WO2014162566A1 - Material for light-emitting layer, dispersion liquid for light-emitting layer, and light-emitting element - Google Patents

Material for light-emitting layer, dispersion liquid for light-emitting layer, and light-emitting element Download PDF

Info

Publication number
WO2014162566A1
WO2014162566A1 PCT/JP2013/060378 JP2013060378W WO2014162566A1 WO 2014162566 A1 WO2014162566 A1 WO 2014162566A1 JP 2013060378 W JP2013060378 W JP 2013060378W WO 2014162566 A1 WO2014162566 A1 WO 2014162566A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
substituent
emitting layer
light
dopant
Prior art date
Application number
PCT/JP2013/060378
Other languages
French (fr)
Japanese (ja)
Inventor
荒谷 介和
広貴 佐久間
沢井 裕一
内藤 孝
佐々木 洋
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to JP2015509815A priority Critical patent/JPWO2014162566A1/en
Priority to PCT/JP2013/060378 priority patent/WO2014162566A1/en
Priority to TW103110278A priority patent/TWI532213B/en
Publication of WO2014162566A1 publication Critical patent/WO2014162566A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/0033Iridium compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1059Heterocyclic compounds characterised by ligands containing three nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/185Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission

Definitions

  • the present invention relates to a light emitting layer material, a light emitting layer dispersion, and a light emitting element.
  • Organic materials have been used as host materials for light emitting layers of organic LEDs. Recently, in addition to that, a light emitting element using an inorganic compound as a host material has been reported in order to extend the life (see, for example, Patent Document 1).
  • a light emitting element using a conventional inorganic compound as a host material has a problem that high efficiency can not always be obtained.
  • an object of the present invention is to provide a highly efficient and highly durable light emitting element using an inorganic host material.
  • a light emitting layer including an upper electrode and a lower electrode provided opposite to each other on a substrate, and a hole transporting layer and an electron transporting layer disposed between the electrodes, the light emitting layer being an inorganic material as a host material
  • a light emitting device comprising a compound and a dopant containing a substituent for promoting charge injection from an inorganic compound.
  • the dopant includes a light emitting material having the following substituent.
  • Substituent fluoroalkyl group or perfluoroalkyl group.
  • the dopant includes a blue light emitting material having the following substituent.
  • the dopant has the following substituent, and the substituent has a carbon number of 6 or more.
  • a light emitting device according to the above (2), wherein the inorganic compound contains a Ti compound.
  • a light emitting device according to the above (2), wherein the inorganic compound contains a vanadium compound.
  • a solvent for making the light emitting layer material according to the above (8) in a dispersed state which comprises an inorganic compound, one or more light emitting dopants, and a dispersing solvent, and at least one of the dopants has the following substituents And a dispersion for a light emitting layer characterized by having: Substituent: fluoroalkyl group or perfluoroalkyl group.
  • a highly efficient and highly durable light emitting element can be provided using an inorganic host material.
  • the present invention will be described in detail with reference to the drawings and the like.
  • the structure of the appropriate organic light emitting material has not been studied.
  • a light emitting dopant having a polarizable group it is preferable to use a light emitting dopant having a polarizable group as a substituent.
  • a fluoroalkyl group or a perfluoroalkyl group it is desirable to have a fluoroalkyl group or a perfluoroalkyl group as a substituent.
  • the number of carbon atoms of the alkyl group of the above-mentioned substituent is 6 or more.
  • the above-mentioned luminescent dopant causing a vacuum level shift on the surface of the luminescent layer is localized.
  • the energy difference between the LUMO (Lowest Unoccupied Molecular Orbital) of the light emitting dopant and the conduction band of the inorganic compound is small, and electron injection is promoted.
  • FIG. 1 shows a cross-sectional view of an example of the structure of a light emitting device of the present invention.
  • the light emitting element has a structure in which a substrate 1, a lower electrode 2, a hole transport layer 3, a light emitting layer 4, an electron transport layer 5, and an upper electrode 6 are laminated in this order as shown in the figure.
  • the substrate 1 is a glass substrate.
  • the present invention is not limited to the glass substrate, and a plastic substrate or a metal substrate provided with an appropriate water permeability lowering protective film can also be used.
  • the lower electrode 2 is an anode. Transparent electrodes such as ITO and IZO are used.
  • the present invention is not limited thereto, and a laminate of Al, Ag, etc., Mo, Cr, a combination of a transparent electrode and a light diffusion layer, etc. can also be used.
  • the lower electrode is not limited to the anode, and a cathode can also be used.
  • Al, Mo, a laminate of Al and Li, an alloy such as AlNi, or the like is used.
  • a transparent electrode such as ITO or IZO may be used.
  • the upper electrode 6 is a cathode. ITO, IZO, Al or the like is used.
  • an element in which a transparent electrode such as ITO or IZO and a reflective metal such as Al or Ag are laminated can also be used.
  • a buffer layer may be provided in order to reduce damage due to sputtering.
  • a metal oxide such as molybdenum oxide or vanadium oxide is used.
  • the lower electrode is a cathode as described above, the upper electrode is an anode.
  • a transparent electrode such as ITO or IZO is used.
  • a metal thin film such as an Ag thin film can be used.
  • a buffer layer may be provided in order to reduce the damage by sputtering.
  • a metal oxide such as molybdenum oxide or vanadium oxide is used.
  • the hole transport layer 3 is a layer for injecting holes from the lower electrode 2.
  • a single layer or a plurality of layers may be provided.
  • molybdenum oxide, vanadium oxide, tungsten oxide or the like is used for the hole transport layer.
  • the light emitting layer 4 is a layer for obtaining light emission of a desired light emission color.
  • the light emitting layer 4 contains a host and a dopant.
  • Various organic light emitting materials are used as dopants.
  • the dopant may be only one type, but two or three types may be used.
  • the dopant concentration is preferably 0.1 wt% to 50 wt%. If the dopant is mixed too much, the interaction between the dopants causes concentration quenching and the light emission efficiency is lowered.
  • a glass composition is used as a host. Inorganic compounds such as V 2 O 5 , Ag 2 O, TeO 2 and TiO 2 are included.
  • the electron transport layer 5 is a layer for injecting electrons from the cathode to the light emitting layer.
  • TiO 2 or the like is used as the electron transport layer 5.
  • TiO 2 can be produced by a sputtering method, a sol-gel method, a spray method or the like.
  • smectite may be included to improve the film density.
  • the preparation procedure of the light emitting element is as follows, and it is assumed that all of Examples 1 to 3 and Comparative Examples 1 to 3 described later are prepared by the same preparation procedure.
  • Sample preparation procedure >> (1) Prepare a substrate (glass, metal, plastic resin, etc.).
  • the deposited lower electrode material is patterned into a desired shape using a mask.
  • a material (molybdenum oxide (MoO 2 ) or the like) to be a hole transport layer is formed on the lower electrode material by vapor deposition or a coating method.
  • a material (such as TiO 2 ) as an electron transport layer is formed on the light emitting layer by coating or sputtering.
  • the power efficiency of the obtained light emitting element was calculated by current-voltage-luminance (I-V-L) measurement.
  • the IV-measurement was performed by grounding the cathode and applying a positive DC voltage to the anode at regular intervals and recording the current and luminance at each voltage. Based on the obtained results, the power efficiency (lm / W) was calculated from the light emitting area, current, voltage and luminance.
  • a glass substrate was used as the substrate 1 and ITO was used as the lower electrode (anode) 2.
  • the film thickness was 150 nm.
  • molybdenum oxide was used for the hole transport layer 3.
  • the film thickness was 50 nm.
  • the work function of molybdenum oxide is 5.7 eV.
  • glass compounds containing solid V 2 O 5 , Ag 2 O, TeO 2 , and TiO 2 mass% of 40, 40, and 20%, respectively
  • the blue dopant is a material of the molecular structure represented by the chemical formula [Chemical Formula 1].
  • the green dopant is a material of the molecular structure shown by the chemical formula [Formula 2].
  • the red dopant is a material of the molecular structure shown by the chemical formula [Formula 3].
  • the blue dopant, the green dopant and the red dopant were 3 wt%, 1 wt% and 1 wt% based on the total solid content.
  • the film thickness was 40 nm.
  • the ionization potential / electron affinity value of the dopant is -5.8 eV / -3.0 eV for blue dopant, -5.1 eV / -2.5 eV for green dopant, -5.8 eV / -4.1 eV for red dopant .
  • the above light emitting layer material was dispersed by stirring in a solvent ( ⁇ -terpineol), printed and fired to form a light emitting layer.
  • a solvent which makes a light emitting layer material a dispersed state in applying and forming a light emitting layer material, which is an inorganic compound, one or more light emitting dopants and a dispersing solvent, and at least one of the dopant A dispersion for a light emitting layer having a fluoroalkyl group or a substituent of a perfluoroalkyl group is used.
  • the electron transport layer 5 For the electron transport layer 5, a mixture of TiO 2 and smectite was used. The film thickness was 40 nm. The work function of TiO 2 is 4.0 eV.
  • IZO was used for the upper electrode (cathode) 6.
  • the film thickness was 100 nm.
  • a positive (plus) potential was applied to the lower electrode 2 of the present example and a negative (-) potential was applied to the upper electrode 6, light emission was obtained.
  • the power efficiency at a luminance of 10 cd / m 2 was measured.
  • the power efficiency of Example 1 is 1.4.
  • a blue polar dopant having a fluoroalkyl group is localized on the surface of the light emitting layer.
  • a vacuum level shift occurs due to the fluoroalkyl group, and the LUMO level of the blue dopant becomes substantially deep. Therefore, charge transfer from the electron transport layer 5 to the light emitting layer 4 easily occurs, and charge recombination in the light emitting layer efficiently occurs.
  • the blue dopant used in Comparative Example 1 is a material having a molecular structure represented by the chemical formula [Chemical Formula 4]. This material was used as a blue dopant, and the other materials were manufactured as in Example 1 to fabricate a light emitting device.
  • the ionization potential / electron affinity value of this blue dopant is ⁇ 5.6 eV / ⁇ 2.8 eV.
  • the power efficiency at a luminance of 10 cd / m 2 was measured.
  • the power efficiency was 5 lm / W.
  • the measured values are used as reference values for comparison with other examples or comparative examples to indicate the respective power efficiencies.
  • the electron affinity of the blue dopant of this comparative example is ⁇ 2.8 eV. Or it does not have a highly polarizable substituent. Therefore, there is no localization on the surface and no vacuum level shift occurs. Therefore, electron injection from the electron transport layer to the light emitting layer is less likely to occur, and charge recombination is less likely to occur. Therefore, the efficiency is considered to be low compared to Example 1.
  • Chemical formula 5 is a structural formula of the blue light emitting material of Example 2. This material was used as a blue dopant, and the other materials were manufactured as in Example 1 to fabricate a light emitting device.
  • the power efficiency at a luminance of 10 cd / m 2 was measured.
  • the power efficiency of Example 2 was 1.2. That is, compared to Comparative Example 1, the power efficiency is high.
  • the ionization potential / electron affinity value of the blue dopant of this example is ⁇ 5.7 eV / ⁇ 2.9 eV.
  • the carbon number of the fluoroalkyl group is 3 and short, so the polarization is small. Therefore, it is considered that the vacuum level shift is small, the electron injection from the electron transport layer to the light emitting layer is small, and the efficiency is small as compared with Example 1.
  • Chemical formula 6 is a structural formula of the blue light emitting material of Example 3. This material was used as a blue dopant, and the other materials were manufactured as in Example 1 to fabricate a light emitting device.
  • the power efficiency at a luminance of 10 cd / m 2 was measured.
  • the power efficiency of Example 3 was 1.4. That is, compared to Comparative Example 1, the power efficiency is high, and shows a value similar to the power efficiency of Example 1.
  • the ionization potential / electron affinity value of the blue dopant of this example is ⁇ 5.8 eV / ⁇ 3.0 eV. It is considered that, due to the long polarizable long fluoroalkyl group, the vacuum level shift occurs sufficiently, and high efficiency is obtained.
  • Comparative example 2 the glass composition contained in the luminescent layer is V 2 O 5, Ag 2 O, except that consist TeO 2 was prepared in the same manner as in the light-emitting element in Example 1.
  • the power efficiency at a luminance of 10 cd / m 2 was measured.
  • the power efficiency of Comparative Example 2 was 1.0. That is, the power efficiency was comparable to that of Comparative Example 1.
  • Comparative example 3 In Comparative Example 3, the glass composition is Ag 2 O in the light-emitting layer, except that consist TeO 2, TiO 2 was manufactured light-emitting element in the same manner as in Example 1.
  • the power efficiency at a luminance of 10 cd / m 2 was measured.
  • the power efficiency of Comparative Example 3 was 1.0. That is, the power efficiency was comparable to that of Comparative Example 1.
  • Electron transport layer 6 ... top electrode.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

A light-emitting element in which an inorganic host material is used and higher efficiency and higher durability are achieved, the light-emitting element being characterized in having an upper electrode and a lower electrode provided so as to face each other on a substrate, and a light-emitting layer including a hole transportation layer and an electron transportation layer disposed between the electrodes, the light-emitting layer containing an inorganic compound used as a host material and a dopant including a substitution group for promoting charge injection from the inorganic compound.

Description

発光層用材料及び発光層用分散液、並びに発光素子Material for light emitting layer, dispersion for light emitting layer, and light emitting element
 本発明は、発光層用材料及び発光層用分散液、並びに発光素子に関する。 The present invention relates to a light emitting layer material, a light emitting layer dispersion, and a light emitting element.
 有機LEDの発光層用ホスト材料には、これまで有機材料が使われてきた。
最近では、それに加えて、長寿命化のため、無機化合物をホスト材料に使用する発光素子が報告されている(例えば、特許文献1を参照)。
Organic materials have been used as host materials for light emitting layers of organic LEDs.
Recently, in addition to that, a light emitting element using an inorganic compound as a host material has been reported in order to extend the life (see, for example, Patent Document 1).
特開2005-340143号公報JP, 2005-340143, A
 従来の無機化合物をホスト材料に用いた発光素子は、必ずしも高効率が得られないという課題があった。 A light emitting element using a conventional inorganic compound as a host material has a problem that high efficiency can not always be obtained.
 そこで、本発明の目的は、無機ホスト材料を用いてより高い効率の耐久性の高い発光素子を提供することである。 Therefore, an object of the present invention is to provide a highly efficient and highly durable light emitting element using an inorganic host material.
 上記課題を解決するための本発明の特徴は、以下の通りである。
(1)基板上に対向して設けられた上部電極と下部電極と、電極間に配置された正孔輸送層及び電子輸送層を含む発光層とを有し、発光層は、ホスト材料として無機化合物を用い、ドーパントに無機化合物からの電荷注入を促進するための置換基を含むことを特徴とする発光素子。
(2)上記(1)において、ドーパントは、下記の置換基を有する発光材料を含むことを特徴とする発光素子。
The features of the present invention for solving the above problems are as follows.
(1) A light emitting layer including an upper electrode and a lower electrode provided opposite to each other on a substrate, and a hole transporting layer and an electron transporting layer disposed between the electrodes, the light emitting layer being an inorganic material as a host material What is claimed is: 1. A light emitting device comprising a compound and a dopant containing a substituent for promoting charge injection from an inorganic compound.
(2) In the above (1), the dopant includes a light emitting material having the following substituent.
 置換基:フルオロアルキル基、またはパーフルオロアルキル基。
(3)上記(1)において、発光層に含まれるドーパントの電子親和力が3.0~4.5eVであることを特徴とする発光素子。
(4)上記(2)において、ドーパントは、下記の置換基を有する青色発光材料を含むことを特徴とする発光素子。
置換基:フルオロアルキル基、またはパーフルオロアルキル基。
(5)上記(2)において、ドーパントは、下記の置換基を有し、置換基が有する炭素数が6以上であることを特徴とする発光素子。
置換基:フルオロアルキル基、またはパーフルオロアルキル基。
(6)上記(2)において、無機化合物にTi化合物を含むことを特徴とする発光素子。
(7)上記(2)において、無機化合物にバナジウム化合物を含むことを特徴とする発光素子。
(8)発光素子の発光層に用いる材料であって、材料は、無機化合物と1種類以上の発光ドーパントを含み、ドーパントの少なくとも1種類が下記の置換基を有することを特徴とする発光層用材料。
置換基:フルオロアルキル基、またはパーフルオロアルキル基。
(9)上記(8)に記載の発光層用材料を分散状態とする溶媒であって、無機化合物と1種類以上の発光ドーパントと分散用溶媒を含み、ドーパントの少なくとも1種類が下記の置換基を有することを特徴とする発光層用分散液。
置換基:フルオロアルキル基、またはパーフルオロアルキル基。
Substituent: fluoroalkyl group or perfluoroalkyl group.
(3) A light emitting device according to the above (1), wherein the electron affinity of the dopant contained in the light emitting layer is 3.0 to 4.5 eV.
(4) The light emitting device according to (2), wherein the dopant includes a blue light emitting material having the following substituent.
Substituent: fluoroalkyl group or perfluoroalkyl group.
(5) In the above (2), the dopant has the following substituent, and the substituent has a carbon number of 6 or more.
Substituent: fluoroalkyl group or perfluoroalkyl group.
(6) A light emitting device according to the above (2), wherein the inorganic compound contains a Ti compound.
(7) A light emitting device according to the above (2), wherein the inorganic compound contains a vanadium compound.
(8) A material used for a light emitting layer of a light emitting device, wherein the material contains an inorganic compound and one or more light emitting dopants, and at least one of the dopants has the following substituent. material.
Substituent: fluoroalkyl group or perfluoroalkyl group.
(9) A solvent for making the light emitting layer material according to the above (8) in a dispersed state, which comprises an inorganic compound, one or more light emitting dopants, and a dispersing solvent, and at least one of the dopants has the following substituents And a dispersion for a light emitting layer characterized by having:
Substituent: fluoroalkyl group or perfluoroalkyl group.
 本発明により、無機ホスト材料を用いて高効率で耐久性の高い発光素子が提供できる。 According to the present invention, a highly efficient and highly durable light emitting element can be provided using an inorganic host material.
本発明の発光素子の構造の一例を示す断面図である。It is sectional drawing which shows an example of the structure of the light emitting element of this invention.
 以下、図面等により本発明を詳細に説明する。
  従来の無機化合物をホスト材料に用いる素子では、適切な有機発光材料の構造について、検討されていなかった。効率よく発光させるには、発光層に電子と正孔を注入させ、発光ドーパント上で再結合させることが望ましい。
Hereinafter, the present invention will be described in detail with reference to the drawings and the like.
In the device using the conventional inorganic compound as the host material, the structure of the appropriate organic light emitting material has not been studied. For efficient light emission, it is desirable to inject electrons and holes into the light emitting layer and recombine on the light emitting dopant.
 そのためには、置換基に分極性基を有する発光ドーパントを用いるとよい。特に、置換基として、フルオロアルキル基、またはパーフルオロアルキル基を有することが望ましい。
特に、上記置換基のアルキル基の炭素数が6以上であることが、さらに望ましい。
For that purpose, it is preferable to use a light emitting dopant having a polarizable group as a substituent. In particular, it is desirable to have a fluoroalkyl group or a perfluoroalkyl group as a substituent.
In particular, it is more desirable that the number of carbon atoms of the alkyl group of the above-mentioned substituent is 6 or more.
 ドーパントをこのような分子構造とすることにより、発光層表面に真空準位シフトを起こす上記発光ドーパントが局在化する。それによって、発光ドーパントのLUMO(Lowest Unoccupied Molecular Orbital:最低非占軌道)と無機化合物の伝導帯のエネルギー差が小さく、電子注入が促進される。 By setting the dopant to such a molecular structure, the above-mentioned luminescent dopant causing a vacuum level shift on the surface of the luminescent layer is localized. Thereby, the energy difference between the LUMO (Lowest Unoccupied Molecular Orbital) of the light emitting dopant and the conduction band of the inorganic compound is small, and electron injection is promoted.
 以下、本発明を詳細に説明する。図1は、本発明の発光素子の構造の一例の断面図を示す。発光素子は、図示するように、基板1、下部電極2、正孔輸送層3、発光層4、電子輸送層5、上部電極6の順に積層された構造を有し、各層の特徴は以下に述べる。
  基板1は、ガラス基板である。但し、ガラス基板に限るものではなく、適切な透水性低下保護膜を施したプラスティック基板や金属基板も用いることもできる。
  下部電極2は、陽極である。ITO、IZOなどの透明電極が用いられる。但し、それらに限られるものではなく、Al、Agなどの積層体やMo、Crや透明電極と光拡散層との組合せなども用いることができる。また、下部電極は陽極に限るものではなく、陰極も用いることができる。その場合は、Al、MoやAlとLiの積層体やAlNiなどの合金などが用いられる。また、ITO、IZOなどの透明電極を用いてもよい。
  上部電極6は、陰極である。ITO、IZO、Alなどが用いられる。また、ITO、IZO等の透明電極とAl、Agなどの反射性金属を積層した素子も用いることができる。ITO、IZOをスパッタ法で形成する際には、スパッタによるダメージを緩和するため、バッファー層を設けることがある。バッファー層には、酸化モリブデン、酸化バナジウムなどの金属酸化物を用いる。上記のように下部電極が陰極となる場合には、上部電極は陽極となる。その場合には、ITO、IZOなどの透明電極が用いられる。また、Ag薄膜などの金属薄膜を用いることができる。ITO、IZOなどの透明電極をスパッタ法で形成する際には、スパッタによるダメージを緩和するため、バッファー層を設けることがある。バッファー層には、酸化モリブデン、酸化バナジウムなどの金属酸化物を用いる。
Hereinafter, the present invention will be described in detail. FIG. 1 shows a cross-sectional view of an example of the structure of a light emitting device of the present invention. The light emitting element has a structure in which a substrate 1, a lower electrode 2, a hole transport layer 3, a light emitting layer 4, an electron transport layer 5, and an upper electrode 6 are laminated in this order as shown in the figure. Describe.
The substrate 1 is a glass substrate. However, the present invention is not limited to the glass substrate, and a plastic substrate or a metal substrate provided with an appropriate water permeability lowering protective film can also be used.
The lower electrode 2 is an anode. Transparent electrodes such as ITO and IZO are used. However, the present invention is not limited thereto, and a laminate of Al, Ag, etc., Mo, Cr, a combination of a transparent electrode and a light diffusion layer, etc. can also be used. Further, the lower electrode is not limited to the anode, and a cathode can also be used. In that case, Al, Mo, a laminate of Al and Li, an alloy such as AlNi, or the like is used. In addition, a transparent electrode such as ITO or IZO may be used.
The upper electrode 6 is a cathode. ITO, IZO, Al or the like is used. Further, an element in which a transparent electrode such as ITO or IZO and a reflective metal such as Al or Ag are laminated can also be used. When forming ITO or IZO by sputtering, a buffer layer may be provided in order to reduce damage due to sputtering. For the buffer layer, a metal oxide such as molybdenum oxide or vanadium oxide is used. When the lower electrode is a cathode as described above, the upper electrode is an anode. In that case, a transparent electrode such as ITO or IZO is used. In addition, a metal thin film such as an Ag thin film can be used. When forming transparent electrodes, such as ITO and IZO, by a sputtering method, a buffer layer may be provided in order to reduce the damage by sputtering. For the buffer layer, a metal oxide such as molybdenum oxide or vanadium oxide is used.
 正孔輸送層3は、下部電極2から正孔を注入するための層である。単層もしくは複数層設けてもよい。正孔輸送層としては、酸化モリブデン、酸化バナジウム、酸化タングステンなどを用いる。 The hole transport layer 3 is a layer for injecting holes from the lower electrode 2. A single layer or a plurality of layers may be provided. For the hole transport layer, molybdenum oxide, vanadium oxide, tungsten oxide or the like is used.
 発光層4は、所望の発光色の発光を得るための層である。発光層4はホスト及びドーパントを含む。ドーパントとして、種々の有機発光材料を用いる。ドーパントは1種類だけでもよいが、2種類、3種類を用いてもよい。ドーパント濃度は、0.1wt%から50wt%が望ましい。あまり多くドーパントを混合するとドーパント同士の相互作用により、濃度消光が起こり、発光効率が低下してしまう。ホストとしてはガラス組成物を用いる。V、AgO、TeO、TiOなどの無機化合物を含む。 The light emitting layer 4 is a layer for obtaining light emission of a desired light emission color. The light emitting layer 4 contains a host and a dopant. Various organic light emitting materials are used as dopants. The dopant may be only one type, but two or three types may be used. The dopant concentration is preferably 0.1 wt% to 50 wt%. If the dopant is mixed too much, the interaction between the dopants causes concentration quenching and the light emission efficiency is lowered. A glass composition is used as a host. Inorganic compounds such as V 2 O 5 , Ag 2 O, TeO 2 and TiO 2 are included.
 電子輸送層5は陰極から発光層に電子を注入するための層である。電子輸送層5としては、TiOなどが用いられる。TiOはスパッタ法やゾルゲル法、スプレー法などで作製できる。また、膜のち密さを向上するため、スメクタイトを含んでいてもよい。 The electron transport layer 5 is a layer for injecting electrons from the cathode to the light emitting layer. TiO 2 or the like is used as the electron transport layer 5. TiO 2 can be produced by a sputtering method, a sol-gel method, a spray method or the like. In addition, smectite may be included to improve the film density.
 また、上記発光素子の作製手順は以下の通りであり、後述する実施例1~3、及び比較例1~3のいずれも同様の作製手順で作製されるものとする。
≪試料作製手順≫
 (1)基板(ガラス、あるいは金属、あるいはプラスティク樹脂など)を用意する。
Further, the preparation procedure of the light emitting element is as follows, and it is assumed that all of Examples 1 to 3 and Comparative Examples 1 to 3 described later are prepared by the same preparation procedure.
<< Sample preparation procedure >>
(1) Prepare a substrate (glass, metal, plastic resin, etc.).
 (2)下部電極材料(ITO、あるいはIZOなど)をスパッタなどを用いて上記基板上に堆積する。 (2) Deposit a lower electrode material (such as ITO or IZO) on the substrate using sputtering or the like.
 (3)次に、堆積した下部電極材料をマスクを用いて所望の形状にパターニングする。 (3) Next, the deposited lower electrode material is patterned into a desired shape using a mask.
 (4)正孔輸送層とする材料(酸化モリブデン(MoO)など)を蒸着、あるいは塗布方法により下部電極材料上に形成する。 (4) A material (molybdenum oxide (MoO 2 ) or the like) to be a hole transport layer is formed on the lower electrode material by vapor deposition or a coating method.
 (5)次に、正孔輸送層上に無機材料とドーパントを塗布し発光層を形成する。 (5) Next, an inorganic material and a dopant are applied on the hole transport layer to form a light emitting layer.
 (6)電子輸送層とする材料(TiOなど)を発光層上に塗布、あるいはスパッタ方法により形成する。 (6) A material (such as TiO 2 ) as an electron transport layer is formed on the light emitting layer by coating or sputtering.
 (7)最後に、上部電極としてITOあるいはIZOなどをスパッタなどを用いて堆積する。
≪発光素子の測定方法≫
 また、後述する実施例1~3、及び比較例1~3で作製した発光素子の特性評価のための測定は、以下の通りである。
(7) Finally, ITO or IZO is deposited as an upper electrode by sputtering or the like.
«Measurement method of light emitting element»
Further, the measurement for evaluating the characteristics of the light emitting devices manufactured in Examples 1 to 3 and Comparative Examples 1 to 3 described later is as follows.
 得られた発光素子の電力効率は、電流-電圧-輝度(I-V-L)測定により算出した。I-V-測定は、陰極を接地して陽極に正の直流電圧を一定の刻みで印加し、各電圧における電流と輝度を記録して行った。得られた結果をもとに、電力効率(lm/W)は発光面積と電流、電圧と輝度から計算して算出した。 The power efficiency of the obtained light emitting element was calculated by current-voltage-luminance (I-V-L) measurement. The IV-measurement was performed by grounding the cathode and applying a positive DC voltage to the anode at regular intervals and recording the current and luminance at each voltage. Based on the obtained results, the power efficiency (lm / W) was calculated from the light emitting area, current, voltage and luminance.
 本実施例では、各層に以下のような材料を用いた。
基板1にはガラス基板を用い、下部電極(陽極)2には、ITOを用いた。膜厚は150nmとした。正孔輸送層3には、酸化モリブデンを用いた。膜厚は50nmとした。酸化モリブデンの仕事関数は5.7eVである。発光層4には、固体状のV、AgO、TeO、TiOを含むガラス化合物(質量%はそれぞれ40、40、20%)と下記の発光ドーパントを用いた。
青色ドーパントは、化学式[化1]で示した分子構造の材料である。
In the present example, the following materials were used for each layer.
A glass substrate was used as the substrate 1 and ITO was used as the lower electrode (anode) 2. The film thickness was 150 nm. For the hole transport layer 3, molybdenum oxide was used. The film thickness was 50 nm. The work function of molybdenum oxide is 5.7 eV. For the light emitting layer 4, glass compounds containing solid V 2 O 5 , Ag 2 O, TeO 2 , and TiO 2 (mass% of 40, 40, and 20%, respectively) and the following light emitting dopants were used.
The blue dopant is a material of the molecular structure represented by the chemical formula [Chemical Formula 1].
Figure JPOXMLDOC01-appb-C000001
緑色ドーパントは、化学式[化2]で示した分子構造の材料である。
Figure JPOXMLDOC01-appb-C000001
The green dopant is a material of the molecular structure shown by the chemical formula [Formula 2].
Figure JPOXMLDOC01-appb-C000002
赤色ドーパントは、化学式[化3]で示した分子構造の材料である。
Figure JPOXMLDOC01-appb-C000002
The red dopant is a material of the molecular structure shown by the chemical formula [Formula 3].
Figure JPOXMLDOC01-appb-C000003
 青色ドーパント、緑色ドーパント及び赤色ドーパントは全体の固形分に対して、3wt%、1wt%、1wt%とした。膜厚は40nmとした。ドーパントのイオン化ポテンシャル/電子親和力の値は、青ドーパント-5.8eV/-3.0eV、緑ドーパントは-5.1eV/-2.5eV、赤ドーパントは-5.8eV/-4.1eVである。
上記の発光層用材料を溶媒(αテルピネオール)中に撹拌して分散させ、印刷・焼成して、発光層を形成した。
Figure JPOXMLDOC01-appb-C000003
The blue dopant, the green dopant and the red dopant were 3 wt%, 1 wt% and 1 wt% based on the total solid content. The film thickness was 40 nm. The ionization potential / electron affinity value of the dopant is -5.8 eV / -3.0 eV for blue dopant, -5.1 eV / -2.5 eV for green dopant, -5.8 eV / -4.1 eV for red dopant .
The above light emitting layer material was dispersed by stirring in a solvent (α-terpineol), printed and fired to form a light emitting layer.
 なお、発光層用材料を塗布し成膜するにあたって、発光層用材料を分散状態とする溶媒であって、無機化合物と1種類以上の発光ドーパントと分散用溶媒を含み、ドーパントの少なくとも1種類がフルオロアルキル基、またはパーフルオロアルキル基の置換基を有する発光層用分散液を用いる。 In addition, it is a solvent which makes a light emitting layer material a dispersed state in applying and forming a light emitting layer material, which is an inorganic compound, one or more light emitting dopants and a dispersing solvent, and at least one of the dopant A dispersion for a light emitting layer having a fluoroalkyl group or a substituent of a perfluoroalkyl group is used.
 電子輸送層5には、TiOとスメクタイトの混合物を用いた。膜厚は40nmとした。なお、TiOの仕事関数は、4.0eVである。 For the electron transport layer 5, a mixture of TiO 2 and smectite was used. The film thickness was 40 nm. The work function of TiO 2 is 4.0 eV.
 上部電極(陰極)6には、IZOを用いた。膜厚は100nmとした。
本実施例の下部電極2に+(プラス)電位を上部電極6に-(マイナス)電位を印加したところ、発光が得られた。
また、輝度10cd/mでの電力効率を測定した。測定結果は、比較例1で測定した電力効率を1(基準)とした時、本実施例1の電力効率は、1.4倍の値が得られた。
IZO was used for the upper electrode (cathode) 6. The film thickness was 100 nm.
When a positive (plus) potential was applied to the lower electrode 2 of the present example and a negative (-) potential was applied to the upper electrode 6, light emission was obtained.
In addition, the power efficiency at a luminance of 10 cd / m 2 was measured. As for the measurement results, when the power efficiency measured in Comparative Example 1 is 1 (reference), the power efficiency of Example 1 is 1.4.
 本実施例の構成では、分極性の大きい、フルオロアルキル基を有する青色ドーパントが発光層表面に局在化する。そこで、フルオロアルキル基のために真空準位シフトが起こり、青色ドーパントのLUMOレベルが実質的に深くなる。そのため、電子輸送層5から発光層4への電荷移動が容易に起こるようになり、発光層での電荷再結合が効率よく起こる。 In the configuration of this embodiment, a blue polar dopant having a fluoroalkyl group is localized on the surface of the light emitting layer. There, a vacuum level shift occurs due to the fluoroalkyl group, and the LUMO level of the blue dopant becomes substantially deep. Therefore, charge transfer from the electron transport layer 5 to the light emitting layer 4 easily occurs, and charge recombination in the light emitting layer efficiently occurs.
 以下に、実施例1~3および比較例1~3で用いた各層の仕様の一覧を表1に示す。 The list of specifications of each layer used in Examples 1 to 3 and Comparative Examples 1 to 3 is shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000004
(比較例1)
 比較例1で用いる青色ドーパントは、化学式[化4]で示した分子構造の材料である。この材料を青色ドーパントに用い、その他の材料は実施例1と同様に発光素子を作製した。
Figure JPOXMLDOC01-appb-T000004
(Comparative example 1)
The blue dopant used in Comparative Example 1 is a material having a molecular structure represented by the chemical formula [Chemical Formula 4]. This material was used as a blue dopant, and the other materials were manufactured as in Example 1 to fabricate a light emitting device.
Figure JPOXMLDOC01-appb-C000005
 この青色ドーパントのイオン化ポテンシャル/電子親和力の値は、-5.6eV/-2.8eVである。
また、輝度10cd/mでの電力効率を測定した。電力効率は5lm/Wであった。この測定値を、他の実施例あるいは比較例との比較の基準値として、それぞれの電力効率を示している。
Figure JPOXMLDOC01-appb-C000005
The ionization potential / electron affinity value of this blue dopant is −5.6 eV / −2.8 eV.
In addition, the power efficiency at a luminance of 10 cd / m 2 was measured. The power efficiency was 5 lm / W. The measured values are used as reference values for comparison with other examples or comparative examples to indicate the respective power efficiencies.
 本比較例の青色ドーパントの電子親和力は-2.8eVである。または分極性の高い置換基を有しない。そのため、表面に局在化することもなく、真空準位シフトも起こさない。そのため、電子輸送層から発光層への電子注入が起こりにくく、電荷再結合が起こりにくい。そのため、効率が実施例1と比較して低いものと考えられる。 The electron affinity of the blue dopant of this comparative example is −2.8 eV. Or it does not have a highly polarizable substituent. Therefore, there is no localization on the surface and no vacuum level shift occurs. Therefore, electron injection from the electron transport layer to the light emitting layer is less likely to occur, and charge recombination is less likely to occur. Therefore, the efficiency is considered to be low compared to Example 1.
 化学式[化5]は、実施例2の青色発光材料の構造式である。この材料を青色ドーパントに用い、その他の材料は実施例1と同様に発光素子を作製した。 Chemical formula 5 is a structural formula of the blue light emitting material of Example 2. This material was used as a blue dopant, and the other materials were manufactured as in Example 1 to fabricate a light emitting device.
Figure JPOXMLDOC01-appb-C000006
また、輝度10cd/mでの電力効率を測定した。その結果、比較例1の電力効率を基準とすると、実施例2の電力効率は1.2倍であった。すなわち、比較例1と比較すれば、電力効率は高いことを示す。
本実施例の青色ドーパントのイオン化ポテンシャル/電子親和力の値は、-5.7eV/-2.9eVである。実施例1の青色ドーパントと比較して、フルオロアルキル基の炭素数が3で短いため、分極が小さい。そのため、真空準位シフトが小さく、電子輸送層から発光層への電子注入が小さくなり、効率が実施例1と比較して小さくなったと考えられる。
Figure JPOXMLDOC01-appb-C000006
In addition, the power efficiency at a luminance of 10 cd / m 2 was measured. As a result, based on the power efficiency of Comparative Example 1, the power efficiency of Example 2 was 1.2. That is, compared to Comparative Example 1, the power efficiency is high.
The ionization potential / electron affinity value of the blue dopant of this example is −5.7 eV / −2.9 eV. Compared to the blue dopant of Example 1, the carbon number of the fluoroalkyl group is 3 and short, so the polarization is small. Therefore, it is considered that the vacuum level shift is small, the electron injection from the electron transport layer to the light emitting layer is small, and the efficiency is small as compared with Example 1.
 化学式[化6]は、実施例3の青色発光材料の構造式である。この材料を青色ドーパントに用い、その他の材料は実施例1と同様に発光素子を作製した。 Chemical formula 6 is a structural formula of the blue light emitting material of Example 3. This material was used as a blue dopant, and the other materials were manufactured as in Example 1 to fabricate a light emitting device.
Figure JPOXMLDOC01-appb-C000007
 また、輝度10cd/mでの電力効率を測定した。その結果、比較例1の電力効率を基準とすると、実施例3の電力効率は1.4倍であった。すなわち、比較例1と比較すれば、電力効率は高く、実施例1の電力効率と同程度の値を示している。
Figure JPOXMLDOC01-appb-C000007
In addition, the power efficiency at a luminance of 10 cd / m 2 was measured. As a result, based on the power efficiency of Comparative Example 1, the power efficiency of Example 3 was 1.4. That is, compared to Comparative Example 1, the power efficiency is high, and shows a value similar to the power efficiency of Example 1.
 本実施例の青色ドーパントのイオン化ポテンシャル/電子親和力の値は、-5.8eV/-3.0eVである。分極性の高い長いフルオロアルキル基を有するため、真空準位シフトが十分起こり、高い効率が得られたと考えられる。
(比較例2)
 比較例2では、発光層に含まれるガラス組成物がV、AgO、TeOからなること以外は実施例1と同様に発光素子を作製した。
The ionization potential / electron affinity value of the blue dopant of this example is −5.8 eV / −3.0 eV. It is considered that, due to the long polarizable long fluoroalkyl group, the vacuum level shift occurs sufficiently, and high efficiency is obtained.
(Comparative example 2)
In Comparative Example 2, the glass composition contained in the luminescent layer is V 2 O 5, Ag 2 O, except that consist TeO 2 was prepared in the same manner as in the light-emitting element in Example 1.
 また、輝度10cd/mでの電力効率を測定した。その結果、比較例1の電力効率を基準とすると、比較例2の電力効率は1.0倍であった。すなわち、比較例1と同程度の電力効率を示した。
(比較例3)
 比較例3では、発光層に含まれるガラス組成物がAgO、TeO、TiOからなること以外は実施例1と同様に発光素子を作製した。
また、輝度10cd/mでの電力効率を測定した。その結果、比較例1の電力効率を基準とすると、比較例3の電力効率は1.0倍であった。すなわち、比較例1と同程度の電力効率を示した。
In addition, the power efficiency at a luminance of 10 cd / m 2 was measured. As a result, based on the power efficiency of Comparative Example 1, the power efficiency of Comparative Example 2 was 1.0. That is, the power efficiency was comparable to that of Comparative Example 1.
(Comparative example 3)
In Comparative Example 3, the glass composition is Ag 2 O in the light-emitting layer, except that consist TeO 2, TiO 2 was manufactured light-emitting element in the same manner as in Example 1.
In addition, the power efficiency at a luminance of 10 cd / m 2 was measured. As a result, based on the power efficiency of Comparative Example 1, the power efficiency of Comparative Example 3 was 1.0. That is, the power efficiency was comparable to that of Comparative Example 1.
 なお、上掲した表1に実施例1~3および比較例1~3で得られた発光素子の測定結果のまとめを示している。 The summary of the measurement results of the light emitting elements obtained in Examples 1 to 3 and Comparative Examples 1 to 3 is shown in Table 1 above.
1…基板、
2…下部電極、
3…正孔輸送層、
4…発光層、
5…電子輸送層、
6…上部電極。
1 ... board,
2 ... lower electrode,
3 ... hole transport layer,
4 ... light emitting layer,
5 ... Electron transport layer,
6 ... top electrode.

Claims (9)

  1.  基板上に対向して設けられた上部電極と下部電極と、前記電極間に配置された正孔輸送層及び電子輸送層を含む発光層とを有し、
     前記発光層は、ホスト材料として無機化合物を用い、ドーパントに前記無機化合物からの電荷注入を促進するための置換基を含むことを特徴とする発光素子。
    It has an upper electrode and a lower electrode provided opposite to each other on a substrate, and a light emitting layer including a hole transport layer and an electron transport layer disposed between the electrodes,
    The light emitting device, wherein the light emitting layer uses an inorganic compound as a host material, and the dopant includes a substituent for promoting charge injection from the inorganic compound.
  2.  前記ドーパントは、下記の置換基を有する発光材料を含むことを特徴とする請求項1に記載の発光素子。
     置換基:フルオロアルキル基、またはパーフルオロアルキル基。
    The light emitting device according to claim 1, wherein the dopant comprises a light emitting material having the following substituent.
    Substituent: fluoroalkyl group or perfluoroalkyl group.
  3.  前記発光層に含まれるドーパントの電子親和力が3.0~4.5eVであることを特徴とする請求項1に記載の発光素子。 The light emitting device according to claim 1, wherein the electron affinity of the dopant contained in the light emitting layer is 3.0 to 4.5 eV.
  4.  前記ドーパントは、下記の置換基を有する青色発光材料を含むことを特徴とする請求項2記載の発光素子。
    置換基:フルオロアルキル基、またはパーフルオロアルキル基。
    The light emitting device according to claim 2, wherein the dopant comprises a blue light emitting material having the following substituent.
    Substituent: fluoroalkyl group or perfluoroalkyl group.
  5.  前記ドーパントは、下記の置換基を有し、前記置換基が有する炭素数が6以上であることを特徴とする請求項2記載の発光素子。
    置換基:フルオロアルキル基、またはパーフルオロアルキル基。
    The light emitting device according to claim 2, wherein the dopant has the following substituent, and the substituent has 6 or more carbon atoms.
    Substituent: fluoroalkyl group or perfluoroalkyl group.
  6.  前記無機化合物にTi化合物を含むことを特徴とする請求項2記載の発光素子。 The light emitting device according to claim 2, wherein the inorganic compound contains a Ti compound.
  7.  前記無機化合物にバナジウム化合物を含むことを特徴とする請求項2記載の発光素子。 The light emitting device according to claim 2, wherein the inorganic compound contains a vanadium compound.
  8.  発光素子の発光層に用いる材料であって、
     前記材料は、無機化合物と1種類以上の発光ドーパントを含み、前記ドーパントの少なくとも1種類が下記の置換基を有することを特徴とする発光層用材料。
    置換基:フルオロアルキル基、またはパーフルオロアルキル基。
    A material used for a light emitting layer of a light emitting element, and
    A material for a light emitting layer, wherein the material contains an inorganic compound and one or more light emitting dopants, and at least one of the dopants has a substituent described below.
    Substituent: fluoroalkyl group or perfluoroalkyl group.
  9.  請求項8に記載の発光層用材料を分散状態とする溶媒であって、
     前記無機化合物と1種類以上の前記発光ドーパントと分散用溶媒を含み、前記ドーパントの少なくとも1種類が下記の置換基を有することを特徴とする発光層用分散液。
    置換基:フルオロアルキル基、またはパーフルオロアルキル基。
    A solvent for making the light emitting layer material according to claim 8 in a dispersed state,
    A dispersion for a light emitting layer, comprising: the inorganic compound, one or more kinds of the light emitting dopants, and a dispersing solvent, wherein at least one of the dopants has a substituent described below.
    Substituent: fluoroalkyl group or perfluoroalkyl group.
PCT/JP2013/060378 2013-04-04 2013-04-04 Material for light-emitting layer, dispersion liquid for light-emitting layer, and light-emitting element WO2014162566A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015509815A JPWO2014162566A1 (en) 2013-04-04 2013-04-04 Light emitting layer material, light emitting layer dispersion, and light emitting device
PCT/JP2013/060378 WO2014162566A1 (en) 2013-04-04 2013-04-04 Material for light-emitting layer, dispersion liquid for light-emitting layer, and light-emitting element
TW103110278A TWI532213B (en) 2013-04-04 2014-03-19 A light-emitting layer material and a light-emitting layer dispersion and a light-emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/060378 WO2014162566A1 (en) 2013-04-04 2013-04-04 Material for light-emitting layer, dispersion liquid for light-emitting layer, and light-emitting element

Publications (1)

Publication Number Publication Date
WO2014162566A1 true WO2014162566A1 (en) 2014-10-09

Family

ID=51657895

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/060378 WO2014162566A1 (en) 2013-04-04 2013-04-04 Material for light-emitting layer, dispersion liquid for light-emitting layer, and light-emitting element

Country Status (3)

Country Link
JP (1) JPWO2014162566A1 (en)
TW (1) TWI532213B (en)
WO (1) WO2014162566A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000048961A (en) * 1998-07-24 2000-02-18 Tdk Corp El element
JP2005340143A (en) * 2004-05-31 2005-12-08 Canon Inc Light-emitting element
JP2011151096A (en) * 2010-01-20 2011-08-04 Hitachi Ltd Organic luminescent layer material, coating liquid for forming organic emitting layer using the same, organic light emitting device using coating liquid for forming organic light emitting layer, and light source device using organic light emitting device
JP2012195601A (en) * 2012-05-31 2012-10-11 Hitachi Ltd Organic light-emitting layer forming material, coating liquid for forming organic light-emitting layer using the same, organic light-emitting element using coating liquid for forming organic light-emitting layer, and light source device using organic light-emitting element
JP2013021138A (en) * 2011-07-12 2013-01-31 Hitachi Ltd Organic luminous layer material, coating liquid for forming organic luminous layer by using organic luminous layer material, organic light-emitting element using coating liquid for forming organic luminous layer, light source device using organic light-emitting element and manufacturing method therefor
JP2013026299A (en) * 2011-07-19 2013-02-04 Hitachi Ltd Organic light-emitting layer material, coating liquid for forming organic light-emitting layer, organic light-emitting element and light source device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5761199B2 (en) * 2010-10-22 2015-08-12 コニカミノルタ株式会社 Organic electroluminescence device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000048961A (en) * 1998-07-24 2000-02-18 Tdk Corp El element
JP2005340143A (en) * 2004-05-31 2005-12-08 Canon Inc Light-emitting element
JP2011151096A (en) * 2010-01-20 2011-08-04 Hitachi Ltd Organic luminescent layer material, coating liquid for forming organic emitting layer using the same, organic light emitting device using coating liquid for forming organic light emitting layer, and light source device using organic light emitting device
JP2013021138A (en) * 2011-07-12 2013-01-31 Hitachi Ltd Organic luminous layer material, coating liquid for forming organic luminous layer by using organic luminous layer material, organic light-emitting element using coating liquid for forming organic luminous layer, light source device using organic light-emitting element and manufacturing method therefor
JP2013026299A (en) * 2011-07-19 2013-02-04 Hitachi Ltd Organic light-emitting layer material, coating liquid for forming organic light-emitting layer, organic light-emitting element and light source device
JP2012195601A (en) * 2012-05-31 2012-10-11 Hitachi Ltd Organic light-emitting layer forming material, coating liquid for forming organic light-emitting layer using the same, organic light-emitting element using coating liquid for forming organic light-emitting layer, and light source device using organic light-emitting element

Also Published As

Publication number Publication date
JPWO2014162566A1 (en) 2017-02-16
TWI532213B (en) 2016-05-01
TW201507202A (en) 2015-02-16

Similar Documents

Publication Publication Date Title
KR100560778B1 (en) Organic electroluminescent display device
CN105720204B (en) A kind of inorganic perovskite light emitting diode with quantum dots for inverting structure
WO2012160714A1 (en) Organic electronic device and method for manufacturing same
CN108899433B (en) Hole transport layer, preparation method thereof and semiconductor photoelectric device
JPWO2016043084A1 (en) Light emitting element and power generation element
EP2765624A1 (en) Transparent conductive film, and organic light-emitting device comprising same
JP6468579B2 (en) Blue organic electroluminescence device
JP2015153864A (en) Organic film and organic electronic device
JP2007059195A (en) Upper face light emission type organic electroluminescent element
WO2014162566A1 (en) Material for light-emitting layer, dispersion liquid for light-emitting layer, and light-emitting element
JP6156797B2 (en) Organic electronic devices
Sheng et al. Efficient white phosphorescent organic light-emitting diodes consisting of orange ultrathin and blue mixed host emission layers
CN103730580A (en) Organic electroluminescence device and manufacturing method of organic electroluminescence device
JP6041336B2 (en) Organic electroluminescence device
CN112349853B (en) Electroluminescent device, preparation method thereof and display device
JP4268161B2 (en) Electrode substrate for organic electroluminescence device and organic EL light emitting device
JP6628119B1 (en) Solar cell
CN109390492B (en) Display device and preparation method thereof
KR101877746B1 (en) Organic light-emitting element
KR20130033645A (en) Substrate comprising transparent electrode and method for manufacturing thereof
CN110544746A (en) Light emitting diode and preparation method thereof
CN104103768A (en) Organic light-emitting display and manufacturing method thereof
WO2022249648A1 (en) Composition and method for producing electronic device using same
Ge et al. Influence of the Mixed-Host Heterojunction on the Spectrum Stability in White Phosphorescent Organic Light Emitting Diodes
WO2020144885A1 (en) Solar cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13881232

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015509815

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13881232

Country of ref document: EP

Kind code of ref document: A1