン結合を示すピークの高波数端極小値
1: support film 2: transfer layer 3: uneven pitch 4: width of concave / convex concave portion 5: depth of concave / convex concave portion 6: support film thickness 7: transfer layer thickness 8: remaining film thickness 9: Substrate 10: Concavity and convexity width 11: Concavity and convexity height 12: FT-IR spectrum 13 of transfer film 13: FT-IR spectrum 14 of cross-linked transfer film 14: Low-frequency peak minimum value 15 indicating siloxane bond of transfer film 15: Transfer Peak high wavenumber end minima indicating siloxane bonds in the film

Claims (7)

  1. シロキサン組成物を含む転写層が、表面に凹凸形状を有する支持体フィルムに積層された転写フィルムであって、該シロキサン組成物が光酸発生剤または光塩基発生剤を含む転写フィルム。 A transfer film in which a transfer layer containing a siloxane composition is laminated on a support film having a concavo-convex shape on the surface, wherein the siloxane composition contains a photoacid generator or a photobase generator.
  2. 前記光酸発生剤がスルホニウム系光酸発生剤である請求項1に記載の転写フィルム。 The transfer film according to claim 1, wherein the photoacid generator is a sulfonium photoacid generator.
  3. 前記転写層中の前記光酸発生剤の含有量が転写層全体を100質量%としたとき、0.2~5.0質量%である請求項1または2に記載の転写フィルム。 The transfer film according to claim 1 or 2, wherein the content of the photoacid generator in the transfer layer is 0.2 to 5.0% by mass when the entire transfer layer is 100% by mass.
  4. 前記支持体フィルムの凹凸形状の代表ピッチが0.01~50μm、アスペクト比が0.01~3である請求項1から3のいずれかに記載の転写フィルム。 4. The transfer film according to claim 1, wherein the support film has a concavo-convex representative pitch of 0.01 to 50 μm and an aspect ratio of 0.01 to 3.
  5. シロキサン組成物を含む架橋転写層が凹凸形状を有する支持体フィルムに積層された架橋転写フィルムであって、該架橋転写層のFT-IRスペクトルから得られる明細書中に記載のP1/P2の値が0.12以上である架橋転写フィルム。 A cross-linked transfer film in which a cross-linked transfer layer containing a siloxane composition is laminated on a support film having an uneven shape, and the value of P1 / P2 described in the specification obtained from the FT-IR spectrum of the cross-linked transfer layer Is a cross-linked transfer film of 0.12 or more.
  6. 前記支持体フィルムの凹凸形状の代表ピッチが0.01~50μm、アスペクト比が0.01~3である請求項5に記載の架橋転写フィルム。 The cross-linked transfer film according to claim 5, wherein the support film has a concavo-convex representative pitch of 0.01 to 50 μm and an aspect ratio of 0.01 to 3.
  7. シロキサン組成物を含み、表面に凹凸形状を有する架橋転写層が基板上に積層された凹凸構造付基板であって、該架橋転写層のFT-IRスペクトルから得られる明細書中に記載のP1/P2の値が0.12以上である凹凸構造付基板。 A substrate with a concavo-convex structure in which a cross-linked transfer layer having a concavo-convex shape on a surface thereof containing a siloxane composition is laminated on a substrate, wherein P1 / P in the specification obtained from an FT-IR spectrum of the cross-linked transfer layer A substrate with a concavo-convex structure in which the value of P2 is 0.12 or more.
PCT/JP2014/059465 2013-04-05 2014-03-31 Transfer film and substrate with relief structure WO2014163041A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014520082A JPWO2014163041A1 (en) 2013-04-05 2014-03-31 Transfer film and substrate with uneven structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013079191 2013-04-05
JP2013-079191 2013-04-05

Publications (1)

Publication Number Publication Date
WO2014163041A1 true WO2014163041A1 (en) 2014-10-09

Family

ID=51658337

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/059465 WO2014163041A1 (en) 2013-04-05 2014-03-31 Transfer film and substrate with relief structure

Country Status (3)

Country Link
JP (1) JPWO2014163041A1 (en)
TW (1) TW201507856A (en)
WO (1) WO2014163041A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016124927A (en) * 2014-12-26 2016-07-11 株式会社リコー Active ray curable composition including photobase generating agent and active ray curable type inkjet ink
JP2017113943A (en) * 2015-12-22 2017-06-29 株式会社カネカ Transfer film
JP2021507306A (en) * 2017-12-22 2021-02-22 ルミレッズ リミテッド ライアビリティ カンパニー Wavelength conversion layer patterning for LED arrays

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999039890A1 (en) * 1998-02-05 1999-08-12 Nippon Sheet Glass Co., Ltd. Article with rough surface, process for producing the same, and composition therefor
JP2005331607A (en) * 2004-05-18 2005-12-02 Fuji Photo Film Co Ltd Optical component and image display apparatus
WO2006064884A1 (en) * 2004-12-15 2006-06-22 Kuraray Co., Ltd. Actinic energy ray curable resion composition and use thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999039890A1 (en) * 1998-02-05 1999-08-12 Nippon Sheet Glass Co., Ltd. Article with rough surface, process for producing the same, and composition therefor
JP2005331607A (en) * 2004-05-18 2005-12-02 Fuji Photo Film Co Ltd Optical component and image display apparatus
WO2006064884A1 (en) * 2004-12-15 2006-06-22 Kuraray Co., Ltd. Actinic energy ray curable resion composition and use thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016124927A (en) * 2014-12-26 2016-07-11 株式会社リコー Active ray curable composition including photobase generating agent and active ray curable type inkjet ink
JP2017113943A (en) * 2015-12-22 2017-06-29 株式会社カネカ Transfer film
JP2021507306A (en) * 2017-12-22 2021-02-22 ルミレッズ リミテッド ライアビリティ カンパニー Wavelength conversion layer patterning for LED arrays
JP7018511B2 (en) 2017-12-22 2022-02-10 ルミレッズ リミテッド ライアビリティ カンパニー Wavelength conversion layer patterning for LED arrays

Also Published As

Publication number Publication date
TW201507856A (en) 2015-03-01
JPWO2014163041A1 (en) 2017-02-16

Similar Documents

Publication Publication Date Title
CN103249562B (en) Fine-structure laminate, method for preparing fine-tructure laminate, and production method for fine-structure laminate
JP6295276B2 (en) Optical substrate, mold used for manufacturing optical substrate, and light emitting device including optical substrate
JP6367226B2 (en) Patterned structured transfer tape
JP5842909B2 (en) Transfer film
WO2014041904A1 (en) Method for manufacturing laminate provided with uneven shape, and transfer film
CN107820461B (en) Segmented transfer tape and methods of making and using the same
JP5868393B2 (en) Nanoimprint mold and method of manufacturing curved body
EP2936549A1 (en) Methods of using nanostructured transfer tape and articles made therefrom
JP2017532606A (en) Micro-optical layer and method including adiabatic glazing unit and microstructured diffusion
KR20150003158A (en) Method for manufacturing article having fine pattern on surface thereof
WO2017057220A1 (en) Water-repellent member and method for manufacturing same
JP2017001327A (en) Water-repellent member
WO2014163041A1 (en) Transfer film and substrate with relief structure
JP2011183554A (en) Method for producing fine structure
JP6167057B2 (en) Method for manufacturing uneven pattern transfer mold and method for manufacturing member having uneven structure
JPWO2013161095A1 (en) Method for manufacturing crystal substrate having concavo-convex structure
JP5915062B2 (en) Wafer with uneven film and method for producing wafer with uneven film
JP2013208796A (en) Transfer film
JP5790127B2 (en) Manufacturing method of laminate

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014520082

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14778570

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14778570

Country of ref document: EP

Kind code of ref document: A1